WO2020203834A1 - ビスマレイミド化合物、それを用いた感光性樹脂組成物、その硬化物及び半導体素子 - Google Patents
ビスマレイミド化合物、それを用いた感光性樹脂組成物、その硬化物及び半導体素子 Download PDFInfo
- Publication number
- WO2020203834A1 WO2020203834A1 PCT/JP2020/014181 JP2020014181W WO2020203834A1 WO 2020203834 A1 WO2020203834 A1 WO 2020203834A1 JP 2020014181 W JP2020014181 W JP 2020014181W WO 2020203834 A1 WO2020203834 A1 WO 2020203834A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- dianhydride
- group
- resin composition
- photosensitive resin
- Prior art date
Links
- YGYCECQIOXZODZ-UHFFFAOYSA-N O=C(C(C1C2C(O3)=O)C2C3=O)OC1=O Chemical compound O=C(C(C1C2C(O3)=O)C2C3=O)OC1=O YGYCECQIOXZODZ-UHFFFAOYSA-N 0.000 description 2
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/12—Unsaturated polyimide precursors
- C08G73/121—Preparatory processes from unsaturated precursors and polyamines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/12—Unsaturated polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/12—Unsaturated polyimide precursors
- C08G73/124—Unsaturated polyimide precursors the unsaturated precursors containing oxygen in the form of ether bonds in the main chain
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
- G03F7/028—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
- G03F7/031—Organic compounds not covered by group G03F7/029
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
- H01L23/293—Organic, e.g. plastic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3157—Partial encapsulation or coating
- H01L23/3171—Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/5329—Insulating materials
Definitions
- the present invention relates to a bismaleimide compound, a photosensitive resin composition using the same, a cured product thereof, and a semiconductor device.
- the photosensitive resin composition of the present invention can be applied to a protective film for a semiconductor element, an interlayer insulating film, an insulating film of a rewiring layer, and the like.
- the protective film for semiconductor devices, the interlayer insulating film formed on the semiconductor surface layer, and the insulating film of the rewiring layer have been made of polyimide precursors or polybenzoxazole precursors having excellent heat resistance, electrical properties, and mechanical properties.
- a photosensitive resin composition containing the above is used.
- the photosensitive resin composition containing the polyimide precursor include polyamic acid, a compound having a polymerizable unsaturated bond, and a photopolymerization initiator in JP-A-54-109828 (Patent Document 1). The resin composition to be contained is described. Further, Japanese Patent Application Laid-Open No.
- Patent Document 2 describes a polyamic acid ester composition and a resin composition containing a photopolymerization initiator.
- the photosensitive polyimide precursor obtained in such a resin composition is a negative type photosensitive material in which a pattern can be obtained by photocrosslinking an unsaturated bond with a photopolymerization initiator.
- examples of the photosensitive resin composition containing the polybenzoxazole precursor are described in JP-A-56-27140 (Patent Document 3) and JP-A-11-237736 (Patent Document 4). Resin compositions containing benzoxazole precursors and quinonediazide compounds have been described.
- Such a resin composition is a positive photosensitive material in which a portion (exposed portion) irradiated with light is dissolved in an alkaline developer to obtain a pattern by converting quinonediazide into an indencarboxylic acid by light irradiation.
- the polyimide precursor and the polybenzoxazole precursor as described in Patent Documents 1 to 4 need to undergo a dehydration ring closure reaction in the curing reaction, they are heated to at least 230 ° C. in order to be cured. It is necessary. However, when the heating temperature is high as described above, the semiconductor element may be damaged, and the linear thermal expansion coefficient differs between the substrate such as a silicon wafer and the film made of the photosensitive resin composition. There is a problem that residual stress is generated in the film after curing due to the temperature difference until it is cooled to room temperature. Further, in the photosensitive resin compositions as described in Patent Documents 1 to 4, the polymer skeleton of the resin obtained by curing is a rigid aromatic for the purpose of improving the heat resistance and mechanical properties thereof.
- the skeleton is made of a compound, the tensile elastic modulus after curing is high, and there is a problem that the adhesion to the adherend is lowered and the residual stress is further increased. It was.
- Such residual stress causes warpage of a substrate such as a silicon wafer, and causes problems such as a decrease in bonding reliability with an interposer in flip chip mounting and a decrease in handleability of a substrate such as a silicon wafer in a semiconductor manufacturing process. It causes it to be triggered.
- the diameter of silicon wafers has been reduced from the viewpoint of miniaturization and thinning of semiconductor elements, and the diameter of silicon wafers has been increased from the viewpoint of improving mass productivity (about 300 mm in diameter at the mass production level, in the future). With the progress of (about 450 mm diameter), the problem of such residual stress becomes more serious.
- JP-A-2009-258433 Patent Document 5
- JP-A-2009-175356 Patent Document 6
- a resin composition containing a polybenzoxazole precursor As another photosensitive resin composition, for example, it is obtained by a condensation reaction of an amine compound derived from dimer acid and a diamine and a tetracarboxylic dianhydride in JP-A-2010-256532 (Patent Document 7).
- a photosensitive resin composition containing a polyamic acid to be used is described. Further, Japanese Patent Application Laid-Open No.
- Patent Document 8 describes a polymaleimide compound in which the amic acid structure is closed in advance and a maleimide group is introduced as a polymerizable functional group.
- a photosensitive resin composition containing an imide compound is described in US Patent Application Publication No. 2011/0049731 (Patent Document 9).
- a reduced projection exposure machine (stepper; light source wavelength: 365 nm, 436 nm), which is standardly used in the manufacturing process of semiconductor protective films, is used.
- stepper light source wavelength: 365 nm, 436 nm
- the present inventors have found that as the film thickness increases, the light reaching the bottom decreases, making it difficult to form a pattern.
- the film thickness of a protective film for a semiconductor element or the like is generally 5 ⁇ m or less, but there are many cases where the film thickness is actually 10 ⁇ m or more due to unevenness due to wiring. There is a problem that sufficient patterning performance is not exhibited and the chip design is limited.
- the polyamic acid described in Patent Document 7 has a polyamic acid structure obtained from an amine compound (dimerdiamine) derived from dimer acid and a tetracarboxylic dianhydride, and is excellent in flexibility. It is expected that a cured product will be obtained.
- the polyamic acid described in Patent Document 7 does not have a photopolymerizable functional group, it is necessary to add a photopolymerizable compound to the resin composition, and for example, it is generally used as a photopolymerizable compound.
- the resin composition described in Patent Document 9 containing this can be cured at a relatively low temperature.
- an inorganic surface protective film such as a SiN film or a SiO 2 film formed on a silicon wafer or a chip, or a conductive metal wiring material (passivation film) or a conductive metal wiring material (passivation film) is used.
- a method for improving the adhesion a method for improving the efficiency of the cross-linking reaction by photopolymerization by increasing the exposure amount can be mentioned, but the polymaleinimide compound described in Patent Document 8 is usually used as a photopolymerizable compound. Since it requires an extremely large amount of exposure as compared with the acrylic compounds used, there is a problem that the productivity is lowered in the semiconductor manufacturing process. Further, as a method of reducing the residual stress in the film after curing and improving the patterning performance, there is a method of reducing the film thickness. However, when the film thickness is reduced, the original protective film for semiconductor elements is used. There is a problem that the insulating property as an insulating film is impaired.
- the present invention has been made in view of the above-mentioned problems of the prior art, is capable of forming fine patterns at a relatively low exposure amount, does not require thermosetting at a high temperature as in the prior art, and is tensile.
- a bismaleimide compound having a sufficiently small elastic modulus and being able to obtain a cured product having excellent adhesion to an inorganic surface protective film or a metal wiring material, a photosensitive resin composition using the same, a cured product thereof, and the said product.
- An object of the present invention is to provide a semiconductor device including a cured product.
- the present inventors have formed a fine pattern at a relatively low exposure amount by using a photosensitive resin composition containing a specific bismaleimide compound (I). It has also been found that thermosetting at a high temperature as in the conventional case is not required even when thermosetting is not required or if necessary. Further, the cured product obtained by using such a photosensitive resin composition has a sufficiently small tensile elastic modulus and excellent adhesion to an inorganic surface protective film or a metal wiring material, for example, high insulation. We have found that it can be particularly preferably used as a surface protective film, an interlayer insulating film, an insulating film for a rewiring layer, etc. of a semiconductor element that needs to maintain its properties, and have completed the present invention.
- the present invention [1] A screw having a cyclic imide bond obtained by reacting a diamine (A) derived from dimer acid, a tetracarboxylic dianhydride (C) having an alicyclic structure, and a maleic anhydride.
- Maleimide compound (I) [2] In addition to the diamine (A), the tetracarboxylic dianhydride (C), and the maleic anhydride, an organic substance other than the diamine (A) derived from the dimer acid.
- the bismaleimide compound (I) according to [1] obtained by reacting a diamine (B), [3]
- the bismaleimide compound (I) has the following general formula (1):
- R 1 represents a divalent hydrocarbon group (a) derived from dimer acid
- R 2 is a divalent group other than the divalent hydrocarbon group (a) derived from dimer acid
- R 3 is a divalent organic group other than the divalent hydrocarbon group (a) derived from dimer acid and the divalent hydrocarbon group (a) derived from dimer acid. Shows any one selected from the group consisting of (b), and R 4 and R 5 each have a monocyclic or condensed polycyclic alicyclic structure and have a tetravalent carbon number of 4 to 40.
- An organic group a tetravalent organic group having 8 to 40 carbon atoms in which organic groups having a monocyclic alicyclic structure are directly or via a crosslinked structure, and a half having both an alicyclic structure and an aromatic ring. Shows one or more organic groups selected from tetravalent organic groups having 8 to 40 carbon atoms having an alicyclic structure.
- m is an integer of 1 to 30
- n is an integer of 0 to 30
- R 4 and R 5 may be the same or different, respectively.
- the bismaleimide compound (I) according to [1] or [2] represented by.
- Cy is a tetravalent organic group having 4 to 40 carbon atoms including a hydrocarbon ring, and the organic group may also contain an aromatic ring.
- X 1 is a direct bond, an oxygen atom, a sulfur atom, a sulfonyl group or a divalent organic group having 1 to 3 carbon atoms.
- X 1 2 is selected from the group consisting of a direct bond, an oxygen atom, a sulfur atom, a sulfonyl group, and a divalent organic group having 1 to 3 carbon atoms or an arylene group] [4].
- the tetracarboxylic dianhydride (C) is 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA), 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetra Methyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride (H-PMDA), 1,1'-bicyclohexane-3,3', 4,4'-tetracarboxylic acid-3,4: 3', 4'-dianhydride (H-BPDA), 4-( 2,5-dioxotetrakidian-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic dianhydride, 5- (2,5-d)
- Sex resin composition, [13] A cured product obtained by photocuring or photothermally curing the photosensitive resin composition according to [11] or [12].
- a semiconductor device comprising the cured product according to [13] as at least one selected from the group consisting of a surface protective film, an interlayer insulating film, and an insulating film of a rewiring layer. Regarding.
- the present invention it is possible to form a fine pattern at a low exposure amount, it does not require thermosetting at a high temperature as in the conventional case, the tensile elastic modulus is sufficiently small, an inorganic surface protective film or a metal wiring is used. It is possible to provide a bismaleimide compound capable of obtaining a cured product having excellent adhesion to a material, a photosensitive resin composition using the same, a cured product thereof, and a semiconductor device including the cured product.
- the bismaleimide compound (I) according to the present invention is a compound having two maleimide groups, and has a divalent hydrocarbon group (a) derived from dimer acid and a cyclic imide bond.
- a bismaleimide compound (I) is obtained by reacting a diamine (A) derived from dimer acid with a tetracarboxylic dianhydride (C) having an alicyclic structure and a maleic anhydride. be able to.
- the divalent hydrocarbon group (a) derived from the dimer acid refers to a divalent residue obtained by removing two carboxyl groups from the dicarboxylic acid contained in the dimeric acid.
- the divalent hydrocarbon group (a) derived from such a dimer acid is a diamine (A) obtained by substituting the two carboxyl groups of the dicarboxylic acid contained in the dimer acid with an amino group. ), Tetracarboxylic acid dianhydride (C), which will be described later, and maleic acid anhydride are reacted to form an imide bond, whereby the compound can be introduced into the bismaleimide compound.
- the dimeric acid is preferably a dicarboxylic acid having 20 to 60 carbon atoms.
- the dimer acid include those obtained by dimerizing unsaturated bonds of unsaturated carboxylic acids such as linoleic acid, oleic acid, and linolenic acid, and then distilling and purifying them.
- the dimeric acid according to the above specific example mainly contains a dicarboxylic acid having 36 carbon atoms, and usually contains a tricarboxylic acid having 54 carbon atoms in an amount of about 5% by mass and a monocarboxylic acid in an amount of about 5% by mass. Each is included as a limit.
- the diamine (A) derived from the dimeric acid according to the present invention uses two carboxyl groups of each dicarboxylic acid contained in the dimeric acid as an amino group. It is a diamine obtained by substitution and is usually a mixture.
- examples of such a diamine-derived diamine (A) include diamines such as [3,4-bis (1-aminoheptyl) 6-hexyl-5- (1-octenyl)] cyclohexane, and these.
- Diamine containing a diamine in which an unsaturated bond is saturated by further hydrogenating the diamine can be mentioned.
- the diamine-derived diamine (A) introduced into the bismaleimide compound using such a diamine-derived diamine (A) is a divalent hydrocarbon group (a) derived from the dimer acid according to the present invention. ) With the two amino groups removed, preferably the residue.
- the bismaleimide compound (I) according to the present invention is obtained by using the diamine-derived diamine (A)
- the composition is different even if one kind is used alone as the diamine-derived diamine (A) 2 You may use a combination of seeds or more.
- a commercially available product such as "PRIAMINE 1074" (manufactured by Croda Japan Co., Ltd.) may be used.
- the tetracarboxylic dianhydride (C) has an alicyclic structure adjacent to the anhydride group, and when a bismaleimide compound is formed after the reaction, the imide ring adjacent portion has an alicyclic structure. It is a tetracarboxylic dianhydride having a structure such that. If the site adjacent to the imide ring has an alicyclic structure, an aromatic ring may be included in the structure.
- the bismaleimide compound (I) preferably has the following general formula (1).
- R 4 and R 5 are structures derived from the tetracarboxylic dianhydride (C).
- R 1 represents a divalent hydrocarbon group (a) derived from dimer acid
- R 2 is a divalent group other than the divalent hydrocarbon group (a) derived from dimer acid
- R 3 is a divalent organic group other than the divalent hydrocarbon group (a) derived from dimer acid and the divalent hydrocarbon group (a) derived from dimer acid. Shows any one selected from the group consisting of (b), and R 4 and R 5 each independently have a monocyclic or condensed polycyclic alicyclic structure and have 4 to 40 carbon atoms (preferably carbons).
- Numbers 6 to 40 tetravalent organic groups, organic groups having a monocyclic alicyclic structure linked to each other directly or via a crosslinked structure, and 8 to 40 carbon number 4 valent organic groups and fats. Shows one or more organic groups selected from tetravalent organic groups having 8 to 40 carbon atoms having a semi-lipid ring structure having both a ring structure and an aromatic ring.
- m is an integer of 1 to 30
- n is an integer of 0 to 30
- R 4 and R 5 may be the same or different, respectively.
- the tetracarboxylic dianhydride (C) is preferably a tetracarboxylic dianhydride (C) having an alicyclic structure represented by the following general formula (2).
- the tetracarboxylic dianhydride (C) having an alicyclic structure represented by the following general formula (2) has an alicyclic structure adjacent to the anhydride group.
- Cy is a tetravalent organic group having 4 to 40 carbon atoms including a hydrocarbon ring, and the organic group may also contain an aromatic ring.
- the tetracarboxylic dianhydride (C) is a tetracarboxylic dianhydride (C) having an alicyclic structure represented by the following general formulas (3-1) to (3-11). preferable.
- the tetracarboxylic acid dianhydride (C) represented by the formulas (3-1) to (3-11) has a monocyclic or condensed polycyclic alicyclic structure and has 4 to 40 carbon atoms (preferably carbon atoms). 6-40) tetravalent organic groups, tetravalent organic groups with 8-40 carbon atoms in which organic groups having a monocyclic alicyclic structure are directly or via a crosslinked structure, and alicyclics. It has a semi-alicyclic structure having both a structure and an aromatic ring, and has a structure containing a tetravalent organic group having 8 to 40 carbon atoms.
- X 1 is a direct bond, an oxygen atom, a sulfur atom, a sulfonyl group or a divalent organic group having 1 to 3 carbon atoms.
- X 1 2 is a direct bond, an oxygen atom, a sulfur atom, a sulfonyl group, a divalent organic group having 1 to 3 carbon atoms, or an arylene group.
- the tetracarboxylic acid dianhydride (C) used in the present invention is a tetravalent organic having a monocyclic or condensed polycyclic alicyclic structure and having 4 to 40 carbon atoms (preferably 6 to 40 carbon atoms).
- tetracarboxylic acid dianhydride (C) having an alicyclic structure examples include 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA), 1,2-dimethyl-1,2. , 3,4-Cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentane Tetracarboxylic acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic acid dianhydride (H-PMDA), 1,1'-bicyclohexane-3,3', 4,4'-tetracarboxylic acid- 3,4: 3', 4'-Anhydride (H-BPDA), 4- (2,5-dioxo tetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2- Dicar
- Compounds can be mentioned.
- the pattern obtained from the photosensitive resin composition of the present invention has a high resolution.
- the resolution means the minimum dimension obtained when forming a pattern using the photosensitive resin composition, and the resolution is so high that a fine pattern can be formed.
- the tetracarboxylic dianhydride (C) is preferably a tetracarboxylic dianhydride (C) having an alicyclic structure represented by the following general formula (4).
- the tetracarboxylic dianhydride (C) is preferably a tetracarboxylic dianhydride (C) having an alicyclic structure represented by the following general formula (5).
- the tetracarboxylic dianhydride (C) is preferably a tetracarboxylic dianhydride (C) having an alicyclic structure represented by the following general formula (6).
- the tetracarboxylic dianhydride (C) is preferably a tetracarboxylic dianhydride (C) having an alicyclic structure represented by the following general formula (7).
- an acid dianhydride having no alicyclic structure and an acid dianhydride containing an aromatic ring adjacent to an anhydride group are used. May be added.
- the lower limit of the tetracarboxylic dianhydride (C) in the total amount of acid dianhydride is preferably 40 mol% or more, more preferably 80 mol% or more, and particularly preferably 90 mol% or more. preferable.
- the upper limit may be 100 mol% or less.
- acid dianhydride containing an aromatic ring adjacent to the anhydride group other than the tetracarboxylic acid dianhydride (C) include pyromellitic acid dianhydride, 4,4'-oxydiphthalic acid dianhydride.
- the bismaleimide compound (I) according to the present invention includes the dimeric acid-derived diamine (A), an organic diamine (B) other than the dimeric acid-derived diamine (A), and the tetracarboxylic dianhydride (the tetracarboxylic dianhydride). It may be a bismaleimide compound obtained by reacting C) with the maleic anhydride. By copolymerizing an organic diamine (B) other than the diamine-derived diamine (A), it is possible to control required physical properties such as further reducing the tensile elastic modulus of the obtained cured product.
- the organic diamine (B) other than the diamine-derived diamine (A) is a diamine other than the diamine contained in the diamine-derived diamine (A) in the present invention. Point to.
- Such an organic diamine (B) is not particularly limited, and for example, an aliphatic diamine such as 1,6-hexamethylenediamine; 1,4-diaminocyclohexane, 1,3-bis (aminomethyl) cyclohexane and the like.
- Alicyclic diamine 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (aminomethyl) benzene, 1,3-bis (4-Aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-diaminobenzene, 1,3-diaminobenzene, 2,4-diaminotoluene, 4,4'-diaminodiphenylmethane, etc.
- Aromatic diamines 4,4'-diaminodiphenylsulphon; 3,3'-diaminodiphenylsulphon; 4,4-diaminobenzophenone; 4,4-diaminodiphenylsulfide; 2,2-bis [4- (4-amino) Phenoxy) phenyl] propane can be mentioned.
- an aliphatic diamine having 6 to 12 carbon atoms such as 1,6-hexamethylenediamine; and diaminocyclohexane such as 1,4-diaminocyclohexane.
- the bismaleimide compound (I) according to the present invention is obtained by using these organic diamines (B), even if one of these organic diamines (B) is used alone, two or more kinds are used. It may be used in combination.
- the method for reacting the organic diamine (B) with the tetracarboxylic dianhydride (C) having an alicyclic structure and the maleic acid anhydride is not particularly limited, and a known method is appropriately adopted. be able to.
- the dimer acid-derived diamine (A), the tetracarboxylic dianhydride (C), and, if necessary, the organic diamine (B) are mixed with toluene, xylene, tetralin, N, N-dimethyl.
- Polyamide acid was synthesized by stirring at room temperature (about 23 ° C.) for 30 to 60 minutes in a solvent such as acetamide, N-methyl-2-pyrrolidone, or a mixed solvent thereof, and then the obtained polyamic acid was obtained.
- a polyamic acid having maleic acid added to both ends is synthesized by adding maleic anhydride to the mixture and stirring at room temperature (about 23 ° C.) for 30 to 60 minutes.
- a solvent that azeotropes with water such as toluene is further added to this polyamic acid, and the mixture is refluxed at a temperature of 100 to 160 ° C. for 3 to 6 hours while removing the water generated by imidization to obtain the desired bismaleimide compound.
- a catalyst such as pyridine or methanesulfonic acid may be further added.
- the mixing ratio of the raw materials in the reaction was as follows: (total number of moles of total diamine and organic diamine (B) contained in the diamine-derived diamine (A)): (tetracarboxylic dianhydride (C) having an alicyclic structure). It is preferable that the total number of moles of the above + 1/2 of the number of moles of maleic anhydride is 1: 1. Further, when the organic diamine (B) is used, the flexibility derived from the dimer acid is exhibited, and a cured product having a lower elastic modulus tends to be obtained. Therefore, (molar of the organic diamine (B)).
- Number) / (number of moles of total diamine contained in diamine-derived diamine (A)) is preferably 1 or less, and more preferably 0.4 or less.
- the polymerization form with the amic acid unit composed of the tetracarboxylic dianhydride (C) having a ring structure may be random polymerization or block polymerization.
- the bismaleimide compound (I) thus obtained includes the following general formula (1):
- R 1 represents a divalent hydrocarbon group (a) derived from dimer acid
- R 2 is a divalent group other than the divalent hydrocarbon group (a) derived from dimer acid
- R 3 is a divalent organic group other than the divalent hydrocarbon group (a) derived from dimer acid and the divalent hydrocarbon group (a) derived from dimer acid. Shows any one selected from the group consisting of (b), and R 4 and R 5 each independently have a monocyclic or condensed polycyclic alicyclic structure and have 4 to 40 carbon atoms (preferably carbons).
- Numbers 6 to 40) tetravalent organic groups organic groups having a monocyclic alicyclic structure linked to each other directly or via a crosslinked structure, and 8 to 40 carbon number 4 valent organic groups and fats. Shows one or more organic groups selected from tetravalent organic groups having 8 to 40 carbon atoms having a semi-lipid ring structure having both a ring structure and an aromatic ring.
- m is an integer of 1 to 30
- n is an integer of 0 to 30
- R 4 and R 5 may be the same or different, respectively.
- the divalent hydrocarbon group (a) derived from the dimer acid in the formula (1) is as described above. Further, in the present invention, the divalent organic group (b) other than the divalent hydrocarbon group (a) derived from dimer acid in the formula (1) is two aminos from the organic diamine (B). Refers to a divalent residue excluding groups. However, in the same compound, the divalent hydrocarbon group (a) derived from the dimer acid and the divalent organic group (b) are not the same. Further, the tetravalent organic group in the formula (1) refers to a tetravalent residue obtained by removing two groups represented by —CO—O—CO— from the tetracarboxylic dianhydride.
- m is the number of repeating units (hereinafter, sometimes referred to as dimer acid-derived structures) containing the divalent hydrocarbon group (a) derived from the dimer acid, and is an integer of 1 to 30. Is shown.
- the value of m exceeds the upper limit, the solubility in a solvent tends to decrease, and in particular, the solubility in a developing solution during development, which will be described later, tends to decrease.
- the value of m is particularly preferably 3 to 10 from the viewpoint that the solubility in the developing solution at the time of development becomes preferable.
- n is the number of repeating units (hereinafter, sometimes referred to as an organic diamine-derived structure) containing the divalent organic group (b), and represents an integer of 0 to 30.
- the value of n exceeds the upper limit, the flexibility of the obtained cured product deteriorates, and the resin tends to be hard and brittle.
- the value of n is particularly preferably 0 to 10 from the viewpoint that a cured product having a low elastic modulus tends to be obtained.
- R 1 and R 4 may be the same or different between the respective repeating units.
- R 2 and R 5 may be the same or different between the respective repeating units.
- the dimer acid-derived structure and the organic diamine-derived structure may be random or block.
- the bismaleimide compound (I) according to the present invention is obtained from the dimer acid-derived diamine (A), the maleic anhydride, the tetracarboxylic dianhydride (C) and, if necessary, the organic diamine (B).
- the n and m are the total diamine contained in the dimer acid-derived diamine (A), the organic diamine (B), the maleic anhydride and the tetracarboxylic acid. It can be represented by the mixed molar ratio of the dianhydride (C).
- (m + n) ( m + n + 2) is (the total number of moles of the total diamine and the organic diamine (B) contained in the dimer acid-derived diamine (A)): (maleic anhydride and tetracarboxylic dianhydride (C)).
- M: n is represented by (the number of moles of the total diamine contained in the dimeric acid-derived diamine (A)): (the number of moles of the organic diamine (B)), and is represented by 2: (. m + n) is represented by (number of moles of maleic anhydride): (number of moles of tetracarboxylic dianhydride (C)).
- the sum (m + n) of m and n is 2 to 30 from the viewpoint that a cured product having a lower elastic modulus tends to be obtained. Is preferable.
- the ratio of m to n (n / m) is 1 or less from the viewpoint that flexibility derived from dimer acid is exhibited and a cured product having a lower elastic modulus tends to be obtained. Is preferable, and 0.4 or less is more preferable.
- the bismaleimide compound (I) according to the present invention one type may be used alone or two or more types may be used in combination.
- the photopolymerization initiator (II) according to the present invention is not particularly limited, and conventionally used ones can be appropriately adopted.
- the photopolymerization initiator (II) As the photopolymerization initiator (II) according to the present invention, a reduced projection exposure machine (stepper; light source wavelength: 365 nm, 436 nm), which is standardly used in the manufacturing process of a semiconductor protective film or the like, is used. From the viewpoint of forming a fine pattern, it is preferable to use one that efficiently generates radicals at an exposure wavelength of 310 to 436 nm (more preferably 365 nm). Further, the maleimide group is generally not homopolymerized by radicals, and the dimerization reaction of the bismaleimide compound proceeds mainly by the reaction with the radicals generated from the photopolymerization initiator to form a crosslinked structure.
- the present inventors presume that the bismaleimide compound is apparently less reactive than the acrylic compound or the like generally used as a photopolymerizable compound. Therefore, from the viewpoint that radicals can be generated more efficiently and the reactivity at an exposure wavelength of 310 to 436 nm (more preferably 365 nm) is increased, the photopolymerization initiator (II) according to the present invention is an oxime. More preferably, it is a compound having a structure or a thioxanthone structure.
- Examples of such a photopolymerization initiator (II) include 1,2-octanedione having an oxime structure, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)] (manufactured by BASF Japan, Ltd.).
- the photosensitive resin composition of the present invention contains the bismaleimide compound (I) and the photopolymerization initiator (II).
- the content of the photopolymerization initiator (II) is preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of the bismaleimide compound (I). More preferably, it is 0.5 to 5 parts by mass.
- the content is less than 0.1 parts by mass, the dimerization reaction by light irradiation does not proceed sufficiently during exposure, and the polymerized film tends to peel off from the inorganic surface protective film during development.
- the content exceeds 15 parts by mass the reaction proceeds too much and the polymerization reaction of the unexposed part proceeds, so that it tends to be difficult to form a fine pattern.
- the photosensitive resin composition of the present invention it is possible to perform thermosetting at a relatively lower temperature than before even when thermosetting is not required, or even when thermosetting is required, and the tensile elastic modulus Can be obtained with a sufficiently small cured product. Therefore, the residual stress generated in the film after curing can be sufficiently reduced, and the warpage of a substrate such as a silicon wafer can be sufficiently suppressed. Further, according to the photosensitive resin composition of the present invention, even if the film thickness is 10 ⁇ m or more, the aspect ratio of a fine pattern (preferably the aperture diameter (Via diameter)) is obtained by irradiation with light of 310 to 436 nm (preferably 365 nm).
- the photosensitive resin composition of the present invention may contain the bismaleimide compound (I) and the photopolymerization initiator (II), and is not particularly limited, but the photosensitive resin composition is based on an organic solvent. It is preferably dissolved.
- the organic solvent include aromatic solvents such as toluene, xylene and tetralin; ketone solvents such as methylisobutylketone, cyclopentanone and cyclohexanone; cyclic ether solvents such as tetrahydroxyfuran; and organic solvents such as methyl benzoate. Can be mentioned.
- aromatic solvents such as toluene, xylene and tetralin
- ketone solvents such as methylisobutylketone, cyclopentanone and cyclohexanone
- cyclic ether solvents such as tetrahydroxyfuran
- organic solvents such as methyl benzoate.
- one type may be used alone or two or more types may
- the solid content concentration of the photosensitive resin composition is 20 to 20 to a suitable concentration when the bismaleimide compound (I) and the photopolymerization initiator (II) are dissolved in the organic solvent. It is preferably 70% by mass.
- the photosensitive resin composition of the present invention may further contain a sensitizer.
- the sensitizer include 4,4'-bis (diethylamino) benzophenone and the like.
- the content thereof is preferably 0.01 to 2 parts by mass and 0.05 to 0 parts by mass with respect to 100 parts by mass of the bismaleimide compound (I). It is more preferably 5.5 parts by mass.
- the photosensitive resin composition of the present invention may further contain a polymerizable compound.
- the polymerizable compound refers to a compound having a polymerizable functional group such as an acrylic group, a methacryl group, an allyl group, and a styryl group.
- the polymerizable compound may be a compound having a plurality of the polymerizable functional groups.
- the sensitivity of the photosensitive resin composition to light can be further increased.
- acrylate is preferable from the viewpoint that a cross-linking reaction by photopolymerization is more likely to occur.
- acrylate examples include hydrogenated dicyclopentadienyl diacrylate, dicyclopentenyl acrylate, dicyclopentenyloxyethyl acrylate, 1,3-butanediol diacrylate, 1,4-butanediol diacrylate, and 1,6-butane.
- Diol diacrylate diethylene glycol diacrylate, neopentyl glycol diacrylate, polyethylene glycol 200 diacrylate, polyethylene glycol 400 diacrylate, polyethylene glycol 600 diacrylate, diethylene glycol diacrylate, neopentyl glycol diacrylate, hydroxypivalic acid ester neopentyl glycol di Acrylate, Triethylene Glycol Diacrylate, Bis (Acryloxyethoxy) Bisphenol A, Bis (Acryloxyethoxy) Tetrabromobisphenol A, Tripropylene Glycol Diacrylate, Trimethylol Propane Triacrylate, Pentaerythritol Triacrylate, Tris (2-Hydroxy) Ethyl) isocyanate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, dipentaerythritol monohydroxypentaacrylate and the like can be mentioned.
- the content thereof is preferably 30 parts by mass or less with respect to 100 parts by mass of the bismaleimide compound (I).
- the content of the polymerizable compound exceeds 30 parts by mass, the cross-linking reaction by photopolymerization of the polymerizable compound alone proceeds, and the tensile elastic modulus of the obtained cured product tends to increase.
- a photopolymerization initiator having at least one structure selected from the group consisting of an oxime structure and a thioxanthone structure preferably used in the present invention. When a highly reactive photopolymerization initiator is used as described above, it tends to be difficult to control the reaction.
- the bismaleimide compound (I) according to the present invention can be obtained even if a polymerizable compound is added. In the obtained cured product, the tensile elastic modulus is unlikely to be high and the flexibility is not easily impaired.
- the present inventors presume that this is because the bismaleimide compound (I) according to the present invention has a reactive maleimide group only at both ends and does not have a crosslinkable reactive group in the molecular chain. ..
- the photosensitive resin composition of the present invention may further contain a leveling agent, an antifoaming agent and the like as long as the effects of the present invention are not impaired.
- the photosensitive resin composition of the present invention can be used by a commonly known method of use.
- the film is first coated with the photosensitive resin composition of the present invention whose viscosity has been adjusted with the organic solvent, and then dried at 50 to 180 ° C., preferably 80 to 140 ° C. for 5 to 30 minutes.
- It can be a photosensitive resin composition.
- the support include a silicon wafer, a ceramic substrate, a rigid substrate, a flexible substrate, and a support having an inorganic surface protective film such as a SiN film or a SiO 2 film formed on the silicon wafer. According to the present invention, even if a silicon wafer on which the inorganic surface protective film is formed is used as a support, a cured product having excellent adhesion (adhesiveness) to the inorganic surface protective film can be obtained.
- the coating method is not particularly limited, and examples thereof include coating using a spin coater, a slit coater, a roll coater, and screen printing. Among these, for example, as a coating method for a silicon wafer, it is preferable to adopt a coating method using a spin coater.
- the film thickness of the film-like photosensitive resin composition can be arbitrarily adjusted by adjusting the concentration of the photosensitive resin composition and the coating thickness, and is not particularly limited. For example, a semiconductor device.
- the film thickness after drying is preferably 3 to 50 ⁇ m, more preferably 5 to 30 ⁇ m, and even more preferably 5 to 20 ⁇ m.
- the film thickness is less than 3 ⁇ m, it tends to be impossible to sufficiently protect the elements and circuits under the film, while if it exceeds 50 ⁇ m, it tends to be difficult to form a fine pattern. ..
- the film thickness is 10 ⁇ m or more (preferably 10 to 20 ⁇ m)
- fine patterns can be formed, and the aspect ratio of the opening diameter (Via diameter) of the through hole formed by the exposure and development described later. It is possible to form a pattern in which is 0.3 or more (more preferably 0.5 or more).
- the film-like photosensitive resin composition thus obtained is exposed by applying a mask having a predetermined pattern shape, and the photosensitive resin composition of the present invention is photopolymerized.
- the exposure method include contact exposure and reduced projection exposure.
- the exposure wavelength is preferably ultraviolet light to visible light having a wavelength of 200 to 500 nm, and a standard reduction projection exposure machine (stepper) can be used. Further, the exposure wavelength is more preferably 310 to 436 nm, and further preferably 365 nm, from the viewpoint of being able to form a fine pattern.
- the exposure amount is not particularly limited, but in the present invention, a fine pattern can be formed even with a relatively low exposure amount, and a large amount of exposure is not required. Therefore, the exposure amount is 300 to 2000 mJ / cm 2 . It is preferably 500 to 1500 mJ / cm 2 , and more preferably 500 to 1500 mJ / cm 2 .
- a polymer film (polymer) having a predetermined pattern can be obtained by performing development in which the unexposed portion of the film-like photosensitive resin composition after the exposure is dissolved and removed with a developing solution. That is, in the exposed portion, radicals generated by light irradiation from the photopolymerization initiator react with the maleimide group, and the bismaleimide compound (I) is crosslinked mainly by the dimerization reaction and becomes insoluble in the developing solution. ..
- the unexposed portion dissolves in the developing solution, it has a pattern such as a through hole having a predetermined opening diameter (Via diameter) by utilizing the difference in solubility between the exposed portion and the unexposed portion in the developing solution.
- a polymer film can be obtained.
- the developing solution include aromatic solvents such as toluene and xylene; cyclic ketone solvents such as cyclopentanone and cyclohexanone; cyclic ether solvents such as tetrahydroxyfuran: and mixed solvents thereof. Further, the developing solution may further contain an alcohol solvent such as methanol, ethanol and propanol in order to adjust the solubility at the time of development.
- the developing method include a spray method, a paddle method, and a dip method.
- the polymerized film after development preferably has a residual film ratio of 90% or more from the viewpoint of suppressing the occurrence of surface roughness and facilitating dimensional design.
- the residual film ratio is the ratio of the film thickness of the polymer film after development to the film thickness of the film-like photosensitive resin composition after drying (before exposure) (thickness of the polymer film after development / It refers to the film thickness of the film-like photosensitive resin composition after drying (before exposure).
- a cured film (cured product) having a predetermined pattern can be obtained by heating and curing the polymer film having a predetermined pattern obtained by the development, if necessary.
- the heating temperature (curing temperature) is preferably 60 to 230 ° C, more preferably 150 to 230 ° C.
- the heating time is preferably 30 to 120 minutes.
- the curing temperature refers to the temperature required for thermally curing the maleimide group remaining unreacted at the time of exposure by a thermal reaction.
- a thermosetting reaction crosslinks the maleimide group which was unreacted in the above-mentioned photopolymerization, but when the photosensitive resin composition of the present invention is used, a conventional polyimide precursor or polybenzoxazole precursor is used. There is no need to raise the curing temperature as in. This is because the bismaleimide compound (I) according to the present invention does not require a dehydration ring closure reaction.
- the photosensitive resin composition of the present invention by using the photosensitive resin composition of the present invention, a cured film having a fine pattern can be obtained.
- the aspect ratio of the opening diameter (Via diameter) of the formed through hole is preferably 0.3 or more, and more preferably 0.5 or more.
- the aperture diameter can be determined by measuring with an optical microscope or a scanning electron microscope (SEM).
- the tensile elastic modulus is preferably 50 to 800 MPa, more preferably 50 to 500 MPa, further preferably 100 to 500 MPa, and further. It is preferably 100 to 300 MPa.
- the cured product obtained by using the photosensitive resin composition of the present invention has a sufficiently low curing temperature and a sufficiently low tensile elastic modulus, so that a substrate such as a silicon wafer does not warp. , It becomes excellent in handleability in the subsequent process.
- the tensile elastic modulus can be determined by measuring with a tensilon (tensile tester) under the conditions of a temperature of 23 ° C. and a tensile speed of 5 mm / min.
- the elongation at break is preferably 20 to 200%, preferably 70% or more, from the viewpoint of suppressing cracking. It is more preferable to have.
- the elongation at break can be determined by measuring with a tensilon (tensile tester) under the conditions of a temperature of 23 ° C. and a tensile speed of 5 mm / min.
- thermosetting it is possible to perform thermosetting at a relatively low temperature and form a fine pattern at a low exposure amount, the tensile elastic modulus is sufficiently small, and it is inorganic.
- a cured product having excellent adhesion to a surface protective film or a metal wiring material can be obtained.
- thermosetting it is possible to perform thermosetting at a relatively lower temperature than before, and a cured film having a sufficiently small tensile elastic modulus can be obtained. Therefore, residual stress generated in the film after curing can be obtained. Can be made sufficiently small, and warpage of a substrate such as a silicon wafer can be sufficiently suppressed.
- a fine pattern can be formed even at an exposure wavelength of 310 to 436 nm (preferably 365 nm) and a low exposure amount of 2000 mJ / cm 2 or less, and an aspect ratio of the opening diameter (Via diameter) of the through hole can be formed. It is possible to form a pattern having a ratio of 0.3 or more (more preferably 0.5 or more). This is because the photosensitive resin composition of the present invention absorbs little at 365 nm and the reaction of the maleimide group is mainly a dimerization reaction, so that the polymerization proceeds to the unexposed portion by a chain reaction like an acrylic compound. The present inventors presume that is suppressed.
- the cured product obtained by using the photosensitive resin composition of the present invention after photo-curing or photo-curing includes a surface protective film of a semiconductor element and layers. It can be suitably used for at least one type of film selected from the group consisting of an insulating film and an insulating film of a rewiring layer. Further, the photosensitive resin composition of the present invention requires a film thickness of 10 ⁇ m or more in such a film, and the aspect ratio of the opening diameter (Via diameter) of the through hole is 0.3 or more (more preferable). Is particularly effective when patterning such that (0.5 or more) is required.
- the bismaleimide compound and the photosensitive resin composition according to the present invention have been described in detail above, but the present inventors have described the reasons why the object of the present invention is achieved by the photosensitive resin composition and the like of the present invention. I guess. That is, since the conventional maleimide compound generally undergoes the dimerization reaction mainly in the photopolymerization reaction, the efficiency of the cross-linking reaction tends to be lower than that of the acrylic compound which is another photopolymerizable compound. Therefore, the present inventors presume that an extremely large amount of exposure is required in order to sufficiently form the crosslinked structure by photopolymerization.
- a maleimide compound is mainly used as a thermopolymerizable compound because the photoreaction of the compound itself proceeds only at a wavelength of 310 nm or less and it is difficult to cause chain polymerization by radicals. It was.
- the specific bismaleimide compound according to the present invention has a structure having a flexible skeleton including a structure derived from dimer acid, such a bismaleimide compound is photopolymerized to generate radicals, for example. By combining with an initiator, maleimide groups are likely to be adjacent to each other and the efficiency of the cross-linking reaction is improved.
- the photosensitive resin composition of the present invention it is possible to form a fine pattern at a relatively low exposure amount, it does not require thermosetting at a high temperature as in the conventional case, and the tensile elastic modulus is sufficient. It is presumed that a cured product that is small and has excellent adhesion to the adherend can be obtained.
- the cured product obtained by the photosensitive resin composition of the present invention has a sufficiently small tensile elastic modulus so that it can be sufficiently adhered to the adherend, thereby interacting with the inorganic surface protective film and the metal wiring material. Therefore, the present inventors presume that the adhesion to the adherend, particularly the inorganic surface protective film and the metal wiring material, is excellent.
- the photosensitive resin composition of the present invention absorbs little at 365 nm, even if the film thickness is 10 ⁇ m or more, it is a reduced projection exposure machine that is standardly used in the manufacturing process of a semiconductor protective film or the like.
- the present inventors speculate that it is possible to form a fine pattern by using it.
- Synthesis Example 1 110 g of toluene and 36 g of N-methylpyrrolidone were placed in a 500 ml round bottom flask equipped with a fluororesin-coated stirring bar. Next, 88.0 g (0.16 mol) of PRIAMINE 1074 (manufactured by Croda Japan Co., Ltd.) was added, and then 15.8 g (0.16 mol) of methanesulfonic acid anhydride was slowly added to form a salt.
- PRIAMINE 1074 manufactured by Croda Japan Co., Ltd.
- Synthesis Example 2 110 g of toluene and 36 g of N-methylpyrrolidone were placed in a 500 ml round bottom flask equipped with a fluororesin-coated stirring bar. Next, 90.5 g (0.17 mol) of PRIAMINE 1074 (manufactured by Croda Japan Co., Ltd.) was added, and then 16.3 g (0.17 mol) of methanesulfonic acid anhydride was slowly added to form a salt. The mixture was stirred for approximately 10 minutes and then 1,2,4,5-cyclohexanetetracarboxylic dianhydride (18.9 g, 0.08 mol) was slowly added to the stirred mixture.
- PRIAMINE 1074 manufactured by Croda Japan Co., Ltd.
- Synthesis Example 3 110 g of toluene and 36 g of N-methylpyrrolidone were placed in a 500 ml round bottom flask equipped with a fluororesin-coated stirring bar. Next, 85.6 g (0.16 mol) of PRIAMINE 1074 (manufactured by Croda Japan Co., Ltd.) was added, and then 15.4 g (0.16 mol) of methanesulfonic acid anhydride was slowly added to form a salt.
- PRIAMINE 1074 manufactured by Croda Japan Co., Ltd.
- Synthesis Example 4 110 g of toluene and 36 g of N-methylpyrrolidone were placed in a 500 ml round bottom flask equipped with a fluororesin-coated stirring bar. Next, 85.9 g (0.16 mol) of PRIAMINE 1074 (manufactured by Croda Japan Co., Ltd.) was added, and then 15.5 g (0.16 mol) of methanesulfonic acid anhydride was slowly added to form a salt.
- PRIAMINE 1074 manufactured by Croda Japan Co., Ltd.
- Synthesis Example 5 110 g of toluene and 36 g of N-methylpyrrolidone were placed in a 500 ml round bottom flask equipped with a fluororesin-coated stirring bar. Next, 73.5 g (0.14 mol) of PRIAMINE 1074 (manufactured by Crowder Japan Co., Ltd.) and 8.4 g (0.06 mol) of 1,3-bis (aminomethyl) cyclohexane were added, and then 18.9 g of anhydrous methanesulfonic acid. (0.20 mol) was added slowly to form a salt.
- PRIAMINE 1074 manufactured by Crowder Japan Co., Ltd.
- Comparative synthesis example 1 110 g of toluene and 36 g of N-methylpyrrolidone were placed in a 500 ml round bottom flask equipped with a fluororesin-coated stirring bar. Next, 90.9 g (0.17 mol) of PRIAMINE 1074 (manufactured by Croda Japan Co., Ltd.) was added, and then 16.4 g (0.17 mol) of methanesulfonic acid anhydride was slowly added to form a salt. The mixture was stirred for approximately 10 minutes and then pyromellitic anhydride (18.6 g, 0.08 mol) was slowly added to the stirred mixture. A Dean-Stark trap and condenser were attached to the flask.
- PRIAMINE 1074 manufactured by Croda Japan Co., Ltd.
- the mixture was heated to reflux for 6 hours to form amine-terminated diimides. The theoretical amount of water produced from this condensation was obtained by this time.
- the bismaleimide compound of Comparative Synthesis Example 1 was designated as "BMI-3000” by DESIGNER MOLECURES Inc. It is easily available from the company.
- Comparative synthesis example 2 110 g of toluene and 36 g of N-methylpyrrolidone were placed in a 500 ml round bottom flask equipped with a fluororesin-coated stirring bar. Next, 85.3 g (0.16 mol) of PRIAMINE 1074 (manufactured by Croda Japan Co., Ltd.) was added, and then 15.4 g (0.16 mol) of methanesulfonic acid anhydride was slowly added to form a salt. The mixture was stirred for approximately 10 minutes and then 4,4'-oxydiphthalic dianhydride (24.8 g, 0.08 mol) was slowly added to the stirred mixture. A Dean-Stark trap and condenser were attached to the flask.
- PRIAMINE 1074 manufactured by Croda Japan Co., Ltd.
- the mixture was heated to reflux for 6 hours to form amine-terminated diimides. The theoretical amount of water produced from this condensation was obtained by this time.
- the bismaleimide compound of Comparative Synthesis Example 2 was designated as "BMI-1500” by DESIGNER MOLECURES Inc. It is easily available from the company.
- Comparative synthesis example 3 110 g of toluene and 36 g of N-methylpyrrolidone were placed in a 500 ml round bottom flask equipped with a fluororesin-coated stirring bar. Next, 90.9 g (0.17 mol) of PRIAMINE 1074 (manufactured by Croda Japan Co., Ltd.) was added, and then 16.4 g (0.17 mol) of methanesulfonic acid anhydride was slowly added to form a salt. The mixture was stirred for approximately 10 minutes and then pyromellitic anhydride (18.6 g, 0.08 mol) was slowly added to the stirred mixture. A Dean-Stark trap and condenser were attached to the flask.
- PRIAMINE 1074 manufactured by Croda Japan Co., Ltd.
- Examples 1 to 5 and Comparative Examples 1 to 3 The photosensitive resin compositions of Examples 1 to 5 and Comparative Examples 1 to 3 were blended with the components (I) to (II) in the blending amount (parts by mass) shown in Table 1 and 50 parts by mass of cyclopentanone as a solvent. Was prepared.
- Residual film ratio (%) (film thickness of coating film after development / film thickness of coating film before development) x 100
- the residual film ratio in Table 1 is the residual film ratio at the sensitivity shown in Table 1.
- the smallest opening width among the open square hole patterns was used as an index of resolution. The smaller the sensitivity and resolution, the better.
- the results are shown in Table 1. Further, when the developed pattern was observed with a microscope and a residue was found in all or a part of the pattern opening, it was evaluated as x in the item of development residue. Those without residue were marked with ⁇ . Then, the resist pattern was heat-treated (cured) in nitrogen at a temperature of 180 ° C. for 60 minutes.
- the photosensitive resin compositions obtained in each Example and Comparative Example were applied onto a copper foil having a thickness of 12 ⁇ m using a spin coater, dried at a temperature of 100 ° C. for 10 minutes, and film-like photosensitive on the copper foil.
- a resin composition was formed.
- the coating thickness of the photosensitive resin composition was adjusted so that the film thickness of the film-like photosensitive resin composition after drying was 10 ⁇ m.
- This film-like photosensitive resin composition is exposed to a USHIO "ultra-high pressure mercury lamp 500W multi-light" at a wavelength of 365 nm and an exposure of 2000 mJ / cm 2 , and then heated at a temperature of 180 ° C. for 60 minutes. After curing, the copper foil was removed by etching to obtain a cured film.
- the obtained cured film was cut to a length of 10 mm, and at a temperature of 23 ° C., using a tensilon (tensile tester), the elongation at break (%) and the tensile elastic modulus (MPa) under the condition of a tensile speed of 5 mm / min. was measured and obtained.
- the varnish was coated and dried on a copper foil so that the thickness after drying was 50 ⁇ m with a tabletop coater to obtain a resin film (semi-cured).
- the obtained resin film (semi-cured) was irradiated with UV of 2000 mJ / cm 2 .
- a resin film was similarly formed and laminated on the produced resin film, and the film thickness of the resin film was set to 300 ⁇ m. Further, the copper foil as a support was removed by physical peeling or etching to obtain a resin film for evaluation.
- the dielectric characteristics of the resin film cut into a length of 60 mm, a width of 2 mm, and a thickness of 0.3 mm were measured by a cavity resonator perturbation method using a test piece.
- a AET vector network analyzer ADMSO10c1 was used as the measuring instrument, and a CP531 (10 GHz band resonator) manufactured by Kanto Denshi Applied Development Co., Ltd. was used as the cavity resonator.
- the conditions were a frequency of 10 GHz and a measurement temperature of 25 ° C.
- an ultraviolet exposure device manufactured by USHIO: 500 W multi-light
- Electrode portions of the resultant substrate was subjected to wire connection by solder, 130 ° C., placed in an environment of 85% RH, applying a voltage of 5.5V, the time until the resistance value is less than 1 ⁇ 10 8 ⁇ It was measured. ⁇ .. 300 hours or more ⁇ .. 30-300 hours ⁇ .. 30 hours or less
- the photosensitive resin compositions of the present invention obtained in Examples 1 to 5 were used, a sufficiently small opening diameter was obtained even at a low exposure amount. It was confirmed that it is possible to form a fine pattern. Further, the photosensitive resin compositions of the present invention obtained in Examples 1 to 5 have a sufficiently small tensile elastic modulus even if they are not subjected to thermosetting at a high temperature, and have good adhesion to an adherend such as an inorganic surface protective film. It was confirmed that an excellent cured product could be obtained.
- the cured product obtained by using the photosensitive resin composition of the present invention is sufficiently photocured of the maleimide group even at a low exposure amount. It has been shown that it is an excellent maleimide compound capable of maintaining high insulation reliability while maintaining low dielectric properties and water absorption.
- thermosetting As described above, according to the present invention, it is possible to form a fine pattern at a relatively low exposure amount (2000 mJ / cm 2 or less), and it does not require thermosetting at a high temperature as in the conventional case, and is tensioned.
- Photosensitive that has a sufficiently small elastic modulus and can obtain a cured product having excellent adhesion to an inorganic surface protective film (silicon nitride film, silicon oxide film, etc.) or a conductive metal wiring material (copper, etc.). It becomes possible to provide a resin composition, a cured product using the resin composition, and a semiconductor device.
- thermosetting is not required, and even when thermosetting is performed as needed, thermosetting can be performed at a relatively low temperature (60 to 230 ° C) as compared with the conventional case, and the tensile modulus Since a cured product having a sufficiently small modulus can be obtained, the residual stress generated in the film after curing can be sufficiently reduced, and the warpage of the silicon wafer can be sufficiently suppressed. Further, according to the present invention, even if the film thickness is thick, it is possible to form a fine pattern by irradiating light at 365 nm. Therefore, such a photosensitive resin composition of the present invention is very useful as a surface protective film for a semiconductor element, an interlayer insulating film, an insulating film for a rewiring layer, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Engineering & Computer Science (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Materials For Photolithography (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Macromonomer-Based Addition Polymer (AREA)
Abstract
Description
[1]ダイマー酸から誘導されたジアミン(A)と、脂環構造を有するテトラカルボン酸二無水物(C)と、マレイン酸無水物とを反応させて得られた、環状イミド結合を有するビスマレイミド化合物(I)、
[2]前記ジアミン(A)と、前記テトラカルボン酸二無水物(C)と、前記マレイン酸無水物と、に加えて、さらに、前記ダイマー酸から誘導された前記ジアミン(A)以外の有機ジアミン(B)を反応させて得られた[1]に記載のビスマレイミド化合物(I)、
[3]前記ビスマレイミド化合物(I)が、下記一般式(1):
で表わされる[1]又は[2]に記載のビスマレイミド化合物(I)、
1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(H-PMDA)、1,1’-ビシクロヘキサン-3,3’,4,4’-テトラカルボン酸-3,4:3’,4’-二無水物(H-BPDA)、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、3,5,6-トリカルボキシ-2-ノルボルナン酢酸二無水物、から選択される一つ以上である[1]~[4]のいずれか一項に記載のビスマレイミド化合物(I)、
[7]前記テトラカルボン酸二無水物(C)が、下記式(4)の化合物である[1]~[6]の何れか一項に記載のビスマレイミド化合物(I)、
[12]前記光重合開始剤(II)の含有量が、前記ビスマレイミド化合物(I)100質量部に対して0.1~15質量部であることを特徴とする[11]に記載の感光性樹脂組成物、
[13][11]又は[12]に記載の感光性樹脂組成物を光硬化又は光熱硬化させて得られる硬化物、
[14][13]に記載の硬化物を表面保護膜、層間絶縁膜、及び再配線層の絶縁膜からなる群から選択される少なくとも1種として備えることを特徴とする半導体素子、
に関する。
本発明に係るビスマレイミド化合物(I)は、マレイミド基を2個有する化合物であり、ダイマー酸に由来する2価の炭化水素基(a)と環状イミド結合とを有する。このようなビスマレイミド化合物(I)は、ダイマー酸から誘導されたジアミン(A)と、脂環構造を有するテトラカルボン酸二無水物(C)と、マレイン酸無水物とを反応させることにより得ることができる。
で表わされるビスマレイミド化合物(I)であることが好ましい。
本発明に係る光重合開始剤(II)としては、特に制限されず、従来用いられているものを適宜採用することができ、例えば、アセトフェノン、2,2-ジメトキシアセトフェノン、p-ジメチルアミノアセトフェノン、ミヒラーケトン、ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-プロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-ブチルエーテル、ベンジルジメチルケタール、チオキサトン、2-クロロチオキサソン、2-メチルチオキサトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)、2,4-ジメチルチオキサントン等の光重合開始剤が挙げられる。このような光重合開始剤(II)としては、1種を単独で用いても2種以上を組み合わせて用いてもよい。
本発明の感光性樹脂組成物は前記ビスマレイミド化合物(I)と、前記光重合開始剤(II)と、を含有する。本発明の感光性樹脂組成物においては、前記光重合開始剤(II)の含有量が、前記ビスマレイミド化合物(I)100質量部に対して0.1~15質量部であることが好ましく、0.5~5質量部であることがより好ましい。前記含有量が0.1質量部未満である場合には、露光時において、光照射による2量化反応が十分に進行せず、現像時に重合膜が無機表面保護膜から剥離する傾向にある。他方、前記含有量が15質量部を超える場合には、反応が進行しすぎて未露光部の重合反応が進行してしまうため、微細なパターンを形成することが困難となる傾向にある。
分子量の測定条件は以下の通りである。
機種:GPC TOSOH HLC-8220GPC
カラム:Super HZM-N
溶離液:THF(テトラヒドロフラン);0.35ml/分、40℃
検出器:RI(示差屈折計)
分子量標準:ポリスチレン
フッ素樹脂コーティングされた撹拌バーを装備した500mlの丸底フラスコに、110gのトルエンと36gのN-メチルピロリドンを投入した。次にPRIAMINE 1074(クローダジャパン株式会社製)88.0g(0.16mol)を加え、ついで無水メタンスルホン酸15.8g(0.16mol)をゆっくりと加え、塩を形成した。ほぼ10分間撹拌して混合し、ついで5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物(21.8g、0.08mol)を、撹拌された混合物にゆっくり加えた。ディーンスタークトラップとコンデンサーをフラスコに取り付けた。混合物を6時間熱して還流し、アミン末端のジイミドを形成した。この縮合からの生成水の理論量は、この時までに得られた。反応混合物は、室温以下に冷却され、無水マレイン酸19.4g(0.20mol)がフラスコに加えられた。混合物は、さらに8時間還流され、期待された量の生成水を得た。室温に冷却された後、さらにトルエン200mlがフラスコに加えられた。次に、希釈された有機層を水(100ml×3回)で洗浄し、塩や未反応の原料を除去した。その後、溶剤を真空下で除去し、琥珀色ワックス状のビスマレイミド化合物120g(収率95%、Mw=3,200)を得た(I-1)。
フッ素樹脂コーティングされた撹拌バーを装備した500mlの丸底フラスコに、110gのトルエンと36gのN-メチルピロリドンを投入した。次にPRIAMINE 1074(クローダジャパン株式会社製)90.5g(0.17mol)を加え、ついで無水メタンスルホン酸16.3g(0.17mol)をゆっくりと加え、塩を形成した。ほぼ10分間撹拌して混合し、ついで1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(18.9g、0.08mol)を、撹拌された混合物にゆっくり加えた。ディーンスタークトラップとコンデンサーをフラスコに取り付けた。混合物を6時間熱して還流し、アミン末端のジイミドを形成した。この縮合からの生成水の理論量は、この時までに得られた。反応混合物は、室温以下に冷却され、無水マレイン酸19.9g(0.20mol)がフラスコに加えられた。混合物は、さらに8時間還流され、期待された量の生成水を得た。室温に冷却された後、さらにトルエン200mlがフラスコに加えられた。次に、希釈された有機層を水(100ml×3回)で洗浄し、塩や未反応の原料を除去した。その後、溶剤を真空下で除去し、琥珀色ワックス状のビスマレイミド化合物110g(収率92%、Mw=3,000)を得た(I-2)。
フッ素樹脂コーティングされた撹拌バーを装備した500mlの丸底フラスコに、110gのトルエンと36gのN-メチルピロリドンを投入した。次にPRIAMINE 1074(クローダジャパン株式会社製)85.6g(0.16mol)を加え、ついで無水メタンスルホン酸15.4g(0.16mol)をゆっくりと加え、塩を形成した。ほぼ10分間撹拌して混合し、ついで1,1’-ビシクロヘキサン-3,3’,4,4’-テトラカルボン酸-3,4:3’,4’-二無水物(24.5g、0.08mol)を、撹拌された混合物にゆっくり加えた。ディーンスタークトラップとコンデンサーをフラスコに取り付けた。混合物を6時間熱して還流し、アミン末端のジイミドを形成した。この縮合からの生成水の理論量は、この時までに得られた。反応混合物は、室温以下に冷却され、無水マレイン酸18.8g(0.19mol)がフラスコに加えられた。混合物は、さらに8時間還流され、期待された量の生成水を得た。室温に冷却された後、さらにトルエン200mlがフラスコに加えられた。次に、希釈された有機層を水(100ml×3回)で洗浄し、塩や未反応の原料を除去した。その後、溶剤を真空下で除去し、琥珀色ワックス状のビスマレイミド化合物108g(収率90%、Mw=3,600)を得た(I-3)。
フッ素樹脂コーティングされた撹拌バーを装備した500mlの丸底フラスコに、110gのトルエンと36gのN-メチルピロリドンを投入した。次にPRIAMINE 1074(クローダジャパン株式会社製)85.9g(0.16mol)を加え、ついで無水メタンスルホン酸15.5g(0.16mol)をゆっくりと加え、塩を形成した。ほぼ10分間撹拌して混合し、ついで4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物(24.1g、0.08mol)を、撹拌された混合物にゆっくり加えた。ディーンスタークトラップとコンデンサーをフラスコに取り付けた。混合物を6時間熱して還流し、アミン末端のジイミドを形成した。この縮合からの生成水の理論量は、この時までに得られた。反応混合物は、室温以下に冷却され、無水マレイン酸の18.9g(0.19mol)がフラスコに加えられた。混合物は、さらに8時間還流され、期待された量の生成水を得た。室温に冷却された後、さらにトルエン200mlがフラスコに加えられた。次に、希釈された有機層を水(100ml×3回)で洗浄し、塩や未反応の原料を除去した。その後、溶剤を真空下で除去し、暗琥珀色ワックス状のビスマレイミド化合物106g(収率89%、Mw=3,700)を得た(I-4)。
フッ素樹脂コーティングされた撹拌バーを装備した500mlの丸底フラスコに、110gのトルエンと36gのN-メチルピロリドンを投入した。次にPRIAMINE 1074(クローダジャパン株式会社製)73.5g(0.14mol)と、1,3-ビス(アミノメチル)シクロヘキサン8.4g(0.06mol)を加え、ついで無水メタンスルホン酸18.9g(0.20mol)をゆっくりと加え、塩を形成した。ほぼ10分間撹拌して混合し、ついで5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物(26.0g、0.10mol)を、撹拌された混合物にゆっくり加えた。ディーンスタークトラップとコンデンサーをフラスコに取り付けた。混合物を6時間熱して還流し、アミン末端のジイミドを形成した。この縮合からの生成水の理論量は、この時までに得られた。反応混合物は、室温以下に冷却され、無水マレイン酸の23.1g(0.24mol)がフラスコに加えられた。混合物は、さらに8時間還流され、期待された量の生成水を得た。室温に冷却された後、さらにトルエン200mlがフラスコに加えられた。次に、希釈された有機層を水(100ml×3回)で洗浄し、塩や未反応の原料を除去した。その後、溶剤を真空下で除去し、琥珀色ワックス状のビスマレイミド化合物108g(収率90%、Mw=2,800)を得た(I-5)。
フッ素樹脂コーティングされた撹拌バーを装備した500mlの丸底フラスコに、110gのトルエンと36gのN-メチルピロリドンを投入した。次にPRIAMINE 1074(クローダジャパン株式会社製)90.9g(0.17mol)を加え、ついで無水メタンスルホン酸16.4g(0.17mol)をゆっくりと加え、塩を形成した。ほぼ10分間撹拌して混合し、ついでピロメリット酸無水物(18.6g、0.08mol)を、撹拌された混合物にゆっくり加えた。ディーンスタークトラップとコンデンサーをフラスコに取り付けた。混合物を6時間熱して還流し、アミン末端のジイミドを形成した。この縮合からの生成水の理論量は、この時までに得られた。反応混合物は、室温以下に冷却され、無水マレイン酸の20.0g(0.20mol)がフラスコに加えられた。混合物は、さらに8時間還流され、期待された量の生成水を得た。室温に冷却された後、さらにトルエン200mlがフラスコに加えられた。次に、希釈された有機層を水(100ml×3回)で洗浄し、塩や未反応の原料を除去した。その後、溶剤を真空下で除去し、褐色ワックス状のビスマレイミド化合物102g(収率85%、Mw=3,800)を得た。
フッ素樹脂コーティングされた撹拌バーを装備した500mlの丸底フラスコに、110gのトルエンと36gのN-メチルピロリドンを投入した。次にPRIAMINE1074(クローダジャパン株式会社製)85.3g(0.16mol)を加え、ついで無水メタンスルホン酸15.4g(0.16mol)をゆっくりと加え、塩を形成した。ほぼ10分間撹拌して混合し、ついで4,4'-オキシジフタル酸二無水物(24.8g、0.08mol)を、撹拌された混合物にゆっくり加えた。ディーンスタークトラップとコンデンサーをフラスコに取り付けた。混合物を6時間熱して還流し、アミン末端のジイミドを形成した。この縮合からの生成水の理論量は、この時までに得られた。反応混合物は、室温以下に冷却され、無水マレイン酸18.8g(0.19mol)がフラスコに加えられた。混合物は、さらに8時間還流され、期待された量の生成水を得た。室温に冷却された後、さらにトルエン200mlがフラスコに加えられた。次に、希釈された有機層を水(100ml×3回)で洗浄し、塩や未反応の原料を除去した。その後、溶剤を真空下で除去し、褐色ワックス状のビスマレイミド化合物106g(収率88%、Mw=3,700)を得た。
フッ素樹脂コーティングされた撹拌バーを装備した500mlの丸底フラスコに、110gのトルエンと36gのN-メチルピロリドンを投入した。次にPRIAMINE1074(クローダジャパン株式会社製)90.9g(0.17mol)を加え、ついで無水メタンスルホン酸16.4g(0.17mol)をゆっくりと加え、塩を形成した。ほぼ10分間撹拌して混合し、ついでピロメリット酸無水物(18.6g、0.08mol)を、撹拌された混合物にゆっくり加えた。ディーンスタークトラップとコンデンサーをフラスコに取り付けた。混合物を6時間熱して還流し、アミン末端のジイミドを形成した。この縮合からの生成水の理論量は、この時までに得られた。室温に冷却された後、さらにトルエン200mlがフラスコに加えられた。次に、希釈された有機層を水(100ml×3回)で洗浄し、塩や未反応の原料を除去した。その後、溶剤を真空下で除去し、褐色ワックス状のポリイミド化合物90.4g(収率85%、Mw=3600)を得た。
[(I)成分;ビスマレイミド化合物]
I:合成例(I-1)~(I-5)で示されるビスマレイミド化合物及び比較合成例1~3で示されるビスマレイミド化合物、ポリイミド化合物
II-1:エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)(BASFジャパン製、「IRGACURE OXE-02」)
II-2:2,4-ジメチルチオキサントン(日本化薬株式会社製、「DETX-S」)
表1に示した配合量(質量部)の(I)~(II)成分、溶剤としてシクロペンタノン50質量部を配合し、実施例1~5及び比較例1~3の感光性樹脂組成物を調製した。
実施例1~5及び比較例1~3の感光性樹脂組成物について、以下に示す評価を行った。その結果を表1にまとめて示した。
実施例1~5及び比較例1~3で得られた感光性樹脂組成物をシリコン基板上にスピンコートして、120℃で4分間加熱し、膜厚10~15μmの塗膜を形成した。次いで、USHIO製「超高圧水銀灯500Wマルチライト」を用いて、縦1μm、横1μmから縦100μm、横100μmまでの正方形ホールパターンを有するマスクを介してi線(365nm)で縮小投影露光した。露光量は、500~3000mJ/cm2まで100mJ/cm2ずつ変えながら行った。露光後、シクロペンタノンを用いて現像した。感度は、残膜率が一定になり始める露光量とした。なお、残膜率は、下式により算出した。
残膜率(%)=(現像後の塗膜の膜厚/現像前の塗膜の膜厚)×100
表1の残膜率は表1に記載した感度での残膜率である。
また、開口している正方形ホールパターンのうち最小の開口幅を解像度の指標とした。なお、感度及び解像度は、小さい程良好である。結果を表1に示した。
さらに、現像後のパターンを顕微鏡で観察した際に、パターン開口部の全体もしくは一部分に残渣が見られたものに関しては、現像残渣の項目で×と評価した。残渣が無いものは○とした。
その後、レジストパターンを窒素中、温度180℃において60分間加熱処理(硬化)した。
先ず、厚み12μmの銅箔上に各実施例及び比較例で得られた感光性樹脂組成物をスピンコーターを用いて塗布後、温度100℃において10分間乾燥させ、銅箔上にフィルム状感光性樹脂組成物を形成させた。乾燥後のフィルム状感光性樹脂組成物の膜厚は10μmとなるように感光性樹脂組成物の塗布厚みを調整した。このフィルム状感光性樹脂組成物に対してUSHIO製「超高圧水銀灯500Wマルチライト」を用い、波長365nm、露光量2000mJ/cm2にて露光を行い、次いで、温度180℃において60分間加熱して硬化させた後、銅箔をエッチングによって除去することにより、硬化膜を得た。
誘電特性の評価のために、ワニスを卓上コータで乾燥後の厚みが50μmとなるように銅箔上に塗工・乾燥させ樹脂フィルム(半硬化)を得た。次に、得られた樹脂フィルム(半硬化)に2000mJ/cm2のUVを照射した。作製した樹脂フィルム上に同様に樹脂膜を形成・積層していき、樹脂フィルムの膜厚を300μmとした。さらに、支持体である銅箔を物理的剥離もしくはエッチングによって除去して評価用の樹脂フィルムを得た。
そして、樹脂フィルムを長さ60mm、幅2mm、厚み0.3mmに切断したものを試験片として空洞共振器摂動法により誘電特性を測定した。測定器には、AET社製ベクトル型ネットワークアナライザADMSO10c1、空洞共振器には株式会社関東電子応用開発製CP531(10GHz帯共振器)を使用した。条件は、周波数10GHz、測定温度25℃とした。
バーコーダーを用いて、ワニスをチンフリースチールに200μm厚さで塗布し、90℃で5分乾燥させて樹脂層を形成した。2000mJ/cm2で露光して硬化させた後、180℃で1時間加熱することによって、試料(硬化物)を作製した。その硬化膜を25℃の水に24時間浸漬し、水より取り出し、水をよくふきとり、カールフィッシャー法にて硬化膜中の水分量を算出した。
各組成物を、スクリーン印刷法により25ミクロンの厚さになるようにL/S=10μm/10μmのくし型パターンが形成されたエスパネックスMシリーズ(新日鐵化学製:ベースイミド厚25μm Cu厚18μm)上に塗布し、塗膜を80℃の熱風乾燥器で60分乾燥させた。次いで、紫外線露光装置(USHIO製:500Wマルチライト)を用いて2000mJ/cm2で露光して硬化させた後、180℃で1時間加熱することによって、HAST評価用の試験基板を得た。得られた基板の電極部分をはんだによる配線接続を行い、130℃、85%RHの環境下に置き、5.5Vの電圧をかけ、抵抗値が1×108Ω以下となるまでの時間を測定した。
○‥300時間以上
△‥30~300時間
×‥30時間以下
Claims (14)
- ダイマー酸から誘導されたジアミン(A)と、脂環構造を有するテトラカルボン酸二無水物(C)と、マレイン酸無水物とを反応させて得られた、環状イミド結合を有するビスマレイミド化合物(I)。
- 前記ジアミン(A)と、前記テトラカルボン酸二無水物(C)と、前記マレイン酸無水物と、に加えて、さらに、前記ダイマー酸から誘導された前記ジアミン(A)以外の有機ジアミン(B)を反応させて得られた請求項1に記載のビスマレイミド化合物(I)。
- 前記ビスマレイミド化合物(I)が、下記一般式(1):
で表わされる請求項1又は2に記載のビスマレイミド化合物(I)。 - 前記テトラカルボン酸二無水物(C)が、
1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(H-PMDA)、1,1’-ビシクロヘキサン-3,3’,4,4’-テトラカルボン酸-3,4:3’,4’-二無水物(H-BPDA)、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、3,5,6-トリカルボキシ-2-ノルボルナン酢酸二無水物、から選択される一つ以上である請求項1~4の何れか一項に記載のビスマレイミド化合物(I)。 - 請求項1~10の何れか一項に記載のビスマレイミド化合物(I)と光重合開始剤(II)を含む感光性樹脂組成物であって、光重合開始剤(II)が、オキシム構造又はチオキサントン構造を有する化合物である感光性樹脂組成物。
- 前記光重合開始剤(II)の含有量が、前記ビスマレイミド化合物(I)100質量部に対して0.1~15質量部である、請求項11に記載の感光性樹脂組成物。
- 請求項11又は12に記載の感光性樹脂組成物を光硬化又は光熱硬化させて得られる硬化物。
- 請求項13に記載の硬化物を表面保護膜、層間絶縁膜、及び再配線層の絶縁膜からなる群から選択される少なくとも1種として備える、半導体素子。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021512040A JP7066918B2 (ja) | 2019-04-02 | 2020-03-27 | ビスマレイミド化合物、それを用いた感光性樹脂組成物、その硬化物及び半導体素子 |
US17/600,381 US20220179310A1 (en) | 2019-04-02 | 2020-03-27 | Bismaleimide compound, photosensitive resin composition using same, cured product thereof, and semiconductor element |
CN202080026318.0A CN113677741B (zh) | 2019-04-02 | 2020-03-27 | 双马来酰亚胺化合物、使用其的感光性树脂组成物、其硬化物及半导体组件 |
KR1020217031043A KR102635354B1 (ko) | 2019-04-02 | 2020-03-27 | 비스말레이미드 화합물 및 그의 제조 방법, 그리고 그것을 이용한 감광성 수지 조성물, 그의 경화물 및 반도체 소자 |
JP2022073402A JP2022115907A (ja) | 2019-04-02 | 2022-04-27 | ビスマレイミド化合物、それを用いた感光性樹脂組成物、その硬化物及び半導体素子 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019070316 | 2019-04-02 | ||
JP2019-070316 | 2019-04-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020203834A1 true WO2020203834A1 (ja) | 2020-10-08 |
Family
ID=72667671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/014181 WO2020203834A1 (ja) | 2019-04-02 | 2020-03-27 | ビスマレイミド化合物、それを用いた感光性樹脂組成物、その硬化物及び半導体素子 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220179310A1 (ja) |
JP (2) | JP7066918B2 (ja) |
KR (1) | KR102635354B1 (ja) |
CN (1) | CN113677741B (ja) |
TW (1) | TWI801728B (ja) |
WO (1) | WO2020203834A1 (ja) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210082256A (ko) * | 2019-06-28 | 2021-07-02 | 미츠비시 가스 가가쿠 가부시키가이샤 | 수지 조성물, 수지 시트, 다층 프린트 배선판, 및 반도체 장치 |
JP2021123672A (ja) * | 2020-02-07 | 2021-08-30 | 信越化学工業株式会社 | ビスマレイミド化合物及びその製造方法 |
KR20210111346A (ko) * | 2019-06-28 | 2021-09-10 | 미츠비시 가스 가가쿠 가부시키가이샤 | 수지 조성물, 수지 시트, 다층 프린트 배선판, 및 반도체 장치 |
WO2021182207A1 (ja) * | 2020-03-13 | 2021-09-16 | 積水化学工業株式会社 | 樹脂材料及び多層プリント配線板 |
WO2022201619A1 (ja) * | 2021-03-25 | 2022-09-29 | 日本化薬株式会社 | 熱硬化性樹脂組成物、硬化物、樹脂シート、プリプレグ、金属箔張積層板、多層プリント配線板、封止用材料、繊維強化複合材料、接着剤及び半導体装置 |
WO2022201620A1 (ja) * | 2021-03-25 | 2022-09-29 | 日本化薬株式会社 | 樹脂組成物、硬化物、樹脂シート、プリプレグ、金属箔張積層板、多層プリント配線板、封止用材料、繊維強化複合材料、接着剤及び半導体装置 |
JPWO2022201621A1 (ja) * | 2021-03-25 | 2022-09-29 | ||
WO2022210433A1 (ja) * | 2021-03-30 | 2022-10-06 | 日本化薬株式会社 | マレイミド樹脂混合物、硬化性樹脂組成物、プリプレグおよびその硬化物 |
WO2022210442A1 (ja) * | 2021-03-30 | 2022-10-06 | 日本化薬株式会社 | 硬化樹脂組成物とその硬化物 |
KR20230031561A (ko) * | 2021-08-27 | 2023-03-07 | 주식회사 네패스 | 네거티브형 감광성 수지 전구체 및 조성물, 이를 이용한 층간 절연막의 제조방법 및 반도체 부품 |
WO2023210038A1 (ja) * | 2022-04-25 | 2023-11-02 | 日本化薬株式会社 | ビスマレイミド化合物、それを用いた樹脂組成物、その硬化物及び半導体素子 |
WO2024079924A1 (ja) * | 2022-10-14 | 2024-04-18 | 日本化薬株式会社 | 樹脂組成物、樹脂シート、多層プリント配線板、及び半導体装置 |
WO2024079925A1 (ja) * | 2022-10-14 | 2024-04-18 | 日本化薬株式会社 | 樹脂組成物、硬化物、半導体素子、およびドライフィルムレジスト |
WO2024195764A1 (ja) * | 2023-03-23 | 2024-09-26 | 日本化薬株式会社 | 熱硬化性マレイミド樹脂組成物並びにこれを用いたシート状又はフィルム状組成物、接着剤組成物、プライマー組成物、基板用組成物、コーティング材組成物及び半導体装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024070725A1 (ja) * | 2022-09-28 | 2024-04-04 | 東レ株式会社 | 感光性組成物、硬化物、電子部品、及び硬化物の製造方法 |
WO2024100764A1 (ja) * | 2022-11-08 | 2024-05-16 | 株式会社レゾナック | 感光性樹脂組成物、硬化物、及び半導体素子 |
WO2024154780A1 (ja) * | 2023-01-19 | 2024-07-25 | 株式会社レゾナック | 感光性樹脂組成物、硬化物、及び半導体素子 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3803103A (en) * | 1969-08-25 | 1974-04-09 | Raychem Corp | Polyimides from dimer diamines and electrical insulation |
US20080262191A1 (en) * | 2007-01-26 | 2008-10-23 | Mizori Farhad G | Methods for the preparation of imides, maleimides and maleimide-terminated polyimide compounds |
WO2008153101A1 (ja) * | 2007-06-15 | 2008-12-18 | Nissan Chemical Industries, Ltd. | 熱硬化膜形成用樹脂組成物 |
JP2010256532A (ja) * | 2009-04-23 | 2010-11-11 | Hitachi Chem Co Ltd | 感光性樹脂組成物、感光性エレメント及びこれを用いたレジストパターンの形成方法 |
JP2013032501A (ja) * | 2011-07-01 | 2013-02-14 | Jnc Corp | 熱硬化性インク組成物およびその用途 |
US20130228901A1 (en) * | 2009-09-03 | 2013-09-05 | Designer Molecules, Inc. | Materials and methods for stress reduction in semiconductor wafer passivation layers |
JP2014001289A (ja) * | 2012-06-18 | 2014-01-09 | Nippon Steel & Sumikin Chemical Co Ltd | 半導体封止用樹脂組成物 |
JP2020086387A (ja) * | 2018-11-30 | 2020-06-04 | 太陽インキ製造株式会社 | 感光性熱硬化性樹脂組成物、ドライフィルムおよびプリント配線板 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54109828A (en) | 1978-02-17 | 1979-08-28 | Asahi Chemical Ind | Heat resistant photoresist composition |
DE2931297A1 (de) | 1979-08-01 | 1981-02-19 | Siemens Ag | Waermebestaendige positivresists und verfahren zur herstellung waermebestaendiger reliefstrukturen |
JP3449931B2 (ja) | 1997-11-18 | 2003-09-22 | 住友ベークライト株式会社 | ポジ型感光性樹脂組成物 |
CN1245665C (zh) * | 2001-09-26 | 2006-03-15 | 日产化学工业株式会社 | 正感光性聚酰亚胺树脂组合物 |
KR101179815B1 (ko) | 2003-05-05 | 2012-09-04 | 디자이너 몰레큘스 인코퍼레이티드 | 이미드-연결된 말레이미드 및 폴리말레이미드 화합물 |
JP2006022173A (ja) * | 2004-07-07 | 2006-01-26 | Mitsubishi Gas Chem Co Inc | 皮膜形成用組成物および皮膜形成法および皮膜加工法 |
US8642181B2 (en) * | 2004-08-23 | 2014-02-04 | Mitsubishi Gas Chemical Company, Inc. | Metal-clad white laminate |
JP4776486B2 (ja) | 2006-09-28 | 2011-09-21 | 旭化成イーマテリアルズ株式会社 | 感光性ポリアミド酸エステル組成物 |
JP2009114415A (ja) * | 2007-11-09 | 2009-05-28 | Nitto Denko Corp | ポリイミドを含む光半導体素子封止用樹脂およびそれを用いて得られる光半導体装置 |
JP5136079B2 (ja) | 2008-01-23 | 2013-02-06 | 日立化成デュポンマイクロシステムズ株式会社 | 低温硬化用のポジ型感光性樹脂組成物、パターン硬化膜の製造方法及び電子部品 |
JP5136179B2 (ja) | 2008-04-17 | 2013-02-06 | 日立化成デュポンマイクロシステムズ株式会社 | ポジ型感光性樹脂組成物、パターン硬化膜の製造方法及び電子部品 |
US8415812B2 (en) * | 2009-09-03 | 2013-04-09 | Designer Molecules, Inc. | Materials and methods for stress reduction in semiconductor wafer passivation layers |
JP2013083958A (ja) * | 2011-09-26 | 2013-05-09 | Nippon Steel & Sumikin Chemical Co Ltd | 感光性樹脂組成物、それを用いた硬化物及び半導体素子 |
KR101574016B1 (ko) * | 2014-01-27 | 2015-12-02 | 코오롱인더스트리 주식회사 | 폴리이미드 및 이를 이용한 필름 |
CN111212867A (zh) * | 2017-10-11 | 2020-05-29 | 株式会社钟化 | 聚酰亚胺树脂及其制造方法、聚酰亚胺溶液、以及聚酰亚胺薄膜及其制造方法 |
CN111836857A (zh) * | 2018-03-28 | 2020-10-27 | 积水化学工业株式会社 | 树脂材料、叠层结构体及多层印刷布线板 |
KR20230101795A (ko) * | 2020-11-06 | 2023-07-06 | 니폰 가야꾸 가부시끼가이샤 | 감광성 수지 조성물, 그 경화물 및 다층 재료 |
-
2020
- 2020-03-27 KR KR1020217031043A patent/KR102635354B1/ko active IP Right Grant
- 2020-03-27 US US17/600,381 patent/US20220179310A1/en active Pending
- 2020-03-27 CN CN202080026318.0A patent/CN113677741B/zh active Active
- 2020-03-27 WO PCT/JP2020/014181 patent/WO2020203834A1/ja active Application Filing
- 2020-03-27 JP JP2021512040A patent/JP7066918B2/ja active Active
- 2020-04-01 TW TW109111297A patent/TWI801728B/zh active
-
2022
- 2022-04-27 JP JP2022073402A patent/JP2022115907A/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3803103A (en) * | 1969-08-25 | 1974-04-09 | Raychem Corp | Polyimides from dimer diamines and electrical insulation |
US20080262191A1 (en) * | 2007-01-26 | 2008-10-23 | Mizori Farhad G | Methods for the preparation of imides, maleimides and maleimide-terminated polyimide compounds |
WO2008153101A1 (ja) * | 2007-06-15 | 2008-12-18 | Nissan Chemical Industries, Ltd. | 熱硬化膜形成用樹脂組成物 |
JP2010256532A (ja) * | 2009-04-23 | 2010-11-11 | Hitachi Chem Co Ltd | 感光性樹脂組成物、感光性エレメント及びこれを用いたレジストパターンの形成方法 |
US20130228901A1 (en) * | 2009-09-03 | 2013-09-05 | Designer Molecules, Inc. | Materials and methods for stress reduction in semiconductor wafer passivation layers |
JP2013032501A (ja) * | 2011-07-01 | 2013-02-14 | Jnc Corp | 熱硬化性インク組成物およびその用途 |
JP2014001289A (ja) * | 2012-06-18 | 2014-01-09 | Nippon Steel & Sumikin Chemical Co Ltd | 半導体封止用樹脂組成物 |
JP2020086387A (ja) * | 2018-11-30 | 2020-06-04 | 太陽インキ製造株式会社 | 感光性熱硬化性樹脂組成物、ドライフィルムおよびプリント配線板 |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11680139B2 (en) | 2019-06-28 | 2023-06-20 | Mitsubishi Gas Chemical Company, Inc. | Resin composition, resin sheet, multilayer printed wiring board, and semiconductor device |
KR20210111346A (ko) * | 2019-06-28 | 2021-09-10 | 미츠비시 가스 가가쿠 가부시키가이샤 | 수지 조성물, 수지 시트, 다층 프린트 배선판, 및 반도체 장치 |
KR102459496B1 (ko) * | 2019-06-28 | 2022-10-26 | 미츠비시 가스 가가쿠 가부시키가이샤 | 수지 조성물, 수지 시트, 다층 프린트 배선판, 및 반도체 장치 |
KR20210082256A (ko) * | 2019-06-28 | 2021-07-02 | 미츠비시 가스 가가쿠 가부시키가이샤 | 수지 조성물, 수지 시트, 다층 프린트 배선판, 및 반도체 장치 |
KR102379256B1 (ko) | 2019-06-28 | 2022-03-25 | 미츠비시 가스 가가쿠 가부시키가이샤 | 수지 조성물, 수지 시트, 다층 프린트 배선판, 및 반도체 장치 |
JP7283409B2 (ja) | 2020-02-07 | 2023-05-30 | 信越化学工業株式会社 | ビスマレイミド化合物及びその製造方法 |
JP2021123672A (ja) * | 2020-02-07 | 2021-08-30 | 信越化学工業株式会社 | ビスマレイミド化合物及びその製造方法 |
WO2021182207A1 (ja) * | 2020-03-13 | 2021-09-16 | 積水化学工業株式会社 | 樹脂材料及び多層プリント配線板 |
JP7191276B1 (ja) * | 2021-03-25 | 2022-12-16 | 日本化薬株式会社 | 樹脂組成物、硬化物、樹脂シート、プリプレグ、金属箔張積層板、多層プリント配線板、封止用材料、繊維強化複合材料、接着剤及び半導体装置 |
JP7291297B2 (ja) | 2021-03-25 | 2023-06-14 | 日本化薬株式会社 | 樹脂組成物、樹脂シート、多層プリント配線板、及び半導体装置 |
JP7191275B1 (ja) * | 2021-03-25 | 2022-12-16 | 日本化薬株式会社 | 熱硬化性樹脂組成物、硬化物、樹脂シート、プリプレグ、金属箔張積層板、多層プリント配線板、封止用材料、繊維強化複合材料、接着剤及び半導体装置 |
WO2022201619A1 (ja) * | 2021-03-25 | 2022-09-29 | 日本化薬株式会社 | 熱硬化性樹脂組成物、硬化物、樹脂シート、プリプレグ、金属箔張積層板、多層プリント配線板、封止用材料、繊維強化複合材料、接着剤及び半導体装置 |
WO2022201621A1 (ja) * | 2021-03-25 | 2022-09-29 | 日本化薬株式会社 | 樹脂組成物、樹脂シート、多層プリント配線板、及び半導体装置 |
WO2022201620A1 (ja) * | 2021-03-25 | 2022-09-29 | 日本化薬株式会社 | 樹脂組成物、硬化物、樹脂シート、プリプレグ、金属箔張積層板、多層プリント配線板、封止用材料、繊維強化複合材料、接着剤及び半導体装置 |
JPWO2022201621A1 (ja) * | 2021-03-25 | 2022-09-29 | ||
JP7152839B1 (ja) * | 2021-03-30 | 2022-10-13 | 日本化薬株式会社 | マレイミド樹脂混合物、硬化性樹脂組成物、プリプレグおよびその硬化物 |
WO2022210433A1 (ja) * | 2021-03-30 | 2022-10-06 | 日本化薬株式会社 | マレイミド樹脂混合物、硬化性樹脂組成物、プリプレグおよびその硬化物 |
WO2022210442A1 (ja) * | 2021-03-30 | 2022-10-06 | 日本化薬株式会社 | 硬化樹脂組成物とその硬化物 |
CN117098789A (zh) * | 2021-03-30 | 2023-11-21 | 日本化药株式会社 | 马来酰亚胺树脂混合物、硬化性树脂组合物、预浸体及其硬化物 |
KR20230031561A (ko) * | 2021-08-27 | 2023-03-07 | 주식회사 네패스 | 네거티브형 감광성 수지 전구체 및 조성물, 이를 이용한 층간 절연막의 제조방법 및 반도체 부품 |
KR102674891B1 (ko) | 2021-08-27 | 2024-06-13 | 주식회사 네패스 | 네거티브형 감광성 수지 전구체 및 조성물, 이를 이용한 층간 절연막의 제조방법 및 반도체 부품 |
WO2023210038A1 (ja) * | 2022-04-25 | 2023-11-02 | 日本化薬株式会社 | ビスマレイミド化合物、それを用いた樹脂組成物、その硬化物及び半導体素子 |
WO2024079924A1 (ja) * | 2022-10-14 | 2024-04-18 | 日本化薬株式会社 | 樹脂組成物、樹脂シート、多層プリント配線板、及び半導体装置 |
WO2024079925A1 (ja) * | 2022-10-14 | 2024-04-18 | 日本化薬株式会社 | 樹脂組成物、硬化物、半導体素子、およびドライフィルムレジスト |
WO2024195764A1 (ja) * | 2023-03-23 | 2024-09-26 | 日本化薬株式会社 | 熱硬化性マレイミド樹脂組成物並びにこれを用いたシート状又はフィルム状組成物、接着剤組成物、プライマー組成物、基板用組成物、コーティング材組成物及び半導体装置 |
Also Published As
Publication number | Publication date |
---|---|
CN113677741B (zh) | 2023-10-20 |
JP2022115907A (ja) | 2022-08-09 |
JP7066918B2 (ja) | 2022-05-13 |
TW202104374A (zh) | 2021-02-01 |
KR20210134696A (ko) | 2021-11-10 |
CN113677741A (zh) | 2021-11-19 |
JPWO2020203834A1 (ja) | 2020-10-08 |
US20220179310A1 (en) | 2022-06-09 |
KR102635354B1 (ko) | 2024-02-07 |
TWI801728B (zh) | 2023-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7066918B2 (ja) | ビスマレイミド化合物、それを用いた感光性樹脂組成物、その硬化物及び半導体素子 | |
JP2013083958A (ja) | 感光性樹脂組成物、それを用いた硬化物及び半導体素子 | |
JP7073717B2 (ja) | ジアミン化合物、それを用いた耐熱性樹脂および樹脂組成物 | |
WO2016143580A1 (ja) | 感光性樹脂組成物および電子部品 | |
CN107407878B (zh) | 感光性树脂组合物 | |
CN114230792B (zh) | 一种正性光敏聚酰亚胺树脂、树脂组合物及其制备方法与应用 | |
JP7552360B2 (ja) | 感光性樹脂組成物、感光性シート、硬化膜、硬化膜の製造方法、層間絶縁膜および電子部品 | |
WO2007034604A1 (ja) | ネガ型感光性樹脂組成物、パターン形成方法及び電子部品 | |
WO2021187355A1 (ja) | 感光性樹脂組成物、感光性シート、硬化膜、硬化膜の製造方法、電子部品、アンテナ素子、半導体パッケージおよび表示装置 | |
WO2018043250A1 (ja) | 感光性樹脂組成物、硬化膜、有機el表示装置、半導体電子部品、半導体装置 | |
JP6939553B2 (ja) | 樹脂組成物 | |
JP2018123103A (ja) | ジアミン化合物、それを用いた耐熱性樹脂および樹脂組成物 | |
TW202043335A (zh) | 含有反應性端基之聚醯亞胺、聚醯胺酸及其感光性組成物 | |
WO2019181782A1 (ja) | アルカリ可溶性樹脂、感光性樹脂組成物、感光性シート、硬化膜、層間絶縁膜または半導体保護膜、硬化膜のレリーフパターンの製造方法、電子部品または半導体装置 | |
JP4183459B2 (ja) | ポリアミド酸エステル組成物 | |
WO2017073481A1 (ja) | ポジ型感光性樹脂組成物、感光性シート、硬化膜、層間絶縁膜、半導体保護膜、半導体装置の製造方法、半導体電子部品および半導体装置 | |
JP7131133B2 (ja) | 樹脂組成物 | |
JP2018036329A (ja) | 感光性樹脂組成物 | |
JP2018054937A (ja) | 感光性樹脂組成物 | |
WO2022163335A1 (ja) | 感光性樹脂組成物、硬化膜、電子部品、アンテナ素子、半導体パッケージおよび化合物 | |
CN105452383B (zh) | 感光性树脂组合物、其浮雕图案膜、浮雕图案膜的制造方法、包含浮雕图案膜的电子部件或光学制品、和包含感光性树脂组合物的粘接剂 | |
KR20180061155A (ko) | 경화막 및 그의 제조 방법 | |
JP3887982B2 (ja) | 感光性樹脂組成物および絶縁膜 | |
JP5571431B2 (ja) | 感光性樹脂組成物 | |
TWI830255B (zh) | 感光性聚醯亞胺樹脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20781985 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021512040 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20217031043 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20781985 Country of ref document: EP Kind code of ref document: A1 |