WO2020181681A1 - 一种混合固液电解质锂蓄电池 - Google Patents

一种混合固液电解质锂蓄电池 Download PDF

Info

Publication number
WO2020181681A1
WO2020181681A1 PCT/CN2019/092434 CN2019092434W WO2020181681A1 WO 2020181681 A1 WO2020181681 A1 WO 2020181681A1 CN 2019092434 W CN2019092434 W CN 2019092434W WO 2020181681 A1 WO2020181681 A1 WO 2020181681A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
solid electrolyte
solid
layer
buffer glue
Prior art date
Application number
PCT/CN2019/092434
Other languages
English (en)
French (fr)
Inventor
许晓雄
丁超
张永龙
张赞赞
Original Assignee
浙江锋锂新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江锋锂新能源科技有限公司 filed Critical 浙江锋锂新能源科技有限公司
Priority to JP2021552504A priority Critical patent/JP7236557B2/ja
Priority to EP19919091.9A priority patent/EP3940836A4/en
Priority to AU2019434099A priority patent/AU2019434099B2/en
Priority to CA3132595A priority patent/CA3132595A1/en
Priority to US17/436,558 priority patent/US20220181684A1/en
Priority to KR1020217027772A priority patent/KR102639836B1/ko
Publication of WO2020181681A1 publication Critical patent/WO2020181681A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of lithium storage batteries, and particularly relates to a mixed solid-liquid electrolyte lithium storage battery.
  • the solid electrolyte is the main electrolyte component, and the liquid electrolyte assists the solid electrolyte.
  • the mixed solid-liquid electrolyte lithium battery has high energy density, good mechanical performance, and safety. Good sex and other advantages.
  • the lithium battery can directly use metal lithium as the negative electrode, which significantly improves the battery energy density.
  • the solid electrolyte membrane can also inhibit the formation of lithium dendrites, so that the safety performance of the lithium battery is significantly improved.
  • Organic polymer electrolyte batteries are easy to process and can follow the existing lithium-ion battery technology, but their room temperature conductivity is low. Although the room temperature conductivity of the inorganic solid electrolyte is relatively high, the material cost is relatively high, and the battery technology is complicated, and it is necessary to develop a lot of brand-new battery production equipment, resulting in further increase in cost.
  • composite electrolytes Compared with the previous two types of solid electrolytes, composite electrolytes have the easy processing properties of organic polymer electrolytes and can improve room temperature conductivity to a certain extent, but their mechanical strength is poor, which easily causes the membrane to break easily and cause battery short circuit. For this reason, people usually coat a separator made of PP, PE and other polymers between the composite electrolyte and the positive electrode material to ensure the separation of the positive and negative electrodes in the lithium battery, and at the same time provide good support for the composite electrolyte membrane to ensure The safety of lithium batteries.
  • the separator has a good supporting effect, if the separator is pierced or hit by foreign objects such as steel needles and breaks, the liquid electrolyte in the lithium battery will fill the broken part of the separator, so that the positive and negative electrodes inside the lithium battery will interact with each other. Switching on will cause a short circuit of the lithium battery, which poses a certain safety hazard.
  • the purpose of the present invention is to provide a hybrid solid-liquid electrolyte lithium battery, which omits the diaphragm, still has good mechanical strength, ensures its excellent electrical cycle performance, and has relatively high performance. High security.
  • the lithium storage battery realizes the one-time molding of the lithium storage battery through extrusion technology, is easy to operate and improves the production efficiency of the lithium storage battery.
  • the present invention provides the following technical solutions:
  • a mixed solid-liquid electrolyte lithium battery comprising a positive electrode sheet, a negative electrode sheet, and a composite solid electrolyte sheet arranged between the positive electrode sheet and the negative electrode sheet.
  • the composite solid electrolyte sheet includes a solid electrolyte core layer and is arranged on the solid electrolyte core layer facing The first buffer glue layer on one side of the positive electrode sheet and the second buffer glue layer arranged on the side of the solid electrolyte core layer facing the negative electrode sheet; the solid electrolyte core layer is mainly composed of a core layer of inorganic solid electrolyte, electrolyte polymer and electrolyte additives.
  • the first buffer glue layer and the second buffer glue layer mainly include a mixture of one or more of the buffer glue layer inorganic solid electrolyte, the buffer glue layer lithium salt, the buffer glue layer additives, and the first buffer glue layer
  • the weight of the layer or the second buffer glue layer accounts for 5%-70% of the weight of the composite solid electrolyte sheet.
  • the core layer inorganic solid electrolyte ensures the excellent room temperature conductivity of the composite solid electrolyte sheet.
  • the electrolyte polymer is uniformly mixed in the core layer inorganic solid electrolyte under the action of electrolyte additives, and polymer
  • the material itself has good mechanical strength and hot melt, which can improve the core layer of the inorganic solid electrolyte itself and its viscosity with the first buffer layer and the second buffer layer to a certain extent, and at the same time is the core layer
  • the inorganic solid electrolyte provides a good supporting effect, so that the solid electrolyte core layer has excellent mechanical strength, so as to ensure the excellent electrical cycle performance of the lithium battery.
  • the electrolyte polymer of the present invention can also be used as an adhesive, which can be better dispersed and bonded between the core layer of inorganic solid electrolyte, so that the solid electrolyte core layer has a certain degree of resilience.
  • Foreign objects such as steel needles pierce or hit the solid electrolyte core layer and cause the solid electrolyte core layer to crack.
  • the solid electrolyte core layer shrinks or even restores the cracked gap under the action of the electrolyte polymer, thereby maintaining the original excellent partition Effectiveness to ensure the excellent safety performance of lithium batteries;
  • the inorganic solid electrolyte of the buffer glue layer in the first buffer glue layer and the second buffer glue layer makes an ion concentration gradient between the electrolyte core layer and the positive electrode sheet and the negative electrode sheet, combined with the buffer layer lithium salt, to supplement a certain amount of the lithium battery Lithium ions can improve the electrical cycle performance of the lithium battery; the buffer gel layer additives can help the buffer gel layer inorganic solid electrolyte and the buffer layer lithium salt to be fully mixed to ensure the excellent buffering effect of the buffer gel layer.
  • the lithium battery of the present invention can still maintain its excellent mechanical strength after the separator is removed, ensuring the normal use of the lithium battery, and at the same time, to a certain extent, improve the safety performance and battery performance of the lithium battery.
  • the positive electrode material of the positive electrode sheet is preferably Li 1+z Co 1-n AnO 2 , ternary material Li 1+z Ni x Co y M 1-xyn AnO 2 , lithium-rich manganese-based material mLi 2 MnO 3 ⁇ (1-m )Li 1+z- Ni x Co y Mn 1-xyn AnO 2 , nickel manganese spinel Li 1+z Ni 0.5-h Mn 1.5-l AnO 4 , lithium iron manganese phosphate Li 1+z Fe x Mn 1- xn AnPO 4 , lithium manganate Li 1+z Mn 2-n AnO 4 , lithium iron phosphate Li 1+z Fe 1-n AnPO 4 , and one of the above-mentioned cathode materials coated with solid electrolyte or physically mixed Or a mixture of multiple; wherein, 0 ⁇ z ⁇ 0.1, 0 ⁇ n ⁇ 0.1, 0 ⁇
  • the negative electrode active material of the negative electrode sheet is preferably carbon material, tin-based material, silicon-based material, transition metal oxide, metallic lithium, lithium alloy, Li x C 6 (0 ⁇ x ⁇ 1), lithium-containing transition metal nitride type Solid electrolyte and one or more mixtures of lithium titanate-based materials; among them, carbon materials include graphite, amorphous carbon, etc., tin-based materials include pure tin, tin oxides, tin alloys, etc., and silicon-based materials include Nano silicon, silicon oxide, silicon carbon composite materials, etc.
  • the technician can make a choice according to actual needs, so that the prepared lithium battery has more excellent performance.
  • the present invention discloses the foregoing positive electrode materials and negative electrode materials, it is not limited thereto.
  • the thickness ratio of the first buffer glue layer, the solid electrolyte core layer and the second buffer glue layer is (5-30): (40-90): (5-30).
  • the weight ratio of the core layer inorganic solid electrolyte, electrolyte polymer, and electrolyte additives is (40-89): (10-50): (1-10).
  • the core layer inorganic solid electrolyte is a mixture of one or more of oxide type solid electrolyte, sulfide type solid electrolyte, and nitride type solid electrolyte.
  • the oxide solid electrolyte is a mixture of one or more of garnet solid electrolyte materials, NASICON solid electrolyte materials, LISICON solid electrolyte materials, and perovskite solid electrolyte materials.
  • the sulfide type solid electrolyte is crystalline or amorphous Li 2 SP 2 S 5 , crystalline Li 4 MS 4 , crystalline Li 10 NP 2 S 12 , Li 2 S, Li 3 PS 4 , Li 3 P(S x O 1-x ) 4 and a mixture of one or more of Li 2 SP 2 S 5 -LiX in a microcrystalline state; wherein M is selected from one or more of Si, Ge, and Sn Species, N is selected from one or more of Si, Ge, Sn, X is selected from one or more of Cl, Br, and I, 0 ⁇ x ⁇ 1.
  • the nitride-type solid electrolyte is one or a mixture of Li 3 N and LiPON.
  • Oxide solid electrolytes, sulfide solid electrolytes and nitride solid electrolytes are chemically active compared to solid electrolyte materials such as polymers, composites, and films, and can ionize electrons quickly and have excellent lithium ion conductivity Performance, so that the lithium battery has excellent conductivity.
  • the garnet-type solid electrolyte is preferably: Li 7 A 3 B 2 O 12 , where A is one or more of La, Ca, Sr, Ba, and K, and B is Zr, One or more of Ta, Nb, and Hf;
  • the NASICON solid electrolyte is preferably: Li 1+x A x B 2+x (PO 4 ) 3 , where x is between 0.01-0.5, and A is Al, Y One or more of, Ga, Cr, In, Fe, Se, La, B is one or more of Ti, Ge, Ta, Zr, Sn, Fe, V, metal hafnium Hf; LISICON type solid state
  • the electrolyte is preferably: Li 14 A(BO 4 ) 4 , where A is one or more of Zr, Cr, Sn, and B is one or more of Si, S, and P; perovskite solid electrolyte Preferably: Li 3x A 2/3-x BO 3 , where x
  • the electrolyte polymer is one of PEO, polysiloxane, PPC, PEC, PVC, PAN, PAA, PVDF, PVDF-HFP, PMMA, NHD, PEI or A variety of mixtures.
  • the electrolyte additive is stearic acid, stearate, paraffin, siloxane, metal soap, dibutyl phthalate, dioctyl phthalate, A mixture of one or more of cyclohexane and sulfonate.
  • Stearic acid, stearate, paraffin, siloxane, metal soap, dibutyl phthalate, dioctyl phthalate, cyclohexane and sulfonate are all used as lubricants, which can reduce inorganic
  • the friction between the solid electrolyte and the electrolyte polymer facilitates the extrusion molding of the solid electrolyte core layer.
  • the weight ratio of the buffer glue layer lithium salt and the buffer glue layer additives is 5-15:1-10, and the weight of the buffer glue layer inorganic solid electrolyte It accounts for 20%-60% of the weight of the first buffer glue layer or the second buffer glue layer.
  • the weight ratio of buffer rubber layer lithium salt and buffer rubber layer additives in the buffer rubber layer is 5-15:1-10, and the weight of the inorganic solid electrolyte of the buffer rubber layer accounts for the largest
  • the weight of one buffer glue layer or the second buffer glue layer is 20%-60%, which corresponds to the optimal lithium storage battery.
  • the buffer gel layer inorganic solid electrolyte in the present invention mainly supplements lithium ions for the lithium battery so that the lithium battery has a good cycle life. Therefore, whether the material of the buffer gel layer inorganic electrolyte is consistent with the core layer inorganic solid electrolyte material It does not matter, it can be the same as or different from the core layer inorganic solid electrolyte when used.
  • the lithium salt of the buffer glue layer includes LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiTFSI, LiC(CF 3 SO 2 ) 3.
  • LiClO 4 LiAsF 6 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiTFSI, LiC(CF 3 SO 2 ) 3.
  • the lithium salt can quickly ionize lithium ions, which can be supplemented when the lithium ions in the lithium battery is insufficient.
  • the acid radical ions produced are unstable. When the lithium ions in the lithium battery are excessive, they can be combined to provide a lithium battery.
  • the dynamic balance system improves the electric cycle performance of lithium batteries.
  • the buffer glue layer additives are PEO, polysiloxane, PPC, PEC, PTMC, VC, fluoromethyl carbonate, fluoroethylene A mixture of one or more of the base carbonate.
  • polyethylene oxide (PEO), polysiloxane, polypropylene carbonate (PPC), polyethylene carbonate (PEC), polytrimethylene carbonate (PTMC), vinylene carbonate (VC), fluoromethyl carbonate and fluoroethyl carbonate are all high molecular polymers. While they play a good supporting role, they can also interact with the electrolyte polymer in the solid electrolyte core layer. Therefore, the bonding firmness of the solid electrolyte core layer and the buffer glue layer is increased.
  • the preparation method of the lithium storage battery includes the following operation steps:
  • the buffer glue for forming the first buffer glue layer and the second buffer glue layer is prepared by dissolving the buffer glue layer additives and the buffer glue layer lithium salt in a solvent, then adding the buffer glue layer inorganic solid electrolyte, and mixing and dispersing Get the corresponding buffer glue;
  • the core layer inorganic solid electrolyte is mixed with the electrolyte polymer to make a masterbatch, and then the masterbatch and electrolyte additives are added to the extruder, and the solid electrolyte masterbatch is obtained by heating and mixing by the extruder;
  • the buffer glue prepared in step 1 and the solid electrolyte masterbatch prepared in step 2 are injected into the designated part of the extruder according to the set structure, and extruded once through co-extrusion technology. After the solvent is evaporated, a composite solid electrolyte sheet is obtained, and then The positive electrode sheet and the negative electrode sheet are formed into a sheet through a hot pressing lamination process, the solvent is evaporated and the liquid electrolyte is poured into the final mixed solid-liquid electrolyte lithium battery.
  • the solvent in the present invention can be one or a mixture of propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, acetonitrile, water, and N-methylpyrrolidone. But it is not limited to the above-mentioned solvents, so as to promote uniform dispersion among the buffer gel layer additives, the buffer gel layer lithium salt, and the buffer gel layer solid electrolyte.
  • the electrolyte polymer dispersed in the core layer inorganic solid electrolyte will melt to a certain extent during the heating process of the extruder, and then the core layer inorganic solid electrolyte will be bonded and fixed.
  • the buffer glue and the solid electrolyte masterbatch are extruded once, and the extruded composite solid electrolyte sheet is compressed into the positive sheet and the negative sheet once, and then the liquid electrolyte is used to inject the lithium battery, thereby effectively reducing the interior of the lithium battery
  • the method of the present invention effectively reduces the preparation steps of the lithium battery and effectively improves the production of the lithium battery Efficiency reduces its production cost to a certain extent.
  • the liquid electrolyte in the present invention is preferably a mixture of one or more of imidazole-based ionic liquids, pyrrole-based ionic liquids and short-chain fatty quaternary ammonium salt ionic liquids, and more preferably, the liquid electrolyte is 1-ethyl -3-methylimidazole fluoride (EMIF 2.3 HF), 1-butyl-3-methylimidazole hexafluorophosphate (BMIPF 6 ), N-methylbutylpyrrolidine bis(trifluoromethylsulfonyl ) Imine salt (PyR 14 TFSI), N,N-dimethyl-N-ethyl-N-2-methoxyethylammonium bis(trifluoromethylsulfonyl)imide salt (DEMENTf 2 )
  • EMIF 2.3 HF 1-butyl-3-methylimidazole hexafluorophosphate
  • MIPF 6 1-butyl
  • the present invention has the following beneficial effects:
  • the lithium battery of the present invention is configured by the structure of the positive electrode sheet, the buffer glue layer, the solid electrolyte core layer, the buffer glue layer, and the negative electrode sheet, eliminating the need for the installation of the separator, even if foreign objects such as steel needles pierce or hit the solid electrolyte
  • the core layer causes the solid electrolyte core layer to crack.
  • the solid electrolyte core layer shrinks or even restores the cracked gap under the action of its internal electrolyte polymer, so as to maintain the original excellent isolation effect and make the lithium battery have good mechanical strength , Relatively high electrical cycle performance and safety performance.
  • the lithium battery of the present invention combines co-extrusion technology and roll pressing technology to realize one-time processing and molding, reduces the preparation steps of the lithium battery, effectively improves the production efficiency of the lithium battery, and reduces its production cost to a certain extent. It is easy to operate.
  • Figure 1 is a schematic diagram of the internal structure of a mixed solid-liquid electrolyte lithium battery
  • FIG. 2 is a schematic diagram of a simple structure of an extrusion sheet for preparing a mixed solid-liquid electrolyte lithium battery
  • Figure 3 is a detection map of the capacity retention rate of Example 1 and Comparative Example 1;
  • Fig. 4 is a detection chart of the capacity retention rate of Example 1, Comparative Example 2 and Comparative Example 3.
  • positive electrode sheet 11. positive electrode material layer; 12, positive electrode support layer; 2. negative electrode sheet; 21, negative electrode material layer; 22, negative electrode support layer; 3. composite solid electrolyte sheet; 31, solid electrolyte core layer ; 32, the first buffer glue layer; 33, the second buffer glue layer.
  • a mixed solid-liquid electrolyte lithium battery disclosed in the present invention includes a positive electrode sheet 1, a negative electrode sheet 2 and a composite solid electrolyte sheet 3 arranged between the positive electrode sheet 1 and the negative electrode sheet 2.
  • the composite solid electrolyte sheet 3 includes a solid electrolyte core layer 31, a first buffer glue layer 32 arranged on the solid electrolyte core layer 31 facing the positive electrode sheet 1, and a second buffer glue layer 32 arranged on the solid electrolyte core layer 31 facing the negative electrode sheet 2. ⁇ 33 ⁇ Glue layer 33.
  • the positive electrode sheet 1 in the present invention includes a positive electrode material layer 11 and a positive electrode support layer 12.
  • the positive electrode material layer 11 is attached to the first buffer glue layer 32 and includes a positive electrode active material, a conductive agent, PEO, lithium salt, and PVDF.
  • the negative electrode sheet 2 includes a negative electrode material layer 21 and a negative electrode support layer 22.
  • the negative electrode material layer 21 is attached to the second buffer glue layer 33, and the negative electrode material layer 21 includes a negative electrode active material, a conductive agent, a paste, and a binder.
  • the solid electrolyte core layer 31 is mainly composed of a core layer of inorganic solid electrolyte, electrolyte polymer, and electrolyte additives.
  • the first buffer glue layer 32 and the second buffer glue layer 33 both include a buffer glue layer, an inorganic solid electrolyte, and a buffer glue layer lithium salt. And a mixture of one or more of the buffer glue layer additives.
  • a method for preparing a mixed solid-liquid electrolyte lithium battery includes the following steps:
  • the buffer glue for forming the first buffer glue layer 32 and the second buffer glue layer 33 and the composition of the first buffer glue layer 32 and the second buffer glue layer 33 are the same, specifically: weighing at a weight ratio of 5:1 Take 5g of buffer gel layer lithium salt LiTFSI and 1g of buffer gel layer additive PEO, dissolve them in 114g of acetonitrile to form an organic polymer electrolyte gel with a solid content of 5%, then add the buffer gel layer inorganic solid electrolyte LLTO, mix and disperse Into a corresponding buffer glue, wherein the weight of the inorganic solid electrolyte of the buffer glue layer accounts for 40% of the weight of the corresponding electrolyte buffer glue.
  • the core layer inorganic solid electrolyte LLTO, electrolyte polymer PVDF, and electrolyte additive DBP are weighed at a weight ratio of 80:10:10.
  • the core layer inorganic solid electrolyte LLTO is mixed with the electrolyte polymer PVDF to make a master batch.
  • the masterbatch and 3wt% of electrolyte additive DBP are added into a twin-screw extruder, and are heated and mixed by the twin-screw extruder to obtain a solid electrolyte masterbatch.
  • step 3-3 Coat the positive electrode slurry obtained in step 3-2 on the 10 ⁇ m thick positive electrode support layer 12 aluminum foil, and after drying, rolling and cutting at a temperature of 120°C and an operating speed of 1.0m/min, The positive electrode sheet 1 was prepared.
  • step 4-3 Coat the negative electrode slurry obtained in step 4-2 on the copper foil of the negative electrode support layer 22 of 10 ⁇ m, and after drying, rolling and cutting at a temperature of 90°C and an operating speed of 1.0 m/min, The negative electrode sheet 2 was prepared.
  • the buffer glue prepared in step 1 and the solid electrolyte masterbatch prepared in step 2 are injected into the designated part of the extruder according to the set structure, and extruded once by co-extrusion technology, and the solvent is evaporated at a temperature of 80°C to obtain a composite
  • the solid electrolyte sheet 3, and then the composite solid electrolyte sheet 3, together with the positive electrode sheet 1 prepared in step 3 and the negative electrode sheet 2 prepared in step 4 are fed into a roller press, and then compressed into a sheet by a hot pressing lamination process.
  • the weight ratio of the first buffer glue layer (32), the solid electrolyte core layer (31) and the second buffer glue layer (33) is 15:70:15, and the thickness ratio is 20:60:20.
  • the buffer glue layer additive is PEO, and only the second buffer glue layer 33 is added with the buffer glue layer lithium salt.
  • It is LiTFSI, weighing 5g buffer rubber layer lithium salt LiTFSI and 10g buffer rubber layer additive PEO in a weight ratio of 5:10, dissolved in acetonitrile to form an organic polymer electrolyte gel with a solid content of 10%; buffer rubber layer inorganic solid electrolyte For LAGP, in the electrolyte buffer gel formed, the weight of the inorganic solid electrolyte of the buffer gel layer accounts for 60% of the weight of the corresponding electrolyte buffer gel.
  • the core layer of inorganic solid electrolyte is LAGP
  • the electrolyte polymer is PAA
  • the electrolyte additive is stearic acid
  • the core layer of inorganic solid electrolyte LAGP, electrolyte polymer PAA and electrolyte additive stearic acid weight The ratio is 40:50:1.
  • the positive electrode active material In the preparation of the positive electrode sheet 1, the positive electrode active material, conductive agent carbon black, polyethylene oxide, lithium salt LiTFSI and polyvinylidene fluoride were sequentially weighed in a weight ratio of 90:5:5:10:5.
  • the positive electrode active material was Lithium cobalt oxide, the temperature is 110°C, and the running speed is 0.5m/min.
  • the negative electrode active materials graphite, acetylene black, sodium carboxymethyl cellulose and PVDF in a weight ratio of 95:3:2:2.
  • the negative electrode active material is a silicon-carbon composite material and the temperature is 130°C, running speed is 20m/min.
  • the liquid electrolyte injected in the injection is BMIPF6.
  • the weight ratio of the first buffer glue layer (32), the solid electrolyte core layer (31) and the second buffer glue layer (33) is 5:85:10, and the thickness ratio is 5. : 80:15.
  • Example 2 The difference from Example 1 is that in the preparation of the buffer glue in this example, the buffer glue layer additive is PEC, and the buffer glue layer lithium salt is LiBOB, which weighs 10g buffer glue layer lithium at a weight ratio of 1:1
  • the salt LiBOB and the buffer glue layer additive PEC are dissolved in water to form an organic polymer electrolyte glue with a solid content of 10%.
  • the buffer glue layer inorganic solid electrolyte is LATP.
  • the weight of the buffer glue layer inorganic solid electrolyte is respectively It accounts for 20% of the weight of the corresponding electrolyte buffer glue.
  • the core layer inorganic solid electrolyte is a mixture of LATP and LLTO in a weight ratio of 1:1
  • the electrolyte polymer is PMMA
  • the electrolyte additive is paraffin
  • the weight ratio of paraffin wax and electrolyte additive is 89:30:5.
  • the positive electrode active material was Lithium iron phosphate, the temperature is 150°C, and the running speed is 10.0m/min.
  • the negative electrode active materials graphite, acetylene black, sodium carboxymethyl cellulose and PVDF in sequence at a weight ratio of 90:2:2:3.
  • the negative electrode active material is lithium metal and the temperature is 100°C. ,
  • the running speed is 0.5m/min.
  • the liquid electrolyte injected in the injection solution is PyR 14 TFSI.
  • the weight ratio of the first buffer glue layer (32), the solid electrolyte core layer (31) and the second buffer glue layer (33) is 70:25:5, and the thickness ratio is 30 : 50:20.
  • Example 2 The difference from Example 1 is that, in the preparation of the buffer gel, the buffer gel layer additive is PTMC, the buffer gel layer lithium salt is LiPF 6 , and the buffer gel layer inorganic solid electrolyte is Li 2 SP 2 S 5 .
  • the weight of the inorganic solid electrolyte of the buffer glue layer accounts for 20% of the weight of the corresponding electrolyte buffer glue.
  • the core layer inorganic solid electrolyte is Li 3 N;
  • the liquid electrolyte injected in the injection solution is DEMENTf 2 .
  • the weight ratio of the first buffer glue layer (32), the solid electrolyte core layer (31) and the second buffer glue layer (33) is 40:30:40, and the thickness ratio is 30 : 40:30.
  • the buffer glue layer additive is PPC
  • the buffer glue layer lithium salt is LiBF 4
  • the lithium salt LiBF 4 and the buffer adhesive layer additive PPC are dissolved in water to form an organic polymer electrolyte adhesive with a solid content of 12%.
  • the inorganic solid electrolyte of the buffer adhesive layer is Li 2 S-SiS 2
  • the electrolyte polymer is PVDF-HFP.
  • the additive is DOP;
  • the core layer inorganic solid electrolyte is a mixture of LLTO and Li 3 P(S 0.5 O 0.5 ) 4 in a weight ratio of 1:2.
  • the positive electrode active material is a lithium-rich manganese-based material
  • the temperature is 130° C.
  • the operating speed is 10.0 m/min.
  • the negative electrode active material is a nano silicon material
  • the temperature is 100° C.
  • the operating speed is 0.5 m/min.
  • the thickness ratio of the first buffer glue layer (32), the solid electrolyte core layer (31) and the second buffer glue layer (33) is 10:85:5.
  • the buffer glue layer additive is VC
  • the buffer glue layer lithium salt is LiCF 3 SO 3
  • the buffer glue layer inorganic solid electrolyte is Li 3 N;
  • the core layer inorganic solid electrolyte is LiPON.
  • the positive electrode active material is a composite material in which a ternary material is coated or physically mixed with a solid electrolyte, the temperature is 120°C, and the operating speed is 10.0m/min;
  • the thickness ratio of the first buffer glue layer (32), the solid electrolyte core layer (31) and the second buffer glue layer (33) is 15:83:2.
  • Example 2 The difference from Example 1 is that, in the preparation of the solid electrolyte masterbatch, the weight ratio of the core layer inorganic solid electrolyte LLTO, electrolyte polymer PVDF and electrolyte additive DBP is 90:5:5.
  • Example 2 The difference from Example 1 is that in the preparation of the buffer glue in this example, the buffer glue layer lithium salt LiTFSI and the buffer glue layer additive PEO are dissolved in acetonitrile at a weight ratio of 20:1.
  • Embodiment 1 The difference from Embodiment 1 is that in the preparation of the buffer glue in this embodiment, the weight of the inorganic solid electrolyte of the buffer glue layer accounts for 10% of the weight of the corresponding electrolyte buffer glue.
  • Embodiment 1 The difference from Embodiment 1 is that in this embodiment, the positive electrode sheet 1, the negative electrode sheet 2 and the composite solid electrolyte sheet 3 are made into a corresponding lithium battery through a traditional lamination process.
  • Embodiment 1 The difference from Embodiment 1 is that in this embodiment, the solid electrolyte masterbatch is first extruded to form the solid electrolyte core layer 31, and then the buffer glue is coated on both sides of the solid electrolyte core layer 31 to form the first buffer layer.
  • the adhesive layer 32 and the second buffer adhesive layer 33 are dried at 80°C to prepare the composite electrolyte core layer 3, and finally the composite electrolyte core layer 3 is sent to the roller press together with the positive electrode sheet 1 and the negative electrode sheet 2 through heat
  • the lamination process is one-time compression molding, and the solvent is evaporated at a temperature of 90°C to make the corresponding lithium battery.
  • Example 1 The difference from Example 1 is that the composite solid electrolyte sheet 3 in this comparative example does not contain the first buffer glue layer 32 and the second buffer glue layer 33.
  • Example 1 The difference from Example 1 is that the composite solid electrolyte sheet 3 in this comparative example only includes the solid electrolyte core layer 31 and the second buffer glue layer 33.
  • Example 1 The difference from Example 1 is that the composite solid electrolyte sheet 3 in this comparative example only includes the solid electrolyte core layer 31 and the first buffer glue layer 32.
  • Example 1 The difference from Example 1 is that no electrolyte polymer is added to the solid electrolyte core layer 31 of this comparative example.
  • Example 1 The difference from Example 1 is that no electrolyte polymer is added to the solid electrolyte core layer 31 of this comparative example, and a PP diaphragm layer is also provided between the solid electrolyte core layer 31 and the first buffer glue layer 32.
  • Comparative Example 6 is the lithium ion battery of Example 4 disclosed in the Chinese Invention Patent Application No. 201611112927.X.
  • Test experiment of the ratio of specific capacity to theoretical specific capacity The specific capacity of the present invention is displayed by the specific readings of the equipment during the production process, including the sum of normalized capacity and divided capacity. The specific capacity is calculated by the following formula. Ratio of specific capacity: [(normalized into capacity + sub-capacity)/theoretical specific capacity] ⁇ 100%.
  • the internal resistance of the present invention uses the German Zahner electrochemical workstation for AC impedance test; the test system is a U-Buffer two-electrode system, the test frequency range is 0.01Hz-100KHz, and the amplitude is 5mV.
  • Needle passing rate test experiment Measured according to GB/T 31485-2015 standard, the probe diameter is 5mm.
  • Example 1 to 6 the ratio of the specific capacity of the lithium battery to the theoretical specific capacity is higher than 90.2%, the cycle life is higher than 1210 times, the internal resistance is 26.7-37.2m ⁇ , and the battery short-circuit rate is lower than 0.3%. The thorn passing rate is higher than 95.7%.
  • the lithium storage batteries of the six embodiments have little difference in performance, and all have excellent electrical cycle performance and safety performance.
  • Example 7 to Example 12 the ratio of the specific capacity of the lithium battery to the theoretical specific capacity is 85.1-90.3%, the cycle life is 1130-1279 times, the internal resistance is 31.9-45.7m ⁇ , and the battery short-circuit rate is 0.4-2.8 %, the acupuncture pass rate is 85.7-98.1%.
  • the overall performance of the lithium batteries prepared in Example 1 to Example 6 is better than that of Example 7 to Example 12.
  • the composition of the first buffer glue layer and the second buffer glue layer in Example 1 is the same, and the lithium salt of the buffer glue layer is removed from the first buffer layer in Example 2, which verifies the composition of the two buffer glue layers It can be the same or different, and it is verified that the first buffer glue layer or the second buffer glue layer can include one or a mixture of one or more of the buffer glue layer inorganic solid electrolyte, the buffer glue layer lithium salt, and the buffer glue layer additives.
  • the core layer inorganic solid electrolyte in Example 1 is LLTO, which is representative of oxidized solid electrolytes
  • LAGP in Example 2 is a representative of sulfide solid electrolytes
  • LATP and LLTO in Example 3 are sulfide solid electrolytes and A representative of the mixed use of oxide-type solid electrolytes
  • Li 3 N in Example 4 is a representative of nitride-type solid electrolytes
  • LLTO and Li 3 P(S 0.5 O 0.5 ) 4 in Example 5 are oxide-type solid electrolytes Representative of mixed use with nitride type solid electrolyte. It can be proved that the core layer inorganic solid electrolyte can be a mixture of one or more of oxide type solid electrolyte, sulfide type solid electrolyte and nitride.
  • Examples 1 to 4 and Example 7 all define the thickness ratio of the first buffer glue layer, the solid electrolyte core layer and the second buffer glue layer, which can be obtained from the corresponding test results, when the thickness ratio is ( 5-30): (40-90): (5-30), the performance of the lithium battery prepared therefrom is better than that of the lithium battery that does not fall within the thickness ratio.
  • Examples 1 to 4 and Example 8 define the weight ratios of the core layer inorganic solid electrolyte, electrolyte polymer, and electrolyte additives, which can be obtained from the corresponding test results, when the weight ratio is (40-89): (10-50): At (1-10), the performance of the lithium battery prepared therefrom is better than that of the lithium battery that does not fall within the weight ratio.
  • Examples 1 to 4 and Example 9 define the weight ratio of the buffer gel layer lithium salt to the buffer gel layer additives, and the corresponding test results can be obtained, when the weight ratio is (5-15): (1 -10), the performance of the lithium battery prepared therefrom is better than that of the lithium battery that does not fall within the weight ratio.
  • Examples 1 to 4 and Example 10 define the proportion of the weight of the inorganic solid electrolyte of the buffer gel layer to the weight of the corresponding electrolyte buffer gel, which can be obtained from the corresponding test results, when the weight percentage is 20% At -60%, the performance of the lithium battery prepared therefrom is better than that of a lithium battery that does not fall within the weight ratio.
  • Example 1 and Example 11 and Example 12 all define the preparation method of lithium battery, which can be obtained from the corresponding test results.
  • the method of co-extrusion technology and one-time roll forming is used to prepare lithium battery, it can effectively improve
  • the electric cycle performance and safety performance of the lithium storage battery also ensure the excellent room temperature conductivity of the lithium storage battery.
  • Comparative Example 1 to Comparative Example 3 were adjusted on the basis of Example 1 for the settings of the first buffer glue layer and the second buffer glue layer.
  • the corresponding test results can be used to obtain the needle pass rate of Comparative Example 2. Although higher than 90%, it has good safety performance, but its ratio of specific capacity to theoretical specific capacity and cycle life are low.
  • the applicant also extracted the lithium batteries of Example 1 and Comparative Example 1 to Comparative Example 3 to determine the capacity retention rate.
  • the specific test results are shown in Figures 3 and 4.
  • the capacity retention rate of Example 1 is significantly higher than that of the The capacity retention rates of Example 1 and Comparative Example 2 are slightly higher than those of Comparative Example 3.
  • Comparative Example 4 and Comparative Example 5 respectively adjusted the components of the solid electrolyte core layer 31, and the corresponding test results can be obtained.
  • the solid electrolyte core layer 31 is added with electrolyte polymer Or replace it with a PP diaphragm layer, the electric cycle performance and safety performance of the lithium battery prepared by it will be significantly reduced.
  • Comparative Example 6 is an existing lithium-ion battery with a separator. Comparing its test results with those of Example 1, it can be obtained that the electrical cycle performance of the present invention differs slightly from that of Comparative Example 6, but the needling The pass rate is significantly better than that of Comparative Example 6, so the present invention has more excellent safety performance.
  • the lithium storage battery prepared by the present invention has excellent electric cycle performance and safety performance, and its preparation method has high production efficiency and simple operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本发明属于固态锂蓄电池技术领域,特别公开了一种混合固液电解质锂蓄电池,所述锂蓄电池包括正极片、负极片以及设置于正极片与负极片之间的复合固态电解质片,所述复合固态电解质片包括固态电解质核心层和设置于固态电解质核心层两侧的缓冲胶层;所述固态电解质核心层主要由核心层无机固态电解质、电解质聚合物和电解质添加剂混合而成,所述缓冲胶层主要由缓冲胶层无机固态电解质、缓冲胶层锂盐、缓冲胶层添加剂混合而成。本发明的锂蓄电池在制备时将共挤出技术和辊压技术相结合,实现一次加工成型,具有生产效率高、操作简便的特点,制得的锂蓄电池具有相对较高的电循环性能和安全性能。

Description

一种混合固液电解质锂蓄电池 技术领域
本发明属于锂蓄电池技术领域,特别涉及一种混合固液电解质锂蓄电池。
背景技术
在混合固液电解质锂蓄电池中,固态电解质为主要电解质成分,液态电解质则对固态电解质加以辅助,和传统的液态锂蓄电池相比,混合固液电解质锂蓄电池具有能量密度高、机械性能好、安全性好等优点。使用混合固液电解质后,锂蓄电池可以直接使用金属锂来做负极,使电池能量密度明显提高,同时固态电解质膜也可以抑制锂枝晶的生成,使得锂蓄电池的安全性能获得显著提升。
目前,主要有三个类别的固态电解质:①有机聚合物电解质,②无机固态电解质,③有机聚合物电解质与无机固态电解质复合而成的复合电解质。
有机聚合物电解质的电池易加工,可以沿用现有的锂离子电池工艺,但是其室温电导率低。无机固体电解质的室温电导率虽然较高,但是其材料成本较高,且电池工艺复杂,需要开发很多全新的电池生产设备,导致成本进一步升高。
相对于前面两类固态电解质,复合电解质具备有机聚合物电解质的易加工性能,并可一定程度上提高室温电导率,但是其机械强度差,容易导致膜容易破裂而造成电池短路。为此,人们通常在将复合电解质与正极材料之间涂覆有由PP、PE等聚合物制成的隔膜,以保证锂蓄电池中正负极的隔断,同时为复合电解质膜提供良好的支撑作用,保证锂蓄电池的安全性。
然而,虽然隔膜具有良好的支撑作用,但若是隔膜被钢针等异物刺穿或撞击而出现破裂,锂蓄电池中的液态电解质会对隔膜破裂的部位加以填充,使得锂蓄电池内部的正极和负极相互接通,导致锂蓄电池的短路,由此该锂蓄电池存在一定的安全隐患。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种混合固液电解质锂蓄电池,该锂蓄电池中省去了隔膜,仍具有良好的机械强度,保证其优异的电循环性能,同时具有较高的安全性。该锂蓄电池通过挤出技术实现锂蓄电池的一次成型,操作简便,提高了锂蓄电池的生产效率。
为实现上述目的,本发明提供了如下技术方案:
一种混合固液电解质锂蓄电池,包括正极片、负极片以及设置于正极片与负极片之间的复合固态电解质片,所述复合固态电解质片包括固态电解质核心层、设置于固态电解质核心层朝向正极片一侧的第一缓冲胶层和设置于固态电解质核心层朝向负极片一侧的第二缓冲胶层;所述固态电解质核心层主要由核心层无机固态电解质、电解质聚合物和电解质添加剂混合而成;所述第一缓冲胶层和第二缓冲胶层主要包括缓冲胶层无机固态电解质、缓冲胶层锂盐、缓冲胶层添加剂中的一种或多种的混合物,且第一缓冲胶层或第二缓冲 胶层的重量占复合固态电解质片的重量的5%-70%。
通过采用上述技术方案,固态电解质核心层中,核心层无机固态电解质保证了复合固态电解质片优良的室温电导率,电解质聚合物在电解质添加剂的作用下均匀混合于核心层无机固态电解质中,而聚合物本身具有良好的机械强度和热熔性,以此能够在一定程度上能够改善核心层无机固态电解质自身以及其与第一缓冲胶层以及第二缓冲胶层之间的粘性,同时为核心层无机固态电解质提供良好的支撑作用,使得固态电解质核心层具有优良的机械强度,以此保证锂蓄电池优异的电循环性能。
另外,由于聚合物通常具有良好的绝缘性和回弹性,且在熔融状态下具有良好的黏性,因此将其混合于核心层无机固态电解质中能够实现正极片和负极片的电路隔断;相对于隔膜的隔断,本发明中的电解质聚合物还能作为粘接剂,能较好的分散于核心层无机固态电解质之间并对其加以粘接,使得固态电解质核心层具有一定的回弹性,即使有钢针等异物刺穿或撞击该固态电解质核心层而使得固态电解质核心层出现破裂,该固态电解质核心层在电解质聚合物的作用下将破裂的缝隙缩小乃至复原,从而保持原有优良的隔断效果,保证锂蓄电池优异的安全性能;
第一缓冲胶层和第二缓冲胶层中的缓冲胶层无机固态电解质使得电解质核心层与正极片和负极片之间存在一个离子浓度梯度,再结合缓冲层锂盐,为锂蓄电池补充一定量的锂离子,改善锂蓄电池的电循环性能;缓冲胶层添加剂则能够有助于缓冲胶层无机固态电解质和缓冲层锂盐充分混合,保证缓冲胶层优良的缓冲作用。
综上,本发明的锂蓄电池能够在去除隔膜后依旧保持其优良的机械强度,保证锂蓄电池的正常使用,同时在一定程度上还提高了锂蓄电池的安全性能和电池性能。
本发明中正极片和负极片均由一些现有的材料制成。正极片的正极材料优选为Li 1+zCo 1-nAnO 2、三元材料Li 1+zNi xCo yM 1-x-y-nAnO 2、富锂锰基材料mLi 2MnO 3·(1-m)Li 1+z-Ni xCo yMn 1-x-y-nAnO 2、镍锰尖晶石Li 1+zNi 0.5-hMn 1.5-lAnO 4、磷酸铁锰锂Li 1+zFe xMn 1-x-nAnPO 4、锰酸锂Li 1+zMn 2-nAnO 4、磷酸铁锂Li 1+zFe 1-nAnPO 4,以及经固态电解质包覆或物理混合后的上述正极材料中的一种或多种的混合物;其中,0≤z<0.1,0≤n<0.1,0<x<1,0<y<1,0<x+y+n<1,0<m<1,h+l=n,M为Mn或Al,A为Ti、Mg、Al、Zr、Nb、Ba、La、V、W、Ag、Sn中的至少一种元素。
负极片的负极活性材料优选为碳材料、锡基材料、硅基材料、过渡金属氧化物、金属锂、锂合金、Li xC 6(0<x≤1)、含锂的过渡金属氮化物型固态电解质以及钛酸锂基材料的一种或多种的混合物;其中碳材料有石墨类、无定形碳类等,锡基材料有纯锡、锡的氧化物、锡合金等,硅基材料有纳米硅、氧化亚硅、硅碳复合材料等。
由此,使得本发明在制备过程中选用正极材料或负极材料时,技术人员可以根据实际所需而做出选择,使得制得的锂蓄电池具有更为优异的性能。另外,虽然本发明公开了上述几种正极材料和负极材料,但并不局限于此。
进一步地,所述第一缓冲胶层、固态电解质核心层和第二缓冲胶层的厚度比为(5-30):(40-90):(5-30)。
进一步地,所述固态电解质核心层中,所述核心层无机固态电解质、电解质聚合物、电解质添加剂的重量比为(40-89):(10-50):(1-10)。
申请人经过大量实验验证获得,当第一缓冲胶层、固态电解质核心层和第二缓冲胶层的厚度比为(5-30):(40-90):(5-30),核心层无机固态电解质、电解质聚合物、电解质添加剂的重量比为(40-89):(10-50):(1-10)时,其对应制得的锂蓄电池的综合性能优异,可被大量推广和应用。
进一步地,所述固态电解质核心层中,所述核心层无机固态电解质为氧化物型固态电解质、硫化物型固态电解质和氮化物型固态电解质中的一种或多种的混合物。
所述氧化物型固态电解质为石榴石型固态电解质材料、NASICON型固态电解质材料、LISICON固态电解质材料及钙钛矿型固态电解质材料中的一种或多种的混合物。
所述硫化物型固态电解质为结晶态或非晶态的Li 2S-P 2S 5、结晶态的Li 4MS 4、结晶态的Li 10NP 2S 12、Li 2S、Li 3PS 4、Li 3P(S xO 1-x) 4及微晶态的Li 2S-P 2S 5-LiX中的一种或多种的混合物;其中,M选自Si、Ge、Sn中的一种或多种,N选自Si、Ge、Sn中的一种或多种,X选自Cl、Br、I中的一种或多种,0<x<1。
所述氮化物型固态电解质为Li 3N和LiPON的一种或两种的混合物。
氧化物型固态电解质、硫化物型固态电解质以及氮化物型固态电解质,相较于聚合物、复合物、薄膜等固态电解质材料,化学性质活泼,能够快速的电离出电子,具有优异的锂离子导电性,从而使得锂蓄电池具有优异的电导率。
公开的氧化物型固态电解质中,石榴石型固态电解质优选为:Li 7A 3B 2O 12,其中A为La、Ca、Sr、Ba、K中的一种或多种,B为Zr、Ta、Nb、Hf中的一种或多种;NASICON型固态电解质优选为:Li 1+xA xB 2+x(PO 4) 3,其中x在0.01-0.5之间,A为Al、Y、Ga、Cr、In、Fe、Se、La中的一种或多种,B为Ti、Ge、Ta、Zr、Sn、Fe、V、金属铪Hf中的一种或多种;LISICON型固态电解质优选为:Li 14A(BO 4) 4,其中A为Zr、Cr、Sn中的一种或多种,B为Si、S、P中的一种或多种;钙钛矿型固态电解质优选为:Li 3xA 2/3-xBO 3,其中x在0.01-0.5之间,A为La、Al、Mg、Fe、Ta中的一种或多种,B为Ti、Nb、Sr、Pr中的一种或多种。虽然本发明公开了上述几种氧化型固态电解质,但并不局限于此。
进一步地,所述固态电解质核心层中,所述电解质聚合物为PEO、聚硅氧烷、PPC、PEC、PVC、PAN、PAA、PVDF、PVDF-HFP、PMMA、NHD、PEI中的一种或多种的混合物。
聚氧化乙烯(PEO)、聚硅氧烷、聚碳酸亚丙酯(PPC)、聚碳酸亚乙酯(PEC)、聚氯乙烯(PVC)、聚丙烯腈(PAN)、聚丙烯酸(PAA)、聚偏氟乙烯(PVDF)、聚偏氟乙烯-六氟丙烯(PVDF-HFP)、聚甲基丙烯酸甲酯(PMMA)、聚乙二醇二甲醚(NHD)、聚醚酰亚胺(PEI)均能够较好的填充于无机固态电解质的粒子中,得到具有微孔结构的复合固态电解质片,而锂离子在这些微孔中的迁移速度快,由此使得该 复合固态电解质片具有较高的室温电导率。另外,当电解质聚合物优选为PAA、PVDF、PVDF-HFP、PMMA中的一种或多种的混合物时,其对应制得的锂蓄电池具有更为优异的电导率。
进一步地,所述固态电解质核心层中,所述电解质添加剂为硬脂酸、硬脂酸盐、石蜡、硅氧烷、金属皂、邻苯二甲酸二丁酯、邻苯二甲酸二辛酯、环己烷、磺酸盐中的一种或多种的混合物。
硬脂酸、硬脂酸盐、石蜡、硅氧烷、金属皂、邻苯二甲酸二丁酯、邻苯二甲酸二辛酯、环己烷和磺酸盐均为作为润滑剂,能够减少无机固态电解质和电解质聚合物之间的摩擦,便于固态电解质核心层的挤出成型。
进一步地,所述第一缓冲胶层和第二缓冲胶层中,所述缓冲胶层锂盐、缓冲胶层添加剂的重量比为5-15:1-10,缓冲胶层无机固态电解质的重量占第一缓冲胶层或第二缓冲胶层的重量的20%-60%。
锂蓄电池在综合考虑电池性能、安全性能等性能时,缓冲胶层中缓冲胶层锂盐、缓冲胶层添加剂的重量比为5-15:1-10,缓冲胶层无机固态电解质的重量占第一缓冲胶层或第二缓冲胶层的重量的20%-60%,其对应制得的锂蓄电池达到最优。
其中,本发明中的缓冲胶层无机固态电解质主要是为锂蓄电池补充锂离子而使得锂蓄电池具有良好的循环寿命,因此,该缓冲胶层无机电解质的材料与核心层无机固态电解质的材料是否一致无关,在使用时既可以与核心层无机固态电解质相同,也可以不相同。
进一步地,所述第一缓冲胶层和第二缓冲胶层中,所述缓冲胶层锂盐包括LiClO 4、LiAsF 6、LiBF 4、LiPF 6、LiCF 3SO 3、LiTFSI、LiC(CF 3SO 2) 3、LiBOB中的一种或多种的混合物。
高氯酸锂(LiClO 4)、六氟砷酸锂(LiAsF 6)、四氟硼酸锂(LiBF 4)、六氟磷酸锂(LiPF 6)、三氟甲基磺酸锂(LiCF 3SO 3)、双(三氟甲基磺酸)亚胺锂(LiTFSI)、三(三氟甲基磺酸)甲基锂(LiC(CF 3SO 2) 3)和双草酸硼酸锂(LiBOB)中均为含有酸根离子的锂盐,能够快速电离出锂离子,在锂蓄电池中锂离子不足时加以补充,另外其产生的酸根离子不稳定,当锂蓄电池中的锂离子多余时加以结合,以此为锂蓄电池提供一个动态平衡的体系,改善锂蓄电池的电循环性能。
进一步地,所述第一缓冲胶层和第二缓冲胶层中,所述缓冲胶层添加剂为PEO、聚硅氧烷、PPC、PEC、PTMC、VC、氟代甲基碳酸酯、氟代乙基碳酸酯中的一种或多种的混合物。
通过采用上述技术方案,聚环氧乙烯(PEO)、聚硅氧烷、聚碳酸丙烯酯(PPC)、聚碳酸亚乙酯(PEC)、聚三亚甲基碳酸酯(PTMC)、碳酸亚乙烯酯(VC)、氟代甲基碳酸酯和氟代乙基碳酸酯均为高分子聚合物,其起到良好的支撑作用的同时,还能够与固态电解质核心层中的电解质聚合物较好的相容,从而增加了固态电解质核心层和缓冲胶层的粘接牢固度。
进一步地,所述锂蓄电池的制备方法包括以下操作步骤:
①、缓冲胶的制备
配制用于成型第一缓冲胶层和第二缓冲胶层的缓冲胶,具体为:将缓冲胶层添加剂与缓冲胶层锂盐溶于溶 剂中,再加入缓冲胶层无机固态电解质,混合分散后得到相应的缓冲胶;
②、固态电解质母胶的制备
将核心层无机固态电解质先与电解质聚合物进行混合制成母料,再将母料与电解质添加剂加入挤出机中,经挤出机加热和混炼得到固态电解质母胶;
③、共挤出成型
将步骤①制备的缓冲胶和步骤②制备的固态电解质母胶按设定的结构注入挤出机的指定部位,通过共挤出技术一次挤出,蒸干溶剂后得到复合固态电解质片,再将正极片和负极片通过热压叠片工艺一次压片成型,蒸干溶剂后注入液态电解质,制成最终的混合固液电解质锂蓄电池。
通过采用上述技术方案,本发明中溶剂可以为碳酸丙烯酯、碳酸乙烯酯、碳酸二乙酯、碳酸二甲酯、乙腈、水、N-甲基吡咯烷酮中的一种或者几种的混合物溶剂,但并不局限于上述公开的这几种溶剂,从而促使缓冲胶层添加剂、缓冲胶层锂盐、缓冲胶层固态电解质之间分散均匀。分散于核心层无机固态电解质中的电解质聚合物在挤出机加热过程中会发生一定的熔化,进而将核心层无机固态电解质加以粘接固定。
随后将缓冲胶和固态电解质母胶一次挤出,其挤出的复合固态电解质片再与正极片和负极片一次压片成型,再利用液态电解质对锂蓄电池进行注液,从而有效减少锂蓄电池内部的界面电阻,相对于将缓冲胶、固态电解质母胶一层一层的涂覆于正极片或负极片上的传统操作,本发明的方法有效减少了锂蓄电池的制备步骤,有效提高锂蓄电池的生产效率,在一定程度上降低其生产成本。
其中,本发明中的液态电解质优选为咪唑类离子液体、吡咯类离子液体和短链脂肪季铵盐类离子液体中的一种或多种的混合物,更优选的,液态电解质为1-乙基-3-甲基咪唑氟化盐(EMIF 2.3HF)、1-丁基-3-甲基咪唑六氟磷酸盐(BMIPF 6)、N-甲基丁基吡咯烷二(三氟甲基磺酰)亚胺盐(PyR 14TFSI)、N,N-二甲基-N-乙基-N-2-甲氧基乙基铵二(三氟甲基磺酰)亚胺盐(DEMENTf 2)中的一种或多种的混合物,但并不局限于上述公开的这几种,以此降低正极片、负极片和复合固态电解质片之间的界面电阻。
综上所述,本发明具有以下有益效果:
1、本发明的锂蓄电池通过正极片、缓冲胶层、固态电解质核心层、缓冲胶层、负极片的结构设置,省去了隔膜的设置,即使有钢针等异物刺穿或撞击该固态电解质核心层而使得固态电解质核心层出现破裂,该固态电解质核心层在其内部电解质聚合物的作用下将破裂的缝隙缩小乃至复原,从而保持原有优良的隔断效果,使得锂蓄电池具有良好的机械强度、相对较高的电循环性能以及安全性能。
2、本发明的锂蓄电池将共挤出技术和辊压技术相结合,实现一次加工成型,减少了锂蓄电池的制备步骤,有效提高锂蓄电池的生产效率,在一定程度上降低了其生产成本,具有操作简便的特点。
附图说明
图1为混合固液电解质锂蓄电池的内部结构示意图;
图2为制备混合固液电解质锂蓄电池的挤出制片的简单结构示意图;
图3为实施例1和对比例1的容量保持率的检测图谱;
图4为实施例1、对比例2和对比例3的容量保持率的检测图谱。
图中,1、正极片;11、正极材料层;12、正极支撑层;2、负极片;21、负极材料层;22、负极支撑层;3、复合固态电解质片;31、固态电解质核心层;32、第一缓冲胶层;33、第二缓冲胶层。
具体实施方式
以下结合附图对本发明作进一步详细说明。
参见图1,为本发明公开的一种混合固液电解质锂蓄电池,包括正极片1、负极片2以及设置于正极片1与负极片2之间的复合固态电解质片3。复合固态电解质片3包括固态电解质核心层31、设置于固态电解质核心层31朝向正极片1一侧的第一缓冲胶层32和设置于固态电解质核心层31朝向负极片2一侧的第二缓冲胶层33。
其中,本发明中正极片1包括正极材料层11和正极支撑层12。正极材料层11与第一缓冲胶层32贴合,包括正极活性材料、导电剂、PEO、锂盐和PVDF。本发明中负极片2包括负极材料层21和负极支撑层22。负极材料层21与第二缓冲胶层33贴合,负极材料层21包括负极活性材料、导电剂、糊化剂和粘结剂。
固态电解质核心层31主要由核心层无机固态电解质、电解质聚合物和电解质添加剂混合而成,第一缓冲胶层32和第二缓冲胶层33均包括缓冲胶层无机固态电解质、缓冲胶层锂盐和缓冲胶层添加剂中的一种或多种的混合物。
以下结合具体实施例对本发明的制备方法作进一步详细说明。
实施例1
参见图2,一种混合固液电解质锂蓄电池的制备方法,包括以下操作步骤:
①、缓冲胶的制备
配制用于成型第一缓冲胶层32和第二缓冲胶层33的缓冲胶,且第一缓冲胶层32和第二缓冲胶层33的组成相同,具体为:按5:1的重量比称取5g缓冲胶层锂盐LiTFSI和1g缓冲胶层添加剂PEO,将两者溶于114g乙腈中,形成固含量为5%的有机聚合物电解质胶,再加入缓冲胶层无机固态电解质LLTO,混合分散成相应的缓冲胶,其中缓冲胶层无机固态电解质的重量分别占对应电解质缓冲胶的重量的40%。
②、固态电解质母胶的制备
将核心层无机固态电解质LLTO、电解质聚合物PVDF、电解质添加剂DBP按重量比为80:10:10进行称量,将核心层无机固态电解质LLTO先与电解质聚合物PVDF进行混合制成母料,再将母料与3wt%的电解质添加剂DBP加入双螺杆挤出机中,经双螺杆挤出机加热和混炼得到固态电解质母胶。
③、正极片1的制备
③-1、按重量比为80:1:12:2:1依次称取正极活性材料、
导电剂炭黑、聚氧化乙烯、锂盐LiTFSI和聚偏氟乙烯,其中正极活性物质为三元材料,备用。
③-2、以N-甲基吡咯烷酮为溶剂,将正极活性材料LiCoAnO 2、导电剂炭黑、PEO、锂盐LiTFSI、PVDF与N-甲基吡咯烷酮进行混合,搅拌成固含量为50%的均一的正极浆料,用于形成正极材料层11。
③-3、将步骤③-2得到的正极浆料涂布于10μm厚的正极支撑层12铝箔上,经温度为120℃、运行速度为1.0m/min的干燥、辊压及裁切后,制得正极片1。
④、负极片2的制备
④-1、按重量比为90:1:1:3依次称取负极活性材料石墨、乙炔黑、羧甲基纤维素钠和PVDF,备用。
④-2、以水为溶剂,将负极活性材料石墨、乙炔黑、羧甲基纤维素钠和PVDF进行混合,搅拌成固含量为60%的均一的负极浆料,用于形成负极材料层21。
④-3、将步骤④-2得到的负极浆料涂布于10μm的负极支撑层22铜箔上,经温度为90℃、运行速度为1.0m/min的干燥、辊压及裁切后,制得负极片2。
⑤、共挤压成型
将步骤①制备的缓冲胶和步骤②制备的固态电解质母胶按设定的结构注入挤出机的指定部位,通过共挤压技术一次挤出,在80℃的温度下蒸干溶剂,得到复合固态电解质片3,再将复合固态电解质片3同步骤③制得的正极片1和步骤④制得的负极片2一起送入辊压机中,通过热压叠片工艺一次压片成型,在90℃的温度下蒸干溶剂,注入足量的液态电解质EMIF2.3HF进行注液工序,随后按现有的电池制备工序制成最终的混合固液电解质锂蓄电池,制得的混合固液电解质锂蓄电池中,第一缓冲胶层(32)、固态电解质核心层(31)和第二缓冲胶层(33)的重量比为15:70:15,厚度比为20:60:20。
实施例2
与实施例1的不同之处在于,本实施例在缓冲胶的制备中,缓冲胶层添加剂为PEO,仅在第二缓冲胶层33中添加有缓冲胶层锂盐,该缓冲胶层锂盐为LiTFSI,按5:10的重量比称量5g缓冲胶层锂盐LiTFSI和10g缓冲胶层添加剂PEO溶于乙腈中,形成固含量为10%的有机聚合物电解质胶;缓冲胶层无机固态电解质为LAGP,形成的电解质缓冲胶中,缓冲胶层无机固态电解质的重量分别占对应电解质缓冲胶的重量的60%。
在固态电解质母胶的制备中,核心层无机固态电解质为LAGP,电解质聚合物为PAA,电解质添加剂为硬脂酸,且核心层无机固态电解质LAGP、电解质聚合物PAA和电解质添加剂硬脂酸的重量比为40:50:1。
在正极片1的制备中,按重量比为90:5:5:10:5依次称取正极活性材料、导电剂炭黑、聚氧化乙烯、锂盐LiTFSI和聚偏氟乙烯,正极活性物质为钴酸锂,温度为110℃,运行速度为0.5m/min。
在负极片2的制备中,按重量比为95:3:2:2依次称取负极活性材料石墨、乙炔黑、羧甲基纤维素钠和PVDF,负极活性物质为硅碳复合材料,温度为130℃,运行速度为20m/min。
注液中注入的液态电解质为BMIPF6。
制得的混合固液电解质锂蓄电池中,第一缓冲胶层(32)、固态电解质核心层(31)和第二缓冲胶层(33)的重量比为5:85:10,厚度比为5:80:15。
实施例3
与实施例1的不同之处在于,本实施例在缓冲胶的制备中,缓冲胶层添加剂为PEC,缓冲胶层锂盐为LiBOB,其按1:1的重量比称量10g缓冲胶层锂盐LiBOB和缓冲胶层添加剂PEC溶于水中,形成固含量为10%的有机聚合物电解质胶,缓冲胶层无机固态电解质为LATP,形成的电解质缓冲胶中,缓冲胶层无机固态电解质的重量分别占对应电解质缓冲胶的重量的20%。
在固态电解质母胶的制备中,核心层无机固态电解质为LATP和LLTO重量比为1:1的混合物,电解质聚合物为PMMA,电解质添加剂为石蜡,且核心层无机固态电解质LATP、电解质聚合物PMMA和电解质添加剂石蜡的重量比为89:30:5。
在正极片1的制备中,按重量比为85:5:10:5:2依次称取正极活性材料、导电剂炭黑、聚氧化乙烯、锂盐LiTFSI和聚偏氟乙烯,正极活性物质为磷酸铁锂,温度为150℃,运行速度为10.0m/min。
在负极片2的制备中,按重量比为90:2:2:3依次称取负极活性材料石墨、乙炔黑、羧甲基纤维素钠和PVDF,负极活性物质为金属锂,温度为100℃,运行速度为0.5m/min。
注液中注入的液态电解质为PyR 14TFSI。
制得的混合固液电解质锂蓄电池中,第一缓冲胶层(32)、固态电解质核心层(31)和第二缓冲胶层(33)的重量比为70:25:5,厚度比为30:50:20。
实施例4
与实施例1的不同之处在于,本实施例在缓冲胶的制备中,缓冲胶层添加剂为PTMC,缓冲胶层锂盐为LiPF 6,缓冲胶层无机固态电解质为Li 2S-P 2S 5,形成的电解质缓冲胶中,缓冲胶层无机固态电解质的重量占对应电解质缓冲胶的重量的20%。
在固态电解质母胶的制备中,核心层无机固态电解质为Li 3N;
注液中注入的液态电解质为DEMENTf 2
制得的混合固液电解质锂蓄电池中,第一缓冲胶层(32)、固态电解质核心层(31)和第二缓冲胶层(33)的重量比为40:30:40,厚度比为30:40:30。
实施例5
与实施例1的不同之处在于,本实施例在缓冲胶的制备中,缓冲胶层添加剂为PPC,缓冲胶层锂盐为LiBF 4,其按15:1的重量比称取15g缓冲胶层锂盐LiBF 4和缓冲胶层添加剂PPC溶于水中,形成固含量为12%的有机聚合物电解质胶,缓冲胶层无机固态电解质为Li 2S-SiS 2,电解质聚合物为PVDF-HFP,电解质添加剂为DOP;
在固态电解质母胶的制备中,核心层无机固态电解质为LLTO和Li 3P(S 0.5O 0.5) 4重量比为1:2的混合物。
在正极片1的制备中,正极活性物质为富锂锰基材料,温度为130℃,运行速度为10.0m/min。
在负极片2的制备中,负极活性物质为纳米硅材料,温度为100℃,运行速度为0.5m/min。
制得的混合固液电解质锂蓄电池中,第一缓冲胶层(32)、固态电解质核心层(31)和第二缓冲胶层(33)的厚度比为10:85:5。
实施例6
与实施例1的不同之处在于,本实施例在缓冲胶的制备中,缓冲胶层添加剂为VC,缓冲胶层锂盐为LiCF 3SO 3,缓冲胶层无机固态电解质为Li 3N;
在固态电解质母胶的制备中,核心层无机固态电解质为LiPON。
在正极片1的制备中,正极活性物质为三元材料经固态电解质包覆或物理混合的复合材料,温度为120℃,运行速度为10.0m/min;
实施例7
与实施例1的不同之处在于,本实施例中,第一缓冲胶层(32)、固态电解质核心层(31)和第二缓冲胶层(33)的厚度比为15:83:2。
实施例8
与实施例1的不同之处在于,本实施例在固态电解质母胶的制备中,核心层无机固态电解质LLTO、电解质聚合物PVDF和电解质添加剂DBP的重量比为90:5:5。
实施例9
与实施例1的不同之处在于,本实施例在缓冲胶的制备中,缓冲胶层锂盐LiTFSI与缓冲胶层添加剂PEO按重量比为20:1的比例溶于乙腈中。
实施例10
与实施例1的不同之处在于,本实施例在缓冲胶的制备中,缓冲胶层无机固态电解质的重量占对应电解质缓冲胶的重量的10%。
实施例11
与实施例1的不同之处在于,本实施例中正极片1、负极片2和复合固态电解质片3通过传统叠片工艺制成相应的锂蓄电池。
实施例12
与实施例1的不同之处在于,本实施例中固态电解质母胶先挤出制成固态电解质核心层31,再将缓冲胶涂覆于固态电解质核心层31的两侧,对应形成第一缓冲胶层32和第二缓冲胶层33,80℃烘干溶剂后制得复合电解质核心层3,最后将复合电解质核心层3与正极片1和负极片2一起送入辊压机中,通过热压叠片工艺一次压片成型,在90℃的温度下蒸干溶剂,制成相应的锂蓄电池。
对比例1
与实施例1的不同之处在于,本对比例中复合固态电解质片3不含第一缓冲胶层32和第二缓冲胶层33。
对比例2
与实施例1的不同之处在于,本对比例中复合固态电解质片3只包含固态电解质核心层31和第二缓冲胶层33。
对比例3
与实施例1的不同之处在于,本对比例中复合固态电解质片3只包含固态电解质核心层31和第一缓冲胶层32。
对比例4
与实施例1的不同之处在于,本对比例的固态电解质核心层31中未添加电解质聚合物。
对比例5
与实施例1的不同之处在于,本对比例的固态电解质核心层31中未添加电解质聚合物,且在固态电解质核心层31与第一缓冲胶层32之间还设置有PP隔膜层。
对比例6
对比例6为申请号为201611112927.X的中国发明专利公开的实施例4的锂离子电池。
将实施例1-实施例12以及对比例1-对比例6制得的锂蓄电池进行如下性能测试,测试结果参见表一。
1、比容量发挥占理论比容量的比例测试实验:本发明的比容量发挥为生产过程中设备的具体读数显示,包括正常化成容量和分容容量的总和,通过下式计算比容量发挥占理论比容量的比例:[(正常化成容量+分容容量)/理论比容量]×100%。
2、循环寿命性能测试实验:在1C/4.2V的恒电流/恒电压条件(室温60℃)下,每个电池通过1C/4.2V截止电流充电和1C/3.0V截止放电,统计在容量保持率为80%及以上时的循环次数。
3、内阻测试实验:本发明的内阻采用德国Zahner电化学工作站进行交流阻抗测试;测试系统为U-Buffer二电极体系,测试频率范围是0.01Hz-100KHz,振幅为5mV。
4、电池短路率测试实验:按照GB/T 31485-2015的标准进行测定。
5、刺针通过率测试实验:按照GB/T 31485-2015的标准进行测定,探针直径为5mm。
表一
Figure PCTCN2019092434-appb-000001
Figure PCTCN2019092434-appb-000002
结果分析
实施例1至实施例6中,锂蓄电池的比容量发挥占理论比容量的比例高于90.2%,循环寿命高于1210次,内阻在26.7-37.2mΩ,电池短路率低于0.3%,针刺通过率高于95.7%。将各个性能综合起来进行考虑,这六个实施例的锂蓄电池的性能差异不大,均具有优异的电循环性能和安全性能。实施例7至实施例12中,锂蓄电池的比容量发挥占理论比容量的比例为85.1-90.3%,循环寿命为1130-1279次,内阻在31.9-45.7mΩ,电池短路率为0.4-2.8%,针刺通过率为85.7-98.1%。将各性能综合起来进行考虑,实施例1至实施例6制得的锂蓄电池的综合性能更优于实施例7至实施例12的。
其中,实施例1中第一缓冲胶层与第二缓冲胶层的组成相同,而实施例2中第一缓冲层中去除了缓冲胶层锂盐,既验证了两个缓冲胶层的组分可以相同也可以不同,又验证了第一缓冲胶层或第二缓冲胶层可以包括缓冲胶层无机固态电解质、缓冲胶层锂盐、缓冲胶层添加剂中的一种或多种的混合物。
实施例1中的核心层无机固态电解质为LLTO,为氧化型固态电解质的代表,实施例2中的LAGP为硫化型固态电解质的代表,实施例3中的LATP和LLTO为硫化物型固态电解质与氧化物型固态电解质混合使用的代表,实施例4中的Li 3N为氮化物型固态电解质的代表,实施例5中的LLTO和Li 3P(S 0.5O 0.5) 4为氧化物型固态电解质与氮化物型固态电解质混合使用的代表。由此可以证明,核心层无机固态电解质可以为氧化物型固态电解质、硫化物型固态电解质和氮化物中的一种或多种的混合物。
实施例1至实施例4以及实施例7中均限定了第一缓冲胶层、固态电解质核心层和第二缓冲胶层的厚度比,由其对应的检测结果可得,当该厚度比为(5-30):(40-90):(5-30)时,其制得的锂蓄电池的性能优于未落在该厚度比内的锂蓄电池的性能。
实施例1至实施例4以及实施例8中限定了核心层无机固态电解质、电解质聚合物和电解质添加剂的重量比,由其对应的检测结果可得,当该重量比为(40-89):(10-50):(1-10)时,其制得的锂蓄电池的性能优于未落在该重量比内的锂蓄电池的性能。
实施例1至实施例4以及实施例9中限定了缓冲胶层锂盐与缓冲胶层添加剂的重量比,由其对应的 检测结果可得,当该重量比为(5-15):(1-10)时,其制得的锂蓄电池的性能优于未落在该重量比内的锂蓄电池的性能。
实施例1至实施例4以及实施例10中限定了缓冲胶层无机固态电解质的重量与对应电解质缓冲胶的重量的占比,由其对应的检测结果可得,当该重量占比为20%-60%时,其制得的锂蓄电池的性能优于未落在该重量占比内的锂蓄电池的性能。
实施例1与实施例11和实施例12均限定了锂蓄电池的制备方法,由其对应的检测结果可得,当采用共挤出技术和一次压辊成型的方法来制备锂蓄电池,能有效提高该锂蓄电池的电循环性能和安全性能,同时保证了锂蓄电池优良的室温电导率。
对比例1至对比例3在实施例1的基础上分别对第一缓冲胶层和第二缓冲胶层的设置做出了调整,由其对应的检测结果可得,对比例2的刺针通过率虽然高于90%,具有良好的安全性能,但其比容量发挥占理论比容量的比例和循环寿命较低。另外,申请人还抽取实施例1以及对比例1-对比例3的锂蓄电池进行容量保持率的测定,具体检测结果如图3和图4所示,实施例1的容量保持率明显高于对比例1和对比例2的容量保持率,且略高于对比例3的容量保持率。再结合表一的检测结果,可以得到,本发明的锂蓄电池中设置第一缓冲胶层32和第二缓冲胶层33能够有效改善锂蓄电池的容量保持率,且第一缓冲胶层32对电容保持率的影响明显大于第二缓冲胶层33,由此可得,同时设置第一缓冲胶层32和第二缓冲胶层33能够有效提高锂蓄电池的电循环性。
对比例4和对比例5在实施例1的基础上,分别对固态电解质核心层31的组分做出了调整,由其对应的检测结果可得,当固态电解质核心层31中为添加电解质聚合物或将其替换成PP隔膜层,其制得的锂蓄电池的电循环性能和安全性能明显下降。
对比例6为现有的带有隔膜的锂离子电池,将其检测结果与实施例1的检测结果进行比较,可以得到,本发明的电循环性能与对比例6的相差较小,但针刺通过率明显优于对比例6,因此本发明具有更为优异的安全性能。
综上,本发明制得的锂蓄电池具有优异的电循环性能和安全性能,其制备方法生产效率高、操作简便。
本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。

Claims (10)

  1. 一种混合固液电解质锂蓄电池,包括正极片(1)、负极片(2)以及设置于正极片(1)与负极片(2)之间的复合固态电解质片(3),其特征在于,所述复合固态电解质片(3)包括固态电解质核心层(31)、设置于固态电解质核心层(31)朝向正极片(1)一侧的第一缓冲胶层(32)和设置于固态电解质核心层(31)朝向负极片(2)一侧的第二缓冲胶层(33);所述固态电解质核心层(31)主要由核心层无机固态电解质、电解质聚合物和电解质添加剂混合而成;所述第一缓冲胶层(32)和第二缓冲胶层(33)主要包括缓冲胶层无机固态电解质、缓冲胶层锂盐、缓冲胶层添加剂中的一种或多种的混合物,且第一缓冲胶层(32)或第二缓冲胶层(33)的重量占复合固态电解质片(3)的重量的5%-70%。
  2. 根据权利要求1所述的一种混合固液电解质锂蓄电池,其特征在于,所述第一缓冲胶层(32)、固态电解质核心层(31)和第二缓冲胶层(33)的厚度比为(5-30):(40-90):(5-30)。
  3. 根据权利要求1所述的一种混合固液电解质锂蓄电池,其特征在于,所述固态电解质核心层(31)中,所述核心层无机固态电解质、电解质聚合物、电解质添加剂的重量比为(40-89):(10-50):(1-10)。
  4. 根据权利要求1所述的一种混合固液电解质锂蓄电池,其特征在于,所述固态电解质核心层(31)中,所述核心层无机固态电解质为氧化物型固态电解质、硫化物型固态电解质和氮化物型固态电解质中的一种或多种的混合物;
    所述氧化物型固态电解质为石榴石型固态电解质材料、NASICON型固态电解质材料、LISICON固态电解质材料及钙钛矿型固态电解质材料中的一种或多种的混合物;
    所述硫化物型固态电解质为结晶态或非晶态的Li 2S-P 2S 5、结晶态的Li 4MS 4、结晶态的Li 10NP 2S 12、Li 2S、Li 3PS 4、Li 3P(S xO 1-x) 4及微晶态的Li 2S-P 2S 5-LiX中的一种或多种的混合物;其中,M选自Si、Ge、Sn中的一种或多种,N选自Si、Ge、Sn中的一种或多种,X选自Cl、Br、I中的一种或多种,0<x<1;
    所述氮化物型固态电解质为Li 3N和LiPON的一种或两种的混合物。
  5. 根据权利要求1所述的一种混合固液电解质锂蓄电池,其特征在于,所述固态电解质核心层(31)中,所述电解质聚合物为PEO、聚硅氧烷、PPC、PEC、PVC、PAN、PAA、PVDF、PVDF-HFP、PMMA、NHD、PEI中的一种或多种的混合物。
  6. 根据权利要求1所述的一种混合固液电解质锂蓄电池,其特征在于,所述固态电解质核心层(31)中,所述电解质添加剂为硬脂酸、硬脂酸盐、石蜡、硅氧烷、金属皂、邻苯二甲酸二丁酯、邻苯二甲酸二辛酯、环己烷、磺酸盐中的一种或多种的混合物。
  7. 根据权利要求1所述的一种混合固液电解质锂蓄电池,其特征在于,所述第一缓冲胶层(32)和第二缓冲胶层(33)中,所述缓冲胶层锂盐、缓冲胶层添加剂的重量比为(5-15):(1-10),缓冲胶层无机固态电解质的重量占第一缓冲胶层(32)或第二缓冲胶层(33)的重量的20%-60%。
  8. 根据权利要求1所述的一种混合固液电解质锂蓄电池,其特征在于,所述第一缓冲胶层(32)和第二缓冲胶层(33)中,缓冲胶层锂盐包括LiClO 4、LiAsF 6、LiBF 4、LiPF 6、LiCF 3SO 3、LiTFSI、LiC(CF 3SO 2) 3、LiBOB中的一种或多种的混合物。
  9. 根据权利要求1所述的一种混合固液电解质锂蓄电池,其特征在于,所述第一缓冲胶层(32)和第二缓冲胶层(33)中,所述缓冲胶层添加剂为PEO、聚硅氧烷、PPC、PEC、PTMC、VC、氟代甲基碳酸酯、氟代乙基碳酸酯中的一种或多种的混合物。
  10. 权利要求1-9中任意一项所述的一种混合固液电解质锂蓄电池,其特征在于,所述锂蓄电池的制备方法包括以下步骤:
    ①、缓冲胶的制备
    配制用于成型第一缓冲胶层(32)和第二缓冲胶层(33)的缓冲胶,具体为:将缓冲胶层锂盐与缓冲胶层添加剂溶于溶剂中,再加入缓冲胶层无机固态电解质,混合分散后得到相应的缓冲胶;
    ②、固态电解质母胶的制备
    将核心层无机固态电解质先与电解质聚合物进行混合制成母料,再将母料与电解质添加剂加入挤出机中,经挤出机加热和混炼得到固态电解质母胶;
    ③、共挤出成型
    将步骤①制备的缓冲胶和步骤②制备的固态电解质母胶注入挤出机中,通过共挤出技术一次挤出,蒸干溶剂后得到复合固态电解质片(3),再将正极片(1)和负极片(2)通过热压叠片工艺一次压片成型,蒸干溶剂后注入液态电解质,制成最终的混合固液电解质锂蓄电池。
PCT/CN2019/092434 2019-03-12 2019-06-22 一种混合固液电解质锂蓄电池 WO2020181681A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021552504A JP7236557B2 (ja) 2019-03-12 2019-06-22 固液混合電解質リチウム蓄電池
EP19919091.9A EP3940836A4 (en) 2019-03-12 2019-06-22 SOLID-LIQUID HYBRID LITHIUM STORAGE BATTERY
AU2019434099A AU2019434099B2 (en) 2019-03-12 2019-06-22 Hybrid solid-liquid electrolyte lithium storage battery
CA3132595A CA3132595A1 (en) 2019-03-12 2019-06-22 Hybrid solid-liquid electrolyte lithium storage battery
US17/436,558 US20220181684A1 (en) 2019-03-12 2019-06-22 Hybrid solid-liquid electrolyte lithium storage battery
KR1020217027772A KR102639836B1 (ko) 2019-03-12 2019-06-22 혼합 고액 전해질 리튬 축전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910184464.5 2019-03-12
CN201910184464.5A CN109768318A (zh) 2019-03-12 2019-03-12 一种混合固液电解质锂蓄电池

Publications (1)

Publication Number Publication Date
WO2020181681A1 true WO2020181681A1 (zh) 2020-09-17

Family

ID=66458246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092434 WO2020181681A1 (zh) 2019-03-12 2019-06-22 一种混合固液电解质锂蓄电池

Country Status (8)

Country Link
US (1) US20220181684A1 (zh)
EP (1) EP3940836A4 (zh)
JP (1) JP7236557B2 (zh)
KR (1) KR102639836B1 (zh)
CN (1) CN109768318A (zh)
AU (1) AU2019434099B2 (zh)
CA (1) CA3132595A1 (zh)
WO (1) WO2020181681A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097574A (zh) * 2021-02-22 2021-07-09 江苏师范大学 一种锌离子电池固液混合电解质的制备方法
WO2023031600A1 (en) * 2021-09-02 2023-03-09 University Of Southampton Hybrid electrolyte
JP2023529232A (ja) * 2020-06-15 2023-07-07 ショット アクチエンゲゼルシャフト 電池用伝導性複合材料の製造方法、並びに伝導性複合材料

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109768318A (zh) * 2019-03-12 2019-05-17 浙江锋锂新能源科技有限公司 一种混合固液电解质锂蓄电池
CN110247106B (zh) * 2019-05-25 2021-11-19 浙江锋锂新能源科技有限公司 一种带有铌酸钛的混合固液电解质电池
CN110247112A (zh) * 2019-06-25 2019-09-17 哈尔滨工业大学 一种“三明治”结构的高润湿性硫化物基复合电解质及其制备方法与应用
CN110400964B (zh) * 2019-07-31 2022-08-30 苏州顺创新能源科技有限公司 一种锂离子电池用固态电解质膜
CN110400965A (zh) * 2019-07-31 2019-11-01 苏州顺创新能源科技有限公司 一种锂离子电池用固态电解质多层膜及其制备方法
CN110416604B (zh) * 2019-08-09 2022-07-12 哈尔滨理工大学 一种高锂离子迁移数的固态电解质膜的制备方法
CN110556575B (zh) * 2019-08-16 2021-02-12 北京协同创新研究院 一种固态电解质及其制备方法、固态电池和电子设备
CN112421097A (zh) * 2019-08-20 2021-02-26 中南大学 一种全固态锂电池及其制备方法
CN112635815A (zh) * 2019-10-09 2021-04-09 中国科学院宁波材料技术与工程研究所 一种具有电化学缓冲层的复合电解质材料、其制备方法及锂金属电池
JP7275300B2 (ja) * 2019-10-15 2023-05-17 Dareジャパン株式会社 全固体リチウム二次電池及び全固体リチウム二次電池の製造方法
CN112786950B (zh) * 2019-11-05 2022-05-20 中天储能科技有限公司 复合固态电解质及其制备方法、固态电池
CN111430815B (zh) * 2019-12-02 2022-11-22 蜂巢能源科技有限公司 电芯及其制备方法和应用
CN111900485B (zh) * 2020-08-05 2022-03-04 中国科学院上海硅酸盐研究所 一种固体电解质/金属锂界面的缓释改性方法以及固态锂金属电池
CN111900459A (zh) * 2020-08-27 2020-11-06 中南大学 一种peo基复合固态电解质及其制备方法
CN112018458B (zh) * 2020-09-08 2021-11-30 长三角物理研究中心有限公司 硫化物-聚合物复合固态电解质及其制备方法和应用
CN112186262B (zh) * 2020-10-09 2022-12-09 西安交通大学 一种基于mlcc结构的全固态锂离子电池及其制备方法
CN112563031B (zh) * 2020-10-26 2022-06-10 湖南艾华集团股份有限公司 一种耐充放电的固态铝电解电容器及其制备方法
CN112490496A (zh) * 2020-12-05 2021-03-12 浙江锋锂新能源科技有限公司 一种复合固体电解质及其制备方法和锂蓄电池
CN114613951A (zh) * 2020-12-09 2022-06-10 深圳新宙邦科技股份有限公司 一种固态电池正极材料的包覆方法及正极材料、固态电池
CN112615049B (zh) * 2020-12-21 2023-01-03 中创新航技术研究院(江苏)有限公司 固态电解质及包含它的电池
CN112599846B (zh) * 2020-12-24 2022-12-09 蜂巢能源科技有限公司 全固态锂金属负极电池用复合电解质膜、其制备方法及包括其的全固态硫化物锂离子电池
CN112448038B (zh) * 2021-01-29 2021-04-16 河南工学院 一种锂电池电解液添加剂、电解液和锂电池
CN113013482A (zh) * 2021-02-22 2021-06-22 江西省允福亨新能源有限责任公司 一种固态电解质及全固态锂离子电池的制备方法
US20230009422A1 (en) * 2021-07-07 2023-01-12 EnPower, Inc. Solid-state electrode having integrated sulfide separator
CN114530628A (zh) * 2022-01-25 2022-05-24 复旦大学 一种薄膜全固态电池
TWI831180B (zh) * 2022-04-14 2024-02-01 鴻海精密工業股份有限公司 用於固態電池的複合式正極
KR20230149638A (ko) * 2022-04-20 2023-10-27 삼성에스디아이 주식회사 전고체 이차 전지 및 이의 제조 방법
CN116454391B (zh) * 2023-06-12 2023-09-12 宁德时代新能源科技股份有限公司 电解液、二次电池和用电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108630985A (zh) * 2018-05-11 2018-10-09 清陶(昆山)新能源材料研究院有限公司 一种高离子电导率固态电解质及其制备方法及其在全固态锂离子电池中的应用
CN108767311A (zh) * 2018-04-28 2018-11-06 浙江锋锂新能源科技有限公司 一种固态电池的复合电解质膜的制备方法
CN109256582A (zh) * 2017-07-14 2019-01-22 上汽通用汽车有限公司 用于全固态锂离子电池的复合固态电解质及其制备方法
CN109768318A (zh) * 2019-03-12 2019-05-17 浙江锋锂新能源科技有限公司 一种混合固液电解质锂蓄电池

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287722B1 (en) * 1999-03-02 2001-09-11 E. I. Du Pont Nemours And Co. Continuous melt process for fabricating ionically conductive articles
JP2004095342A (ja) * 2002-08-30 2004-03-25 Matsushita Electric Ind Co Ltd 全固体電池とその製造方法
KR100666821B1 (ko) * 2004-02-07 2007-01-09 주식회사 엘지화학 유/무기 복합 다공성 코팅층이 형성된 전극 및 이를포함하는 전기 화학 소자
JP5153065B2 (ja) * 2005-08-31 2013-02-27 株式会社オハラ リチウムイオン二次電池および固体電解質
WO2008059408A1 (en) * 2006-11-14 2008-05-22 Koninklijke Philips Electronics N.V. Electrochemical energy source and electronic device provided with such an electrochemical energy source
JP5211527B2 (ja) * 2007-03-29 2013-06-12 Tdk株式会社 全固体リチウムイオン二次電池及びその製造方法
CN101675553B (zh) * 2007-05-11 2012-10-10 奈米克斯股份有限公司 锂离子二次电池及其制造方法
JP4728385B2 (ja) * 2008-12-10 2011-07-20 ナミックス株式会社 リチウムイオン二次電池、及び、その製造方法
WO2011043267A1 (ja) * 2009-10-05 2011-04-14 住友電気工業株式会社 非水電解質電池
WO2011049113A1 (ja) * 2009-10-21 2011-04-28 国立大学法人京都大学 ポリマー複合微粒子を用いた高分子固体電解質を用いた電気化学デバイス
CN103563008B (zh) * 2011-06-02 2017-09-26 丰田自动车株式会社 固体电解质材料、固体电池、固体电解质材料的制造方法
CN104094464A (zh) * 2012-03-28 2014-10-08 海洋王照明科技股份有限公司 一种固态电解质电池
KR101422908B1 (ko) * 2012-04-02 2014-07-23 삼성정밀화학 주식회사 리튬이온 이차전지용 전해질 및 이것을 포함하는 리튬이온 이차전지
WO2014051032A1 (ja) * 2012-09-28 2014-04-03 日本ゼオン株式会社 全固体二次電池用スラリー、全固体二次電池用電極の製造方法、全固体二次電池用電解質層の製造方法及び全固体二次電池
KR101935365B1 (ko) * 2012-12-14 2019-01-04 삼성전자주식회사 플렉서블 고체전해질, 이를 포함하는 전고체형 리튬전지, 및 이의 제조방법
CA2820635A1 (en) * 2013-06-21 2014-12-21 Hydro-Quebec All-solid state polymer li-s electrochemical cells and their manufacturing processes
WO2015009990A2 (en) * 2013-07-19 2015-01-22 24M Technologies, Inc. Semi-solid electrodes with polymer additive
KR20180101729A (ko) * 2013-08-30 2018-09-14 로베르트 보쉬 게엠베하 코팅된 전해질을 갖는 리튬-이온 배터리
JP2015069967A (ja) * 2013-10-01 2015-04-13 トヨタ自動車株式会社 二次電池
US9589733B2 (en) * 2013-12-17 2017-03-07 Avx Corporation Stable solid electrolytic capacitor containing a nanocomposite
WO2016196688A1 (en) * 2015-06-01 2016-12-08 Energy Power Systems LLC Nano-engineered coatings for anode active materials, cathode active materials, and solid-state electrolytes and methods of making batteries containing nano-engineered coatings
JP6524457B2 (ja) * 2015-10-01 2019-06-05 アルプスアルパイン株式会社 全固体蓄電デバイスの製造方法
JP6757797B2 (ja) * 2015-12-28 2020-09-23 シーオ インコーポレーテッドSeeo, Inc. リチウムポリマー電池用セラミック‐ポリマー複合電解質
US10497968B2 (en) * 2016-01-04 2019-12-03 Global Graphene Group, Inc. Solid state electrolyte for lithium secondary battery
KR20170111439A (ko) * 2016-03-28 2017-10-12 주식회사 세븐킹에너지 다층 구조를 가지는 이차전지용 복합 전해질
EP3467845B1 (en) * 2016-05-23 2020-06-03 FUJIFILM Corporation Solid electrolyte composition, electrode sheet for all-solid-state secondary battery as well as methods for manufacturing the same, and all-solid-state secondary battery as well as method for manufacturing the same
JP6944511B2 (ja) * 2016-07-11 2021-10-06 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン セラミックガーネット系イオン導電材料
JP6839189B2 (ja) * 2016-07-26 2021-03-03 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、固体電解質含有シートおよび全固体二次電池の製造方法、ならびに、セグメント
US10431847B2 (en) * 2016-09-19 2019-10-01 International Business Machines Corporation Stacked film battery architecture
CN106654362B (zh) * 2016-12-07 2019-07-19 珠海光宇电池有限公司 复合固态电解质膜、制备方法及锂离子电池
CN107195962B (zh) * 2017-06-19 2019-07-23 宁波力赛康新材料科技有限公司 一种复合固体电解质及其制备方法
KR102093970B1 (ko) * 2017-06-20 2020-04-23 주식회사 엘지화학 다층 구조 고분자 고체 전해질 및 이를 포함하는 전고체 전지
CN107369848A (zh) * 2017-07-14 2017-11-21 北京化工大学 一种三明治结构的复合电解质及其制备方法
US10734674B2 (en) * 2017-08-14 2020-08-04 Thinika, Llc Solid-state thin film hybrid electrochemical cell
KR20220132024A (ko) * 2017-09-14 2022-09-29 후지필름 가부시키가이샤 고체 전해질 조성물, 그 제조 방법, 보존 방법과 키트, 고체 전해질 함유 시트, 그 보존 방법과 키트, 및 전고체 이차 전지
CN111699583B (zh) * 2018-03-29 2023-10-27 Tdk株式会社 全固体二次电池
CN108598563B (zh) * 2018-04-27 2020-08-04 溧阳天目先导电池材料科技有限公司 一种水性固态电解质膜及其制备方法和二次电池
CN108695547B (zh) * 2018-04-28 2021-03-30 浙江锋锂新能源科技有限公司 一种有机-无机复合电解质膜及具有该电解质膜的电池
CN108963328A (zh) * 2018-06-12 2018-12-07 天津力神电池股份有限公司 基于多功能层状复合固态电解质的固态锂电池及制备方法
CN109286039A (zh) * 2018-10-22 2019-01-29 浙江锋锂新能源科技有限公司 一种固态电池电解质膜及其制备方法和带有该电解质膜的固态电池
US11424512B2 (en) * 2018-11-02 2022-08-23 Samsung Electronics Co., Ltd. All-solid secondary battery and method of manufacturing the same
JP7082040B2 (ja) * 2018-12-27 2022-06-07 本田技研工業株式会社 固体電解質積層シート、および固体電池
CN109817871A (zh) * 2019-03-29 2019-05-28 溧阳天目先导电池材料科技有限公司 一种离子导体浆料及其制备方法和应用
KR20230149037A (ko) * 2022-04-19 2023-10-26 현대자동차주식회사 전고체 전지의 바이셀 제조시스템
JP2023161894A (ja) * 2022-04-26 2023-11-08 太陽誘電株式会社 全固体電池およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109256582A (zh) * 2017-07-14 2019-01-22 上汽通用汽车有限公司 用于全固态锂离子电池的复合固态电解质及其制备方法
CN108767311A (zh) * 2018-04-28 2018-11-06 浙江锋锂新能源科技有限公司 一种固态电池的复合电解质膜的制备方法
CN108630985A (zh) * 2018-05-11 2018-10-09 清陶(昆山)新能源材料研究院有限公司 一种高离子电导率固态电解质及其制备方法及其在全固态锂离子电池中的应用
CN109768318A (zh) * 2019-03-12 2019-05-17 浙江锋锂新能源科技有限公司 一种混合固液电解质锂蓄电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3940836A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023529232A (ja) * 2020-06-15 2023-07-07 ショット アクチエンゲゼルシャフト 電池用伝導性複合材料の製造方法、並びに伝導性複合材料
CN113097574A (zh) * 2021-02-22 2021-07-09 江苏师范大学 一种锌离子电池固液混合电解质的制备方法
WO2023031600A1 (en) * 2021-09-02 2023-03-09 University Of Southampton Hybrid electrolyte

Also Published As

Publication number Publication date
CA3132595A1 (en) 2020-09-17
AU2019434099A1 (en) 2021-10-07
KR102639836B1 (ko) 2024-02-23
KR20210129079A (ko) 2021-10-27
JP2022522871A (ja) 2022-04-20
EP3940836A4 (en) 2023-08-23
US20220181684A1 (en) 2022-06-09
JP7236557B2 (ja) 2023-03-09
CN109768318A (zh) 2019-05-17
AU2019434099B2 (en) 2022-11-03
EP3940836A1 (en) 2022-01-19

Similar Documents

Publication Publication Date Title
WO2020181681A1 (zh) 一种混合固液电解质锂蓄电池
CN110581311B (zh) 一种复合固态电解质膜及其制备方法、固态电池
CN110581314B (zh) 一种多层结构复合固态电解质膜及其制备方法、固态电池
CN109980164A (zh) 隔离膜和电化学装置
CN110112421B (zh) 一种非接触式混合固液电解质锂蓄电池及其制备方法
CN103199301A (zh) 基于固态聚合物电解质的复合凝胶聚合物电解质及其制备方法与应用
CN112467308B (zh) 一种隔膜及其制备方法、锂离子电池
CN109980290B (zh) 一种混合固液电解质锂蓄电池
CN114024034A (zh) 一种电池
WO2020043151A1 (zh) 正极极片、其制备方法及锂离子二次电池
CN111834620A (zh) 一种锂金属电池正极、锂金属电池及其制备方法
WO2023155604A1 (zh) 复合隔膜及电化学装置
CN112038644A (zh) 一种功能涂层、电极极片以及电化学装置
CN113782708A (zh) 一种正极及含有该正极的电化学装置
CN101826640B (zh) 一种锂离子电池用极芯和使用该极芯的锂离子电池
CN116130748A (zh) 一种复合固态电解质膜及其制备方法
CN113782826B (zh) 一种固态电解质及包含该固态电解质的固态电池
CN114335701A (zh) 一种复合固态电解质膜及其制备方法
CN103268955A (zh) 一种复合凝胶聚合物电解质及其制备方法与应用
CN110120545B (zh) 一种非接触式混合固液电解质锂蓄电池及其制备方法
CN112786890A (zh) 一种低界面阻抗的固态电池及其制备方法
WO2023179550A1 (zh) 一种复合油基隔膜及其制备方法和二次电池
CN114039027B (zh) 一种电极片及包含该电极片的锂离子电池
CN109713264A (zh) 锂电池正极材料及其制备方法、锂电池及其正极片
CN114464770A (zh) 一种电极片及包含该电极片的电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217027772

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021552504

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3132595

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019434099

Country of ref document: AU

Date of ref document: 20190622

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019919091

Country of ref document: EP

Effective date: 20211012