CN114364570A - 车辆-电网-家庭电力接口 - Google Patents

车辆-电网-家庭电力接口 Download PDF

Info

Publication number
CN114364570A
CN114364570A CN202080057636.3A CN202080057636A CN114364570A CN 114364570 A CN114364570 A CN 114364570A CN 202080057636 A CN202080057636 A CN 202080057636A CN 114364570 A CN114364570 A CN 114364570A
Authority
CN
China
Prior art keywords
full
bridge converter
grid
vehicle
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080057636.3A
Other languages
English (en)
Inventor
U·K·马达瓦拉
王雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Auckland Uniservices Ltd
Original Assignee
Auckland Uniservices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Auckland Uniservices Ltd filed Critical Auckland Uniservices Ltd
Publication of CN114364570A publication Critical patent/CN114364570A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • H02J7/025
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • H02J2003/365Reducing harmonics or oscillations in HVDC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Abstract

一种操作用于车辆到电网接口的电动车辆充电装置的方法,所述电动车辆充电装置包括第一全桥转换器和初级全桥转换器,所述第一全桥转换器被配置成将电网供电转换成DC链路,所述初级全桥转换器连接至所述DC链路并且被配置成提供用于车辆充电的输出交流电。所述方法包括:检测车辆的充电功率需求;确定当以全占空比操作时,所述DC链路使所述转换器能够供电以满足所述充电功率需求所需的电压;以全占空比操作所述初级全桥转换器;将所述DC链路的电压控制到所述所需的电压。

Description

车辆-电网-家庭电力接口
技术领域
本文所公开的主题涉及电力系统,特别是用于包括与另一电源或负载(诸如电池或具有电池或车辆到车辆接口的电动车辆)的连接的电网-家庭接口或家庭电力接口中的电力系统。尽管本文件涉及家庭和家用负载,但是应当理解,在一些应用中,所公开的主题也可以与其他电负载相关。
背景技术
使用电池作为储存用于电动车辆或用于为家用负载(诸如家用器具)或甚至工业负载供电的能量的手段变得更加普遍。
而且,使用磁耦合作为以高功率电平无线传输电力的安全且有效的机制现在在商业上是可能的。目前,无线电力传输(WPT)技术用于对电动车辆充电,并且在安全性和便利性方面提供了相当大的优势。
储存在家庭或车辆电池中的能量是可用于以更大的灵活性管理能量或以高效且成本有效的方式提供电网服务的能量源,例如通过在对公用网络的高需求时对负载(诸如家用器具)供电,或可能将来自家庭或车辆电池的电力供应回到公用网络(另外称为电网)或在电力中断或紧急情况期间对家庭或基本负载供电。
对于这样的示例或应用,需要在电网、无线耦合的电源和可以由电网或无线耦合的电源供应或接收的负载之间的有效双向接口。
然而,为了提高电力接口的通用性和效率以及符合标准并保持总成本低,仍然存在许多需要解决的技术困难。无线电力传输(WPT)技术通常在高开关频率下运行,从而导致显著的开关/电力损失。其他问题包括谐波和功率因数问题、为非线性负载供电、在约束范围内管理电源和负载之间的能量供应和需求以及减少所使用的部件或转换级的数量等。
发明内容
所公开的主题提供了一种自适应DC链路电压控制方法,用于诸如通用无线车辆-电网-家庭电力接口(VW-VGH-PI)的通用无线电力接口。还公开了一种新的无线电力接口拓扑,其包括电网与无线电力传输(WPT)系统之间的电力和质量控制转换器(PQCC)。还公开了用于有功功率交换以及无功和谐波功率补偿的VW-VGH-PI的新操作模式。这些模式包括孤岛模式、有功功率滤波器(APF)模式、电网到车辆-家庭(G2VH)模式、车辆-电网到家庭(VG2H)模式、车辆到家庭(V2H)模式和车辆到车辆(V2V)模式。
所公开的主题还包括使用所公开的拓扑来提供电力质量补偿的控制策略、方法和系统。
在一个方面,本公开提供了一种操作电动车辆充电装置的方法,所述电动车辆充电装置包括第一全桥转换器和初级全桥转换器,所述第一全桥转换器被配置成将电网供电转换成DC链路,所述初级全桥转换器连接至所述DC链路并且被配置成提供用于车辆充电的输出交流电,所述方法包括:
检测要由所述装置充电的车辆的充电功率需求;
确定当所述初级全桥转换器以全占空比操作时,所述DC链路使所述初级全桥转换器能够供电以满足所述充电功率需求所需的电压;
以全占空比操作所述初级全桥转换器;
将所述DC链路的电压控制到所述所需的电压。
优选地,所述方法还包括无线地对所述车辆充电。
优选地,所述方法还包括在所述初级全桥转换器与所述车辆之间提供双向无线耦合。
优选地,所述方法还包括将所述初级全桥转换器的输出提供给线圈,用于耦合到车辆的另一线圈,以用于电感耦合从而实现无线电力传输。
优选地,所述方法还包括检测连接到所述电网的负载的无功功率需求,以及
操作所述第一全桥转换器以补偿所述无功功率需求。
优选地,所述方法还包括检测所述负载或电网的功率需求,以及操作所述第一全桥转换器和所述初级全桥转换器,以从所述车辆向所述负载和/或所述电网供电。
优选地,所述方法还包括控制所述初级全桥转换器和与所述车辆相关联的次级全桥转换器,以控制所述电网、所述负载与所述车辆之间的双向无线电力传输。
优选地,所述方法包括以相对相位角(θ)操作所述初级转换器和所述次级转换器以向或从所述车辆引导功率流。优选地,θ为+90度或-90度。
优选地,所述方法还包括以180度操作所述初级转换器的占空比
Figure BDA0003504985340000021
优选地,所述方法还包括操作所述次级转换器的占空比
Figure BDA0003504985340000022
以控制功率流。
优选地,所述方法还包括计算瞬时负载功率,确定由所述第一全桥转换器供应的参考电流,以及控制所述第一全桥转换器的开关以提供补偿。
在另一个方面,本公开提供了一种操作电动车辆充电装置的方法,所述电动车辆充电装置包括第一全桥转换器和第二全桥转换器,所述第一全桥转换器连接至电网并且被配置成将电网供电转换成DC链路,所述第二全桥转换器连接至所述DC链路并且被配置成提供用于车辆充电的输出交流电,所述方法包括:
检测连接到所述电网的负载的无功功率需求;
操作所述第一全桥转换器以补偿所述无功功率需求。
优选地,所述方法还包括检测要由所述装置充电的车辆的充电功率需求,以及操作所述第二转换器以对所述车辆充电。
优选地,所述方法还包括检测所述负载或电网的功率需求,以及操作所述第一全桥转换器和所述第二全桥转换器,以从所述车辆向所述负载和/或所述电网供电。
优选地,所述方法还包括无线地对所述车辆充电。
优选地,所述方法还包括在所述初级全桥转换器与所述车辆之间提供双向无线耦合。
优选地,所述方法还包括将所述初级全桥转换器的输出提供给线圈,用于耦合到车辆的另一线圈,以用于电感耦合从而实现无线电力传输。
优选地,所述方法还包括检测连接到所述电网的负载的无功功率需求,以及
操作所述第一全桥转换器以补偿所述无功功率需求。
优选地,所述方法还包括检测所述负载或电网的功率需求,以及操作所述第一全桥转换器和所述初级全桥转换器,以从所述车辆向所述负载和/或所述电网供电。
优选地,所述方法还包括控制所述初级全桥转换器和与所述车辆相关联的次级全桥转换器,以控制所述电网、所述负载与所述车辆之间的双向无线电力传输。
优选地,所述方法包括以相对相位角(θ)操作所述初级转换器和所述次级转换器以向或从所述车辆引导功率流。优选地,θ为+90度或-90度。
优选地,所述方法还包括以180度操作所述初级转换器的占空比
Figure BDA0003504985340000031
优选地,所述方法还包括操作所述次级转换器的占空比
Figure BDA0003504985340000032
以控制功率流。
优选地,所述方法还包括计算瞬时负载功率,确定由所述第一全桥转换器供应的参考电流,以及控制所述第一全桥转换器的开关以提供补偿。
在另一个方面,本公开提供了一种操作电动车辆充电装置的方法,所述电动车辆充电装置包括第一全桥转换器和第二全桥转换器,所述第一全桥转换器连接至电网并且被配置成将电网供电转换成DC链路,所述第二全桥转换器连接至所述DC链路并且被配置成提供用于车辆充电的输出交流电,所述方法包括:
检测所述负载或电网的功率需求,以及操作所述第一全桥转换器和所述第二全桥转换器,以从所述车辆向所述负载和/或所述电网供电。
优选地,所述方法包括调整、控制或调适DC链路电压以对所述车辆充电。
优选地,所述全桥转换器以全占空比操作。
优选地,所述方法还包括无线地对所述车辆充电。
优选地,所述方法还包括在所述初级全桥转换器与所述车辆之间提供双向无线耦合。
优选地,所述方法还包括将所述初级全桥转换器的输出提供给线圈,用于耦合到车辆的另一线圈,以用于电感耦合从而实现无线电力传输。
优选地,所述方法还包括检测连接到所述电网的负载的无功功率需求,以及
操作所述第一全桥转换器以补偿所述无功功率需求。
优选地,所述方法还包括检测所述负载或电网的功率需求,以及操作所述第一全桥转换器和所述初级全桥转换器,以从所述车辆向所述负载和/或所述电网供电。
优选地,所述方法还包括控制所述初级全桥转换器和与所述车辆相关联的次级全桥转换器,以控制所述电网、所述负载与所述车辆之间的双向无线电力传输。
优选地,所述方法包括以相对相位角(θ)操作所述初级转换器和所述次级转换器以向或从所述车辆引导功率流。优选地,θ为+90度或-90度。
优选地,所述方法还包括以180度操作所述初级转换器的占空比
Figure BDA0003504985340000041
优选地,所述方法还包括操作所述次级转换器的占空比
Figure BDA0003504985340000042
以控制功率流。
优选地,所述方法还包括计算瞬时负载功率,确定由所述第一全桥转换器供应的参考电流,以及控制所述第一全桥转换器的开关以提供补偿。
在另一方面,本公开提供了一种车辆-电网-家庭接口,其包括:
被配置成或可操作以执行上述方法中的任一个或多个的控制器。
在另一方面,提供了一种操作无线电力传输装置的方法,所述无线电力传输装置的初级包括初级线圈、谐振补偿网络和全桥转换器。所述初级线圈磁耦合到次级线圈,所述次级线圈连接到补偿网络、全桥转换器和DC电源/负载以传输或接收无线电力,所述方法包括:
选择初级侧全桥转换器的全占空比;
根据所述全占空比确定所述DC电源/负载所需的DC电压;
控制所述DC电源/负载以提供所需的DC电压。
优选地,使用AC到DC转换器将所述DC电源/负载耦合到AC电源。
在另一方面,提供了PQCC,其包括:
全桥转换器
耦合到公用电源的输入端
耦合到无线电力传输系统的输出端
控制器,其被配置成确定所述输出端的所需的DC电压,并相应地操作所述全桥转换器。
在另一方面,提供了一种无线电力传输装置,其具有
谐振补偿网络;
全桥转换器,其可操作以将DC电源/负载连接到所述补偿网络以传输或接收无线电力,以及
控制器,其被配置成:
为所述全桥转换器选择全占空比;
根据所述全占空比确定所述DC电源/负载的所需的DC电压,以及
控制所述DC电源/负载以提供所需的DC电压。
在另一方面,提供了一种无线电力传输装置,其具有
谐振补偿网络;
全桥转换器,其可操作以将DC电源/负载连接到所述补偿网络以传输或接收无线电力,以及
控制器,其被配置成:
监测由所述DC电源/负载提供的负载,并操作转换器以从所述DC电源/负载汲取电流或向所述DC电源/负载供应电流,以补偿由所述负载引起的变化。
在另一方面,提供了一种无线电力传输装置,其具有
PQCC,其设置在所述无线电力传输装置与电网连接之间;
控制器,其被配置成:
监测由所述电网提供的负载并操作所述PQCC以从所述电网连接汲取电流或向所述电网连接供应电流以补偿由所述负载引起的变化。
根据以下描述,其他方面将变得显而易见。
附图说明
图1是基于车辆-电网-家庭VGH单元的系统
图2是VW-VGH-PI系统的电路拓扑
图3示出了图1的系统的操作模式
图5是BD-WPT系统的简化电路示意图
图6是功率、输入电压和初级转换器控制参数的图
图7示出了(a)具有高DC电压的常规WPT控制方法的波形
和(b)本文公开的具有低DC电压的自适应DC控制方法的波形
图8是根据PV和QL的VDC(PQCC)的图
图9是控制器的示意图
图10示出了所提出的系统在不同模式下的稳态波形:(a)从VG2H到孤岛模式;(b)从VG2H到G2HV;(c)从V2HG到V2H
图11是所提出的VW-VGH-PI系统在G2VH模式下的动态和稳态波形:(a)vG、iG、iL和isi的动态波形;(b)vsi、isi、vpi和ipi的动态波形;(c)PV=200W的稳态波形;(d)PV=350W的稳态波形
图12是所提出的VW-VGH-PI系统在VG2H模式下的动态和稳态波形:(a)vG、iG、iL和isi的动态波形;(b)vsi、isi、vpi和ipi的动态波形;(c)PV=-200W的稳态波形;(d)PV=-350W的稳态波形
具体实施方式
图1和图2示出了用于车辆-家庭-电网系统的系统拓扑,通常标记为1,该车辆-家庭-电网系统在本文将被统称为通用无线车辆-电网-家庭电力接口(VW-VGH-PI)系统。公用电源(或电网,或干线)2以电压vG和电流iG以干线频率(例如50或60Hz)供电。在所示示例中包括家庭或家用或本地负载的负载4电连接到电网,以电压vG汲取电流iL。负载4可以是并且通常是非线性的。
本文称为电力和质量控制转换器(PQCC)的第一全桥转换器具有耦合到电网1的输入端5和耦合到无线电力传输系统(BD-WPT)的输出端6。在该示例中,BD-WPT是双向无线电力传输系统。在一些其他示例中,WPT可以是单向的。本领域技术人员将理解,WPT系统可以由有线充电系统代替,其中全桥转换器将电流提供给隔离变压器,并且与车辆相关联的另一转换器将交流电转换为直流电用于充电(或将电力提供回电网/负载)。此外,尽管图2中示出了串联调谐补偿网络,但是也可以使用其他网络,例如并联调谐网络。
PQCC包括以全桥配置布置的开关S11、S12、S13和S14。诸如电感器Lc的耦合部件或网络与电网连接(在该示例中为串联)以减小电流波纹。在该示例中使用并联电容器Cc以在孤岛模式下保持输出电压。DC链路电容器CDC被设计成将输出端6处的DC链路的DC电压维持在令人满意的电压纹波处或以下。电压vconv是PQCC的桥的输入端上的电压。PL、QL和SLh分别是负载有功功率、无功功率和谐波功率,并且PV是从BD-WPT系统接收的或供应给BD-WPT系统的有功功率。控制PQCC以在Vconv产生电流ic以提供所需的PV、QL和SLh
在BD-WPT模块中,初级侧转换器通过PQCC从电网获得电力,并由输出DC电压VDC馈送,而次级侧转换器被认为连接到诸如电池的负载。这在图2中表示为EV,并且由单独的DC源Vout表示以储存或获取能量。由自感Lpi和Lsi表示的初级侧线圈和次级侧线圈由气隙分开,但通过互感M磁耦合。初级侧和次级侧串联连接的电容器Cpi和Csi被设计成最小化BD-WPT中的无功功率需求。
PQCC用于支持非线性家用负载的无功和谐波功率(QL和SLh)补偿,同时满足根据PG=(PV-PL)的有功功率供应/需求。BD-WPT模块用于在孤岛模式、V2H模式、G2VH模式、VG2H和V2HG以及所需的任何其他可能模式下(优选双向地)传输有功功率PV。这些操作模式如图3所示。在所有模式中,家用负载的无功功率和谐波功率都将由或可以由PQCC根据其容量提供。在G2VH模式中,EV充当有功负载以从电力电网吸收有功功率(PV>0)。相反,在VG2H模式中,EV被表示为DC电源,以向家用负载输送功率(PV<0)。此外,EV功率可以通过VW-VGH-PI流入另一EV。本领域的技术人员将理解,所监测的或采样的参数,诸如在本文中示出和描述的那些参数,但特别是在下面图9中示出的控制系统中标识的那些参数,可用于确定系统的适当操作模式(按照图3),并控制该系统在该模式中操作,如下面进一步描述的那样。
如图4所示,BD-WPT模块在初级侧采用全桥转换器,以根据DC链路电压VDC在初级线圈/轨道中产生高频电流。在次级侧上采用的全桥转换器可以连接到诸如EV的有功负载,以实现能量的供应或获取。
基于图4,输入电流和输出电流可以表示为:
Figure BDA0003504985340000071
Figure BDA0003504985340000072
其中Vp和Vs分别是在初级线圈和次级线圈中感应的电压,并且M是互感。由转换器分别从VDC和Vout产生的电压Vpi和Vsi可以表示为:
Figure BDA0003504985340000081
Figure BDA0003504985340000082
其中n是谐波数,
Figure BDA0003504985340000083
是初级侧相移调制,
Figure BDA0003504985340000084
是次级侧相移调制,并且θ是由转换器产生的两个电压之间的相对相位角,并且ωs是初级转换器和次级转换器的角度开关频率,其等于角度谐振频率ωr,其可以表示为:
Figure BDA0003504985340000085
EV侧的功率流可以表示为:
Figure BDA0003504985340000086
Figure BDA0003504985340000087
BD-WPT控制器的目的是将PV控制在其参考值,同时使其无功功率需求最小化。在(6)和(7)中,通过将初级侧转换器和次级侧转换器的电压之间的相对相位角θ保持为+90°或-90°,可以使系统两侧的无功功率分量最小化(QV=0)。可以通过相对相位角的符号来控制功率流的方向。除了θ之外,
Figure BDA0003504985340000088
Figure BDA0003504985340000089
以及ωs都可以用于控制有功功率传输。在此示例中,
Figure BDA00035049853400000810
被设定为有效功率控制的第一优先级,而
Figure BDA00035049853400000815
被设定为180°。基于(6),PV、VDC
Figure BDA00035049853400000811
之间的关系可以如图6所示。
从图6明显看出,可以通过控制相移
Figure BDA00035049853400000812
或输入电压VDC来调节PV。通常,通过控制
Figure BDA00035049853400000813
来调节PV,同时将VDC设定为固定值。然而,所提出的PQCC采用自适应DC链路电压控制方法以通过适当地改变VDC来调节PV,从而降低PQCC中以及BD-WPT模块的初级转换器中的开关损耗和谐波失真。参照图7进行使用
Figure BDA00035049853400000814
的传统控制方法与所提出的控制方法之间的比较。
通常,如图7(a)所示,VDC被设计为固定值VDC(WPT)_conv,并且通过经由WPT模块的初级侧转换器的
Figure BDA0003504985340000091
(有效地,占空比)间接控制VDC(WPT)_conv来调节PV
相反,如图7(b)所示,所提出的自适应方法通过经由PQCC直接控制VDC=VDC(WPT)_adap来调节PV,同时将WPT模块的初级侧转换器的
Figure BDA0003504985340000092
保持在1800,这对应于100%的最大占空比。VDC(WPT)_adap是针对对应于最大PV的供应或吸收的条件而设计的。
PQCC中的任何半导体器件的开关损耗可以近似为:
Figure BDA0003504985340000093
其中VDC、IC、ICN、trN、tfN和fsw分别是DC链路电压、PQCC输出电流、额定电流、额定上升时间、额定下降时间和开关频率。从(8)明显看出,对于根据有功、无功和谐波功率需求注入电网的任何给定IC,VDC与开关损耗成正比。因此,通过使用自适应控制概念适当地降低VDC,可以降低PQCC的开关损耗。
在(8)中针对PQCC规定的条件下,(6)中的相同功率
Figure BDA0003504985340000098
必须通过BD-WPT模块的初级侧转换器传送。然后考虑通过传统的恒定DC链路电压方法和新的自适应DC链路控制的相同功率传输,可以得到以下表达式:
Figure BDA0003504985340000094
Figure BDA0003504985340000095
因此,基于(6)和(8),初级侧BD-WPT转换器的传统方法和所提出的方法之间的开关损耗比可以给出为(11)。
Figure BDA0003504985340000096
在(11)中较小的
Figure BDA0003504985340000097
表示传统方法使用高DC链路电压来传输低PV,从而导致高开关损耗,但是利用自适应控制,开关损耗将仅仅是传统开关损耗的一部分。此外,初级侧BD-WPT转换器总是以全占空比操作,并且能够以近似软开关的方式操作。因此,除了降低谐波失真之外,还进一步降低了开关损耗。
根据(6)并且在
Figure BDA0003504985340000101
和θ=+90°或-90°的条件下,BD-WPT模块所需的最大DC链路电压计算为:
Figure BDA0003504985340000102
在(12)中给出的DC链路电压由PQCC根据参考PV自适应地控制。然而,除了满足BD-WPT模块要求的(12)中规定的最大VDC电压之外,还存在由VDC(PQCC)表示的最小VDC电压,在该最小电压下,PQCC总是被保证向AC电网供应所需的PV、QL和SLh。基于图2,由PQCC产生的电压的基本分量可以表示为:
Figure BDA0003504985340000103
根据(13),最小所需基本DC链路电压可如下获得:
Figure BDA0003504985340000104
根据(14)和表I中的参数,可以确定VDC(PQCC)的需求,并且如从图8明显看出,最小基本DC链路电压VDC(PQCC)取决于由PQCC供应的有功和无功功率。
为满足谐波功率需求SLh,DC链路电压的谐波分量应为:
Figure BDA0003504985340000105
其中n是谐波阶数,N是根据应用选择的最大谐波,nωLc是谐波阻抗,ILn是谐波负载电流。因此,PQCC的总的所需DC链路电压可以表示为:
Figure BDA0003504985340000111
最终DC链路电压可通过选择VDC(WPT)_adap和VDC(PQCC)的两个值中的最大值来确定。
使用如图9所示配置的控制器或控制模块10来控制图1所示的系统。控制器可以设置成两部分,第一部分52是PQCC的控制器,第二部分54是WPT模块的控制器。在一个实施例中,PQCC可以作为具有控制器11的单独单元来提供,以使其能够连接到现有的WPT模块,该现有的WPT模块可以具有单独的一个或多个控制器12和13。还可以看出,PQCC可以与WPT装置结合提供,即,WPT装置可以包括PQCC。控制器可以作为一个或多个处理器来提供,所述处理器被编程以执行图9中所示和本文所公开的控制功能。如果需要,在控制模块10、11、12、13之间提供通信。此外,可以提供通信装置14以允许系统1与电网或类似的控制器通信,该电网或类似的控制器可以由公用事业供应实体操作。因此,如果需要减少对电网的需求,则这可以被传送到控制器10,从而例如可以减少车辆充电,或者可以提供额外的补偿。
用于自适应DC链路电压控制的控制策略和系统现在将给出,并参考图9的控制器进行公开。
在图9中,PV *的变化主要用于自动确定模式之间的转换。PV *来自电网控制器或EV用户。
在一个示例中,将单相PQ方法用于实现控制器。这涉及实现用于调节电流iC的瞬时有功和无功电流P-Q控制器。具体地,为了跟踪参考值iC*,PQCC控制器通过使用诸如电流滞后脉宽调制(PWM)控制的脉宽调制控制来产生电流iC。在此示例中,由于实现的简单性、快速动态响应和良好的限流能力而选择滞后PWM。因此,参考iC*可以计算为:
Figure BDA0003504985340000112
其中vG和vG D是电网电压和负载电压的瞬时π/2滞后;PV*是来自BD-WPT模块的参考有功功率;pDC是DC控制的所需的有功功率;pL和qL是负载瞬时有功和无功电流,其包含DC分量和AC分量。通过使pL通过低通滤波器(LPF)并随后相减来获得AC分量
Figure BDA0003504985340000113
在(17)中,pL、qL和pDC可以表示为:
Figure BDA0003504985340000121
Figure BDA0003504985340000122
其中iL和iL D是负载电流和负载电流的瞬时π/2滞后,VDC和VDC*是DC链路电压及其参考值,kp是比例增益控制。参考VDC*通过分别使用PV=PV*的(16)和(12)选择VDC(PQCC)*和VDC(BD-WPT)*的最大值获得。VDC(PQCC)*和VDC(WPT)*的瞬时表达式通过基于(14)和(12)代入PV=PV*而获得并且如下给出:
Figure BDA0003504985340000123
Figure BDA0003504985340000124
最后,通过如下选择(18)中的VDC(PQCC)*和(19)中的VDC*的最大值而获得VDC*:
Figure BDA0003504985340000125
根据图9,分别使用(20)和(21)瞬时计算PQCC和BD-WPT模块的参考DC链路电压(VDC(PQCC)*和VDC(WPT)_adap*)。然后根据(22)将这两个电压的最大值作为VDC*的最终值。随后使用(19)来计算DC链路电压控制所需的有功功率pDC,并使用(18)来计算负载无功功率qL和有功功率pL。LPF和(17)用于将负载无功功率、谐波功率、参考有功功率和pDC变换为ic*。为了生成ic,使用PWM控制并将ic与ic*进行比较来导出PQCC的全桥转换器的开关信号。
对于BD-WPT模块的控制,有功功率PV通过
Figure BDA0003504985340000126
Figure BDA0003504985340000127
来控制,并且将θ用于控制有功功率流的方向。可以使用PI或PID控制器即PID1和PID2来生成相移
Figure BDA0003504985340000128
Figure BDA0003504985340000129
如果VDC(WPT)_adap*>VDC(PQCC)*,则BD-WPT模块以
Figure BDA00035049853400001210
的全占空比操作。相反,如果VDC(WPT)_adap*≤VDC(PQCC)*,则通过将
Figure BDA00035049853400001211
Figure BDA00035049853400001212
控制在≤180°内,将有功功率PV调节在其参考PV*。
已经进行了模拟来验证所提出的概念,并且表1示出了用于验证的参数。
表1
Figure BDA0003504985340000131
图10示出了所提出的VW-VGH-PI系统在不同模式下的动态性能。
图10(a)示出了所提出的VW-VGH-PI系统在t=80ms时从VG2H模式转变为孤岛模式。最初,系统以VG2H模式操作,并且当通过PQCC将250W的有功功率PV从EV传输到电网时,将作为PFG和THDiG给出的电网侧功率因数和总谐波失真控制为统一且<5%,以满足iL=7.5A的负载需求和3.3A的减小的电网电流。在孤岛模式中(没有电网供电),vG由所提出的系统通过所提出的电压控制器生成。由于AC电网侧不供电,因此PQCC电流ic等于iL,并且负载需求由EV通过PQCC满足。
图10(b)示出了所提出的VW-VGH-PI系统在t=80ms时从APF模式转变为G2VH模式。正如预期的那样,PFG和THDiG由PQCC保持为统一且<5%。在APF模式中,由于负载的无功功率和谐波功率得到补偿,因此电网电流iG为4.2A且小于所需的6.9A负载电流iL。相反,在G2VH模式中,EV需求由电网满足,从而将250W的有功功率PV传输到EV侧。因此,电网电流增加到iG=9.2A。
图10(c)示出了所提出的VW-VGH-PI系统在t=80ms时从V2HG模式转变为V2H模式。正如预期的那样,PQCC将PFG和THDiG保持为统一且<5%。最初在V2HG模式中,PQCC从EV传输440W的有功功率PV以完全支持家庭负载PL=210W,同时向电网注入过剩的有功功率。然后在没有电网功率的V2H模式中,PQCC使用EV来完全支持负载功率需求。
图11和图12分别示出了在G2VH和VG2H模式下的具有自适应DC链路电压控制的所提出的VW-VGH-PI系统的动态波形。在图11(a)中,参考PV*在t=0.2s时从200W变为350W。尽管发生了变化,PQCC仍将PFG和THDiG保持为统一且低于3%。为了满足EV有功功率需求的增加,电网电流从iG=10.1A增加到12.2A,同时满足负载的有功和无功功率需求。图11(b)示出了对应于功率增加的BD-WPT模块中的增加的电压和电流。图11(c)-(d)示出了如何利用所提出的自适应DC链路电压控制来实现软开关操作。
图12(a)示出了在从EV到电网的有功功率PV注入从200W变为350W期间的波形。在整个操作中,PQCC在负载功率因数PFL=0.780的情况下将THDiG和PFG保持为统一且<4.6%。随着350W Pv注入,电网电流iG从4.6A减小到2.7A。图12(c-d)示出了PQCC的自适应控制器如何根据增加的功率流将dc链路电压从150V变为220V,同时促进近软开关操作。
如图12所示,BD-WPT模块中的输入和输出电压以及电流波形可以通过所提出的控制方法来控制。
虽然已经结合电动车辆的特定应用描述了本发明的实施例,但是本领域的技术人员将理解,另选的应用领域包括例如便携式电子设备,诸如手机、手表、牙刷等。
除非上下文另有明确要求,否则在整个说明书和权利要求书中,词语“包括”、“包含”等应被解释为包含性意义,而不是排他性或穷举性意义,也就是说,解释为“包括但不限于”的意义。
在前面的描述中,在参考具有已知等同物的本发明的特定部件或整体的情况下,那么这样的等同物就如同被单独阐述一样并入本文。
注意,本公开中描述的功能框、特征、方法、设备和系统可以被集成或划分为系统、设备和功能框的不同组合,如本领域技术人员已知的那样。可以使用任何合适的编程语言和编程技术来实现特定实现方式的例程。可以采用不同的编程技术,诸如过程或面向对象的。例程可以在单个处理设备或多个处理器上执行。虽然步骤、操作或计算可以以特定顺序呈现,但是在不同的特定实现方式中可以改变顺序。在一些实现方式中,可以同时执行在本说明书中按顺序示出的多个步骤或方框。已经如此描述了本发明的几个特定实施例,本领域技术人员将容易想到各种改变、修改和改进。通过本公开内容显而易见的这些改变、修改和改进旨在成为本说明书的一部分,尽管本文没有明确说明,并且旨在在本发明的精神和范围内。因此,前面的描述仅作为示例而非限制。本发明仅由所附权利要求及其等同物限定。

Claims (17)

1.一种操作电动车辆充电装置的方法,所述电动车辆充电装置包括第一全桥转换器和初级全桥转换器,所述第一全桥转换器被配置成将电网供电转换成DC链路,所述初级全桥转换器连接至所述DC链路并且被配置成提供用于车辆充电的输出交流电,所述方法包括:
检测要由所述装置充电的车辆的充电功率需求;
确定当所述初级全桥转换器以全占空比操作时,所述DC链路使所述初级全桥转换器能够供电以满足所述充电功率需求所需的电压;
以全占空比操作所述初级全桥转换器;
将所述DC链路的电压控制到所述所需的电压。
2.根据权利要求1所述的方法,还包括无线地对所述车辆充电。
3.根据权利要求2所述的方法,还包括在所述初级全桥转换器与所述车辆之间提供双向无线耦合。
4.根据权利要求2或权利要求3所述的方法,还包括将所述初级全桥转换器的输出提供给线圈,用于耦合到所述车辆的另一线圈,以用于电感耦合从而实现无线电力传输。
5.根据前述权利要求中任一项所述的方法,还包括检测连接到所述电网的负载的无功功率需求,以及
操作所述第一全桥转换器以补偿所述无功功率需求。
6.根据前述权利要求中任一项所述的方法,还包括检测所述负载或电网的功率需求,以及操作所述第一全桥转换器和所述初级全桥转换器,以从所述车辆向所述负载和/或所述电网供电。
7.根据权利要求2至6中任一项所述的方法,还包括控制所述初级全桥转换器和与所述车辆相关联的次级全桥转换器,以控制所述电网、所述负载与所述车辆之间的双向无线电力传输。
8.根据权利要求7所述的方法,还包括以相对相位角(θ)操作所述初级转换器和所述次级转换器以向或从所述车辆引导功率流,优选地,θ为+90度或-90度。
9.根据前述权利要求中任一项所述的方法,还包括以180度操作所述初级转换器的占空比
Figure FDA0003504985330000011
10.根据权利要求7至9中任一项所述的方法,还包括操作所述次级转换器的占空比
Figure FDA0003504985330000012
以控制功率流。
11.根据前述权利要求中任一项所述的方法,还包括计算瞬时负载功率,确定由所述第一全桥转换器供应的参考电流,以及控制所述第一全桥转换器的开关以提供补偿。
12.一种操作电动车辆充电装置的方法,所述电动车辆充电装置包括第一全桥转换器和第二全桥转换器,所述第一全桥转换器连接至电网并且被配置成将电网供电转换成DC链路,所述第二全桥转换器连接至所述DC链路并且被配置成提供用于车辆充电的输出交流电,所述方法包括:
检测连接到所述电网的负载的无功功率需求;
操作所述第一全桥转换器以补偿所述无功功率需求。
13.根据权利要求12所述的方法,还包括检测要由所述装置充电的车辆的充电功率需求,以及操作所述第二转换器以对所述车辆充电。
14.根据权利要求12或权利要求13所述的方法,还包括检测所述负载或电网的功率需求,以及操作所述第一全桥转换器和所述第二全桥转换器,以从所述车辆向所述负载和/或所述电网供电。
15.一种操作电动车辆充电装置的方法,所述电动车辆充电装置包括第一全桥转换器和第二全桥转换器,所述第一全桥转换器连接至电网并且被配置成将电网供电转换成DC链路,所述第二全桥转换器连接至所述DC链路并且被配置成提供用于车辆充电的输出交流电,所述方法包括:
检测所述负载或电网的功率需求,以及操作所述第一全桥转换器和所述第二全桥转换器,以从所述车辆向所述负载和/或所述电网供电。
16.一种车辆-电网-家庭接口,包括
被配置成或可操作以执行根据前述权利要求中任一项所述的方法的控制器。
17.一种电力和质量控制转换器,包括:
全桥转换器;
耦合到公用电源的输入端;
耦合到无线电力传输系统的输出端;
控制器,所述控制器被配置成确定所述输出端的所需的DC电压,并以所确定的所需的DC电压操作所述全桥转换器。
CN202080057636.3A 2019-08-16 2020-08-17 车辆-电网-家庭电力接口 Pending CN114364570A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NZ756443 2019-08-16
NZ75644319 2019-08-16
PCT/IB2020/057750 WO2021033131A1 (en) 2019-08-16 2020-08-17 Vehicle-grid-home power interface

Publications (1)

Publication Number Publication Date
CN114364570A true CN114364570A (zh) 2022-04-15

Family

ID=74660582

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080057636.3A Pending CN114364570A (zh) 2019-08-16 2020-08-17 车辆-电网-家庭电力接口

Country Status (6)

Country Link
US (1) US20220393472A9 (zh)
EP (1) EP4013642A4 (zh)
JP (1) JP2022543904A (zh)
KR (1) KR20220044996A (zh)
CN (1) CN114364570A (zh)
WO (1) WO2021033131A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022120261A1 (de) 2022-06-01 2023-12-07 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Ladeanordnung und Ladepark

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011127449A2 (en) * 2010-04-08 2011-10-13 Qualcomm Incorporated Wireless power transmission in electric vehicles
US20110254379A1 (en) * 2008-11-26 2011-10-20 Auckland Uniservices Limited Bi-directional inductive power transfer
WO2013002651A1 (en) * 2011-06-27 2013-01-03 Auckland Uniservices Limited Load control for bi-directional inductive power transfer systems
CN102947124A (zh) * 2010-05-19 2013-02-27 高通股份有限公司 自适应无线能量传送系统
WO2015128942A1 (ja) * 2014-02-25 2015-09-03 日産自動車株式会社 非接触給電システム及び送電装置
DE102015012110A1 (de) * 2015-09-18 2016-04-14 Daimler Ag Vorrichtung zum Steuern eines Leistungsflusses sowie Verfahren
CN107148712A (zh) * 2014-08-11 2017-09-08 奥克兰联合服务有限公司 谐振频率补偿
WO2019071360A1 (en) * 2017-10-13 2019-04-18 The Governing Council Of The University Of Toronto BI-DIRECTIONAL ON-BOARD FAST CHARGER FOR ELECTRIC VEHICLES

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016010284A (ja) * 2014-06-26 2016-01-18 株式会社豊田自動織機 送電機器及び非接触電力伝送装置
DE102014220224A1 (de) * 2014-10-07 2016-04-07 Robert Bosch Gmbh Verfahren und System zum berührungslosen Laden eines batteriebetriebenen Objekts
CN112585857B (zh) * 2018-09-03 2024-02-02 三菱电机株式会社 电力变换装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110254379A1 (en) * 2008-11-26 2011-10-20 Auckland Uniservices Limited Bi-directional inductive power transfer
WO2011127449A2 (en) * 2010-04-08 2011-10-13 Qualcomm Incorporated Wireless power transmission in electric vehicles
CN102947124A (zh) * 2010-05-19 2013-02-27 高通股份有限公司 自适应无线能量传送系统
WO2013002651A1 (en) * 2011-06-27 2013-01-03 Auckland Uniservices Limited Load control for bi-directional inductive power transfer systems
WO2015128942A1 (ja) * 2014-02-25 2015-09-03 日産自動車株式会社 非接触給電システム及び送電装置
EP3113329A1 (en) * 2014-02-25 2017-01-04 Nissan Motor Co., Ltd. Non-contact power supply system and power transmission device
CN107148712A (zh) * 2014-08-11 2017-09-08 奥克兰联合服务有限公司 谐振频率补偿
DE102015012110A1 (de) * 2015-09-18 2016-04-14 Daimler Ag Vorrichtung zum Steuern eines Leistungsflusses sowie Verfahren
WO2019071360A1 (en) * 2017-10-13 2019-04-18 The Governing Council Of The University Of Toronto BI-DIRECTIONAL ON-BOARD FAST CHARGER FOR ELECTRIC VEHICLES

Also Published As

Publication number Publication date
EP4013642A1 (en) 2022-06-22
WO2021033131A1 (en) 2021-02-25
JP2022543904A (ja) 2022-10-14
US20220231509A1 (en) 2022-07-21
EP4013642A4 (en) 2023-09-27
KR20220044996A (ko) 2022-04-12
US20220393472A9 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
KR102226793B1 (ko) 전기 또는 하이브리드 차량의 온보드 충전 디바이스 제어 방법
US11404965B2 (en) DC-DC converter, on-board charger, and electric vehicle
Li et al. A maximum efficiency point tracking control scheme for wireless power transfer systems using magnetic resonant coupling
Liu et al. An optimal multivariable control strategy for inductive power transfer systems to improve efficiency
US20170323721A1 (en) Inductive power transfer system
Thrimawithana et al. A novel matrix converter based bi-directional IPT power interface for V2G applications
Madawala et al. Modular-based inductive power transfer system for high-power applications
US20200067319A1 (en) Solar energy based mobile electric vehicle fast charger system
Wang et al. Smart gateway grid: A DG-based residential electric power supply system
Liu et al. A soft-switched power-factor-corrected single-phase bidirectional AC–DC wireless power transfer converter with an integrated power stage
EP4016837B1 (en) Electric drive system, power assembly, and electric vehicle
CN112350607B (zh) 具双向功率转换的三相电源装置
US20220231509A1 (en) Vehicle-grid-home power interface
Bac et al. A matrix converter based Inductive Power Transfer system
CN110771006A (zh) 用于主动地产生无功功率并将其施加到感性传输系统中的设备和方法
CN114312382B (zh) 一种适用于电动汽车有线无线一体化充电桩的系统拓扑
TW201931752A (zh) 具ac正向電橋及改良的dc/dc拓樸的逆變器
KR102387123B1 (ko) Ac-dc 컨버터 회로 시스템, 및 ac-dc 컨버터 회로 시스템의 동작 방법
CN201065814Y (zh) 将生物能转变为交流电的健身器
Tang et al. A bidirectional contactless power transfer system with dual-side power flow control
CN111903048B (zh) 变换器
Luo et al. A primary shunt inductor compensated inductive power transfer system with natural ZVS for battery charging application
CN114747113A (zh) 充电设备和用于运行充电设备的方法
RU2404439C1 (ru) Двухступенчатая электронная нагрузка
Kavimandan et al. Dual independent control for inductive wireless power transfer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination