CN112786890A - 一种低界面阻抗的固态电池及其制备方法 - Google Patents

一种低界面阻抗的固态电池及其制备方法 Download PDF

Info

Publication number
CN112786890A
CN112786890A CN202110119061.XA CN202110119061A CN112786890A CN 112786890 A CN112786890 A CN 112786890A CN 202110119061 A CN202110119061 A CN 202110119061A CN 112786890 A CN112786890 A CN 112786890A
Authority
CN
China
Prior art keywords
coating
solid
positive
electrolyte
state battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110119061.XA
Other languages
English (en)
Inventor
张金华
汪伟
郑刚
王金龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Gotion High Tech Power Energy Co Ltd
Original Assignee
Hefei Guoxuan High Tech Power Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Guoxuan High Tech Power Energy Co Ltd filed Critical Hefei Guoxuan High Tech Power Energy Co Ltd
Priority to CN202110119061.XA priority Critical patent/CN112786890A/zh
Publication of CN112786890A publication Critical patent/CN112786890A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种低界面阻抗的固态电池及其制备方法,涉及固态电池技术领域,所述固态电池是将至少一侧带涂层的正极片和至少一侧带涂层的负极片经叠片或卷绕方式贴合在一起,涂层面相贴合,然后采用先热压再冷压处理使得正、负极片上的涂层互融、冷却固化形成热塑性有机/无机电解质涂层制得固态电池;其中,所述带涂层的正、负极片是分别在复合正、负极片上涂布热塑性有机/无机电解质浆料再经烘干得到的;所述复合正、负极片是将无机固态电解质、锂盐、导电剂、粘结剂和活性物质加入溶剂中分别制得正、负极浆料,再涂布在集流体上经固化后辊压得到的。本发明有效降低离子界面阻抗,提高电池的电化学性能,易于实现产业化。

Description

一种低界面阻抗的固态电池及其制备方法
技术领域
本发明涉及固态电池技术领域,尤其涉及一种低界面阻抗的固态电池及其制备方法。
背景技术
随着锂离子电池的应用越来越广泛,暴露的问题也日益显著,在追逐更高能量密度、更长使用寿命的同时,电池的安全性能成为关注的焦点。由于传统锂离子电池存在易燃、易挥发、易泄露的有机电解液,致使锂离子电池的使用上为人们所担忧,安全事故也频频发生,而使用固体电解质组装的固态电池可以有效地避免液态电解质所带来的安全隐患。有机/无机复合电解质有着满足使用的高离子电导率、高机械强度、好的柔韧性以及具备产业化放大等特性。
但是实现固态电池规模化制备仍存在很大的挑战,诸如:电池固化后难克服电解质与正、负极间的界面阻抗,不可忽略的正极、负极颗粒间离子传输阻抗。因此,有必要提供一种改进的低界面阻抗固态电池的制备方法及固态电池以解决上述存在问题。
发明内容
基于背景技术存在的技术问题,本发明提出了一种低界面阻抗的固态电池及其制备方法。
本发明提出的一种低界面阻抗的固态电池,是将至少一侧带涂层的正极片和至少一侧带涂层的负极片经叠片或卷绕方式贴合在一起,涂层面相贴合,然后采用先热压再冷压处理使得正、负极片上的涂层互融、冷却固化形成热塑性有机/无机电解质涂层制得固态电池;
其中,所述带涂层的正、负极片是分别在复合正、负极片上涂布热塑性有机/无机电解质浆料再经烘干得到的;
所述复合正、负极片是将无机固态电解质、锂盐、导电剂、粘结剂和活性物质加入溶剂中分别制得正、负极浆料,再涂布在集流体上经固化后辊压得到的。
优选地,所述复合正极片按质量百分比计,包括:正极活性物质90~99%、导电剂0.4~2%、粘结剂0.3~3%、无机固态电解质0.3~3%、锂盐0~2%;
所述复合负极片按质量百分比计,包括:负极活性物质90~99%、导电剂0.4~2%、粘结剂0.3~3%、无机固态电解质0.3~3%、锂盐0~2%;
优选地,所述热塑性有机/无机电解质浆料按质量百分比计,包括:无机固态电解质0.5~30%、有机固态电解质1~50%、锂盐0.5%~5%,余量为溶剂。
在本发明中,复合正极片的原料中,正极活性物质包括但不仅限于钴酸锂、磷酸铁锂、镍钴锰酸锂、镍钴铝酸锂、锰酸锂、镍酸锂、磷酸亚铁锂、磷酸铁锰锂、镍锰酸锂中的一种或一种以上组合;粘结剂为聚偏氟乙烯、聚氧化乙烯、聚甲基丙烯酸甲酯、聚丙烯腈的一种或一种以上组合,优选聚偏氟乙烯;
在本发明中,复合负极片的原料中,负极活性物质包括但不仅限于石墨、硅碳化合物中的一种;粘结剂为羧甲基纤维素钠、聚氧化乙烯、聚甲基丙烯酸甲酯、聚丙烯腈、丁苯橡胶的一种或一种以上组合;优选羧甲基纤维素钠和丁苯橡胶的组合。
在本发明中,复合正、负极片的原料中,导电剂为炭黑、碳纳米管、石墨烯的一种或一种以上组合;锂盐为六氟磷酸锂、硼酸锂、高氯酸锂其中一种或一种以上组合,优选六氟磷酸锂。
优选地,所述无机固态电解质为钛酸锂镧、锆酸锂镧、磷酸锗铝锂、磷酸锗钛锂、锂镧锆钽氧、Li2S-P2S5、Li2S-SiS2、Li2S-GeS2、Li10GeP2S12其中的一种或一种以上组合;
所述有机固态电解质为聚氧化乙烯、聚甲基丙烯酸甲酯、聚丙烯腈的一种或一种以上组合;
所述溶剂为四氢呋喃、乙腈、碳酸二甲酯一种或一种以上组合。
优选地,所述无机固态电解质的粒径为10~500nm。
优选地,所述热塑性有机/无机电解质涂层的厚度为1~8μm。
优选地,所化热压压力为1000~2000Kg,热压时间为1~10S,热压温度为60~200℃;所述冷压压力为1000~2000Kg,冷压时间为1~5s。
本发明还提出了上述低界面阻抗的固态电池的制备方法,包括以下步骤:
S1、将正极活性物质和负极活性物质分别与导电剂、粘结剂、无机固态电解质、锂盐、溶剂按比例混合,得到正极浆料和负极浆料;经涂布、辊压获得复合正极片和复合负极片;
S2、将热塑性有机/无机电解质浆料分别涂布在复合正极片和复合负极片的一侧上,烘干,得一侧带涂层的正极片和负极片;
S3、采用叠片或卷绕方式将一侧带涂层的正极片和负极片贴合在一起,涂层面贴合在一起,然后经热压后冷压,使得涂层互融、冷却固化形成热塑性有机/无机电解质涂层,即得固态电池。
上述制备方法S1中,正极合浆所用溶剂为N-甲基吡咯烷酮、四氢呋喃、乙腈、碳酸二甲酯中的一种,优选N-甲基吡咯烷酮;负极合浆所用溶剂为去离子水、N-甲基吡咯烷酮、四氢呋喃、乙腈、碳酸二甲酯中的一种,优选去离子水。
上述制备方法S1中,将正极浆料涂布在铝箔上,负极浆料涂布在铜箔上。
上述制备方法S2中,可塑性有机/无机电解质浆料的涂布方式包括条缝涂布、刮刀涂布、挤压涂布、旋涂和喷涂一种或多种。
有益效果:本发明提出了一种低界面阻抗的固态电池,通过向正极和负极浆料中添加无机固态电解质和锂盐,有效改善活性物质颗粒间的离子阻抗;通过在正、负极片表面涂布热塑性有机/无机电解质胶料,一方面填充正、负极片辊压后的孔隙,进一步构筑离子导电通道,另一方面则改善电极片与电解质层的界面接触,降低电极片与固态电解质层的界面阻抗;通过热压和冷压相结合,使得可塑性有机/无机电解质涂层融化凝固结合在一起,获得低的界面阻抗,从而提升固态电池的电化学性能。本发明有效解决固态电池中固态电解质之间、固态电解质与电极片之间、电极颗粒之间接触差性差的问题,有效降低离子界面阻抗,提高电池的电化学性能,且该固态电池的制备方法与现有动力电池产业化相似,易于实现产业化。
附图说明
图1为本发明实施例中制备的固态电池的结构示意图;
图2为本发明实施例中制备的固态电池的交流阻抗图;
图3为本发明实施例中制备的固态电池的0.5C充放电曲线图。
具体实施方式
下面,通过具体实施例对本发明的技术方案进行详细说明。
实施例1
一种低界面阻抗的固态电池,如图1所示,制备如下:
(1)将10g磷酸铁锂、0.16g炭黑、0.27gPVDF、0.16g锆酸锂镧、0.005g六氟磷酸锂加入适量NMP混合均匀,涂布于铝箔表面经辊压后得到复合正极片1(单面面密度为:173g/m2)。
(2)将10g石墨、0.05g炭黑、0.16gCMC、2.63gSBR(固含量4%)、0.16g锆酸锂镧和0.05g六氟磷酸锂按加入适量去离子水中混合均匀,涂布于铜箔表面经辊压后得到复合负极片2(单面面密度为:79g/m2)。
(3)将5gPEO、0.08g锆酸锂镧和0.03g六氟磷酸锂加入适量四氢呋喃混合均匀,分别涂布于复合正极片1的两侧表面和复合负极片2的一侧表面,60℃烘干至凝固后分别形成有机/无机电解质复合涂层3和复合涂层4,记作带涂层的正极片和负极片。
(4)在干燥房(露点≤-40℃),将1片带涂层的正极片和2片带涂层的负极片如图1叠放,涂层与涂层相接触,在1.5T压力下70℃热压7s,1T下常温下冷压5s,焊接正极和负极极耳,封装成0.12Ah软包电池电池所示,进行交流阻抗测试,0.5C的充放电测试。
实施例2
一种低界面阻抗的固态电池,如图1所示,制备如下:
(1)将10g磷酸铁锂、0.16g炭黑、0.27gPVDF、0.16g锆酸锂镧、0.005g六氟磷酸锂加入适量NMP混合均匀,涂布于铝箔表面经辊压后得到复合正极片1(单面面密度为:173g/m2)。
(2)将10g石墨、0.05g炭黑、0.16gCMC、2.63gSBR(固含量4%)、0.16g锆酸锂镧和0.05g六氟磷酸锂按加入适量去离子水中混合均匀,涂布于铜箔表面经辊压后得到复合负极片2(单面面密度为:79g/m2)。
(3)将5gPEO、0.08g锆酸锂镧和0.03g六氟磷酸锂加入适量四氢呋喃混合均匀,涂布于复合正极片1的两侧表面,60℃烘干至凝固后得到复合涂层3,记作带涂层的正极片;将5gPEO和0.025g六氟磷酸锂加入适量四氢呋喃混合均匀,涂布于复合负极片2的一侧表面,60℃烘干至凝固后得到复合涂层4,记作带涂层的负极片。
(4)在干燥房(露点≤-40℃),将1片带涂层的正极片和2片带涂层的负极片如图1叠放,涂层与涂层相接触,在1.5T压力下70℃热压7S,1T下压5S,焊接正极和负极极耳,封装成0.12Ah软包电池电池,进行交流阻抗测试,0.5C的充放电测试。
实施例3
一种低界面阻抗的固态电池,如图1所示,制备如下:
(1)将10g磷酸铁锂、0.16g炭黑、0.27gPVDF、0.16g锆酸锂镧、0.005g六氟磷酸锂加入适量NMP混合均匀,涂布于铝箔表面经辊压后得到复合正极片1(单面面密度为:173g/m2)。
(2)将10g石墨、0.05g炭黑、0.16gCMC、2.63gSBR(固含量4%)、0.16g锆酸锂镧和0.05g六氟磷酸锂加入适量去离子水中混合均匀,涂布于铜箔表面经辊压后得到复合负极片2(单面面密度为:79g/m2)。
(3)将5gPEO、0.08g锆酸锂镧和0.03g六氟磷酸锂加入适量四氢呋喃混合均匀,涂布于复合负极片2的一侧表面,60℃烘干至凝固后得到复合涂层4,记作带涂层的负极片;将5gPEO和0.025g六氟磷酸锂加入适量四氢呋喃混合均匀,涂布于复合正极片1的两侧表面,60℃烘干至凝固后得到复合涂层3,记作带涂层的正极片。
(4)在干燥房(露点≤-40℃),将1片带涂层的正极片和2片带涂层的负极片如图1叠放,涂层与涂层相接触,在1.5T压力下70℃热压7S,1T下压5S,焊接正极和负极极耳,封装成0.12Ah软包电池电池,进行交流阻抗测试,0.5C的充放电测试。
实施例4
一种低界面阻抗的固态电池,如图1所示,制备如下:
(1)将10g磷酸铁锂、0.16g炭黑、0.27gPVDF、0.16g锆酸锂镧、0.005g六氟磷酸锂加入适量NMP混合均匀,涂布于铝箔表面经辊压后得到复合正极片1(单面面密度为:173g/m2)。
(2)将10g石墨、0.05g炭黑、0.16gCMC、2.63gSBR(固含量4%)、0.16g锆酸锂镧和0.05g六氟磷酸锂按加入适量去离子水中混合均匀,涂布于铜箔表面经辊压后得到复合负极片2(单面面密度为:79g/m2)。
(3)将5gPEO和0.025g六氟磷酸锂加入适量四氢呋喃混合均匀,分别涂布于复合正极片1的两侧表面和复合负极片2的一侧表面,60℃烘干至凝固后分别得到复合涂层3和复合涂层4,记作带涂层的正极片和负极片。
(4)在干燥房(露点≤-40℃),将1片带涂层的正极片和2片带涂层的负极片如图1叠放,涂层与涂层相接触,在1.5T压力下70℃热压7S,1T下压5S,焊接正极和负极极耳,封装成0.12Ah软包电池电池,进行交流阻抗测试,0.5C的充放电测试。
实施例1-4制备的固态电池的电化学性能检测数据见图2和图3,从图中可以看出,通过本发明实施制备的固态电池在常温下能正常的充放电,能获得较低界面阻抗的的固态电池电池。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (7)

1.一种低界面阻抗的固态电池,其特征在于,是将至少一侧带涂层的正极片和至少一侧带涂层的负极片经叠片或卷绕方式贴合在一起,涂层面相贴合,然后采用先热压再冷压处理使得正、负极片上的涂层互融、冷却固化形成热塑性有机/无机电解质涂层制得固态电池;
其中,所述带涂层的正、负极片是分别在复合正、负极片上涂布热塑性有机/无机电解质浆料再经烘干得到的;
所述复合正、负极片是将无机固态电解质、锂盐、导电剂、粘结剂和活性物质加入溶剂中分别制得正、负极浆料,再涂布在集流体上经固化后辊压得到的。
2.根据权利要求1所述的低界面阻抗的固态电池,其特征在于,所述复合正极片按质量百分比计,包括:正极活性物质90~99%、导电剂0.4~2%、粘结剂0.3~3%、无机固态电解质0.3~3%、锂盐0~2%;
所述复合负极片按质量百分比计,包括:负极活性物质90~99%、导电剂0.4~2%、粘结剂0.3~3%、无机固态电解质0.3~3%、锂盐0~2%;
优选地,所述热塑性有机/无机电解质浆料按质量百分比计,包括:无机固态电解质0.5~30%、有机固态电解质1~50%、锂盐0.5%~5%,余量为溶剂。
3.根据权利要求2所述的低界面阻抗的固态电池,其特征在于,所述无机固态电解质为钛酸锂镧、锆酸锂镧、磷酸锗铝锂、磷酸锗钛锂、锂镧锆钽氧、Li2S-P2S5、Li2S-SiS2、Li2S-GeS2、Li10GeP2S12其中的一种或一种以上组合;
所述有机固态电解质为聚氧化乙烯、聚甲基丙烯酸甲酯、聚丙烯腈的一种或一种以上组合;
所述溶剂为四氢呋喃、乙腈、碳酸二甲酯一种或一种以上组合。
4.根据权利要求3所述的低界面阻抗的固态电池,其特征在于,所述无机固态电解质的粒径为10~500nm。
5.根据权利要求1所述的低界面阻抗的固态电池,其特征在于,所述热塑性有机/无机电解质涂层的厚度为1~8μm。
6.根据权利要求1所述的低界面阻抗的固态电池,其特征在于,所化热压压力为1000~2000Kg,热压时间为1~10S,热压温度为60~200℃;所述冷压压力为1000~2000Kg,冷压时间为1~5s。
7.一种基于根据权利要求1-6任一项所述的低界面阻抗的固态电池的制备方法,其特征在于,包括以下步骤:
S1、将正极活性物质和负极活性物质分别与导电剂、粘结剂、无机固态电解质、锂盐、溶剂按比例混合,得到正极浆料和负极浆料;经涂布、辊压获得复合正极片和复合负极片;
S2、将热塑性有机/无机电解质浆料分别涂布在复合正极片和复合负极片的一侧上,烘干,得一侧带涂层的正极片和负极片;
S3、采用叠片或卷绕方式将一侧带涂层的正极片和负极片贴合在一起,涂层面贴合在一起,然后经热压后冷压,使得涂层互融、冷却固化形成热塑性有机/无机电解质涂层,即得固态电池。
CN202110119061.XA 2021-01-28 2021-01-28 一种低界面阻抗的固态电池及其制备方法 Pending CN112786890A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110119061.XA CN112786890A (zh) 2021-01-28 2021-01-28 一种低界面阻抗的固态电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110119061.XA CN112786890A (zh) 2021-01-28 2021-01-28 一种低界面阻抗的固态电池及其制备方法

Publications (1)

Publication Number Publication Date
CN112786890A true CN112786890A (zh) 2021-05-11

Family

ID=75759395

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110119061.XA Pending CN112786890A (zh) 2021-01-28 2021-01-28 一种低界面阻抗的固态电池及其制备方法

Country Status (1)

Country Link
CN (1) CN112786890A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114156432A (zh) * 2021-11-30 2022-03-08 惠州亿纬锂能股份有限公司 一种固态电池及其制备方法
CN114530630A (zh) * 2022-02-17 2022-05-24 中国科学院物理研究所 一种低溶剂聚合物电解质、其制备方法、电极及固态电池

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000013249A1 (de) * 1998-08-28 2000-03-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Pastöse massen für elektrochemische bauelemente und daraus hergestellte schichten und elektrochemische bauelemente
CN107706352A (zh) * 2017-10-13 2018-02-16 清陶(昆山)能源发展有限公司 一种应用于柔性固态锂电池的正极极片及其制备方法
CN108232156A (zh) * 2018-01-03 2018-06-29 清陶(昆山)能源发展有限公司 一种固态电池用的硅碳复合负极及其制备方法
CN108598371A (zh) * 2018-05-11 2018-09-28 清陶(昆山)新能源材料研究院有限公司 一种柔性固态锂离子电池用复合负极片及其制备方法以及在固态锂离子电池中的应用
CN108630985A (zh) * 2018-05-11 2018-10-09 清陶(昆山)新能源材料研究院有限公司 一种高离子电导率固态电解质及其制备方法及其在全固态锂离子电池中的应用
US20190245178A1 (en) * 2016-10-21 2019-08-08 Quantumscape Corporation Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same
CN110534795A (zh) * 2019-07-10 2019-12-03 瑞声科技(南京)有限公司 固态电池的制备方法及固态电池
CN110581304A (zh) * 2018-06-08 2019-12-17 郑州宇通集团有限公司 一种固态电池及其制备方法
CN111092254A (zh) * 2018-10-23 2020-05-01 中信国安盟固利动力科技有限公司 一种低界面阻抗高界面相容性全固态电池
CN111342124A (zh) * 2020-03-09 2020-06-26 天津中电新能源研究院有限公司 一种电芯热压一体化成型固态电池及其制备方法
CN111554857A (zh) * 2020-05-13 2020-08-18 深圳润丰新能源有限公司 一种新型锂电池及其制造方法
CN111933894A (zh) * 2020-08-12 2020-11-13 安普瑞斯(无锡)有限公司 一种原位聚合的有机无机复合固态电池
CN112086678A (zh) * 2020-09-30 2020-12-15 合肥国轩高科动力能源有限公司 一种固态电解质及其制备方法、以及固态电池
CN112133920A (zh) * 2020-09-30 2020-12-25 蜂巢能源科技有限公司 适用于全固态电池的负极材料层、其制备方法、负极片和全固态电池

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000013249A1 (de) * 1998-08-28 2000-03-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Pastöse massen für elektrochemische bauelemente und daraus hergestellte schichten und elektrochemische bauelemente
US20190245178A1 (en) * 2016-10-21 2019-08-08 Quantumscape Corporation Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same
CN107706352A (zh) * 2017-10-13 2018-02-16 清陶(昆山)能源发展有限公司 一种应用于柔性固态锂电池的正极极片及其制备方法
CN108232156A (zh) * 2018-01-03 2018-06-29 清陶(昆山)能源发展有限公司 一种固态电池用的硅碳复合负极及其制备方法
CN108598371A (zh) * 2018-05-11 2018-09-28 清陶(昆山)新能源材料研究院有限公司 一种柔性固态锂离子电池用复合负极片及其制备方法以及在固态锂离子电池中的应用
CN108630985A (zh) * 2018-05-11 2018-10-09 清陶(昆山)新能源材料研究院有限公司 一种高离子电导率固态电解质及其制备方法及其在全固态锂离子电池中的应用
CN110581304A (zh) * 2018-06-08 2019-12-17 郑州宇通集团有限公司 一种固态电池及其制备方法
CN111092254A (zh) * 2018-10-23 2020-05-01 中信国安盟固利动力科技有限公司 一种低界面阻抗高界面相容性全固态电池
CN110534795A (zh) * 2019-07-10 2019-12-03 瑞声科技(南京)有限公司 固态电池的制备方法及固态电池
CN111342124A (zh) * 2020-03-09 2020-06-26 天津中电新能源研究院有限公司 一种电芯热压一体化成型固态电池及其制备方法
CN111554857A (zh) * 2020-05-13 2020-08-18 深圳润丰新能源有限公司 一种新型锂电池及其制造方法
CN111933894A (zh) * 2020-08-12 2020-11-13 安普瑞斯(无锡)有限公司 一种原位聚合的有机无机复合固态电池
CN112086678A (zh) * 2020-09-30 2020-12-15 合肥国轩高科动力能源有限公司 一种固态电解质及其制备方法、以及固态电池
CN112133920A (zh) * 2020-09-30 2020-12-25 蜂巢能源科技有限公司 适用于全固态电池的负极材料层、其制备方法、负极片和全固态电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭现伟等: ""石榴石型全固态锂离子电池复合正极研究进展"", 《硅酸盐学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114156432A (zh) * 2021-11-30 2022-03-08 惠州亿纬锂能股份有限公司 一种固态电池及其制备方法
CN114530630A (zh) * 2022-02-17 2022-05-24 中国科学院物理研究所 一种低溶剂聚合物电解质、其制备方法、电极及固态电池

Similar Documents

Publication Publication Date Title
WO2020181681A1 (zh) 一种混合固液电解质锂蓄电池
US9312527B2 (en) Separator having heat resistant insulation layers
US8932765B2 (en) Electrode assembly for electric storage device and electric storage device
JP5670626B2 (ja) 電気化学素子用セパレータ、電気化学素子およびその製造方法
US9401505B2 (en) Separator including coating layer of inorganic and organic mixture, and battery including the same
US20120328929A1 (en) Separator for electrochemical device, electrochemical device using same, and method for producing the separator for electrochemical device
CN111554967B (zh) 一种全固态电池及其制备方法
CN105470576A (zh) 一种高压锂电池电芯及其制备方法、锂离子电池
JPWO2016104782A1 (ja) 電極製造方法、電極及び二次電池
CN112467308B (zh) 一种隔膜及其制备方法、锂离子电池
TW201037885A (en) Electrode film, electrode, method for manufacturing the electrode, and electrical storage device
US20040234856A1 (en) Lithium ion secondary battery
WO2021155852A1 (zh) 负极极片、应用所述负极极片的电池以及电子装置
JP4992203B2 (ja) リチウムイオン二次電池
CN112786890A (zh) 一种低界面阻抗的固态电池及其制备方法
US20140242443A1 (en) Separator with heat-resistant insulation layer
CN112072109A (zh) 锂离子电池及其制备方法
CN113675401A (zh) 一种叠片式锂离子电池的负极极片及叠片式锂离子电池
JP2014170752A (ja) 電気化学素子用セパレータ、電気化学素子およびその製造方法
CN110875476A (zh) 锂二次电池的负极、其制备方法和锂二次电池
JP6237777B2 (ja) 負極活物質、それを用いた負極、及びリチウムイオン二次電池
JP2020126733A (ja) リチウムイオン二次電池用電極、及びリチウムイオン二次電池
CN115395088A (zh) 一种阻燃型固态电解质膜及基于其的固态软包电池
CN116745985A (zh) 隔离膜、二次电池、电池模块、电池包及用电装置
WO2023221072A1 (zh) 隔离膜及其制备方法、含有其的二次电池及用电装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210511

RJ01 Rejection of invention patent application after publication