CN102203140B - 高熔体流动速率的抗冲丙烯共聚物和方法 - Google Patents

高熔体流动速率的抗冲丙烯共聚物和方法 Download PDF

Info

Publication number
CN102203140B
CN102203140B CN200980141797.4A CN200980141797A CN102203140B CN 102203140 B CN102203140 B CN 102203140B CN 200980141797 A CN200980141797 A CN 200980141797A CN 102203140 B CN102203140 B CN 102203140B
Authority
CN
China
Prior art keywords
propylene
impact copolymer
mfr
polymkeric substance
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200980141797.4A
Other languages
English (en)
Other versions
CN102203140A (zh
Inventor
陈林峰
杰弗里.D.戈德
威廉.G.希尔德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WR Grace and Co
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40756183&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102203140(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from PCT/US2008/073882 external-priority patent/WO2009029487A1/en
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Publication of CN102203140A publication Critical patent/CN102203140A/zh
Application granted granted Critical
Publication of CN102203140B publication Critical patent/CN102203140B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1809Controlling processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1872Details of the fluidised bed reactor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • C08F297/083Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins the monomers being ethylene or propylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2400/00Characteristics for processes of polymerization
    • C08F2400/02Control or adjustment of polymerization parameters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/02Heterophasic composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/02Ziegler natta catalyst

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Materials Engineering (AREA)

Abstract

本公开提供生产高熔体流动速率的抗冲丙烯共聚物的聚合方法。该方法包括在第一聚合反应器中使熔体流动速率大于约100克/10分钟的基于丙烯的活性聚合物与一种或多种烯烃接触以形成熔体流动速率大于约60克/10分钟的抗冲丙烯共聚物。生产该高熔体流动速率的抗冲丙烯共聚物可在一个或多个采用标准氢气浓度并且不用减粘裂化的聚合反应器中进行。

Description

高熔体流动速率的抗冲丙烯共聚物和方法
优先权要求
本申请是2008年8月21日提交的国际申请PCT/US2008/073882的部分连续申请,该国际申请要求2007年8月24日提交的美国临时专利申请60/957,888的优先权,所述申请的全部内容在此通过引用纳入。
背景技术
随着对更精益的聚合物的需求持续增长,对具有高熔体流动速率的抗冲丙烯共聚物的要求持续增加。反应器内(in-reactor)抗冲丙烯共聚物是通过聚合制备的共聚物,并且不包括例如减粘裂化。难以直接通过聚合制备高熔体流动速率的抗冲丙烯共聚物。常规聚合催化剂典型地要求使用非常高的氢气浓度以形成熔体流动速率大于最终抗冲丙烯共聚物的熔体流动速率的基体相聚合物。在许多情况下,由于反应器操作性限制、安全性关注、和/或经济考量,提供高的氢气浓度是不可能的。
期望生产高熔体流动速率的抗冲丙烯共聚物的聚合方法。进一步期望生产具有高冲击强度的高熔体流动速率的抗冲丙烯共聚物。进一步期望以降低的工艺中断风险或没有工艺中断风险生产具有高冲击强度的高熔体流动速率的抗冲丙烯共聚物。
发明内容
本公开提供生产具有高熔体流动速率的抗冲丙烯共聚物的聚合方法。高熔体流动速率的抗冲丙烯共聚物还可具有高冲击强度。本方法为反应器内方法并且不包括减粘裂化。
在一种实施方式中,提供了一种聚合方法。该聚合方法包括在第一聚合反应器中气相聚合、或通过气相聚合的方式形成基于丙烯的活性聚合物。该基于丙烯的活性聚合物的根据ASTM D1238-01(230℃,2.16kg)测得的熔体流动速率大于约100克/10分钟。该方法包括将所述基于丙烯的活性聚合物引入第二聚合反应器。在第二反应器中,在聚合条件下使所述基于丙烯的聚合物与至少一种烯烃接触。该方法进一步包括形成熔体流动速率大于约60克/分钟的抗冲丙烯共聚物。
在一种实施方式中,所述方法包括在一个或两个反应器中将H2/C3的摩尔比保持在低于0.3。
在一种实施方式中,所述方法包括形成挥发物含量小于约65μg/g的抗冲丙烯共聚物。挥发物含量根据VW标准PV3341测得。
本公开提供另一方法。在一种实施方式中,提供了聚合方法,其包括在聚合反应器中在聚合条件下使至少一种烯烃与基于丙烯的活性聚合物接触。该基于丙烯的活性聚合物的熔体流动速率大于约100克/10分钟。所述方法进一步包括形成熔体流动速率大于约85克/10分钟的抗冲丙烯共聚物。
在一种实施方式中,所述聚合反应器为气相聚合反应器。
在一种实施方式中,该方法包括在反应器中将H2/C3摩尔比保持在低于0.20。
在一种实施方式中,该方法包括形成挥发物含量小于约65μg/g的抗冲丙烯共聚物。
本公开提供一种组合物。在一种实施方式中,提供了抗冲丙烯共聚物,其包括熔体流动速率大于约100克/10分钟的基于丙烯的聚合物和分散在该基于丙烯的聚合物中的丙烯/乙烯共聚物。该抗冲丙烯共聚物的Fc值为约5wt%~约50wt%和Ec值为约20wt%~约90wt%。该抗冲丙烯共聚物的熔体流动速率大于约60克/10分钟。
本公开的优点是,提供了生产抗冲丙烯共聚物的、尤其是生产高熔体流动速率的抗冲丙烯共聚物的改进方法。
本公开的优点是,提供了改进的抗冲丙烯共聚物。
本发明共聚物的优点是,提供不裂解的高熔体流动速率的抗冲丙烯共聚物。
具体实施方式
在一种实施方式中,提供了一种聚合方法。该聚合方法包括气相聚合(或通过气相聚合的方式形成)熔体流动速率(MFR)大于约100克/10分钟的基于丙烯的活性聚合物。MFR根据ASTM D1238-01(230℃,2.16kg)测得。基于丙烯的活性聚合物在第一聚合反应器中在聚合(即气相聚合)条件下形成。该方法进一步包括将所述基于丙烯的活性聚合物引入第二聚合反应器,在第二聚合反应器中在聚合条件下所述基于丙烯的活性聚合物与除丙烯之外的至少一种烯烃接触。该方法进一步包括形成熔体流动速率大于约60克/10分钟的抗冲丙烯共聚物。
如本文中所使用的,“活性聚合物”是含有一定量活性催化剂(典型地嵌入其中)的聚合物,其能够在聚合条件下暴露于烯烃时进一步聚合。在一种实施方式中,嵌入基于丙烯的活性聚合物的活性催化剂为自限制催化剂组合物,其包括前催化剂(procatalyst)组合物、助催化剂、和混合外部电子给体(M-EED)。M-EED包括第一选择性控制剂(SCA1)、第二选择性控制剂(SCA2)和活性限制剂(ALA)。理解的是,M-EED可包括三种或更多种SCA和/或两种或更多种ALA。
本催化剂组合物的前催化剂组合物可为齐格勒-纳塔前催化剂组合物。任何常规齐格勒-纳塔前催化剂可用于本催化剂组合物中。在一种实施方式中,齐格勒-纳塔前催化剂组合物含有过渡金属化合物和II族金属化合物。过渡金属化合物可为得自过渡金属化合物的固体络合物,所述过渡金属化合物为例如,钛、锆、铬或钒的烃基氧化物、烃基化物、卤化物、或它们的混合物。
过渡金属化合物具有通式TrXx,其中Tr为过渡金属,X为卤素或C1-10烃氧基或烃基,和x为与2族金属化合物组合的所述化合物中的所述X基团的数量。Tr可为4、5或6族的金属。在一种实施方式中,Tr为4族金属,如钛。X可为氯、溴、C1-4烷醇根或苯酚根、或它们的混合物。在一种实施方式中,X为氯。
用以形成齐格勒-纳塔前催化剂组合物的合适的过渡金属化合物的非限制性实例有TiCl4、ZrCl4、HfCl4、TiBr4、TiCl3、Ti(OC2H5)3Cl、Zr(OC2H5)3Cl、Ti(OC2H5)3Br、Ti(OC3H7)2Cl2、Ti(OC6H5)2Cl2、Zr(OC2H5)2Cl2、和Ti(OC2H5)Cl3。也可使用所述过渡金属化合物的混合物。对过渡金属化合物的数量没有限制,只要存在至少一种过渡金属化合物。在一种实施方式中,过渡金属化合物为钛化合物。
合适的2族金属化合物的非限制性实例包括卤化镁、二烷氧基镁、卤化烷氧基镁、卤氧化镁、二烷基镁、氧化镁、氢氧化镁、和镁的羧酸盐。在一种实施方式中,2族金属化合物为二氯化镁。
在一种实施方式中,齐格勒-纳塔前催化剂组合物是承载在镁化合物上的钛部分或得自镁化合物的钛部分的混合物。合适的镁化合物包括无水氯化镁、氯化镁加合物、镁的二烷氧化物或芳氧化物、或羧酸化镁的二烷氧化物或芳氧化物。在一种实施方式中,镁化合物为二(C1-4)烷氧化镁,如二乙氧基镁。
合适的钛部分的非限制性实例包括烷氧化钛、芳氧化钛、和/或卤化钛。用于制备齐格勒-纳塔前催化剂组合物的化合物包括一种或多种二(1-4)烷氧化镁、二卤化镁、烷氧基卤化镁、或它们的混合物,和一种或多种四(C1-4)烷氧化钛、四卤化钛、(C1-4)烷氧基卤化钛、或它们的混合物。
如本领域中公知的,前体组合物可用于制备齐格勒-纳塔前催化剂组合物。该前体组合物可通过对前述混合的镁化合物、钛化合物、或它们的混合物进行氯化而制备,并且可包括使用一种或多种被称作“剪切剂(clippingagent)”的化合物,其有助于通过固/固置换形成或溶解特定的组合物。合适的剪切剂的非限制性实例包括三烷基硼酸酯,特别是三乙基硼酸酯,酚类化合物,特别是甲酚,和硅烷。
在一种实施方式中,前体组合物为式MgdTi(ORe)fXg的混合的镁/钛化合物,其中Re为具有1~14个碳原子的脂族或芳族烃基,或COR′,其中R′为具有1~14个碳原子的脂族或芳族烃基;各OR3基团相同或不同;X独立地为氯、溴或碘;d为0.5-56,或2-4,或3;f为2-116,或5-15;和g为0.5-116,或1-3,或2。前体可通过从用于其制备中的反应混合物中除去醇来进行受控制的沉淀来制备。在一种实施方式中,反应介质包含芳族液体特别是氯化芳族化合物如氯苯与烷醇特别是乙醇的混合物,和无机氯化剂。合适的无机氯化剂包括硅、铝和钛的氯衍生物,如四氯化钛或三氯化钛,尤其是四氯化钛。氯化剂引起部分氯化,其得到含有较高水平的烷氧基组分的前体。从氯化使用的溶液除去烷醇导致具有期望的形态和表面积的固体前体沉淀。将该前体从反应介质分离。此外,得到的前体的粒度特别均匀,并且对颗粒粉碎和得到的前催化剂的劣化有耐受性。在一种实施方式中,前体组合物为Mg3Ti(OEt)8Cl2
接着,将该前体通过与无机卤化物化合物、优选卤化钛化合物进一步反应(卤化)和掺入内部电子给体转化为固体前催化剂。如果没有以足够的量掺入前体,则可在卤化之前、期间或之后单独加入内部电子给体。该过程可重复一次或多次,任选地在附加的添加剂或辅助剂的存在下,以及最终固体产物用脂族溶剂洗涤。任何制备、收取和储存固体前催化剂的方法都适合用于本公开。
一种用于使前体卤化的合适的方法是通过使前体在升高的温度任选地在烃或卤代烃稀释剂的存在下与四价卤化钛反应。优选的四价卤化钛为四氯化钛。在烯烃聚合前催化剂的生产中采用的任选的烃或卤代烃溶剂优选含有最高达12个碳原子,或最高达9个碳原子。示例的烃包括戊烷、辛烷、苯、甲苯、二甲苯、烷基苯、和十氢萘。示例的脂族卤代烃包括二氯甲烷、二溴甲烷、氯仿、四氯化碳、1,2-二溴乙烷、1,1,2-三氯乙烷、三氯环己烷、二氯氟甲烷和四氯辛烷。示例的芳族卤代烃包括氯苯、溴苯、二氯苯和氯甲苯。脂族卤代烃可为含有至少两个氯取代基的化合物如四氯化碳或1,1,2-三氯乙烷。芳族卤代烃可为氯苯或邻氯甲苯。
卤化可重复一次或多次,任选地伴随有用惰性液体如脂族或芳族烃或卤代烃在各次卤化之间和卤化之后洗涤。可采用进一步任选地一次或多次萃取,包括与惰性液体稀释剂特别是脂族或芳族烃、或脂族或芳族卤代烃特别是在大于100℃、或大于110℃的升高的温度接触,以除去不安定的物质,特别是TiCl4
在一种实施方式中,齐格勒-纳塔前催化剂组合物包括通过以下方式获得的固体催化剂组分:(i)使二烷氧基镁悬浮在常温下为液体的芳族烃或卤代烃中,(ii)使二烷氧基镁与卤化钛接触,和进一步的(iii)使得到的组合物第二次与卤化钛接触,和使二烷氧基镁在(ii)中用卤化钛处理期间的某点与芳族二羧酸的二酯接触。
在一种实施方式中,齐格勒-纳塔前催化剂组合物包括通过以下方式获得的固体催化剂组分:(i)使式MgdTi(ORe)fXg的前体材料(如前所述)悬浮在常温下为液体的芳族烃或卤代烃中,(ii)使该前体与卤化钛接触,和进一步的(iii)使得到的组合物第二次与卤化钛接触,和使该前体在(ii)中用卤化钛处理期间的某点与芳族二羧酸的二酯接触。
前催化剂组合物包括内部电子给体。如本文中所使用的,“内部电子给体”为在前催化剂组合物的形成期间加入或以其它方式形成的化合物,其为存在于所得前催化剂组合物的一种或多种金属提供一对电子。不限于任何特定理论,据信内部电子给体辅助调节活性位点的形成,从而增强催化剂的立体选择性。
在一种实施方式中,内部电子给体为二齿螯合物化合物。如本文中所使用的,“二齿螯合物化合物”为含有至少两个含氧官能团的化合物,该含氧官能团由至少一个可任选地含有杂原子的饱和C2-C10烃链分开。二齿螯合物化合物可为邻苯二甲酸酯、二醚、琥珀酸酯、亚苯基二苯甲酸酯、马来酸酯、丙二酸酯、戊二酸酯、二烷氧基苯、双(烷氧基苯基)、二醇酯、酮酯、烷氧基烷基酯、双(烷氧基烷基)芴、和它们的任意组合。
在一种实施方式中,内部电子给体为邻苯二甲酸二异丁酯和/或邻苯二甲酸二正丁酯。
在一种实施方式中,内部电子给体为9,9-双(甲氧基甲基)-9H-芴。
在一种实施方式中,内部电子给体为亚苯基二苯甲酸酯。
齐格勒-纳塔前催化剂组合物还可包括惰性载体材料。载体可为惰性固体,其不会不利地改变过渡金属化合物的催化性能。实例包括金属氧化物如氧化铝,和准金属氧化物如二氧化硅。
本催化剂组合物包括助催化剂。与前述齐格勒-纳塔前催化剂组合物一起使用的助催化剂可为含铝组合物。合适的含铝组合物的非限制性实例包括有机铝化合物,如在各烷基或烷氧基中含有1-10、或1-6个碳原子的三烷基铝、氢氧化二烷基铝、二氢氧化烷基铝、卤化二烷基铝、二卤化烷基铝、烷氧化二烷基铝、和二烷氧化烷基铝化合物。在一种实施方式中,助催化剂为C1-4三烷基铝化合物,如三乙基铝(TEA或TEAl)。铝与钛的摩尔比为10-200∶1,或35-50∶1。在一种实施方式中,铝与钛的摩尔比为45∶1。
本催化剂组合物包括混合外部电子给体(M-EED),其包括第一选择性控制剂(SCA1)、第二选择性控制剂(SCA2)、和活性限制剂(ALA)。如本文中所使用的,“外部电子给体”(即“EED”)为独立于前催化剂构成加入的化合物,其含有能够为金属原子提供一对电子的至少一个官能团。不限于任何特定理论,据信在所述催化剂组合物提供一种或多种外部电子给体影响所形成的聚合物的以下性质:立构规整度(即二甲苯可溶物质)的水平,分子量(即熔体流动速率),分子量分布(MWD),熔点,和/或低聚物水平。
用于SCA的合适化合物的非限制性实例包括硅化合物,如烷氧基硅烷;醚和聚醚,如烷基-、环烷基-、芳基-、混合的烷基/芳基-、混合的烷基/环烷基-、和/或混合的环烷基/芳基-醚和/或聚醚;酯和聚酯特别是单羧酸或二羧酸如芳族单羧酸或二羧酸的烷基酯、环烷基酯和/或芳基酯;所述酯或聚酯的烷基-或环烷基-醚或硫醚衍生物,如芳族单羧酸或二羧酸的烷基酯或二酯的烷基醚衍生物;和所有前述物质的15或16族杂原子取代的衍生物;和胺化合物,如环状的脂族或芳族胺,更具体来说为吡咯或吡啶化合物;所有的前述SCA含有总共2~60个碳,和在任何烷基或亚烷基中有1~20个碳,在任何环烷基或亚环烷基中有3~20个碳,和在任何芳基或亚芳基中有6~20个碳。
在一种实施方式中,SCA1和/或SCA2为具有通式(I)的硅烷组合物:
SiRm(OR′)4-m        (I)
其中R在各出现处独立地为氢或烃基或氨基,其任选地被一个或多个含有一个或多个14、15、16或17族杂原子的取代基取代。不算氢和卤素,R含有最高达20个原子;R′为C1-20烷基,和m为0、1、或2。在一种实施方式中,R为C6-12芳基、烷基或芳烷基、C3-12环烯丙基、C3-12支化烷基、或C3-12环氨基,R′为C1-4烷基,和m为1或2。
在一种实施方式中,SCA1为二甲氧基硅烷。二甲氧基硅烷可含有直接与硅原子键合的至少一个仲烷基和/或至少一个仲氨基。合适的二甲氧基硅烷的非限制性实例包括二环戊基二甲氧基硅烷、甲基环己基二甲氧基硅烷、二异丙基二甲氧基硅烷、异丙基异丁基二甲氧基硅烷、二异丁基二甲氧基硅烷、叔丁基异丙基二甲氧基硅烷、环戊基吡咯烷基二甲氧基硅烷、双(吡咯烷基)二甲氧基硅烷、双(全氢化异喹啉基)二甲氧基硅烷、和前述物质的任何组合。
在一种实施方式中,SCA1为刚性促进组合物。如本文中所使用的,“刚性促进组合物”为组合物,其对于根据本公开的工艺条件的操作来说在所研究的聚合条件下提高或以其它方式增强所得聚合物的刚性。合适的刚性促进组合物的非限制性实例包括以上公开的任何二甲氧基硅烷。
在一种实施方式中,SCA1为二环戊基二甲氧基硅烷。
在一种实施方式中,SCA2为选自含有两个支链烷基的二甲氧基硅烷、二乙氧基硅烷、三乙氧基硅烷、四乙氧基硅烷、三甲氧基硅烷,含有两个链烯基的二甲氧基硅烷,二醚,二烷氧基苯,和它们的任意组合的硅化合物。
合适的用于SCA2的硅化合物的非限制性实例包括二甲基二甲氧基硅烷、乙烯基甲基二甲氧基硅烷、正辛基甲基二甲氧基硅烷、正十八烷基甲基二甲氧基硅烷、甲基二甲氧基硅烷、3-氯丙基甲基二甲氧基硅烷、2-氯乙基甲基二甲氧基硅烷、烯丙基二甲氧基硅烷、(3,3,3-三氟丙基)甲基二甲氧基硅烷、正丙基甲基二甲氧基硅烷、氯甲基甲基二甲氧基硅烷、二正辛基二甲氧基硅烷、乙烯基(氯甲基)二甲氧基硅烷、甲基环己基二乙氧基硅烷、乙烯基甲基二乙氧基硅烷、1-(三乙氧基甲硅烷基)-2-(二乙氧基甲基甲硅烷基)乙烷、正辛基甲基二乙氧基硅烷、八乙氧基-1,3,5-三硅戊烷(trisilapentane)、正十八烷基甲基二乙氧基硅烷、甲基丙烯酰基丙基甲基二乙氧基硅烷、2-羟基-4-(3-甲基二乙氧基甲硅烷基丙氧基)二苯基酮、(3-缩水甘油氧基丙基)甲基二乙氧基硅烷、十二烷基甲基二乙氧基硅烷、二甲基二乙氧基硅烷、二乙基二乙氧基硅烷、1,1-二乙氧基-1-硅环戊-3-烯、氯甲基甲基二乙氧基硅烷、双(甲基二乙氧基甲硅烷基丙基)胺、3-氨基丙基甲基二乙氧基硅烷、(甲基丙烯酰氧基甲基)甲基二乙氧基硅烷、1,2-双(甲基二乙氧基甲硅烷基)乙烷、和二异丁基二乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、苄基三乙氧基硅烷、丁烯基三乙氧基硅烷、(三乙氧基甲硅烷基)环己烷、O-(乙烯基氧丁基)-N-三乙氧基甲硅烷基丙基氨基甲酸酯、10-十一碳烯基三甲氧基硅烷、n-(3-三甲氧基甲硅烷基丙基)吡咯、N-[5-(三甲氧基甲硅烷基)-2-氮杂-1-氧杂戊基]己内酰胺、(3,3,3-三氟丙基)三甲氧基硅烷、三乙氧基甲硅烷基十一醛乙二醇缩醛、(S)-N-三乙氧基甲硅烷基丙基-O-mentho氨基甲酸酯、三乙氧基甲硅烷基丙基乙基氨基甲酸酯、N-(3-三乙氧基甲硅烷基丙基)-4,5-二氢咪唑、(3-三乙氧基甲硅烷基丙基)-叔丁基氨基甲酸酯、苯乙烯基乙基三甲氧基硅烷、2-(4-吡啶基乙基)三乙氧基硅烷、正丙基三甲氧基硅烷、正丙基三乙氧基硅烷、(S)-N-1-苯基乙基-N′-三乙氧基甲硅烷基丙基脲、(R)-N-1-苯基乙基-N′-三乙氧基甲硅烷基丙基脲、N-苯基氨基丙基三甲氧基硅烷、N-苯基氨基甲基三乙氧基硅烷、苯乙基三甲氧基硅烷、戊基三乙氧基硅烷、正辛基三甲氧基硅烷、正辛基三乙氧基硅烷、7-辛烯基三甲氧基硅烷、S-(辛酰基)巯基丙基三乙氧基硅烷、正十八烷基三甲氧基硅烷、正十八烷基三乙氧基硅烷、甲基三甲氧基硅烷、甲基三乙氧基硅烷、N-甲基氨基丙基三甲氧基硅烷、3-甲氧基丙基三甲氧基硅烷、甲基丙烯酰氧基丙基三甲氧基硅烷、甲基丙烯酰氧基丙基三乙氧基硅烷、甲基丙烯酰氧基甲基三甲氧基硅烷、甲基丙烯酰氧基甲基三乙氧基硅烷、和O-(甲基丙烯酰氧基乙基)-N-(三乙氧基甲硅烷基丙基)氨基甲酸酯、四甲氧基硅烷和/或四乙氧基硅烷。
在一种实施方式中,SCA2可为甲基环己基二乙氧基硅烷、二异丁基二乙氧基硅烷、正丙基三乙氧基硅烷、四乙氧基硅烷、二正丁基二甲氧基硅烷、苄基三乙氧基硅烷、丁-3-烯基三乙氧基硅烷、1-(三乙氧基甲硅烷基)-2-戊烯、(三乙氧基甲硅烷基)环己烷、和前述物质的任何组合。
在一种实施方式中,SCA2选自含有两个直链烷基的二甲氧基硅烷,含有两个链烯基或氢(其中一个或多个氢原子可被卤素取代)的二甲氧基硅烷,和它们的任意组合。
在一种实施方式中,SCA2可为二醚、二醚的二聚体、二烷氧基苯、二烷氧基苯的二聚体、由直链烃基连接的二烷氧基苯、和它们的任意组合。注意,以下给出的用于ALA的二醚等同地适用于SCA2二醚的非限制性实例。
在一种实施方式中,SCA2为熔体流动速率促进组合物。如本文中所使用的,“熔体流动速率促进组合物”是这样的组合物,对于根据本公开的方法条件进行操作,在所研究的聚合条件下提高所得聚合物的熔体流动速率。熔体流动速率促进组合物可为如上披露的适合作为如上披露的SCA2的任何硅烷组合物、二醚、烷氧基苯、酯、酮、酰胺和/或胺。
M-EED包括活性限制剂(ALA)。如这里使用的,“活性限制剂”是在升高的温度即在聚合反应器中在聚合条件下在大于约100℃的温度降低催化剂活性的物质。提供ALA得到了自限制催化剂组合物。如本文中所使用的,“自限制”催化剂组合物是在大于约100℃的温度表现出降低的活性的催化剂组合物。换句话说,“自限制”是指当反应温度升高到100℃以上时催化剂活性与反应温度通常低于80℃的一般聚合条件下的催化剂活性相比下降。此外,作为实践中的标准,如果聚合工艺如在一般处理条件下运行的流化床气相聚合能够中断和相对于聚合物颗粒的聚集来说以降低的风险使床坍塌,则所述催化剂组合物被称为是“自限制的”。
作为这里使用的升高的温度下聚合活性的标准化量度,调节催化剂活性以补偿由温度造成的不同单体浓度。例如,如果采用液相(浆料或溶液)聚合条件,则包含构成在升高的温度下在反应混合物中降低的丙烯溶解性的校正因子。也就是说,将催化剂活性“标准化”以补偿与较低的温度特别是67℃标准相比降低的溶解性。在温度T、或AT的“标准化”活性定义为在温度T测得的活性或(聚合物重量/催化剂重量/小时)乘以浓度校正因子[P(67)]/[P(T)],其中[P(67)]为67℃的丙烯浓度和[P(T)]是温度T的丙烯浓度。标准化活性的等式提供如下。
Figure BDA0000056568650000101
在该等式中,温度T的活性乘以67℃的丙烯浓度与温度T的丙烯浓度之比。得到的已对随温度提高而使丙烯浓度下降进行调节的标准化活性(A)可用于比较各种温度条件下的催化剂活性。对于液相聚合中采用的条件,校正因子如下所列。
67℃ 85℃ 100℃ 115℃ 130℃ 145℃
1.00 1.42 1.93  2.39  2.98  3.70
校正因子假设在所采用的条件下聚合活性随丙烯浓度线性增加。校正因子是所使用的溶剂或稀释剂的函数。例如,以上列出的校正因子是用于常见的C6-10脂族烃混合物(IsoparTME,可购自Exxon Chemical Company)。在气相聚合条件下,单体溶解度通常不是影响因素,并且通常不因温度差异对活性进行校正。也就是说,活性和标准化活性是相同的。
“标准化活性比”定义为AT/A67,其中AT为温度T的活性和A67为67℃的活性。该值可以用作与温度相关的活性变化的指示。例如,A100/A67等于0.30表示,100℃的催化剂活性仅为67℃的催化剂活性的30%。已发现,在100℃,35%或更低的A100/A67比产生作为自熄灭体系的催化剂体系。
ALA可为芳族酯或其衍生物、脂族酯或其衍生物、二醚、聚(亚烷基二醇)酯、和它们的组合。合适的芳族酯的非限制性实例包括芳族单羧酸的C1-10烷基或环烷基酯。合适的其取代的衍生物包括被一个或多个含有一个或多个14、15或16族杂原子特别是氧的取代基在芳环或酯基上取代的化合物。所述取代基的实例包括(多)烷基醚、环烷基醚、芳基醚、芳烷基醚、烷基硫醚、芳基硫醚、二烷基胺、二芳基胺、二芳烷基胺、和三烷基硅烷基。芳族羧酸酯可为苯甲酸的C1-20烃基酯,其中烃基是未取代的或被一个或多个含有14、15或16族杂原子的取代基取代的,和其C1-20(多)烃基醚衍生物,或苯甲酸C1-4烷基酯和其C1-4环烷基化衍生物,或苯甲酸甲酯、苯甲酸乙酯、苯甲酸丙酯、对甲氧基苯甲酸甲酯、对乙氧基苯甲酸甲酯、对甲氧基苯甲酸乙酯、和对乙氧基苯甲酸乙酯。在一种实施方式中,芳族羧酸酯为对乙氧基苯甲酸乙酯。
在一种实施方式中,ALA为脂族酯。脂族酯可为C4-C30脂族酸酯,可为单或多(二或三)酯,可为直链或支化的,可为饱和的或不饱和的,和它们的任意组合。C4-C30脂族酸酯还可被一个或多个含有14、15或16族杂原子的取代基取代。合适的C4-C30脂族酸酯的非限制性实例包括脂族C4-30单羧酸的C1-20烷基酯,脂族C8-20单羧酸的C1-20烷基酯,脂族C4-20单羧酸和二羧酸的C1-4烯丙基单和二酯,脂族C8-20单羧酸和二羧酸C1-4的烷基酯,和C2-100(聚)二醇或C2-100(聚)二醇醚的C4-20单或多羧酸衍生物。在进一步的实施方式中,C4-C30脂族酸酯可为肉豆蔻酸异丙酯和/或癸二酸二正丁酯。
在一种实施方式中,ALA为肉豆蔻酸异丙酯。
在一种实施方式中,ALA为二醚。该二醚可为下式表示的二烷基二醚,
其中R1~R4彼此独立地为具有最高达20个碳原子的烷基、芳基或芳烷基,其可任选地含有14、15、16、或17族的杂原子,条件是R1和R2可为氢原子。合适的二烷基醚化合物的非限制性实例包括二甲基醚、二乙基醚、二丁基醚、甲基乙基醚、甲基丁基醚、甲基环己基醚、2,2-二甲基-1,3-二甲氧基丙烷、2,2-二乙基-1,3-二甲氧基丙烷、2,2-二正丁基-1,3-二甲氧基丙烷、2,2-二异丁基-1,3-二甲氧基丙烷、2-乙基-2-正丁基-1,3-二甲氧基丙烷、2-正丙基-2-环戊基-1,3-二甲氧基丙烷、2,2-二甲基-1,3-二乙氧基丙烷、2-异丙基-2-异丁基-1,3-二甲氧基丙烷、2,2-二环戊基-1,3-二甲氧基丙烷、2-正丙基-2-环己基-1,3-二乙氧基丙烷、和9,9-双(甲氧基甲基)芴。在进一步的实施方式中,二烷基醚化合物为2,2-二异丁基-1,3-二甲氧基丙烷。
在一种实施方式中,ALA为聚(亚烷基二醇)酯。合适的聚(亚烷基二醇)酯的非限制性实例包括聚(亚烷基二醇)单或二乙酸酯、聚(亚烷基二醇)单或二肉豆蔻酸酯、聚(亚烷基二醇)单或二月桂酸酯、聚(亚烷基二醇)单或二油酸酯、甘油三(乙酸酯)、C2-40脂族羧酸的甘油三酯、和它们的任意组合。在一种实施方式中,聚(亚烷基二醇)酯的聚(亚烷基二醇)部分为聚(乙二醇)。
在一种实施方式中,铝与ALA的摩尔比可为1.4-85∶1,或2.0-50∶1,或4-30∶1。对含有多于一个羧酸基团的ALA来说,所有羧酸基团被视为有效组分。例如,含有两个羧酸官能团的癸二酸分子被视为具有两个有效的官能分子。
在一种实施方式中,所述催化剂组合物包括0.5-25∶1、或1.0-20∶1、或1.5-15∶1、或少于约6.0、或少于约5、或少于4.5的Al与M-EED的摩尔比。
在一种实施方式中,Al∶M-EED摩尔比为0.5-4.0∶1。不希望限制于任何特定理论,据信0.5∶1~4.0∶1的Al/M-EED比为载体提供足够量的铝,从而支持在一般聚合温度下的聚合反应。但是,在升高的温度(由于例如温度偏移或过程失常),更多的铝物质与其它催化剂组分反应。这导致铝缺乏,拖慢聚合反应。铝缺乏引起在与铝配位的电子给体的数量上的相应减少。未配位的给体的自由电子对毒化催化剂体系,使反应自熄灭。
如本文中所使用的,“总SCA”为SCA1和SCA2的结合量(以摩尔计)。换句话说,总SCA=SCA1(摩)+SCA2(摩)。M-EED中的ALA量增强在升高的温度的催化剂自限制能力,而SCA1的量提供刚性和SCA2提供所得聚合物中的熔体流动速率。总SCA与ALA的摩尔比为0.43-2.33∶1,或0.54-1.85∶1,或0.67-1.5∶1。SCA1与总SCA摩尔比为0.2-0.5∶1,0.25-0.45∶1,或0.30-0.40∶1。申请人已令人惊奇地和出乎意料地发现,(1)SCA1与SCA2、和/或(2)总SCA与ALA和/或(3)SCA1与总SCA的受控的摩尔比产生具有高熔体流动速率的和高刚性的独特性质以及对自限制催化剂的操作性质的得到的聚合物。
在一种实施方式中,总SCA与ALA的摩尔比为0.43-2.33∶1,且SCA1与总SCA的摩尔比为0.2-0.5∶1。
在一种实施方式中,所述催化剂组合物包括1.4-85∶1、或2.0-50∶1、或4.0-30∶1的Al与总SCA的摩尔比。
在一种实施方式中,所述催化剂组合物包括少于1.0的总SCA与ALA的摩尔比。令人惊奇地和出乎意料地,已发现将总SCA与ALA的摩尔比保持在少于1.0显著地改进反应器操作性。
在一种实施方式中,M-EED包含二环戊基二甲氧基硅烷(SCA1)、熔体流动速率促进组合物(SCA2)、和肉豆蔻酸异丙酯(ALA)。在进一步的实施方式中,SCA2选自甲基环己基二乙氧基硅烷、二异丁基二乙氧基硅烷、二正丁基二甲氧基硅烷、正丙基三乙氧基硅烷、苄基三乙氧基硅烷、丁烯基三乙氧基硅烷、(三乙氧基甲硅烷基)环己烷、四乙氧基硅烷、1-乙氧基-2-(6-(2-乙氧基苯氧基)己氧基)苯、1-乙氧基-2-正戊氧基苯、和它们的任意组合。
本催化剂组合物中各组分的摩尔比在下表1中给出。
表1
本催化剂组合物可包含两种或更多种这里披露的实施方式。
在一种实施方式中,基于丙烯的活性聚合物的形成通过气相聚合工艺进行,其中在第一聚合反应器中催化剂组合物与丙烯和任选的一种或多种烯烃接触。一种或多种烯烃单体可以任选地与丙烯一起引入第一聚合反应器以与催化剂反应和形成聚合物、共聚物(或聚合物颗粒的流化床)。合适的烯烃单体的非限制性实例包括乙烯,C4-20α-烯烃,如1-丁烯、1-戊烯、1-己烯、4-甲基-1-戊烯、1-庚烯、1-辛烯、1-癸烯、1-十二烯等;C4-20二烯烃,如1,3-丁二烯、1,3-戊二烯、降冰片二烯、5-乙叉-2-降冰片烯(ENB)和二环戊二烯;C8-40乙烯基芳族化合物,包括苯乙烯,邻、间、和对甲基苯乙烯,二乙烯基苯,乙烯基联苯,乙烯基萘;和卤素取代的C8-40乙烯基芳族化合物,如氯苯乙烯和氟苯乙烯。
如本文中所使用的,“聚合条件”是聚合反应器内适于促进催化剂组合物和烯烃之间的聚合以形成期望的聚合物的温度和压力参数。该聚合方法可为气相、浆料、或本体聚合工艺,在一个或多于一个的聚合反应器中进行。因此,聚合反应器可为气相聚合反应器、液相聚合反应器、或它们的组合。
理解的是,在聚合反应器中提供氢是聚合条件的组成。在聚合期间,氢为链转移剂并影响得到的聚合物的分子量(和相应地影响其熔体流动速率)。
在一种实施方式中,聚合通过气相聚合进行。如本文中所使用的,“气相聚合”或“气相聚合”使上升的流化介质(该流化介质含有一种或多种单体)在催化剂的存在下穿过通过流化介质保持在流化状态的聚合物颗粒的流化床。“流化(Fluidization)”、“流化的(fluidized)”或“流化(fluidizing)”是气-固接触工艺,其中使细分开的聚合物颗粒床上升和通过气体的上升流搅拌。当穿过颗粒床空隙的流体的上升流获得压差和超过微粒重量的摩擦阻力增量时,流化在微粒的床中进行。因此,“流化床”为通过流化介质流以流化状态悬浮的多个聚合物颗粒。“流化介质”为一种或多种烯烃气体,任选地为载气(如H2或N2)和任选地为上升通过气相反应器的液体(如烃)。
典型的气相聚合反应器(或气相反应器)包括容器(即反应器)、流化床、分配板、入口和出口管道、压缩器、循环气体冷却器或换热器、和产物排放系统。所述容器包括反应区和减速区,均位于分配板之上。所述床位于反应区中。在一种实施方式中,流化介质包括丙烯气体和至少一种其它气体如烯烃和/或载气如氢气或氮气。在一种实施方式中,气相聚合在以浓缩(condensing)模式进行。
在一种实施方式中,接触通过将所述催化剂组合物供入聚合反应器和将烯烃引入聚合反应器来进行。在一种实施方式中,该方法包括使烯烃与助催化剂接触。助催化剂可以在将前催化剂组合物引入聚合反应器之前与前催化剂组合物混合(预混合)。在另一种实施方式中,助催化剂独立于前催化剂组合物加入聚合反应器。助催化剂到聚合反应器的独立引入可以与前催化剂组合物供料同时、或基本上同时进行。
在一种实施方式中,该方法包括将M-EED与前催化剂组合物混合或以其它方式结合。M-EED可以在催化剂组合物和丙烯之间的接触之前与助催化剂配合和/或与前催化剂组合物混合(预混合)。在另一种实施方式中,M-EED(或其单独的组分)可独立地加入聚合反应器。
在一种实施方式中,该聚合方法包括将第一反应器中的氢与丙烯(“H2/C3”)的摩尔比保持在少于0.30(即0.30∶1)、或少于0.20、或少于0.18、或少于0.16、或少于0.08。虽然高熔体流动速率可以通过使用高水平的氢实现,但已发现,通过H2/C3摩尔比大于0.30产生的基于丙烯的聚合物显著加速了在氧化的反应器碳钢的存在下不希望的丙烯氢化反应和降低催化剂活性。另一方面,通过本方法形成的得到的基于丙烯的聚合物避免了过量的催化残留物,因为H2/C3摩尔比少于0.3。
此外,低H2/C3摩尔比值,如所述的少于0.30的值,改进了催化剂产率。随着H2/C3摩尔比的值提高,更多的氢替换大量丙烯。丙烯的氢替换降低了可用于与催化剂组合物反应的丙烯的量。因此,H2/C3摩尔比的大值表示较少的丙烯可用于聚合。可用于反应的较少的丙烯转变成较少的产出的聚合物-即降低的催化剂活性和降低的反应器产率的指示。
相反,本催化剂组合物能够通过低H2/C3摩尔比即少于0.3的H2/C3摩尔比形成高熔体流动速率的基于丙烯的聚合物。因此,本催化剂组合物的改进的氢响应改进了催化剂活性和改进了产率。
在一种实施方式中,该聚合方法包括将氢气分压保持在低于约80psi,或低于约71psi,或低于约63psi。
在一种实施方式中,该方法包括当反应器中的温度大于约100℃时对聚合工艺进行自限制。
在一种实施方式中,该方法包括在单一的聚合反应器中形成基于丙烯的聚合物。
申请人已令人惊奇地和出乎意料地发现,混合外部电子给体的存在提供了自限制的催化剂组合物,并在标准聚合条件下在单一聚合反应器中产生了具有高刚性和高熔体流动速率的基于丙烯的聚合物。不希望限制于任何特定理论,据信ALA通过防止失控反应、聚合物成膜(sheeting)、和/或由过热导致的聚合物聚集而改进了聚合反应器中的操作性。提供SCA1和SCA2能够利用标准氢水平形成高刚性(即TMF大于170℃)/高熔体流动速率(即大于50克/10分钟、或60克/10分钟、或70克/10分钟、或100克/10分钟)的基于丙烯的聚合物。
尤其是,本方法有利地生产了具有高刚性和高熔体流动速率的基于丙烯的聚合物,而没有使用减粘裂化-用于将MFR提高到超出如前所述的反应器级(reactor-grade)基于丙烯的高刚性聚合物的使用氢的极限的常规技术。如本文中所使用的,术语“减粘裂化”(或“裂解”)是指聚合物热降解和/或化学降解成较小的聚合物链段。减粘裂化典型地包括在自由基引发剂(如过氧化物)的存在下使聚合物(如聚丙烯)处于熔融态以使聚丙烯降解成较小的聚丙烯链段。减粘裂化是反应器后过程。可理解的是,用于生产抗冲丙烯共聚物的本方法是反应器内聚合方法。因此,用于生产抗冲丙烯共聚物的本方法不包括减粘裂化。
减粘裂化具有许多副作用,如形成分解产物(其经常导致异味和食品不相容性问题),增加成本,和降低聚合物刚性。减粘裂化提高熔体流动速率,但还降低聚合物的重均分子量。减粘裂化改变初始聚合物的物理和化学结构。例如,经减粘裂化的聚丙烯均聚物与具有相同MFR的未裂解的丙烯均聚物相比将呈现出物理和/或机械性质上的下降(即较低的拉伸模量、较低的挠曲模量)。
在一种实施方式中,本方法形成未裂解的基于丙烯的聚合物。“未裂解的”聚合物没有进行减粘裂化过程。换句话说,未裂解的聚合物是没有热降解和/或没有化学降解的聚合物。未裂解的聚合物与具有相同MFR的经减粘裂化的聚合物不同,不会呈现与分子量相关的物理和/或机械性质(如挠曲模量和/或拉伸性质)的下降。此外,未裂解的聚合物与经减粘裂化的聚合物不同,不产生分解产物(其经常导致异味和食品不相容性问题)。
在一种实施方式中,该方法包括形成具有以下性质的一种或多种的基于丙烯的聚合物:(i)未裂解的丙烯均聚物;(ii)MFR大于50克/10分钟、或大于60克/10分钟、或大于70克/10分钟、或大于100克/10分钟;(iii)少于4wt%、或少于3%wt%、或约0.1wt%~少于2.0wt%的二甲苯可溶物含量;(iv)TMF大于约165℃、或大于170℃;(v)至少约5ppm~约150ppm的ALA含量;(vi)反应器之后低聚物含量(“低聚物”为C12-C21化合物)少于3000ppm、或少于2500ppm、或约500ppm约3000ppm;和/或(vii)反应器之后低聚物含量比在类似的聚合条件下通过含有单一刚性促进组合物SCA(和任选的ALA)的催化剂组合物形成的基于丙烯的聚合物的相应低聚物含量低约10%、或约20%、或约40%。如本文中所使用的,术语“反应器之后低聚物含量”是退出聚合反应器后即刻的得到的基于丙烯的聚合物的低聚物含量。换句话说,“反应器之后低聚物含量”是在任何聚合后洗涤过程、加热过程、和/或精制过程之前的低聚物含量。
在一种实施方式中,未裂解的基于丙烯的聚合物为丙烯均聚物。在进一步的实施方式中,基于丙烯的聚合物具有低的或没有毒性,少的或没有分解产物,和少的或没有令人不愉快的异味。
在一种实施方式中,基于丙烯的活性聚合物可如披露于2009年2月23日提交的共同未决申请(代理人卷号DOW-34661-B)中那样制造,该申请的全部内容在此通过引用纳入。
本方法包括将基于丙烯的活性聚合物引入第二聚合反应器。在一种实施方式中,第一聚合反应器和第二聚合反应器顺序操作,其中来自第一聚合反应器的物料加料到第二聚合反应器,并且一种或多种附加的(或不同的)烯烃单体加入第二聚合反应器以继续聚合。在另一种实施方式中,第一聚合反应器和第二聚合反应器均为气相聚合反应器。
该方法包括使基于丙烯的活性聚合物在聚合条件下在第二聚合反应器中与至少一种烯烃接触,和形成根据ASTM D1238-01测量的熔体流动速率大于约60克/10分钟的抗冲丙烯共聚物。所述至少一种烯烃包括除丙烯之外的烯烃。
在一种实施方式中,该方法包括形成MFR大于160克/10分钟的基于丙烯的活性聚合物和形成MFR大于约85克/10分钟的抗冲丙烯共聚物。在另一种实施方式中,该方法包括形成MFR大于200克/10分钟的基于丙烯的活性聚合物和形成MFR大于约100克/10分钟的抗冲丙烯共聚物。在另一种实施方式中,该方法包括形成MFR大于约300克/10分钟的基于丙烯的活性聚合物和形成MFR大于约150克/10分钟的抗冲丙烯共聚物。
抗冲丙烯共聚物为多相共聚物。如本文中所使用的,“多相共聚物”是具有连续聚合物相(也称作基体相)和分散在连续聚合物相中的不连续聚合物相(也称作弹性体相或橡胶相、或橡胶)的多相聚合物。在第一反应器中产生的基于丙烯的聚合物为连续相。烯烃在第二反应器中在基于丙烯的聚合物的存在下聚合并形成不连续相。多相共聚物可含有多于两个聚合物相。
引入第二反应器中的烯烃可为丙烯、乙烯、C4-20α-烯烃(如1-丁烯、1-戊烯、1-己烯、4-甲基-1-戊烯、1-庚烯、1-辛烯、1-癸烯、1-十二烯等)、或它们的任意组合。在一种实施方式中,丙烯和乙烯在第二反应器中与基于丙烯的活性聚合物接触以形成以丙烯/乙烯共聚物作为不连续相的抗冲丙烯共聚物。
在一种实施方式中,抗冲丙烯共聚物的Fc值为约5wt%~约50wt%、或约10wt%~约40wt%、或约20wt%~约30wt%。如本文中所使用的,“级分共聚物”(“Fc”)是存在于多相共聚物中的不连续相的重量百分比。Fc值基于抗冲丙烯共聚物的总重量。
抗冲丙烯共聚物可具有约20wt%~约90wt%、或约30wt%~约80wt%、或约40wt%~约60wt%的Ec值。如本文中所使用的,“乙烯含量”(“Ec”)为存在于抗冲丙烯共聚物的不连续相中的乙烯的重量百分比。该Ec值基于不连续(或橡胶)相的总重量。
在一种实施方式中,该聚合方法包括在第一聚合反应器、和/或在第二聚合反应器中将氢气与丙烯(“H2/C3”)的摩尔比保持在低于0.3。已发现,通过H2/C3摩尔比大于0.3的方式制造的基于丙烯的聚合物含有过量的催化残留物如钛和/或氯。通过本方法形成的得到的基于丙烯的聚合物避免了过量催化残留物,因为H2/C3摩尔比低于0.3。
在进一步的实施方式中,该方法包括在第二聚合反应器中将H2/C3摩尔比保持在低于0.10、或低于0.08、或低于0.04、或低于0.03。申请人已令人惊奇地和出乎意料地发现,将H2/C3摩尔比保持在低于0.3(和/或在第二反应器中将H2/C3摩尔比保持在低于0.1)降低了氢气消耗并改进了催化剂活性,因为氢气的较少存在降低了丙烯和/或其它烯烃的分压。
不限于任何特定理论,据信本方法的催化剂组合物对所得抗冲丙烯共聚物的低水平挥发物含量有贡献。在一种实施方式中,该方法包括形成挥发物含量小于约65μg/g的抗冲丙烯共聚物。如本文中所使用的,“挥发物”是在室温或略微升高的温度下作为蒸气从聚合物分离的含碳物质。所述挥发物含量少于约65μg/g、或少于约60μg/g、或少于约50μg/g,或约10μg/g~少于约65μg/g。所述挥发物含量根据Volkswagen(VW)标准PV-3341测定。
本抗冲丙烯共聚物的低量的挥发物含量有利地减少、或消除接下来的吹扫过程。常规抗冲丙烯共聚物典型地需要氮气吹扫和/或蒸汽吹扫(进行若干天)以将挥发物含量降低到可接受的水平-特别是对于要求低挥发物含量的应用如食品容器应用来说。本抗冲丙烯共聚物的低挥发物含量减少了吹扫时间或完全消除了吹扫过程。
在一种实施方式中,该方法包括当第一聚合反应器和/或第二聚合反应器中的温度大于100℃时对聚合反应进行自限制。不希望限制于任何特定理论,据信ALA通过防止失控反应、聚合物成膜、和/或由在任一反应器中的聚合期间形成的过热导致的聚合物聚集而改进了聚合反应器中的操作性。
在一种实施方式中,该方法包括将M-EED、或其一种或多种组分引入到第二反应器。因此,第一选择性控制剂(SCA1)、第二选择性控制剂(SCA2)、和/或活性限制剂(ALA)可分开地、或以任意组合地加入第二反应器。
该方法可包含这里披露的两个以上的实施方式。
本公开提供另一方法。在一种实施方式中,提供了一种聚合方法,该方法包括在第一聚合反应器中在聚合条件下使至少一种烯烃与基于丙烯的活性聚合物接触。该基于丙烯的活性聚合物的熔体流动速率为大于约100克/10分钟。
该方法进一步包括形成根据ASTM D-1238-01(230℃、2.16kg重量)测得的熔体流动速率为至少85克/10分钟的抗冲丙烯共聚物。在一种实施方式中,该基于丙烯的聚合物的MFR为大于约150克/10分钟,以及该抗冲丙烯共聚物的MFR为大于约100克/10分钟。在另一种实施方式中,基于丙烯的聚合物的MFR为大于约200克/10分钟,以及该抗冲丙烯共聚物的MFR为大于约150克/10分钟。
在一种实施方式中,所述聚合通过气相聚合进行。换句话说,基于丙烯的活性聚合物和烯烃之间的接触在气相聚合反应器中在聚合条件下进行。所述聚合反应器可为以上披露的第二聚合反应器。
在一种实施方式中,该方法包括在形成抗冲丙烯共聚物期间将H2/C3摩尔比保持在少于0.20、或少于0.10、或少于0.08、或少于0.04、或少于0.03。
在一种实施方式中,该方法包括当所述聚合反应器中的温度大于约100℃时用嵌入在基于丙烯的活性聚合物中的催化剂组合物对聚合进行自限制。嵌入在基于丙烯的活性聚合物的催化剂可为这里披露的具有前催化剂、助催化剂和包括第一选择性控制剂(SCA1)、第二选择性控制剂(SCA2)、和活性限制剂(ALA)的混合外部电子给体(M-EED)的催化剂组合物。
在一种实施方式中,该方法包括将M-EED、或其一种或多种组分引入反应器。因此,第一选择性控制剂(SCA1)、第二选择性控制剂(SCA2)、和/或活性限制剂(ALA)可分开地、或以任意组合地加入聚合反应器。
在一种实施方式中,基于丙烯的活性聚合物与丙烯和乙烯接触。该方法包括形成Fc值为约5wt%~约50wt%、和Ec值为约20wt%~约90wt%的抗冲丙烯共聚物。
在一种实施方式中,该方法包括将成核剂与抗冲丙烯共聚物熔融共混和形成成核的抗冲丙烯共聚物。如本文中所使用的,“熔融共混”是这样的工艺,其中将聚合物软化和/或熔融并与一种或多种其它化合物混合。熔融共混工艺的非限制性实例包括挤出、熔融混合(分批或连续)、反应性熔融共混、和/或配混。
成核剂降低微晶尺寸,从而改进由抗冲丙烯共聚物制成的制品的透明性和清晰性。不希望限制于任何特定理论,据信成核剂在冷却期间提供了用于更有序和更快的聚烯烃结晶的位点。在结晶过程期间,聚合物晶体组织成较大的被称为球晶的超结构。该球晶与没有成核剂下形成的球晶相比更均匀且尺寸更小。
可使用本领域已知的各种成核剂而没有限制。合适的成核剂的非限制性实例包括:苯甲酸钠、己二酸铝;对叔丁基苯甲酸铝;山梨糖醇缩醛衍生物如1,3,2,4-二亚甲苯基山梨糖醇、1,3,2,4-双(对甲基-亚甲苯基)山梨糖醇、1,3,2,4-双(对乙基亚甲苯基)-山梨糖醇、1,3-对氯亚甲苯基-2,4-对甲基亚甲苯基-山梨糖醇、1,3-O-2,4-双(3,4-二甲基亚甲苯基)山梨糖醇(可以商品名
Figure BDA0000056568650000201
3988购自Milliken Chemical Spartanburg,SC),1,3-O-2,4-双(对甲基亚甲苯基)山梨糖醇(也以商品名
Figure BDA0000056568650000202
3940购自Milliken Chemical);双(4-叔丁基苯基)磷酸钠;双(4-t-甲基苯基)磷酸钠;双(4,6-二叔丁基苯基)磷酸钾;2,2′-亚甲基-双(4,6-二叔丁基苯基)磷酸钠(NA-11);2,2′-亚乙基-双(4,6-二叔丁基苯基)磷酸钠;滑石;碳酸钙;和前述物质的任何组合。
在一种实施方式中,该方法包括形成挥发物含量小于约65μg/g的抗冲丙烯共聚物。所述挥发物含量为少于约65μg/g、或少于约60μg/g、或少于50μg/g、或约10μg/g~少于约65μg/g。
该方法可包含这里披露的两个以上的实施方式。
本公开提供了抗冲丙烯共聚物。该抗冲丙烯共聚物包括具有丙烯/乙烯共聚物(不连续相)分散在其中的基于丙烯的聚合物(基体相)。该基于丙烯的聚合物的MFR为大于约100克/10分钟。该抗冲丙烯共聚物的熔体流动速率为大于约60克/10分钟,Fc值为约5wt%~约50wt%,Ec值为约20wt%~约90wt%。
在一种实施方式中,基于丙烯的聚合物的MFR为大于约160克/10分钟和抗冲丙烯共聚物的MFR为大于约85克/10分钟。在另一种实施方式中,基于丙烯的聚合物的MFR为大于约200克/10分钟和抗冲丙烯共聚物的MFR为大于约100克/10分钟。在一种实施方式中,基于丙烯的聚合物的MFR为大于约300克/10分钟和抗冲丙烯共聚物的MFR为大于约150克/10分钟。在进一步的实施方式中,基于丙烯的聚合物为丙烯均聚物。
在一种实施方式中,基于丙烯的聚合物具有以下性质的一种或多种:二甲苯可溶物含量少于约4wt%、或少于约2wt%;和TMF大于约170℃。
在一种实施方式中,没有抗冲丙烯共聚物的聚合物组分裂解。换句话说,抗冲丙烯共聚物是未裂解的,基于丙烯的聚合物是未裂解的,和丙烯/乙烯共聚物是未裂解的。
在一种实施方式中,抗冲丙烯共聚物的挥发物含量为少于65μg/g、或少于约60μg/g、或少于50μg/g,或约10μg/g~少于约65μg/g(VW PV3341)。
在一种实施方式中,抗冲丙烯共聚物的ALA含量为至少5ppm,或至少10ppm,或至少20ppm,或至少30ppm,或约5ppm~约150ppm。
在一种实施方式中,抗冲丙烯共聚物为成核的抗冲丙烯共聚物。
本发明的抗冲丙烯共聚物可用于多种应用,如需要挥发物少的汽车内部零件,并且可以用于许多接触食品的应用,如杯子和容器。此外,许多普通的模制制品如玩具、壶、桶、和一般用途的制品可以利用本发明的抗冲丙烯共聚物的高熔体流动速率的产品和冲击强度性质和/或低挥发物含量的优点。本发明的抗冲丙烯共聚物还可以用于生产用于地毯、内饰、和尿布的纤维。
抗冲丙烯共聚物可包含这里披露的两个以上的实施方式。
定义
本文中对元素周期表的引用是指CRC Press,Inc.2003年出版并拥有版权的元素周期表。而且,对一个或多个族的引用是指该元素周期表中利用IUPAC体系对元素进行编号所反映的一个或多个族。除非有相反的说明,否则在上下文的含义中或本领域常见情形中,所有的份和百分比都是基于重量的。为了美国专利实践的目的,任何本文所引用的专利、专利申请、或出版物的内容,特别是关于合成技术、定义(以不与本文所提供的任何定义不一致的程度)和本领域的通常知识的披露内容,在此通过引用的方式将它们的全部内容纳入本申请(或者,与它们等同的美国版本也这样通过引用纳入本申请)。
术语“包含”及其衍生用法不打算排除任何其它组分、步骤或工序的存在,无论它们是否在本文中公开。为了避免任何疑问,本申请中通过使用术语“包含”而要求保护的组合物可包括任何其它添加剂、辅剂、或化合物,不论其为聚合物的或其它形式的,除非有相反的说明。相反,术语“主要由...组成”排除了任何之前列举的任何其它组分、步骤或工序的范围,除了对可行性来说是非必要的那些。术语“由...组成”排除了任何没有具体描述的或列出的组分、步骤或工序。除非另有说明,术语“或者”是指列出的成员是单独的以及任何组合形式的。
本文引用的任何数值范围包括从最低值到最高值之间的以一个单位递增的所有值,条件是任何最低值和任何最高值之间分开至少两个单位。举例来说,如果描述了组分的量,或组成或物理性质的值,例如共混物组分的量、软化温度、熔体指数等为1~100,则意图在这样的描述中明确列举所有的单独值如1、2、3等和所有的子范围如1~20、55~70、197~100等。对于小于1的值,1个单位根据情况而视为0.0001、0.001、0.01或0.1。这些仅是特定意图的实例,并且所列举的最低数值和最高数值之间的数值的所有可能组合都视为在本申请中明确指出了。换句话说,本文引用的任何数值范围都包括所指出范围内的任何值或子范围。如本文所讨论的,引用的数值范围有熔体指数、熔体流动速率、和其它性质。
本文所使用的术语“共混物”或“聚合物共混物”是两种或更多种聚合物的共混物。这样的共混物可为或不为混溶的(在分子水平没有相分离)。这样的共混物可为或不为相分离的。这样的共混物可含有或不含有由透射电子显微镜、光散射、x-射线散射和本领域已知的其它方法测定的一种或更多种畴构造。
本文所使用的术语“组合物”包括构成组合物的材料的混合物以及由所述组合物材料形成的反应产物和分解产物。
本文“聚合物”是指由相同或不同类型的聚合单体聚合的高分子化合物。“聚合物”包括均聚物、共聚物、三元共聚物、互聚物等。术语“互聚物”是指通过至少两种单体或共聚单体的聚合制备的聚合物。其包括但不限于共聚物(其通常是指由两种不同类型的单体或共聚单体制备的聚合物),三元聚合物(其通常是指由三种不同类型的单体或共聚单体制备的聚合物),四元聚合物(其通常是指由四种不同类型的单体或共聚单体制备的聚合物)等。
本文所使用的术语“互聚物”是指通过至少两种不同类型的单体的聚合制备的聚合物。因此,该上位术语互聚物包括共聚物(其通常用于指由两种不同类型的单体制备的聚合物),和由多于两种的不同类型的单体制备的聚合物。
术语“基于烯烃的聚合物”是含有以聚合物总重量计主要重量百分比的聚合形式的烯烃例如乙烯或丙烯的聚合物。基于烯烃的聚合物的非限制性实施例包括基于乙烯的聚合物和基于丙烯的聚合物。
本文中所使用的术语“基于乙烯的聚合物”是指这样的聚合物,其包含主要重量百分比的聚合的乙烯单体(以可聚合单体的总重量计),和任选地可包含至少一种聚合的共聚单体。
本文中所使用的术语“乙烯/α-烯烃互聚物”是指这样的互聚物,其包含主要重量百分比的聚合的乙烯单体(以可聚合单体的总重量计),和至少一种聚合的α-烯烃。
本文中所使用的术语“基于丙烯的聚合物”是指这样的聚合物,其包含主要重量百分比的聚合的丙烯单体(以可聚合单体的总重量计),和任选地可包含至少一种聚合的共聚单体。
本文中所使用的术语“烷基”是指支化的或非支化的、饱和的或不饱和的非环状烃基。合适的烷基的非限制性实例包括,例如,甲基、乙基、正丙基、异丙基、2-丙烯基(或烯丙基)、乙烯基、正丁基、叔丁基、异丁基(或2-甲基丙基)等。所述烷基具有1~20个碳原子。
本文中所使用的术语“取代的烷基”是指以上刚描述的烷基,其中连接到所述烷基的任何碳的一个或多个氢原子被另外的基团如卤素、芳基、取代的芳基、环烷基、取代的环烷基、杂环烷基、取代的杂环烷基、卤素、卤代烷基、羟基、氨基、磷基(phosphido)、烷氧基、氨基、硫基、硝基、和它们的组合代替。合适的取代的烷基包括,例如,苄基、三氟甲基等。
本文中所使用的术语“芳基”是指芳族取代基,其可为单芳环或稠合在一起的、共价连接的、或连接到公共基团例如亚甲基或亚乙基部分的多芳环。所述芳环可包括苯基、萘基、蒽基、和联苯基等。所述芳基具有1~20个碳原子。
测试方法
挠曲模量根据ASTM D790-00方法I使用以1.3mm/min测试的ASTM D638的1型试样测定。
Izod冲击强度根据ASTM D256测得。
熔体流动速率(MFR)根据ASTM D 1238-01测试方法对于基于丙烯的聚合物在230℃以2.16kg重量测得。
二甲苯可溶物质(XS)根据以下工序测得。将0.4g聚合物溶于20ml二甲苯中并在130℃搅拌30分钟。然后,将该溶液冷却至25℃,并在30分钟后将不溶的聚合物级分滤掉。得到的滤液通过流动注射聚合物分析法使用Viscotek ViscoGEL H-100-3078柱以1.0ml/min流动的THF移动相进行分析。该柱与Viscotek Model 302三联检测器阵列偶联,其中光散射、粘度计和折射计检测器在45℃运行。用Viscotek PolyCALTM聚苯乙烯标准物保持仪器修正。
最终熔点TMF是样品中最完美晶体熔化的温度并且被视为全同规整度和聚合物固有结晶性的量度。测试使用TAQ100差示扫描量热计进行。将样品以80℃/min的速度从0℃加热到240℃,以相同的速率冷却到0℃,然后再以相同的速率加热到最高达150℃,在150℃保持5分钟并以1.25℃/min从150℃加热到180℃。从这一最后循环通过计算加热曲线终点处的基线起点来测定TMF
测试工序:
(1)用作为标准的高纯度铟修正仪器。
(2)用恒定流速50ml/min的氮气持续吹扫仪器的头部/室。
(3)样品制备:
使用30-G302H-18-CX Wabash压缩模制器(30吨)压缩模制1.5g粉末样品:(a)在230℃持续接触加热混合物2分钟;(b)在相同温度下用20吨压力压缩样品1分钟;(c)将样品冷却到45°F并以20吨压力保持2分钟;(d)将试条切割成约相同尺寸的4份,将它们叠加在一起并重复步骤(a)-(c)以均化样品。
(4)称重来自样品试条的一片样品(优选5~8mg),并且将其密封在标准铝样品盘中。将含有样品的密封盘放在仪器头部/室的样品侧,并将空的密封盘放在参比侧。如果使用自动采样机,则称重若干不同样品试样并对机器设定序列。
(5)测量:
(i)数据存储:关
(ii)以80.00℃/min升温至240.00℃
(iii)恒温1.00分钟
(iv)以80.00℃/min降温至0.00℃
(v)恒温1.00分钟
(vi)以80.00℃/min升温至150.00℃
(vii)恒温5.00分钟
(viii)数据存储:开
(ix)以1.25℃/min升温至180.00℃
(x)方法结束
(6)计算:TMF通过两条线的交点确定。高温的基线画一条线。画通过接近高温侧的曲线的终点的曲线的拐点的另一条线。
挥发物含量通过Marcel Dekker,Inc.,1985年的S.A.Liebman和E.J.Levy编的教科书Pyrolysis和GC in Polymer Analysis中描述的静态顶空分析法测得。气体色谱仪/顶空气体色谱仪(GC-HS)分析广泛用于汽车工业。Volkswagen AG公司已开发出被广泛接受并用于塑料工业的标准。其被称为“VW标准PV 3341”(或“PV3341”)。PV 3341是一种测试,其中将2克样品置于顶空小瓶中,在120℃调节5小时,然后注入GC。使用基于对应于丙酮标准物的峰面积的外部标准技术完成量化。
作为实例并且不受到限制,现在将提供本公开的实施例。
实施例
(1)前催化剂
SHAC 320为由钛、镁、和内部电子给体邻苯二甲酸二异丁酯组成的并根据美国专利6,825,146中实施例1制备的齐格勒-纳塔前催化剂组合物,该专利的全部内容通过引用纳入本申请。
前催化剂FV为欧洲专利申请728,769中披露的由钛、镁、和内部电子给体1,3-二醚组成的齐格勒-纳塔前催化剂组合物。FV前催化剂按如下制备。
在环境温度,将350g混合的卤化镁/钛醇盐、72g的9,9-双(甲氧基甲基)-9H-芴、和5.6L 50/50(体积/体积)的氯化钛(IV)和氯苯的混合物合并。将混合物在105-115℃搅拌60分钟,静置,和在100℃过滤。将固体在85℃在2.8L氯苯中搅拌,静置,和在85℃过滤。将固体两次在5.6L的50/50氯化钛(IV)和氯苯的新鲜混合物在105-115℃搅拌30分钟,静置和在100℃过滤。冷却后,用5.2L己烷在50-60℃洗涤固体2次,然后用5.6L的2-甲基丁烷在环境温度进行最终洗涤。将固体与1.19kg的矿物油合并,并用真空除去得到浆料的残留挥发物。
(2)外部电子给体
样品A-E包括具有选自以下M-EED组分的混合外部电子给体(M-EED):
DCPDMS:二环戊基二甲氧基硅烷(SCA)
IPM:肉豆蔻酸异丙酯(ALA)
PTES:正丙基三乙氧基硅烷(SCA2)
TEOS:四乙氧基硅烷(SCA2)
样品F包括具有选自以下组分的外部电子给体。
DCPDMS:二环戊基二甲氧基硅烷(SCA)
IPM:肉豆蔻酸异丙酯(ALA)
样品G和H为常规抗冲共聚物。样品H是用包括作为外部电子给体的二环戊基二甲氧基硅烷的催化剂组合物制备的。样品G和H作为比较用提供并且不是本公开的实施方式。
(3)聚合
使用如美国专利4,882,380中描述的联动流化床反应器在气相中进行样品A-F和样品H的制造,该专利的全部内容通过引用在此纳入。聚合条件列于以下表2中。
样品G为以Spheripol方法制备的常规抗冲共聚物,所述Spheripol方法为已知的多级方法,其在第一级使用液相聚合反应器,然后是一个或两个附加的气相聚合反应器以生产橡胶相。最终级别为反应器级(即未经减粘裂化的)。
作为生产样品A-F中的最终步骤,将各样品半连续地排入fiberpak并用湿氮气在22℃鼓泡(或去活),使用大约每1000kg树脂3kg水进行最高达3小时。
在样品H从反应器排出后,通过用湿氮气在22℃吹扫1-3小时使其失活,使用每1000kg聚合物1kg水。
使用啮合型双螺杆挤出机将样品A-F和H与表4中列出的添加剂混料。在混料后,不对这些样品进行吹扫。
表2
Figure BDA0000056568650000271
*=比较性的
表3
Figure BDA0000056568650000281
*=比较性的
**=基于与表中列出的ASTM值的相互关系计算的值
表4
尽管样品A-F均具有比样品H高的MFR,样品A-F仍具有比比较样品H低的挥发物含量。
样品F表明,通过与IPM和DCPDMS组合使用不同的催化剂(FV催化剂),可以实现相同的结果,即产生了具有高熔体流动速率和低挥发物含量的抗冲丙烯共聚物。而且,通过与DCPDMS(和任选的其它硅烷)组合使用IPM,需要较少量的DCPDMS,提供了进一步的成本降低,因为DCPDMS更贵。
样品A和B均具有与样品G(使用基本上相同或相同的添加剂)相同或基本上相同的冲击性和刚性性质。令人惊奇地和出乎意料地,在气相中产生的本发明的抗冲丙烯共聚物在挥发物含量上是优异的。尤其是,样品A和B均具有比样品G少的挥发物含量。
必须明确指出,本发明不限于这里包含的实施方式和说明,而是包括如以下权利要求的范围中的这些实施方式的改型形式,包括实施方式的各部分和不同实施方式的要素的组合。

Claims (14)

1.一种聚合方法,包括:
在第一聚合反应器中在气相流化床聚合条件下使丙烯和任选的至少一种其它烯烃与催化剂组合物接触,所述催化剂组合物包括前催化剂、助催化剂和包含第一选择性控制剂SCA1、第二选择性控制剂SCA2、和活性限制剂ALA的混合外部电子给体M-EED,所述第一选择性控制剂SCA1包含二甲氧基硅烷,所述第二选择性控制剂SCA2选自二乙氧基硅烷、三乙氧基硅烷和四乙氧基硅烷,所述活性限制剂ALA包含脂族C8-20单羧酸的C1-4烷基酯,
在第一聚合反应器中,形成根据ASTM D1238-01在230℃,2.16kg测得的熔体流动速率大于100克/10分钟的基于丙烯的活性聚合物;
将所述基于丙烯的活性聚合物引入第二聚合反应器;
在第二反应器中在聚合条件下使所述基于丙烯的活性聚合物与至少一种烯烃接触;和
形成熔体流动速率大于60克/10分钟的抗冲丙烯共聚物。
2.权利要求1的方法,包括在一个或两个反应器中将H2/丙烯的摩尔比保持在低于0.3。
3.权利要求1的方法,包括将所述第二聚合反应器中的H2/丙烯的摩尔比保持在低于0.1。
4.权利要求1-3中任一项的方法,包括将选自混合外部电子给体M-EED、第一选择性控制剂SCA1、第二选择性控制剂SCA2、活性限制剂ALA、和它们的组合中的组分引入所述第二反应器。
5.权利要求1-3中任一项的方法,包括使所述基于丙烯的活性聚合物与丙烯和乙烯接触,和形成Fc值为5wt%~50wt%和Ec值为20wt%~90wt%的抗冲丙烯共聚物,其中Fc是存在于多相共聚物中的不连续相的重量百分比,Fc值基于抗冲丙烯共聚物的总重量,Ec为存在于抗冲丙烯共聚物的不连续相中的乙烯的重量百分比,该Ec值基于不连续相的总重量。
6.权利要求1的方法,包括形成根据VW标准PV3341测得的挥发物含量小于65μg/g的抗冲丙烯共聚物。
7.权利要求1的方法,包括当选自所述第一聚合反应器、所述第二聚合反应器、和它们的组合中的反应器中的温度大于100℃时使用所述催化剂组合物对聚合进行自限制。
8.权利要求1的方法,包括:
形成熔体流动速率大于85克/10分钟的抗冲丙烯共聚物。
9.根据权利要求1的方法制备的抗冲丙烯共聚物,包括:
根据ASTM D-1238-01在230℃,2.16kg测得的熔体流动速率MFR大于100克/10分钟的基于丙烯的聚合物;
分散在该基于丙烯的聚合物中的丙烯/乙烯共聚物;和
所述抗冲丙烯共聚物的熔体流动速率大于60克/10分钟,Fc值为5wt%~50wt%,Ec值为20wt%~90wt%,其中Fc是存在于多相共聚物中的不连续相的重量百分比,Fc值基于抗冲丙烯共聚物的总重量,Ec为存在于抗冲丙烯共聚物的不连续相中的乙烯的重量百分比,该Ec值基于不连续相的总重量。
10.权利要求9的抗冲丙烯共聚物,其中所述基于丙烯的聚合物的MFR大于160克/10分钟和所述抗冲丙烯共聚物的MFR大于85克/10分钟。
11.权利要求9-10中任一项的抗冲丙烯共聚物,其中所述基于丙烯的聚合物具有选自以下的性质:二甲苯可溶物含量少于4%、TMF大于170℃、和它们的组合,其中TMF是样品中最完美晶体熔化的温度。
12.权利要求9的抗冲丙烯共聚物,其中所述基于丙烯的聚合物未裂解。
13.权利要求9的抗冲丙烯共聚物,包括根据VW标准PV3341测得的挥发物含量少于65μg/g。
14.权利要求9的抗冲丙烯共聚物,包括至少5ppm的活性限制剂。
CN200980141797.4A 2008-08-21 2009-02-23 高熔体流动速率的抗冲丙烯共聚物和方法 Active CN102203140B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
PCT/US2008/073882 WO2009029487A1 (en) 2007-08-24 2008-08-21 Self-limiting catalyst system with controlled aluminum rto sca ratio and method
USPCT/US2008/073882 2008-08-21
US12/390,897 2009-02-23
PCT/US2009/034881 WO2010082943A1 (en) 2008-08-21 2009-02-23 High melt flow propylene impact copolymer and method
US12/390,897 US8067510B2 (en) 2007-08-24 2009-02-23 High melt flow propylene impact copolymer and method

Publications (2)

Publication Number Publication Date
CN102203140A CN102203140A (zh) 2011-09-28
CN102203140B true CN102203140B (zh) 2014-07-02

Family

ID=40756183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980141797.4A Active CN102203140B (zh) 2008-08-21 2009-02-23 高熔体流动速率的抗冲丙烯共聚物和方法

Country Status (11)

Country Link
US (2) US8067510B2 (zh)
EP (1) EP2315790B1 (zh)
JP (1) JP5474069B2 (zh)
KR (2) KR20160017096A (zh)
CN (1) CN102203140B (zh)
BR (1) BRPI0912920B1 (zh)
ES (1) ES2674584T3 (zh)
MX (1) MX2011001972A (zh)
PL (1) PL2315790T3 (zh)
RU (1) RU2487897C2 (zh)
WO (1) WO2010082943A1 (zh)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101848946B (zh) 2007-08-24 2013-06-12 陶氏环球技术有限责任公司 气相聚合方法
JP5628809B2 (ja) 2008-08-21 2014-11-19 ダウ グローバル テクノロジーズ エルエルシー 混合された選択性制御剤を含む触媒組成物及び該触媒組成物を使用する重合方法
KR20160017096A (ko) * 2008-08-21 2016-02-15 더블유.알. 그레이스 앤드 캄파니-콘. 고 용융 유동 내충격성 프로필렌 공중합체 및 방법
SG172447A1 (en) * 2008-12-31 2011-08-29 Dow Global Technologies Llc Procatalyst composition with substituted 1,2-phenylene aromatic diester internal donor and method
US8263692B2 (en) * 2008-12-31 2012-09-11 Dow Global Technologies Llc Propylene-based polymer, articles, and process for producing same
SG181835A1 (en) * 2009-12-21 2012-08-30 Dow Global Technologies Llc Gas-phase polymerization process having multiple flow regimes
EP2527376B1 (en) * 2010-01-22 2017-07-19 China Petroleum & Chemical Corporation Preparation method for propylene homopolymer having high melt strength
CN101845171A (zh) * 2010-04-20 2010-09-29 广州呈和科技有限公司 聚丙烯增刚成核剂组合物
US20120116029A1 (en) * 2010-11-08 2012-05-10 Van Egmond Jan W Method for polymerizing polypropylene
JP5995869B2 (ja) * 2010-12-21 2016-09-21 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット 高メルトフロープロピレンベースポリマーを製造するプロセスおよび同プロセスによる生成物
KR20130131406A (ko) * 2010-12-27 2013-12-03 다우 코닝 코포레이션 경화성 실리케이트-실록산 혼합된 매트릭스 멤브레인 조성물
BR112013018569B1 (pt) * 2011-01-19 2020-04-22 Beijing Res Inst Chemical Ind China Petroleum & Chemical Corp componente catalisador sólido, catalisador para a polimerização de olefina e processo para polimerização de olefina
KR101907376B1 (ko) 2011-03-10 2018-10-12 바셀 폴리올레핀 이탈리아 에스.알.엘 폴리올레핀계 용기
EP2607384A1 (en) 2011-12-21 2013-06-26 Basell Poliolefine Italia S.r.l. Catalyst system for the polymerization of olefins
DE102013221849B4 (de) * 2012-10-30 2021-07-29 Beijing Research Institute Of Chemical Industry, China Petroleum & Chemical Corporation Verfahren zur Herstellung eines Propylenpolymers
US9096729B2 (en) 2013-02-06 2015-08-04 Exxonmobil Chemical Patents Inc. Polymerization activators for supported Ziegler-Natta catalysts
WO2014123668A1 (en) * 2013-02-06 2014-08-14 Exxonmobil Chemical Patents Inc. Polymerization activators for supported ziegler-natta catalysts
EP3033389B1 (en) 2013-08-14 2017-10-11 Borealis AG Propylene composition with improved impact resistance at low temperature
MX2016001930A (es) 2013-08-21 2016-05-26 Borealis Ag Composicion de poliolefina de alto flujo con alta rigidez y tenacidad.
CA2919171A1 (en) 2013-08-21 2015-02-26 Borealis Ag High flow polyolefin composition with high stiffness and toughness
EP2853563B1 (en) 2013-09-27 2016-06-15 Borealis AG Films suitable for BOPP processing from polymers with high XS and high Tm
ES2568615T3 (es) 2013-10-11 2016-05-03 Borealis Ag Película para etiquetas orientada en la dirección de la máquina
US10519259B2 (en) 2013-10-24 2019-12-31 Borealis Ag Low melting PP homopolymer with high content of regioerrors and high molecular weight
ES2574428T3 (es) 2013-10-24 2016-06-17 Borealis Ag Artículo moldeado por soplado basado en copolímero al azar bimodal
EP3063185B9 (en) 2013-10-29 2017-11-15 Borealis AG Solid single site catalysts with high polymerisation activity
CN105916891B (zh) 2013-11-15 2018-05-15 格雷斯公司 具有减少的高分子量部分的基于丙烯的聚合物
RU2731442C2 (ru) * 2013-11-21 2020-09-02 У.Р. Грейс Энд Ко.-Конн Получение полимеров на основе пропилена с высоким содержанием сомономера
EA031527B1 (ru) * 2013-11-22 2019-01-31 Бореалис Аг Гомополимер пропилена с низкой эмиссией и с высокой скоростью течения расплава
CA2926061A1 (en) 2013-11-22 2015-05-28 Borealis Ag Low emission propylene homopolymer
RU2707101C1 (ru) * 2013-11-26 2019-11-22 У.Р. Грейс Энд Ко.-Конн Получение ударопрочных сополимеров и продуктов на основе пропилена
CN108503734B (zh) * 2013-11-27 2021-09-03 格雷斯公司 主催化剂颗粒及抗冲共聚物的聚合方法
BR112016011829B1 (pt) 2013-12-04 2022-01-18 Borealis Ag Composição de polipropileno, fibra e trama soprada em fusão, artigo e uso da composição de polipropileno
WO2015091839A1 (en) 2013-12-18 2015-06-25 Borealis Ag Bopp film with improved stiffness/toughness balance
US10465025B2 (en) 2014-01-15 2019-11-05 Exxonmobil Chemical Patents Inc. Low comonomer propylene-based impact copolymers
EP3094681B1 (en) 2014-01-15 2021-01-20 ExxonMobil Chemical Patents Inc. Propylene-based impact copolymers
EP3094660B1 (en) 2014-01-17 2018-12-19 Borealis AG Process for preparing propylene/1-butene copolymers
BR112016017227B1 (pt) 2014-02-06 2021-06-29 Borealis Ag Copolímero de propileno heterofásico, película não orientada, recipiente, e uso de um copolímero de propileno heterofásico
CN112225997B (zh) 2014-02-06 2023-09-22 北欧化工公司 高冲击强度的柔性共聚物
EP2907841A1 (en) 2014-02-14 2015-08-19 Borealis AG Polypropylene composite
EP2947118B1 (en) 2014-05-20 2017-11-29 Borealis AG Polypropylene composition for automotive interior applications
RU2692265C2 (ru) * 2015-03-25 2019-06-24 Базелл Полиолефин Гмбх Способы непрерывной газофазной полимеризации
BR112017026534B1 (pt) 2015-06-12 2021-12-07 Sabic Global Technologies B.V. Copolímero de propileno heterofásico, seu processo para a fabricação e uso, artigo que o compreende
CN109563191B (zh) * 2016-08-03 2021-03-19 住友化学株式会社 多相丙烯聚合材料的制造方法
JP7196074B2 (ja) * 2016-08-30 2022-12-26 ダブリュー・アール・グレース・アンド・カンパニー-コーン ポリオレフィンの製造のための触媒系並びに同触媒系を作製及び使用する方法
US10920053B2 (en) 2017-10-16 2021-02-16 Exxonmobil Chemical Patents Inc. Propylene impact copolymer blends with improved gloss
US11708484B2 (en) * 2017-11-13 2023-07-25 Basell Poliolefine Italia S.R.L. Compositions obtained from recycled polyolefins
WO2019094216A1 (en) * 2017-11-13 2019-05-16 W.R. Grace & Co.-Conn. Catalyst components for propylene polymerization
CN109776955A (zh) * 2018-12-18 2019-05-21 东华能源(宁波)新材料有限公司 一种采用氢调法制备聚丙烯材料的方法
EP3927771A1 (en) * 2019-02-19 2021-12-29 Braskem, S.A. No break polypropylene impact copolymers with melt flow rate higher than 90 g/10 min
JP2022525628A (ja) * 2019-03-15 2022-05-18 ダブリュー・アール・グレース・アンド・カンパニー-コーン 微粒子を含まないオレフィンポリマーを生成するための触媒系
KR102605269B1 (ko) * 2019-12-09 2023-11-23 한화솔루션 주식회사 기상 중합에 의한 올레핀계 중합체의 제조방법
WO2021197761A1 (en) * 2020-03-30 2021-10-07 Basell Poliolefine Italia S.R.L. Propylene polymer composition
US20230235105A1 (en) * 2020-07-17 2023-07-27 Exxonmobil Chemical Patents Inc. Polymers with low levels of volatile organic compounds and methods of making such polymers
CN116075545A (zh) * 2020-09-09 2023-05-05 格雷斯公司 具有超高熔体流动速率的聚丙烯聚合物
JP2023544731A (ja) * 2020-10-02 2023-10-25 ダブリュー・アール・グレース・アンド・カンパニー-コーン 高衝撃強度を有する単峰性ポリプロピレンランダムコポリマー
EP4232512A4 (en) * 2020-10-23 2024-09-25 Grace W R & Co IMPACT RESISTANT POLYPROPYLENE POLYMER COMPOSITION HAVING REDUCED VOC CONTENT
CN112521539B (zh) * 2020-11-02 2024-06-28 中煤陕西能源化工集团有限公司 通过调整粉料粒径分布提高粒料产量的方法及粒料生产系统
CN113248637B (zh) * 2021-04-20 2022-07-26 国家能源集团宁夏煤业有限责任公司 外给电子体化合物、烯烃聚合催化剂及其应用以及聚烯烃及其制备方法
CN113214416B (zh) * 2021-04-20 2022-07-26 国家能源集团宁夏煤业有限责任公司 组合外给电子体、烯烃聚合催化剂及其应用以及聚烯烃及其制备方法
KR20240076546A (ko) 2022-11-22 2024-05-30 한화토탈에너지스 주식회사 공중합성이 개선된 프로필렌계 공중합체의 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1612901A (zh) * 2002-01-03 2005-05-04 Bp北美公司 使用双供体催化剂体系的烯烃气相聚合
CN1856514A (zh) * 2003-09-23 2006-11-01 陶氏环球技术公司 自限制催化剂组合物和丙烯的聚合方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO144570C (no) * 1974-12-16 1981-09-23 Standard Oil Co Kontinuerlig fremgangsmaate ved dampfasepolymerisering av en fordampbar polymer, samt apparat for utfoerelse av fremgangsmaaten
US4882380A (en) * 1987-07-07 1989-11-21 Union Carbide Chemicals And Plastics Company Inc. Process for the production of impact polypropylene copolymers
DE69019046T2 (de) * 1989-03-02 1995-09-07 Mitsui Petrochemical Ind Verfahren zur Polymerisation von Olefinen und Katalysator für Olefinpolymerisation.
FR2669639A1 (fr) 1990-11-27 1992-05-29 Atochem Cocatalyseur de polymerisation du propylene a base de silane et de monoether.
US5432244A (en) 1990-12-12 1995-07-11 Union Carbide Chemicals & Plastics Technology Corporation Process for the production of polypropylene
US5218052A (en) * 1991-02-04 1993-06-08 Amoco Corporation Olefin polymerization and copolymerization process
JP3443848B2 (ja) * 1992-11-04 2003-09-08 東ソー株式会社 プロピレンブロック共重合体の製造方法
JPH06298858A (ja) * 1993-04-14 1994-10-25 Asahi Chem Ind Co Ltd プロピレン重合体の製造方法
TW354792B (en) 1993-08-13 1999-03-21 Mitsui Petrochemical Ind Olefin polymerization catalyst and process for preparing polypropylene and propylene block copolymer
IT1271420B (it) * 1993-08-30 1997-05-28 Himont Inc Composizioni poliolefiniche aventi un elevato bilancio di rigidita' e resilienza
JP3508187B2 (ja) * 1993-11-10 2004-03-22 チッソ株式会社 プロピレン・エチレンブロック共重合体の連続製造法
US6133385A (en) 1994-04-06 2000-10-17 Fina Technology, Inc. Catalyst systems for improved stereoselectivity and broader molecular weight distribution in polymerization of olefins
US5529850A (en) 1994-07-05 1996-06-25 Montell North America Inc. Fibers produced from crystalline propylene polymers having high melt flow rate values and a narrow molecular weight distribution
IL117114A (en) 1995-02-21 2000-02-17 Montell North America Inc Components and catalysts for the polymerization ofolefins
DE69608240T2 (de) * 1995-08-31 2000-11-23 Chisso Corp., Osaka Äthylen-propylencopolymerzusammensetzungen und verfahren zu ihrer herstellung
ATE258195T1 (de) 1999-11-12 2004-02-15 Borealis Tech Oy Heterophasische copolymere
WO2003106512A2 (en) * 2002-06-14 2003-12-24 Union Carbide Chemicals & Plastics Technology Corporation ; Catalyst composition and polymerization process using mixtures of selectivity control agents
PL372196A1 (en) * 2002-06-26 2005-07-11 Basell Poliolefine Italia S.P.A. Impact-resistant polyolefin compositions
JP2006083187A (ja) * 2002-08-19 2006-03-30 Ube Ind Ltd ハロゲン化アルコキシシランの製造方法
JP3786138B2 (ja) * 2002-08-19 2006-06-14 宇部興産株式会社 α−オレフィンの重合又は共重合に用いられるα−オレフィンの重合又は共重合用触媒、その触媒成分及びその触媒を用いたα−オレフィンの重合方法
US6818711B2 (en) * 2003-01-01 2004-11-16 Fina Technology, Inc. Polymerization of olefins using a ziegler-natta catalyst system having an external electron donor
KR101114748B1 (ko) * 2003-09-23 2012-03-05 다우 글로벌 테크놀로지스 엘엘씨 자가 제한 촉매 조성물 및 프로필렌 중합 방법
WO2005035593A1 (en) * 2003-09-23 2005-04-21 Union Carbide Chemicals & Plastics Technology Corporation Catalyst composition with mixed sca and propylene polymerization process
JP3953466B2 (ja) * 2004-02-23 2007-08-08 日本ポリプロ株式会社 ポリプロピレン系樹脂組成物及びその成形体
EP2261277B1 (en) 2003-12-26 2016-07-13 Japan Polypropylene Corporation Polypropylene-based resin composition and molded article thereof
US7226977B2 (en) 2004-04-19 2007-06-05 Sunoco, Inc. ( R&M) High melt flow rate thermoplastic polyolefins produced in-reactor
US7524903B2 (en) 2004-12-20 2009-04-28 Basell Poliolefine Italia S.R.L. Process and apparatus for the polymerization of propylene
JP2007231257A (ja) * 2006-02-03 2007-09-13 Japan Polypropylene Corp ポリプロピレンの製造方法
CN101379097B (zh) 2006-02-03 2011-08-03 日本聚丙烯公司 丙烯类聚合物及其制备方法、丙烯类聚合物组合物以及由该组合物制成的成型制品
JP2007254671A (ja) * 2006-03-24 2007-10-04 Japan Polypropylene Corp ポリプロピレンの製造方法
EP1935938A1 (en) 2006-12-18 2008-06-25 Borealis Technology Oy Improved high melt flow heterophasic polypropylene copolymers
CN101848946B (zh) 2007-08-24 2013-06-12 陶氏环球技术有限责任公司 气相聚合方法
KR20160017096A (ko) * 2008-08-21 2016-02-15 더블유.알. 그레이스 앤드 캄파니-콘. 고 용융 유동 내충격성 프로필렌 공중합체 및 방법
JP5628809B2 (ja) * 2008-08-21 2014-11-19 ダウ グローバル テクノロジーズ エルエルシー 混合された選択性制御剤を含む触媒組成物及び該触媒組成物を使用する重合方法
US8263692B2 (en) * 2008-12-31 2012-09-11 Dow Global Technologies Llc Propylene-based polymer, articles, and process for producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1612901A (zh) * 2002-01-03 2005-05-04 Bp北美公司 使用双供体催化剂体系的烯烃气相聚合
CN1856514A (zh) * 2003-09-23 2006-11-01 陶氏环球技术公司 自限制催化剂组合物和丙烯的聚合方法

Also Published As

Publication number Publication date
JP5474069B2 (ja) 2014-04-16
US8067510B2 (en) 2011-11-29
US20120130018A1 (en) 2012-05-24
PL2315790T3 (pl) 2018-08-31
EP2315790A1 (en) 2011-05-04
BRPI0912920B1 (pt) 2019-07-09
US8779058B2 (en) 2014-07-15
BRPI0912920A2 (pt) 2015-10-06
JP2012500320A (ja) 2012-01-05
US20090209706A1 (en) 2009-08-20
WO2010082943A8 (en) 2011-07-14
WO2010082943A1 (en) 2010-07-22
KR101686253B1 (ko) 2016-12-13
RU2011110521A (ru) 2012-09-27
BRPI0912920A8 (pt) 2017-09-19
ES2674584T3 (es) 2018-07-02
KR20110048053A (ko) 2011-05-09
MX2011001972A (es) 2011-08-12
CN102203140A (zh) 2011-09-28
RU2487897C2 (ru) 2013-07-20
KR20160017096A (ko) 2016-02-15
EP2315790B1 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
CN102203140B (zh) 高熔体流动速率的抗冲丙烯共聚物和方法
CN102186889B (zh) 具有混合的选择性控制剂的催化剂组合物和使用它的聚合反应方法
CN102762603B (zh) 作为用于聚丙烯制造的催化剂中的内部给体的两个原子桥接的二碳酸酯化合物
CN102325809B (zh) 提高的前催化剂组合物和方法
CN102712704B (zh) 作为用于聚丙烯制造的催化剂中的内部给体的三个和四个原子桥接的二碳酸酯化合物
CN101945897B (zh) 具有双齿内部供体的自限制催化剂组合物
CN102325808B (zh) 包含取代的1,2-亚苯基芳族二酯内给体的前催化剂组合物及方法
CN103380104B (zh) 生产高熔体流动性基于丙烯的聚合物的方法和由其生产的产品
CN103380149B (zh) 生产具有烷氧基烷基酯内电子给体的原催化剂组合物的方法和产品
CN103403038B (zh) 具有卤代‑丙二酸酯内电子给体的催化剂组合物和由其制备的聚合物
CN103380150A (zh) 具有烷氧基烷基酯内电子给体的催化剂组合物和由其制备的聚合物
CN103380152B (zh) 具有烷氧基烷基2-丙烯酸酯内电子给体的原催化剂组合物和由其制备的聚合物
CN104105717A (zh) 具有烷氧基丙基酯内电子给体的原催化剂组合物和由其制备的聚合物
CN103502280A (zh) 用多接触原催化剂提高容积密度的方法和产物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20150922

Address after: American Maryland

Patentee after: W. R. Grace & Co.

Address before: michigan

Patentee before: Dow Global Technologies Inc.