WO2022091598A1 - 蛍光x線分析装置 - Google Patents

蛍光x線分析装置 Download PDF

Info

Publication number
WO2022091598A1
WO2022091598A1 PCT/JP2021/033364 JP2021033364W WO2022091598A1 WO 2022091598 A1 WO2022091598 A1 WO 2022091598A1 JP 2021033364 W JP2021033364 W JP 2021033364W WO 2022091598 A1 WO2022091598 A1 WO 2022091598A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
adhesion amount
base layer
thin film
amount
Prior art date
Application number
PCT/JP2021/033364
Other languages
English (en)
French (fr)
Other versions
WO2022091598A8 (ja
Inventor
真也 原
康治郎 山田
憲治 児玉
真 堂井
Original Assignee
株式会社リガク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リガク filed Critical 株式会社リガク
Priority to US18/033,652 priority Critical patent/US11921065B2/en
Priority to CN202180072774.3A priority patent/CN116472452B/zh
Priority to EP21885717.5A priority patent/EP4224155A4/en
Publication of WO2022091598A1 publication Critical patent/WO2022091598A1/ja
Publication of WO2022091598A8 publication Critical patent/WO2022091598A8/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/61Specific applications or type of materials thin films, coatings

Definitions

  • the present invention irradiates a sample having a base layer and a single-layer thin film having an adhesion amount and thickness of each component formed on the base layer to be analyzed, and generates secondary X-rays.
  • the present invention relates to a fluorescent X-ray analyzer for obtaining quantitative values of the amount and thickness of each component adhered to a thin film by a fundamental parameter method based on the measured intensity of.
  • a sample having a thin film is irradiated with primary X-rays, and the composition (adhesion amount of each component) and thickness in the thin film are obtained by the fundamental parameter method (hereinafter, also referred to as FP method) based on the measured intensity of the generated secondary X-rays.
  • FP method fundamental parameter method
  • a fluorescent X-ray analyzer for obtaining a quantitative value of for example, there is an apparatus described in Patent Document 1.
  • Patent Document 1 to obtain the quantitative value of the composition and thickness of the thin film by the FP method based on the measured intensity is generated from the sample excited by the primary X-ray based on the composition assumed for the thin film constituting the sample.
  • the theoretical intensity of the secondary X-ray (measurement line) is calculated, and the composition assumed for the thin film is sequentially approximated so that the theoretical intensity and the converted measurement intensity obtained by converting the measurement intensity of the sample into the theoretical intensity scale match. It means to obtain the quantitative value of composition and thickness by making a correction calculation.
  • the content rate (mass fraction) of each component is used as the one corresponding to the composition, and the intensity of the measurement line corresponds to the content rate of the corresponding component. Since it depends, the quantitative value of the bulk composition can be obtained, and the quantitative value of the thickness cannot be obtained.
  • the amount of adhesion of each component mass per unit area
  • the strength of the measurement line depends on the amount of adhesion of the corresponding component. In the region where the strength of the measurement line changes according to the change in the thickness of the thin film, the amount of adhesion of each component in the thin film and the quantitative value of the thickness are obtained.
  • the present invention has been made in view of the above-mentioned conventional problems, and is used in a fluorescent X-ray analyzer for obtaining quantitative values of the amount and thickness of each component in a thin film formed on a thin film formed on the base layer by the FP method. It is an object of the present invention to provide a device that can exclude a component whose quantitative calculation for a thin film becomes an error due to the influence of the measured line intensity from the above as an unquantifiable component from the analysis target.
  • the present invention comprises a single-layer or multi-layered base layer in which the adhesion amount or content of each component is known, and the adhesion amount and thickness of each component formed on the base layer.
  • a sample having a single-layer thin film to be analyzed is irradiated with primary X-rays, and the amount and thickness of each component adhered to the thin film by the fundamental parameter method based on the measured intensity of the generated secondary X-rays.
  • It is a fluorescent X-ray analyzer that obtains the quantitative value of, and among the components corresponding to the measurement line, which is the secondary X-ray for which the intensity should be measured, as a preprocessing for the quantitative calculation by the fundamental parameter method, the component that cannot be quantified. It has an exclusion means to exclude from the analysis target.
  • the exclusion means first calculates the amount of adhesion of the component that does not contain the measurement element in the base layer on the assumption that the component alone constitutes the thin film for each corresponding measurement line. , The maximum adhesion amount is set as the initial value of the adhesion amount of the component. Further, the exclusion means calculates the adhesion amount of the component containing the measurement element in the base layer for each corresponding measurement line based on the initial value of the adhesion amount of each component not containing the measurement element in the base layer. Then, if the calculation result is an error for all the corresponding measurement lines, the component is excluded from the analysis target as an unquantifiable component, and in other cases, the maximum adhesion amount of the component is excluded. The initial value of the amount of adhesion is used.
  • the initial value of the adhesion amount is first estimated for the component that does not contain the measurement element in the base layer by the exclusion means, and the component that contains the measurement element in the base layer is the base layer.
  • the amount of adhesion is calculated based on the initial value of the amount of adhesion of each component that does not contain the measurement element, and whether or not the calculation result results in an error is examined. Components that cause an error in the quantitative calculation can be appropriately excluded from the analysis target as non-quantitable components.
  • this apparatus has a single-layer or multi-layered base layer in which the adhesion amount or content of each component is known, and the adhesion amount and thickness of each component formed on the base layer.
  • the sample 3 having the single-layer thin film to be analyzed is irradiated with the primary X-ray 2 from the X-ray source 1 such as an X-ray tube, and the intensity of the generated secondary X-ray 4 is detected by the detecting means 9.
  • the component that cannot be quantified is excluded from the analysis target.
  • the sample 3 is a so-called thin film sample, for example, a sample in which a thin film of indium tin oxide is formed on a base layer made of a chrome-plated substrate, and galvanium plating on a base layer which is a substrate.
  • a sample in which a thin film is formed, a sample in which a nickel-plated thin film is formed on a base layer which is a Coval substrate, and the like are placed on a sample table 8.
  • the detection means 9 includes a spectroscopic element 5 that disperses a secondary X-ray 4 such as a fluorescent X-ray generated from a sample 3, and a detector 7 that measures the intensity of each of the dispersed secondary X-rays 6. ..
  • a detector having high energy resolution may be used as the detection means without using the spectroscopic element 5.
  • the exclusion means 21 is included as a program in the quantitative means 20 such as a computer.
  • the quantitative value of the adhesion amount and thickness of each component in the thin film by the FP method based on the measured intensity is to obtain the primary X-ray based on the adhesion amount of each component assumed for the single-layer thin film of the sample 3.
  • the theoretical intensity of the secondary X-ray 4 generated from the sample 3 excited by 2 is calculated, and the theoretical intensity and the converted measured intensity obtained by converting the measured intensity of the sample 3 into the theoretical intensity scale satisfy a predetermined convergence condition. It means to obtain the quantitative value of the adhesion amount and the thickness of each component by sequentially and approximationally modifying and calculating the adhesion amount of each component assumed for the thin film so as to satisfy and match.
  • the quantitative value of the thickness is obtained based on the quantitative value of the adhesion amount of each component and the density of each component.
  • the exclusion means 21 first calculates the amount of adhesion of a component that does not contain a measurement element in the base layer for each corresponding measurement line on the assumption that the component alone constitutes a thin film, and the maximum amount is calculated.
  • the amount of adhesion is the initial value of the amount of adhesion of the component.
  • the exclusion means 21 calculates the adhesion amount of the component containing the measurement element in the base layer for each corresponding measurement line based on the initial value of the adhesion amount of each component not containing the measurement element in the base layer. If the calculation result is an error for all the corresponding measurement lines, the component is excluded from the analysis target as an unquantifiable component, and in other cases, the maximum adhesion amount is the adhesion of the component.
  • the measurement element of each component is an element that generates a measurement line corresponding to each component. Further, the measurement line corresponding to each component is not limited to one series (one type), and two or more series such as K line and L line for the same measurement element may be set.
  • the exclusion means 21 operates as shown in the flowchart of FIG. Of the steps described below, steps S1 to S5 are operations by the exclusion means 21, and step S6 is an operation of the known FP method by the quantitative means 20. Before step S1, as an operation of the known FP method, there is a step of obtaining the measured strength and converting it into a theoretical strength scale to obtain the converted measured strength, but the description thereof will be omitted.
  • step S1 for a component that does not contain a measurement element in the base layer, the component alone is used for each corresponding measurement line, that is, for each series when there are a plurality of measurement lines corresponding to the component.
  • the adhesion amount is calculated on the assumption that the thin film is formed, and the maximum adhesion amount among the adhesion amounts calculated for the component is used as the initial value of the adhesion amount of the component.
  • the assumption that the component alone constitutes the thin film does not consider the effect of X-ray absorption / excitation by other coexisting components (hereinafter referred to as coexisting components). It means that so-called matrix correction is not performed, and it is a method often used for calculating the initial value in the FP method.
  • the operation of step S1 is performed for all the components that do not contain the measurement element in the base layer.
  • step S2 for the components containing the measurement element in the base layer, the adhesion amount is calculated for each corresponding measurement line based on the initial value of the adhesion amount of each component not containing the measurement element in the base layer. .. More specifically, there are a plurality of corresponding measurement lines for each of the components containing the measurement element in the base layer, with only all the components for which the initial value of the adhesion amount was obtained in step S1 as coexisting components. In the case, the amount of the component adhered to each series is quantitatively calculated by the FP method. At that time, the adhesion amount of the coexisting component is fixed to the initial value of the adhesion amount obtained in step S1, and so-called matrix correction is performed in consideration of the effect of X-ray absorption / excitation by the coexisting component.
  • step S3 it is determined whether or not the calculation result results in an error for all the corresponding measurement lines. More specifically, it is determined whether or not the calculation result in step S2 results in an error for each of the components containing the measurement element in the base layer for all the corresponding series of measurement lines. If the determination is Yes, the process proceeds to step S4, and if No, the process proceeds to step S5.
  • step S4 the component is excluded from the analysis target as an unquantifiable component.
  • step S5 the maximum adhesion amount among the adhesion amounts calculated in step S2 for the component is set as the initial value of the adhesion amount of the component.
  • step S6 After the operations from step S2 to step S4 or S5 are performed for all the components containing the measurement element in the base layer, the process proceeds to step S6, and the amount of each component adhered to the conventional thin film by the quantitative calculation of the FP method. And the quantitative value of the thickness is obtained.
  • the initial value of the adhesion amount of each component obtained in step S1 or step S5 can be used as it is as the initial value of the adhesion amount of each component in the quantitative calculation in step S6.
  • the result of the quantitative calculation in step S6 is displayed on the display 16 such as a liquid crystal display, it is also displayed that the quantitative calculation is impossible for the components excluded from the analysis target in step S4. Will be done.
  • the exclusion means 21 first estimates the initial value of the amount of adhesion for the component that does not contain the measurement element in the base layer, and the base layer contains the measurement element. For the components to be measured, the amount of adhesion is calculated based on the initial value of the amount of adhesion of each component that does not contain the measurement element in the underlying layer, and whether or not the calculation result results in an error is examined. Components that cause an error in the quantitative calculation of the thin film due to the influence of the measurement line strength can be appropriately excluded from the analysis target as non-quantitable components.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本発明の蛍光X線分析装置に備わる除外手段(21)が、下地層に測定元素が含まれない成分について、対応する測定線ごとに、当該成分が単独で薄膜を構成しているとの仮定で付着量を計算して、最大の付着量を当該成分の付着量の初期値とし、下地層に測定元素が含まれる成分について、対応する測定線ごとに、下地層に測定元素が含まれない各成分の付着量の初期値に基づいて付着量を計算して、すべての対応する測定線について計算結果がエラーになる場合には、当該成分を定量不可能な成分として分析対象から除外し、それ以外の場合には、最大の付着量を当該成分の付着量の初期値とする。

Description

蛍光X線分析装置 関連出願
 本出願は、2020年10月30日出願の特願2020-182991の優先権を主張するものであり、それらの全体を参照により本願の一部をなすものとして引用する。
 本発明は、下地層と、その上に形成されて各成分の付着量および厚さが分析対象である単層の薄膜とを有する試料に1次X線を照射し、発生する2次X線の測定強度に基づいてファンダメンタルパラメーター法により薄膜における各成分の付着量および厚さの定量値を求める蛍光X線分析装置に関する。
 薄膜を有する試料に1次X線を照射し、発生する2次X線の測定強度に基づいてファンダメンタルパラメーター法(以下、FP法ともいう)により薄膜における組成(各成分の付着量)および厚さの定量値を求める蛍光X線分析装置として、例えば、特許文献1に記載の装置がある。ここで、測定強度に基づいてFP法により薄膜の組成および厚さの定量値を求めるとは、試料を構成する薄膜について仮定した組成に基づいて、1次X線により励起されて試料から発生する2次X線(測定線)の理論強度を計算し、その理論強度と試料についての測定強度を理論強度スケールに換算した換算測定強度とが合致するように、薄膜について仮定した組成を逐次近似的に修正計算して、組成および厚さの定量値を求めることをいう。
 一般に、FP法によりバルクの組成の定量値を求める場合には、組成に対応するものとして、各成分の含有率(質量分率)が用いられ、測定線の強度が対応する成分の含有率に依存することから、バルクの組成の定量値が求められ、厚さの定量値を求めることはできない。これに対して、薄膜においては、組成に対応するものとして、各成分の付着量(単位面積あたりの質量)が用いられ、測定線の強度が対応する成分の付着量に依存することから、薄膜の厚さの変化に応じて測定線の強度が変化する領域で、薄膜における各成分の付着量および厚さの定量値が求められる。
国際公開第2017/026200号
 しかし、下地層の上に薄膜が形成されている試料の場合、下地層からの測定線の強度が上述の領域を超えていると、逐次近似的な修正計算中に、仮定した各成分の付着量を更新できなくなることから、定量計算を続行できなくなり、その旨のエラー表示とともに各成分の付着量および厚さの定量値が求まらないまま定量計算が終了してしまう。
 本発明は前記従来の問題に鑑みてなされたもので、FP法により下地層の上に形成された薄膜における各成分の付着量および厚さの定量値を求める蛍光X線分析装置において、下地層からの測定線強度の影響により薄膜についての定量計算がエラーになるような成分については、定量不可能な成分として分析対象から除外できる装置を提供することを目的とする。
 前記目的を達成するために、本発明は、各成分の付着量または含有率が既知である単層または複層の下地層と、その下地層の上に形成されて各成分の付着量および厚さが分析対象である単層の薄膜とを有する試料に1次X線を照射し、発生する2次X線の測定強度に基づいてファンダメンタルパラメーター法により前記薄膜における各成分の付着量および厚さの定量値を求める蛍光X線分析装置であって、ファンダメンタルパラメーター法による定量計算の前処理として、強度を測定すべき2次X線である測定線に対応する成分のうち、定量不可能な成分を分析対象から除外する除外手段を備えている。
 そして、除外手段は、まず、前記下地層に測定元素が含まれない成分について、対応する測定線ごとに、当該成分が単独で前記薄膜を構成しているとの仮定で付着量を計算して、最大の付着量を当該成分の付着量の初期値とする。さらに、除外手段は、前記下地層に測定元素が含まれる成分について、対応する測定線ごとに、前記下地層に測定元素が含まれない各成分の付着量の初期値に基づいて付着量を計算して、すべての対応する測定線について計算結果がエラーになる場合には、当該成分を定量不可能な成分として分析対象から除外し、それ以外の場合には、最大の付着量を当該成分の付着量の初期値とする。
 本発明の蛍光X線分析装置では、除外手段により、まず、下地層に測定元素が含まれない成分について付着量の初期値を概算し、下地層に測定元素が含まれる成分については、下地層に測定元素が含まれない各成分の付着量の初期値に基づいて付着量を計算して、計算結果がエラーになるか否を検討することから、下地層からの測定線強度の影響により薄膜についての定量計算がエラーになるような成分を、定量不可能な成分として適切に分析対象から除外できる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきでない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一部分を示す。
本発明の一実施形態の蛍光X線分析装置を示す概略図である。 同蛍光X線分析装置の動作を示すフローチャートである。
 以下、本発明の一実施形態の装置について、図にしたがって説明する。図1に示すように、この装置は、各成分の付着量または含有率が既知である単層または複層の下地層と、その下地層の上に形成されて各成分の付着量および厚さが分析対象である単層の薄膜とを有する試料3に、X線管等のX線源1から1次X線2を照射して、発生する2次X線4の強度を検出手段9で測定し、その測定強度に基づいてファンダメンタルパラメーター法により前記薄膜における各成分の付着量および厚さの定量値を求める蛍光X線分析装置であって、ファンダメンタルパラメーター法による定量計算の前処理として、強度を測定すべき2次X線である測定線に対応する成分のうち、定量不可能な成分を分析対象から除外する除外手段を備えている。
 ここで、試料3は、いわゆる薄膜試料で、例えば、クロムめっきを施された基板からなる下地層の上にインジウムスズオキサイドの薄膜が形成された試料、基板である下地層の上にガルバニウムめっきの薄膜が形成された試料、コバール基板である下地層の上にニッケルめっきの薄膜が形成された試料などであり、試料台8に載置される。検出手段9は、試料3から発生する蛍光X線等の2次X線4を分光する分光素子5と、分光された2次X線6ごとにその強度を測定する検出器7で構成される。なお、分光素子5を用いずに、エネルギー分解能の高い検出器を検出手段としてもよい。また、除外手段21は、コンピューターなどの定量手段20にプログラムとして含まれている。
 測定強度に基づいてFP法により薄膜における各成分の付着量および厚さの定量値を求めるとは、試料3が有する単層の薄膜について仮定した各成分の付着量に基づいて、1次X線2により励起されて試料3から発生する2次X線4の理論強度を計算し、その理論強度と試料3についての測定強度を理論強度スケールに換算した換算測定強度とが、所定の収束条件を満たして合致するように、薄膜について仮定した各成分の付着量を逐次近似的に修正計算して、各成分の付着量および厚さの定量値を求めることをいう。なお、厚さの定量値は、各成分の付着量の定量値と各成分の密度に基づいて求められる。
 除外手段21は、まず、下地層に測定元素が含まれない成分について、対応する測定線ごとに、当該成分が単独で薄膜を構成しているとの仮定で付着量を計算して、最大の付着量を当該成分の付着量の初期値とする。さらに、除外手段21は、下地層に測定元素が含まれる成分について、対応する測定線ごとに、下地層に測定元素が含まれない各成分の付着量の初期値に基づいて付着量を計算して、すべての対応する測定線について計算結果がエラーになる場合には、当該成分を定量不可能な成分として分析対象から除外し、それ以外の場合には、最大の付着量を当該成分の付着量の初期値とする。なお、各成分の測定元素とは、各成分に対応する測定線を発生させる元素である。また、各成分に対応する測定線は、1系列(1種類)に限られず、同一の測定元素についてのK線、L線など、2系列以上設定してもよい。
 除外手段21は、具体的には、図2のフローチャートに示したように動作する。なお、以下に述べるステップのうち、ステップS1からステップS5までが除外手段21による動作であり、ステップS6は、定量手段20による公知のFP法の動作である。なお、ステップS1の前にも、公知のFP法の動作として、測定強度を得て、理論強度スケールに換算して換算測定強度を求める等のステップがあるが、記載を省略する。
 まず、ステップS1において、下地層に測定元素が含まれない成分について、対応する測定線ごとに、つまり当該成分に対応する測定線が複数系列ある場合には1系列ごとに、当該成分が単独で前記薄膜を構成しているとの仮定で付着量を計算して、当該成分について計算した付着量のうち最大の付着量を当該成分の付着量の初期値とする。当該成分が単独で前記薄膜を構成しているとの仮定とは、より具体的には、共存する他の成分(以下、共存成分という)によるX線の吸収・励起の効果を考慮せず、いわゆるマトリックス補正を施さないという意味であり、FP法における初期値の計算にはよく用いられる手法である。ステップS1の動作は、下地層に測定元素が含まれないすべての成分について行われる。
 次に、ステップS2において、下地層に測定元素が含まれる成分について、対応する測定線ごとに、下地層に測定元素が含まれない各成分の付着量の初期値に基づいて付着量を計算する。より具体的には、ステップS1で付着量の初期値が求められたすべての成分のみを共存成分として、下地層に測定元素が含まれる成分の1つずつについて、対応する測定線が複数系列ある場合には1系列ごとに、当該成分の付着量をFP法により定量計算する。その際、共存成分の付着量をステップS1で求めた付着量の初期値に固定し、共存成分によるX線の吸収・励起の効果を考慮して、いわゆるマトリックス補正を施す。
 次に、ステップS3において、すべての対応する測定線について計算結果がエラーになるか否かを判定する。より具体的には、下地層に測定元素が含まれる成分の1つずつについて、対応するすべての系列の測定線について、ステップS2での計算結果がエラーになるか否かを判定する。そして、その判定がYesであればステップS4に進み、NoであればステップS5に進む。
 ステップS4では、当該成分を定量不可能な成分として分析対象から除外する。一方、ステップS5では、当該成分についてステップS2で計算した付着量のうち最大の付着量を当該成分の付着量の初期値とする。
 ステップS2からステップS4またはS5までの動作が、下地層に測定元素が含まれるすべての成分について行われた後、ステップS6に進み、従来の薄膜に対するFP法の定量計算により、各成分の付着量および厚さの定量値を求める。この際、ステップS1またはステップS5で付着量の初期値が求められた成分のみが分析対象となり、それらの成分に対応した系列の測定線のみが測定線として設定される。また、ステップS1またはステップS5で求められた各成分の付着量の初期値を、そのままステップS6での定量計算における各成分の付着量の初期値として用いることができる。なお、ステップS6での定量計算による結果が液晶ディスプレイ等の表示器16に表示される際には、ステップS4で分析対象から除外された成分について、定量計算が不可能である旨が併せて表示される。
 以上のように、本実施形態の蛍光X線分析装置では、除外手段21により、まず、下地層に測定元素が含まれない成分について付着量の初期値を概算し、下地層に測定元素が含まれる成分については、下地層に測定元素が含まれない各成分の付着量の初期値に基づいて付着量を計算して、計算結果がエラーになるか否を検討することから、下地層からの測定線強度の影響により薄膜についての定量計算がエラーになるような成分を、定量不可能な成分として適切に分析対象から除外できる。
 以上のとおり、図面を参照しながら好適な実施例を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、添付の請求の範囲から定まるこの発明の範囲内のものと解釈される。
2 1次X線
3 試料
4 2次X線(測定線)
21 除外手段

Claims (1)

  1.  各成分の付着量または含有率が既知である単層または複層の下地層と、その下地層の上に形成されて各成分の付着量および厚さが分析対象である単層の薄膜とを有する試料に1次X線を照射し、発生する2次X線の測定強度に基づいてファンダメンタルパラメーター法により前記薄膜における各成分の付着量および厚さの定量値を求める蛍光X線分析装置であって、
     ファンダメンタルパラメーター法による定量計算の前処理として、強度を測定すべき2次X線である測定線に対応する成分のうち、定量不可能な成分を分析対象から除外する除外手段を備え、
     前記除外手段が、
     前記下地層に測定元素が含まれない成分について、対応する測定線ごとに、当該成分が単独で前記薄膜を構成しているとの仮定で付着量を計算して、最大の付着量を当該成分の付着量の初期値とし、
     前記下地層に測定元素が含まれる成分について、対応する測定線ごとに、前記下地層に測定元素が含まれない各成分の付着量の初期値に基づいて付着量を計算して、すべての対応する測定線について計算結果がエラーになる場合には、当該成分を定量不可能な成分として分析対象から除外し、それ以外の場合には、最大の付着量を当該成分の付着量の初期値とする、蛍光X線分析装置。
PCT/JP2021/033364 2020-10-30 2021-09-10 蛍光x線分析装置 WO2022091598A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/033,652 US11921065B2 (en) 2020-10-30 2021-09-10 X-ray fluorescence spectrometer
CN202180072774.3A CN116472452B (zh) 2020-10-30 2021-09-10 荧光x射线分析装置
EP21885717.5A EP4224155A4 (en) 2020-10-30 2021-09-10 X-RAY FLUORESCENCE SPECTROMETER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020182991A JP7190751B2 (ja) 2020-10-30 2020-10-30 蛍光x線分析装置
JP2020-182991 2020-10-30

Publications (2)

Publication Number Publication Date
WO2022091598A1 true WO2022091598A1 (ja) 2022-05-05
WO2022091598A8 WO2022091598A8 (ja) 2023-03-23

Family

ID=81382280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033364 WO2022091598A1 (ja) 2020-10-30 2021-09-10 蛍光x線分析装置

Country Status (5)

Country Link
US (1) US11921065B2 (ja)
EP (1) EP4224155A4 (ja)
JP (1) JP7190751B2 (ja)
CN (1) CN116472452B (ja)
WO (1) WO2022091598A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107020A (ja) * 2001-10-02 2003-04-09 Shimadzu Corp 薄膜の蛍光x線分析方法
JP2004004102A (ja) * 2000-04-11 2004-01-08 Rigaku Industrial Co 蛍光x線分析装置
JP2006071311A (ja) * 2004-08-31 2006-03-16 Rigaku Industrial Co 蛍光x線分析装置およびそれに用いるプログラム
US8515009B1 (en) * 2012-02-03 2013-08-20 Thermo Niton Analyzers Llc Metal authenticity testing of an object using radiation
WO2017026200A1 (ja) 2015-08-10 2017-02-16 株式会社リガク 蛍光x線分析装置
CN110530912A (zh) * 2019-09-12 2019-12-03 岛津企业管理(中国)有限公司 一种含镀层贵金属成分的x射线荧光光谱分析方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63292043A (ja) * 1987-05-26 1988-11-29 D S Sukiyanaa:Kk 膜厚・組成同時分析装置
US5461654A (en) * 1992-04-07 1995-10-24 Grodzins; Lee X-ray fluorescence detector
JPH08297106A (ja) * 1995-04-27 1996-11-12 Nisshin Steel Co Ltd Zn−Mg系合金めっき鋼板のめっき付着量及びMg含有率の測定方法
DE10159828B4 (de) 2001-12-06 2007-09-20 Rigaku Industrial Corporation, Takatsuki Röntgenfluoreszenzspektrometer
JP4834613B2 (ja) * 2007-06-11 2011-12-14 株式会社リガク 蛍光x線分析装置およびその方法
JP4523958B2 (ja) * 2007-09-21 2010-08-11 株式会社リガク 蛍光x線分析装置およびそれに用いるプログラム
JP5697388B2 (ja) * 2010-09-22 2015-04-08 株式会社イーアンドエム X線分析方法,x線分析装置及びそのプログラム
JP5557161B2 (ja) * 2011-01-24 2014-07-23 住友電気工業株式会社 構造解析方法
CN102384923B (zh) * 2011-08-03 2014-02-05 苏州华碧微科检测技术有限公司 一种涂层中微量元素的测试方法
US20130202083A1 (en) 2012-02-03 2013-08-08 Stanislaw Piorek System and method for identification of counterfeit gold jewelry using xrf
JP6550999B2 (ja) 2015-07-21 2019-07-31 三浦工業株式会社 ボイラシステム
JP6467684B2 (ja) * 2015-07-24 2019-02-13 株式会社リガク 蛍光x線分析装置
EP3343211B1 (en) * 2015-08-28 2020-07-29 Rigaku Corporation X-ray fluorescence spectrometer
CN106501293A (zh) * 2016-09-30 2017-03-15 深圳市赛宝伦科技有限公司 一种基于小波变换法扣除x射线荧光能谱背景的方法
CN110865092A (zh) * 2019-12-10 2020-03-06 中国科学院金属研究所 利用x射线荧光光谱表征高温合金成分分布的原位分析方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004102A (ja) * 2000-04-11 2004-01-08 Rigaku Industrial Co 蛍光x線分析装置
JP2003107020A (ja) * 2001-10-02 2003-04-09 Shimadzu Corp 薄膜の蛍光x線分析方法
JP2006071311A (ja) * 2004-08-31 2006-03-16 Rigaku Industrial Co 蛍光x線分析装置およびそれに用いるプログラム
US8515009B1 (en) * 2012-02-03 2013-08-20 Thermo Niton Analyzers Llc Metal authenticity testing of an object using radiation
WO2017026200A1 (ja) 2015-08-10 2017-02-16 株式会社リガク 蛍光x線分析装置
CN110530912A (zh) * 2019-09-12 2019-12-03 岛津企业管理(中国)有限公司 一种含镀层贵金属成分的x射线荧光光谱分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4224155A4

Also Published As

Publication number Publication date
JP2022073175A (ja) 2022-05-17
US11921065B2 (en) 2024-03-05
JP7190751B2 (ja) 2022-12-16
WO2022091598A8 (ja) 2023-03-23
US20230393084A1 (en) 2023-12-07
EP4224155A4 (en) 2023-12-06
CN116472452A (zh) 2023-07-21
EP4224155A1 (en) 2023-08-09
CN116472452B (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
EP3064931B1 (en) Quantitative x-ray analysis
JP6232568B2 (ja) 蛍光x線分析装置
JP6175662B2 (ja) 蛍光x線分析装置
JPH10123071A (ja) X線分析方法および装置
US20220050068A1 (en) Quantitative analysis method, quantitative analysis program, and x-ray fluorescence spectrometer
WO1997006430A1 (en) Method and apparatus for total reflection x-ray fluorescence spectroscopy
WO2022091598A1 (ja) 蛍光x線分析装置
JP3965173B2 (ja) 蛍光x線分析装置およびそれに用いるプログラム
JP4523958B2 (ja) 蛍光x線分析装置およびそれに用いるプログラム
JP5874108B2 (ja) 蛍光x線分析装置
CN113748333B (zh) 荧光x射线分析装置
JP2006313132A (ja) 試料分析方法およびx線分析装置
JPH08334481A (ja) 蛍光x線分析方法
JP2000065764A (ja) 液体試料の螢光x線分析方法
WO2022091597A1 (ja) 蛍光x線分析装置
JP3331192B2 (ja) 蛍光x線分析方法および装置
JPH06337252A (ja) 蛍光x線分析方法
JP2004004102A (ja) 蛍光x線分析装置
JP2001304843A (ja) 膜厚測定方法と装置
JP6779531B2 (ja) 蛍光x線分析装置
CN117460950A (zh) 荧光x射线分析装置
JP3399861B2 (ja) X線分析装置
JP3377328B2 (ja) 蛍光x線分析方法
CN116362209A (zh) 材料检测报告的生成方法、装置、设备及存储介质
JP2011089953A (ja) 蛍光x線分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885717

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180072774.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021885717

Country of ref document: EP

Effective date: 20230504

NENP Non-entry into the national phase

Ref country code: DE