WO2020083210A1 - 发动机尾气处理系统和方法 - Google Patents
发动机尾气处理系统和方法 Download PDFInfo
- Publication number
- WO2020083210A1 WO2020083210A1 PCT/CN2019/112275 CN2019112275W WO2020083210A1 WO 2020083210 A1 WO2020083210 A1 WO 2020083210A1 CN 2019112275 W CN2019112275 W CN 2019112275W WO 2020083210 A1 WO2020083210 A1 WO 2020083210A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exhaust gas
- electric field
- ozone
- present
- electrode
- Prior art date
Links
- 238000012545 processing Methods 0.000 title abstract description 11
- 238000000034 method Methods 0.000 title description 134
- 239000000428 dust Substances 0.000 claims abstract description 631
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims abstract description 481
- 238000006243 chemical reaction Methods 0.000 claims abstract description 101
- 238000000746 purification Methods 0.000 claims abstract description 42
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 230000005684 electric field Effects 0.000 claims description 1458
- 239000007789 gas Substances 0.000 claims description 1457
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 189
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 106
- 229910017604 nitric acid Inorganic materials 0.000 claims description 106
- 239000000463 material Substances 0.000 claims description 88
- 239000007788 liquid Substances 0.000 claims description 69
- 238000001514 detection method Methods 0.000 claims description 61
- 239000012855 volatile organic compound Substances 0.000 claims description 49
- 230000003197 catalytic effect Effects 0.000 claims description 32
- 238000002156 mixing Methods 0.000 claims description 32
- 238000010531 catalytic reduction reaction Methods 0.000 claims description 19
- 239000007864 aqueous solution Substances 0.000 claims description 16
- 239000007795 chemical reaction product Substances 0.000 claims description 12
- 229910002651 NO3 Inorganic materials 0.000 claims description 11
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 11
- 238000000926 separation method Methods 0.000 claims description 10
- 230000004907 flux Effects 0.000 claims description 9
- 238000009833 condensation Methods 0.000 claims description 7
- 230000005494 condensation Effects 0.000 claims description 7
- 238000010894 electron beam technology Methods 0.000 claims description 6
- 238000013178 mathematical model Methods 0.000 claims description 6
- 230000000694 effects Effects 0.000 abstract description 35
- 238000009297 electrocoagulation Methods 0.000 description 238
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 201
- 239000003595 mist Substances 0.000 description 188
- 239000001301 oxygen Substances 0.000 description 144
- 229910052760 oxygen Inorganic materials 0.000 description 144
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 111
- 239000003054 catalyst Substances 0.000 description 87
- 239000010410 layer Substances 0.000 description 85
- 239000000126 substance Substances 0.000 description 73
- -1 small-molecule carbon dioxide Chemical class 0.000 description 67
- 229910052751 metal Inorganic materials 0.000 description 66
- 238000009413 insulation Methods 0.000 description 63
- 239000002184 metal Substances 0.000 description 59
- 230000008878 coupling Effects 0.000 description 54
- 238000010168 coupling process Methods 0.000 description 54
- 238000005859 coupling reaction Methods 0.000 description 54
- 238000010586 diagram Methods 0.000 description 54
- 230000007246 mechanism Effects 0.000 description 52
- 239000013618 particulate matter Substances 0.000 description 47
- 238000009825 accumulation Methods 0.000 description 46
- 239000003344 environmental pollutant Substances 0.000 description 46
- 231100000719 pollutant Toxicity 0.000 description 46
- 230000004888 barrier function Effects 0.000 description 44
- 238000001179 sorption measurement Methods 0.000 description 44
- 238000000576 coating method Methods 0.000 description 43
- 239000012530 fluid Substances 0.000 description 41
- 239000002253 acid Substances 0.000 description 40
- 239000002245 particle Substances 0.000 description 38
- 239000006229 carbon black Substances 0.000 description 37
- 239000000919 ceramic Substances 0.000 description 35
- 239000011248 coating agent Substances 0.000 description 33
- 150000002500 ions Chemical class 0.000 description 26
- 238000007254 oxidation reaction Methods 0.000 description 26
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 25
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 23
- 230000009471 action Effects 0.000 description 23
- 230000003647 oxidation Effects 0.000 description 22
- 239000002131 composite material Substances 0.000 description 19
- 239000002002 slurry Substances 0.000 description 19
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 18
- 239000011521 glass Substances 0.000 description 18
- 238000012360 testing method Methods 0.000 description 18
- 230000005686 electrostatic field Effects 0.000 description 17
- 239000013589 supplement Substances 0.000 description 17
- 150000001875 compounds Chemical class 0.000 description 15
- 230000008569 process Effects 0.000 description 15
- 239000007787 solid Substances 0.000 description 15
- 239000007921 spray Substances 0.000 description 15
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 14
- 238000010504 bond cleavage reaction Methods 0.000 description 14
- 238000004140 cleaning Methods 0.000 description 14
- 238000001035 drying Methods 0.000 description 14
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 14
- 239000004810 polytetrafluoroethylene Substances 0.000 description 14
- 239000000443 aerosol Substances 0.000 description 13
- 238000001816 cooling Methods 0.000 description 13
- 239000003921 oil Substances 0.000 description 13
- 239000011148 porous material Substances 0.000 description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 12
- 229920002313 fluoropolymer Polymers 0.000 description 12
- 239000004811 fluoropolymer Substances 0.000 description 12
- 239000012212 insulator Substances 0.000 description 12
- 238000010248 power generation Methods 0.000 description 11
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 10
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 10
- 238000001354 calcination Methods 0.000 description 10
- 239000011247 coating layer Substances 0.000 description 10
- 238000005265 energy consumption Methods 0.000 description 10
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 10
- 229910052726 zirconium Inorganic materials 0.000 description 10
- APWRZPQBPCAXFP-UHFFFAOYSA-N 1-(1-oxo-2H-isoquinolin-5-yl)-5-(trifluoromethyl)-N-[2-(trifluoromethyl)pyridin-4-yl]pyrazole-4-carboxamide Chemical compound O=C1NC=CC2=C(C=CC=C12)N1N=CC(=C1C(F)(F)F)C(=O)NC1=CC(=NC=C1)C(F)(F)F APWRZPQBPCAXFP-UHFFFAOYSA-N 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N carbon dioxide Natural products O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 9
- 239000011889 copper foil Substances 0.000 description 9
- 238000005336 cracking Methods 0.000 description 9
- 238000000354 decomposition reaction Methods 0.000 description 9
- 239000003480 eluent Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 230000001502 supplementing effect Effects 0.000 description 9
- 238000012546 transfer Methods 0.000 description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 229910001882 dioxygen Inorganic materials 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 230000007613 environmental effect Effects 0.000 description 8
- 125000005843 halogen group Chemical group 0.000 description 8
- 239000011964 heteropoly acid Substances 0.000 description 8
- 239000012535 impurity Substances 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 150000002484 inorganic compounds Chemical class 0.000 description 8
- 229910010272 inorganic material Inorganic materials 0.000 description 8
- 150000002894 organic compounds Chemical class 0.000 description 8
- 125000004334 oxygen containing inorganic group Chemical group 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 7
- 238000005345 coagulation Methods 0.000 description 7
- 230000015271 coagulation Effects 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 7
- 238000013461 design Methods 0.000 description 7
- 238000001914 filtration Methods 0.000 description 7
- 239000010439 graphite Substances 0.000 description 7
- 229910002804 graphite Inorganic materials 0.000 description 7
- 238000011068 loading method Methods 0.000 description 7
- 229910052684 Cerium Inorganic materials 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 6
- 239000001569 carbon dioxide Substances 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 229910002091 carbon monoxide Inorganic materials 0.000 description 6
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 6
- 229910000420 cerium oxide Inorganic materials 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- 230000001276 controlling effect Effects 0.000 description 6
- 239000008367 deionised water Substances 0.000 description 6
- 229910021641 deionized water Inorganic materials 0.000 description 6
- 230000029087 digestion Effects 0.000 description 6
- 239000000446 fuel Substances 0.000 description 6
- 230000005484 gravity Effects 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 229910052747 lanthanoid Inorganic materials 0.000 description 6
- 150000002602 lanthanoids Chemical class 0.000 description 6
- 239000002905 metal composite material Substances 0.000 description 6
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 6
- 239000002808 molecular sieve Substances 0.000 description 6
- 235000006408 oxalic acid Nutrition 0.000 description 6
- 230000001590 oxidative effect Effects 0.000 description 6
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 6
- 239000010970 precious metal Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 229910052761 rare earth metal Inorganic materials 0.000 description 6
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 6
- 230000009469 supplementation Effects 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 229910052723 transition metal Inorganic materials 0.000 description 6
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 5
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 239000003513 alkali Substances 0.000 description 5
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 239000004744 fabric Substances 0.000 description 5
- 229910021389 graphene Inorganic materials 0.000 description 5
- 238000006386 neutralization reaction Methods 0.000 description 5
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 5
- 235000021317 phosphate Nutrition 0.000 description 5
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 5
- 229910001928 zirconium oxide Inorganic materials 0.000 description 5
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 4
- 239000005909 Kieselgur Substances 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 4
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 4
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 4
- 229910002113 barium titanate Inorganic materials 0.000 description 4
- XBYNNYGGLWJASC-UHFFFAOYSA-N barium titanium Chemical compound [Ti].[Ba] XBYNNYGGLWJASC-UHFFFAOYSA-N 0.000 description 4
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 4
- 239000004202 carbamide Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000006555 catalytic reaction Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 229910052746 lanthanum Inorganic materials 0.000 description 4
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 4
- 229910000464 lead oxide Inorganic materials 0.000 description 4
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 4
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical group O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 4
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 4
- 229920000515 polycarbonate Polymers 0.000 description 4
- 239000004800 polyvinyl chloride Substances 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 229910052703 rhodium Inorganic materials 0.000 description 4
- 239000010948 rhodium Substances 0.000 description 4
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 229910001936 tantalum oxide Inorganic materials 0.000 description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 4
- 229910001887 tin oxide Inorganic materials 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- PMTRSEDNJGMXLN-UHFFFAOYSA-N titanium zirconium Chemical compound [Ti].[Zr] PMTRSEDNJGMXLN-UHFFFAOYSA-N 0.000 description 4
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- YGYGASJNJTYNOL-CQSZACIVSA-N 3-[(4r)-2,2-dimethyl-1,1-dioxothian-4-yl]-5-(4-fluorophenyl)-1h-indole-7-carboxamide Chemical compound C1CS(=O)(=O)C(C)(C)C[C@@H]1C1=CNC2=C(C(N)=O)C=C(C=3C=CC(F)=CC=3)C=C12 YGYGASJNJTYNOL-CQSZACIVSA-N 0.000 description 3
- YFCIFWOJYYFDQP-PTWZRHHISA-N 4-[3-amino-6-[(1S,3S,4S)-3-fluoro-4-hydroxycyclohexyl]pyrazin-2-yl]-N-[(1S)-1-(3-bromo-5-fluorophenyl)-2-(methylamino)ethyl]-2-fluorobenzamide Chemical compound CNC[C@@H](NC(=O)c1ccc(cc1F)-c1nc(cnc1N)[C@H]1CC[C@H](O)[C@@H](F)C1)c1cc(F)cc(Br)c1 YFCIFWOJYYFDQP-PTWZRHHISA-N 0.000 description 3
- IRPVABHDSJVBNZ-RTHVDDQRSA-N 5-[1-(cyclopropylmethyl)-5-[(1R,5S)-3-(oxetan-3-yl)-3-azabicyclo[3.1.0]hexan-6-yl]pyrazol-3-yl]-3-(trifluoromethyl)pyridin-2-amine Chemical compound C1=C(C(F)(F)F)C(N)=NC=C1C1=NN(CC2CC2)C(C2[C@@H]3CN(C[C@@H]32)C2COC2)=C1 IRPVABHDSJVBNZ-RTHVDDQRSA-N 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 229910000640 Fe alloy Inorganic materials 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 229910052777 Praseodymium Inorganic materials 0.000 description 3
- 229910052772 Samarium Inorganic materials 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 229910021536 Zeolite Inorganic materials 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 150000001342 alkaline earth metals Chemical class 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052741 iridium Inorganic materials 0.000 description 3
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000010445 mica Substances 0.000 description 3
- 229910052618 mica group Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000000615 nonconductor Substances 0.000 description 3
- 238000006213 oxygenation reaction Methods 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 3
- 150000004763 sulfides Chemical class 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- VCGRFBXVSFAGGA-UHFFFAOYSA-N (1,1-dioxo-1,4-thiazinan-4-yl)-[6-[[3-(4-fluorophenyl)-5-methyl-1,2-oxazol-4-yl]methoxy]pyridin-3-yl]methanone Chemical compound CC=1ON=C(C=2C=CC(F)=CC=2)C=1COC(N=C1)=CC=C1C(=O)N1CCS(=O)(=O)CC1 VCGRFBXVSFAGGA-UHFFFAOYSA-N 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 2
- MAYZWDRUFKUGGP-VIFPVBQESA-N (3s)-1-[5-tert-butyl-3-[(1-methyltetrazol-5-yl)methyl]triazolo[4,5-d]pyrimidin-7-yl]pyrrolidin-3-ol Chemical compound CN1N=NN=C1CN1C2=NC(C(C)(C)C)=NC(N3C[C@@H](O)CC3)=C2N=N1 MAYZWDRUFKUGGP-VIFPVBQESA-N 0.000 description 2
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 2
- XYWIPYBIIRTJMM-IBGZPJMESA-N 4-[[(2S)-2-[4-[5-chloro-2-[4-(trifluoromethyl)triazol-1-yl]phenyl]-5-methoxy-2-oxopyridin-1-yl]butanoyl]amino]-2-fluorobenzamide Chemical compound CC[C@H](N1C=C(OC)C(=CC1=O)C1=C(C=CC(Cl)=C1)N1C=C(N=N1)C(F)(F)F)C(=O)NC1=CC(F)=C(C=C1)C(N)=O XYWIPYBIIRTJMM-IBGZPJMESA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000006261 foam material Substances 0.000 description 2
- 238000002309 gasification Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- DOTMOQHOJINYBL-UHFFFAOYSA-N molecular nitrogen;molecular oxygen Chemical compound N#N.O=O DOTMOQHOJINYBL-UHFFFAOYSA-N 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- UBXAKNTVXQMEAG-UHFFFAOYSA-L strontium sulfate Chemical compound [Sr+2].[O-]S([O-])(=O)=O UBXAKNTVXQMEAG-UHFFFAOYSA-L 0.000 description 2
- 229910000348 titanium sulfate Inorganic materials 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 2
- 229910000368 zinc sulfate Inorganic materials 0.000 description 2
- 229960001763 zinc sulfate Drugs 0.000 description 2
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 description 2
- DOMQFIFVDIAOOT-ROUUACIJSA-N (2S,3R)-N-[4-(2,6-dimethoxyphenyl)-5-(5-methylpyridin-3-yl)-1,2,4-triazol-3-yl]-3-(5-methylpyrimidin-2-yl)butane-2-sulfonamide Chemical compound COC1=C(C(=CC=C1)OC)N1C(=NN=C1C=1C=NC=C(C=1)C)NS(=O)(=O)[C@@H](C)[C@H](C)C1=NC=C(C=N1)C DOMQFIFVDIAOOT-ROUUACIJSA-N 0.000 description 1
- UKGJZDSUJSPAJL-YPUOHESYSA-N (e)-n-[(1r)-1-[3,5-difluoro-4-(methanesulfonamido)phenyl]ethyl]-3-[2-propyl-6-(trifluoromethyl)pyridin-3-yl]prop-2-enamide Chemical compound CCCC1=NC(C(F)(F)F)=CC=C1\C=C\C(=O)N[C@H](C)C1=CC(F)=C(NS(C)(=O)=O)C(F)=C1 UKGJZDSUJSPAJL-YPUOHESYSA-N 0.000 description 1
- ZGYIXVSQHOKQRZ-COIATFDQSA-N (e)-n-[4-[3-chloro-4-(pyridin-2-ylmethoxy)anilino]-3-cyano-7-[(3s)-oxolan-3-yl]oxyquinolin-6-yl]-4-(dimethylamino)but-2-enamide Chemical compound N#CC1=CN=C2C=C(O[C@@H]3COCC3)C(NC(=O)/C=C/CN(C)C)=CC2=C1NC(C=C1Cl)=CC=C1OCC1=CC=CC=N1 ZGYIXVSQHOKQRZ-COIATFDQSA-N 0.000 description 1
- MOWXJLUYGFNTAL-DEOSSOPVSA-N (s)-[2-chloro-4-fluoro-5-(7-morpholin-4-ylquinazolin-4-yl)phenyl]-(6-methoxypyridazin-3-yl)methanol Chemical compound N1=NC(OC)=CC=C1[C@@H](O)C1=CC(C=2C3=CC=C(C=C3N=CN=2)N2CCOCC2)=C(F)C=C1Cl MOWXJLUYGFNTAL-DEOSSOPVSA-N 0.000 description 1
- HCDMJFOHIXMBOV-UHFFFAOYSA-N 3-(2,6-difluoro-3,5-dimethoxyphenyl)-1-ethyl-8-(morpholin-4-ylmethyl)-4,7-dihydropyrrolo[4,5]pyrido[1,2-d]pyrimidin-2-one Chemical compound C=1C2=C3N(CC)C(=O)N(C=4C(=C(OC)C=C(OC)C=4F)F)CC3=CN=C2NC=1CN1CCOCC1 HCDMJFOHIXMBOV-UHFFFAOYSA-N 0.000 description 1
- BYHQTRFJOGIQAO-GOSISDBHSA-N 3-(4-bromophenyl)-8-[(2R)-2-hydroxypropyl]-1-[(3-methoxyphenyl)methyl]-1,3,8-triazaspiro[4.5]decan-2-one Chemical compound C[C@H](CN1CCC2(CC1)CN(C(=O)N2CC3=CC(=CC=C3)OC)C4=CC=C(C=C4)Br)O BYHQTRFJOGIQAO-GOSISDBHSA-N 0.000 description 1
- WNEODWDFDXWOLU-QHCPKHFHSA-N 3-[3-(hydroxymethyl)-4-[1-methyl-5-[[5-[(2s)-2-methyl-4-(oxetan-3-yl)piperazin-1-yl]pyridin-2-yl]amino]-6-oxopyridin-3-yl]pyridin-2-yl]-7,7-dimethyl-1,2,6,8-tetrahydrocyclopenta[3,4]pyrrolo[3,5-b]pyrazin-4-one Chemical compound C([C@@H](N(CC1)C=2C=NC(NC=3C(N(C)C=C(C=3)C=3C(=C(N4C(C5=CC=6CC(C)(C)CC=6N5CC4)=O)N=CC=3)CO)=O)=CC=2)C)N1C1COC1 WNEODWDFDXWOLU-QHCPKHFHSA-N 0.000 description 1
- SRVXSISGYBMIHR-UHFFFAOYSA-N 3-[3-[3-(2-amino-2-oxoethyl)phenyl]-5-chlorophenyl]-3-(5-methyl-1,3-thiazol-2-yl)propanoic acid Chemical compound S1C(C)=CN=C1C(CC(O)=O)C1=CC(Cl)=CC(C=2C=C(CC(N)=O)C=CC=2)=C1 SRVXSISGYBMIHR-UHFFFAOYSA-N 0.000 description 1
- VJPPLCNBDLZIFG-ZDUSSCGKSA-N 4-[(3S)-3-(but-2-ynoylamino)piperidin-1-yl]-5-fluoro-2,3-dimethyl-1H-indole-7-carboxamide Chemical compound C(C#CC)(=O)N[C@@H]1CN(CCC1)C1=C2C(=C(NC2=C(C=C1F)C(=O)N)C)C VJPPLCNBDLZIFG-ZDUSSCGKSA-N 0.000 description 1
- KVCQTKNUUQOELD-UHFFFAOYSA-N 4-amino-n-[1-(3-chloro-2-fluoroanilino)-6-methylisoquinolin-5-yl]thieno[3,2-d]pyrimidine-7-carboxamide Chemical compound N=1C=CC2=C(NC(=O)C=3C4=NC=NC(N)=C4SC=3)C(C)=CC=C2C=1NC1=CC=CC(Cl)=C1F KVCQTKNUUQOELD-UHFFFAOYSA-N 0.000 description 1
- NGDQQLAVJWUYSF-UHFFFAOYSA-N 4-methyl-2-phenyl-1,3-thiazole-5-sulfonyl chloride Chemical compound S1C(S(Cl)(=O)=O)=C(C)N=C1C1=CC=CC=C1 NGDQQLAVJWUYSF-UHFFFAOYSA-N 0.000 description 1
- KCBWAFJCKVKYHO-UHFFFAOYSA-N 6-(4-cyclopropyl-6-methoxypyrimidin-5-yl)-1-[[4-[1-propan-2-yl-4-(trifluoromethyl)imidazol-2-yl]phenyl]methyl]pyrazolo[3,4-d]pyrimidine Chemical compound C1(CC1)C1=NC=NC(=C1C1=NC=C2C(=N1)N(N=C2)CC1=CC=C(C=C1)C=1N(C=C(N=1)C(F)(F)F)C(C)C)OC KCBWAFJCKVKYHO-UHFFFAOYSA-N 0.000 description 1
- CYJRNFFLTBEQSQ-UHFFFAOYSA-N 8-(3-methyl-1-benzothiophen-5-yl)-N-(4-methylsulfonylpyridin-3-yl)quinoxalin-6-amine Chemical compound CS(=O)(=O)C1=C(C=NC=C1)NC=1C=C2N=CC=NC2=C(C=1)C=1C=CC2=C(C(=CS2)C)C=1 CYJRNFFLTBEQSQ-UHFFFAOYSA-N 0.000 description 1
- ZRPZPNYZFSJUPA-UHFFFAOYSA-N ARS-1620 Chemical compound Oc1cccc(F)c1-c1c(Cl)cc2c(ncnc2c1F)N1CCN(CC1)C(=O)C=C ZRPZPNYZFSJUPA-UHFFFAOYSA-N 0.000 description 1
- 229910000505 Al2TiO5 Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- GISRWBROCYNDME-PELMWDNLSA-N F[C@H]1[C@H]([C@H](NC1=O)COC1=NC=CC2=CC(=C(C=C12)OC)C(=O)N)C Chemical compound F[C@H]1[C@H]([C@H](NC1=O)COC1=NC=CC2=CC(=C(C=C12)OC)C(=O)N)C GISRWBROCYNDME-PELMWDNLSA-N 0.000 description 1
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- AYCPARAPKDAOEN-LJQANCHMSA-N N-[(1S)-2-(dimethylamino)-1-phenylethyl]-6,6-dimethyl-3-[(2-methyl-4-thieno[3,2-d]pyrimidinyl)amino]-1,4-dihydropyrrolo[3,4-c]pyrazole-5-carboxamide Chemical compound C1([C@H](NC(=O)N2C(C=3NN=C(NC=4C=5SC=CC=5N=C(C)N=4)C=3C2)(C)C)CN(C)C)=CC=CC=C1 AYCPARAPKDAOEN-LJQANCHMSA-N 0.000 description 1
- FEYNFHSRETUBEM-UHFFFAOYSA-N N-[3-(1,1-difluoroethyl)phenyl]-1-(4-methoxyphenyl)-3-methyl-5-oxo-4H-pyrazole-4-carboxamide Chemical compound COc1ccc(cc1)N1N=C(C)C(C(=O)Nc2cccc(c2)C(C)(F)F)C1=O FEYNFHSRETUBEM-UHFFFAOYSA-N 0.000 description 1
- IDRGFNPZDVBSSE-UHFFFAOYSA-N OCCN1CCN(CC1)c1ccc(Nc2ncc3cccc(-c4cccc(NC(=O)C=C)c4)c3n2)c(F)c1F Chemical compound OCCN1CCN(CC1)c1ccc(Nc2ncc3cccc(-c4cccc(NC(=O)C=C)c4)c3n2)c(F)c1F IDRGFNPZDVBSSE-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- LXRZVMYMQHNYJB-UNXOBOICSA-N [(1R,2S,4R)-4-[[5-[4-[(1R)-7-chloro-1,2,3,4-tetrahydroisoquinolin-1-yl]-5-methylthiophene-2-carbonyl]pyrimidin-4-yl]amino]-2-hydroxycyclopentyl]methyl sulfamate Chemical compound CC1=C(C=C(S1)C(=O)C1=C(N[C@H]2C[C@H](O)[C@@H](COS(N)(=O)=O)C2)N=CN=C1)[C@@H]1NCCC2=C1C=C(Cl)C=C2 LXRZVMYMQHNYJB-UNXOBOICSA-N 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- DGLFSNZWRYADFC-UHFFFAOYSA-N chembl2334586 Chemical compound C1CCC2=CN=C(N)N=C2C2=C1NC1=CC=C(C#CC(C)(O)C)C=C12 DGLFSNZWRYADFC-UHFFFAOYSA-N 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- FMASTMURQSHELY-UHFFFAOYSA-N n-(4-fluoro-2-methylphenyl)-3-methyl-n-[(2-methyl-1h-indol-4-yl)methyl]pyridine-4-carboxamide Chemical compound C1=CC=C2NC(C)=CC2=C1CN(C=1C(=CC(F)=CC=1)C)C(=O)C1=CC=NC=C1C FMASTMURQSHELY-UHFFFAOYSA-N 0.000 description 1
- NNKPHNTWNILINE-UHFFFAOYSA-N n-cyclopropyl-3-fluoro-4-methyl-5-[3-[[1-[2-[2-(methylamino)ethoxy]phenyl]cyclopropyl]amino]-2-oxopyrazin-1-yl]benzamide Chemical compound CNCCOC1=CC=CC=C1C1(NC=2C(N(C=3C(=C(F)C=C(C=3)C(=O)NC3CC3)C)C=CN=2)=O)CC1 NNKPHNTWNILINE-UHFFFAOYSA-N 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- MMKQUGHLEMYQSG-UHFFFAOYSA-N oxygen(2-);praseodymium(3+) Chemical compound [O-2].[O-2].[O-2].[Pr+3].[Pr+3] MMKQUGHLEMYQSG-UHFFFAOYSA-N 0.000 description 1
- 230000001706 oxygenating effect Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- NWAHZABTSDUXMJ-UHFFFAOYSA-N platinum(2+);dinitrate Chemical compound [Pt+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O NWAHZABTSDUXMJ-UHFFFAOYSA-N 0.000 description 1
- LZMJNVRJMFMYQS-UHFFFAOYSA-N poseltinib Chemical compound C1CN(C)CCN1C(C=C1)=CC=C1NC1=NC(OC=2C=C(NC(=O)C=C)C=CC=2)=C(OC=C2)C2=N1 LZMJNVRJMFMYQS-UHFFFAOYSA-N 0.000 description 1
- 229910003447 praseodymium oxide Inorganic materials 0.000 description 1
- YWECOPREQNXXBZ-UHFFFAOYSA-N praseodymium(3+);trinitrate Chemical compound [Pr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O YWECOPREQNXXBZ-UHFFFAOYSA-N 0.000 description 1
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 1
- 229910001954 samarium oxide Inorganic materials 0.000 description 1
- 229940075630 samarium oxide Drugs 0.000 description 1
- YZDZYSPAJSPJQJ-UHFFFAOYSA-N samarium(3+);trinitrate Chemical compound [Sm+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O YZDZYSPAJSPJQJ-UHFFFAOYSA-N 0.000 description 1
- FKTOIHSPIPYAPE-UHFFFAOYSA-N samarium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Sm+3].[Sm+3] FKTOIHSPIPYAPE-UHFFFAOYSA-N 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- XIIOFHFUYBLOLW-UHFFFAOYSA-N selpercatinib Chemical compound OC(COC=1C=C(C=2N(C=1)N=CC=2C#N)C=1C=NC(=CC=1)N1CC2N(C(C1)C2)CC=1C=NC(=CC=1)OC)(C)C XIIOFHFUYBLOLW-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- XGVXKJKTISMIOW-ZDUSSCGKSA-N simurosertib Chemical compound N1N=CC(C=2SC=3C(=O)NC(=NC=3C=2)[C@H]2N3CCC(CC3)C2)=C1C XGVXKJKTISMIOW-ZDUSSCGKSA-N 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- RCIVOBGSMSSVTR-UHFFFAOYSA-L stannous sulfate Chemical compound [SnH2+2].[O-]S([O-])(=O)=O RCIVOBGSMSSVTR-UHFFFAOYSA-L 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- ZEGFMFQPWDMMEP-UHFFFAOYSA-N strontium;sulfide Chemical compound [S-2].[Sr+2] ZEGFMFQPWDMMEP-UHFFFAOYSA-N 0.000 description 1
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 description 1
- 238000005486 sulfidation Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229910000375 tin(II) sulfate Inorganic materials 0.000 description 1
- AFNRRBXCCXDRPS-UHFFFAOYSA-N tin(ii) sulfide Chemical compound [Sn]=S AFNRRBXCCXDRPS-UHFFFAOYSA-N 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/01—Pretreatment of the gases prior to electrostatic precipitation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/01—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust by means of electric or electrostatic separators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D47/00—Separating dispersed particles from gases, air or vapours by liquid as separating agent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/26—Drying gases or vapours
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/32—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/32—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
- B01D53/323—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 by electrostatic effects or by high-voltage electric fields
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/54—Nitrogen compounds
- B01D53/56—Nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/76—Gas phase processes, e.g. by using aerosols
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/922—Mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/922—Mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
- B01D53/925—Simultaneous elimination of carbon monoxide or hydrocarbons and nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/944—Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/01—Pretreatment of the gases prior to electrostatic precipitation
- B03C3/011—Prefiltering; Flow controlling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/01—Pretreatment of the gases prior to electrostatic precipitation
- B03C3/014—Addition of water; Heat exchange, e.g. by condensation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/017—Combinations of electrostatic separation with other processes, not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/017—Combinations of electrostatic separation with other processes, not otherwise provided for
- B03C3/0175—Amassing particles by electric fields, e.g. agglomeration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/02—Plant or installations having external electricity supply
- B03C3/04—Plant or installations having external electricity supply dry type
- B03C3/06—Plant or installations having external electricity supply dry type characterised by presence of stationary tube electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/28—Plant or installations without electricity supply, e.g. using electrets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/40—Electrode constructions
- B03C3/41—Ionising-electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/40—Electrode constructions
- B03C3/45—Collecting-electrodes
- B03C3/49—Collecting-electrodes tubular
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/74—Cleaning the electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/86—Electrode-carrying means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0871—Regulation of absorbents or adsorbents, e.g. purging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/22—Control of additional air supply only, e.g. using by-passes or variable air pump drives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2803—Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/30—Arrangements for supply of additional air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N5/00—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
- F01N5/02—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
- F01N5/025—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat the device being thermoelectric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2247/00—Details relating to the separation of dispersed particles from gases, air or vapours by liquid as separating agent
- B01D2247/02—Enhancing the particle separation by electrostatic or magnetic effects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/10—Oxidants
- B01D2251/102—Oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/10—Oxidants
- B01D2251/104—Ozone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/10—Oxidants
- B01D2251/11—Air
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/10—Single element gases other than halogens
- B01D2257/106—Ozone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/708—Volatile organic compounds V.O.C.'s
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/10—Gas phase, e.g. by using aerosols
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/80—Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
- B01D2259/804—UV light
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8671—Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
- B01D53/8675—Ozone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C2201/00—Details of magnetic or electrostatic separation
- B03C2201/08—Ionising electrode being a rod
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C2201/00—Details of magnetic or electrostatic separation
- B03C2201/30—Details of magnetic or electrostatic separation for use in or with vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C2201/00—Details of magnetic or electrostatic separation
- B03C2201/32—Checking the quality of the result or the well-functioning of the device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/04—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric, e.g. electrostatic, device other than a heater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/38—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an ozone (O3) generator, e.g. for adding ozone after generation of ozone from air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2250/00—Combinations of different methods of purification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2250/00—Combinations of different methods of purification
- F01N2250/10—Combinations of different methods of purification cooling and filtering
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/02—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
- F01N2560/026—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2570/00—Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
- F01N2570/14—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/02—Adding substances to exhaust gases the substance being ammonia or urea
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/06—Adding substances to exhaust gases the substance being in the gaseous form
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/04—Methods of control or diagnosing
- F01N2900/0416—Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/005—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for draining or otherwise eliminating condensates or moisture accumulating in the apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/0205—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using heat exchangers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
- Y02A50/2351—Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/12—Heat utilisation in combustion or incineration of waste
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/10—Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
Definitions
- the invention belongs to the field of environmental protection and relates to an engine exhaust gas treatment system and method.
- particulate filtering is usually performed through a diesel particulate filter (DPF).
- DPF diesel particulate filter
- the DPF works in a combustion mode, that is, it uses carbon deposits in the porous structure to be fully blocked and then heated up to the ignition point to burn in a natural or combustion-supporting manner.
- the working principle of the DPF is as follows: the intake air with particulate matter enters the honeycomb carrier of the DPF, the particulate matter is intercepted in the honeycomb loading body, and most of the particulate matter has been filtered out when the intake air flows out of the DPF.
- the carrier materials of DPF are mainly cordierite, silicon carbide, aluminum titanate, etc., which can be selected and used according to the actual situation.
- the above method stores the following defects:
- Electrostatic dust removal is a gas dust removal method, usually used in metallurgy, chemical and other industrial fields to purify gas or recover useful dust particles.
- the particulate matter of the engine intake air cannot be processed based on electrostatic dust removal.
- the engine's environmental pollution mainly comes from the exhaust product of the engine, that is, the engine exhaust.
- the conventional technical route is to use the oxidation catalyst DOC to remove the hydrocarbons THC and CO, and at the same time oxidize the low-valent NO to the high-valent NO 2 ; after the DOC, the particulate matter PM is filtered by the diesel particulate trap DPF; after the diesel particulate trap DPF, urea is injected, and the urea is decomposed into ammonia gas NH 3 in the exhaust gas, and the subsequent selectivity of NH 3 A selective catalytic reduction reaction with NO 2 occurs on the catalyst SCR to produce nitrogen N 2 and water.
- the object of the present invention is to provide an engine emission treatment system and method for solving the prior art dust removal system that requires regular maintenance and the effect is unstable and that a large amount of urea treatment exhaust gas needs to be added and the exhaust gas is purified
- the effect is generally at least one problem.
- the present invention discovered new problems in the existing ionization dust removal technology through research and solved it through a series of technical means, for example, when the exhaust gas temperature or the engine temperature is below a certain temperature, the engine exhaust gas may contain liquid water,
- the invention installs a water removal device in front of the tail gas electric field device to remove the liquid water in the tail gas to improve the ionization and dust removal effect; under high temperature conditions, by controlling the ratio of the dust collection area of the anode of the tail gas electric field device to the discharge area of the cathode, cathode / anode
- the length, the distance between the poles and the setting of the auxiliary electric field, etc. effectively reduce the electric field coupling, and make the exhaust gas electric field device still have high efficiency dust collection capacity under high temperature impact. Therefore, the present invention is suitable for operating under harsh conditions and guarantees dust removal efficiency, so from a commercial point of view, the present invention is fully applicable to engines.
- the invention provides an engine emission treatment system, including at least one of an exhaust gas dust removal system and an exhaust gas ozone purification system.
- the exhaust gas dedusting system includes an exhaust gas dedusting system inlet, an exhaust gas dedusting system outlet, and an exhaust gas electric field device.
- the exhaust gas ozone purification system includes a reaction field for mixing and reacting the ozone stream with the exhaust stream.
- the engine emission treatment system can effectively treat engine emissions, making the engine emissions cleaner.
- Example 1 provided by the present invention: an engine emission treatment system.
- Example 2 provided by the present invention: including the above example 1, including an exhaust gas dedusting system, the exhaust gas dedusting system includes an exhaust gas dedusting system inlet, an exhaust gas dedusting system outlet, and an exhaust gas electric field device.
- Example 3 provided by the present invention includes the above example 2, wherein the exhaust gas electric field device includes an exhaust gas electric field device inlet, an exhaust gas electric field device outlet, an exhaust gas dedusting electric field cathode and an exhaust gas dedusting electric field anode, the exhaust gas dedusting electric field cathode and all The anode of the exhaust gas dedusting electric field is used to generate the exhaust gas ionization dedusting electric field.
- the exhaust gas electric field device includes an exhaust gas electric field device inlet, an exhaust gas electric field device outlet, an exhaust gas dedusting electric field cathode and an exhaust gas dedusting electric field anode, the exhaust gas dedusting electric field cathode and all The anode of the exhaust gas dedusting electric field is used to generate the exhaust gas ionization dedusting electric field.
- Example 4 provided by the present invention includes the above example 3, wherein the exhaust gas dedusting electric field anode includes a first anode portion and a second anode portion, the first anode portion is near the exhaust gas electric field device inlet, and the second anode portion is near At the outlet of the exhaust gas electric field device, at least one cathode support plate is provided between the first anode portion and the second anode portion.
- Example 5 provided by the present invention includes the above example 4, wherein the exhaust gas electric field device further includes an exhaust gas insulation mechanism for achieving insulation between the cathode support plate and the anode of the exhaust gas dedusting electric field.
- Example 6 provided by the present invention includes the above example 5, wherein an electric field flow path is formed between the exhaust gas dedusting electric field anode and the exhaust gas dedusting electric field cathode, and the exhaust gas insulation mechanism is provided outside the electric field flow path.
- Example 7 provided by the present invention includes the above example 5 or 6, wherein the exhaust gas insulation mechanism includes an insulating portion and a heat insulating portion; the material of the insulating portion is a ceramic material or a glass material.
- Example 8 provided by the present invention includes the above example 7, wherein the insulating part is an umbrella-shaped string ceramic column, an umbrella-shaped string glass column, a column-shaped string ceramic column or a column-shaped glass column, and the glaze is hung on the inside or outside of the umbrella.
- the insulating part is an umbrella-shaped string ceramic column, an umbrella-shaped string glass column, a column-shaped string ceramic column or a column-shaped glass column, and the glaze is hung on the inside or outside of the umbrella.
- Example 9 provided by the present invention includes the above example 8, wherein the distance between the outer edge of the umbrella-shaped string ceramic column or the umbrella-shaped string glass column and the anode of the exhaust gas dedusting electric field is greater than 1.4 times the electric field distance, and the umbrella-shaped string ceramic column
- the total length of the umbrella flanges of the umbrella-shaped string glass column is 1.4 times greater than the insulation distance of the umbrella-shaped string ceramic column or umbrella-shaped string glass column, and the total inner depth of the umbrella edge of the umbrella-shaped string ceramic column or umbrella-shaped string glass column is greater than the umbrella shape Insulation distance of string ceramic column or glass string with umbrella shape is 1.4 times.
- Example 10 provided by the present invention: including any one of the above examples 4 to 9, wherein the length of the first anode portion is 1/10 to 1/4, 1/1 of the length of the anode of the exhaust gas dedusting electric field 4 to 1/3, 1/3 to 1/2, 1/2 to 2/3, 2/3 to 3/4, or 3/4 to 9/10.
- Example 11 provided by the present invention includes any one of the above examples 4 to 10, wherein the length of the first anode portion is long enough to remove part of the dust and reduce accumulation in the exhaust gas insulation mechanism and The dust on the cathode support plate reduces the electrical breakdown caused by the dust.
- Example 12 provided by the present invention: including any one of the above examples 4 to 11, wherein the second anode portion includes a dust accumulation section and a reserved dust accumulation section.
- Example 13 provided by the present invention: including any one of the above examples 3 to 12, wherein the exhaust gas dedusting electric field cathode includes at least one electrode rod.
- Example 14 provided by the present invention includes the above example 13, wherein the diameter of the electrode rod is not greater than 3 mm.
- Example 15 provided by the present invention includes the above example 13 or 14, wherein the electrode rod has a needle shape, a polygonal shape, a burr shape, a threaded rod shape or a column shape.
- Example 16 provided by the present invention: including any one of the above Examples 3 to 15, wherein the exhaust gas dedusting electric field anode is composed of a hollow tube bundle.
- Example 17 provided by the present invention includes the above example 16, wherein the hollow section of the anode tube bundle of the exhaust gas dedusting electric field adopts a circle or a polygon.
- Example 18 provided by the present invention: including the above Example 17, wherein the polygon is a hexagon.
- Example 19 provided by the present invention: including any one of the above examples 16 to 18, wherein the tube bundle of the anode of the exhaust gas dedusting electric field has a honeycomb shape.
- Example 20 provided by the present invention includes any one of the above examples 3 to 19, wherein the exhaust gas dedusting electric field cathode penetrates into the exhaust gas dedusting electric field anode.
- Example 21 provided by the present invention includes any one of the above examples 3 to 20, wherein, when the electric field accumulates dust to a certain degree, the exhaust gas electric field device performs carbon black removal treatment.
- Example 22 provided by the present invention includes the above-mentioned Example 21, wherein the exhaust gas electric field device detects electric field current to determine whether dust accumulates to a certain degree, and carbon black removal treatment is required.
- Example 23 provided by the present invention includes the above example 21 or 22, wherein the exhaust gas electric field device increases the electric field voltage to perform the carbon black removal treatment.
- Example 24 provided by the present invention includes the above-mentioned Example 21 or 22, wherein the exhaust gas electric field device utilizes an electric field back-corona discharge phenomenon to perform carbon black removal treatment.
- Example 25 provided by the present invention includes the above example 21 or 22, wherein the exhaust gas electric field device utilizes the phenomenon of electric field reverse corona discharge to increase the voltage and limit the injection current to cause a sharp discharge occurring at the position of the anode carbon deposit Plasma, which deeply oxidizes the organic components of carbon black, breaks the polymer bonds, and forms small-molecule carbon dioxide and water for carbon black removal treatment.
- the exhaust gas electric field device utilizes the phenomenon of electric field reverse corona discharge to increase the voltage and limit the injection current to cause a sharp discharge occurring at the position of the anode carbon deposit Plasma, which deeply oxidizes the organic components of carbon black, breaks the polymer bonds, and forms small-molecule carbon dioxide and water for carbon black removal treatment.
- Example 26 provided by the present invention includes any one of the above examples 3 to 25, wherein the length of the exhaust gas dedusting electric field anode is 10-90 mm, and the length of the exhaust gas dedusting electric field cathode is 10-90 mm.
- Example 27 provided by the present invention includes the above example 26, wherein when the electric field temperature is 200 ° C, the corresponding dust collection efficiency is 99.9%.
- Example 28 provided by the present invention includes the above example 26 or 27, wherein when the electric field temperature is 400 ° C., the corresponding dust collection efficiency is 90%.
- Example 29 provided by the present invention: including any one of the above examples 26 to 28, wherein when the electric field temperature is 500 ° C., the corresponding dust collection efficiency is 50%.
- Example 30 provided by the present invention includes any one of the above Examples 3 to 29, wherein the exhaust gas electric field device further includes an auxiliary electric field unit for generating an auxiliary electric field that is not parallel to the exhaust gas ionization and dust removal electric field.
- Example 31 provided by the present invention includes any one of the above Examples 3 to 29, wherein the exhaust gas electric field device further includes an auxiliary electric field unit, the exhaust gas ionization and dust removal electric field includes a flow channel, and the auxiliary electric field unit is used for To generate an auxiliary electric field that is not perpendicular to the flow channel.
- Example 32 provided by the present invention includes the above example 30 or 31, wherein the auxiliary electric field unit includes a first electrode, and the first electrode of the auxiliary electric field unit is disposed at or near the inlet of the exhaust gas ionization and dust removal electric field.
- Example 33 provided by the present invention: including the above example 32, wherein the first electrode is a cathode.
- Example 34 provided by the present invention includes the above example 32 or 33, wherein the first electrode of the auxiliary electric field unit is an extension of the cathode of the exhaust gas dedusting electric field.
- Example 36 provided by the present invention: including any one of the above examples 30 to 35, wherein the auxiliary electric field unit includes a second electrode, and the second electrode of the auxiliary electric field unit is disposed at or near the exhaust gas ionization The outlet of the dust removal electric field.
- Example 37 provided by the present invention: including the above example 36, wherein the second electrode is an anode.
- Example 38 provided by the present invention includes the above example 36 or 37, wherein the second electrode of the auxiliary electric field unit is an extension of the anode of the exhaust gas dedusting electric field.
- Example 40 provided by the present invention includes any one of the above examples 30 to 33, 36 and 37, wherein the electrode of the auxiliary electric field and the electrode of the exhaust gas ionization and dedusting electric field are provided independently.
- Example 41 provided by the present invention includes any one of the above Examples 3 to 40, wherein the ratio of the area of the exhaust gas anode of the exhaust gas dedusting electric field to the discharge area of the cathode of the exhaust gas dedusting electric field is 1.667: 1- 1680: 1.
- Example 42 provided by the present invention includes any one of the above Examples 3 to 40, wherein the ratio of the area of the dust accumulation anode of the exhaust gas dedusting electric field to the discharge area of the cathode of the exhaust gas dedusting electric field is 6.67: 1- 56.67: 1.
- Example 43 provided by the present invention includes any one of the above examples 3 to 42, wherein the exhaust gas dedusting electric field cathode has a diameter of 1-3 mm, and the exhaust gas dedusting electric field anode and the exhaust gas dedusting electric field cathode The pole spacing is 2.5-139.9 mm; the ratio of the dust accumulation area of the exhaust gas dedusting electric field anode to the discharge area of the exhaust gas dedusting electric field cathode is 1.667: 1-1680: 1.
- Example 44 provided by the present invention: including any one of the above examples 3 to 42, wherein the pole separation between the anode of the exhaust gas dedusting electric field and the cathode of the exhaust gas dedusting electric field is less than 150 mm.
- Example 45 provided by the present invention: including any one of the above examples 3 to 42, wherein the electrode separation between the anode of the exhaust gas dedusting electric field and the cathode of the exhaust gas dedusting electric field is 2.5-139.9 mm.
- Example 46 provided by the present invention: including any one of the above examples 3 to 42, wherein the electrode separation distance between the anode of the exhaust gas dedusting electric field and the cathode of the exhaust gas dedusting electric field is 5-100 mm.
- Example 47 provided by the present invention: including any one of the above examples 3 to 46, wherein the length of the anode of the exhaust gas dedusting electric field is 10-180 mm.
- Example 48 provided by the present invention includes any one of the above Examples 3 to 46, wherein the length of the anode of the exhaust gas dedusting electric field is 60-180 mm.
- Example 49 provided by the present invention includes any one of the above examples 3 to 48, wherein the cathode length of the exhaust gas dedusting electric field is 30-180 mm.
- Example 50 provided by the present invention includes any one of the above examples 3 to 48, wherein the cathode length of the exhaust gas dedusting electric field is 54-176 mm.
- Example 51 provided by the present invention includes any one of the above examples 41 to 50, wherein, during operation, the coupling number of the exhaust gas ionization and dust removal electric field is ⁇ 3.
- Example 52 provided by the present invention includes any one of the above examples 30 to 50, wherein, during operation, the coupling number of the exhaust gas ionization and dust removal electric field is ⁇ 3.
- Example 53 provided by the present invention includes any one of the above examples 3 to 52, wherein the exhaust gas ionization dust removal electric field voltage has a value range of 1kv-50kv.
- Example 54 provided by the present invention includes any one of the above Examples 3 to 53, wherein the exhaust gas electric field device further includes several connection housings, and the series electric field stages are connected through the connection housings.
- Example 55 provided by the present invention includes the above example 54, wherein the distance between adjacent electric field levels is greater than 1.4 times the pole pitch.
- Example 56 provided by the present invention includes any one of the above Examples 3 to 55, wherein the tail gas electric field device further includes a tail gas pre-electrode at the entrance of the tail gas electric field device The exhaust gas ionization and dedusting electric field formed by the anode of the exhaust gas dedusting electric field and the cathode of the exhaust gas dedusting electric field.
- Example 57 provided by the present invention includes the above example 56, wherein the exhaust gas pre-electrode is dot-shaped, linear, mesh-shaped, orifice-shaped, plate-shaped, needle-rod-shaped, ball cage-shaped, box-shaped, tubular , Material natural form, or material processing form.
- Example 58 provided by the present invention includes the above example 56 or 57, wherein the exhaust gas pre-electrode is provided with exhaust gas through holes.
- Example 59 provided by the present invention includes the above example 58, wherein the exhaust gas through-hole is polygonal, circular, elliptical, square, rectangular, trapezoidal, or rhombic.
- Example 60 provided by the present invention: including the above example 58 or 59, wherein the size of the exhaust gas through hole is 0.1-3 mm.
- Example 61 provided by the present invention includes any one of the above examples 56 to 60, wherein the tail gas pre-electrode is in one or more forms of solid, liquid, gas molecular group, or plasma combination.
- Example 62 provided by the present invention includes any one of the above examples 56 to 61, wherein the exhaust gas front electrode is a conductive mixed state substance, a biological natural mixed conductive substance, or an object is artificially processed to form a conductive substance.
- Example 63 provided by the present invention: including any one of the above examples 56 to 62, wherein the tail gas pre-electrode is 304 steel or graphite.
- Example 64 provided by the present invention: including any one of the above examples 56 to 62, wherein the tail gas pre-electrode is an ion-containing conductive liquid.
- Example 65 provided by the present invention includes any one of the above examples 56 to 64, wherein during operation, the exhaust ionized dust formed by the pollutant gas entering the cathode of the exhaust gas dedusting electric field and the anode of the exhaust gas dedusting electric field Before the electric field, and when the pollutant-laden gas passes through the tail gas pre-electrode, the tail gas pre-electrode charges the pollutant in the gas.
- Example 66 provided by the present invention includes the above example 65, wherein, when the gas carrying pollutants enters the tail gas ionization and dedusting electric field, the anode of the tail gas dedusting electric field exerts an attractive force on the charged pollutants, causing the pollutants to The anode of the exhaust gas dedusting electric field moves until pollutants adhere to the anode of the exhaust gas dedusting electric field.
- Example 67 provided by the present invention includes the above example 65 or 66, wherein the tail gas pre-electrode introduces electrons into pollutants, and the contamination of electrons between the tail gas pre-electrode and the tail gas dedusting electric field anode Transfer between objects to charge more pollutants.
- Example 68 provided by the present invention includes any one of Examples 64 to 66 above, wherein between the exhaust gas front electrode and the exhaust gas dedusting electric field anode, electrons are conducted through pollutants and an electric current is formed.
- Example 69 provided by the present invention includes any one of the above examples 65 to 68, wherein the exhaust gas front electrode charges the pollutant by contact with the pollutant.
- Example 70 provided by the present invention includes any one of the above examples 65 to 69, wherein the exhaust gas front electrode charges pollutants by means of energy fluctuation.
- Example 71 provided by the present invention includes any one of the above examples 65 to 70, wherein the exhaust gas pre-electrode is provided with exhaust gas through holes.
- Example 72 provided by the present invention includes any one of the above examples 56 to 71, wherein the tail gas pre-electrode is linear and the tail gas dedusting electric field anode is planar.
- Example 73 provided by the present invention includes any one of the above examples 56 to 72, wherein the tail gas pre-electrode is perpendicular to the tail gas dedusting electric field anode.
- Example 74 provided by the present invention includes any one of the above examples 56 to 73, wherein the tail gas pre-electrode is parallel to the tail gas dedusting electric field anode.
- Example 75 provided by the present invention includes any one of the above examples 56 to 74, wherein the exhaust gas pre-electrode is curved or arc-shaped.
- Example 76 provided by the present invention includes any one of the above examples 56 to 75, wherein the exhaust gas pre-electrode adopts a wire mesh.
- Example 77 provided by the present invention includes any one of the above examples 56 to 76, wherein the voltage between the exhaust gas front electrode and the exhaust gas dedusting electric field anode is different from the exhaust gas dedusting electric field cathode and the Describe the voltage between the anodes of the exhaust gas dedusting electric field.
- Example 78 provided by the present invention includes any one of the above examples 56 to 77, wherein the voltage between the exhaust gas front electrode and the exhaust gas dedusting electric field anode is less than the initial halo voltage.
- Example 79 provided by the present invention includes any one of the above examples 56 to 78, wherein the voltage between the exhaust gas pre-electrode and the exhaust gas dedusting electric field anode is 0.1kv / mm-2kv / mm.
- Example 80 provided by the present invention includes any one of the above examples 56 to 79, wherein the tail gas electric field device includes a tail gas flow channel, the tail gas pre-electrode is located in the tail gas flow channel; the tail gas front
- the ratio of the cross-sectional area of the disposed electrode to the cross-sectional area of the exhaust gas channel is 99% -10%, or 90-10%, or 80-20%, or 70-30%, or 60-40%, or 50%.
- Example 81 provided by the present invention includes any one of Examples 3 to 80 above, wherein the exhaust gas electric field device includes an exhaust gas electret element.
- Example 82 provided by the present invention includes the above example 81, wherein when the anode of the exhaust gas dedusting electric field and the cathode of the exhaust gas dedusting electric field are powered on, the exhaust gas electret element is in the exhaust gas ionizing dedusting electric field.
- Example 83 provided by the present invention includes the above example 81 or 82, wherein the tail gas electret element is close to the outlet of the tail gas electric field device, or the tail gas electret element is provided at the exit of the tail gas electric field device .
- Example 84 provided by the present invention includes any one of the above examples 81 to 83, wherein the exhaust gas dedusting electric field anode and the exhaust gas dedusting electric field cathode form an exhaust gas flow channel, and the exhaust gas electret element is provided at In the exhaust gas channel.
- Example 85 provided by the present invention includes the above example 84, wherein the exhaust gas flow channel includes an exhaust gas flow channel outlet, the exhaust gas electret element is close to the exhaust gas flow channel outlet, or the exhaust gas electret The element is arranged at the outlet of the tail gas channel.
- Example 86 provided by the present invention: including the above example 84 or 85, wherein the cross-section of the exhaust electret element in the exhaust gas flow channel accounts for 5% -100% of the cross-section of the exhaust gas flow channel.
- Example 87 provided by the present invention includes the above example 86, wherein the cross-section of the exhaust electret element in the exhaust gas channel accounts for 10% -90%, 20% -80% of the cross-section of the exhaust gas channel, Or 40% -60%.
- Example 88 provided by the present invention includes any one of the above examples 81 to 87, wherein the exhaust gas ionization and dust removal electric field charges the exhaust gas electret element.
- Example 89 provided by the present invention: including any one of the above examples 81 to 88, wherein the exhaust gas electret element has a porous structure.
- Example 90 provided by the present invention: including any one of the above examples 81 to 89, wherein the exhaust electret element is a fabric.
- Example 91 provided by the present invention includes any one of the above examples 81 to 90, wherein the anode of the exhaust gas dedusting electric field is tubular, the exterior of the exhaust gas electret element is tubular, and the exhaust gas electret The outside of the element is sheathed inside the anode of the exhaust gas dedusting electric field.
- Example 92 provided by the present invention includes any one of the above examples 81 to 91, wherein the tail gas electret element and the tail gas dedusting electric field anode are detachably connected.
- Example 93 provided by the present invention: including any one of the above examples 81 to 92, wherein the material of the exhaust gas electret element includes an inorganic compound having electret properties.
- Example 94 provided by the present invention includes the above Example 93, wherein the inorganic compound is selected from one or more combinations of oxygen-containing compounds, nitrogen-containing compounds, or glass fibers.
- Example 95 provided by the present invention includes the above Example 94, wherein the oxygen-containing compound is selected from one or more combinations of metal-based oxides, oxygen-containing complexes, and oxygen-containing inorganic heteropoly acid salts.
- Example 96 provided by the present invention: including the above Example 95, wherein the metal-based oxide is selected from aluminum oxide, zinc oxide, zirconium oxide, titanium oxide, barium oxide, tantalum oxide, silicon oxide, lead oxide, tin oxide One or more combinations.
- the metal-based oxide is selected from aluminum oxide, zinc oxide, zirconium oxide, titanium oxide, barium oxide, tantalum oxide, silicon oxide, lead oxide, tin oxide One or more combinations.
- Example 97 provided by the present invention includes the above Example 95, wherein the metal-based oxide is alumina.
- Example 98 provided by the present invention includes the above Example 95, wherein the oxygen-containing composite is selected from one or more combinations of titanium zirconium composite oxide or titanium barium composite oxide.
- Example 99 provided by the present invention includes the above Example 95, wherein the oxygen-containing inorganic heteropoly acid salt is selected from one or more combinations of zirconium titanate, lead zirconate titanate, or barium titanate.
- Example 100 provided by the present invention: including the above example 94, wherein the nitrogen-containing compound is silicon nitride.
- Example 101 provided by the present invention: including any one of the above examples 81 to 100, wherein the material of the exhaust electret element includes an organic compound having electret properties.
- Example 102 provided by the present invention: including the above example 101, wherein the organic compound is selected from one or more combinations of fluoropolymer, polycarbonate, PP, PE, PVC, natural wax, resin, and rosin .
- Example 103 provided by the present invention: including the above example 102, wherein the fluoropolymer is selected from one or more of polytetrafluoroethylene, polyperfluoroethylene propylene, soluble polytetrafluoroethylene, and polyvinylidene fluoride Kinds of combinations.
- Example 104 provided by the present invention: including the above example 102, wherein the fluoropolymer is polytetrafluoroethylene.
- Example 105 provided by the present invention: includes any one of the above examples 2 to 104, and further includes an exhaust air equalizing device.
- Example 106 provided by the present invention includes the above example 105, wherein the tail gas ionization device at the entrance of the tail gas dust removal system and the tail gas ionization dust removal electric field formed by the tail gas dust removal electric field anode and the tail gas dust removal electric field cathode
- the exhaust gas equalizing device includes: an air inlet pipe provided on one side of the anode of the exhaust gas dedusting electric field and an air outlet pipe provided on the other side; wherein, The air inlet pipe is opposed to the air outlet pipe.
- Example 107 provided by the present invention includes the above example 105, wherein the tail gas ionization device forms a tail gas ionization and dust removal electric field formed at the entrance of the tail gas removal system and the anode of the tail gas removal electric field and the cathode of the tail gas removal electric field In the meantime, when the anode of the exhaust gas dedusting electric field is a cylinder, the exhaust gas equalizing device is composed of several rotatable air equalizing blades.
- Example 108 provided by the present invention includes the above example 105, wherein the first ventilating device of the exhaust gas equalizing device and the second ventilating device of the second venturi plate disposed at the outlet end of the anode of the exhaust gas dedusting field ,
- the first venturi plate air distribution mechanism is provided with air inlet holes
- the second venturi plate air distribution mechanism is provided with air outlet holes
- the air inlet holes and the air outlet holes are arranged in a staggered arrangement
- the front The air is discharged from the intake side to form a cyclone structure.
- Example 109 provided by the present invention includes any one of the above examples 2 to 108, wherein it further includes an oxygen supplement device for adding a gas including oxygen before the exhaust gas ionization and dedusting electric field.
- Example 110 provided by the present invention includes the above example 109, wherein the oxygen supplementing device adds oxygen by simply increasing oxygen, passing in outside air, passing in compressed air, and / or passing in ozone.
- Example 111 provided by the present invention includes the above example 109 or 110, wherein the oxygen supplementation amount is determined at least according to the content of exhaust gas particles.
- Example 112 provided by the present invention includes any one of the above examples 2 to 111, wherein it further includes a water removal device for removing liquid water before the inlet of the exhaust gas electric field device.
- Example 113 provided by the present invention includes the above example 112, wherein, when the exhaust gas temperature or the engine temperature is lower than a certain temperature, the water removal device removes liquid water in the exhaust gas.
- Example 114 provided by the present invention includes the above example 113, wherein the certain temperature is above 90 ° C and below 100 ° C.
- Example 115 provided by the present invention includes the above example 113, wherein the certain temperature is above 80 ° C and below 90 ° C.
- the example 116 provided by the present invention includes the above example 113, wherein the certain temperature is below 80 ° C.
- Example 117 provided by the present invention includes the above examples 112 to 116, wherein the water removal device is an electrocoagulation device.
- Example 118 provided by the present invention includes any one of the above examples 2 to 117, wherein it further includes a tail gas cooling device for reducing the temperature of the tail gas before the inlet of the tail gas electric field device.
- Example 119 provided by the present invention includes the above example 118, wherein the exhaust gas cooling device includes a heat exchange unit for heat exchange with the exhaust gas of the engine to heat the liquid heat exchange medium in the heat exchange unit into a gaseous state Heat exchange medium.
- Example 120 provided by the present invention includes the above example 119, wherein the heat exchange unit includes:
- the exhaust gas passage cavity communicates with the exhaust pipe of the engine, and the exhaust gas passage cavity is used for passing the exhaust gas of the engine;
- a medium gasification chamber which is used to convert a liquid heat exchange medium and tail gas into a gaseous state after heat exchange.
- Example 121 provided by the present invention includes the above example 119 or 120, wherein it further includes a power generation unit for converting the thermal energy of the heat exchange medium and / or the exhaust gas into mechanical energy.
- Example 122 provided by the present invention includes the above example 121, wherein the power generation unit includes a turbofan.
- Example 123 provided by the present invention includes the above example 122, wherein the turbofan includes:
- the medium cavity turbofan assembly is installed on the turbofan shaft, and the medium cavity turbofan assembly is located in the medium gasification cavity.
- Example 124 provided by the present invention includes the above example 123, wherein the medium cavity turbofan assembly includes a medium cavity guide fan and a medium cavity power fan.
- Example 125 provided by the present invention: including any one of the above examples 122 to 124, wherein the turbofan includes:
- the exhaust chamber turbofan assembly is installed on the turbofan shaft, and the exhaust chamber turbofan assembly is located in the exhaust gas passage cavity.
- Example 126 provided by the present invention includes the above example 125, wherein the exhaust chamber turbofan assembly includes an exhaust chamber guide fan and an exhaust chamber power fan.
- Example 127 provided by the present invention includes any one of the above examples 121 to 126, wherein the exhaust gas temperature-lowering device further includes a power generation unit for converting mechanical energy generated by the power generation unit into electrical energy.
- Example 128 provided by the present invention includes the above example 127, wherein the power generation unit includes a generator stator and a generator rotor, and the generator rotor is connected to a turbofan shaft of the power generation unit.
- Examples provided by the present invention include the above examples 127 or 128, wherein the power generation unit includes a battery assembly.
- Example 130 provided by the present invention includes any one of the above examples 127 to 129, wherein the power generation unit includes a generator regulation component for regulating the electric torque of the generator.
- Example 131 provided by the present invention includes any one of the above examples 121 to 130, wherein the exhaust gas cooling device further includes a medium transmission unit, the medium transmission unit is connected between the heat exchange unit and the power generation unit .
- Example 132 provided by the present invention: includes the above example 131, wherein the medium transmission unit includes a reverse thrust duct.
- Example 133 provided by the present invention includes the above example 131, wherein the medium transmission unit includes a pressure-bearing pipeline.
- Example 134 provided by the present invention includes any one of the above examples 127 to 133, wherein the exhaust gas cooling device further includes a coupling unit electrically connected between the power generation unit and the power generation unit.
- Example 135 provided by the present invention includes the above example 134, wherein the coupling unit includes an electromagnetic coupler.
- Example 136 provided by the present invention includes any one of the above examples 119 to 135, wherein the exhaust gas temperature-lowering device further includes an insulation pipe connected to the exhaust gas pipe of the engine and the heat exchange unit between.
- Example 137 provided by the present invention includes any one of the above examples 118 to 136, wherein the exhaust gas cooling device includes a fan, which blows air to the exhaust gas before passing the air into the inlet of the exhaust gas electric field device The role of cooling.
- Example 138 provided by the present invention: including the above example 137, wherein the air passed in is 50% to 300% of the exhaust gas.
- Example 139 provided by the present invention: including the above example 137, wherein the air passed in is 100% to 180% of the exhaust gas.
- Example 140 provided by the present invention: including the above example 137, wherein the air passing in is 120% to 150% of the exhaust gas.
- Example 141 provided by the present invention includes the above example 120, wherein the oxygen supplement device includes a fan, and the fan plays a role in cooling the exhaust gas before passing the air into the exhaust gas electric field device inlet.
- Example 142 provided by the present invention: including the above example 141, wherein the air passed in is 50% to 300% of the exhaust gas.
- Example 143 provided by the present invention: including the above example 141, wherein the air passed in is 100% to 180% of the exhaust gas.
- Example 144 provided by the present invention: including the above example 141, wherein the air passing in is 120% to 150% of the exhaust gas.
- Example 145 provided by the present invention includes any one of the above examples 1-144, and further includes an exhaust gas ozone purification system including a reaction field for mixing and reacting the ozone stream with the exhaust gas stream .
- Example 146 provided by the present invention: including the above example 145, wherein the reaction field includes pipes and / or reactors.
- Example 147 provided by the present invention includes the above-mentioned example 146, in which at least one of the following technical features is also included:
- the pipe section diameter is 100-200 mm
- the length of the pipe is greater than 0.1 times the pipe diameter
- the reactor is selected from at least one of the following:
- Reactor 1 The reactor has a reaction chamber, and tail gas and ozone are mixed and reacted in the reaction chamber;
- the reactor includes a number of honeycomb-shaped cavities for providing a space where tail gas and ozone are mixed and reacted; a gap is provided between the honeycomb-shaped cavities for passing a cold medium to control the tail gas and Ozone reaction temperature;
- Reactor 3 The reactor includes several carrier units, and the carrier unit provides a reaction site;
- Reactor 4 The reactor includes a catalyst unit, and the catalyst unit is used to promote the oxidation reaction of the tail gas;
- the reaction field is provided with an ozone inlet, and the ozone inlet is selected from at least one of a nozzle, a spray grid, a nozzle, a swirl nozzle, and a nozzle provided with a venturi tube;
- the reaction field is provided with an ozone inlet.
- the ozone enters the reaction field through the ozone inlet to contact the exhaust gas.
- the ozone inlet is formed in at least one of the following directions: opposite to the direction of the exhaust gas flow, and The direction is perpendicular, tangent to the direction of exhaust gas flow, inserting the direction of exhaust gas flow, and contacting the exhaust gas in multiple directions.
- Example 148 provided by the present invention: including any one of the above examples 145 to 147, wherein the reaction field includes an exhaust pipe, a regenerator device, or a catalyst.
- Example 149 provided by the present invention: including any one of the above examples 145 to 148, wherein the temperature of the reaction field is -50-200 ° C.
- Example 150 provided by the present invention: including the above example 149, wherein the temperature of the reaction field is 60-70 ° C.
- Example 151 provided by the present invention: including any one of the above examples 145 to 150, wherein the exhaust gas ozone purification system further includes an ozone source for providing an ozone stream.
- Example 152 provided by the present invention includes the above example 151, wherein the ozone source includes a storage ozone unit and / or an ozone generator.
- Example 153 provided by the present invention: including the above example 152, wherein the ozone generator includes a surface discharge ozone generator, a power frequency arc ozone generator, a high frequency induction ozone generator, a low pressure ozone generator, ultraviolet rays A combination of one or more of an ozone generator, an electrolyte ozone generator, a chemical ozone generator, and a radiation irradiation particle generator.
- the ozone generator includes a surface discharge ozone generator, a power frequency arc ozone generator, a high frequency induction ozone generator, a low pressure ozone generator, ultraviolet rays A combination of one or more of an ozone generator, an electrolyte ozone generator, a chemical ozone generator, and a radiation irradiation particle generator.
- Example 154 provided by the present invention includes the above example 152, wherein the ozone generator includes an electrode, and a catalyst layer is provided on the electrode, and the catalyst layer includes an oxidation catalytic bond cracking selective catalyst layer.
- Example 155 provided by the present invention includes the above example 154, wherein the electrode includes a high-voltage electrode or a high-voltage electrode provided with a barrier dielectric layer, and when the electrode includes a high-voltage electrode, the oxidation catalytic bond cleavage selective catalyst A layer is provided on the surface of the high-voltage electrode.
- the electrode includes the high-voltage electrode of the barrier medium layer, the selective catalytic layer for oxidative catalytic bond cleavage is provided on the surface of the barrier medium layer.
- Example 156 provided by the present invention includes the above example 155, wherein the barrier medium layer is selected from at least one of ceramic plates, ceramic tubes, quartz glass plates, quartz plates, and quartz tubes.
- Example 157 provided by the present invention includes the above example 155, wherein, when the electrode includes a high-voltage electrode, the thickness of the oxidation catalytic bond cleavage selective catalyst layer is 1-3 mm; when the electrode includes a barrier medium layer In the case of high-voltage electrodes, the loading of the selective catalytic layer for the oxidation catalytic bond cleavage includes 1-12 wt% of the barrier medium layer.
- Example 158 provided by the present invention includes any one of the above examples 154 to 157, wherein the oxidation catalytic bond cleavage selective catalyst layer includes the following components in weight percentages:
- the active component is selected from at least one of a compound of metal M and metal element M
- the metal element M is selected from alkaline earth metal elements, transition metal elements, fourth main group metal elements, precious metal elements and lanthanide rare earth elements At least one of
- the coating is selected from at least one of alumina, cerium oxide, zirconia, manganese oxide, metal composite oxides, porous materials, and layered materials.
- the metal composite oxide includes aluminum, cerium, zirconium, and manganese A composite oxide of one or more metals.
- Example 159 provided by the present invention: including the above example 158, wherein the alkaline earth metal element is selected from at least one of magnesium, strontium and calcium.
- Example 160 provided by the present invention includes the above example 158, wherein the transition metal element is selected from at least one of titanium, manganese, zinc, copper, iron, nickel, cobalt, yttrium, and zirconium.
- Example 161 provided by the present invention: including the above example 158, wherein the metal element of the fourth main group is tin.
- Example 162 provided by the present invention: including the above example 158, wherein the precious metal element is selected from at least one of platinum, rhodium, palladium, gold, silver, and iridium.
- Example 163 provided by the present invention includes the above example 158, wherein the lanthanide rare earth element is selected from at least one of lanthanum, cerium, praseodymium, and samarium.
- Example 164 provided by the present invention: including the above example 158, wherein the compound of the metal element M is selected from at least one of oxides, sulfides, sulfates, phosphates, carbonates, and perovskites .
- Example 165 provided by the present invention: including the above example 158, wherein the porous material is selected from at least one of molecular sieve, diatomaceous earth, zeolite, and carbon nanotubes.
- Example 166 provided by the present invention: including the above example 158, wherein the layered material is selected from at least one of graphene and graphite.
- Example 167 provided by the present invention: including any one of the above examples 145 to 166, wherein the exhaust gas ozone purification system further includes an ozone amount control device for controlling the amount of ozone so as to effectively oxidize the gas to be treated in the exhaust gas Components, the ozone amount control device includes a control unit.
- Example 168 provided by the present invention includes the above example 167, wherein the ozone amount control device further includes an exhaust gas component detection unit before ozone treatment, for detecting the content of the exhaust gas component before ozone treatment.
- Example 169 provided by the present invention includes any one of the above examples 167 to 168, wherein the control unit controls the amount of ozone required for the mixing reaction according to the content of the exhaust gas component before the ozone treatment.
- Example 170 provided by the present invention includes the above example 168 or 169, wherein the exhaust gas component detection unit before ozone treatment is selected from at least one of the following detection units:
- the first volatile organic compound detection unit is used to detect the content of volatile organic compounds in the exhaust gas before ozone treatment
- the first CO detection unit is used to detect the CO content in the exhaust gas before ozone treatment
- the first nitrogen oxide detection unit is used to detect the nitrogen oxide content in the exhaust gas before ozone treatment.
- Example 171 provided by the present invention includes the above example 170, wherein the control unit controls the amount of ozone required for the mixing reaction according to at least one output value of the exhaust gas component detection unit before ozone treatment.
- Example 172 provided by the present invention includes any one of the above examples 167 to 171, wherein the control unit is used to control the amount of ozone required for the mixed reaction according to a preset mathematical model.
- Example 173 provided by the present invention includes any one of the above examples 167 to 172, wherein the control unit is used to control the amount of ozone required for the mixed reaction according to a theoretical estimated value.
- Example 174 provided by the present invention includes any one of the above example 173, wherein the theoretical estimated value is: the molar ratio of ozone flux to the object to be treated in the exhaust gas is 2-10.
- Example 175 provided by the present invention includes any one of the above examples 167 to 174, wherein the ozone amount control device includes an ozone-treated tail gas component detection unit for detecting the content of the tail gas component after ozone treatment.
- Example 176 provided by the present invention includes any one of the above examples 167 to 175, wherein the control unit controls the amount of ozone required for the mixing reaction according to the exhaust gas component content after the ozone treatment.
- Example 177 provided by the present invention includes the above example 175 or 176, wherein the ozone-treated tail gas component detection unit is selected from at least one of the following detection units:
- the first ozone detection unit is used to detect the ozone content in the exhaust gas after ozone treatment
- the second volatile organic compound detection unit is used to detect the content of volatile organic compounds in the exhaust gas after ozone treatment
- the second CO detection unit is used to detect the CO content in the exhaust gas after ozone treatment
- the second nitrogen oxide detection unit is used to detect the nitrogen oxide content in the exhaust gas after ozone treatment.
- Example 178 provided by the present invention includes the above example 177, wherein the control unit controls the amount of ozone according to the output value of at least one of the ozone-treated tail gas component detection unit.
- Example 179 provided by the present invention includes any one of the above examples 145 to 178, wherein the exhaust gas ozone purification system further includes a denitration device for removing the mixed reaction product of the ozone stream and the exhaust gas stream Nitric acid.
- Example 180 provided by the present invention includes the above example 179, wherein the denitration device includes an electrocoagulation device, and the electrocoagulation device includes:
- a first electrode, the first electrode is located in the electrocoagulation flow channel
- Example 181 provided by the present invention includes the above example 180, wherein the first electrode is a solid, liquid, gas molecular group, plasma, conductive mixed-state substance, biological natural mixed conductive substance, or artificially formed by an object A combination of one or more forms in a conductive substance.
- Example 182 provided by the present invention: including the above example 180 or 181, wherein the first electrode is solid metal, graphite, or 304 steel.
- Example 183 provided by the present invention: including any one of the above examples 180 to 182, wherein the first electrode is dot-shaped, wire-shaped, mesh-shaped, orifice-shaped, plate-shaped, needle-rod-shaped, ball cage Shaped, box-shaped, tubular, natural form material, or processed form material.
- Example 184 provided by the present invention includes any one of the above examples 180 to 183, wherein the first electrode is provided with a front through hole.
- Example 185 provided by the present invention includes the above example 184, wherein the shape of the front through hole is polygon, circle, ellipse, square, rectangle, trapezoid, or rhombus.
- Example 186 provided by the present invention: including the above example 184 or 185, wherein the hole diameter of the front through hole is 0.1-3 mm.
- Example 187 provided by the present invention: including any one of the above examples 180 to 186, wherein the second electrode has a multi-layer mesh shape, a mesh shape, a perforated plate shape, a tubular shape, a barrel shape, a ball cage shape, Box-shaped, plate-shaped, granular layered, bent plate-shaped, or panel-shaped.
- Example 188 provided by the present invention includes any one of the above examples 180 to 187, wherein the second electrode is provided with a rear through hole.
- Example 189 provided by the present invention: including the above example 188, wherein the rear through hole is polygonal, circular, elliptical, square, rectangular, trapezoidal, or rhombic.
- Example 190 provided by the present invention: including the above example 188 or 189, wherein the diameter of the rear through hole is 0.1-3 mm.
- Example 191 provided by the present invention includes any one of the above examples 180 to 190, wherein the second electrode is made of a conductive substance.
- Example 192 provided by the present invention: including any one of the above examples 180 to 191, wherein the surface of the second electrode has a conductive substance.
- Example 193 provided by the present invention includes any one of the above examples 180 to 192, wherein there is an electrocoagulation electric field between the first electrode and the second electrode, the electrocoagulation electric field is a point-surface electric field, a line A combination of one or more electric fields in the surface electric field, mesh surface electric field, dot barrel electric field, line barrel electric field, or mesh barrel electric field.
- Example 194 provided by the present invention includes any one of the above examples 180 to 193, wherein the first electrode is linear and the second electrode is planar.
- Example 195 provided by the present invention includes any one of the above examples 180 to 194, wherein the first electrode is perpendicular to the second electrode.
- Example 196 provided by the present invention includes any one of the above examples 180 to 195, wherein the first electrode is parallel to the second electrode.
- Example 197 provided by the present invention includes any one of the above examples 180 to 196, wherein the first electrode is curved or arc-shaped.
- Example 198 provided by the present invention includes any one of the above examples 180 to 197, wherein both the first electrode and the second electrode are planar, and the first electrode is parallel to the second electrode.
- Example 199 provided by the present invention includes any one of the above examples 180 to 198, wherein the first electrode uses a wire mesh.
- Example 200 provided by the present invention: including any one of the above examples 180 to 199, wherein the first electrode is planar or spherical.
- Example 201 provided by the present invention includes any one of the above examples 180 to 200, wherein the second electrode is curved or spherical.
- Example 202 provided by the present invention includes any one of the above examples 180 to 201, wherein the first electrode has a dot shape, a line shape, or a mesh shape, and the second electrode has a barrel shape, the The first electrode is located inside the second electrode, and the first electrode is located on the central axis of symmetry of the second electrode.
- Example 203 provided by the present invention includes any one of the above examples 180 to 202, wherein the first electrode is electrically connected to one electrode of the power supply, and the second electrode is electrically connected to the other electrode of the power supply connection.
- Example 204 provided by the present invention includes any one of the above examples 180 to 203, wherein the first electrode is electrically connected to the cathode of the power supply, and the second electrode is electrically connected to the anode of the power supply
- Example 205 provided by the present invention includes the above example 203 or 204, wherein the voltage of the power supply is 5-50KV.
- Example 206 provided by the present invention includes any one of the above examples 203 to 205, wherein the voltage of the power supply is less than the initial halo voltage.
- Example 207 provided by the present invention: including any one of the above examples 203 to 206, wherein the voltage of the power supply is 0.1 kv / mm-2 kv / mm.
- Example 208 provided by the present invention includes any one of the above examples 203 to 207, wherein the voltage waveform of the power supply is a DC waveform, a sine wave, or a modulation waveform.
- Example 209 provided by the present invention includes any one of the above examples 203 to 208, wherein the power supply is an AC power supply, and the frequency conversion pulse range of the power supply is 0.1 Hz to 5 GHz.
- Example 210 provided by the present invention includes any one of the above examples 180 to 209, wherein the first electrode and the second electrode both extend in the left-right direction, and the left end of the first electrode is located on the second electrode Left of the left end.
- Example 211 provided by the present invention includes any one of the above examples 180 to 210, wherein there are two second electrodes, and the first electrode is located between the two second electrodes.
- Example 212 provided by the present invention includes any one of the above examples 180 to 211, wherein the distance between the first electrode and the second electrode is 5-50 mm.
- Example 213 provided by the present invention includes any one of the above examples 180 to 212, wherein the first electrode and the second electrode constitute an adsorption unit, and there are a plurality of adsorption units.
- Example 214 provided by the present invention includes the above example 213, wherein all the adsorption units are distributed in one or more directions of the left-right direction, the front-rear direction, the oblique direction, or the spiral direction.
- Example 215 provided by the present invention includes any one of the above examples 180 to 214, wherein it further includes an electrocoagulation housing including an electrocoagulation inlet, an electrocoagulation outlet, and the electrocoagulation For the flow channel, the two ends of the electrocoagulation flow channel are respectively connected to the electrocoagulation inlet and the electrocoagulation outlet.
- Example 216 provided by the present invention includes the above example 215, wherein the electrocoagulation inlet is circular, and the diameter of the electrocoagulation inlet is 300-1000 mm, or 500 mm.
- Example 217 provided by the present invention includes the above example 215 or 216, wherein the electrocoagulation outlet is circular, and the diameter of the electrocoagulation outlet is 300-1000 mm, or 500 mm.
- Example 218 provided by the present invention includes any one of the above examples 215 to 217, wherein the electrocoagulation housing includes a first housing portion and a second housing that are sequentially distributed from the electrocoagulation inlet to the electrocoagulation outlet In the housing portion and the third housing portion, the electrocoagulation inlet is located at one end of the first housing portion, and the electrocoagulation outlet is located at the one end of the third housing portion.
- the electrocoagulation housing includes a first housing portion and a second housing that are sequentially distributed from the electrocoagulation inlet to the electrocoagulation outlet In the housing portion and the third housing portion, the electrocoagulation inlet is located at one end of the first housing portion, and the electrocoagulation outlet is located at the one end of the third housing portion.
- Example 219 provided by the present invention includes the above example 218, wherein the outline size of the first housing portion gradually increases from the electrocoagulation inlet to the electrocoagulation outlet.
- Example 220 provided by the present invention: including the above example 218 or 219, wherein the first housing portion has a straight tubular shape.
- Example 221 provided by the present invention: including any one of the above examples 218 to 220, wherein the second housing portion has a straight tubular shape, and the first electrode and the second electrode are mounted on the second housing Ministry.
- Example 222 provided by the present invention: including any one of the above examples 218 to 221, wherein the size of the outline of the third housing portion gradually decreases from the electrocoagulation inlet to the electrocoagulation outlet direction.
- Example 223 provided by the present invention includes any one of the above examples 218 to 222, wherein the first housing portion, the second housing portion, and the third housing portion are all rectangular in cross section.
- Example 224 provided by the present invention includes any one of the above examples 215 to 223, wherein the material of the electrocoagulation shell is stainless steel, aluminum alloy, iron alloy, cloth, sponge, molecular sieve, activated carbon, foamed iron, Or foamed silicon carbide.
- the material of the electrocoagulation shell is stainless steel, aluminum alloy, iron alloy, cloth, sponge, molecular sieve, activated carbon, foamed iron, Or foamed silicon carbide.
- Example 225 provided by the present invention: including any one of the above examples 180 to 224, wherein the first electrode is connected to the electrocoagulation case through an electrocoagulation insulator.
- Example 226 provided by the present invention includes the above example 225, wherein the material of the electrocoagulation insulating member is insulating mica.
- Example 227 provided by the present invention includes the above example 225 or 226, wherein the electrocoagulation insulating member is in the shape of a column or a tower.
- Example 228 provided by the present invention includes any one of the above examples 180 to 227, wherein a cylindrical front connection portion is provided on the first electrode, and the front connection portion and the electrocoagulation insulating member Fixed connection.
- Example 229 provided by the present invention includes any one of the above examples 180 to 228, wherein the second electrode is provided with a cylindrical rear connection portion, and the rear connection portion and the electrocoagulation insulating member Fixed connection.
- Example 230 provided by the present invention includes any one of the above examples 180 to 229, wherein the ratio of the cross-sectional area of the first electrode to the cross-sectional area of the electrocoagulation channel is 99% -10%, or 90- 10%, or 80-20%, or 70-30%, or 60-40%, or 50%.
- Example 231 provided by the present invention includes any one of the above examples 179 to 230, wherein the denitration device includes a condensing unit for condensing the exhaust gas after ozone treatment to achieve gas-liquid separation.
- Example 232 provided by the present invention includes any one of the above examples 179 to 231, wherein the denitration device includes a rinsing unit for rinsing the exhaust gas after ozone treatment.
- Example 233 provided by the present invention includes the above example 232, wherein the denitration device further includes a rinsing liquid unit for supplying the rinsing liquid to the rinsing unit.
- Example 234 provided by the present invention includes the above example 233, wherein the eluent in the eluent unit includes water and / or alkali.
- Example 235 provided by the present invention includes any one of the above examples 179 to 234, wherein the denitration device further includes a denitration liquid collection unit for storing the nitric acid aqueous solution and / or nitrate aqueous solution removed in the tail gas .
- Example 236 provided by the present invention includes the above example 235, wherein, when a nitric acid aqueous solution is stored in the denitration liquid collection unit, the denitration liquid collection unit is provided with an alkaline liquid addition unit for forming nitrate with nitric acid .
- Example 237 provided by the present invention includes any one of the above examples 145 to 236, wherein the exhaust gas ozone purification system further includes an ozone digester for digesting ozone in the exhaust gas treated by the reaction field.
- Example 238 provided by the present invention includes the above example 237, wherein the ozone digester is selected from at least one of an ultraviolet ozone digester and a catalytic ozone digester.
- Example 239 provided by the present invention includes any one of the above examples 145 to 238, wherein the exhaust gas ozone purification system further includes a first denitration device for removing nitrogen oxides in the exhaust gas; the reaction field It is used to mix and react the tail gas processed by the first denitration device with the ozone stream, or to mix and react the tail gas with the ozone stream before being processed by the first denitration device.
- the exhaust gas ozone purification system further includes a first denitration device for removing nitrogen oxides in the exhaust gas; the reaction field It is used to mix and react the tail gas processed by the first denitration device with the ozone stream, or to mix and react the tail gas with the ozone stream before being processed by the first denitration device.
- Example 240 provided by the present invention includes the above example 239, wherein the first denitration device is selected from at least one of a non-catalytic reduction device, a selective catalytic reduction device, a non-selective catalytic reduction device, and an electron beam denitration device Species.
- Example 241 provided by the present invention includes any one of the above examples 1 to 240, wherein it further includes an engine.
- Example 242 provided by the present invention: a method for removing carbon black from an engine exhaust electric field, including the following steps:
- the dust-containing gas passes through the anode of the exhaust gas dedusting electric field and the cathode of the exhaust gas dedusting electric field;
- Example 243 provided by the present invention: a method for removing carbon black from an engine exhaust electric field including Example 242, wherein the carbon black cleaning process is completed using the phenomenon of electric field back-corona discharge.
- Example 244 provided by the present invention: An engine exhaust electric field carbon black removal method including Example 242, wherein the electric field reverse corona discharge phenomenon is used to increase the voltage and limit the injection current to complete the carbon black cleaning process.
- Example 245 provided by the present invention: An engine exhaust electric field carbon black removal method including Example 242, wherein the electric field reverse corona discharge phenomenon is used to increase the voltage and limit the injection current to cause a sharp discharge that occurs at the position of the anode dust Plasma, the plasma deeply oxidizes the organic components of the cleaned carbon black, breaks the polymer bonds, forms small molecule carbon dioxide and water, and completes the cleaned carbon black treatment.
- Example 246 provided by the present invention: An engine exhaust electric field carbon black removal method including any one of Examples 242 to 245, wherein, when the electric field device detects that the electric field current increases to a given value, the electric field device performs cleaning Dust treatment.
- Example 247 provided by the present invention: A method for removing carbon black from an engine exhaust electric field including any one of Examples 242 to 246, wherein the dust-removing electric field cathode includes at least one electrode rod.
- Example 248 provided by the present invention: a method for removing carbon black from an engine exhaust electric field including Example 247, wherein the diameter of the electrode rod is not greater than 3 mm.
- Example 249 provided by the present invention: An engine exhaust electric field carbon black removal method including example 247 or 248, wherein the electrode rod has a needle shape, a polygonal shape, a burr shape, a threaded rod shape, or a column shape.
- Example 250 provided by the present invention: An engine exhaust electric field carbon black removal method including any one of Examples 242 to 249, wherein the dust removal electric field anode is composed of a hollow tube bundle.
- Example 251 provided by the present invention: a method for removing carbon black from an engine exhaust electric field including Example 250, wherein the hollow cross section of the anode tube bundle adopts a circular or polygonal shape.
- Example 252 provided by the present invention: a method for removing carbon black from an engine exhaust electric field including Example 251, wherein the polygon is a hexagon.
- Example 253 provided by the present invention: a method for removing carbon black from an engine exhaust electric field including any one of Examples 250 to 252, wherein the tube bundle of the anode of the dust removal electric field is honeycomb-shaped.
- Example 254 provided by the present invention: A method for removing carbon black from an engine exhaust electric field including any one of Examples 242 to 253, wherein the dust-removing electric field cathode penetrates the dust-removing electric field anode.
- Example 255 provided by the present invention: An engine exhaust electric field carbon black removing method including any one of Examples 242 to 254, wherein when the detected electric field current increases to a given value, a carbon black cleaning process is performed.
- Example 256 provided by the present invention: a method for reducing electric field coupling of engine exhaust dust removal, including the following steps:
- Example 257 provided by the present invention: a method for reducing coupling of an engine exhaust dust electric field including Example 256, which includes selecting a ratio of a dust collecting area of the exhaust gas dedusting electric field anode to a discharge area of the exhaust gas dedusting electric field cathode.
- Example 258 provided by the present invention: a method for reducing coupling of an engine exhaust dust electric field including Example 257, wherein a ratio including a selection of the area of the exhaust gas anode of the exhaust gas electric field to the discharge area of the cathode of the exhaust gas electric field is 1.667 : 1-1680: 1.
- Example 259 provided by the present invention: a method for reducing coupling of an engine exhaust dust electric field including the example 257, wherein the ratio of the area of the accumulated dust of the anode of the exhaust gas electric field to the discharge area of the cathode of the exhaust gas electric field is 6.67 : 1-56.67: 1.
- Example 260 provided by the present invention: A method for reducing coupling of an engine exhaust dust electric field including any one of Examples 256 to 259, wherein a diameter of the exhaust gas electric field cathode is 1-3 mm, and an anode of the exhaust gas electric field
- the pole spacing of the cathode of the exhaust gas dedusting electric field is 2.5-139.9 mm; the ratio of the dust accumulation area of the anode of the exhaust gas dedusting electric field to the discharge area of the cathode of the exhaust gas dedusting electric field is 1.667: 1-1680: 1.
- Example 261 provided by the present invention: a method for reducing coupling of an engine exhaust dust electric field including any one of Examples 256 to 260, wherein the electrode separation between the anode of the exhaust gas electric field and the cathode of the exhaust gas electric field is less than 150 mm.
- Example 262 provided by the present invention: a method for reducing coupling of an engine exhaust dust electric field including any one of Examples 256 to 260, wherein the electrode separation between the exhaust gas electric field anode and the exhaust gas electric field cathode is 2.5- 139.9mm.
- Example 263 provided by the present invention: a method for reducing coupling of an engine exhaust dust electric field including any one of Examples 256 to 260, including selecting a pole interval of the exhaust gas electric field anode and the exhaust gas electric field cathode of 5- 100mm.
- Example 264 provided by the present invention: The method for reducing the coupling of the engine exhaust dust electric field including any one of Examples 256 to 263, which includes selecting the anode length of the exhaust gas electric field to be 10-180 mm.
- Example 265 provided by the present invention: The method for reducing the coupling of the engine exhaust dust electric field including any one of Examples 256 to 263, which includes selecting the anode length of the exhaust gas electric field to be 60-180 mm.
- Example 266 provided by the present invention: a method for reducing coupling of an engine exhaust dust electric field including any one of Examples 256 to 265, which includes selecting a cathode length of the exhaust gas electric field of 30-180 mm.
- Example 267 provided by the present invention: A method for reducing electric field coupling of engine exhaust dust removal including any one of Examples 256 to 265, which includes selecting a cathode length of the exhaust gas removal electric field of 54-176 mm.
- Example 268 provided by the present invention: The method for reducing the coupling of the engine exhaust dust electric field including any one of Examples 256 to 267, wherein the method includes selecting that the exhaust gas electric field cathode includes at least one electrode rod.
- Example 269 provided by the present invention: a method for reducing electric field coupling of engine exhaust dust removal including Example 268, which includes selecting the electrode rod to have a diameter not greater than 3 mm.
- Example 270 provided by the present invention: a method for reducing electric field coupling of engine exhaust dust removal including Example 268 or 269, which includes selecting the shape of the electrode rod to be needle, polygon, burr, threaded rod or column.
- Example 271 provided by the present invention: a method for reducing coupling of an engine exhaust dust electric field including any one of Examples 256 to 270, wherein the method includes selecting that the exhaust gas electric field anode is composed of a hollow tube bundle.
- Example 272 provided by the present invention: a method for reducing electric field coupling of engine exhaust dust removal including Example 271, wherein the method includes selecting the hollow cross section of the anode tube bundle to adopt a circular or polygonal shape.
- Example 273 provided by the present invention: a method for reducing electric field coupling of engine exhaust dust removal including Example 272, including selecting the polygon to be a hexagon.
- Example 274 provided by the present invention: A method for reducing coupling of an engine exhaust dust electric field including any one of Examples 271 to 273, wherein the tube bundle including selecting the anode of the exhaust gas electric field is honeycomb-shaped.
- Example 275 provided by the present invention: The method for reducing the coupling of the engine exhaust dust electric field including any one of Examples 256 to 274, which includes selecting the cathode of the exhaust gas electric field to penetrate the anode of the exhaust gas electric field.
- Example 276 provided by the present invention: a method for reducing electric field coupling of engine exhaust dust removal including any one of Examples 256 to 275, wherein the size of the anode of the exhaust gas removal electric field or / and the cathode size of the exhaust gas removal electric field is selected such that the number of electric field couplings ⁇ 3.
- Example 277 provided by the present invention: An engine exhaust dust removal method, including the following steps: when the exhaust gas temperature is lower than 100 ° C, the liquid water in the exhaust gas is removed, and then the ionization dust is removed.
- Example 278 provided by the present invention: An engine exhaust dust removal method including Example 277, wherein, when the exhaust gas temperature is ⁇ 100 ° C, the exhaust gas is ionized and dedusted.
- Example 279 provided by the present invention: An engine exhaust dust removal method including Example 277 or 278, wherein, when the exhaust gas temperature is ⁇ 90 ° C, liquid water in the exhaust gas is removed, and then ionized for dust removal.
- Example 280 provided by the present invention: an engine exhaust dust removal method including Example 277 or 278, wherein, when the exhaust gas temperature is ⁇ 80 ° C, liquid water in the exhaust gas is removed, and then ionized for dust removal.
- Example 281 provided by the present invention: An engine exhaust dust removal method including Example 277 or 278, wherein, when the exhaust gas temperature is ⁇ 70 ° C, liquid water in the exhaust gas is removed, and then ionized for dust removal.
- Example 282 provided by the present invention: An engine exhaust dust removing method including the example 277 or 278, wherein the liquid water in the exhaust gas is removed by the electrocoagulation and demisting method, and then the ionized dust is removed.
- Example 283 provided by the present invention: An engine exhaust dust removal method, including the following steps: adding gas including oxygen before the exhaust gas ionization dust removal electric field to perform ionization dust removal.
- Example 284 provided by the present invention: An engine exhaust dust removal method including Example 283, in which oxygen is added by simply adding oxygen, passing in outside air, passing in compressed air, and / or passing in ozone.
- Example 285 provided by the present invention: An engine exhaust dust removal method including Example 283 or 284, wherein the amount of oxygen supplementation is determined based at least on the exhaust particulate content.
- Example 286 provided by the present invention: An engine exhaust dust removal method, including the following steps:
- Example 287 provided by the present invention: The engine exhaust dust removal method including Example 286, wherein the exhaust electret element is close to the exhaust gas field device outlet, or the exhaust electret element is provided at the exhaust gas field device outlet.
- Example 288 provided by the present invention: An engine exhaust dust removal method including Example 286, wherein the exhaust gas dedusting electric field anode and the exhaust gas dedusting electric field cathode form an exhaust gas flow channel, and the exhaust gas electret element is provided in the exhaust gas In the channel.
- Example 289 provided by the present invention: An engine exhaust dust removal method including Example 288, wherein the exhaust gas channel includes an exhaust gas channel outlet, and the exhaust electret element is close to the exhaust gas channel outlet, or, the The tail gas electret element is provided at the outlet of the tail gas channel.
- Example 290 provided by the present invention: An engine exhaust dust removal method including any one of Examples 283 to 289, wherein, when the exhaust gas ionization and dust removal electric field has no electrified driving voltage, a charged exhaust electret element is used to adsorb particulate matter in the exhaust gas .
- Example 291 provided by the present invention: An engine exhaust dust removal method including Example 289, wherein, after the charged exhaust electret element adsorbs certain particulate matter in the exhaust, it is replaced with a new exhaust electret element.
- Example 292 provided by the present invention: An engine exhaust dust removal method including Example 291, in which the exhaust ionization and dust removal electric field is restarted after being replaced with a new exhaust electret element to adsorb particulate matter in the exhaust and give a new exhaust electret Component charging.
- Example 293 provided by the present invention: The engine exhaust dust removing method including any one of Examples 286 to 292, wherein the material of the exhaust electret element includes an inorganic compound having electret properties.
- Example 294 provided by the present invention: An engine exhaust dust removal method including Example 293, wherein the inorganic compound is selected from one or more combinations of oxygen-containing compounds, nitrogen-containing compounds, or glass fibers.
- Example 295 provided by the present invention An engine exhaust dust removal method including Example 294, wherein the oxygen-containing compound is selected from one of metal-based oxides, oxygen-containing composites, and oxygen-containing inorganic heteropoly acid salts or Various combinations.
- Example 296 provided by the present invention: An engine exhaust dust removal method including Example 295, wherein the metal-based oxide is selected from aluminum oxide, zinc oxide, zirconium oxide, titanium oxide, barium oxide, tantalum oxide, silicon oxide, oxide One or more combinations of lead and tin oxide.
- the metal-based oxide is selected from aluminum oxide, zinc oxide, zirconium oxide, titanium oxide, barium oxide, tantalum oxide, silicon oxide, oxide One or more combinations of lead and tin oxide.
- Example 297 provided by the present invention: An engine exhaust dust removal method including Example 295, wherein the metal-based oxide is alumina.
- Example 298 provided by the present invention: An engine exhaust dust removal method including Example 295, wherein the oxygen-containing composite is selected from one or more combinations of titanium zirconium composite oxide or titanium barium composite oxide.
- Example 299 provided by the present invention: An engine exhaust dust removal method including Example 295, wherein the oxygen-containing inorganic heteropoly acid salt is selected from one or more of zirconium titanate, lead zirconate titanate, or barium titanatekinds of combinations.
- Example 300 provided by the present invention: An engine exhaust dust removal method including Example 294, wherein the nitrogen-containing compound is silicon nitride.
- Example 301 provided by the present invention: An engine exhaust dust removing method including any one of Examples 286 to 292, wherein the material of the exhaust electret element includes an organic compound having electret properties.
- Example 302 provided by the present invention: an engine exhaust dust removal method including Example 301, wherein the organic compound is selected from one of fluoropolymer, polycarbonate, PP, PE, PVC, natural wax, resin, and rosin Or multiple combinations.
- the organic compound is selected from one of fluoropolymer, polycarbonate, PP, PE, PVC, natural wax, resin, and rosin Or multiple combinations.
- Example 303 provided by the present invention: An engine exhaust dust removal method including Example 302, wherein the fluoropolymer is selected from polytetrafluoroethylene, polyperfluoroethylene propylene, soluble polytetrafluoroethylene, and polyvinylidene fluoride One or more combinations.
- Example 304 provided by the present invention: An engine exhaust dust removal method including Example 302, wherein the fluoropolymer is polytetrafluoroethylene.
- FIG. 1 is a schematic diagram of the exhaust gas ozone purification system of the present invention.
- FIG. 2 is a schematic diagram 1 of an electrode for an ozone generator of the present invention.
- FIG 3 is a schematic diagram 2 of the electrode for the ozone generator of the present invention.
- Fig. 4 is a structural schematic diagram of a discharge type ozone generator in the prior art.
- FIG. 5 is a schematic diagram of an exhaust gas dust removal system according to Embodiment 1 of the present invention.
- FIG. 6 is a schematic diagram of an exhaust gas dust removal system according to Embodiment 2 of the present invention.
- FIG. 7 is a three-dimensional structural schematic diagram of an exhaust gas treatment device in an embodiment of an engine exhaust gas treatment system of the present invention.
- FIG. 8 is a schematic structural view of an exhaust gas insulation mechanism in an umbrella shape of an exhaust gas treatment device in an engine exhaust gas treatment system of the present invention.
- 9A is an implementation structure diagram of an exhaust gas equalizing device of an exhaust gas treatment device in an engine exhaust gas treatment system of the present invention.
- 9B is another implementation structure diagram of the exhaust gas equalizing device of the exhaust gas treatment device in the engine exhaust gas treatment system of the present invention.
- FIG. 9C is another embodiment structure diagram of the exhaust gas equalizing device of the exhaust gas treatment device in the engine exhaust gas treatment system of the present invention.
- FIG. 10 is a schematic diagram of an exhaust gas ozone purification system according to Embodiment 4 of the present invention.
- Example 11 is a plan view of the reaction field in the exhaust gas ozone purification system of Example 4 of the present invention.
- FIG. 12 is a schematic diagram of the ozone quantity control device of the present invention.
- FIG. 13 is a schematic diagram of the structure of the electric field generating unit.
- FIG. 14 is an A-A view of the electric field generating unit of FIG.
- Fig. 15 is an A-A view of the electric field generating unit of Fig. 13 marked with length and angle.
- 16 is a schematic diagram of the structure of an electric field device with two electric field levels.
- Embodiment 17 is a schematic structural diagram of an electric field device in Embodiment 24 of the present invention.
- Embodiment 26 of the present invention is a schematic structural diagram of an electric field device in Embodiment 26 of the present invention.
- Embodiment 27 of the present invention is a schematic structural diagram of an electric field device in Embodiment 27 of the present invention.
- Embodiment 29 of the present invention is a schematic structural diagram of an exhaust gas dust removal system in Embodiment 29 of the present invention.
- FIG. 21 is a schematic structural view of an impeller duct in Embodiment 29 of the present invention.
- FIG. 22 is a schematic structural diagram of an electrocoagulation device in Embodiment 30 of the present invention.
- Embodiment 23 is a left side view of the electrocoagulation device in Embodiment 30 of the present invention.
- Embodiment 24 is a perspective view of an electrocoagulation device in Embodiment 30 of the present invention.
- FIG. 25 is a schematic structural diagram of an electrocoagulation device in Embodiment 31 of the present invention.
- FIG. 26 is a top view of the electrocoagulation device in Embodiment 31 of the present invention.
- FIG. 27 is a schematic structural diagram of an electrocoagulation device in Embodiment 32 of the present invention.
- FIG. 28 is a schematic structural diagram of an electrocoagulation device in Embodiment 33 of the present invention.
- Embodiment 34 of the present invention is a schematic structural diagram of an electrocoagulation device in Embodiment 34 of the present invention.
- FIG. 30 is a schematic structural diagram of an electrocoagulation device in Embodiment 35 of the present invention.
- FIG. 31 is a schematic structural diagram of an electrocoagulation device in Embodiment 36 of the present invention.
- FIG. 32 is a schematic structural diagram of an electrocoagulation device in Embodiment 37 of the present invention.
- Embodiment 38 is a schematic structural diagram of an electrocoagulation device in Embodiment 38 of the present invention.
- Embodiment 40 of the present invention is a schematic structural diagram of an electrocoagulation device in Embodiment 40 of the present invention.
- FIG. 36 is a schematic structural diagram of an electrocoagulation device in Embodiment 41 of the present invention.
- FIG. 37 is a schematic structural diagram of an electrocoagulation device in Embodiment 42 of the present invention.
- Embodiment 43 of the present invention is a schematic structural diagram of an electrocoagulation device in Embodiment 43 of the present invention.
- Embodiment 44 of the present invention is a schematic structural diagram of an engine exhaust gas treatment system in Embodiment 44 of the present invention.
- Embodiment 40 is a schematic structural diagram of an engine exhaust gas treatment system in Embodiment 45 of the present invention.
- Embodiment 46 is a schematic structural diagram of an engine exhaust gas treatment system in Embodiment 46 of the present invention.
- Embodiment 47 is a schematic structural diagram of an engine exhaust gas treatment system in Embodiment 47 of the present invention.
- Embodiment 48 is a schematic structural diagram of an engine exhaust gas treatment system in Embodiment 48 of the present invention.
- Embodiment 44 is a schematic structural diagram of an engine exhaust gas treatment system in Embodiment 49 of the present invention.
- Embodiment 45 is a schematic structural diagram of an engine exhaust gas treatment system in Embodiment 50 of the present invention.
- Embodiment 46 is a schematic structural diagram of an engine exhaust gas treatment system in Embodiment 51 of the present invention.
- Embodiment 47 is a schematic structural diagram of an engine exhaust gas treatment system in Embodiment 52 of the present invention.
- FIG. 48 is a schematic structural diagram of an exhaust gas cooling device in Embodiment 53 of the present invention.
- FIG. 49 is a schematic structural diagram of an exhaust gas temperature-lowering device in Embodiment 54 of the present invention.
- FIG. 50 is a schematic structural diagram of an exhaust gas temperature-lowering device in Embodiment 55 of the present invention.
- Embodiment 51 is a schematic structural diagram of a heat exchange unit in Embodiment 55 of the present invention.
- Embodiment 56 is a schematic structural diagram of an exhaust gas temperature-lowering device in Embodiment 56 of the present invention.
- FIG. 53 is a schematic diagram 1 of the intake electric field device of Embodiment 59 of the present invention.
- FIG. 54 is a second schematic diagram of an intake electric field device according to Embodiment 60 of the present invention.
- Embodiment 60 is a top view of an intake electric field device according to Embodiment 60 of the present invention.
- FIG. 56 is a schematic diagram of the cross section of the intake electret element in the intake runner in Embodiment 60 accounting for the cross section of the intake runner.
- 57 is a schematic structural diagram of an electric field device in Embodiment 61 of the present invention.
- an engine exhaust gas treatment system includes an exhaust gas dust removal system and an exhaust gas ozone purification system.
- the engine exhaust gas treatment system includes an exhaust gas dust removal system.
- the exhaust gas dedusting system is connected to the outlet of the engine. The exhaust gas discharged by the engine will flow through the exhaust dust removal system.
- the exhaust gas dust removal system further includes a water removal device for removing liquid water before the entrance of the exhaust gas electric field device.
- the engine exhaust gas when the exhaust gas temperature or the engine temperature is lower than a certain temperature, the engine exhaust gas may contain liquid water, and the water removal device removes the liquid water in the exhaust gas.
- the certain temperature is above 90 ° C and below 100 ° C.
- the certain temperature is above 80 ° C and below 90 ° C.
- the certain temperature is below 80 ° C.
- the water removal device is an electrocoagulation device.
- the water removal device When the engine is cold-started, the water removal device removes the water droplets or liquid water in the exhaust gas before the exhaust gas enters the exhaust gas electric field device inlet, thereby reducing the water droplets or liquid water in the exhaust gas, and reducing the uneven discharge of the exhaust gas ionization and dust removal electric field and The cathode of the exhaust gas dedusting electric field and the anode of the exhaust gas dedusting electric field break down, thereby improving the efficiency of ionization dust removal and achieving unexpected technical effects.
- the water removal device is not particularly limited, and the present invention can be applied to remove liquid water from exhaust gas in the prior art.
- the exhaust gas dedusting system further includes an oxygen supplement device for adding a gas including oxygen, such as air, before the exhaust gas ionizes the dedusting electric field.
- an oxygen supplement device for adding a gas including oxygen, such as air, before the exhaust gas ionizes the dedusting electric field.
- the oxygen supplementing device adds oxygen by simply adding oxygen, passing in outside air, passing in compressed air, and / or passing in ozone.
- the amount of oxygen supplementation is determined based at least on the content of exhaust gas particles.
- the exhaust gas dedusting system of the present invention including an oxygen supplement device, which can be simply oxygenated, vented to outside air, vented to compressed air, and / or vented to ozone Oxygen is added to increase the oxygen content of the exhaust gas entering the exhaust ionization and dust removal electric field, so that when the exhaust gas passes through the exhaust ionization and dust removal electric field between the cathode and exhaust anode of the exhaust gas removal electric field, the ionized oxygen is increased, so that more exhaust gas The dust is charged, and then more charged dust is collected under the action of the anode of the tail gas dedusting electric field, which makes the dust removal efficiency of the tail gas electric field device higher,
- the exhaust gas dedusting system may include an exhaust gas equalizing device.
- the tail gas equalizing device is arranged before the tail gas electric field device, and can evenly pass the airflow entering the tail gas electric field device.
- the anode of the exhaust gas dedusting electric field device of the exhaust gas electric field device may be a cube
- the exhaust air equalization device may include an air inlet pipe located on one side of the cathode support plate, and an air outlet pipe located on the other side of the cathode support plate.
- the supporting plate is located at the intake end of the anode of the exhaust gas dedusting electric field; wherein, the side where the intake pipe is installed is opposite to the side where the outlet pipe is installed.
- the tail gas equalizing device can make the tail gas entering the tail gas electric field device evenly pass through the electrostatic field.
- the anode of the exhaust gas dedusting electric field may be a cylinder
- the exhaust air equalization device is located between the inlet of the exhaust gas dedusting system and the exhaust gas ionization and dedusting electric field formed by the anode of the exhaust gas dedusting electric field and the cathode of the exhaust gas dedusting electric field.
- the exhaust air equalization device includes several air equalization blades rotating around the inlet center of the exhaust gas electric field device.
- the exhaust air equalization device can make various changes of the intake air evenly pass through the electric field generated by the anode of the exhaust gas dedusting electric field. At the same time, it can keep the internal temperature of the anode of the exhaust gas dedusting electric field constant and the oxygen is sufficient.
- the tail gas equalizing device can make the tail gas entering the tail gas electric field device evenly pass through the electrostatic field.
- the exhaust air equalization device includes an air inlet plate provided at the inlet end of the anode of the exhaust gas dedusting electric field and an air outlet plate provided at the outlet end of the anode of the exhaust gas dedusting electric field.
- the board is provided with air outlet holes, the air inlet holes and the air outlet holes are arranged in a staggered arrangement, and the front air inlet and the side air outlet form a cyclone structure.
- the tail gas equalizing device can make the tail gas entering the tail gas electric field device evenly pass through the electrostatic field.
- the exhaust gas dust removal may include an exhaust gas dust removal system inlet, an exhaust gas dust removal system outlet, and an exhaust gas electric field device.
- the exhaust electric field device may include an exhaust electric field device inlet, an exhaust electric field device outlet, and an exhaust gas front electrode between the exhaust electric field device inlet and the exhaust electric field device outlet.
- the tail gas electric field device includes a tail gas front electrode, which is between the tail gas ionization and dust removal electric field formed by the anode of the tail gas dust removal electric field and the cathode of the tail gas dust removal electric field.
- a tail gas front electrode which is between the tail gas ionization and dust removal electric field formed by the anode of the tail gas dust removal electric field and the cathode of the tail gas dust removal electric field.
- the shape of the exhaust gas pre-electrode may be dot-shaped, wire-shaped, mesh-shaped, orifice-shaped, plate-shaped, needle-rod-shaped, ball cage-shaped, box-shaped, tubular, natural form of material, or material processing form.
- the exhaust gas pre-electrode has a hole structure
- the exhaust gas pre-electrode is provided with one or more exhaust gas through holes.
- the shape of the exhaust gas through hole may be a polygon, a circle, an ellipse, a square, a rectangle, a trapezoid, or a rhombus.
- the outline size of the exhaust gas through hole may be 0.1 to 3 mm, 0.1 to 0.2 mm, 0.2 to 0.5 mm, 0.5 to 1 mm, 1 to 1.2 mm, 1.2 to 1.5 mm, 1.5 to 2 mm, 2 to 2.5 mm, 2.5 ⁇ 2.8mm, or 2.8 ⁇ 3mm.
- the shape of the tail gas front electrode may be one of solid, liquid, gas molecular group, plasma, conductive mixed state substance, biological natural mixed conductive substance, or an object artificially processed to form a conductive substance or Combination of various forms.
- the exhaust front electrode is solid, solid metal, such as 304 steel, or other solid conductors, such as graphite, can be used.
- the tail gas front electrode is a liquid, it may be an ion-conducting liquid.
- the tail gas pre-electrode causes pollution Things are charged.
- the anode of the tail gas dedusting electric field exerts an attractive force on the charged pollutants, so that the pollutants move toward the anode of the tail gas dedusting electric field until the pollutants adhere to the anode of the tail gas dedusting electric field.
- the tail gas pre-electrode introduces electrons into the pollutants, and the electrons are transferred between the pollutants located between the tail gas pre-electrode and the tail gas dedusting electric field anode, so that more pollutants are charged.
- the front electrode of the exhaust gas and the anode of the exhaust gas dedusting electric field conduct electrons through pollutants and form an electric current.
- the exhaust gas front electrode charges the pollutants by contacting the pollutants. In an embodiment of the present invention, the exhaust gas front electrode charges pollutants by means of energy fluctuation. In an embodiment of the invention, the exhaust gas front electrode transfers electrons to the pollutant by contacting the pollutant, and charges the pollutant. In an embodiment of the present invention, the exhaust gas front electrode transfers electrons to the pollutants by means of energy fluctuations, and charges the pollutants.
- the tail gas pre-electrode is linear, and the tail gas dedusting electric field anode is planar.
- the exhaust gas front electrode is perpendicular to the anode of the exhaust gas dedusting electric field.
- the tail gas pre-electrode is parallel to the anode of the tail gas dedusting electric field.
- the exhaust gas pre-electrode is curved or arc-shaped.
- the exhaust gas pre-electrode uses a metal wire mesh.
- the voltage between the exhaust gas front electrode and the exhaust gas dedusting electric field anode is different from the voltage between the exhaust gas dedusting electric field cathode and the exhaust gas dedusting electric field anode. In an embodiment of the invention, the voltage between the exhaust gas front electrode and the exhaust gas dedusting electric field anode is less than the initial halo voltage.
- the initial halo voltage is the minimum voltage between the cathode of the exhaust gas dedusting electric field and the anode of the exhaust gas dedusting electric field. In an embodiment of the invention, the voltage between the exhaust gas front electrode and the exhaust gas dedusting electric field anode may be 0.1-2 kV / mm.
- the tail gas electric field device includes a tail gas flow channel, and the tail gas front electrode is located in the tail gas flow channel.
- the ratio of the cross-sectional area of the tail gas pre-electrode to the cross-sectional area of the tail gas channel is 99% -10%, or 90-10%, or 80-20%, or 70-30%, or 60- 40%, or 50%.
- the cross-sectional area of the exhaust gas front electrode refers to the sum of the areas of the exhaust gas front electrode along the solid part of the cross section.
- the exhaust gas pre-electrode has a negative potential.
- pollutants such as highly conductive metal dust, mist droplets, or aerosol in the exhaust gas are in contact with the exhaust gas front electrode, or When the distance of the tail gas front electrode reaches a certain range, it will be directly negatively charged. Then, all pollutants will enter the tail gas ionization and dust removal electric field with the air flow. The anode of the tail gas removal electric field exerts attractive force on the negatively charged metal dust, mist droplets, or aerosol.
- the formed tail gas ionization and dust removal electric field obtains oxygen ions from the oxygen in the ionized gas, and after the negatively charged oxygen ions are combined with the common dust, the common dust is negatively charged, and the anode of the tail gas removal electric field gives this part of the negatively charged dust, etc.
- the pollutants exert an attractive force, so that dust and other pollutants move toward the anode of the exhaust gas dedusting electric field until the
- the pollutants are attached to the anode of the exhaust gas dedusting electric field, so that some common dust and other pollutants are also collected, so that the highly conductive and weakly conductive pollutants in the exhaust gas are collected, and the anode of the exhaust gas dedusting electric field can be collected
- the collection of pollutants in the exhaust gas is more extensive, and the collection capacity is stronger and the collection efficiency is higher.
- the inlet of the exhaust gas electric field device communicates with the outlet of the engine.
- the exhaust gas electric field device may include an exhaust gas dedusting electric field cathode and an exhaust gas dedusting electric field anode, and an ionization dedusting electric field is formed between the exhaust gas dedusting electric field cathode and the exhaust gas dedusting electric field anode.
- the oxygen ions in the exhaust gas will be ionized and form a large number of charged oxygen ions.
- the oxygen ions are combined with the dust and other particles in the exhaust gas to charge the particles.
- the anode of the exhaust gas removal electric field gives negatively charged particles
- the adsorption force is applied so that the particulate matter is adsorbed on the anode of the exhaust gas dedusting electric field to remove the particulate matter in the exhaust gas.
- the exhaust gas dedusting electric field cathode includes a plurality of cathode wires.
- the diameter of the cathode wire can be 0.1mm-20mm, and the size parameter can be adjusted according to the application and dust accumulation requirements. In an embodiment of the invention, the diameter of the cathode wire is not greater than 3 mm.
- the cathode wire uses a metal wire or an alloy wire that is easy to discharge, is temperature resistant, can support its own weight, and is electrochemically stable.
- the material of the cathode wire is titanium. The specific shape of the cathode wire is adjusted according to the shape of the anode of the exhaust gas dedusting electric field.
- the cross section of the cathode wire is circular; if the dust collecting surface of the anode of the exhaust gas dedusting electric field is an arc surface
- the cathode wire needs to be designed into a polyhedron shape. The length of the cathode wire is adjusted according to the anode of the exhaust gas dedusting electric field.
- the exhaust gas dedusting electric field cathode includes a plurality of cathode rods.
- the diameter of the cathode rod is not greater than 3 mm.
- a metal rod or an alloy rod that is easy to discharge is used as the cathode rod.
- the shape of the cathode rod may be needle-shaped, polygonal, burr-shaped, threaded rod-shaped, columnar or the like. The shape of the cathode rod can be adjusted according to the shape of the anode of the exhaust gas dedusting electric field.
- the cross section of the cathode rod needs to be designed to be circular;
- the cathode rod needs to be designed as a polyhedron.
- the cathode of the exhaust gas dedusting electric field is disposed in the anode of the exhaust gas dedusting electric field.
- the exhaust gas dedusting electric field anode includes one or more hollow anode tubes arranged in parallel. When there are multiple hollow anode tubes, all the hollow anode tubes constitute a honeycomb-shaped exhaust gas dedusting electric field anode.
- the hollow anode tube may have a circular or polygonal cross section. If the cross section of the hollow anode tube is circular, a uniform electric field can be formed between the anode of the exhaust gas dedusting electric field and the cathode of the exhaust gas dedusting electric field, and the inner wall of the hollow anode tube is not easy to accumulate dust.
- the cross section of the hollow anode tube is a triangular shape, three dust accumulation surfaces and three distant dust holding angles can be formed on the inner wall of the hollow anode tube.
- This structure of the hollow anode tube has the highest dust holding rate. If the cross section of the hollow anode tube is quadrangular, 4 dust-collecting surfaces and 4 dust-holding angles can be obtained, but the grouping structure is unstable. If the cross section of the hollow anode tube is hexagonal, 6 dust accumulation surfaces and 6 dust accumulation angles can be formed, and the dust accumulation surface and the dust accumulation rate are balanced. If the cross section of the hollow anode tube is more polygonal, more dust accumulation edges can be obtained, but the dust holding rate is lost.
- the diameter of the inscribed circle diameter of the hollow anode tube ranges from 5 mm to 400 mm.
- the cathode of the exhaust gas dedusting electric field is installed on a cathode support plate, and the cathode support plate and the anode of the exhaust gas dedusting electric field are connected by an exhaust gas insulation mechanism.
- the exhaust gas dedusting electric field anode includes a third anode part and a fourth anode part, that is, the third anode part is close to the exhaust gas electric field device inlet, and the fourth anode part is close to the exhaust gas electric field device outlet.
- the cathode support plate and the exhaust gas insulation mechanism are between the third anode part and the fourth anode part, that is, the exhaust gas insulation mechanism is installed in the middle of the ionization electric field or the cathode of the exhaust gas dedusting electric field, which can play a good supporting role for the exhaust gas dedusting electric field cathode.
- the cathode of the exhaust gas dedusting electric field plays a fixed role relative to the anode of the exhaust gas dedusting electric field, so as to maintain a set distance between the cathode of the exhaust gas dedusting electric field and the anode of the exhaust gas dedusting electric field.
- the support point of the cathode is at the end of the cathode, and it is difficult to maintain the distance between the cathode and the anode.
- the exhaust gas insulation mechanism is provided outside the dust removal flow path, that is, outside the second-stage flow path, to prevent or reduce the accumulation of dust and the like in the exhaust gas on the exhaust gas insulation mechanism, causing the exhaust gas insulation mechanism to break down or conduct electricity.
- the exhaust gas insulation mechanism uses a high-pressure-resistant ceramic insulator to insulate the cathode of the exhaust gas dedusting electric field and the anode of the exhaust gas dedusting electric field.
- the anode of the exhaust gas dedusting electric field is also called a kind of shell.
- the third anode portion is located in front of the cathode support plate and the exhaust gas insulation mechanism in the gas flow direction.
- the third anode portion can remove water in the exhaust gas and prevent water from entering the exhaust gas insulation mechanism, resulting in a short circuit of the exhaust gas insulation mechanism. Light a fire.
- the third positive stage can remove a considerable part of the dust in the exhaust gas. When the exhaust gas passes through the exhaust gas insulation mechanism, a considerable part of the dust has been eliminated, reducing the possibility of dust short-circuiting the exhaust gas insulation mechanism.
- the exhaust gas insulation mechanism includes an insulating ceramic pillar.
- the design of the third anode part is mainly to protect the insulating ceramic column from being contaminated by particulate matter in the gas. Once the gas pollutes the insulating ceramic column, the anode of the exhaust gas dedusting electric field and the cathode of the exhaust gas dedusting electric field will be conducted, so that the anode of the exhaust gas dedusting electric field The dust accumulation function is invalid, so the design of the third anode part can effectively reduce the pollution of the insulating ceramic column and improve the service time of the product.
- the third anode part and the cathode of the exhaust gas dedusting electric field first contact with the polluting gas, and the exhaust gas insulation mechanism contacts the gas afterwards, so as to achieve the purpose of removing the dust first and then passing through the exhaust gas insulation mechanism, reducing the exhaust gas
- the pollution caused by the insulation mechanism prolongs the cleaning and maintenance cycle, and the insulation support after the corresponding electrode is used.
- the length of the third anode portion is long enough to remove part of dust, reduce dust accumulated on the exhaust gas insulation mechanism and the cathode support plate, and reduce electric shock caused by dust wear.
- the length of the third anode portion accounts for 1/10 to 1/4, 1/4 to 1/3, 1/3 to 1/2, 1/2 to 2/2 of the total length of the anode of the exhaust gas dedusting electric field 3. 2/3 to 3/4, or 3/4 to 9/10.
- the fourth anode portion is located behind the cathode support plate and the exhaust gas insulation mechanism in the exhaust gas flow direction.
- the fourth anode part includes a dust accumulation section and a reserved dust accumulation section.
- the dust accumulation section uses static electricity to adsorb the particulate matter in the exhaust gas.
- the dust accumulation section is to increase the dust accumulation area and prolong the use time of the exhaust gas electric field device.
- the reserved dust accumulation section can provide failure protection for the dust accumulation section.
- the dust accumulation section is reserved to further increase the dust accumulation area on the premise of meeting the design dust removal requirements.
- the dust accumulation section is reserved for supplementing the dust accumulation in the previous section.
- different power sources can be used for the reserved dust accumulation section and the third anode portion.
- the exhaust gas insulation mechanism is provided at the cathode of the exhaust gas dedusting electric field and the exhaust gas Except for the second-stage flow channel between the anodes of the dust electric field. Therefore, the exhaust gas insulation mechanism is hung outside the anode of the exhaust gas dedusting electric field.
- the exhaust gas insulation mechanism may use non-conductor temperature-resistant materials, such as ceramics and glass.
- completely sealed air-free material insulation requires an insulation isolation thickness> 0.3 mm / kv; air insulation requirements> 1.4 mm / kv.
- the insulation distance can be set according to 1.4 times the pole spacing between the cathode of the exhaust gas dedusting electric field and the anode of the exhaust gas dedusting electric field.
- the exhaust gas insulation mechanism uses ceramics with a glazed surface; it cannot be filled with glue or organic materials, and the temperature resistance is greater than 350 degrees Celsius.
- the exhaust gas insulation mechanism includes an insulation portion and a heat insulation portion.
- the material of the insulation part is ceramic material or glass material.
- the insulating portion may be an umbrella-shaped string ceramic column or a glass column, and the umbrella is glazed inside and outside.
- the distance between the outer edge of the umbrella-shaped string ceramic column or glass column and the anode of the exhaust gas dedusting electric field is greater than 1.4 times the electric field distance, that is, greater than 1.4 times the pole spacing.
- the sum of the umbrella flange spacing of the umbrella-shaped string ceramic column or glass column is greater than 1.4 times the insulation spacing of the umbrella-shaped string ceramic column.
- the total length of the inner depth of the umbrella-shaped string ceramic column or glass column is 1.4 times greater than the insulation distance of the umbrella-shaped string ceramic column.
- the insulating part can also be a columnar string ceramic column or a glass column with glaze inside and outside. In an embodiment of the present invention, the insulating portion may also have a tower shape.
- a heating rod is provided in the insulating portion.
- the heating rod is activated and heated. Due to the temperature difference between the inside and outside of the insulating part during use, condensation is likely to occur inside and outside of the insulating part and outside.
- the outer surface of the insulation may spontaneously or be heated by gas to generate high temperature, which requires necessary isolation and protection to prevent burns.
- the heat insulation part includes a protective baffle located outside the second insulation part and a denitration purification reaction chamber.
- the tail portion of the insulating portion needs to be insulated at the same location to prevent the environment and heat dissipation from heating the condensation component.
- the lead wire of the power supply of the exhaust gas electric field device uses an umbrella-shaped string ceramic column or a glass column to pass through the wall connection, an elastic bumper is used in the wall to connect the cathode support plate, and a sealed insulating protective wiring cap is used to plug in and out the wall
- the insulation distance between the lead-through conductor and the wall is greater than that of the umbrella-shaped string ceramic column or glass column.
- the high-voltage part is eliminated from the lead, and directly installed on the end to ensure safety.
- the overall outer insulation of the high-voltage module is protected by ip68, and the medium is used for heat dissipation.
- an asymmetric structure is adopted between the cathode of the exhaust gas dedusting electric field and the anode of the exhaust gas dedusting electric field.
- polar particles are subjected to a force of the same size but in opposite directions, and polar particles reciprocate in the electric field; in an asymmetric electric field, polar particles are subjected to two forces of different sizes, and polar particles act Moving in the direction of high force can avoid coupling.
- an ionization and dust removal electric field is formed between the cathode of the exhaust gas electric field and the anode of the exhaust gas electric field.
- the method of reducing electric field coupling includes the following steps: selecting the ratio of the area of the exhaust gas anode of the exhaust gas dedusting electric field to the discharge area of the cathode of the exhaust gas dedusting electric field, so that the electric field Coupling times ⁇ 3.
- the ratio of the dust collecting area of the anode of the exhaust gas dedusting electric field to the discharge area of the cathode of the exhaust gas dedusting electric field may be: 1.667: 1-1680: 1; 3.334: 1-113.34: 1; 6.67: 1-56.67: 1; 13.34: 1-28.33: 1.
- the relatively large area of the anode dust collection area of the exhaust gas dedusting electric field anode and the relatively extremely small exhaust gas discharge electric field cathode discharge area can reduce the exhaust gas dedusting electric field cathode discharge area, reduce suction, and expand
- the dust collection area of the anode of the exhaust gas dedusting electric field expands the suction, that is, the asymmetric electrode suction between the cathode of the exhaust gas dedusting electric field and the anode of the exhaust gas dedusting electric field causes the charged dust to fall into the dust collecting surface of the anode of the exhaust gas dedusting electric field, although the polarity changes However, it can no longer be sucked away by the cathode of the exhaust gas dedusting electric field, reducing the electric field coupling, and realizing the number of electric field couplings ⁇ 3.
- the dust collecting area refers to the area of the anode working surface of the exhaust gas dedusting electric field.
- the dust collecting area is the inner surface area of the hollow regular hexagonal tube.
- the dust collecting area is also called Dust area.
- the discharge area refers to the area of the cathode working surface of the exhaust gas dedusting electric field. For example, if the cathode of the exhaust gas dedusting electric field is rod-shaped, the discharge area is the rod-shaped outer surface area.
- the length of the exhaust gas dedusting electric field anode can be 10 to 180 mm, 10 to 20 mm, 20 to 30 mm, 60 to 180 mm, 30 to 40 mm, 40 to 50 mm, 50 to 60 mm, 60 to 70 mm, 70 to 80 mm , 80-90mm, 90-100mm, 100-110mm, 110-120mm, 120-130mm, 130-140mm, 140-150mm, 150-160mm, 160-170mm, 170-180mm, 60mm, 180mm, 10mm or 30mm.
- the length of the anode of the exhaust gas dedusting electric field refers to the minimum length from one end to the other end of the anode working surface of the exhaust gas dedusting electric field. Selecting this length for the anode of the exhaust gas dedusting electric field can effectively reduce the electric field coupling.
- the length of the anode of the exhaust gas dedusting electric field may be 10 to 90 mm, 15 to 20 mm, 20 to 25 mm, 25 to 30 mm, 30 to 35 mm, 35 to 40 mm, 40 to 45 mm, 45 to 50 mm, 50 to 55 mm , 55 ⁇ 60mm, 60 ⁇ 65mm, 65 ⁇ 70mm, 70 ⁇ 75mm, 75 ⁇ 80mm, 80 ⁇ 85mm or 85 ⁇ 90mm, the design of this length can make the exhaust gas dedusting electric field anode and exhaust gas electric field device have high temperature resistance, and The exhaust gas electric field device has high efficiency dust collection ability under high temperature impact.
- the length of the exhaust gas dedusting electric field cathode may be 30 to 180 mm, 54 to 176 mm, 30 to 40 mm, 40 to 50 mm, 50 to 54 mm, 54 to 60 mm, 60 to 70 mm, 70 to 80 mm, 80 to 90 mm , 90-100mm, 100-110mm, 110-120mm, 120-130mm, 130-140mm, 140-150mm, 150-160mm, 160-170mm, 170-176mm, 170-180mm, 54mm, 180mm, or 30mm.
- the length of the cathode of the exhaust gas dedusting electric field refers to the minimum length from one end to the other end of the cathode working surface of the exhaust gas dedusting electric field. Choosing this length for the cathode of the exhaust gas dedusting electric field can effectively reduce the electric field coupling.
- the length of the exhaust gas dedusting electric field cathode can be 10 to 90 mm, 15 to 20 mm, 20 to 25 mm, 25 to 30 mm, 30 to 35 mm, 35 to 40 mm, 40 to 45 mm, 45 to 50 mm, 50 to 55 mm , 55 ⁇ 60mm, 60 ⁇ 65mm, 65 ⁇ 70mm, 70 ⁇ 75mm, 75 ⁇ 80mm, 80 ⁇ 85mm or 85 ⁇ 90mm, the design of this length can make the exhaust gas dedusting electric field cathode and exhaust gas electric field device have high temperature resistance, and The exhaust gas electric field device has high efficiency dust collection ability under high temperature impact.
- the corresponding dust collection efficiency is 99.9%; when the electric field temperature is 400 °C, the corresponding dust collection efficiency is 90%; when the electric field temperature is 500 °C, the corresponding dust collection efficiency is 50 %.
- the distance between the anode of the exhaust gas dedusting electric field and the cathode of the exhaust gas dedusting electric field may be 5-30 mm, 2.5-139.9 mm, 9.9-139.9 mm, 2.5-9.9 mm, 9.9-20 mm, 20-30 mm, 30 ⁇ 40mm, 40 ⁇ 50mm, 50 ⁇ 60mm, 60 ⁇ 70mm, 70 ⁇ 80mm, 80 ⁇ 90mm, 90 ⁇ 100mm, 100 ⁇ 110mm, 110 ⁇ 120mm, 120 ⁇ 130mm, 130 ⁇ 139.9mm, 9.9mm, 139.9mm, Or 2.5mm.
- the distance between the anode of the exhaust gas dedusting electric field and the cathode of the exhaust gas dedusting electric field is also called the pole spacing.
- the pole spacing specifically refers to the minimum vertical distance between the anode of the exhaust gas dedusting electric field and the cathode working surface of the exhaust gas dedusting electric field. This choice of pole spacing can effectively reduce electric field coupling and make the exhaust gas electric field device have high temperature resistance characteristics.
- ionization dust removal can be applied to remove particulate matter in the gas, for example, it can be used to remove particulate matter from engine exhaust.
- the existing electric field dust removal device is still not suitable for use in vehicles.
- the electric field dust removal device in the prior art is too bulky and difficult to install in a vehicle.
- the inventor of the present invention has found that the disadvantages of the electric field dust removal device in the prior art are caused by electric field coupling.
- the present invention can significantly reduce the size (i.e., volume) of the electric field dedusting device by reducing the number of electric field couplings.
- the size of the ionization and dust removal device provided by the present invention is about one fifth of the size of the existing ionization and dust removal device.
- the current ionization dust removal device sets the gas flow rate to about 1 m / s, and the present invention can still obtain a higher gas flow rate when the gas flow rate is increased to 6 m / s. Particle removal rate.
- the size of the electric field dust collector can be reduced.
- the present invention can significantly improve the particle removal efficiency. For example, when the gas flow rate is about 1m / s, the prior art electric field dust removal device can remove about 70% of the particulate matter in the engine exhaust, but the present invention can remove about 99% of the particulate matter, even when the gas flow rate is 6m / s . Therefore, the present invention can meet the latest emission standards.
- the present invention can be used to manufacture electric field dust collectors suitable for vehicles.
- the ionization and dedusting electric field between the anode of the exhaust gas dedusting electric field and the cathode of the exhaust gas dedusting electric field is also called the third electric field.
- a fourth electric field that is not parallel to the third electric field is formed between the anode of the exhaust gas dedusting electric field and the cathode of the exhaust gas dedusting electric field.
- the fourth electric field is not perpendicular to the flow channel of the ionization and dust removal electric field.
- the fourth electric field is also called an auxiliary electric field and can be formed by one or two second auxiliary electrodes.
- the second auxiliary electrode When the fourth electric field is formed by a second auxiliary electrode, the second auxiliary electrode may be placed at the inlet or the outlet of the ionization electric field, and the second auxiliary electrode may have a negative potential or a positive potential.
- the fourth electric field is formed by two second auxiliary electrodes, one of the second auxiliary electrodes can have a negative potential and the other second auxiliary electrode can have a positive potential; one second auxiliary electrode can be placed at the entrance of the ionization dust removal electric field, Another second auxiliary electrode is placed at the outlet of the ionization dust removal electric field.
- the second auxiliary electrode may be a cathode of the exhaust gas dedusting electric field or a part of the anode of the exhaust gas dedusting electric field, that is, the second auxiliary electrode may be composed of an extension of the exhaust gas dedusting electric field cathode or the exhaust gas dedusting electric field anode, and the exhaust gas dedusting electric field cathode and exhaust gas The length of the anode of the dust removal electric field is different.
- the second auxiliary electrode may also be a separate electrode, which means that the second auxiliary electrode may not be part of the cathode of the exhaust gas dedusting electric field or the anode of the exhaust gas dedusting electric field. In this case, the voltage of the fourth electric field is different from the voltage of the third electric field. Can be individually controlled according to the working conditions.
- the fourth electric field can exert a force toward the outlet of the ionizing electric field between the anode of the exhaust gas dedusting electric field anode and the cathode of the exhaust gas dedusting electric field toward the outlet of the ionization electric field, so that the anode ion of the exhaust gas dedusting electric field and the cathode of the exhaust gas dedusting electric field have negatively charged oxygen ions
- the flow has a moving speed towards the outlet.
- the anode of the electric field will be combined with the particulate matter in the exhaust gas during the movement to the outlet of the ionizing electric field. Due to the moving speed of the oxygen ions to the outlet, when the oxygen ions are combined with the particulate matter, there will be no strong collision between the two , So as to avoid greater energy consumption due to strong collisions, ensure that oxygen ions are easily combined with particulate matter, and make the particulate matter in the gas charge more efficiently, and then under the action of the anode of the exhaust gas dedusting electric field, the energy can be more The collection of more particulate matter ensures that the exhaust gas electric field device has a higher dust removal efficiency.
- the collection rate of the particulate matter entering the electric field in the direction of ion flow by the exhaust gas electric field device is nearly double that of the particulate matter entering the electric field in the direction of reverse ion flow, thereby increasing the dust collection efficiency of the electric field and reducing the electric power consumption of the electric field.
- the main reason for the low dust removal efficiency of the dust collection electric field in the prior art is that the direction of the dust entering the electric field is opposite to or perpendicular to the direction of the ion flow in the electric field, which causes the dust and ion flow to collide violently with each other and produce greater energy consumption. It also affects the charging efficiency, thereby reducing the electric field dust collection efficiency and increasing energy consumption in the prior art.
- the tail gas electric field device collects the dust in the gas, the gas and dust enter the electric field along the ion flow direction, the dust is fully charged, and the electric field consumption is small; the unipolar electric field dust collection efficiency will reach 99.99%.
- the exhaust gas and dust enter the electric field in the direction of ion flow the dust is not fully charged, the electric power consumption of the electric field will also increase, and the dust collection efficiency will be 40% -75%.
- the ion flow formed by the exhaust gas electric field device is beneficial to fluid transmission, oxygenation, or heat exchange of the unpowered fan.
- the particulate matter As the anode of the exhaust gas dedusting electric field continues to collect particulate matter and the like in the exhaust gas, the particulate matter accumulates and forms carbon black on the anode of the exhaust gas dedusting electric field, and the thickness of the carbon black continues to increase, which reduces the pole spacing.
- the phenomenon of electric field back-corona discharge is used in conjunction with an increased voltage to limit the injection current, so that a large amount of plasma is generated by a sudden discharge at the carbon deposit.
- These low-temperature plasma cause carbon black
- the middle organic components are deeply oxidized, and the polymer bonds are broken to form small molecules of carbon dioxide and water to complete carbon black cleaning.
- the ozone molecular cluster simultaneously catches the deposited oil pollution molecular cluster, accelerates the breakage of the hydrocarbon bonds in the oil pollution molecule, and carbonizes some oil molecules to achieve the purpose of purifying the exhaust gas volatiles.
- carbon black cleaning uses plasma to achieve effects that conventional cleaning methods cannot.
- Plasma is a state of matter, also called the fourth state of matter, and does not belong to the common three states of solid, liquid, and gas. Apply enough energy to the gas to ionize it into a plasma state.
- the "active" components of plasma include: ions, electrons, atoms, active groups, excited nuclides (meta-stable state), photons, etc.
- the exhaust gas electric field device detects the electric field current and adopts any of the following methods to achieve carbon black cleaning:
- the exhaust gas electric field device uses the electric field back-corona discharge phenomenon to complete carbon black cleaning.
- the exhaust gas electric field device uses the electric field back-corona discharge phenomenon to increase the voltage, limit the injection current, and complete the carbon black cleaning.
- the exhaust gas electric field device uses the electric field back-corona discharge phenomenon to increase the voltage and limit the injection current, so that the rapid discharge occurring at the position of the anode carbon deposit generates a plasma, the plasma
- the organic components of carbon black are deeply oxidized, the polymer bonds are broken, and small molecule carbon dioxide and water are formed to complete the carbon black cleaning.
- the anode of the exhaust gas dedusting electric field and the cathode of the exhaust gas dedusting electric field are electrically connected to the two electrodes of the power source, respectively.
- the voltage loaded on the anode of the exhaust gas dedusting electric field and the cathode of the exhaust gas dedusting electric field needs to select an appropriate voltage level.
- the specific voltage level depends on the volume, temperature resistance and dust holding rate of the exhaust gas electric field device.
- the voltage is from 1kv to 50kv; the temperature resistance conditions are first considered in the design, the parameters of the pole spacing and temperature: 1MM ⁇ 30 degrees, the dust accumulation area is greater than 0.1 square / thousand cubic meters / hour, and the electric field length is greater than 5 Times, control the electric field air flow velocity to be less than 9 meters per second.
- the anode of the exhaust gas dedusting electric field is composed of a second hollow anode tube and is in a honeycomb shape.
- the shape of the second hollow anode tube port may be circular or polygonal.
- the value of the inscribed circle of the second hollow anode tube ranges from 5-400mm, the corresponding voltage is between 0.1-120kv, the corresponding current of the second hollow anode tube is between 0.1-30A;
- the tangent circle corresponds to different corona voltage, about 1KV / 1MM.
- the exhaust gas electric field device includes a second electric field stage.
- the second electric field stage includes a plurality of second electric field generating units, and there may be one or more second electric field generating units.
- the second electric field generating unit is also called a second dust collecting unit.
- the second dust collecting unit includes the anode of the exhaust gas dedusting electric field and the cathode of the exhaust gas dedusting electric field. There are one or more second dust collecting units.
- the dust collection efficiency of the exhaust gas electric field device can be effectively improved.
- the anodes of the exhaust gas dedusting electric fields have the same polarity
- the cathodes of the exhaust gas dedusting electric fields have the same polarity.
- the exhaust gas electric field device further includes a plurality of connecting housings, and the second electric field stages connected in series are connected through the connecting housings; the distance between the second electric field stages of two adjacent stages is greater than 1.4 times the pole spacing.
- the electret material is charged with an electric field.
- the electret material will be used to remove dust.
- the tail gas electric field device includes a tail gas electret element.
- the tail gas electret element is provided in the anode of the tail gas dedusting electric field.
- the exhaust electret element when the anode of the exhaust gas dedusting electric field and the cathode of the exhaust gas dedusting electric field are powered on, the exhaust electret element is in the exhaust gas ionization dedusting electric field.
- the tail gas electret element is close to the outlet of the tail gas electric field device, or the tail gas electret element is provided at the outlet of the tail gas electric field device.
- the exhaust gas dedusting electric field anode and the exhaust gas dedusting electric field cathode form an exhaust gas flow channel, and the exhaust gas electret element is disposed in the exhaust gas flow channel.
- the exhaust gas channel includes an exhaust gas channel outlet, the exhaust gas electret element is close to the exhaust gas channel outlet, or the exhaust gas electret element is provided in the exhaust gas channel Export.
- a cross-section of the exhaust gas electret element in the exhaust gas flow channel occupies 5% to 100% of the cross-section of the exhaust gas flow channel.
- the cross-section of the exhaust electret element in the exhaust gas channel accounts for 10% -90%, 20% -80%, or 40% -60% of the exhaust gas channel cross-section.
- the exhaust gas ionization and dust removal electric field charges the exhaust gas electret element.
- the exhaust electret element has a porous structure.
- the exhaust electret element is a fabric.
- the inside of the exhaust gas dedusting electric field anode is tubular
- the outside of the exhaust gas electret element is tubular
- the outside of the exhaust gas electret element is sleeved inside the exhaust gas dedusting electric field anode.
- the tail gas electret element and the anode of the tail gas dedusting electric field are detachably connected.
- the material of the exhaust electret element includes an inorganic compound having electret properties.
- the electret performance refers to that the tail gas electret element is charged after being charged by an external power source, and still retains a certain charge under the condition of completely disconnecting from the power source, thereby acting as an electrode as an electric field electrode.
- the inorganic compound is selected from one or more combinations of oxygen-containing compounds, nitrogen-containing compounds, or glass fibers.
- the oxygen-containing compound is selected from one or more combinations of metal-based oxides, oxygen-containing composites, and oxygen-containing inorganic heteropoly acid salts.
- the metal-based oxide is selected from one or more combinations of aluminum oxide, zinc oxide, zirconium oxide, titanium oxide, barium oxide, tantalum oxide, silicon oxide, lead oxide, and tin oxide .
- the metal-based oxide is alumina.
- the oxygen-containing composite is selected from one or more combinations of titanium-zirconium composite oxide or titanium-barium composite oxide.
- the oxygen-containing inorganic heteropoly acid salt is selected from one or more combinations of zirconium titanate, lead zirconate titanate, or barium titanate.
- the nitrogen-containing compound is silicon nitride.
- the material of the exhaust electret element includes an organic compound having electret properties.
- the electret performance refers to that the tail gas electret element is charged after being charged by an external power source, and still retains a certain charge under the condition of completely disconnecting from the power source, thereby acting as an electrode as an electric field electrode.
- the organic compound is selected from one or more combinations of fluoropolymer, polycarbonate, PP, PE, PVC, natural wax, resin, and rosin.
- the fluoropolymer is selected from polytetrafluoroethylene (PTFE), polyperfluoroethylene propylene (Teflon-FEP), soluble polytetrafluoroethylene (PFA), and polyvinylidene fluoride (PVDF) One or more combinations.
- PTFE polytetrafluoroethylene
- Teflon-FEP polyperfluoroethylene propylene
- PFA soluble polytetrafluoroethylene
- PVDF polyvinylidene fluoride
- the fluoropolymer is polytetrafluoroethylene.
- the exhaust ionization and dedusting electric field is generated under the condition of power-on driving voltage.
- the exhaust ionization and dedusting electric field is used to ionize part of the to-be-processed object, adsorb the particulate matter in the to-be-processed object, and charge the exhaust electret element at the same time.
- the charged exhaust electret element When there is no power-up driving voltage, the charged exhaust electret element generates an electric field, and the electric field generated by the charged exhaust electret element absorbs the particulate matter in the object to be treated, that is, the particulate matter can still be carried out in the event of a fault in the exhaust ionization and dedusting electric field Of adsorption.
- a tail gas dust removal method includes the following steps: when the tail gas temperature is lower than 100 ° C, the liquid water in the tail gas is removed, and then the ionization dust is removed.
- the exhaust gas when the temperature of the exhaust gas is ⁇ 100 ° C, the exhaust gas is ionized and dedusted.
- the liquid water in the exhaust gas is removed, and then the dust is ionized and removed.
- the liquid water in the exhaust gas is removed, and then the dust is ionized and removed.
- the liquid water in the exhaust gas is removed, and then the dust is ionized and removed.
- the liquid water in the tail gas is removed by the electrocoagulation and defogging method, and then ionized to remove dust.
- a tail gas dust removal method includes the following steps: adding a gas including oxygen before the tail gas ionization dust removal electric field to perform ionization dust removal.
- oxygen is added by simply increasing oxygen, passing in outside air, passing in compressed air, and / or passing in ozone.
- the amount of oxygen supplementation is determined based at least on the content of exhaust gas particles.
- the present invention provides an electric field dust removal method, including the following steps:
- the dust-containing gas passes through the ionization and dust removal electric field generated by the anode of the dust removal electric field and the cathode of the dust removal electric field;
- the dust removal process is performed.
- the dust is cleaned in any of the following ways:
- the dust is carbon black.
- the dust-removing electric field cathode includes a plurality of cathode wires.
- the diameter of the cathode wire can be 0.1mm-20mm, and the size parameter can be adjusted according to the application and dust accumulation requirements. In an embodiment of the invention, the diameter of the cathode wire is not greater than 3 mm.
- the cathode wire uses a metal wire or an alloy wire that is easy to discharge, is temperature resistant, can support its own weight, and is electrochemically stable.
- the material of the cathode wire is titanium. The specific shape of the cathode wire is adjusted according to the shape of the anode of the dust removal electric field.
- the cross section of the cathode wire is circular; if the dust collection surface of the anode of the dust removal electric field is an arc surface, the cathode wire Need to be designed as a polyhedron. The length of the cathode wire is adjusted according to the anode of the dust removal electric field.
- the dust-removing electric field cathode includes a plurality of cathode rods.
- the diameter of the cathode rod is not greater than 3 mm.
- a metal rod or an alloy rod that is easy to discharge is used as the cathode rod.
- the shape of the cathode rod may be needle-shaped, polygonal, burr-shaped, threaded rod-shaped, columnar or the like. The shape of the cathode rod can be adjusted according to the shape of the anode of the dust-removing electric field.
- the cross-section of the cathode rod needs to be designed to be circular; if the dust-collecting surface of the anode of the dust-removing electric field is an arc surface , The cathode rod needs to be designed into a polyhedron shape.
- the cathode of the dust-removing electric field is disposed in the anode of the dust-removing electric field.
- the dust-removing electric field anode includes one or more hollow anode tubes arranged in parallel. When there are multiple hollow anode tubes, all the hollow anode tubes constitute a honeycomb-shaped dust-removing electric field anode.
- the hollow anode tube may have a circular or polygonal cross section. If the cross section of the hollow anode tube is circular, a uniform electric field can be formed between the anode of the dedusting electric field and the cathode of the dedusting electric field, and the inner wall of the hollow anode tube is not easy to accumulate dust.
- the cross section of the hollow anode tube is a triangular shape, three dust accumulation surfaces and three distant dust holding angles can be formed on the inner wall of the hollow anode tube.
- This structure of the hollow anode tube has the highest dust holding rate. If the cross section of the hollow anode tube is quadrangular, 4 dust-collecting surfaces and 4 dust-holding angles can be obtained, but the grouping structure is unstable. If the cross section of the hollow anode tube is hexagonal, 6 dust accumulation surfaces and 6 dust accumulation angles can be formed, and the dust accumulation surface and the dust accumulation rate are balanced. If the cross section of the hollow anode tube is more polygonal, more dust accumulation edges can be obtained, but the dust holding rate is lost.
- the diameter of the inscribed circle diameter of the hollow anode tube ranges from 5 mm to 400 mm.
- the present invention provides a method for reducing electric field coupling of exhaust gas dust removal, including the following steps:
- the exhaust gas ionizes the dedusting electric field generated by the exhaust gas through the anode of the exhaust gas dedusting electric field and the cathode of the exhaust gas dedusting electric field;
- the anode of the exhaust gas dedusting electric field or / and the cathode of the exhaust gas dedusting electric field is selected.
- the size of the anode of the exhaust gas dedusting electric field or / and the cathode of the exhaust gas dedusting electric field is selected such that the number of electric field couplings is ⁇ 3.
- the ratio of the dust collection area of the exhaust gas dedusting electric field anode to the discharge area of the exhaust gas dedusting electric field cathode is selected.
- the ratio of the dust accumulation area of the exhaust gas dedusting electric field anode to the discharge area of the exhaust gas dedusting electric field cathode is 1.667: 1-1680: 1.
- the ratio of the dust accumulation area of the tail gas dedusting electric field anode to the discharge area of the tail gas dedusting electric field cathode is selected to be 6.67: 1-56.67: 1.
- the relative distance between the anode of the exhaust gas dedusting electric field and the cathode of the exhaust gas dedusting electric field is adjusted according to temperature; wherein the temperature corresponding adjustment range is 20-72 mm corresponding to 120-200 degrees Celsius.
- the pole separation between the exhaust gas dedusting electric field anode and the exhaust gas dedusting electric field cathode is selected to be less than 150 mm.
- the pole spacing between the anode of the exhaust gas dedusting electric field and the cathode of the exhaust gas dedusting electric field is selected to be 2.5 to 139.9 mm. More preferably, the pole separation between the anode of the exhaust gas dedusting electric field and the cathode of the exhaust gas dedusting electric field is selected to be 5.0-100 mm.
- the length of the anode of the exhaust gas dedusting electric field is selected to be 10-180 mm. More preferably, the length of the anode of the exhaust gas dedusting electric field is selected to be 60-180 mm.
- the cathode length of the exhaust gas dedusting electric field is selected to be 30-180 mm. More preferably, the cathode length of the exhaust gas dedusting electric field is selected to be 54-176 mm.
- the exhaust gas dedusting electric field cathode includes a plurality of cathode wires.
- the diameter of the cathode wire can be 0.1mm-20mm, and the size parameter can be adjusted according to the application and dust accumulation requirements. In an embodiment of the invention, the diameter of the cathode wire is not greater than 3 mm.
- the cathode wire uses a metal wire or an alloy wire that is easy to discharge, is temperature resistant, can support its own weight, and is electrochemically stable.
- the material of the cathode wire is titanium. The specific shape of the cathode wire is adjusted according to the shape of the anode of the exhaust gas dedusting electric field.
- the cross section of the cathode wire is circular; if the dust collecting surface of the anode of the exhaust gas dedusting electric field is an arc surface
- the cathode wire needs to be designed into a polyhedron shape. The length of the cathode wire is adjusted according to the anode of the exhaust gas dedusting electric field.
- the exhaust gas dedusting electric field cathode includes a plurality of cathode rods.
- the diameter of the cathode rod is not greater than 3 mm.
- a metal rod or an alloy rod that is easy to discharge is used as the cathode rod.
- the shape of the cathode rod may be needle-shaped, polygonal, burr-shaped, threaded rod-shaped, columnar or the like. The shape of the cathode rod can be adjusted according to the shape of the anode of the exhaust gas dedusting electric field.
- the cross section of the cathode rod needs to be designed to be circular; if the dust collecting surface of the anode of the exhaust gas dedusting electric field is For the arc surface, the cathode rod needs to be designed as a polyhedron.
- the cathode of the exhaust gas dedusting electric field is disposed in the anode of the exhaust gas dedusting electric field.
- the exhaust gas dedusting electric field anode includes one or more hollow anode tubes arranged in parallel. When there are multiple hollow anode tubes, all the hollow anode tubes constitute a honeycomb-shaped dust-removing electric field anode.
- the hollow anode tube may have a circular or polygonal cross section. If the cross section of the hollow anode tube is circular, a uniform electric field can be formed between the anode of the exhaust gas dedusting electric field and the cathode of the exhaust gas dedusting electric field, and the inner wall of the hollow anode tube is not easy to accumulate dust.
- the cross section of the hollow anode tube is a triangular shape, three dust accumulation surfaces and three distant dust holding angles can be formed on the inner wall of the hollow anode tube.
- This structure of the hollow anode tube has the highest dust holding rate. If the cross section of the hollow anode tube is quadrangular, 4 dust-collecting surfaces and 4 dust-holding angles can be obtained, but the grouping structure is unstable. If the cross section of the hollow anode tube is hexagonal, 6 dust accumulation surfaces and 6 dust accumulation angles can be formed, and the dust accumulation surface and the dust accumulation rate are balanced. If the cross section of the hollow anode tube is more polygonal, more dust accumulation edges can be obtained, but the dust holding rate is lost.
- the diameter of the inscribed circle diameter of the hollow anode tube ranges from 5 mm to 400 mm.
- An exhaust gas dust removal method includes the following steps:
- the tail gas electret element is close to the outlet of the tail gas electric field device, or the tail gas electret element is provided at the outlet of the tail gas electric field device.
- the exhaust gas dedusting electric field anode and the exhaust gas dedusting electric field cathode form an exhaust gas flow channel, and the exhaust gas electret element is disposed in the exhaust gas flow channel.
- the exhaust gas channel includes an exhaust gas channel outlet, the exhaust gas electret element is close to the exhaust gas channel outlet, or the exhaust gas electret element is provided in the exhaust gas channel Export.
- the charged exhaust electret element when the exhaust gas ionization and dust removal electric field has no electrified driving voltage, the charged exhaust electret element is used to adsorb particulate matter in the exhaust gas.
- the charged exhaust gas electret element adsorbs certain particulate matter in the exhaust gas, it is replaced with a new exhaust gas electret element.
- the exhaust gas ionization and dust removal electric field is restarted after being replaced with a new exhaust gas electret element to adsorb particulate matter in the exhaust gas and charge the new exhaust gas electret element.
- the material of the exhaust electret element includes an inorganic compound having electret properties.
- the electret performance refers to that the tail gas electret element is charged after being charged by an external power source, and still retains a certain charge under the condition of completely disconnecting from the power source, thereby acting as an electrode as an electric field electrode.
- the inorganic compound is selected from one or more combinations of oxygen-containing compounds, nitrogen-containing compounds, or glass fibers.
- the oxygen-containing compound is selected from one or more combinations of metal-based oxides, oxygen-containing composites, and oxygen-containing inorganic heteropoly acid salts.
- the metal-based oxide is selected from one or more combinations of aluminum oxide, zinc oxide, zirconium oxide, titanium oxide, barium oxide, tantalum oxide, silicon oxide, lead oxide, and tin oxide .
- the metal-based oxide is alumina.
- the oxygen-containing composite is selected from one or more combinations of titanium-zirconium composite oxide or titanium-barium composite oxide.
- the oxygen-containing inorganic heteropoly acid salt is selected from one or more combinations of zirconium titanate, lead zirconate titanate, or barium titanate.
- the nitrogen-containing compound is silicon nitride.
- the material of the exhaust electret element includes an organic compound having electret properties.
- the electret performance refers to that the tail gas electret element is charged after being charged by an external power source, and still retains a certain charge under the condition of completely disconnecting from the power source, thereby acting as an electrode as an electric field electrode.
- the organic compound is selected from one or more combinations of fluoropolymer, polycarbonate, PP, PE, PVC, natural wax, resin, and rosin.
- the fluoropolymer is selected from polytetrafluoroethylene (PTFE), polyperfluoroethylene propylene (Teflon-FEP), soluble polytetrafluoroethylene (PFA), and polyvinylidene fluoride (PVDF) One or more combinations.
- PTFE polytetrafluoroethylene
- Teflon-FEP polyperfluoroethylene propylene
- PFA soluble polytetrafluoroethylene
- PVDF polyvinylidene fluoride
- the fluoropolymer is polytetrafluoroethylene.
- the engine exhaust gas treatment system includes an exhaust gas ozone purification system.
- the exhaust gas ozone purification system includes a reaction field for mixing and reacting the ozone stream and the exhaust gas stream.
- the exhaust gas ozone purification system can be used to treat the exhaust gas of the automobile engine 210, using the water in the exhaust gas and the exhaust gas pipeline 220 to generate an oxidation reaction to oxidize the organic volatile matter in the exhaust gas to carbon dioxide and water; sulfur, nitrate, etc. Harmful collection.
- the exhaust gas ozone purification system may further include an external ozone generator 230, which supplies ozone to the exhaust gas pipe 220 through the ozone delivery pipe 240, as shown in FIG. 1, where the arrow direction is the exhaust gas flow direction.
- the molar ratio of the ozone stream to the exhaust stream can be 2 to 10, such as 5 to 6, 5.5 to 6.5, 5 to 7, 4.5 to 7.5, 4 to 8, 3.5 to 8.5, 3 to 9, 2.5 to 9.5, 2 ⁇ 10.
- ozone produced by extended surface discharge is composed of tubular, plate-type discharge parts and AC high-voltage power supply.
- the air after electrostatic adsorption of dust, water and oxygen-rich air enters the discharge channel.
- the air oxygen is ionized to produce ozone, high-energy ions, and high-energy particles. Pass the positive or negative pressure into the reaction field, such as the exhaust gas channel.
- a cooling liquid is passed inside the discharge tube and outside the outer discharge tube, forming an electrode between the inner electrode of the tube and the outer tube conductor, 18kHz, 10kV high-voltage alternating current is passed between the electrodes, the inner wall of the outer tube and the inner tube High-energy ionization occurs on the outer wall surface, oxygen is ionized, and ozone is generated. Ozone is sent into the reaction field, such as the exhaust channel, using positive pressure.
- the VOCs removal rate is 50%; when the molar ratio of the ozone stream to the exhaust stream is 5, the VOCs removal rate is more than 95%, and then the nitrogen oxide gas concentration decreases, and nitrogen Oxygen compound removal rate is 90%; when the molar ratio of ozone stream to tail gas stream is greater than 10, the VOCs removal rate is more than 99%, then the nitrogen oxide gas concentration drops and the nitrogen oxide compound removal rate is 99%. Power consumption increased to 30w / g.
- the ozone produced by the ultraviolet lamp produces 11-195 nanometer wavelength ultraviolet rays by gas discharge, and directly irradiates the air around the lamp to produce ozone, high-energy ions, and high-energy particles, which pass into the reaction field such as the exhaust channel through positive pressure or negative pressure.
- the reaction field such as the exhaust channel through positive pressure or negative pressure.
- 172 nanometer wavelength and 185 nanometer wavelength ultraviolet discharge tubes by lighting the lamp, oxygen in the gas on the outer wall of the lamp tube is ionized, generating a large amount of oxygen ions, combined into ozone. It is fed into the reaction field such as the exhaust gas channel by positive pressure.
- the VOCs removal rate is 40%; when the molar ratio of 185 nanometer ultraviolet ozone stream to exhaust stream is 5, the VOCs removal rate is more than 85%, and then nitrogen Oxygen compound gas concentration drops, nitrogen oxides removal rate is 70%; when the molar ratio of 185 nanometer ultraviolet ozone stream to tail gas stream is greater than 10, the VOCs removal rate is more than 95%, then the nitrogen oxide compound gas concentration decreases and nitrogen oxides removal The rate is 95%. Power consumption is 25w / g.
- the VOCs removal rate is 45%; when the molar ratio of 172 nanometer ultraviolet ozone stream to tail gas stream is 5, the VOCs removal rate is over 89%, and then When the nitrogen oxide gas concentration decreases, the nitrogen oxide removal rate is 75%; when the molar ratio of the 172 nm ultraviolet ozone stream to the exhaust stream is greater than 10, the VOCs removal rate is more than 97%, and then the nitrogen oxide gas concentration decreases, nitrogen oxides The compound removal rate was 95%. Power consumption 22w / g.
- the reaction field includes pipes and / or reactors.
- the reaction field further includes at least one of the following technical features:
- the diameter of the pipeline is 100-200 mm;
- the length of the pipeline is greater than 0.1 times the diameter of the pipeline
- the reactor is selected from at least one of the following:
- Reactor 1 The reactor has a reaction chamber, and tail gas and ozone are mixed and reacted in the reaction chamber;
- the reactor includes a number of honeycomb-shaped cavities for providing a space where tail gas and ozone are mixed and reacted; a gap is provided between the honeycomb-shaped cavities for passing a cold medium to control the tail gas and Ozone reaction temperature;
- the reactor includes several carrier units.
- the carrier unit provides a reaction site (such as a mesoporous ceramic body carrier with a honeycomb structure). When there is no carrier unit, the reaction is in the gas phase, and when there is a carrier unit, it is an interface reaction. Speed up the response time;
- Reactor 4 The reactor includes a catalyst unit, and the catalyst unit is used to promote the oxidation reaction of the tail gas;
- the reaction field is provided with an ozone inlet, the ozone inlet is selected from at least one of a nozzle, a spray grid, a nozzle, a swirl nozzle, a nozzle provided with a venturi tube; a nozzle provided with a venturi tube:
- the venturi tube is set in the spout, and the ozone is mixed into the venturi principle;
- the reaction field is provided with an ozone inlet.
- the ozone enters the reaction field through the ozone inlet to contact the exhaust gas.
- the ozone inlet is formed in at least one of the following directions: the direction opposite to the flow of the exhaust gas and the The direction is perpendicular, tangent to the direction of the exhaust gas flow, insert the exhaust gas flow direction, and multiple directions are in contact with the exhaust gas; the opposite direction to the exhaust gas flow is to enter in the opposite direction, increase the reaction time, reduce the volume; the flow with the exhaust gas
- the direction is vertical and uses the Venturi effect; it is tangent to the direction of exhaust gas flow for easy mixing; insert the direction of exhaust gas flow to overcome vortex flow; multiple directions to overcome gravity.
- the reaction field includes an exhaust pipe, a regenerator device, or a catalyst, and ozone can clean and regenerate the regenerator, catalyst, and ceramic body.
- the temperature of the reaction field is -50 to 200 ° C, may be 60 to 70 ° C, 50 to 80 ° C, 40 to 90 ° C, 30 to 100 ° C, 20 to 110 ° C, 10 to 120 °C, 0 ⁇ 130 °C, -10 ⁇ 140 °C, -20 ⁇ 150 °C, -30 ⁇ 160 °C, -40 ⁇ 170 °C, -50 ⁇ 180 °C, -180 ⁇ 190 °C or 190 ⁇ 200 °C.
- the temperature of the reaction field is 60-70 ° C.
- the exhaust gas ozone purification system further includes an ozone source for providing an ozone stream.
- the ozone stream can be generated instantly by the ozone generator or stored ozone.
- the reaction field can be in fluid communication with an ozone source, and the ozone stream provided by the ozone source can be introduced into the reaction field, so that it can be mixed with the tail gas stream to subject the tail gas stream to oxidation treatment.
- the ozone source includes a storage ozone unit and / or an ozone generator.
- the ozone source may include an ozone introduction pipe, and may also include an ozone generator.
- the ozone generator may include, but is not limited to, an arc ozone generator, that is, a extended surface discharge ozone generator, a power frequency arc ozone generator, and a high frequency induction
- arc ozone generator that is, a extended surface discharge ozone generator, a power frequency arc ozone generator, and a high frequency induction
- ozone generators low-pressure ozone generators
- ultraviolet ozone generators ultraviolet ozone generators
- electrolyte ozone generators chemical agent ozone generators
- radiation irradiation particle generators etc.
- the ozone generator includes an extended surface discharge ozone generator, a power frequency arc ozone generator, a high-frequency induction ozone generator, a low-pressure ozone generator, an ultraviolet ozone generator, and an electrolyte ozone generator A combination of one or more of the device, chemical ozone generator and radiation irradiation particle generator.
- the ozone generator includes an electrode, and a catalyst layer is provided on the electrode, and the catalyst layer includes an oxidation catalytic bond cracking selective catalyst layer.
- the electrode includes a high-voltage electrode or a high-voltage electrode provided with a barrier medium layer.
- the oxidation catalytic bond cleavage selective catalyst layer 250 is provided on the high-voltage electrode On the surface of 260 (as shown in FIG. 2), when the electrode includes the high-voltage electrode 260 of the blocking medium layer 270, the oxidation catalytic bond cleavage selective catalyst layer 250 is provided on the surface of the blocking medium layer 270 (as shown in FIG. 3 Shown).
- Electrode refers to the electrode plate used to input or export current in a conductive medium (solid, gas, vacuum or electrolyte solution).
- a conductive medium solid, gas, vacuum or electrolyte solution.
- One pole of input current is called anode or anode, and one pole of current is called cathode or cathode.
- the discharge ozone generation mechanism is mainly a physical (electrical) method.
- a schematic diagram of the structure of an existing discharge-type ozone generator is shown in FIG. 4.
- the discharge-type ozone generator includes a high-voltage AC power supply 280, a high-voltage electrode 260, a barrier dielectric layer 270, an air gap 290, and a ground electrode 291. Under the action of a high-voltage electric field, the dioxygen bond of the oxygen molecules in the air gap 290 is broken by electrical energy, generating ozone.
- the use of electric field energy to generate ozone has its limits. Current industry standards require that the power consumption per kg of ozone does not exceed 8kWh, and the industry average level is about 7.5kWh.
- the barrier medium layer is selected from at least one of ceramic plates, ceramic tubes, quartz glass plates, quartz plates, and quartz tubes.
- the ceramic plates and ceramic tubes may be ceramic plates or ceramic tubes of oxides such as alumina, zirconia, silicon oxide, or their composite oxides.
- the thickness of the oxidation catalytic bond cracking selective catalyst layer is 1 to 3 mm, and the oxidation catalytic bond cracking selective catalyst layer also serves as a blocking medium, such as 1 to 1.5mm or 1.5 ⁇ 3mm; when the electrode includes a high-voltage electrode that blocks the dielectric layer, the loading of the selective catalyst layer for the oxidation catalytic bond cleavage includes 1-12 wt% of the barrier dielectric layer, such as 1-5 wt% or 5 ⁇ 12wt%.
- the oxidation catalytic bond cleavage selective catalyst layer includes the following weight percent components:
- Active components 5 to 15%, such as 5 to 8%, 8 to 10%, 10 to 12%, 12 to 14% or 14 to 15%;
- the coating is 85-95%, such as 85-86%, 86-88%, 88-90%, 90-92% or 92-95%;
- the active component is selected from at least one of a compound of metal M and metal element M
- the metal element M is selected from alkaline earth metal elements, transition metal elements, fourth main group metal elements, precious metal elements and lanthanide rare earth elements At least one of
- the coating is selected from at least one of alumina, cerium oxide, zirconia, manganese oxide, metal composite oxides, porous materials, and layered materials.
- the metal composite oxide includes aluminum, cerium, zirconium, and manganese A composite oxide of one or more metals.
- the alkaline earth metal element is selected from at least one of magnesium, strontium and calcium.
- the transition metal element is selected from at least one of titanium, manganese, zinc, copper, iron, nickel, cobalt, yttrium, and zirconium.
- the fourth main group metal element is tin.
- the precious metal element is at least one selected from platinum, rhodium, palladium, gold, silver and iridium.
- the lanthanide rare earth element is selected from at least one of lanthanum, cerium, praseodymium, and samarium.
- the compound of the metal element M is at least one selected from oxides, sulfides, sulfates, phosphates, carbonates, and perovskites.
- the porous material is selected from at least one of molecular sieve, diatomaceous earth, zeolite, and carbon nanotubes.
- the porosity of the porous material is more than 60%, such as 60-80%, the specific surface area is 300-500 square meters / gram, and the average pore size is 10-100 nanometers.
- the layered material is selected from at least one of graphene and graphite.
- the selective catalytic layer for oxidative catalytic bond cleavage combines chemical and physical methods to reduce, weaken or even directly break the dioxygen bond, fully exert and utilize the synergistic effect of electric field and catalysis, and achieve a significant increase in ozone generation rate and amount
- the purpose of the invention is to compare the ozone generator of the present invention with the existing discharge type ozone generator, under the same conditions, the ozone generation amount is increased by 10-30%, and the generation rate is increased by 10-20%.
- the exhaust gas ozone purification system further includes an ozone quantity control device for controlling the ozone quantity so as to effectively oxidize gas components to be treated in the exhaust gas, and the ozone quantity control device includes a control unit.
- the ozone amount control device further includes a tail gas component detection unit before ozone treatment, configured to detect the content of the tail gas component before ozone treatment.
- control unit controls the amount of ozone required for the mixed reaction according to the content of the exhaust gas component before the ozone treatment.
- the exhaust gas component detection unit before ozone treatment is selected from at least one of the following detection units:
- the first volatile organic compound detection unit is used to detect the content of volatile organic compounds in the exhaust gas before ozone treatment, such as volatile organic compound sensors;
- the first CO detection unit is used to detect the CO content in the exhaust gas before ozone treatment, such as CO sensor;
- the first nitrogen oxide detection unit is used to detect the nitrogen oxide content in the exhaust gas before ozone treatment, such as a nitrogen oxide (NO x ) sensor.
- a nitrogen oxide (NO x ) sensor such as a nitrogen oxide (NO x ) sensor.
- control unit controls the amount of ozone required for the mixed reaction according to at least one output value of the exhaust gas component detection unit before ozone treatment.
- control unit is used to control the amount of ozone required for the mixed reaction according to a preset mathematical model.
- the preset mathematical model is related to the content of the tail gas component before ozone treatment.
- the amount of ozone required for the mixed reaction is determined by the above content and the reaction molar ratio of the tail gas component to ozone, and ozone can be increased when determining the amount of ozone required for the mixed reaction The amount of ozone is excessive.
- control unit is used to control the amount of ozone required for the mixed reaction according to the theoretical estimated value.
- the theoretical estimated value is: the molar ratio of ozone flux to the to-be-processed material in the exhaust gas is 2-10.
- 13L diesel engine can control ozone flux from 300 to 500g
- 2L gasoline engine can control ozone flux from 5 to 20g.
- the ozone quantity control device includes an exhaust gas component detection unit after ozone treatment, configured to detect the content of the exhaust gas component after ozone treatment.
- control unit controls the amount of ozone required for the mixed reaction according to the content of the exhaust gas component after the ozone treatment.
- the exhaust gas component detection unit after ozone treatment is selected from at least one of the following detection units:
- the first ozone detection unit is used to detect the ozone content in the exhaust gas after ozone treatment
- the second volatile organic compound detection unit is used to detect the content of volatile organic compounds in the exhaust gas after ozone treatment
- the second CO detection unit is used to detect the CO content in the exhaust gas after ozone treatment
- the second nitrogen oxide detection unit is used to detect the nitrogen oxide content in the exhaust gas after ozone treatment.
- control unit controls the amount of ozone according to at least one output value of the exhaust gas component detection unit after ozone treatment.
- the exhaust gas ozone purification system further includes a denitration device for removing nitric acid from the mixed reaction product of the ozone stream and the exhaust gas stream.
- the denitration device includes an electrocoagulation device.
- the electrocoagulation device includes an electrocoagulation flow channel, a first electrode located in the electrocoagulation flow channel, and a second electrode.
- the denitration device includes a condensing unit for condensing the exhaust gas after ozone treatment to realize gas-liquid separation.
- the denitration device includes a rinsing unit for rinsing the exhaust gas after ozone treatment, for example, water and / or alkali for rinsing.
- the denitration device further includes an eluent unit for supplying the eluent to the eluent unit.
- the eluent in the eluent unit includes water and / or alkali.
- the denitration device further includes a denitration liquid collection unit for storing the nitric acid aqueous solution and / or the nitrate aqueous solution removed in the tail gas.
- the denitration liquid collection unit when a nitric acid aqueous solution is stored in the denitration liquid collection unit, the denitration liquid collection unit is provided with an alkaline liquid addition unit for forming nitrate with nitric acid.
- the exhaust gas ozone purification system further includes an ozone digester for digesting ozone in the exhaust gas treated by the reaction field.
- the ozone digester can perform ozone digestion by means of ultraviolet rays, catalysis and the like.
- the ozone digester is selected from at least one of an ultraviolet ozone digester and a catalytic ozone digester.
- the exhaust gas ozone purification system further includes a first denitration device for removing nitrogen oxides in the exhaust gas; the reaction field is used to treat the exhaust gas after processing by the first denitration device with Ozone stream mixed reaction, or used to mix tail gas with ozone stream before being processed by the first denitration device.
- the first denitration device may be a device for realizing denitration in the prior art, for example: a non-catalytic reduction device (such as ammonia denitration), a selective catalytic reduction device (SCR: ammonia gas plus catalyst denitration), and a non-selective catalytic reduction At least one of a device (SNCR) and an electron beam denitration device.
- a non-catalytic reduction device such as ammonia denitration
- SCR selective catalytic reduction device
- SNCR non-selective catalytic reduction
- the content of nitrogen oxides (NO x ) in the exhaust gas of the engine after treatment by the first denitration device does not reach the standard, and the mixed reaction of the exhaust gas and the ozone stream after or before the treatment of the first denitration device can reach the latest standard.
- NO x nitrogen oxides
- the first denitration device is selected from at least one of a non-catalytic reduction device, a selective catalytic reduction device, a non-selective catalytic reduction device, and an electron beam denitration device.
- ozone When ozone is used to treat engine exhaust, ozone is most preferred to react with volatile organic compounds VOC and be oxidized into CO 2 and water, and then with nitrogen oxide compounds NO X to be oxidized into high-valent nitrogen oxides such as NO 2 and N 2 O 5 and NO 3, etc., and finally react with carbon monoxide CO to be oxidized to CO 2 , that is, the reaction priority is VOC > nitrogen oxide NO X > carbon monoxide CO, and there are enough volatile organic compounds in the exhaust gas VOC produces enough water to fully react with high-valent nitrogen oxides to generate nitric acid. Therefore, the use of ozone to treat engine exhaust makes ozone to remove NO X better. This effect is unexpected for those skilled in the art. Technical effect.
- Engine exhaust ozone treatment can be removed to achieve the following effects: the nitrogen oxide NO X removal efficiency: 60 - 99.97%; the efficiency of removal of carbon monoxide CO: 1-50%; volatile organic compounds VOC removal efficiency: 60 to 99.97% It is an unexpected technical effect for those skilled in the art.
- the nitric acid obtained by reacting the high-valent nitrogen oxide with the water obtained by oxidizing the volatile organic compound VOC is easier to remove and the removed nitric acid can be recycled.
- Nitric acid is removed by methods for removing nitric acid in the prior art, such as alkali elution.
- the electrocoagulation device of the present invention includes a first electrode and a second electrode. When the nitric acid-containing water mist flows through the first electrode, the nitric acid-containing water mist will be charged, and the second electrode applies attraction to the charged nitric acid-containing water mist, and the nitric acid-containing water mist Move to the second electrode until the nitric acid-containing water mist adheres to the second electrode, and then collect again.
- the electrocoagulation device of the present invention has stronger collection capacity and higher collection efficiency for nitric acid-containing water mist.
- the ozone formed by ionization can be used to oxidize pollutants in the tail gas, such as nitrogen oxides NO X , volatile organic compounds VOC, carbon monoxide CO, that is, ozone formed by ionization can be used by ozone treatment NO X to treat pollutants, while oxidizing nitrogen oxides NO X will also oxidize volatile organic compounds VOC, carbon monoxide CO, saving the ozone consumption of ozone treatment NO X It also does not need to increase the ozone removal mechanism to digest the ozone formed by ionization.
- the tail gas ionization and dust removal device tail gas electric field system and tail gas ozone purification system are combined in function Support each other and have achieved new technical effects: the ozone formed by ionization is used by the exhaust gas ozone purification system to treat pollutants, saving ozone consumption of ozone treatment pollutants, and there is no need to increase the ozone removal mechanism for ionization. Ozone will be digested without causing greenhouse effect and destroying the atmosphere UV, it has prominent substantive features and notable progress.
- An exhaust gas ozone purification method includes the following steps: mixing and reacting an ozone stream with an exhaust stream.
- the exhaust stream includes nitrogen oxides and volatile organic compounds.
- the exhaust gas stream may be engine exhaust gas, and the engine is generally a device that converts chemical energy of fuel into mechanical energy, which may specifically be an internal combustion engine or the like, and more specifically may be diesel engine exhaust gas or the like.
- Nitrogen oxides (NO x ) in the exhaust stream are mixed and reacted with the ozone stream to be oxidized into high-valent nitrogen oxides such as NO 2 , N 2 O 5 and NO 3 .
- the volatile organic compounds (VOC) in the exhaust stream are mixed with the ozone stream to be oxidized into CO 2 and water.
- the high-valent nitrogen oxide reacts with water obtained by oxidation of volatile organic compounds (VOC) to obtain nitric acid.
- the nitrogen oxides (NO x ) in the exhaust gas stream are removed, and they are present in the exhaust gas in the form of nitric acid.
- the ozone stream and the exhaust stream are mixed and reacted.
- the mixing reaction temperature of the ozone stream and the exhaust stream is -50 to 200 ° C, which can be 60 to 70 ° C, 50 to 80 ° C, 40 to 90 ° C, 30 to 100 ° C, 20 to 110 °C, 10 ⁇ 120 °C, 0 ⁇ 130 °C, -10 ⁇ 140 °C, -20 ⁇ 150 °C, -30 ⁇ 160 °C, -40 ⁇ 170 °C, -50 ⁇ 180 °C, -180 ⁇ 190 °C or 190 ⁇ 200 °C.
- the mixing reaction temperature of the ozone stream and the exhaust stream is 60-70 ° C.
- the mixing method of the ozone stream and the exhaust stream is selected from at least one of Venturi mixing, positive pressure mixing, plug-in mixing, dynamic mixing, and fluid mixing.
- the pressure of the ozone inlet gas is greater than the pressure of the exhaust gas.
- the Venturi mixing method can be used at the same time.
- the velocity of the tail gas stream is increased, and the ozone stream is mixed using the Venturi principle.
- the mixing method of the ozone stream and the exhaust stream is selected from the reverse flow of the exhaust gas outlet, the mixing in the front section of the reaction field, the front and rear insertion of the dust collector, the mixing of the denitration device, the mixing of the catalyst device, and the mixing of the water washing device. .
- the reaction field in which the ozone stream and the tail gas stream are mixed and reacted includes pipes and / or reactors.
- the reaction field includes an exhaust pipe, a regenerator device, or a catalyst.
- the diameter of the pipeline is 100-200 mm;
- the length of the pipeline is greater than 0.1 times the diameter of the pipeline
- the reactor is selected from at least one of the following:
- Reactor 1 The reactor has a reaction chamber, and tail gas and ozone are mixed and reacted in the reaction chamber;
- the reactor includes a number of honeycomb-shaped cavities for providing a space where tail gas and ozone are mixed and reacted; a gap is provided between the honeycomb-shaped cavities for passing a cold medium to control the tail gas and Ozone reaction temperature;
- the reactor includes several carrier units.
- the carrier unit provides a reaction site (such as a mesoporous ceramic body carrier with a honeycomb structure). When there is no carrier unit, the reaction is in the gas phase, and when there is a carrier unit, it is an interface reaction. Speed up the response time;
- Reactor 4 The reactor includes a catalyst unit, and the catalyst unit is used to promote the oxidation reaction of the tail gas;
- the reaction field is provided with an ozone inlet, the ozone inlet is selected from at least one of a nozzle, a spray grid, a nozzle, a swirl nozzle, a nozzle provided with a venturi tube; a nozzle provided with a venturi tube:
- the venturi tube is set in the spout, and the ozone is mixed into the venturi principle;
- the reaction field is provided with an ozone inlet.
- the ozone enters the reaction field through the ozone inlet to contact the exhaust gas.
- the ozone inlet is formed in at least one of the following directions: the direction opposite to the flow of the exhaust gas and the The direction is perpendicular, tangent to the direction of the exhaust gas flow, insert the exhaust gas flow direction, and multiple directions are in contact with the exhaust gas; the opposite direction to the exhaust gas flow is to enter in the opposite direction, increase the reaction time, reduce the volume; the flow with the exhaust gas
- the direction is vertical and uses the Venturi effect; it is tangent to the direction of exhaust gas flow for easy mixing; insert the direction of exhaust gas flow to overcome vortex flow; multiple directions to overcome gravity.
- the ozone stream is provided by a storage ozone unit and / or an ozone generator.
- the ozone generator includes an extended surface discharge ozone generator, a power frequency arc ozone generator, a high-frequency induction ozone generator, a low-pressure ozone generator, an ultraviolet ozone generator, and an electrolyte ozone generator A combination of one or more of the device, chemical ozone generator and radiation irradiation particle generator.
- the ozone stream providing method: under the action of an electric field and an oxidation catalytic bond cracking selective catalyst layer, a gas containing oxygen generates ozone, wherein the electrode forming the electric field is loaded with an oxidation catalytic bond cracking selectivity Catalyst layer.
- the electrode includes a high-voltage electrode or an electrode provided with a barrier medium layer.
- the selective catalytic layer for oxidative catalytic bond cleavage is supported on the surface of the high-voltage electrode
- the selective catalytic layer for oxidative catalytic bond cleavage is supported on the surface of the blocking dielectric layer.
- the thickness of the oxidation catalytic bond cracking selective catalyst layer is 1 to 3 mm, and the oxidation catalytic bond cracking selective catalyst layer also serves as a blocking medium, such as 1 to 1.5mm or 1.5 ⁇ 3mm; when the electrode includes a high-voltage electrode that blocks the dielectric layer, the loading of the selective catalyst layer for the oxidation catalytic bond cleavage includes 1-12 wt% of the barrier dielectric layer, such as 1-5 wt% or 5 ⁇ 12wt%.
- the oxidation catalytic bond cleavage selective catalyst layer includes the following weight percent components:
- Active components 5 to 15%, such as 5 to 8%, 8 to 10%, 10 to 12%, 12 to 14% or 14 to 15%;
- the coating is 85-95%, such as 85-86%, 86-88%, 88-90%, 90-92% or 92-95%;
- the active component is selected from at least one of a compound of metal M and metal element M
- the metal element M is selected from alkaline earth metal elements, transition metal elements, fourth main group metal elements, precious metal elements and lanthanide rare earth elements At least one of
- the coating is selected from at least one of alumina, cerium oxide, zirconia, manganese oxide, metal composite oxides, porous materials, and layered materials.
- the metal composite oxide includes aluminum, cerium, zirconium, and manganese A composite oxide of one or more metals.
- the alkaline earth metal element is selected from at least one of magnesium, strontium and calcium.
- the transition metal element is selected from at least one of titanium, manganese, zinc, copper, iron, nickel, cobalt, yttrium, and zirconium.
- the fourth main group metal element is tin.
- the precious metal element is at least one selected from platinum, rhodium, palladium, gold, silver and iridium.
- the lanthanide rare earth element is selected from at least one of lanthanum, cerium, praseodymium, and samarium.
- the compound of the metal element M is at least one selected from oxides, sulfides, sulfates, phosphates, carbonates, and perovskites.
- the porous material is selected from at least one of molecular sieve, diatomaceous earth, zeolite, and carbon nanotubes.
- the porosity of the porous material is more than 60%, such as 60-80%, the specific surface area is 300-500 square meters / gram, and the average pore size is 10-100 nanometers.
- the layered material is selected from at least one of graphene and graphite.
- the electrode is loaded with an oxygen double catalytic bond cracking selective catalyst by dipping and / or spraying methods.
- the slurry of the coating material is loaded on the surface of the high-voltage electrode or the surface of the barrier medium layer, dried, and calcined to obtain the coated high-voltage electrode or the barrier medium layer;
- the raw material solution or slurry containing the metal element M is loaded onto the step 1) to obtain the coating, dried, and calcined.
- the barrier The medium layer is provided with a high-voltage electrode relative to the other side of the loaded coating, to obtain the electrode for the ozone generator; or, according to the catalyst composition ratio, the raw material solution or slurry containing the metal element M is loaded to step 1) to obtain a coating
- drying, calcining and post-processing when the coating layer is loaded on the surface of the barrier medium layer, after post-processing, a high-voltage electrode is provided on the other side of the barrier medium layer relative to the load coating layer to obtain the electrode for the ozone generator;
- the control of the morphology of the active component in the catalyst for electrodes is achieved through the calcination temperature and atmosphere, and post-treatment.
- the raw material solution or slurry containing the metal element M is loaded on the coating raw material, dried and calcined to obtain the coating material loaded with the active component;
- the coating material loaded with active components obtained in step 1) is made into a slurry, which is loaded on the surface of the high-voltage electrode or the surface of the barrier medium layer, dried, calcined, when the coating is loaded When it is on the surface of the barrier medium layer, after calcination, a high-voltage electrode is provided on the other side of the barrier medium layer relative to the supporting coating layer, that is, the electrode for the ozone generator; or, according to the catalyst composition ratio, obtained in step 1)
- the coating material loaded with the active component is made into a slurry, which is loaded on the surface of the high-voltage electrode or the surface of the barrier medium layer, dried, calcined and post-treated. When the coating layer is loaded on the surface of the barrier medium layer, the post-treatment Then, a high-voltage electrode is provided on the other side of the barrier medium layer relative to the load coating layer to obtain the electrode for the ozone generator;
- the control of the morphology of the active component in the catalyst for electrodes is achieved through the calcination temperature and atmosphere, and post-treatment.
- the above loading method may be dipping, spraying, painting, etc., and the loading can be realized.
- the active component includes at least one of sulfates, phosphates, and carbonates of the metal element M
- a solution or slurry loaded coating containing at least one of the sulfates, phosphates, and carbonates of the metal element M
- the calcination temperature cannot exceed the decomposition temperature of the active component, for example: to obtain the sulfate of the metal element M, the calcination temperature cannot exceed the decomposition temperature of the sulfate (the decomposition temperature is generally above 600 ° C).
- the control of the morphology of the active component in the catalyst for the electrode is achieved through the calcination temperature and atmosphere, and post-treatment, for example: when the active component includes metal M, it can be obtained by reducing gas after calcination (post-treatment) When the active component includes the sulfide of the metal element M, it can be obtained by reacting (post-treatment) with hydrogen sulfide after calcination, and the calcination temperature can be 200-550 ° C.
- it includes: controlling the amount of ozone in the ozone stream so as to effectively oxidize the gas components to be treated in the tail gas.
- controlling the amount of ozone in the ozone stream achieves the following removal efficiency:
- Nitrogen oxide removal efficiency 60-99.97%
- it includes: detecting the content of exhaust gas components before ozone treatment.
- the amount of ozone required for the mixed reaction is controlled according to the content of the exhaust gas component before the ozone treatment.
- the content of the exhaust gas component before the ozone treatment is selected from at least one of the following:
- the amount of ozone required for the mixed reaction is controlled according to at least one output value for detecting the content of the exhaust gas component before ozone treatment.
- the amount of ozone required for the mixed reaction is controlled according to a preset mathematical model.
- the preset mathematical model is related to the content of the tail gas component before ozone treatment.
- the amount of ozone required for the mixed reaction is determined by the above content and the reaction molar ratio of the tail gas component to ozone, and ozone can be increased when determining the amount of ozone required for the mixed reaction The amount of ozone is excessive.
- the amount of ozone required for the mixed reaction is controlled according to the theoretical estimate.
- the theoretical estimated value is: the molar ratio of ozone flux to the to-be-processed material in the exhaust gas is 2 to 10, such as 5 to 6, 5.5 to 6.5, 5 to 7, 4.5 to 7.5, 4-8, 3.5-8.5, 3-9, 2.5-9.5, 2-10.
- 13L diesel engine can control ozone flux from 300 to 500g
- 2L gasoline engine can control ozone flux from 5 to 20g.
- it includes: detecting the content of exhaust gas components after ozone treatment.
- the amount of ozone required for the mixed reaction is controlled according to the content of the exhaust gas component after the ozone treatment.
- the content of the exhaust gas component after ozone treatment is selected from at least one of the following:
- the amount of ozone is controlled according to at least one output value that detects the content of exhaust gas components after ozone treatment.
- the tail gas ozone purification method further includes the following steps: removing nitric acid from the mixed reaction product of the ozone stream and the tail gas stream.
- the gas with nitric acid mist flows through the first electrode; when the gas with nitric acid mist flows through the first electrode, the first electrode charges the nitric acid mist in the gas, and the second electrode charges The nitric acid mist exerts an attractive force to move the nitric acid mist toward the second electrode until the nitric acid mist adheres to the second electrode.
- a method for removing nitric acid from a mixed reaction product of an ozone stream and a tail gas stream condensing the mixed reaction product of the ozone stream and the tail gas stream.
- a method for removing nitric acid in a mixed reaction product of an ozone stream and a tail gas stream washing the mixed reaction product of the ozone stream and the tail gas stream.
- the method for removing nitric acid from the mixed reaction product of the ozone stream and the tail gas stream further includes: providing an eluent to the mixed reaction product of the ozone stream and the tail gas stream.
- the eluent is water and / or alkali.
- the method for removing nitric acid from the mixed reaction product of the ozone stream and the tail gas stream further includes: storing the removed nitric acid aqueous solution and / or nitrate aqueous solution in the tail gas.
- an alkaline solution is added to form nitrate with nitric acid.
- the exhaust gas ozone purification method further includes the following steps: performing ozone digestion on the nitric acid removal exhaust gas, for example, it can be digested by ultraviolet rays, catalysis, or the like.
- the ozone digestion is selected from at least one of ultraviolet digestion and catalytic digestion.
- the exhaust gas ozone purification method further includes the following steps: removing nitrogen oxides from the exhaust gas for the first time; mixing the exhaust gas stream with the ozone stream after the first nitrogen oxide removal, Alternatively, before the first removal of nitrogen oxides in the tail gas, it is mixed and reacted with the ozone stream.
- the first removal of nitrogen oxides in the tail gas can be a method for denitrification in the prior art, for example: non-catalytic reduction method (such as ammonia denitration), selective catalytic reduction method (SCR: ammonia plus catalyst denitration), non- At least one of a selective catalytic reduction method (SNCR) and an electron beam denitration method.
- non-catalytic reduction method such as ammonia denitration
- SCR selective catalytic reduction method
- SNCR non- At least one of a selective catalytic reduction method
- An electron beam denitration method an electron beam denitration method.
- the content of nitrogen oxides (NO x ) in the engine exhaust gas does not reach the standard after the first removal of nitrogen oxides in the exhaust gas, and can reach the latest standard after the first removal of the nitrogen oxides in the exhaust gas or after a mixed reaction with ozone .
- the first removal of nitrogen oxides in the exhaust gas is at least one selected from a non-catalytic reduction method, a selective catalytic reduction method, a non-selective catalytic reduction method, an electron beam denitration method, etc. .
- An embodiment of the present invention provides an electrocoagulation device, including: an electrocoagulation flow channel, a first electrode located in the electrocoagulation flow channel, and a second electrode.
- an electrocoagulation device including: an electrocoagulation flow channel, a first electrode located in the electrocoagulation flow channel, and a second electrode.
- the first electrode of the electrocoagulation device may be one of a solid, a liquid, a gas molecular group, a plasma, a conductive mixed state substance, a biological natural mixed conductive substance, or an object artificially processed to form a conductive substance Or a combination of multiple forms.
- the first electrode may use solid metal, such as 304 steel, or other solid conductor, such as graphite, etc .; when the first electrode is liquid, the first electrode may be an ion-containing conductive liquid.
- the shape of the first electrode may be dot-shaped, wire-shaped, mesh-shaped, orifice-shaped, plate-shaped, needle-rod-shaped, ball-cage-shaped, box-shaped, tubular, natural form substance, or processed form substance Wait.
- the first electrode may have a plate shape, a ball cage shape, a box shape or a tube shape
- the first electrode may have a non-porous structure or a porous structure.
- one or more front through holes may be provided on the first electrode.
- the shape of the front through hole may be a polygon, a circle, an ellipse, a square, a rectangle, a trapezoid, or a diamond.
- the aperture size of the front through hole may be 10-100 mm, 10-20 mm, 20-30 mm, 30-40 mm, 40-50 mm, 50-60 mm, 60-70 mm, 70-80 mm, 80-90 mm , Or 90 ⁇ 100mm.
- the first electrode may have other shapes.
- the shape of the second electrode of the electrocoagulation device may be a multi-layer mesh, mesh, orifice plate, tube, barrel, ball cage, box, plate, particle accumulation layer, Bend a plate or panel.
- the second electrode may also have a non-porous structure or a porous structure.
- the second electrode has a hole structure, one or more rear through holes may be provided on the second electrode.
- the shape of the rear through hole may be polygon, circle, ellipse, square, rectangle, trapezoid, or rhombus.
- the diameter of the rear through hole may be 10-100 mm, 10-20 mm, 20-30 mm, 30-40 mm, 40-50 mm, 50-60 mm, 60-70 mm, 70-80 mm, 80-90 mm, or 90-100 mm.
- the second electrode of the electrocoagulation device is made of a conductive substance.
- the surface of the second electrode has a conductive substance.
- the electrocoagulation electric field may be a point-surface electric field, a line-surface electric field, a mesh surface electric field, a point barrel electric field, a line barrel electric field , Or a combination of one or more electric fields in the electric field of the net bucket.
- the first electrode is needle-shaped or linear, the second electrode is planar, and the first electrode is perpendicular or parallel to the second electrode, thereby forming a linear electric field; or the first electrode is mesh-shaped, and the second electrode is planar
- the first electrode is parallel to the second electrode to form a mesh electric field; or the first electrode is dot-shaped and fixed by a wire or a metal needle, the second electrode is barrel-shaped, and the first electrode is located on the second electrode At the center of geometric symmetry, thereby forming a point barrel electric field; or the first electrode is linear and fixed by a wire or a metal needle, the second electrode is barrel-shaped, and the first electrode is located on the geometric symmetry axis of the second electrode, thereby A wire barrel electric field is formed; or the first electrode is mesh-shaped and fixed by a wire or a metal needle, the second electrode is barrel-shaped, and the first electrode is located at the geometrically symmetric center of the second electrode, thereby forming a mesh-barrel electric field.
- the second electrode When the second electrode is planar, specifically, it may be planar, curved, or spherical.
- the first electrode When the first electrode is linear, it may be linear, curvilinear, or circular.
- the first electrode may be arc-shaped.
- the first electrode When the first electrode is mesh-shaped, it may be flat, spherical or other geometric plane, rectangular, or irregular shape.
- the first electrode may also be in a dot shape, and may be a real point with a small diameter, a small ball, or a mesh ball.
- the second electrode When the second electrode has a barrel shape, the second electrode can further evolve into various box shapes.
- the first electrode can also be changed accordingly to form an electrode and electrocoagulation electric field layer.
- the first electrode of the electrocoagulation device is linear, and the second electrode is planar. In an embodiment of the invention, the first electrode is perpendicular to the second electrode. In an embodiment of the invention, the first electrode and the second electrode are parallel. In an embodiment of the present invention, both the first electrode and the second electrode are planar, and the first electrode and the second electrode are parallel. In an embodiment of the invention, the first electrode uses a wire mesh. In an embodiment of the invention, the first electrode is planar or spherical. In an embodiment of the invention, the second electrode is curved or spherical. In an embodiment of the present invention, the first electrode is dot-shaped, linear, or mesh-shaped, the second electrode is barrel-shaped, the first electrode is located inside the second electrode, and the first electrode is located on the central axis of symmetry of the second electrode on.
- the first electrode of the electrocoagulation device is electrically connected to one electrode of the power supply; the second electrode is electrically connected to the other electrode of the power supply.
- the first electrode is electrically connected to the cathode of the power supply, and the second electrode is electrically connected to the anode of the power supply.
- the first electrode of the electrocoagulation device may have a positive potential or a negative potential; when the first electrode has a positive potential, the second electrode has a negative potential; when the first electrode has a negative potential, the first The two electrodes have a positive potential, and both the first electrode and the second electrode are electrically connected to the power supply, specifically, the first electrode and the second electrode may be electrically connected to the positive and negative electrodes of the power supply, respectively.
- the voltage of this power supply is called the power-on driving voltage, and the choice of the power-on driving voltage depends on the ambient temperature, the medium temperature, and so on.
- the power-on driving voltage range of the power supply can be 5-50KV, 10-50KV, 5-10KV, 10-20KV, 20-30KV, 30-40KV, or 40-50KV, from bioelectricity to space haze treatment power .
- the power supply may be a DC power supply or an AC power supply, and the waveform of the power-up driving voltage may be a DC waveform, a sine wave, or a modulated waveform.
- DC power supply is used as the basic application of adsorption; sine wave is used as mobile.
- sine wave's electrified driving voltage acts between the first electrode and the second electrode. The generated coagulation electric field will drive the charged particles in the coagulation electric field.
- the droplets move toward the second electrode; the ramp wave is used as a pull, and the waveform needs to be modulated according to the pulling force.
- the edges of both ends of the asymmetric electrocoagulation electric field have obvious directionality to the pulling force generated by the medium in it.
- the medium in the driving electrocoagulation electric field moves in this direction.
- the frequency conversion pulse range can be 0.1Hz ⁇ 5GHz, 0.1Hz ⁇ 1Hz, 0.5Hz ⁇ 10Hz, 5Hz ⁇ 100Hz, 50Hz ⁇ 1KHz, 1KHz ⁇ 100KHz, 50KHz ⁇ 1MHz, 1MHz ⁇ 100MHz, 50MHz ⁇ 1GHz, 500MHz ⁇ 2GHz, or 1GHz ⁇ 5GHz, suitable for the adsorption of organisms to pollutant particles.
- the first electrode can be used as a wire, and when in contact with the nitric acid-containing water mist, positive and negative electrons are directly introduced into the nitric acid-containing water mist. At this time, the nitric acid-containing water mist itself can be used as an electrode.
- the first electrode can transfer electrons to the water mist or electrode containing nitric acid by means of energy fluctuations, so that the first electrode can not contact the water mist containing nitric acid.
- the transmission between the mists causes more mist droplets to be charged, and finally reaches the second electrode, thereby forming a current, which is also called a power-on driving current.
- the magnitude of the power-on drive current is related to the ambient temperature, medium temperature, electron quantity, adsorbed substance mass, and escape quantity.
- movable particles such as fog droplets
- the current formed by the moving charged particles For example, as the amount of electrons increases, movable particles, such as fog droplets, increase the current formed by the moving charged particles.
- the escaped droplets are only charged, but do not reach the second electrode, which means that no effective electrical neutralization is formed, so that under the same conditions, the more the droplets escape, the smaller the current.
- the two electrodes are attracted, resulting in escape, but because its escape occurs after electrical neutralization, and possibly after repeated electrical neutralization multiple times, the electron conduction speed is increased accordingly, and the current is increased accordingly.
- the power-on driving voltage needs to be increased.
- the limit of the power-on driving voltage is to achieve the effect of air breakdown.
- the influence of medium temperature is basically equivalent to the influence of ambient temperature. The lower the temperature of the medium, the smaller the energy required to excite the medium, such as mist droplets, and the smaller the kinetic energy it has.
- the electrocoagulation device Under the action of the same electrocoagulation electric field force, it is easier to be adsorbed on the second electrode, thereby forming Has a higher current.
- the electrocoagulation device has better adsorption effect on cold nitric acid-containing water mist. As the concentration of the medium, such as mist droplets, increases, the more likely the charged medium has electron transfer with other medium before colliding with the second electrode, the greater the chance of effective electrical neutralization, and the resulting current Correspondingly, it will be larger; so the higher the concentration of the medium, the greater the current formed.
- the relationship between power-on driving voltage and medium temperature is basically the same as the relationship between power-on driving voltage and ambient temperature.
- the power-up driving voltage of the power source connected to the first electrode and the second electrode may be less than the initial halo voltage.
- the initial halo voltage is the minimum voltage value that can cause a discharge between the first electrode and the second electrode and ionize the gas.
- the initial halo voltage may be different.
- the power-on driving voltage of the power supply may specifically be 0.1-2 kV / mm. The power-on driving voltage of the power supply is lower than the air corona starting voltage.
- both the first electrode and the second electrode extend in the left-right direction, and the left end of the first electrode is located to the left of the left end of the second electrode.
- the first electrode is located between the two second electrodes.
- the distance between the first electrode and the second electrode can be set according to the magnitude of the power-on driving voltage between them, the flow velocity of the water mist, and the charging ability of the water mist containing nitric acid.
- the distance between the first electrode and the second electrode may be 5-50 mm, 5-10 mm, 10-20 mm, 20-30 mm, 30-40 mm, or 40-50 mm.
- the power-on driving voltage is constant, as the distance increases, the strength of the electrocoagulation electric field continues to decrease, and the ability of the medium to charge in the electrocoagulation electric field becomes weaker.
- the first electrode and the second electrode constitute an adsorption unit.
- the distribution form of all adsorption units can be flexibly adjusted as needed; all adsorption units can be the same or different.
- all adsorption units can be distributed in one or more directions of the left-right direction, the front-rear direction, the oblique direction or the spiral direction to meet the requirements of different air volumes.
- All adsorption units can be distributed in a rectangular array or a pyramid.
- the above-mentioned first and second electrodes of various shapes can be freely combined to form an adsorption unit.
- the linear first electrode is inserted into the tubular second electrode to form an adsorption unit, and then combined with the linear first electrode to form a new adsorption unit.
- the two linear first electrodes can be electrically connected; the new The adsorption units are distributed in one or more directions of the left-right direction, the up-down direction, the oblique direction or the spiral direction.
- the linear first electrode is inserted into the tubular second electrode to form an adsorption unit, and the adsorption unit is distributed in one or more directions of the left-right direction, the up-down direction, the oblique direction, or the spiral direction to form a new adsorption unit
- the new adsorption unit is then combined with the first electrodes of various shapes described above to form a new adsorption unit.
- the distance between the first electrode and the second electrode in the adsorption unit can be arbitrarily adjusted to suit the requirements of different operating voltages and adsorption objects. Different adsorption units can be combined. Different adsorption units can use the same power supply or different power supplies.
- the power-on driving voltage of each power supply may be the same or different.
- the electrocoagulation device further includes an electrocoagulation housing.
- the electrocoagulation housing includes an electrocoagulation inlet, an electrocoagulation outlet, and an electrocoagulation flow channel.
- the condensate outlet is connected.
- the electrocoagulation inlet is circular, and the diameter of the electrocoagulation inlet is 300-1000 mm, or 500 mm.
- the electrocoagulation outlet is circular, and the diameter of the electrocoagulation outlet is 300-1000 mm, or 500 mm.
- the electrocoagulation housing includes a first housing portion, a second housing portion, and a third housing portion that are sequentially distributed from the electrocoagulation inlet to the electrocoagulation outlet.
- the electrocoagulation inlet is located in the first housing At one end of the body portion, the electrocoagulation outlet is located at one end of the third housing portion.
- the outline size of the first housing portion gradually increases from the electrocoagulation inlet to the electrocoagulation outlet.
- the first housing portion has a straight tubular shape.
- the second housing portion has a straight tube shape, and the first electrode and the second electrode are installed in the second housing portion.
- the outline size of the third housing portion gradually decreases from the electrocoagulation inlet to the electrocoagulation outlet.
- the cross sections of the first housing portion, the second housing portion, and the third housing portion are all rectangular.
- the material of the electrocoagulation shell is stainless steel, aluminum alloy, iron alloy, cloth, sponge, molecular sieve, activated carbon, foamed iron, or foamed silicon carbide.
- the first electrode is connected to the electrocoagulation housing through an electrocoagulation insulator.
- the material of the electrocoagulation insulating member is insulating mica.
- the electrocoagulation insulating member has a column shape or a tower shape.
- a cylindrical front connection portion is provided on the first electrode, and the front connection portion is fixedly connected to the electrocoagulation insulating member.
- the second electrode is provided with a cylindrical rear connection portion, and the rear connection portion is fixedly connected to the electrocoagulation insulating member.
- the first electrode is located in the electrocoagulation channel.
- the ratio of the cross-sectional area of the first electrode to the cross-sectional area of the electrocoagulation channel is 99% to 10%, or 90 to 10%, or 80 to 20%, or 70 to 30%, or 60 to 40%, or 50%.
- the cross-sectional area of the first electrode refers to the sum of the areas of the first electrode along the solid part of the cross-section.
- the nitric acid-containing water mist During the collection of nitric acid-containing water mist, the nitric acid-containing water mist enters the electrocoagulation shell from the electrocoagulation inlet and moves toward the electrocoagulation outlet; during the movement of the nitric acid-containing water mist toward the electrocoagulation outlet, the nitric acid-containing water mist The water mist will pass through the first electrode and be charged; the second electrode will attract the charged nitric acid-containing water mist to collect the nitric acid-containing water mist on the second electrode.
- the invention uses the electrocoagulation shell to guide the exhaust gas and the water mist containing nitric acid to flow through the first electrode, so as to charge the water mist of nitric acid with the first electrode, and collect the water mist of nitric acid with the second electrode, thereby effectively reducing the electrocoagulation Mist of nitric acid flowing out from the outlet.
- the material of the electrocoagulation shell may be metal, non-metal, conductor, non-conductor, water, various conductive liquids, various porous materials, or various foam materials.
- the material of the electrocoagulation shell is metal, the material may be stainless steel, aluminum alloy, or the like.
- the material of the electrocoagulation shell When the material of the electrocoagulation shell is non-metal, the material may specifically be cloth, sponge, or the like. When the material of the electrocoagulation casing is a conductor, the material may specifically be an iron alloy or the like. When the material of the electrocoagulation shell is a non-conductor, a water layer is formed on the surface and the water becomes an electrode, such as a sand layer after absorbing water. When the material of the electrocoagulation shell is water and various conductive liquids, the electrocoagulation shell is still or flowing. When the material of the electrocoagulation shell is various porous materials, the material may specifically be molecular sieve or activated carbon.
- the material of the electrocoagulation shell is various types of foam materials, the material may specifically be foam iron, foam silicon carbide, or the like.
- the first electrode is fixedly connected to the coagulation housing through an coagulation insulation member.
- the material of the coagulation insulation member may be insulating mica.
- the second electrode is directly electrically connected to the electrocoagulation housing. This connection mode allows the electrocoagulation housing to have the same potential as the second electrode, so that the electrocoagulation housing can also absorb charged
- the water mist of nitric acid and the electrocoagulation casing also constitute a second electrode.
- the electrocoagulation flow channel is provided in the electrocoagulation case, and the first electrode is installed in the electrocoagulation flow channel.
- the second electrode may extend in the up and down direction, so that when the condensation accumulated on the second electrode reaches a certain weight, it will flow downward along the second electrode under the influence of gravity and finally gather in the device In a fixed position or device, the nitric acid solution attached to the second electrode can be recovered.
- the electrocoagulation device can be used for refrigeration and defogging.
- the substance adhering to the second electrode may be collected by applying an electrocoagulation electric field.
- the material collection direction on the second electrode may be the same as the air flow, or may be different from the air flow direction.
- the current existing electrostatic field charging theory is to use corona discharge to ionize oxygen to generate a large amount of negative oxygen ions.
- the negative oxygen ions are in contact with the dust.
- the dust is charged, and the charged dust is adsorbed by the heteropolar.
- the existing electric field adsorption has little effect.
- the low specific resistance substance is easy to lose electricity after being charged, when the moving negative oxygen ions charge the low specific resistance substance, the low specific resistance substance will quickly lose power, and the negative oxygen ion only moves once, resulting in It is difficult to recharge low-resistance substances such as nitric acid-containing water mist after being de-energized, or this charging method greatly reduces the probability of low-specific resistance substances being charged, making the entire low-specific resistance substance in an uncharged state, so that it is difficult for different poles to The low specific resistance substance continues to apply the adsorption force, which ultimately results in the extremely low adsorption efficiency of the existing electric field on the low specific resistance substance such as nitric acid-containing water mist.
- the above-mentioned electrocoagulation device and electrocoagulation method do not use the charging method to charge the water mist, but directly transfer the electrons to the water mist containing nitric acid to make them charged. After a certain droplet is charged and loses power, the new electron will It is quickly transferred from the first electrode and through other droplets to the de-energized droplets, so that the droplets can be quickly recharged after being de-energized, greatly increasing the probability of the droplets being charged, such as repeated, so that the droplets are in the whole
- the second electrode can continue to apply attraction force to the mist droplets until the mist droplets are adsorbed, thereby ensuring that the electrocoagulation device has a higher collection efficiency for nitric acid-containing water mist.
- the method for charging mist droplets adopted by the present invention does not require the use of corona wires, corona poles, or corona plates, etc., which simplifies the overall structure of the electrocoagulation device and reduces the manufacturing cost of the electrocoagulation device.
- the present invention adopts the above-mentioned power-on method, so that a large amount of electrons on the first electrode will be transferred to the second electrode through the mist droplets, and a current is formed.
- the electrocoagulation device When the concentration of the water mist flowing through the electrocoagulation device is greater, the electrons on the first electrode are more easily transferred to the second electrode through the water mist containing nitric acid, and more electrons will be transferred between the droplets, making the first The current formed between the electrode and the second electrode is greater, and makes the mist droplets more likely to be charged, and makes the electrocoagulation device more efficient in collecting water mist.
- An embodiment of the present invention provides an electrocoagulation defogging method, which includes the following steps:
- the first electrode charges the water mist in the gas
- the second electrode applies an attractive force to the charged water mist, so that the water mist moves toward the second electrode until the water mist adheres to On the second electrode.
- the first electrode introduces electrons into the water mist, and the electrons are transferred between the mist droplets between the first electrode and the second electrode, so that more mist droplets are charged.
- electrons are conducted between the first electrode and the second electrode through water mist, and an electric current is formed.
- the first electrode charges the water mist by contact with the water mist.
- the first electrode charges the water mist by means of energy fluctuation.
- the water mist attached to the second electrode forms water droplets, and the water droplets on the second electrode flow into the collection tank.
- the water droplets on the second electrode flow into the collection tank under the action of gravity.
- the blowing water droplets flow into the collection tank.
- the gas with nitric acid mist flows through the first electrode; when the gas with nitric acid mist flows through the first electrode, the first electrode charges the nitric acid mist in the gas, and the second electrode gives the charged nitric acid The mist exerts an attractive force to move the nitric acid mist toward the second electrode until the nitric acid mist adheres to the second electrode.
- the first electrode introduces electrons into the nitric acid mist, and the electrons are transferred between the mist droplets between the first electrode and the second electrode, so that more mist droplets are charged.
- a nitric acid mist conducts electrons between the first electrode and the second electrode and forms a current.
- the first electrode charges the nitric acid mist by contact with the nitric acid mist.
- the first electrode charges the nitric acid mist by means of energy fluctuation.
- the nitric acid mist attached to the second electrode forms water droplets, and the water droplets on the second electrode flow into the collection tank.
- the water droplets on the second electrode flow into the collection tank under the action of gravity.
- the blowing water droplets flow into the collection tank.
- the exhaust gas dust removal system includes a water removal device 207 and an exhaust gas electric field device.
- the exhaust gas electric field device includes an exhaust gas dedusting electric field anode 10211 and an exhaust gas dedusting electric field cathode 10212.
- the exhaust gas dedusting electric field anode 10211 and the exhaust gas dedusting electric field cathode 10212 are used to generate an exhaust gas ionization dedusting electric field.
- the water removal device 207 is used to remove liquid water before the entrance of the tail gas electric field device. When the temperature of the tail gas is lower than 100 ° C, the water removal device 207 removes liquid water from the tail gas, and the water removal device 207 is electrocoagulation In the device, the direction of the arrow in the figure is the direction of exhaust gas flow.
- a tail gas dust removal method includes the following steps: when the tail gas temperature is lower than 100 ° C, the liquid water in the tail gas is removed, and then the ionization dust is removed, wherein the liquid water in the tail gas is removed by an electrocoagulation and demisting method, the tail gas is gasoline Exhaust gas during engine cold start, reduce water droplets or liquid water in exhaust gas, reduce uneven discharge of exhaust gas ionization and dedusting electric field and anode breakdown of exhaust gas dedusting electric field cathode and exhaust gas dedusting electric field, improve ionization and dust removal efficiency, ionization and dust removal efficiency is above 99.9%
- the ionization dust removal efficiency of the dust removal method that does not remove the liquid water in the exhaust gas is 70% or less.
- the liquid water in the exhaust gas is removed, and then ionized and dedusted, reducing the water droplets in the exhaust gas, that is, liquid water, reducing the uneven discharge of the exhaust gas ionization and dedusting electric field cathode and exhaust gas dedusting electric field cathode and exhaust gas dedusting electric field anode Breakdown, improve ionization dust removal efficiency.
- the exhaust gas dedusting system includes an oxygen supplement device 208 and an exhaust gas electric field device.
- the exhaust gas electric field device includes an exhaust gas dedusting electric field anode 10211 and an exhaust gas dedusting electric field cathode 10212, and the exhaust gas dedusting electric field anode 10211 and the exhaust gas dedusting electric field cathode 10212 are used to generate an exhaust gas ionization dedusting electric field.
- the oxygen supplementing device 208 is used to add a gas including oxygen before the tail gas ionization and dedusting electric field.
- the oxygen supplementing device 208 adds oxygen by passing outside air, and determines the oxygen supplementing amount according to the content of the exhaust gas particles.
- the direction of the arrow in the figure is the flow direction of the oxygen supplementing device including oxygen.
- a tail gas dust removal method includes the following steps: adding a gas including oxygen before the tail gas ionization and dust removal electric field, performing ionization dust removal, adding oxygen by passing outside air, and determining the amount of oxygen supplement according to the content of tail gas particles.
- the tail gas dedusting system of the present invention includes an oxygen supplement device, which can add oxygen by simply adding oxygen, passing in outside air, passing in compressed air and / or passing in ozone to increase the oxygen content of the tail gas entering the tail gas ionization and dust removal electric field, thereby
- an oxygen supplement device which can add oxygen by simply adding oxygen, passing in outside air, passing in compressed air and / or passing in ozone to increase the oxygen content of the tail gas entering the tail gas ionization and dust removal electric field, thereby
- the exhaust gas passes through the exhaust gas ionization and dedusting electric field between the cathode of the exhaust gas dedusting electric field cathode and the anode of the exhaust gas dedusting electric field, the ionized oxygen is increased, so that more dust in the exhaust gas is charged, which in turn will charge more under the action of the anode of the exhaust gas dedusting electric field
- the collection of electric dust makes the exhaust electric field device's dust removal efficiency higher, which is conducive to the collection of exhaust part
- the engine exhaust gas treatment system described in this embodiment further includes an exhaust gas treatment device, and the exhaust gas treatment device is used to treat exhaust gas to be discharged into the atmosphere.
- FIG. 7 is a schematic structural diagram of an exhaust gas treatment device in an embodiment.
- the exhaust gas treatment device 102 includes an exhaust gas electric field device 1021, an exhaust gas insulation mechanism 1022, an exhaust gas equalizing device, an exhaust gas filtering mechanism, and an exhaust gas ozone mechanism.
- the exhaust gas filtering mechanism in the present invention is optional, that is, the exhaust gas dust removal system provided by the present invention may or may not include the exhaust gas filtering mechanism.
- the exhaust gas electric field device 1021 includes an exhaust gas dedusting electric field anode 10211 and an exhaust gas dedusting electric field cathode 10212 provided in the exhaust gas dedusting electric field anode 10211.
- An asymmetric electrostatic field is formed between the exhaust gas dedusting electric field anode 10211 and the exhaust gas dedusting electric field cathode 10212.
- the cathode 10212 of the exhaust gas dedusting electric field discharges, ionizing the gas, so that the particulate matter obtains a negative charge
- the anode 10211 of the exhaust gas dedusting electric field moves and is deposited on the cathode 10212 of the exhaust gas dedusting electric field.
- the interior of the exhaust gas dedusting electric field cathode 10212 is composed of a honeycomb-shaped and hollow anode tube bundle group, and the shape of the anode tube bundle port is hexagonal.
- the exhaust gas dedusting electric field cathode 10212 includes a plurality of electrode rods, one for each anode tube bundle in the anode tube bundle group corresponding to each other, wherein the electrode rods are shaped like needles, polygons, burrs, Threaded rod or column.
- the inlet end of the exhaust gas dedusting electric field cathode 10212 is lower than the inlet end of the exhaust gas dedusting electric field anode 10211, and the outlet end of the exhaust gas dedusting electric field cathode 10212 and the exhaust gas dedusting electric field anode 10211 The outlet end of the gas is flush, so that an accelerated electric field is formed inside the exhaust gas electric field device 1021.
- the exhaust gas insulation mechanism 1022 overhanging the air passage includes an insulation portion and a heat insulation portion.
- the material of the insulating part is a ceramic material or a glass material.
- the insulation part is an umbrella-shaped string ceramic column, and the umbrella is glazed inside and outside. Please refer to FIG. 8, which shows a schematic structural diagram of an umbrella-shaped exhaust insulation mechanism in an embodiment.
- the exhaust gas dedusting electric field cathode 10212 is installed on an exhaust gas cathode support plate 10213, and the exhaust gas dedusting electric field anode 10211 and the exhaust gas dedusting electric field anode 10211 are connected by an exhaust gas insulation mechanism 1022.
- the exhaust gas dedusting electric field anode 10211 includes a third anode portion 102112 and a fourth anode portion 102111, that is, the third anode portion 102112 is near the inlet of the exhaust gas dust removal device, and the fourth anode portion 102111 is near the outlet of the exhaust gas dust removal device.
- the exhaust gas cathode support plate 10213 and the exhaust gas insulation mechanism 1022 are between the third anode portion 102112 and the fourth anode portion 102111, that is, the exhaust gas insulation mechanism 1022 is installed in the middle of the exhaust gas ionization electric field, or the exhaust gas dedusting electric field cathode 10212, and the exhaust gas dedusting electric field
- the cathode 10212 plays a good supporting role, and fixes the exhaust gas dedusting electric field cathode 10212 relative to the exhaust gas dedusting electric field anode 10211, so that the exhaust gas dedusting electric field cathode 10212 and the exhaust gas dedusting electric field anode 10211 maintain a set distance.
- the exhaust gas equalizing device 1023 is provided at the intake end of the exhaust gas electric field device 1021. Please refer to FIG. 9A, FIG. 9B and FIG. 9C, which are structural diagrams of three implementations of the exhaust air equalizing device.
- the exhaust gas equalizing device 1023 is located at the entrance of the exhaust gas dedusting system and the anode of the exhaust gas dedusting electric field 10211 and the cathode of the exhaust gas dedusting electric field Between the exhaust gas ionization and dedusting fields formed by 10212, it is composed of a number of equalizing blades 10231 rotating around the inlet center of the exhaust gas dedusting system.
- the exhaust air equalizing device 1023 can make the intake air amount of the engine changing at various rotation speeds evenly pass through the electric field generated by the anode of the exhaust gas dedusting electric field.
- the internal temperature of the anode of the exhaust gas dedusting electric field can be kept constant, and the oxygen is sufficient.
- the exhaust gas equalizing device includes:
- An air inlet pipe 10232 located on one side of the anode of the exhaust gas dedusting electric field
- An air outlet pipe 10233 provided on the other side of the anode of the dust removal electric field; wherein the side where the air inlet pipe 10232 is installed is opposite to the other side where the air outlet pipe 10233 is installed.
- the exhaust gas equalizing device may further include a second venturi plate air equalizing mechanism 10234 provided at the intake end of the exhaust gas dedusting electric field anode and a third air outlet at the exhaust end of the exhaust gas dedusting electric field anode Venturi plate air distribution mechanism 10235 (the third Venturi plate air distribution mechanism is folded in a plan view), the third Venturi plate air distribution mechanism is provided with an air inlet, and the third Venturi plate air distribution mechanism The upper opening is provided with an air outlet hole, and the air inlet hole and the air outlet hole are arranged in a staggered arrangement, and the front air inlet side air is discharged to form a cyclone structure.
- a second venturi plate air equalizing mechanism 10234 provided at the intake end of the exhaust gas dedusting electric field anode and a third air outlet at the exhaust end of the exhaust gas dedusting electric field anode Venturi plate air distribution mechanism 10235 (the third Venturi plate air distribution mechanism is folded in a plan view), the third Venturi plate air distribution mechanism is provided with
- the exhaust water filtering mechanism provided in the exhaust gas electric field device 1021 includes a conductive mesh plate as a first electrode, and the conductive mesh plate is used to conduct electrons to water (low specific resistance substance) after power-on.
- the second electrode for adsorbing charged water is the anode 10211 of the exhaust gas dedusting electric field device of the exhaust gas electric field device.
- the first electrode of the exhaust water filtering mechanism is disposed at the air inlet, and the first electrode is a conductive mesh plate with a negative potential.
- the second electrode of this embodiment is provided in the air intake device in a net shape, and the second electrode has a positive electric potential.
- the second electrode is also called a collector.
- the second electrode is specifically planar and the first electrode is parallel to the second electrode.
- a mesh electric field is formed between the first electrode and the second electrode.
- the first electrode is a mesh structure made of wire, and the first electrode is composed of a wire mesh. In this embodiment, the area of the second electrode is larger than the area of the first electrode.
- An exhaust gas ozone purification system as shown in Figure 10, includes:
- the ozone source 201 is used to provide an ozone stream, which is generated instantly by an ozone generator.
- the reaction field 202 is used to mix and react the ozone stream and the exhaust stream.
- a denitration device 203 is used to remove nitric acid from the mixed reaction product of the ozone stream and the exhaust stream; the denitration device 203 includes an electrocoagulation device 2031 for electrocoagulating the engine exhaust gas after ozone treatment, and water containing nitric acid The mist accumulates on the second electrode in the electrocoagulation device.
- the denitration device 203 further includes a denitration liquid collection unit 2032 for storing the nitric acid aqueous solution and / or nitrate aqueous solution removed in the exhaust gas; when the denitration liquid collection unit stores a nitric acid aqueous solution, the denitration liquid collection unit There is a lye addition unit for forming nitrate with nitric acid.
- the ozone digester 204 is used for digesting ozone in the exhaust gas treated by the reaction field.
- the ozone digester can perform ozone digestion by means of ultraviolet rays and catalysis.
- the reaction field 202 is the second reactor. As shown in FIG. 11, a plurality of honeycomb-shaped cavities 2021 are provided for providing a space where tail gas and ozone are mixed and reacted; a gap 2022 is provided between the honeycomb-shaped cavities , Used to pass cold medium, to control the reaction temperature of exhaust gas and ozone.
- the right arrow in the figure is the refrigerant inlet, and the left arrow is the refrigerant outlet.
- the electrocoagulation device includes:
- the first electrode 301 can conduct electrons to nitric acid-containing water mist (low specific resistance substance); when electrons are conducted to nitric acid-containing water mist, the nitric acid-containing water mist is charged;
- the second electrode 302 can apply attractive force to the charged mist containing nitric acid.
- the electrocoagulation device in this embodiment further includes a housing 303 having an inlet 3031 and an outlet 3032, and both the first electrode 301 and the second electrode 302 are installed in the housing 303.
- the first electrode 301 is fixed to the inner wall of the housing 303 through the insulating member 304, and the second electrode 302 is directly fixed to the housing 303.
- the insulating member 304 has a column shape, which is also called an insulating column.
- the first electrode 301 has a negative potential
- the second electrode 302 has a positive potential.
- the casing 303 and the second electrode 302 have the same electric potential, and the casing 303 also has an adsorption effect on the charged substance.
- the electrocoagulation device is used to treat industrial tail gas containing acid mist.
- the inlet 3031 is connected to the port for discharging industrial exhaust gas.
- the working principle of the electrocoagulation device in this embodiment is as follows: the industrial exhaust gas flows into the housing 303 from the inlet 3031 and flows out through the outlet 3032; in this process, the industrial exhaust gas will first flow through one of the first electrodes 301, when the industrial exhaust gas When the acid mist is in contact with the first electrode 301, or when the distance from the first electrode 301 reaches a certain value, the first electrode 301 transfers electrons to the acid mist, part of the acid mist is charged, and the second electrode 302 gives the charged acid mist When an attractive force is applied, the acid mist moves toward the second electrode 302 and attaches to the second electrode 302; another part of the acid mist is not adsorbed on the second electrode 302, and this part of the acid mist continues to flow toward the outlet 3032.
- both the inlet 3031 and the outlet 3032 are circular, the inlet 3031 may also be referred to as an air inlet, and the outlet 3032 may also be referred to as an air inlet.
- the exhaust gas ozone purification system in Example 4 further includes an ozone amount control device 209 for controlling the amount of ozone so as to effectively oxidize the gas component to be treated in the exhaust gas.
- the ozone amount control device 209 includes a control unit 2091 .
- the ozone amount control device 209 further includes a tail gas component detection unit 2092 before ozone treatment, configured to detect the content of the tail gas component before ozone treatment.
- the control unit controls the amount of ozone required for the mixed reaction according to the content of the exhaust gas component before the ozone treatment.
- the exhaust gas component detection unit 2092 before ozone treatment is selected from at least one of the following detection units:
- the first volatile organic compound detection unit 20921 is used to detect the content of volatile organic compounds in the exhaust gas before ozone treatment, such as a volatile organic compound sensor;
- the first CO detection unit 20922 is used to detect the CO content in the exhaust gas before ozone treatment, such as a CO sensor;
- the first nitrogen oxide detection unit 20923 is used to detect the nitrogen oxide content in the exhaust gas before ozone treatment, such as a nitrogen oxide (NO x ) sensor.
- a nitrogen oxide (NO x ) sensor such as a nitrogen oxide (NO x ) sensor.
- the control unit 2091 controls the amount of ozone required for the mixed reaction according to at least one output value of the exhaust gas component detection unit 2092 before ozone treatment.
- the control unit is used to control the amount of ozone required for the mixed reaction according to the theoretical estimated value.
- the theoretical estimated value is: the molar ratio of ozone flux to the to-be-processed material in the exhaust gas is 2-10.
- the ozone amount control device 209 includes an exhaust gas component detection unit 2093 after ozone treatment, which is used to detect the content of the exhaust gas component after ozone treatment.
- the control unit 2091 controls the amount of ozone required for the mixed reaction according to the content of the exhaust gas component after the ozone treatment.
- the exhaust gas component detection unit 2093 after ozone treatment is selected from at least one of the following detection units:
- the first ozone detection unit 20931 is used to detect the ozone content in the exhaust gas after ozone treatment
- the second volatile organic compound detection unit 20932 is used to detect the content of volatile organic compounds in the exhaust gas after ozone treatment
- the second CO detection unit 20933 is used to detect the CO content in the exhaust gas after ozone treatment
- the second nitrogen oxide detection unit 20934 is used to detect the nitrogen oxide content in the exhaust gas after ozone treatment.
- the control unit 2091 controls the amount of ozone according to at least one output value of the ozone-treated exhaust gas component detection unit 2093.
- the catalyst (including the coating layer and the active component) is coated on one side of the barrier medium layer. After the catalyst is coated, the catalyst is 12% of the mass of the barrier medium layer.
- the catalyst includes the following components in weight percentages: The active component is 12wt%, and the coating is 88wt%, wherein the active component is cerium oxide and zirconia (the amount of substances in sequence is 1: 1.3), and the coating is gama alumina;
- a copper foil is attached to the other side of the catalyst-coated barrier medium layer to form an electrode.
- the catalyst coating method is as follows:
- XF-B-3-100 type original ozone generation amount is 120g / hour; after electrode replacement, under the same test conditions, ozone generation amount is 160g / hour. Under the experimental conditions, the power loss is 830W.
- the catalyst (including the coating layer and the active component) is coated on one side of the barrier medium layer. After the catalyst is coated, the catalyst is 5% of the mass of the barrier medium layer.
- the catalyst includes the following components in weight percentages: The active component accounts for 15wt% of the total weight of the catalyst, and the coating is 85%, wherein the active components are MnO and CuO, and the coating is gama alumina;
- a copper foil is attached to the other side of the catalyst-coated barrier medium layer to form an electrode.
- the catalyst coating method is as follows:
- XF-B-3-100 type original ozone generation amount is 120g / hour; after electrode replacement, under the same test conditions, ozone generation amount is 168g / hour. Under the experimental conditions, the power loss is 830W.
- a quartz glass plate with a length of 300mm, a width of 30mm, and a thickness of 1.5mm is used as the barrier medium layer;
- the catalyst (including the coating layer and the active component) is coated on one side of the barrier medium layer. After the catalyst is coated, the catalyst is 1% of the mass of the barrier medium layer.
- the catalyst includes the following components in weight percentages: The active component is 5 wt%, and the coating is 95 wt%, wherein the active components are silver, rhodium, platinum, cobalt and lanthanum (the amount of substances in turn is 1: 1: 1: 1: 1.5), the The coating is zirconia;
- a copper foil is attached to the other side of the catalyst-coated barrier medium layer to form an electrode.
- the catalyst coating method is as follows:
- XF-B-3-100 type original ozone generation amount is 120g / hour; after electrode replacement, under the same test conditions, ozone generation amount is 140g / hour. Under the experimental conditions, the power loss is 830W.
- the catalyst (including the coating and the active component) is coated on one side of the copper foil (electrode). After the catalyst is coated, the thickness of the catalyst is 1.5 mm, and the catalyst includes the following components in weight percent: active component 8wt%, the coating is 92wt%, wherein the active components are zinc sulfate, calcium sulfate, titanium sulfate and magnesium sulfate (the amount of substances in order is 1: 2: 1: 1), the coating is Graphene.
- the catalyst coating method is as follows:
- XF-B-3-100 type original ozone generation amount is 120g / hour; after electrode replacement, under the same test conditions, ozone generation amount is 165g / hour. Under the experimental conditions, the power loss is 830W.
- the catalyst (including the coating layer and the active component) is coated on one side of the copper foil (electrode). After the catalyst is coated, the thickness of the catalyst is 3 mm.
- the catalyst includes the following components in weight percentage: the active component is 10wt%, the coating is 90wt%, wherein the active components are praseodymium oxide, samarium oxide, and yttrium oxide (the amount of substances in sequence is 1: 1: 1), and the coating is cerium oxide and manganese oxide ( The quantity ratio of the substances in turn is 1: 1).
- the catalyst coating method is as follows:
- XF-B-3-100 type original ozone generation amount is 120g / hour; after electrode replacement, under the same test conditions, ozone generation amount is 155g / hour. Under the experimental conditions, the power loss is 830W.
- the catalyst (including the coating layer and the active component) is coated on one side of the copper foil (electrode). After the catalyst is coated, the thickness of the catalyst is 1 mm.
- the catalyst includes the following components in weight percentage: the active component is 14wt%, the coating is 86wt%, wherein the active components are strontium sulfide, nickel sulfide, tin sulfide and iron sulfide (the amount of substances in sequence is 2: 1: 1: 1: 1), the coating is silicon Algae soil, the porosity is 80%, the specific surface area is 350 square meters / gram, and the average pore diameter is 30 nanometers.
- the catalyst coating method is as follows:
- XF-B-3-100 type original ozone generation amount is 120g / hour; after electrode replacement, under the same test conditions, ozone generation amount is 155g / hour. Under the experimental conditions, the power loss is 830W.
- the electric field generating unit can be applied to the intake electric field device or the exhaust gas electric field device. As shown in FIG. 13, it includes a dust removal electric field anode 4051 and a dust removal electric field cathode 4052 for generating an electric field. 4051 and the dedusting electric field cathode 4052 are electrically connected to the two electrodes of the power source respectively.
- the power source is a DC power source.
- the dedusting electric field anode 4051 and the dedusting electric field cathode 4052 are electrically connected to the anode and cathode of the DC power source, respectively.
- the anode 4051 of the dust removal electric field has a positive potential
- the cathode 4052 of the dust removal electric field has a negative potential.
- the DC power supply may specifically be a DC high-voltage power supply.
- a discharge electric field is formed between the above-mentioned dedusting electric field anode 4051 and the dedusting electric field cathode 4052, and the discharge electric field is an electrostatic field.
- the anode 4051 of the dust removal electric field in this embodiment is a hollow regular hexagonal tube
- the cathode 4052 of the dust removal electric field is rod-shaped
- the cathode 4052 of the dust removal electric field passes through the anode 4051 of the dust removal electric field.
- the method of reducing electric field coupling includes the following steps: the ratio of the dust collecting area of the dust collecting anode 4051 to the discharge area of the dust removing electric field cathode 4052 is 6.67: 1, and the pole spacing between the dust removing electric field anode 4051 and the dust removing electric field cathode 4052 is 9.9mm, The length of the dust-removing electric field anode 4051 is 60 mm, and the length of the dust-removing electric field cathode 4052 is 54 mm.
- the dust-removing electric field anode 4051 includes a fluid channel.
- the fluid channel includes an inlet end and an outlet end.
- the dust-removing electric field cathode 4052 is placed in the fluid channel
- the dedusting electric field cathode 4052 extends in the direction of the dust collector fluid channel, the inlet end of the dedusting electric field anode 4051 is flush with the near inlet end of the dedusting electric field cathode 4052, and the outlet end of the dedusting electric field anode 4051 is close to the dedusting electric field cathode 4052
- There is an angle ⁇ between the outlet ends, and ⁇ 118 °, and under the action of the dust-removing electric field anode 4051 and the dust-removing electric field cathode 4052, more substances to be treated can be collected, and the number of electric field couplings ⁇ 3 can be reduced Electric field coupling consumption of aerosol, water mist, oil mist, loose smooth particles can save electric energy of electric field by 30-50%.
- the intake electric field device or the exhaust electric field device includes an electric field stage composed of a plurality of the above electric field generating units, and there are a plurality of the electric field stages to effectively improve the dust collection efficiency of the electric field device by using a plurality of dust collection units.
- the anode of each dust removal electric field is the same polarity
- the cathode of each dust removal electric field is the same polarity.
- the electric field stages of the multiple electric field stages are connected in series, and the series electric field stages are connected by a connecting shell.
- the distance between the adjacent two electric field stages is greater than 1.4 times the pole spacing.
- the electric field levels are two levels, that is, a first level electric field and a second level electric field.
- the first level electric field and the second level electric field are connected in series through a connection housing.
- the substance to be treated may be particulate dust or other impurities to be treated, such as aerosol, water mist, oil mist, etc.
- the above gas may be the gas to be entered into the engine, or the gas discharged from the engine.
- the electric field generating unit can be applied to the intake electric field device or the exhaust gas electric field device. As shown in FIG. 13, it includes a dust removal electric field anode 4051 and a dust removal electric field cathode 4052 for generating an electric field. 4051 and the dedusting electric field cathode 4052 are electrically connected to the two electrodes of the power source respectively.
- the power source is a DC power source.
- the dedusting electric field anode 4051 and the dedusting electric field cathode 4052 are electrically connected to the anode and cathode of the DC power source, respectively.
- the anode 4051 of the dust removal electric field has a positive potential
- the cathode 4052 of the dust removal electric field has a negative potential.
- the DC power supply may specifically be a DC high-voltage power supply.
- a discharge electric field is formed between the above-mentioned dedusting electric field anode 4051 and the dedusting electric field cathode 4052, and the discharge electric field is an electrostatic field.
- the anode 4051 of the dust removal electric field has a hollow regular hexagonal tube shape
- the cathode 4052 of the dust removal electric field has a rod shape
- the cathode 4052 of the dust removal electric field passes through the anode 4051 of the dust removal electric field.
- the method for reducing electric field coupling includes the following steps: the ratio of the dust collecting area of the dust collecting field anode 4051 to the discharge area of the dust removing electric field cathode 4052 is 1680: 1, and the pole spacing between the dust removing electric field anode 4051 and the dust removing electric field cathode 4052 is 139.9mm, The length of the dust-removing electric field anode 4051 is 180 mm, and the length of the dust-removing electric field cathode 4052 is 180 mm.
- the dust-removing electric field anode 4051 includes a fluid channel.
- the fluid channel includes an inlet end and an outlet end.
- the dust-removing electric field cathode 4052 is placed in the fluid channel
- the dedusting electric field cathode 4052 extends in the direction of the dust collector fluid channel, the inlet end of the dedusting electric field anode 4051 is flush with the near inlet end of the dedusting electric field cathode 4052, and the outlet end of the dedusting electric field anode 4051 is close to the dedusting electric field cathode 4052
- the outlet end is flush, and under the action of the dedusting electric field anode 4051 and the dedusting electric field cathode 4052, more materials to be treated can be collected, and the number of electric field couplings is ⁇ 3, which can reduce the electric field to aerosol, water mist, oil mist 3. Coupling consumption of loose and smooth particles saves 20-40% of electric energy in the electric field.
- the substance to be treated may be particulate dust or other impurities to be treated, such as aerosol, water mist, oil mist, etc.
- the above gas may be the gas to be entered into the engine, or the gas discharged from the engine.
- the electric field generating unit can be applied to the intake electric field device or the exhaust gas electric field device. As shown in FIG. 13, it includes a dust removal electric field anode 4051 and a dust removal electric field cathode 4052 for generating an electric field. 4051 and the dedusting electric field cathode 4052 are electrically connected to the two electrodes of the power source respectively.
- the power source is a DC power source.
- the dedusting electric field anode 4051 and the dedusting electric field cathode 4052 are electrically connected to the anode and cathode of the DC power source, respectively.
- the anode 4051 of the dust removal electric field has a positive potential
- the cathode 4052 of the dust removal electric field has a negative potential.
- the DC power supply may specifically be a DC high-voltage power supply.
- a discharge electric field is formed between the above-mentioned dedusting electric field anode 4051 and the dedusting electric field cathode 4052, and the discharge electric field is an electrostatic field.
- the anode 4051 of the dust removal electric field has a hollow regular hexagonal tube shape
- the cathode 4052 of the dust removal electric field has a rod shape
- the cathode 4052 of the dust removal electric field passes through the anode 4051 of the dust removal electric field.
- the method of reducing electric field coupling includes the following steps: the ratio of the dust collecting area of the dust collecting field anode 4051 to the discharge area of the dust removing electric field cathode 4052 is 1.667: 1, the pole spacing between the dust removing electric field anode 4051 and the dust removing electric field cathode 4052 is 2.4 mm,
- the dust removal field anode 4051 has a length of 30 mm and the dust removal field cathode 4052 has a length of 30 mm.
- the dust removal field anode 4051 includes a fluid channel including an inlet end and an outlet end.
- the dust removal field cathode 4052 is placed in the fluid channel
- the dedusting electric field cathode 4052 extends in the direction of the dust collector fluid channel, the inlet end of the dedusting electric field anode 4051 is flush with the near inlet end of the dedusting electric field cathode 4052, and the outlet end of the dedusting electric field anode 4051 is close to the dedusting electric field cathode 4052
- the outlet end is flush, and under the action of the dedusting electric field anode 4051 and the dedusting electric field cathode 4052, more materials to be treated can be collected, and the number of electric field couplings is ⁇ 3, which can reduce the electric field to aerosol, water mist, oil mist 1. Coupling consumption of loose and smooth particles, saving electric field electric energy by 10-30%.
- the substance to be treated may be particulate dust or other impurities to be treated, such as aerosol, water mist, oil mist, etc.
- the above gas may be the gas to be entered into the engine, or the gas discharged from the engine.
- the electric field generating unit can be applied to the intake electric field device or the exhaust gas electric field device. As shown in FIG. 13, it includes a dust removal electric field anode 4051 and a dust removal electric field cathode 4052 for generating an electric field. 4051 and the dedusting electric field cathode 4052 are electrically connected to the two electrodes of the power source respectively.
- the power source is a DC power source.
- the dedusting electric field anode 4051 and the dedusting electric field cathode 4052 are electrically connected to the anode and cathode of the DC power source, respectively.
- the anode 4051 of the dust removal electric field has a positive potential
- the cathode 4052 of the dust removal electric field has a negative potential.
- the DC power supply may specifically be a DC high-voltage power supply.
- a discharge electric field is formed between the above-mentioned dedusting electric field anode 4051 and the dedusting electric field cathode 4052, and the discharge electric field is an electrostatic field.
- the anode 4051 of the dust removal electric field in this embodiment is a hollow regular hexagonal tube
- the cathode 4052 of the dust removal electric field is rod-shaped
- the cathode 4052 of the dust removal electric field is installed in the anode 4051 of the dust removal electric field.
- the ratio of the dust collecting area of the anode 4051 to the discharge area of the cathode 4052 of the dedusting electric field is 6.67: 1, the pole spacing between the anode 4051 of the dedusting electric field and the cathode 4052 of the dedusting electric field is 9.9 mm, the length of the anode 4051 of the dedusting electric field is 60 mm, and the cathode of the dedusting electric field The length of 4052 is 54mm.
- the anode 4051 of the dedusting electric field includes a fluid channel.
- the fluid channel includes an inlet end and an outlet end.
- the cathode 4052 of the dedusting electric field is placed in the fluid channel.
- the cathode 4052 of the dedusting electric field is along the dust collector.
- the direction of the fluid channel extends.
- the inlet end of the anode 4051 of the dust removal electric field is flush with the near inlet end of the cathode 4052 of the dust removal electric field.
- There is an angle ⁇ between the outlet end of the anode 4051 of the dust removal electric field and the near outlet end of the cathode 4052 of the dust removal electric field. 118 °, and under the action of the anode 4051 of the dust removal electric field and the cathode 4052 of the dust removal electric field, more substances to be treated can be collected to ensure the electric field Higher dust collecting efficiency of the generating unit, the typical exhaust particles pm0.23 dust collecting efficiency of 99.99%.
- the intake electric field device or the exhaust electric field device includes an electric field stage composed of a plurality of the above electric field generating units, and there are a plurality of the electric field stages to effectively improve the dust collection efficiency of the electric field device by using a plurality of dust collection units.
- the anode of each dust removal electric field is the same polarity
- the cathode of each dust removal electric field is the same polarity.
- the electric field stages of the multiple electric field stages are connected in series, and the series electric field stages are connected by a connecting shell.
- the distance between the adjacent two electric field stages is greater than 1.4 times the pole spacing.
- the electric field levels are two levels, that is, a first-level electric field 4053 and a second-level electric field 4054.
- the first-level electric field 4053 and the second-level electric field 4054 are connected in series through a connection housing 4055.
- the substance to be treated may be particulate dust or other impurities to be treated, such as aerosol, water mist, oil mist, etc.
- the above gas may be the gas to be entered into the engine, or the gas discharged from the engine.
- the electric field generating unit can be applied to the intake electric field device or the exhaust gas electric field device. As shown in FIG. 13, it includes a dust removal electric field anode 4051 and a dust removal electric field cathode 4052 for generating an electric field. 4051 and the dedusting electric field cathode 4052 are electrically connected to the two electrodes of the power source respectively.
- the power source is a DC power source.
- the dedusting electric field anode 4051 and the dedusting electric field cathode 4052 are electrically connected to the anode and cathode of the DC power source, respectively.
- the anode 4051 of the dust removal electric field has a positive potential
- the cathode 4052 of the dust removal electric field has a negative potential.
- the DC power supply may specifically be a DC high-voltage power supply.
- a discharge electric field is formed between the above-mentioned dedusting electric field anode 4051 and the dedusting electric field cathode 4052, and the discharge electric field is an electrostatic field.
- the dust-removing electric field anode 4051 is a hollow regular hexagonal tube, and the dust-removing electric field cathode 4052 is rod-shaped.
- the dust-removing electric field cathode 4052 is interposed in the dust-removing electric field anode 4051.
- the discharge area ratio is 1680: 1, the pole spacing between the dedusting electric field anode 4051 and the dedusting electric field cathode 4052 is 139.9mm, the length of the dedusting electric field anode 4051 is 180mm, the length of the dedusting electric field cathode 4052 is 180mm, and the dedusting electric field anode 4051 includes A fluid channel including an inlet end and an outlet end, the dust-removing electric field cathode 4052 is placed in the fluid channel, the dust-removing electric field cathode 4052 extends in the direction of the dust collector fluid channel, and the inlet of the dust-removing electric field anode 4051 The end is flush with the near inlet end of the dedusting electric field cathode 4052, the exit end of the dedusting electric field anode 4051 is flush with the near exit end of the dedusting electric field cathode 4052, and then under the action of the dedusting electric field anode 4051 and the dedusting electric field cathode
- the intake electric field device or the exhaust electric field device includes an electric field stage composed of a plurality of the above electric field generating units, and there are a plurality of the electric field stages to effectively improve the dust collection efficiency of the electric field device by using a plurality of dust collection units.
- the anode of each dust removal electric field is the same polarity
- the cathode of each dust removal electric field is the same polarity.
- the substance to be treated may be particulate dust or other impurities to be treated, such as aerosol, water mist, oil mist, etc.
- the above gas may be the gas to be entered into the engine, or the gas discharged from the engine.
- the electric field generating unit can be applied to the intake electric field device or the exhaust gas electric field device. As shown in FIG. 13, it includes a dust removal electric field anode 4051 and a dust removal electric field cathode 4052 for generating an electric field. 4051 and the dedusting electric field cathode 4052 are electrically connected to the two electrodes of the power source respectively.
- the power source is a DC power source.
- the dedusting electric field anode 4051 and the dedusting electric field cathode 4052 are electrically connected to the anode and cathode of the DC power source, respectively.
- the anode 4051 of the dust removal electric field has a positive potential
- the cathode 4052 of the dust removal electric field has a negative potential.
- the DC power supply may specifically be a DC high-voltage power supply.
- a discharge electric field is formed between the above-mentioned dedusting electric field anode 4051 and the dedusting electric field cathode 4052, and the discharge electric field is an electrostatic field.
- the dust-removing electric field anode 4051 is a hollow regular hexagonal tube, and the dust-removing electric field cathode 4052 is rod-shaped.
- the dust-removing electric field cathode 4052 is interposed in the dust-removing electric field anode 4051.
- the ratio of the discharge area is 1.667: 1, and the pole spacing between the dust-removing electric field anode 4051 and the dust-removing electric field cathode 4052 is 2.4 mm.
- the dust removal field anode 4051 has a length of 30 mm and the dust removal field cathode 4052 has a length of 30 mm.
- the dust removal field anode 4051 includes a fluid channel including an inlet end and an outlet end.
- the dust removal field cathode 4052 is placed in the fluid channel
- the dedusting electric field cathode 4052 extends in the direction of the dust collector fluid channel, the inlet end of the dedusting electric field anode 4051 is flush with the near inlet end of the dedusting electric field cathode 4052, and the outlet end of the dedusting electric field anode 4051 is close to the dedusting electric field cathode 4052
- the outlet end is flush, and under the action of the dust removal electric field anode 4051 and the dust removal electric field cathode 4052, more materials to be treated can be collected to ensure a higher dust collection efficiency of the electric field device, and typical tail gas particles pm0.23 dust collection The efficiency is 99.99%.
- the dust-removing electric field anode 4051 and the dust-removing electric field cathode 4052 constitute a dust collecting unit, and there are a plurality of dust collecting units, so as to effectively improve the dust collecting efficiency of the electric field device by using a plurality of dust collecting units.
- the substance to be treated may be particulate dust or other impurities to be treated, such as aerosol, water mist, oil mist, etc.
- the above gas may be the gas to be entered into the engine, or the gas discharged from the engine.
- the engine exhaust system in this embodiment includes the electric field device in Embodiment 15, Embodiment 16, or Embodiment 17 described above.
- the gas discharged by the engine must first flow through the electric field device to effectively remove the dust and other pollutants in the gas; then, the treated gas is then discharged to the atmosphere to reduce the engine exhaust gas to the atmosphere Impact.
- This engine exhaust system is also called an exhaust gas treatment device.
- the electric field generating unit can be applied to the intake electric field device or the exhaust gas electric field device. As shown in FIG. 13, it includes a dust removal electric field anode 4051 and a dust removal electric field cathode 4052 for generating an electric field. 4051 and the dedusting electric field cathode 4052 are electrically connected to the two electrodes of the power source respectively.
- the power source is a DC power source.
- the dedusting electric field anode 4051 and the dedusting electric field cathode 4052 are electrically connected to the anode and cathode of the DC power source, respectively.
- the anode 4051 of the dust removal electric field has a positive potential
- the cathode 4052 of the dust removal electric field has a negative potential.
- the DC power supply may specifically be a DC high-voltage power supply.
- a discharge electric field is formed between the above-mentioned dedusting electric field anode 4051 and the dedusting electric field cathode 4052, and the discharge electric field is an electrostatic field.
- the anode 4051 of the dust removal electric field has a hollow regular hexagonal tube shape
- the cathode 4052 of the dust removal electric field has a rod shape.
- the cathode 4052 of the dust removal electric field is installed in the anode 4051 of the dust removal electric field.
- the anode 4051 of the dust removal electric field has a length of 5 cm, and the cathode 4052 of the dust removal electric field has 5cm, the dedusting electric field anode 4051 includes a fluid channel, the fluid channel includes an inlet end and an outlet end, the dedusting electric field cathode 4052 is placed in the fluid channel, the dedusting electric field cathode 4052 is along the dust collector fluid channel The direction extends, the inlet end of the dust removal electric field anode 4051 is flush with the near inlet end of the dust removal electric field cathode 4052, the outlet end of the dust removal electric field anode 4051 is flush with the near outlet end of the dust removal electric field cathode 4052, the dust removal electric field anode 4051 and the dust removal electric field
- the pole spacing of the cathode 4052 is 9.9mm, and under the action of the dedusting electric field anode 4051 and the dedusting electric field cathode 4052, it makes it resistant to high temperature shock
- the intake electric field device or the exhaust electric field device includes an electric field stage composed of a plurality of the above electric field generating units, and there are a plurality of the electric field stages to effectively improve the dust collection efficiency of the electric field device by using a plurality of dust collection units.
- the anode of each dust removal electric field is the same polarity
- the cathode of each dust removal electric field is the same polarity.
- the substance to be treated may be particulate dust.
- the above gas may be the gas to be entered into the engine, or the gas discharged from the engine.
- the electric field generating unit can be applied to the intake electric field device or the exhaust gas electric field device. As shown in FIG. 13, it includes a dust removal electric field anode 4051 and a dust removal electric field cathode 4052 for generating an electric field. 4051 and the dedusting electric field cathode 4052 are electrically connected to the two electrodes of the power source respectively.
- the power source is a DC power source.
- the dedusting electric field anode 4051 and the dedusting electric field cathode 4052 are electrically connected to the anode and cathode of the DC power source, respectively.
- the anode 4051 of the dust removal electric field has a positive potential
- the cathode 4052 of the dust removal electric field has a negative potential.
- the DC power supply may specifically be a DC high-voltage power supply.
- a discharge electric field is formed between the above-mentioned dedusting electric field anode 4051 and the dedusting electric field cathode 4052, and the discharge electric field is an electrostatic field.
- the anode 4051 of the dust removal electric field is a hollow regular hexagonal tube, and the cathode 4052 of the dust removal electric field is rod-shaped.
- the cathode 4052 of the dust removal electric field is installed in the anode 4051 of the dust removal electric field.
- the anode 4051 of the dust removal electric field has a length of 9 cm and the cathode 4052 of the dust removal electric field has a length of 9cm
- the dust-removing electric field anode 4051 includes a fluid channel
- the fluid channel includes an inlet end and an outlet end
- the dust-removing electric field cathode 4052 is placed in the fluid channel
- the dust-removing electric field cathode 4052 is located along the dust collector fluid channel
- the direction extends, the inlet end of the dust removal electric field anode 4051 is flush with the near inlet end of the dust removal electric field cathode 4052, the outlet end of the dust removal electric field anode 4051 is flush with the near outlet end of the dust removal electric field cathode 4052, the dust removal electric field anode 4051 and the dust removal electric field
- the pole spacing of the cathode 4052 is 139.9mm, and under the action of the dedusting electric field anode 4051 and the dedusting electric field catho
- the intake electric field device or the exhaust electric field device includes an electric field stage composed of a plurality of the above electric field generating units, and there are a plurality of the electric field stages to effectively improve the dust collection efficiency of the electric field device by using a plurality of dust collection units.
- the anode of each storage electric field is the same polarity
- the cathode of each dust removal electric field is the same polarity.
- the substance to be treated may be particulate dust.
- the above gas may be the gas to be entered into the engine, or the gas discharged from the engine.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Environmental & Geological Engineering (AREA)
- Biomedical Technology (AREA)
- Toxicology (AREA)
- Dispersion Chemistry (AREA)
- Electrostatic Separation (AREA)
- Exhaust Gas After Treatment (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Treating Waste Gases (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Control Of Eletrric Generators (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
一种发动机尾气处理系统,包括尾气除尘系统以及尾气臭氧净化系统。发动机尾气臭氧净化系统包括反应场(202),用于将臭氧流股与尾气流股混合物反应。尾气臭氧净化系统还包括臭氧量控制装置(209),所述臭氧量控制装置(209)包括控制单元(2091)。该发动机尾气处理系统能够有效去除发动机尾气中的颗粒物,对发动机尾气的净化处理效果更好。
Description
本发明属于环保领域,涉及一种发动机尾气处理系统和方法。
现有技术中,通常通过柴油颗粒物过滤器(DPF)来进行颗粒物过滤。其中,DPF以燃烧方式工作,即利用积碳在多孔结构中充分堵塞后升温达到燃点后通过自然或者助燃的方式燃烧。具体地,DPF的工作原理如下:带有颗粒物的进气进入DPF的蜂窝状载体,颗粒物在蜂窝装载体中被拦截,当进气流出DPF时大部分的颗粒物已经被过滤掉。DPF的载体材料主要为堇青石、碳化硅、钛酸铝等,具体可根据实际情况进行选择使用。然而,上述方式存储以下缺陷:
(1)当DPF捕集到一定程度的颗粒物后就需要再生,否则发动机排气背压上升,工作状态恶化,严重影响性能及油耗,更有甚者为堵死DPF导致发动机无法工作。因此,DPF需要定期维护和添加催化剂。即使有定期维护,颗粒物的积聚限制了排气流,因此增加了背压,这会影响发动机性能和燃油消耗。
(2)DPF的除尘效果不稳定,无法满足发动机进气处理的最新过滤要求。
静电除尘是一种气体除尘方法,通常在冶金、化学等工业领域中用以净化气体或回收有用尘粒。现有技术中,由于占用空间较大、系统结构复杂、除尘效果差等问题,无法基于静电除尘对发动机进气颗粒物进行处理。
发动机对环境的污染主要来自发动机的排气产物即发动机尾气,目前对于柴油机尾气净化,常规的技术路线是采用氧化催化剂DOC除去碳氢化合物THC和CO,同时把低价态NO氧化成高价态的NO
2;在DOC之后采用柴油机微粒捕集器DPF对颗粒物PM进行过滤;在柴油机微粒捕集器DPF之后喷射尿素,尿素在排气中分解成氨气NH
3,NH
3在其后的选择性催化剂SCR上和NO
2发生选择性催化还原反应,生成氮气N
2和水。在最后在氨气氧化催化剂ASC上将过量的NH
3氧化成N
2和水,现有技术对发动机尾气的净化需添加大量尿素,且净化效果一般。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种发动机排放处理系统和方法,用于解决现有技术除尘系统需要定期维护以及效果不稳定和需添加大量尿素处理尾气且净化 尾气效果一般中至少一个问题。同时,本发明通过研究发现了现有电离除尘技术中存在的新问题,并通过一系列技术手段来解决,例如,当尾气温度或发动机温度低于一定温度时,发动机尾气中可能含有液体水,本发明在尾气电场装置前安装除水装置,脱除尾气中的液体水,提高电离除尘效果;在高温条件下,通过控制尾气电场装置阳极的集尘面积与阴极的放电面积比、阴极/阳极的长度、极间距以及设置辅助电场等,有效减少电场耦合,并使得尾气电场装置在高温冲击下仍具有高效率的集尘能力。因此,本发明适合在苛刻条件下作业,并保证除尘效率,故从商业角度出发,本发明完全可适用于发动机。
本发明提供一种发动机排放处理系统,包括尾气除尘系统、尾气臭氧净化系统中的至少一个。所述尾气除尘系统包括尾气除尘系统入口、尾气除尘系统出口、尾气电场装置。所述尾气臭氧净化系统包括反应场,用于将臭氧流股与尾气流股混合反应。该发动机排放处理系统能有效地处理发动机排放,使得发动机的排放更加清洁。
为实现上述目的及其他相关目的,本发明提供以下示例:
1.本发明提供的示例1:一种发动机排放处理系统。
2.本发明提供的示例2:包括上述示例1,包括尾气除尘系统,所述尾气除尘系统包括尾气除尘系统入口、尾气除尘系统出口、尾气电场装置。
3.本发明提供的示例3:包括上述示例2,其中,所述尾气电场装置包括尾气电场装置入口、尾气电场装置出口、尾气除尘电场阴极和尾气除尘电场阳极,所述尾气除尘电场阴极和所述尾气除尘电场阳极用于产生尾气电离除尘电场。
4.本发明提供的示例4:包括上述示例3,其中,所述尾气除尘电场阳极包括第一阳极部和第二阳极部,所述第一阳极部靠近尾气电场装置入口,第二阳极部靠近尾气电场装置出口,所述第一阳极部和所述第二阳极部之间设置有至少一个阴极支撑板。
5.本发明提供的示例5:包括上述示例4,其中,所述尾气电场装置还包括尾气绝缘机构,用于实现所述阴极支撑板和所述尾气除尘电场阳极之间的绝缘。
6.本发明提供的示例6:包括上述示例5,其中,所述尾气除尘电场阳极和所述尾气除尘电场阴极之间形成电场流道,所述尾气绝缘机构设置在所述电场流道外。
7.本发明提供的示例7:包括上述示例5或6,其中,所述尾气绝缘机构包括绝缘部和隔热部;所述绝缘部的材料采用陶瓷材料或玻璃材料。
8.本发明提供的示例8:包括上述示例7,其中,所述绝缘部为伞状串陶瓷柱、伞状串玻璃柱、柱状串陶瓷柱或柱状玻璃柱,伞内外或柱内外挂釉。
9.本发明提供的示例9:包括上述示例8,其中,伞状串陶瓷柱或伞状串玻璃柱的外缘与 所述尾气除尘电场阳极的距离大于电场距离1.4倍,伞状串陶瓷柱或伞状串玻璃柱的伞突边间距总和大于伞状串陶瓷柱或伞状串玻璃柱的绝缘间距1.4倍,伞状串陶瓷柱或伞状串玻璃柱的伞边内深总长大于伞状串陶瓷柱或伞状串玻璃柱的绝缘距离1.4倍。
10.本发明提供的示例10:包括上述示例4至9中的任一项,其中,所述第一阳极部的长度是所述尾气除尘电场阳极长度的1/10至1/4、1/4至1/3、1/3至1/2、1/2至2/3、2/3至3/4,或3/4至9/10。
11.本发明提供的示例11:包括上述示例4至10中的任一项,其中,所述第一阳极部的长度是足够的长,以清除部分灰尘,减少积累在所述尾气绝缘机构和所述阴极支撑板上的灰尘,减少灰尘造成的电击穿。
12.本发明提供的示例12:包括上述示例4至11中的任一项,其中,所述第二阳极部包括积尘段和预留积尘段。
13.本发明提供的示例13:包括上述示例3至12中的任一项,其中,所述尾气除尘电场阴极包括至少一根电极棒。
14.本发明提供的示例14:包括上述示例13,其中,所述电极棒的直径不大于3mm。
15.本发明提供的示例15:包括上述示例13或14,其中,所述电极棒的形状呈针状、多角状、毛刺状、螺纹杆状或柱状。
16.本发明提供的示例16:包括上述示例3至15中的任一项,其中,所述尾气除尘电场阳极由中空的管束组成。
17.本发明提供的示例17:包括上述示例16,其中,所述尾气除尘电场阳极管束的中空的截面采用圆形或多边形。
18.本发明提供的示例18:包括上述示例17,其中,所述多边形为六边形。
19.本发明提供的示例19:包括上述示例16至18中的任一项,其中,所述尾气除尘电场阳极的管束呈蜂窝状。
20.本发明提供的示例20:包括上述示例3至19中的任一项,其中,所述尾气除尘电场阴极穿射于所述尾气除尘电场阳极内。
21.本发明提供的示例21:包括上述示例3至20中的任一项,其中,当电场积尘到一定程度时,所述尾气电场装置进行除碳黑处理。
22.本发明提供的示例22:包括上述示例21,其中,所述尾气电场装置检测电场电流来确定是否积尘到一定程度,需要进行除碳黑处理。
23.本发明提供的示例23:包括上述示例21或22,其中,所述尾气电场装置增高电场电 压来进行除碳黑处理。
24.本发明提供的示例24:包括上述示例21或22,其中,所述尾气电场装置利用电场反电晕放电现象来进行除碳黑处理。
25.本发明提供的示例25:包括上述示例21或22,其中,所述尾气电场装置利用电场反电晕放电现象,增高电压,限制入注电流,使发生在阳极积碳位置的急剧放电产生等离子,所述等离子使碳黑有机成分深度氧化,高分子键断裂,形成小分子二氧化碳和水,来进行除碳黑处理。
26.本发明提供的示例26:包括上述示例3至25中的任一项,其中,所述尾气除尘电场阳极长度为10-90mm,所述尾气除尘电场阴极长度为10-90mm。
27.本发明提供的示例27:包括上述示例26,其中,当电场温度为200℃时,对应的集尘效率为99.9%。
28.本发明提供的示例28:包括上述示例26或27,其中,当电场温度为400℃时,对应的集尘效率为90%。
29.本发明提供的示例29:包括上述示例26至28中的任一项,其中,当电场温度为500℃时,对应的集尘效率为50%。
30.本发明提供的示例30:包括上述示例3至29中的任一项,其中,所述尾气电场装置还包括辅助电场单元,用于产生与所述尾气电离除尘电场不平行的辅助电场。
31.本发明提供的示例31:包括上述示例3至29中的任一项,其中,所述尾气电场装置还包括辅助电场单元,所述尾气电离除尘电场包括流道,所述辅助电场单元用于产生与所述流道不垂直的辅助电场。
32.本发明提供的示例32:包括上述示例30或31,其中,所述辅助电场单元包括第一电极,所述辅助电场单元的第一电极设置在或靠近所述尾气电离除尘电场的进口。
33.本发明提供的示例33:包括上述示例32,其中,所述第一电极为阴极。
34.本发明提供的示例34:包括上述示例32或33,其中,所述辅助电场单元的第一电极是所述尾气除尘电场阴极的延伸。
35.本发明提供的示例35:包括上述示例34,其中,所述辅助电场单元的第一电极与所述尾气除尘电场阳极具有夹角α,且0°<α≤125°、或45°≤α≤125°、或60°≤α≤100°、或α=90°。
36.本发明提供的示例36:包括上述示例30至35中的任一项,其中,所述辅助电场单元包括第二电极,所述辅助电场单元的第二电极设置在或靠近所述尾气电离除尘电场的出口。
37.本发明提供的示例37:包括上述示例36,其中,所述第二电极为阳极。
38.本发明提供的示例38:包括上述示例36或37,其中,所述辅助电场单元的第二电极是所述尾气除尘电场阳极的延伸。
39.本发明提供的示例39:包括上述示例38,其中,所述辅助电场单元的第二电极与所述尾气除尘电场阴极具有夹角α,且0°<α≤125°、或45°≤α≤125°、或60°≤α≤100°、或α=90°。
40.本发明提供的示例40:包括上述示例30至33、36和37中的任一项,其中,所述辅助电场的电极与所述尾气电离除尘电场的电极独立设置。
41.本发明提供的示例41:包括上述示例3至40中的任一项,其中,所述尾气除尘电场阳极的积尘面积与所述尾气除尘电场阴极的放电面积的比为1.667:1-1680:1。
42.本发明提供的示例42:包括上述示例3至40中的任一项,其中,所述尾气除尘电场阳极的积尘面积与所述尾气除尘电场阴极的放电面积的比为6.67:1-56.67:1。
43.本发明提供的示例43:包括上述示例3至42中的任一项,其中,所述尾气除尘电场阴极直径为1-3毫米,所述尾气除尘电场阳极与所述尾气除尘电场阴极的极间距为2.5-139.9毫米;所述尾气除尘电场阳极的积尘面积与所述尾气除尘电场阴极的放电面积的比为1.667:1-1680:1。
44.本发明提供的示例44:包括上述示例3至42中的任一项,其中,所述尾气除尘电场阳极和所述尾气除尘电场阴极的极间距小于150mm。
45.本发明提供的示例45:包括上述示例3至42中的任一项,其中,所述尾气除尘电场阳极与所述尾气除尘电场阴极的极间距为2.5-139.9mm。
46.本发明提供的示例46:包括上述示例3至42中的任一项,其中,所述尾气除尘电场阳极与所述尾气除尘电场阴极的极间距为5-100mm。
47.本发明提供的示例47:包括上述示例3至46中的任一项,其中,所述尾气除尘电场阳极长度为10-180mm。
48.本发明提供的示例48:包括上述示例3至46中的任一项,其中,所述尾气除尘电场阳极长度为60-180mm。
49.本发明提供的示例49:包括上述示例3至48中的任一项,其中,所述尾气除尘电场阴极长度为30-180mm。
50.本发明提供的示例50:包括上述示例3至48中的任一项,其中,所述尾气除尘电场阴极长度为54-176mm。
51.本发明提供的示例51:包括上述示例41至50中的任一项,其中,当运行时,所述尾气电离除尘电场的耦合次数≤3。
52.本发明提供的示例52:包括上述示例30至50中的任一项,其中,当运行时,所述尾气电离除尘电场的耦合次数≤3。
53.本发明提供的示例53:包括上述示例3至52中的任一项,其中,所述尾气电离除尘电场电压的取值范围为1kv-50kv。
54.本发明提供的示例54:包括上述示例3至53中的任一项,其中,所述尾气电场装置还包括若干连接壳体,串联电场级通过所述连接壳体连接。
55.本发明提供的示例55:包括上述示例54,其中,相邻的电场级的距离大于所述极间距的1.4倍。
56.本发明提供的示例56:包括上述示例3至55中的任一项,其中,所述尾气电场装置还包括尾气前置电极,所述尾气前置电极在所述尾气电场装置入口与所述尾气除尘电场阳极和所述尾气除尘电场阴极形成的尾气电离除尘电场之间。
57.本发明提供的示例57:包括上述示例56,其中,所述尾气前置电极呈点状、线状、网状、孔板状、板状、针棒状、球笼状、盒状、管状、物质自然形态、或物质加工形态。
58.本发明提供的示例58:包括上述示例56或57,其中,所述尾气前置电极上设有尾气通孔。
59.本发明提供的示例59:包括上述示例58,其中,所述尾气通孔呈多角形、圆形、椭圆形、正方形、长方形、梯形、或菱形。
60.本发明提供的示例60:包括上述示例58或59,其中,所述尾气通孔的大小为0.1-3毫米。
61.本发明提供的示例61:包括上述示例56至60中的任一项,其中,所述尾气前置电极为固体、液体、气体分子团、或等离子体中的一种或多种形态的组合。
62.本发明提供的示例62:包括上述示例56至61中的任一项,其中,所述尾气前置电极为导电混合态物质、生物体自然混合导电物质、或物体人工加工形成导电物质。
63.本发明提供的示例63:包括上述示例56至62中的任一项,其中,所述尾气前置电极为304钢或石墨。
64.本发明提供的示例64:包括上述示例56至62中的任一项,其中,所述尾气前置电极为含离子导电液体。
65.本发明提供的示例65:包括上述示例56至64中的任一项,其中,在工作时,在带污染物的气体进入所述尾气除尘电场阴极、尾气除尘电场阳极形成的尾气电离除尘电场之前,且带污染物的气体通过所述尾气前置电极时,所述尾气前置电极使气体中的污染物带电。
66.本发明提供的示例66:包括上述示例65,其中,当带污染物的气体进入所述尾气电离除尘电场时,所述尾气除尘电场阳极给带电的污染物施加吸引力,使污染物向所述尾气除尘电场阳极移动,直至污染物附着在所述尾气除尘电场阳极上。
67.本发明提供的示例67:包括上述示例65或66,其中,所述尾气前置电极将电子导入污染物,电子在位于所述尾气前置电极和所述尾气除尘电场阳极之间的污染物之间进行传递,使更多污染物带电。
68.本发明提供的示例68:包括上述示例64至66中的任一项,其中,所述尾气前置电极和所述尾气除尘电场阳极之间通过污染物传导电子、并形成电流。
69.本发明提供的示例69:包括上述示例65至68中的任一项,其中,所述尾气前置电极通过与污染物接触的方式使污染物带电。
70.本发明提供的示例70:包括上述示例65至69中的任一项,其中,所述尾气前置电极通过能量波动的方式使污染物带电。
71.本发明提供的示例71:包括上述示例65至70中的任一项,其中,所述尾气前置电极上设有尾气通孔。
72.本发明提供的示例72:包括上述示例56至71中的任一项,其中,所述尾气前置电极呈线状,所述尾气除尘电场阳极呈面状。
73.本发明提供的示例73:包括上述示例56至72中的任一项,其中,所述尾气前置电极垂直于所述尾气除尘电场阳极。
74.本发明提供的示例74:包括上述示例56至73中的任一项,其中,所述尾气前置电极与所述尾气除尘电场阳极相平行。
75.本发明提供的示例75:包括上述示例56至74中的任一项,其中,所述尾气前置电极呈曲线状或圆弧状。
76.本发明提供的示例76:包括上述示例56至75中的任一项,其中,所述尾气前置电极采用金属丝网。
77.本发明提供的示例77:包括上述示例56至76中的任一项,其中,所述尾气前置电极与所述尾气除尘电场阳极之间的电压不同于所述尾气除尘电场阴极与所述尾气除尘电场阳极之间的电压。
78.本发明提供的示例78:包括上述示例56至77中的任一项,其中,所述尾气前置电极与所述尾气除尘电场阳极之间的电压小于起始起晕电压。
79.本发明提供的示例79:包括上述示例56至78中的任一项,其中,所述尾气前置电极 与所述尾气除尘电场阳极之间的电压为0.1kv/mm-2kv/mm。
80.本发明提供的示例80:包括上述示例56至79中的任一项,其中,所述尾气电场装置包括尾气流道,所述尾气前置电极位于所述尾气流道中;所述尾气前置电极的截面面积与尾气流道的截面面积比为99%-10%、或90-10%、或80-20%、或70-30%、或60-40%、或50%。
81.本发明提供的示例81:包括上述示例3至80中的任一项,其中,所述尾气电场装置包括尾气驻极体元件。
82.本发明提供的示例82:包括上述示例81,其中,所述尾气除尘电场阳极和所述尾气除尘电场阴极接通电源时,所述尾气驻极体元件在所述尾气电离除尘电场中。
83.本发明提供的示例83:包括上述示例81或82,其中,所述尾气驻极体元件靠近所述尾气电场装置出口,或者,所述尾气驻极体元件设于所述尾气电场装置出口。
84.本发明提供的示例84:包括上述示例81至83中的任一项,其中,所述尾气除尘电场阳极和所述尾气除尘电场阴极形成尾气流道,所述尾气驻极体元件设于所述尾气流道中。
85.本发明提供的示例85:包括上述示例84,其中,所述尾气流道包括尾气流道出口,所述尾气驻极体元件靠近所述尾气流道出口,或者,所述尾气驻极体元件设于所述尾气流道出口。
86.本发明提供的示例86:包括上述示例84或85,其中,所述尾气驻极体元件于所述尾气流道中的横截面占尾气流道横截面5%-100%。
87.本发明提供的示例87:包括上述示例86,其中,所述尾气驻极体元件于所述尾气流道中的横截面占尾气流道横截面10%-90%、20%-80%、或40%-60%。
88.本发明提供的示例88:包括上述示例81至87中的任一项,其中,所述尾气电离除尘电场给所述尾气驻极体元件充电。
89.本发明提供的示例89:包括上述示例81至88中的任一项,其中,所述尾气驻极体元件具有多孔结构。
90.本发明提供的示例90:包括上述示例81至89中的任一项,其中,所述尾气驻极体元件为织品。
91.本发明提供的示例91:包括上述示例81至90中的任一项,其中,所述尾气除尘电场阳极内部为管状,所述尾气驻极体元件外部为管状,所述尾气驻极体元件外部套设于所述尾气除尘电场阳极内部。
92.本发明提供的示例92:包括上述示例81至91中的任一项,其中,所述尾气驻极体元件与所述尾气除尘电场阳极为可拆卸式连接。
93.本发明提供的示例93:包括上述示例81至92中的任一项,其中,所述尾气驻极体元件的材料包括具有驻极性能的无机化合物。
94.本发明提供的示例94:包括上述示例93,其中,所述无机化合物选自含氧化合物、含氮化合物或玻璃纤维中的一种或多种组合。
95.本发明提供的示例95:包括上述示例94,其中,所述含氧化合物选自金属基氧化物、含氧复合物、含氧的无机杂多酸盐中的一种或多种组合。
96.本发明提供的示例96:包括上述示例95,其中,所述金属基氧化物选自氧化铝、氧化锌、氧化锆、氧化钛、氧化钡、氧化钽、氧化硅、氧化铅、氧化锡中的一种或多种组合。
97.本发明提供的示例97:包括上述示例95,其中,所述金属基氧化物为氧化铝。
98.本发明提供的示例98:包括上述示例95,其中,所述含氧复合物选自钛锆复合氧化物或钛钡复合氧化物中的一种或多种组合。
99.本发明提供的示例99:包括上述示例95,其中,所述含氧的无机杂多酸盐选自钛酸锆、锆钛酸铅或钛酸钡中的一种或多种组合。
100.本发明提供的示例100:包括上述示例94,其中,所述含氮化合物为氮化硅。
101.本发明提供的示例101:包括上述示例81至100中的任一项,其中,所述尾气驻极体元件的材料包括具有驻极性能的有机化合物。
102.本发明提供的示例102:包括上述示例101,其中,所述有机化合物选自氟聚合物、聚碳酸酯、PP、PE、PVC、天然蜡、树脂、松香中的一种或多种组合。
103.本发明提供的示例103:包括上述示例102,其中,所述氟聚合物选自聚四氟乙烯、聚全氟乙丙烯、可溶性聚四氟乙烯、聚偏氟乙烯中的一种或多种组合。
104.本发明提供的示例104:包括上述示例102,其中,所述氟聚合物为聚四氟乙烯。
105.本发明提供的示例105:包括上述示例2至104中的任一项,其中,还包括尾气均风装置。
106.本发明提供的示例106:包括上述示例105,其中,所述尾气均风装置在所述尾气除尘系统入口与所述尾气除尘电场阳极和所述尾气除尘电场阴极形成的尾气电离除尘电场之间,当所述尾气除尘电场阳极为四方体时,所述尾气均风装置包括:设置于所述尾气除尘电场阳极一侧边的进气管和设置于另一侧边的出气管;其中,所述进气管与所述出气管相对立。
107.本发明提供的示例107:包括上述示例105,其中,所述尾气均风装置在所述尾气除尘系统入口与所述尾气除尘电场阳极和所述尾气除尘电场阴极形成的尾气电离除尘电场之间,当所述尾气除尘电场阳极为圆柱体时,所述尾气均风装置由若干可旋转的均风叶片组成。
108.本发明提供的示例108:包括上述示例105,其中,所述尾气均风装置第一文氏板均风机构和设置于所述尾气除尘电场阳极的出气端的第二文氏板均风机构,所述第一文氏板均风机构上开设有进气孔,所述第二文氏板均风机构上开设有出气孔,所述进气孔与所述出气孔错位排布,且正面进气侧面出气,形成旋风结构.
109.本发明提供的示例109:包括上述示例2至108中的任一项,其中,还包括补氧装置,用于在所述尾气电离除尘电场之前添加包括氧气的气体。
110.本发明提供的示例110:包括上述示例109,其中,所述补氧装置通过单纯增氧、通入外界空气、通入压缩空气和/或通入臭氧的方式添加氧气。
111.本发明提供的示例111:包括上述示例109或110,其中,至少根据尾气颗粒含量决定补氧量。
112.本发明提供的示例112:包括上述示例2至111中的任一项,其中,还包括除水装置,用于在所述尾气电场装置入口之前去除液体水。
113.本发明提供的示例113:包括上述示例112,其中,当尾气温度或发动机温度低于一定温度时,所述除水装置脱除尾气中的液体水。
114.本发明提供的示例114:包括上述示例113,其中,所述一定温度在90℃以上、100℃以下。
115.本发明提供的示例115:包括上述示例113,其中,所述一定温度在80℃以上、90℃以下。
116.本发明提供的示例116:包括上述示例113,其中,所述一定温度为80℃以下。
117.本发明提供的示例117:包括上述示例112至116,其中,所述除水装置为电凝装置。
118.本发明提供的示例118:包括上述示例2至117中的任一项,其中,还包括尾气降温装置,用于在所述尾气电场装置入口之前降低尾气温度。
119.本发明提供的示例119:包括上述示例118,其中,所述尾气降温装置包括换热单元,用于与发动机的尾气进行热交换,以将换热单元中液态的换热介质加热成气态的换热介质。
120.本发明提供的示例120:包括上述示例119,其中,所述换热单元包括:
尾气通过腔,与发动机的排气管路相连通,所述尾气通过腔用于供发动机的尾气通过;
介质气化腔,所述介质气化腔用于将液态换热介质与尾气发生热交换后转化成气态。
121.本发明提供的示例121:包括上述示例119或120,其中,还包括动力产生单元,所述动力产生单元用于将换热介质的热能和/或尾气的热能转换为机械能。
122.本发明提供的示例122:包括上述示例121,其中,所述动力产生单元包括涡扇。
123.本发明提供的示例123:包括上述示例122,其中,所述涡扇包括:
涡扇轴;
介质腔涡扇组件,安装在涡扇轴上,且所述介质腔涡扇组件位于介质气化腔中。
124.本发明提供的示例124:包括上述示例123,其中,所述介质腔涡扇组件包括介质腔导流扇和介质腔动力扇。
125.本发明提供的示例125:包括上述示例122至124中的任一项,其中,所述涡扇包括:
尾气腔涡扇组件,安装在涡扇轴上,且所述尾气腔涡扇组件位于尾气通过腔中。
126.本发明提供的示例126:包括上述示例125,其中,所述尾气腔涡扇组件包括尾气腔导流扇和尾气腔动力扇。
127.本发明提供的示例127:包括上述示例121至126中的任一项,其中,所述尾气降温装置还包括发电单元,所述发电单元用于将动力产生单元产生的机械能转换为电能。
128.本发明提供的示例128:包括上述示例127,其中,所述发电单元包括发电机定子和发电机转子,所述发电机转子与动力产生单元的涡扇轴相连接。
129.本发明提供的示例:包括上述示例127或128,其中,所述发电单元包括电池组件。
130.本发明提供的示例130:包括上述示例127至129中的任一项,其中,所述发电单元包括发电机调控组件,所述发电机调控组件用于调节发电机的电动转矩。
131.本发明提供的示例131:包括上述示例121至130中的任一项,其中,所述尾气降温装置还包括介质传输单元,所述介质传输单元连接于换热单元和动力产生单元之间。
132.本发明提供的示例132:包括上述示例131,其中,所述介质传输单元包括反推涵道。
133.本发明提供的示例133:包括上述示例131,其中,所述介质传输单元包括承压管路。
134.本发明提供的示例134:包括上述示例127至133中的任一项,其中,所述尾气降温装置还包括耦合单元,所述耦合单元电性连接于动力产生单元和发电单元之间。
135.本发明提供的示例135:包括上述示例134,其中,所述耦合单元包括电磁耦合器。
136.本发明提供的示例136:包括上述示例119至135中的任一项,其中,所述尾气降温装置还包括保温管路,所述保温管路连接于发动机的尾气管路和换热单元之间。
137.本发明提供的示例137:包括上述示例118至136中的任一项,其中,所述尾气降温装置包括风机,所述风机将空气通入所述尾气电场装置入口之前,对尾气起到降温的作用。
138.本发明提供的示例138:包括上述示例137,其中,通入的空气是尾气的50%至300%。
139.本发明提供的示例139:包括上述示例137,其中,通入的空气是尾气的100%至180%。
140.本发明提供的示例140:包括上述示例137,其中,通入的空气是尾气的120%至150%。
141.本发明提供的示例141:包括上述示例120,其中,所述补氧装置包括风机,所述风机将空气通入所述尾气电场装置入口之前,对尾气起到降温的作用。
142.本发明提供的示例142:包括上述示例141,其中,通入的空气是尾气的50%至300%。
143.本发明提供的示例143:包括上述示例141,其中,通入的空气是尾气的100%至180%。
144.本发明提供的示例144:包括上述示例141,其中,通入的空气是尾气的120%至150%。
145.本发明提供的示例145:包括上述示例1-144中的任一项,还包括尾气臭氧净化系统,所述尾气臭氧净化系统包括反应场,用于将臭氧流股与尾气流股混合反应。
146.本发明提供的示例146:包括上述示例145,其中,所述反应场包括管道和/或反应器。
147.本发明提供的示例147:包括上述示例146,其中,还包括如下技术特征中的至少一项:
1)管道的管段通径为100-200毫米;
2)管道的长度大于管径0.1倍;
3)所述反应器选自如下至少一种:
反应器一:所述反应器具有反应腔室,尾气与臭氧在所述反应腔室混合并反应;
反应器二:所述反应器包括若干蜂窝状腔体,用于提供尾气与臭氧混合并反应的空间;所述蜂窝状腔体内之间设有间隙,用于通入冷态介质,控制尾气与臭氧的反应温度;
反应器三:所述反应器包括若干载体单元,所述载体单元提供反应场地;
反应器四:所述反应器包括催化剂单元,所述催化剂单元用于促进尾气的氧化反应;
4)所述反应场设有臭氧进口,所述臭氧进口选自喷口、喷格栅、喷嘴、旋流喷嘴、设有文丘里管的喷口中的至少一种;
5)所述反应场设有臭氧进口,所述臭氧通过所述臭氧进口进入反应场与尾气进行接触,臭氧进口的设置形成如下方向中至少一种:与尾气流动的方向相反、与尾气流动的方向垂直、与尾气流动的方向相切、插入尾气流动方向、多个方向与尾气进行接触。
148.本发明提供的示例148:包括上述示例145至147中的中的任一项,其中,所述反应场包括排气管、蓄热体装置或催化器。
149.本发明提供的示例149:包括上述示例145至148中的中的任一项,其中,所述反应场的温度为-50-200℃。
150.本发明提供的示例150:包括上述示例149,其中,所述反应场的温度为60-70℃。
151.本发明提供的示例151:包括上述示例145至150中的中的任一项,其中,所述尾气臭氧净化系统还包括臭氧源,用于提供臭氧流股。
152.本发明提供的示例152:包括上述示例151,其中,所述臭氧源包括存储臭氧单元和/或臭氧发生器。
153.本发明提供的示例153:包括上述示例152,其中,所述臭氧发生器包括延面放电臭氧发生器、工频电弧臭氧发生器、高频感应臭氧发生器、低气压臭氧发生器、紫外线臭氧发生器、电解液臭氧发生器、化学药剂臭氧发生器和射线辐照粒子发生器中的一种或多种的组合。
154.本发明提供的示例154:包括上述示例152,其中,所述臭氧发生器包括电极,所述电极上设有催化剂层,所述催化剂层包括氧化催化键裂解选择性催化剂层。
155.本发明提供的示例155:包括上述示例154,其中,所述电极包括高压电极或设有阻挡介质层的高压电极,当所述电极包括高压电极时,所述氧化催化键裂解选择性催化剂层设于所述高压电极表面上,当所述电极包括阻挡介质层的高压电极时,所述氧化催化键裂解选择性催化剂层设于阻挡介质层的表面上。
156.本发明提供的示例156:包括上述示例155,其中,所述阻挡介质层选自陶瓷板、陶瓷管、石英玻璃板、石英板和石英管中的至少一种。
157.本发明提供的示例157:包括上述示例155,其中,当所述电极包括高压电极时,所述氧化催化键裂解选择性催化剂层的厚度为1-3mm;当所述电极包括阻挡介质层的高压电极时,所述氧化催化键裂解选择性催化剂层的负载量包括阻挡介质层的1-12wt%。
158.本发明提供的示例158:包括上述示例154至157中的中的任一项,其中,所述氧化催化键裂解选择性催化剂层包括如下重量百分比的各组分:
活性组分 5-15%;
涂层 85-95%;
其中,所述活性组分选自金属M和金属元素M的化合物中的至少一种,金属元素M选自碱土金属元素、过渡金属元素、第四主族金属元素、贵金属元素和镧系稀土元素中的至少一种;
所述涂层选自氧化铝、氧化铈、氧化锆、氧化锰、金属复合氧化物、多孔材料和层状材料中的至少一种,所述金属复合氧化物包括铝、铈、锆和锰中一种或多种金属的复合氧化物。
159.本发明提供的示例159:包括上述示例158,其中,所述碱土金属元素选自镁、锶和钙中的至少一种。
160.本发明提供的示例160:包括上述示例158,其中,所述过渡金属元素选自钛、锰、锌、铜、铁、镍、钴、钇和锆中的至少一种。
161.本发明提供的示例161:包括上述示例158,其中,所述第四主族金属元素为锡。
162.本发明提供的示例162:包括上述示例158,其中,所述贵金属元素选自铂、铑、钯、金、银和铱中的至少一种。
163.本发明提供的示例163:包括上述示例158,其中,所述镧系稀土元素选自镧、铈、镨和钐中的至少一种。
164.本发明提供的示例164:包括上述示例158,其中,所述金属元素M的化合物选自氧化物、硫化物、硫酸盐、磷酸盐、碳酸盐,以及钙钛矿中的至少一种。
165.本发明提供的示例165:包括上述示例158,其中,所述多孔材料选自分子筛、硅藻土、沸石和纳米碳管中的至少一种。
166.本发明提供的示例166:包括上述示例158,其中,所述层状材料选自石墨烯和石墨中的至少一种。
167.本发明提供的示例167:包括上述示例145至166中的任一项,其中,所述尾气臭氧净化系统还包括臭氧量控制装置,用于控制臭氧量以致有效氧化尾气中待处理的气体组分,所述臭氧量控制装置包括控制单元。
168.本发明提供的示例168:包括上述示例167,其中,所述臭氧量控制装置还包括臭氧处理前尾气组分检测单元,用于检测臭氧处理前尾气组分含量。
169.本发明提供的示例169:包括上述示例167至168中的任一项,其中,所述控制单元根据所述臭氧处理前尾气组分含量控制混合反应所需臭氧量。
170.本发明提供的示例170:包括上述示例168或169,其中,所述臭氧处理前尾气组分检测单元选自以下检测单元中至少一个:
第一挥发性有机化合物检测单元,用于检测臭氧处理前尾气中挥发性有机化合物含量;
第一CO检测单元,用于检测臭氧处理前尾气中CO含量;
第一氮氧化物检测单元,用于检测臭氧处理前尾气中氮氧化物含量。
171.本发明提供的示例171:包括上述示例170,其中,所述控制单元根据至少一个所述臭氧处理前尾气组分检测单元的输出值控制混合反应所需臭氧量。
172.本发明提供的示例172:包括上述示例167至171中的任一项,其中,所述控制单元用于按照预设的数学模型控制混合反应所需臭氧量。
173.本发明提供的示例173:包括上述示例167至172中的任一项,其中,所述控制单元用于按照理论估计值控制混合反应所需臭氧量。
174.本发明提供的示例174:包括上述示例173中的任一项,其中,所述理论估计值为: 臭氧通入量与尾气中待处理物的摩尔比为2-10。
175.本发明提供的示例175:包括上述示例167至174中的任一项,其中,所述臭氧量控制装置包括臭氧处理后尾气组分检测单元,用于检测臭氧处理后尾气组分含量。
176.本发明提供的示例176:包括上述示例167至175中的任一项,其中,所述控制单元根据所述臭氧处理后尾气组分含量控制混合反应所需臭氧量。
177.本发明提供的示例177:包括上述示例175或176,其中,所述臭氧处理后尾气组分检测单元选自以下检测单元中至少一个:
第一臭氧检测单元,用于检测臭氧处理后尾气中臭氧含量;
第二挥发性有机化合物检测单元,用于检测臭氧处理后尾气中挥发性有机化合物含量;
第二CO检测单元,用于检测臭氧处理后尾气中CO含量;
第二氮氧化物检测单元,用于检测臭氧处理后尾气中氮氧化物含量。
178.本发明提供的示例178:包括上述示例177,其中,所述控制单元根据至少一个所述臭氧处理后尾气组分检测单元的输出值控制臭氧量。
179.本发明提供的示例179:包括上述示例145至178中的任一项,其中,所述尾气臭氧净化系统还包括脱硝装置,用于脱除臭氧流股与尾气流股混合反应产物中的硝酸。
180.本发明提供的示例180:包括上述示例179,其中,所述脱硝装置包括电凝装置,所述电凝装置包括:
电凝流道;
第一电极,所述第一电极位于电凝流道中;
第二电极。
181.本发明提供的示例181:包括上述示例180,其中,所述第一电极为固体、液体、气体分子团、等离子体、导电混合态物质、生物体自然混合导电物质、或物体人工加工形成导电物质中的一种或多种形态的组合。
182.本发明提供的示例182:包括上述示例180或181,其中,所述第一电极为固态金属、石墨、或304钢。
183.本发明提供的示例183:包括上述示例180至182中的任一项,其中,所述第一电极呈点状、线状、网状、孔板状、板状、针棒状、球笼状、盒状、管状、自然形态物质、或加工形态物质。
184.本发明提供的示例184:包括上述示例180至183中的任一项,其中,所述第一电极上设有前通孔。
185.本发明提供的示例185:包括上述示例184,其中,所述前通孔的形状为多角形、圆形、椭圆形、正方形、长方形、梯形、或菱形。
186.本发明提供的示例186:包括上述示例184或185,其中,所述前通孔的孔径为0.1-3毫米。
187.本发明提供的示例187:包括上述示例180至186中的任一项,其中,所述第二电极呈多层网状、网状、孔板状、管状、桶状、球笼状、盒状、板状、颗粒堆积层状、折弯板状、或面板状。
188.本发明提供的示例188:包括上述示例180至187中的任一项,其中,所述第二电极上设有后通孔。
189.本发明提供的示例189:包括上述示例188,其中,所述后通孔呈多角形、圆形、椭圆形、正方形、长方形、梯形、或菱形。
190.本发明提供的示例190:包括上述示例188或189,其中,所述后通孔的孔径为0.1-3毫米。
191.本发明提供的示例191:包括上述示例180至190中的任一项,其中,所述第二电极由导电物质制成。
192.本发明提供的示例192:包括上述示例180至191中的任一项,其中,所述第二电极的表面具有导电物质。
193.本发明提供的示例193:包括上述示例180至192中的任一项,其中,所述第一电极和第二电极之间具有电凝电场,所述电凝电场为点面电场、线面电场、网面电场、点桶电场、线桶电场、或网桶电场中的一种或多种电场的组合。
194.本发明提供的示例194:包括上述示例180至193中的任一项,其中,所述第一电极呈线状,所述第二电极呈面状。
195.本发明提供的示例195:包括上述示例180至194中的任一项,其中,所述第一电极垂直于第二电极。
196.本发明提供的示例196:包括上述示例180至195中的任一项,其中,所述第一电极与第二电极相平行。
197.本发明提供的示例197:包括上述示例180至196中的任一项,其中,所述第一电极呈曲线状或圆弧状。
198.本发明提供的示例198:包括上述示例180至197中的任一项,其中,所述第一电极和第二电极均呈面状,且所述第一电极与第二电极相平行。
199.本发明提供的示例199:包括上述示例180至198中的任一项,其中,所述第一电极采用金属丝网。
200.本发明提供的示例200:包括上述示例180至199中的任一项,其中,所述第一电极呈平面状或球面状。
201.本发明提供的示例201:包括上述示例180至200中的任一项,其中,所述第二电极呈曲面状或球面状。
202.本发明提供的示例202:包括上述示例180至201中的任一项,其中,所述第一电极呈点状、线状、或网状,所述第二电极呈桶状,所述第一电极位于第二电极的内部,且所述第一电极位于第二电极的中心对称轴上。
203.本发明提供的示例203:包括上述示例180至202中的任一项,其中,所述第一电极与电源的一个电极电性连接,所述第二电极与电源的另一个电极电性连接。
204.本发明提供的示例204:包括上述示例180至203中的任一项,其中,所述第一电极与电源的阴极电性连接,所述第二电极与电源的阳极电性连接
205.本发明提供的示例205:包括上述示例203或204,其中,所述电源的电压为5-50KV。
206.本发明提供的示例206:包括上述示例203至205中的任一项,其中,所述电源的电压小于起始起晕电压。
207.本发明提供的示例207:包括上述示例203至206中的任一项,其中,所述电源的电压为0.1kv/mm-2kv/mm。
208.本发明提供的示例208:包括上述示例203至207中的任一项,其中,所述电源的电压波形为直流波形、正弦波、或调制波形。
209.本发明提供的示例209:包括上述示例203至208中的任一项,其中,所述电源为交流电源,所述电源的变频脉冲范围为0.1Hz-5GHz。
210.本发明提供的示例210:包括上述示例180至209中的任一项,其中,所述第一电极和第二电极均沿左右方向延伸,所述第一电极的左端位于第二电极的左端的左方。
211.本发明提供的示例211:包括上述示例180至210中的任一项,其中,所述第二电极有两个,所述第一电极位于两个第二电极之间。
212.本发明提供的示例212:包括上述示例180至211中的任一项,其中,所述第一电极和第二电极之间的距离为5-50毫米。
213.本发明提供的示例213:包括上述示例180至212中的任一项,其中,所述第一电极和第二电极构成吸附单元,且所述吸附单元有多个。
214.本发明提供的示例214:包括上述示例213,其中,全部吸附单元沿左右方向、前后方向、斜向、或螺旋方向中的一个方向或多个方向上进行分布。
215.本发明提供的示例215:包括上述示例180至214中的任一项,其中,还包括电凝壳体,所述电凝壳体包括电凝进口、电凝出口、及所述电凝流道,所述电凝流道的两端分别与电凝进口和电凝出口相连通。
216.本发明提供的示例216:包括上述示例215,其中,所述电凝进口呈圆形,且所述电凝进口的直径为300-1000mm、或500mm。
217.本发明提供的示例217:包括上述示例215或216,其中,所述电凝出口呈圆形,且所述电凝出口的直径为300-1000mm、或500mm。
218.本发明提供的示例218:包括上述示例215至217中的任一项,其中,所述电凝壳体包括由电凝进口至电凝出口方向依次分布的第一壳体部、第二壳体部、及第三壳体部,所述电凝进口位于第一壳体部的一端,所述电凝出口位于第三壳体部的一端。
219.本发明提供的示例219:包括上述示例218,其中,所述第一壳体部的轮廓大小由电凝进口至电凝出口方向逐渐增大。
220.本发明提供的示例220:包括上述示例218或219,其中,所述第一壳体部呈直管状。
221.本发明提供的示例221:包括上述示例218至220中的任一项,其中,所述第二壳体部呈直管状,且所述第一电极和第二电极安装在第二壳体部中。
222.本发明提供的示例222:包括上述示例218至221中的任一项,其中,所述第三壳体部的轮廓大小由电凝进口至电凝出口方向逐渐减小。
223.本发明提供的示例223:包括上述示例218至222中的任一项,其中,所述第一壳体部、第二壳体部、及第三壳体部的截面均呈矩形。
224.本发明提供的示例224:包括上述示例215至223中的任一项,其中,所述电凝壳体的材质为不锈钢、铝合金、铁合金、布、海绵、分子筛、活性炭、泡沫铁、或泡沫碳化硅。
225.本发明提供的示例225:包括上述示例180至224中的任一项,其中,所述第一电极通过电凝绝缘件与电凝壳体相连接。
226.本发明提供的示例226:包括上述示例225,其中,所述电凝绝缘件的材质为绝缘云母。
227.本发明提供的示例227:包括上述示例225或226,其中,所述电凝绝缘件呈柱状、或塔状。
228.本发明提供的示例228:包括上述示例180至227中的任一项,其中,所述第一电极 上设有呈圆柱形的前连接部,且所述前连接部与电凝绝缘件固接。
229.本发明提供的示例229:包括上述示例180至228中的任一项,其中,所述第二电极上设有呈圆柱形的后连接部,且所述后连接部与电凝绝缘件固接。
230.本发明提供的示例230:包括上述示例180至229中的任一项,其中,所述第一电极的截面面积与电凝流道的截面面积比为99%-10%、或90-10%、或80-20%、或70-30%、或60-40%、或50%。
231.本发明提供的示例231:包括上述示例179至230中的任一项,其中,所述脱硝装置包括冷凝单元,用于将臭氧处理后的尾气进行冷凝,实现气液分离。
232.本发明提供的示例232:包括上述示例179至231中的任一项,其中,所述脱硝装置包括淋洗单元,用于将臭氧处理后的尾气进行淋洗。
233.本发明提供的示例233:包括上述示例232,其中,所述脱硝装置还包括淋洗液单元,用于向所述淋洗单元提供淋洗液。
234.本发明提供的示例234:包括上述示例233,其中,所述淋洗液单元中淋洗液包括水和/或碱。
235.本发明提供的示例235:包括上述示例179至234中的任一项,其中,所述脱硝装置还包括脱硝液收集单元,用于存储尾气中脱除的硝酸水溶液和/或硝酸盐水溶液。
236.本发明提供的示例236:包括上述示例235,其中,当所述脱硝液收集单元中存储有硝酸水溶液时,所述脱硝液收集单元设有碱液加入单元,用于与硝酸形成硝酸盐。
237.本发明提供的示例237:包括上述示例145至236中的任一项,其中,所述尾气臭氧净化系统还包括臭氧消解器,用于消解经反应场处理后的尾气中的臭氧。
238.本发明提供的示例238:包括上述示例237,其中,所述臭氧消解器选自紫外线臭氧消解器和催化臭氧消解器中的至少一种。
239.本发明提供的示例239:包括上述示例145至238中的任一项,其中,所述尾气臭氧净化系统还包括第一脱硝装置,用于脱除尾气中氮氧化物;所述反应场用于将经所述第一脱硝装置处理后的尾气与臭氧流股混合反应,或者,用于将尾气在经所述第一脱硝装置处理前先与臭氧流股混合反应。
240.本发明提供的示例240:包括上述示例239,其中,所述第一脱硝装置选自非催化还原装置、选择性催化还原装置、非选择性催化还原装置和电子束脱硝装置中的至少一种。
241.本发明提供的示例241:包括上述示例1至240中的任一项,其中,还包括发动机。
242.本发明提供的示例242:一种发动机尾气电场除炭黑方法,包括以下步骤:
使含尘气体通过尾气除尘电场阳极和尾气除尘电场阴极产生的电离除尘电场;
电场积尘时,进行清理炭黑处理。
243.本发明提供的示例243:包括示例242的发动机尾气电场除炭黑方法,其中,利用电场反电晕放电现象完成清理炭黑处理。
244.本发明提供的示例244:包括示例242的发动机尾气电场除炭黑方法,其中,利用电场反电晕放电现象,增高电压,限制入注电流,完成清理炭黑处理。
245.本发明提供的示例245:包括示例242的发动机尾气电场除炭黑方法,其中,利用电场反电晕放电现象,增高电压,限制入注电流,使发生在阳极积尘位置的急剧放电产生等离子,所述等离子使清理炭黑有机成分深度氧化,高分子键断裂,形成小分子二氧化碳和水,完成清理炭黑处理。
246.本发明提供的示例246:包括示例242至245任一项的发动机尾气电场除炭黑方法,其中,当所述电场装置检测到电场电流增加到一个给定值,所述电场装置进行清尘处理。
247.本发明提供的示例247:包括示例242至246任一项的发动机尾气电场除炭黑方法,其中,所述除尘电场阴极包括至少一根电极棒。
248.本发明提供的示例248:包括示例247的发动机尾气电场除炭黑方法,其中,所述电极棒的直径不大于3mm。
249.本发明提供的示例249:包括示例247或248的发动机尾气电场除炭黑方法,其中,所述电极棒的形状呈针状、多角状、毛刺状、螺纹杆状或柱状。
250.本发明提供的示例250:包括示例242至249任一项的发动机尾气电场除炭黑方法,其中,所述除尘电场阳极由中空的管束组成。
251.本发明提供的示例251:包括示例250的发动机尾气电场除炭黑方法,其中,所述阳极管束的中空的截面采用圆形或多边形。
252.本发明提供的示例252:包括示例251的发动机尾气电场除炭黑方法,其中,所述多边形为六边形。
253.本发明提供的示例253:包括示例250至252任一项的发动机尾气电场除炭黑方法,其中,所述除尘电场阳极的管束呈蜂窝状。
254.本发明提供的示例254:包括示例242至253任一项的发动机尾气电场除炭黑方法,其中,所述除尘电场阴极穿射于所述除尘电场阳极内。
255.本发明提供的示例255:包括示例242至254任一项的发动机尾气电场除炭黑方法,其中,当检测到的电场电流增加到一个给定值时,进行清理炭黑处理。
256.本发明提供的示例256:一种减少发动机尾气除尘电场耦合的方法,包括以下步骤:
选择尾气除尘电场阳极参数或/和尾气除尘电场阴极参数以减少电场耦合次数。
257.本发明提供的示例257:包括示例256的减少发动机尾气除尘电场耦合的方法,其中,包括选择所述尾气除尘电场阳极的集尘面积与尾气除尘电场阴极的放电面积的比。
258.本发明提供的示例258:包括示例257的减少发动机尾气除尘电场耦合的方法,其中,包括选择所述尾气除尘电场阳极的积尘面积与所述尾气除尘电场阴极的放电面积的比为1.667:1-1680:1。
259.本发明提供的示例259:包括示例257的减少发动机尾气除尘电场耦合的方法,其中,包括选择所述尾气除尘电场阳极的积尘面积与所述尾气除尘电场阴极的放电面积的比为6.67:1-56.67:1。
260.本发明提供的示例260:包括示例256至259任一项的减少发动机尾气除尘电场耦合的方法,其中,所述尾气除尘电场阴极直径为1-3毫米,所述尾气除尘电场阳极与所述尾气除尘电场阴极的极间距为2.5-139.9毫米;所述尾气除尘电场阳极的积尘面积与所述尾气除尘电场阴极的放电面积的比为1.667:1-1680:1。
261.本发明提供的示例261:包括示例256至260任一项的减少发动机尾气除尘电场耦合的方法,其中,包括选择所述尾气除尘电场阳极和所述尾气除尘电场阴极的极间距小于150mm。
262.本发明提供的示例262:包括示例256至260任一项的减少发动机尾气除尘电场耦合的方法,其中,包括选择所述尾气除尘电场阳极与所述尾气除尘电场阴极的极间距为2.5-139.9mm。
263.本发明提供的示例263:包括示例256至260任一项的减少发动机尾气除尘电场耦合的方法,其中,包括选择所述尾气除尘电场阳极与所述尾气除尘电场阴极的极间距为5-100mm。
264.本发明提供的示例264:包括示例256至263任一项的减少发动机尾气除尘电场耦合的方法,其中,包括选择所述尾气除尘电场阳极长度为10-180mm。
265.本发明提供的示例265:包括示例256至263任一项的减少发动机尾气除尘电场耦合的方法,其中,包括选择所述尾气除尘电场阳极长度为60-180mm。
266.本发明提供的示例266:包括示例256至265任一项的减少发动机尾气除尘电场耦合的方法,其中,包括选择所述尾气除尘电场阴极长度为30-180mm。
267.本发明提供的示例267:包括示例256至265任一项的减少发动机尾气除尘电场耦合的方法,其中,包括选择所述尾气除尘电场阴极长度为54-176mm。
268.本发明提供的示例268:包括示例256至267任一项的减少发动机尾气除尘电场耦合的方法,其中,包括选择所述尾气除尘电场阴极包括至少一根电极棒。
269.本发明提供的示例269:包括示例268的减少发动机尾气除尘电场耦合的方法,其中,包括选择所述电极棒的直径不大于3mm。
270.本发明提供的示例270:包括示例268或269的减少发动机尾气除尘电场耦合的方法,其中,包括选择所述电极棒的形状呈针状、多角状、毛刺状、螺纹杆状或柱状。
271.本发明提供的示例271:包括示例256至270任一项的减少发动机尾气除尘电场耦合的方法,其中,包括选择所述尾气除尘电场阳极由中空的管束组成。
272.本发明提供的示例272:包括示例271的减少发动机尾气除尘电场耦合的方法,其中,包括选择所述阳极管束的中空的截面采用圆形或多边形。
273.本发明提供的示例273:包括示例272的减少发动机尾气除尘电场耦合的方法,其中,包括选择所述多边形为六边形。
274.本发明提供的示例274:包括示例271至273任一项的减少发动机尾气除尘电场耦合的方法,其中,包括选择所述尾气除尘电场阳极的管束呈蜂窝状。
275.本发明提供的示例275:包括示例256至274任一项的减少发动机尾气除尘电场耦合的方法,其中,包括选择所述尾气除尘电场阴极穿射于所述尾气除尘电场阳极内。
276.本发明提供的示例276:包括示例256至275任一项的减少发动机尾气除尘电场耦合的方法,其中,包括选择的所述尾气除尘电场阳极或/和尾气除尘电场阴极尺寸使电场耦合次数≤3。
277.本发明提供的示例277:一种发动机尾气除尘方法,包括以下步骤:尾气温度低于100℃时,脱除尾气中的液体水,然后电离除尘。
278.本发明提供的示例278:包括示例277的发动机尾气除尘方法,其中,尾气温度≥100℃时,对尾气进行电离除尘。
279.本发明提供的示例279:包括示例277或278的发动机尾气除尘方法,其中,尾气温度≤90℃时,脱除尾气中的液体水,然后电离除尘。
280.本发明提供的示例280:包括示例277或278的发动机尾气除尘方法,其中,尾气温度≤80℃时,脱除尾气中的液体水,然后电离除尘。
281.本发明提供的示例281:包括示例277或278的发动机尾气除尘方法,其中,尾气温度≤70℃时,脱除尾气中的液体水,然后电离除尘。
282.本发明提供的示例282:包括示例277或278的发动机尾气除尘方法,其中,采用电 凝除雾方法脱除尾气中的液体水,然后电离除尘。
283.本发明提供的示例283:一种发动机尾气除尘方法,包括以下步骤:在尾气电离除尘电场之前添加包括氧气的气体,进行电离除尘。
284.本发明提供的示例284:包括示例283的发动机尾气除尘方法,其中,通过单纯增氧、通入外界空气、通入压缩空气和/或通入臭氧的方式添加氧气。
285.本发明提供的示例285:包括示例283或284的发动机尾气除尘方法,其中,至少根据尾气颗粒含量决定补氧量。
286.本发明提供的示例286:一种发动机尾气除尘方法,包括如下步骤:
1)利用尾气电离除尘电场吸附尾气中的颗粒物;
2)利用尾气电离除尘电场给尾气驻极体元件充电。
287.本发明提供的示例287:包括示例286的发动机尾气除尘方法,其中,所述尾气驻极体元件靠近尾气电场装置出口,或者,所述尾气驻极体元件设于尾气电场装置出口。
288.本发明提供的示例288:包括示例286的发动机尾气除尘方法,其中,所述尾气除尘电场阳极和所述尾气除尘电场阴极形成尾气流道,所述尾气驻极体元件设于所述尾气流道中。
289.本发明提供的示例289:包括示例288的发动机尾气除尘方法,其中,所述尾气流道包括尾气流道出口,所述尾气驻极体元件靠近所述尾气流道出口,或者,所述尾气驻极体元件设于所述尾气流道出口。
290.本发明提供的示例290:包括示例283至289任一项的发动机尾气除尘方法,其中,当尾气电离除尘电场无上电驱动电压时,利用充电的尾气驻极体元件吸附尾气中的颗粒物。
291.本发明提供的示例291:包括示例289的发动机尾气除尘方法,其中,在充电的尾气驻极体元件吸附一定的尾气中的颗粒物后,将其替换为新的尾气驻极体元件。
292.本发明提供的示例292:包括示例291的发动机尾气除尘方法,其中,替换为新的尾气驻极体元件后重新启动尾气电离除尘电场吸附尾气中的颗粒物,并给新的尾气驻极体元件充电。
293.本发明提供的示例293:包括示例286至292任一项的发动机尾气除尘方法,其中,所述尾气驻极体元件的材料包括具有驻极性能的无机化合物。
294.本发明提供的示例294:包括示例293的发动机尾气除尘方法,其中,所述无机化合物选自含氧化合物、含氮化合物或玻璃纤维中的一种或多种组合。
295.本发明提供的示例295:包括示例294的发动机尾气除尘方法,其中,所述含氧化合物选自金属基氧化物、含氧复合物、含氧的无机杂多酸盐中的一种或多种组合。
296.本发明提供的示例296:包括示例295的发动机尾气除尘方法,其中,所述金属基氧化物选自氧化铝、氧化锌、氧化锆、氧化钛、氧化钡、氧化钽、氧化硅、氧化铅、氧化锡中的一种或多种组合。
297.本发明提供的示例297:包括示例295的发动机尾气除尘方法,其中,所述金属基氧化物为氧化铝。
298.本发明提供的示例298:包括示例295的发动机尾气除尘方法,其中,所述含氧复合物选自钛锆复合氧化物或钛钡复合氧化物中的一种或多种组合。
299.本发明提供的示例299:包括示例295的发动机尾气除尘方法,其中,所述含氧的无机杂多酸盐选自钛酸锆、锆钛酸铅或钛酸钡中的一种或多种组合。
300.本发明提供的示例300:包括示例294的发动机尾气除尘方法,其中,所述含氮化合物为氮化硅。
301.本发明提供的示例301:包括示例286至292任一项的发动机尾气除尘方法,其中,所述尾气驻极体元件的材料包括具有驻极性能的有机化合物。
302.本发明提供的示例302:包括示例301的发动机尾气除尘方法,其中,所述有机化合物选自氟聚合物、聚碳酸酯、PP、PE、PVC、天然蜡、树脂、松香中的一种或多种组合。
303.本发明提供的示例303:包括示例302的发动机尾气除尘方法,其中,所述氟聚合物选自聚四氟乙烯、聚全氟乙丙烯、可溶性聚四氟乙烯、聚偏氟乙烯中的一种或多种组合。
304.本发明提供的示例304:包括示例302的发动机尾气除尘方法,其中,所述氟聚合物为聚四氟乙烯。
图1为本发明尾气臭氧净化系统的示意图。
图2为本发明臭氧发生器用电极的示意图一。
图3为本发明臭氧发生器用电极的示意图二。
图4为现有技术中放电式臭氧发生器结构原理图。
图5为本发明实施例1尾气除尘系统的示意图。
图6为本发明实施例2尾气除尘系统的示意图。
图7为本发明发动机尾气处理系统中尾气处理装置于一实施例中的立体结构示意图。
图8为本发明发动机尾气处理系统中尾气处理装置呈伞状的尾气绝缘机构于一实施例中的结构示意图。
图9A为本发明发动机尾气处理系统中尾气处理装置的尾气均风装置的一种实施结构图。
图9B为本发明发动机尾气处理系统中尾气处理装置的尾气均风装置的另一种实施结构图。
图9C为本发明发动机尾气处理系统中尾气处理装置的尾气均风装置的又一种实施结构图。
图10为本发明实施例4尾气臭氧净化系统的示意图。
图11为本发明实施例4尾气臭氧净化系统中反应场的俯视图。
图12为本发明臭氧量控制装置的示意图。
图13为电场发生单元结构示意图。
图14为图13电场发生单元的A-A视图。
图15为标注长度和角度的图13电场发生单元的A-A视图。
图16为两个电场级的电场装置结构示意图。
图17为本发明实施例24中电场装置的结构示意图。
图18为本发明实施例26中电场装置的结构示意图。
图19为本发明实施例27中电场装置的结构示意图。
图20为本发明中实施例29中尾气除尘系统的结构示意图。
图21为本发明实施例29中叶轮涵道的结构示意图。
图22为本发明实施例30中电凝装置的结构示意图。
图23为本发明实施例30中电凝装置的左视图。
图24为本发明实施例30中电凝装置的立体图。
图25为本发明实施例31中电凝装置的结构示意图。
图26为本发明实施例31中电凝装置的俯视图。
图27为本发明实施例32中电凝装置的结构示意图。
图28为本发明实施例33中电凝装置的结构示意图。
图29为本发明实施例34中电凝装置的结构示意图。
图30为本发明实施例35中电凝装置的结构示意图。
图31为本发明实施例36中电凝装置的结构示意图。
图32为本发明实施例37中电凝装置的结构示意图。
图33为本发明实施例38中电凝装置的结构示意图。
图34为本发明实施例39中电凝装置的结构示意图。
图35为本发明实施例40中电凝装置的结构示意图。
图36为本发明实施例41中电凝装置的结构示意图。
图37为本发明实施例42中电凝装置的结构示意图。
图38为本发明实施例43中电凝装置的结构示意图。
图39为本发明实施例44中发动机尾气处理系统的结构示意图。
图40为本发明实施例45中发动机尾气处理系统的结构示意图。
图41为本发明实施例46中发动机尾气处理系统的结构示意图。
图42为本发明实施例47中发动机尾气处理系统的结构示意图。
图43为本发明实施例48中发动机尾气处理系统的结构示意图。
图44为本发明实施例49中发动机尾气处理系统的结构示意图。
图45为本发明实施例50中发动机尾气处理系统的结构示意图。
图46为本发明实施例51中发动机尾气处理系统的结构示意图。
图47为本发明实施例52中发动机尾气处理系统的结构示意图。
图48为本发明实施例53中尾气降温装置的结构示意图。
图49为本发明实施例54中尾气降温装置的结构示意图。
图50为本发明实施例55中尾气降温装置的结构示意图。
图51为本发明实施例55中换热单元的结构示意图。
图52为本发明实施例56中尾气降温装置的结构示意图。
图53为本发明是实施例59进气电场装置的示意图一。
图54为本发明实施例60进气电场装置的示意图二。
图55为本发明实施例60进气电场装置的俯视图。
图56为实施例60进气驻极体元件于进气流道中的横截面占进气流道横截面的示意图。
图57为本发明实施例61中电场装置的结构示意图。
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于 叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
根据本发明的一个方面,发动机尾气处理系统,包括尾气除尘系统和尾气臭氧净化系统。
于本发明一实施例中发动机尾气处理系统包括尾气除尘系统。尾气除尘系统与发动机的出口相连通。发动机排放的尾气将流经尾气除尘系统。
于本发明一实施例中,所述尾气除尘系统还包括除水装置,用于在尾气电场装置入口之前去除液体水。
于本发明一实施例中,当尾气温度或发动机温度低于一定温度时,发动机尾气中可能含有液体水,所述除水装置脱除尾气中的液体水。
于本发明一实施例中,所述一定温度在90℃以上、100℃以下。
于本发明一实施例中,所述一定温度在80℃以上、90℃以下。
于本发明一实施例中,所述一定温度为80℃以下。
于本发明一实施例中,所述除水装置为电凝装置。
本领域技术人员没有认识到如下技术问题:在尾气或发动机温度低时,尾气中会有液体水,吸附在尾气除尘电场阴极和尾气除尘电场阳极上,造成尾气电离除尘电场放电不均匀、打火,而本申请的发明人发现此问题,并提出尾气除尘系统设置除水装置,用于在尾气电场装置入口之前去除液体水,液体水具有导电性,会缩短电离距离,导致尾气电离除尘电场放电不均匀,易导致电极击穿。所述除水装置在发动机冷启动时,在尾气进入尾气电场装置入口之前脱除尾气中的水珠即液体水,从而减少尾气中的水珠即液体水,减少尾气电离除尘电场放电不均匀及尾气除尘电场阴极和尾气除尘电场阳极击穿,从而提高电离除尘效率,取得预料不到的技术效果。所述除水装置没有特别的限制,现有技术中能实现去除尾气中的液体水都适用本发明。
于本发明一实施例中,所述尾气除尘系统还包括补氧装置,用于在尾气电离除尘电场之前添加包括氧气的气体,比如空气。
于本发明一实施例中,所述补氧装置通过单纯增氧、通入外界空气、通入压缩空气和/或通入臭氧的方式添加氧气。
于本发明一实施例中,至少根据尾气颗粒含量决定补氧量。
本领域技术人员没有认识到如下技术问题:在某些情况下,尾气会没有足够的氧气产生足够的氧离子,造成除尘效果不好,即,本领域技术人员没有认识到发动机尾气中的氧气可能不足以支持有效电离,而本申请的发明人发现此问题,并提出本发明尾气除尘系统:包括补氧 装置,可以通过单纯增氧、通入外界空气、通入压缩空气和/或通入臭氧的方式添加氧气,提高进入尾气电离除尘电场尾气含氧量,从而当尾气流经尾气除尘电场阴极和尾气除尘电场阳极之间的尾气电离除尘电场时,增加电离的氧气,使得尾气中更多的粉尘荷电,进而在尾气除尘电场阳极的作用下将更多的荷电的粉尘收集起来,使得尾气电场装置的除尘效率更高,有利于尾气电离除尘电场收集尾气颗粒物,取得预料不到的技术效果,同时还取得新的技术效果:能起到降温的作用,增加电力系统效率,而且,补氧也会提高尾气电离除尘电场臭氧含量,有利于提高尾气电离除尘电场对尾气中有机物进行净化、自洁、脱硝等处理的效率。尾气均风
于本发明一实施例中尾气除尘系统可包括尾气均风装置。该尾气均风装置设置在尾气电场装置之前,能使进入尾气电场装置的气流均匀通过。
于本发明一实施例中尾气电场装置的尾气除尘电场阳极可为立方体,尾气均风装置可包括位于阴极支撑板一侧边的进气管、及位于阴极支撑板另一侧边的出气管,阴极支撑板位于尾气除尘电场阳极的进气端;其中,安装进气管的侧边与安装出气管的侧边相对立。尾气均风装置能使进入尾气电场装置的尾气均匀通过静电场。
于本发明一实施例中尾气除尘电场阳极可为圆柱体,尾气均风装置在所述尾气除尘系统入口与所述尾气除尘电场阳极和所述尾气除尘电场阴极形成的尾气电离除尘电场之间、且尾气均风装置包括若干围绕尾气电场装置入口中心旋转的均风叶片。尾气均风装置能够使各种变化的进气量均匀通过尾气除尘电场阳极产生的电场,同时,能够保持尾气除尘电场阳极内部温度恒定,氧气充足。尾气均风装置能使进入尾气电场装置的尾气均匀通过静电场。
于本发明一实施例中尾气均风装置包括设置于尾气除尘电场阳极的进气端的进风板和设置于尾气除尘电场阳极出气端的出风板,进风板上开设有进气孔,出风板上开设有出气孔,进气孔与出气孔错位排布,且正面进气、侧面出气,形成旋风结构。尾气均风装置能使进入尾气电场装置的尾气均匀通过静电场。
于本发明一实施例中尾气除尘可包括尾气除尘系统入口、尾气除尘系统出口和尾气电场装置。且于本发明一实施例中尾气电场装置可包括尾气电场装置入口、尾气电场装置出口、及位于尾气电场装置入口和尾气电场装置出口之间的尾气前置电极,当发动机排放的尾气由尾气电场装置入口流经尾气前置电极时,尾气中的颗粒物等将带电。
于本发明一实施例中尾气电场装置包括尾气前置电极,该尾气前置电极在均尾气除尘电场阳极和尾气除尘电场阴极形成的尾气电离除尘电场之间。当气体由尾气电场装置入口流经尾气前置电极时,气体中的颗粒物等将带电。
于本发明一实施例中尾气前置电极的形状可以为点状、线状、网状、孔板状、板状、针棒状、球笼状、盒状、管状、物质自然形态、或物质加工形态。当尾气前置电极为有孔结构时,尾气前置电极上设有一个或多个尾气通孔。于本发明一实施例中尾气通孔的形状可以为多角形、圆形、椭圆形、正方形、长方形、梯形、或菱形。于本发明一实施例中尾气通孔的轮廓大小可以为0.1~3mm、0.1~0.2mm、0.2~0.5mm、0.5~1mm、1~1.2mm、1.2~1.5mm、1.5~2mm、2~2.5mm、2.5~2.8mm、或2.8~3mm。
于本发明一实施例中尾气前置电极的形态可以为固体、液体、气体分子团、等离子体、导电混合态物质、生物体自然混合导电物质、或物体人工加工形成导电物质中的一种或多种形态的组合。当尾气前置电极为固体时,可采用固态金属,比如304钢,或其它固态的导体、比如石墨等。当尾气前置电极为液体时,可以是含离子导电液体。
在工作时,在带污染物的气体进入尾气除尘电场阳极和尾气除尘电场阴极形成的尾气电离除尘电场之前,且带污染物的气体通过尾气前置电极时,尾气前置电极使气体中的污染物带电。当带污染物的气体进入尾气电离除尘电场时,尾气除尘电场阳极给带电的污染物施加吸引力,使污染物向尾气除尘电场阳极移动,直至污染物附着在尾气除尘电场阳极上。
于本发明一实施例中尾气前置电极将电子导入污染物,电子在位于尾气前置电极和尾气除尘电场阳极之间的污染物之间进行传递,使更多污染物带电。尾气前置电极和尾气除尘电场阳极之间通过污染物传导电子、并形成电流。
于本发明一实施例中尾气前置电极通过与污染物接触的方式使污染物带电。于本发明一实施例中尾气前置电极通过能量波动的方式使污染物带电。于本发明一实施例中尾气前置电极通过与污染物接触的方式将电子转移到污染物上,并使污染物带电。于本发明一实施例中尾气前置电极通过能量波动的方式将电子转移到污染物上,并使污染物带电。
于本发明一实施例中尾气前置电极呈线状,尾气除尘电场阳极呈面状。于本发明一实施例中尾气前置电极垂直于尾气除尘电场阳极。于本发明一实施例中尾气前置电极与尾气除尘电场阳极相平行。于本发明一实施例中尾气前置电极呈曲线状或圆弧状。于本发明一实施例中尾气前置电极采用金属丝网。于本发明一实施例中尾气前置电极与尾气除尘电场阳极之间的电压不同于尾气除尘电场阴极和尾气除尘电场阳极之间的电压。于本发明一实施例中尾气前置电极与尾气除尘电场阳极之间的电压小于起始起晕电压。起始起晕电压为尾气除尘电场阴极和尾气除尘电场阳极之间的电压的最小值。于本发明一实施例中尾气前置电极与尾气除尘电场阳极之间的电压可以为0.1-2kv/mm。
于本发明一实施例中尾气电场装置包括尾气流道,尾气前置电极位于尾气流道中。于本 发明一实施例中尾气前置电极的截面面积与尾气流道的截面面积比为99%~10%、或90~10%、或80~20%、或70~30%、或60~40%、或50%。尾气前置电极的截面面积是指尾气前置电极沿截面上实体部分的面积之和。于本发明一实施例中尾气前置电极带负电势。
于本发明一实施例中当尾气通过尾气电场装置入口流入尾气流道中,尾气中导电性较强的金属粉尘、雾滴、或气溶胶等污染物在与尾气前置电极相接触时,或与尾气前置电极的距离达到一定范围时会直接带负电,随后,全部污染物随气流进入尾气电离除尘电场,尾气除尘电场阳极给已带负电的金属粉尘、雾滴、或气溶胶等施加吸引力,使已带负电的污染物向尾气除尘电场阳极移动,直至该部分污染物附着在尾气除尘电场阳极上,实现将该部分污染物收集起来,同时,尾气除尘电场阳极与尾气除尘电场阴极之间形成的尾气电离除尘电场通过电离气体中的氧获得氧离子,且带负电荷的氧离子在与普通粉尘结合后,使普通粉尘带负电荷,尾气除尘电场阳极给该部分带负电荷的粉尘等污染物施加吸引力,使粉尘等污染物向尾气除尘电场阳极移动,直至该部分污染物附着在尾气除尘电场阳极上,实现将该部分普通粉尘等污染物也收集起来,从而将尾气中导电性较强和导电性较弱的污染物均收集起来,并使得尾气除尘电场阳极能收集尾气中污染物的种类更广泛,且收集能力更强,收集效率更高。
于本发明一实施例中尾气电场装置入口与发动机的出口相连通。
于本发明一实施例中尾气电场装置可包括尾气除尘电场阴极和尾气除尘电场阳极,尾气除尘电场阴极与尾气除尘电场阳极之间形成电离除尘电场。尾气进入电离除尘电场,尾气中的氧离子将被电离,并形成大量带有电荷的氧离子,氧离子与尾气中粉尘等颗粒物结合,使得颗粒物荷电,尾气除尘电场阳极给带负电荷的颗粒物施加吸附力,使得颗粒物被吸附在尾气除尘电场阳极上,以清除掉尾气中的颗粒物。
于本发明一实施例中尾气除尘电场阴极包括若干根阴极丝。阴极丝的直径可为0.1mm-20mm,该尺寸参数根据应用场合及积尘要求做调整。于本发明一实施例中阴极丝的直径不大于3mm。于本发明一实施例中阴极丝使用容易放电的金属丝或合金丝,耐温且能支撑自身重量,电化学稳定。于本发明一实施例中阴极丝的材质选用钛。阴极丝的具体形状根据尾气除尘电场阳极的形状调整,例如,若尾气除尘电场阳极的积尘面是平面,则阴极丝的截面呈圆形;若尾气除尘电场阳极的积尘面是圆弧面,阴极丝需要设计成多面形。阴极丝的长度根据尾气除尘电场阳极进行调整。
于本发明一实施例中尾气除尘电场阴极包括若干阴极棒。于本发明一实施例中阴极棒的直径不大于3mm。于本发明一实施例中阴极棒使用容易放电的金属棒或合金棒。阴极棒的形状可以为针状、多角状、毛刺状、螺纹杆状或柱状等。阴极棒的形状可以根据尾气除尘电场 阳极的形状进行调整,例如,若尾气除尘电场阳极的积尘面是平面,则阴极棒的截面需要设计成圆形;若尾气除尘电场阳极的积尘面是圆弧面,则阴极棒需要设计成多面形。
于本发明一实施例中尾气除尘电场阴极穿设于尾气除尘电场阳极内。
于本发明一实施例中尾气除尘电场阳极包括一个或多个并行设置的中空阳极管。当中空阳极管有多个时,全部中空阳极管构成蜂窝状的尾气除尘电场阳极。于本发明一实施例中中空阳极管的截面可呈圆形或多边形。若中空阳极管的截面呈圆形,尾气除尘电场阳极和尾气除尘电场阴极之间能形成均匀电场,中空阳极管的内壁不容易积尘。若中空阳极管的截面为三边形时,中空阳极管的内壁上可以形成3个积尘面,3个远角容尘角,此种结构的中空阳极管的容尘率最高。若中空阳极管的截面为四边形,可以获得4个积尘面,4个容尘角,但拼组结构不稳定。若中空阳极管的截面为六边形,可以形成6个积尘面,6个容尘角,积尘面和容尘率达到平衡。若中空阳极管的截面呈更多边形时,可以获得更多的积尘边,但损失容尘率。于本发明一实施例中中空阳极管的管内切圆直径取值范围为5mm-400mm。
于本发明一实施例中尾气除尘电场阴极安装在阴极支撑板上,阴极支撑板与尾气除尘电场阳极通过尾气绝缘机构相连接。于本发明一实施例中尾气除尘电场阳极包括第三阳极部和第四阳极部,即所述第三阳极部靠近尾气电场装置入口,第四阳极部靠近尾气电场装置出口。阴极支撑板和尾气绝缘机构在第三阳极部和第四阳极部之间,即尾气绝缘机构安装在电离电场中间、或尾气除尘电场阴极中间,可以对尾气除尘电场阴极起到良好的支撑作用,并对尾气除尘电场阴极起到相对于尾气除尘电场阳极的固定作用,使尾气除尘电场阴极和尾气除尘电场阳极之间保持设定的距离。而现有技术中,阴极的支撑点在阴极的端点,难以保持阴极和阳极之间的距离。于本发明一实施例中尾气绝缘机构设置在除尘流道外、即第二级流道外,以防止或减少尾气中的灰尘等聚集在尾气绝缘机构上,导致尾气绝缘机构击穿或导电。
于本发明一实施例中尾气绝缘机构采用耐高压陶瓷绝缘子,对尾气除尘电场阴极和尾气除尘电场阳极之间进行绝缘。尾气除尘电场阳极也称作一种外壳。
于本发明一实施例中第三阳极部在气体流动方向上位于阴极支撑板和尾气绝缘机构之前,第三阳极部能够除去尾气中的水,防止水进入尾气绝缘机构,造成尾气绝缘机构短路、打火。另外,第三阳级部能够除去尾气中相当一部分的灰尘,当尾气通过尾气绝缘机构时,相当一部分的灰尘已被消除,减少灰尘造成尾气绝缘机构短路的可能性。于本发明一实施例中尾气绝缘机构包括绝缘瓷柱。第三阳极部的设计,主要是为了保护绝缘瓷柱不被气体中颗粒物等污染,一旦气体污染绝缘瓷柱将会造成尾气除尘电场阳极和尾气除尘电场阴极导通,从而使尾气除尘电场阳极的积尘功能失效,故第三阳极部的设计,能有效减少绝缘瓷柱被污染,提 高产品的使用时间。在尾气流经第二级流道过程中,第三阳极部和尾气除尘电场阴极先接触具有污染性的气体,尾气绝缘机构后接触气体,达到先除尘后经过尾气绝缘机构的目的,减少对尾气绝缘机构造成的污染,延长清洁维护周期,对应电极使用后绝缘支撑。于本发明一实施例中,所述第三阳极部的长度是足够的长,以清除部分灰尘,减少积累在所述尾气绝缘机构和所述阴极支撑板上的灰尘,减少灰尘造成的电击穿。于本发明一实施例中第三阳极部长度占尾气除尘电场阳极总长度的1/10至1/4、1/4至1/3、1/3至1/2、1/2至2/3、2/3至3/4,或3/4至9/10。
于本发明一实施例中第四阳极部在尾气流动方向上位于阴极支撑板和尾气绝缘机构之后。第四阳极部包括积尘段和预留积尘段。其中,积尘段利用静电吸附尾气中的颗粒物,该积尘段是为了增加积尘面积,延长尾气电场装置的使用时间。预留积尘段能为积尘段提供失效保护。预留积尘段是为了在满足设计除尘要求的前提下,进一步提高积尘面积。预留积尘段作为补充前段积尘使用。于本发明一实施例中预留积尘段和第三阳极部可使用不同的电源。
于本发明一实施例中由于尾气除尘电场阴极和尾气除尘电场阳极之间存在极高电位差,为了防止尾气除尘电场阴极和尾气除尘电场阳极导通,尾气绝缘机构设置在尾气除尘电场阴极和尾气除尘电场阳极之间的第二级流道之外。因此,尾气绝缘机构外悬于尾气除尘电场阳极的外侧。于本发明一实施例中尾气绝缘机构可采用非导体耐温材料,比如陶瓷、玻璃等。于本发明一实施例中,完全密闭无空气的材料绝缘要求绝缘隔离厚度>0.3mm/kv;空气绝缘要求>1.4mm/kv。可根据尾气除尘电场阴极和尾气除尘电场阳极之间的极间距的1.4倍设置绝缘距离。于本发明一实施例中尾气绝缘机构使用陶瓷,表面上釉;不能使用胶粘或有机材料填充连接,耐温大于350摄氏度。
于本发明一实施例中尾气绝缘机构包括绝缘部和隔热部。为了使尾气绝缘机构具有抗污功能,绝缘部的材料采用陶瓷材料或玻璃材料。于本发明一实施例中绝缘部可为伞状串陶瓷柱或玻璃柱,伞内外挂釉。伞状串陶瓷柱或玻璃柱的外缘与尾气除尘电场阳极的距离大于电场距离的1.4倍、即大于极间距的1.4倍。伞状串陶瓷柱或玻璃柱的伞突边间距总和大于伞状串陶瓷柱的绝缘间距的1.4倍。伞状串陶瓷柱或玻璃柱的伞边内深总长大于伞状串陶瓷柱的绝缘距离1.4倍。绝缘部还可为柱状串陶瓷柱或玻璃柱,柱内外挂釉。于本发明一实施例中绝缘部还可呈塔状。
于本发明一实施例中,绝缘部内设置加热棒,当绝缘部周围温度接近露点时,加热棒启动并进行加热。由于使用中绝缘部的内外存在温差,绝缘部的内外、外部容易产生凝露。绝缘部的外表面可能自发或被气体加热产生高温,需要必要的隔离防护,防烫伤。隔热部包括 位于第二绝缘部外部的防护围挡板、脱硝净化反应腔。于本发明一实施例中绝缘部的尾部需要凝露位置同样需要隔热,防止环境以及散热高温加热凝露组件。
于本发明一实施例中尾气电场装置的电源的引出线使用伞状串陶瓷柱或玻璃柱过墙式连接,墙内使用弹性碰头连接阴极支撑板,墙外使用密闭绝缘防护接线帽插拔连接,引出线过墙导体与墙绝缘距离大于伞状串陶瓷柱或玻璃柱的陶瓷绝缘距离。于本发明一实施例中高压部分取消引线,直接安装在端头上,确保安全,高压模块整体外绝缘使用ip68防护,使用介质换热散热。
于本发明一实施例中尾气除尘电场阴极和尾气除尘电场阳极之间采用非对称结构。在对称电场中极性粒子受到一个相同大小而方向相反的作用力,极性粒子在电场中往复运动;在非对称电场中,极性粒子受到两个大小不同的作用力,极性粒子向作用力大的方向移动,可以避免产生耦合。
本发明的尾气电场装置的尾气除尘电场阴极和尾气除尘电场阳极之间形成电离除尘电场。为了减少所述电离除尘电场的电场耦合,于本发明一实施例中,减少电场耦合的方法包括如下步骤:选择尾气除尘电场阳极的集尘面积与尾气除尘电场阴极的放电面积的比,使电场耦合次数≤3。于本发明一实施例中尾气除尘电场阳极的集尘面积与尾气除尘电场阴极的放电面积的比可以为:1.667:1-1680:1;3.334:1-113.34:1;6.67:1-56.67:1;13.34:1-28.33:1。该实施例选择相对大面积的尾气除尘电场阳极的集尘面积和相对极小的尾气除尘电场阴极的放电面积,具体选择上述面积比,可以减少尾气除尘电场阴极的放电面积,减小吸力,扩大尾气除尘电场阳极的集尘面积,扩大吸力,即尾气除尘电场阴极和尾气除尘电场阳极间产生不对称的电极吸力,使荷电后粉尘落入尾气除尘电场阳极的集尘表面,虽极性改变但无法再被尾气除尘电场阴极吸走,减少电场耦合,实现电场耦合次数≤3。即在电场极间距小于150mm时电场耦合次数≤3,电场能耗低,能够减少电场对气溶胶、水雾、油雾、松散光滑颗粒物的耦合消耗,节省电场电能30~50%。集尘面积是指尾气除尘电场阳极工作面的面积,比如,若尾气除尘电场阳极呈中空的正六边形管状,集尘面积即为中空的正六边形管状的内表面积,集尘面积也称作积尘面积。放电面积指尾气除尘电场阴极工作面的面积,比如,若尾气除尘电场阴极呈棒状,放电面积即为棒状的外表面积。
于本发明一实施例中尾气除尘电场阳极的长度可以为10~180mm、10~20mm、20~30mm、60~180mm、30~40mm、40~50mm、50~60mm、60~70mm、70~80mm、80~90mm、90~100mm、100~110mm、110~120mm、120~130mm、130~140mm、140~150mm、150~160mm、160~170mm、170~180mm、60mm、180mm、10mm或30mm。尾气除尘电场阳极的长度是指尾气除尘电场 阳极工作面的一端至另一端的最小长度。尾气除尘电场阳极选择此种长度,可以有效减少电场耦合。
于本发明一实施例中尾气除尘电场阳极的长度可以为10~90mm、15~20mm、20~25mm、25~30mm、30~35mm、35~40mm、40~45mm、45~50mm、50~55mm、55~60mm、60~65mm、65~70mm、70~75mm、75~80mm、80~85mm或85~90mm,此种长度的设计可以使尾气除尘电场阳极及尾气电场装置具有耐高温特性,并使得尾气电场装置在高温冲击下具有高效率的集尘能力。
于本发明一实施例中尾气除尘电场阴极的长度可以为30~180mm、54~176mm、30~40mm、40~50mm、50~54mm、54~60mm、60~70mm、70~80mm、80~90mm、90~100mm、100~110mm、110~120mm、120~130mm、130~140mm、140~150mm、150~160mm、160~170mm、170~176mm、170~180mm、54mm、180mm、或30mm。尾气除尘电场阴极的长度是指尾气除尘电场阴极工作面的一端至另一端的最小长度。尾气除尘电场阴极选择此种长度,可以有效减少电场耦合。
于本发明一实施例中尾气除尘电场阴极的长度可以为10~90mm、15~20mm、20~25mm、25~30mm、30~35mm、35~40mm、40~45mm、45~50mm、50~55mm、55~60mm、60~65mm、65~70mm、70~75mm、75~80mm、80~85mm或85~90mm,此种长度的设计可以使尾气除尘电场阴极及尾气电场装置具有耐高温特性,并使得尾气电场装置在高温冲击下具有高效率的集尘能力。其中,当电场温度为200℃时,对应的集尘效率为99.9%;电场温度为400℃时,对应的集尘效率为90%;当电场温度为500℃时,对应的集尘效率为50%。
于本发明一实施例中尾气除尘电场阳极和尾气除尘电场阴极之间的距离可以为5~30mm、2.5~139.9mm、9.9~139.9mm、2.5~9.9mm、9.9~20mm、20~30mm、30~40mm、40~50mm、50~60mm、60~70mm、70~80mm、80~90mm、90~100mm、100~110mm、110~120mm、120~130mm、130~139.9mm、9.9mm、139.9mm、或2.5mm。尾气除尘电场阳极和尾气除尘电场阴极之间的距离也称作极间距。极间距具体是指尾气除尘电场阳极、尾气除尘电场阴极工作面之间的最小垂直距离。此种极间距的选择可以有效减少电场耦合,并使尾气电场装置具有耐高温特性。
鉴于电离除尘的特有性能,电离除尘可适用去除气体中的颗粒物,例如可用于去除发动机尾气中的颗粒物。但是,经过许多大学、研究机构、企业的多年研究,现有电场除尘装置仍然不适合在车辆中使用。首先,现有技术中的电场除尘装置体积过于庞大,较难安装在车辆中。其次,重要的是,现有技术中电场除尘装置只能去除约70%的颗粒物,不能满足许多国家的排放标准。
本发明的发明人研究发现,现有技术中电场除尘装置的缺点是由电场耦合引起的。本发 明通过减小电场耦合次数,可以显著减小电场除尘装置的尺寸(即体积)。比如,本发明提供的电离除尘装置的尺寸约为现有电离除尘装置尺寸的五分之一。原因是,为了获得可接受的颗粒去除率,现有电离除尘装置中将气体流速设为1m/s左右,而本发明在将气体流速提高到6m/s的情况下,仍能获得较高的颗粒去除率。当处理一给定流量的气体时,随着气体速度的提高,电场除尘装置的尺寸可以减小。
另外,本发明可以显著提高颗粒去除效率。例如,在气体流速为1m/s左右时,现有技术电场除尘装置可以去除发动机排气中大约70%的颗粒物,但是本发明可以去除大约99%的颗粒物,即使在气体流速为6m/s时。因此,本发明可以满足最新的排放标准。
由于发明人发现了电场耦合的作用,并且找到了减少电场耦合次数的方法,本发明获得了上述预料不到的结果。所以,本发明可以用来制造适用于车辆的电场除尘装置。
尾气除尘电场阳极和尾气除尘电场阴极之间的电离除尘电场也称作第三电场。于本发明一实施例中尾气除尘电场阳极和尾气除尘电场阴极之间还形成有与第三电场不平行的第四电场。于本发明另一实施例中,所述第四电场与所述电离除尘电场的流道不垂直。第四电场也称作辅助电场,可以通过一个或两个第二辅助电极形成。当第四电场由一个第二辅助电极形成时,该第二辅助电极可以放在电离电场的进口或出口,该第二辅助电极可以带负电势、或正电势。其中,当所述第二辅助电极为阴极时,设置在或靠近所述电离除尘电场的进口;所述第二辅助电极与所述尾气除尘电场阳极具有夹角α,且0°<α≤125°、或45°≤α≤125°、或60°≤α≤100°、或α=90°。当所述第二辅助电极为阳极时,设置在或靠近所述电离除尘电场的出口;所述第二辅助电极与所述尾气除尘电场阴极具有夹角α,且0°<α≤125°、或45°≤α≤125°、或60°≤α≤100°、或α=90°。当第四电场由两个第二辅助电极形成时,其中一个第二辅助电极可以带负电势,另一个第二辅助电极可以带正电势;一个第二辅助电极可以放在电离除尘电场的进口,另一个第二辅助电极放在电离除尘电场的出口。另外,第二辅助电极可以是尾气除尘电场阴极或尾气除尘电场阳极的一部分,即第二辅助电极可以是由尾气除尘电场阴极或尾气除尘电场阳极的延伸段构成,此时尾气除尘电场阴极和尾气除尘电场阳极的长度不一样。第二辅助电极也可以是一个单独的电极,也就是说第二辅助电极可以不是尾气除尘电场阴极或尾气除尘电场阳极的一部分,此时,第四电场的电压和第三电场的电压不一样,可以根据工作状况单独地控制。
第四电场能给尾气除尘电场阳极和尾气除尘电场阴极之间带负电荷的氧离子流施加朝向电离电场的出口的力,使得尾气除尘电场阳极和尾气除尘电场阴极之间带负电荷的氧离子流具有向出口的移动速度。在尾气流入电离电场,并向电离电场的出口方向流动过程中,带负 电荷的氧离子也在向尾气除尘电场阳极且向电离电场的出口方向移动,且带负电荷的氧离子在向尾气除尘电场阳极且向电离电场的出口移动过程中将与尾气中的颗粒物等相结合,由于氧离子具有向出口的移动速度,氧离子在与颗粒物相结合时,两者间不会产生较强的碰撞,从而避免因较强碰撞而造成较大的能量消耗,保证氧离子易于与颗粒物相结合,并使得气体中的颗粒物的荷电效率更高,进而在尾气除尘电场阳极的作用下,能将更多的颗粒物收集起来,保证尾气电场装置的除尘效率更高。尾气电场装置对顺离子流方向进入电场的颗粒物的收集率比对逆离子流方向进入电场的颗粒物的收集率提高近一倍,从而提高电场的积尘效率,减少电场电耗。另外,现有技术中集尘电场的除尘效率较低的主要原因也是粉尘进入电场方向与电场内离子流方向相反或垂直交叉,从而导致粉尘与离子流相互冲撞剧烈并产生较大能量消耗,同时也影响荷电效率,进而使现有技术中电场集尘效率下降,且能耗增加。尾气电场装置在收集气体中的粉尘时,气体及粉尘顺离子流方向进入电场,粉尘荷电充分,电场消耗小;单极电场集尘效率会达到99.99%。当尾气及粉尘逆离子流方向进入电场,粉尘荷电不充分,电场电耗也会增加,集尘效率会在40%-75%。于本发明一实施例中尾气电场装置形成的离子流有利于无动力风扇流体输送、增氧、或热量交换等。
随着,尾气除尘电场阳极持续收集尾气中的颗粒物等,颗粒物等在尾气除尘电场阳极上堆积并形成碳黑,且碳黑厚度不断增加,使极间距减小。于本发明一实施例中,待检测到电场电流增加,利用电场反电晕放电现象,配合增高电压,限制入注电流,使发生在积碳位置急剧放电产生大量等离子,这些低温等离子使碳黑中有机成分深度氧化,高分子键断裂,形成小分子二氧化碳和水,完成碳黑清洁。由于空气中的氧气同时参与电离,形成臭氧,臭氧分子团同时扑捉沉积的油污分子团,加速油污分子中碳氢键断裂,使部分油分子碳化,以达到尾气挥发份净化目的。另外,碳黑清洁是利用等离子体来达到常规清洗方法无法达到的效果。等离子体是物质的一种状态,也叫做物质的第四态,并不属于常见的固、液、气三态。对气体施加足够的能量使之离化便成为等离子状态。等离子体的“活性”组分包括:离子、电子、原子、活性基团、激发态的核素(亚稳态)、光子等。于本发明一实施例中,当电场积尘时,所述尾气电场装置检测电场电流,采用以下任一方式实现碳黑清洁:
(1)当电场电流增加到一个给定值,所述尾气电场装置增高电场电压。
(2)当电场电流增加到一个给定值,所述尾气电场装置利用电场反电晕放电现象完成碳黑清洁。
(3)当电场电流增加到一个给定值,所述尾气电场装置利用电场反电晕放电现象,增高电压,限制入注电流,完成碳黑清洁。
(4)当电场电流增加到一个给定值,所述尾气电场装置利用电场反电晕放电现象,增高电压,限制入注电流,使发生在阳极积碳位置的急剧放电产生等离子,所述等离子使碳黑有机成分深度氧化,高分子键断裂,形成小分子二氧化碳和水,完成碳黑清洁。
于本发明一实施例中尾气除尘电场阳极和尾气除尘电场阴极分别与电源的两个电极电性连接。加载在尾气除尘电场阳极和尾气除尘电场阴极上的电压需选择适当的电压等级,具体选择何种电压等级取决于尾气电场装置的体积、耐温、容尘率等。例如,电压从1kv至50kv;设计时首先考虑耐温条件,极间距与温度的参数:1MM<30度,积尘面积大于0.1平方/千立方米/小时,电场长度大于单管内切圆的5倍,控制电场气流流速小于9米/秒。于本发明一实施例中尾气除尘电场阳极由第二中空阳极管构成、并呈蜂窝状。第二中空阳极管端口的形状可以为圆形或多边形。于本发明一实施例中第二中空阳极管的管内切圆取值范围在5-400mm,对应电压在0.1-120kv之间,第二中空阳极管对应电流在0.1-30A之间;不同的内切圆对应不同的电晕电压,约为1KV/1MM。
于本发明一实施例中尾气电场装置包括第二电场级,该第二电场级包括若干个第二电场发生单元,第二电场发生单元可以有一个或多个。第二电场发生单元也称作第二集尘单元,第二集尘单元包括上述尾气除尘电场阳极和尾气除尘电场阴极,第二集尘单元有一个或多个。第二电场级有多个时,能有效提高尾气电场装置的集尘效率。同一第二电场级中,各尾气除尘电场阳极为相同极性,各尾气除尘电场阴极为相同极性。且第二电场级有多个时,各第二电场级之间串联。于本发明一实施例中尾气电场装置还包括若干个连接壳体,串联第二电场级通过连接壳体连接;相邻两级的第二电场级的距离大于极间距的1.4倍。
于本发明一实施例中用电场充电驻极体材料。尾气电场装置有故障时,充电驻极体材料会用来除尘。
于本发明一实施例中,所述尾气电场装置包括尾气驻极体元件。
于本发明一实施例中,所述尾气驻极体元件设于所述尾气除尘电场阳极内。
于本发明一实施例中,所述尾气除尘电场阳极和所述尾气除尘电场阴极接通电源时,所述尾气驻极体元件在所述尾气电离除尘电场中。
于本发明一实施例中,所述尾气驻极体元件靠近尾气电场装置出口,或者,所述尾气驻极体元件设于尾气电场装置出口。
于本发明一实施例中,所述尾气除尘电场阳极和所述尾气除尘电场阴极形成尾气流道,所述尾气驻极体元件设于所述尾气流道中。
于本发明一实施例中,所述尾气流道包括尾气流道出口,所述尾气驻极体元件靠近所述 尾气流道出口,或者,所述尾气驻极体元件设于所述尾气流道出口。
于本发明一实施例中,所述尾气驻极体元件于所述尾气流道中的横截面占尾气流道横截面5%~100%。
于本发明一实施例中,所述尾气驻极体元件于所述尾气流道中的横截面占尾气流道横截面10%-90%、20%-80%、或40%-60%。
于本发明一实施例中,所述尾气电离除尘电场给所述尾气驻极体元件充电。
于本发明一实施例中,所述尾气驻极体元件具有多孔结构。
于本发明一实施例中,所述尾气驻极体元件为织品。
于本发明一实施例中,所述尾气除尘电场阳极内部为管状,所述尾气驻极体元件外部为管状,所述尾气驻极体元件外部套设于所述尾气除尘电场阳极内部。
于本发明一实施例中,所述尾气驻极体元件与所述尾气除尘电场阳极为可拆卸式连接。
于本发明一实施例中,所述尾气驻极体元件的材料包括具有驻极性能的无机化合物。所述驻极性能是指尾气驻极体元件在外接电源充电后带有电荷,并在完全脱离电源的条件下,依然保持有一定的电荷,从而作为电极起到电场电极作用的能力。
于本发明一实施例中,所述无机化合物选自含氧化合物、含氮化合物或玻璃纤维中的一种或多种组合。
于本发明一实施例中,所述含氧化合物选自金属基氧化物、含氧复合物、含氧的无机杂多酸盐中的一种或多种组合。
于本发明一实施例中,所述金属基氧化物选自氧化铝、氧化锌、氧化锆、氧化钛、氧化钡、氧化钽、氧化硅、氧化铅、氧化锡中的一种或多种组合。
于本发明一实施例中,所述金属基氧化物为氧化铝。
于本发明一实施例中,所述含氧复合物选自钛锆复合氧化物或钛钡复合氧化物中的一种或多种组合。
于本发明一实施例中,所述含氧的无机杂多酸盐选自钛酸锆、锆钛酸铅或钛酸钡中的一种或多种组合。
于本发明一实施例中,所述含氮化合物为氮化硅。
于本发明一实施例中,所述尾气驻极体元件的材料包括具有驻极性能的有机化合物。所述驻极性能是指尾气驻极体元件在外接电源充电后带有电荷,并在完全脱离电源的条件下,依然保持有一定的电荷,从而作为电极起到电场电极作用的能力。
于本发明一实施例中,所述有机化合物选自氟聚合物、聚碳酸酯、PP、PE、PVC、天然 蜡、树脂、松香中的一种或多种组合。
于本发明一实施例中,所述氟聚合物选自聚四氟乙烯(PTFE)、聚全氟乙丙烯(Teflon-FEP)、可溶性聚四氟乙烯(PFA)、聚偏氟乙烯(PVDF)中的一种或多种组合。
于本发明一实施例中,所述氟聚合物为聚四氟乙烯。
在上电驱动电压条件下产生尾气电离除尘电场,利用尾气电离除尘电场电离部分待处理物,吸附待处理物中的颗粒物,同时向尾气驻极体元件进行充电,当尾气电场装置出现故障时即无上电驱动电压时,充电的尾气驻极体元件产生电场,利用充电的尾气驻极体元件产生的电场吸附待处理物中的颗粒物,即在尾气电离除尘电场出现故障情况下仍然可以进行颗粒物的吸附。
一种尾气除尘方法,包括以下步骤:尾气温度低于100℃时,脱除尾气中的液体水,然后电离除尘。
于本发明一实施例中,尾气温度≥100℃时,对尾气进行电离除尘。
于本发明一实施例中,尾气温度≤90℃时,脱除尾气中的液体水,然后电离除尘。
于本发明一实施例中,尾气温度≤80℃时,脱除尾气中的液体水,然后电离除尘。
于本发明一实施例中,尾气温度≤70℃时,脱除尾气中的液体水,然后电离除尘。
于本发明一实施例中,采用电凝除雾方法脱除尾气中的液体水,然后电离除尘。
一种尾气除尘方法,包括以下步骤:在尾气电离除尘电场之前添加包括氧气的气体,进行电离除尘。
于本发明一实施例中,通过单纯增氧、通入外界空气、通入压缩空气和/或通入臭氧的方式添加氧气。
于本发明一实施例中,至少根据尾气颗粒含量决定补氧量。
对于尾气系统,于本发明一实施例中,本发明提供一种电场除尘方法,包括以下步骤:
使含尘气体通过除尘电场阳极和除尘电场阴极产生的电离除尘电场;
电场积尘时,进行清尘处理。
于本发明一实施例中,当检测到的电场电流增加到一个给定值时,进行清尘处理。
于本发明一实施例中,当电场积尘时,通过以下任一方式进行灰尘清洁:
(1)利用电场反电晕放电现象完成清尘处理。
(2)利用电场反电晕放电现象,增高电压,限制入注电流,完成清尘处理。
(3)利用电场反电晕放电现象,增高电压,限制入注电流,使发生在阳极积尘位置的急剧放电产生等离子,所述等离子使灰尘有机成分深度氧化,高分子键断裂,形成小分子二氧 化碳和水,完成清尘处理。
优选地,所述灰尘为炭黑。
于本发明一实施例中,所述除尘电场阴极包括若干根阴极丝。阴极丝的直径可为0.1mm-20mm,该尺寸参数根据应用场合及积尘要求做调整。于本发明一实施例中阴极丝的直径不大于3mm。于本发明一实施例中阴极丝使用容易放电的金属丝或合金丝,耐温且能支撑自身重量,电化学稳定。于本发明一实施例中阴极丝的材质选用钛。阴极丝的具体形状根据除尘电场阳极的形状调整,例如,若除尘电场阳极的积尘面是平面,则阴极丝的截面呈圆形;若除尘电场阳极的积尘面是圆弧面,阴极丝需要设计成多面形。阴极丝的长度根据除尘电场阳极进行调整。
于本发明一实施例中,所述除尘电场阴极包括若干阴极棒。于本发明一实施例中,所述阴极棒的直径不大于3mm。于本发明一实施例中阴极棒使用容易放电的金属棒或合金棒。阴极棒的形状可以为针状、多角状、毛刺状、螺纹杆状或柱状等。阴极棒的形状可以根据除尘电场阳极的形状进行调整,例如,若除尘电场阳极的积尘面是平面,则阴极棒的截面需要设计成圆形;若除尘电场阳极的积尘面是圆弧面,则阴极棒需要设计成多面形。
于本发明一实施例中,除尘电场阴极穿设于除尘电场阳极内。
于本发明一实施例中,除尘电场阳极包括一个或多个并行设置的中空阳极管。当中空阳极管有多个时,全部中空阳极管构成蜂窝状的除尘电场阳极。于本发明一实施例中,中空阳极管的截面可呈圆形或多边形。若中空阳极管的截面呈圆形,除尘电场阳极和除尘电场阴极之间能形成均匀电场,中空阳极管的内壁不容易积尘。若中空阳极管的截面为三边形时,中空阳极管的内壁上可以形成3个积尘面,3个远角容尘角,此种结构的中空阳极管的容尘率最高。若中空阳极管的截面为四边形,可以获得4个积尘面,4个容尘角,但拼组结构不稳定。若中空阳极管的截面为六边形,可以形成6个积尘面,6个容尘角,积尘面和容尘率达到平衡。若中空阳极管的截面呈更多边形时,可以获得更多的积尘边,但损失容尘率。于本发明一实施例中,中空阳极管的管内切圆直径取值范围为5mm-400mm。
对于尾气系统,于一实施例中,本发明提供一种减少尾气除尘电场耦合的方法,包括以下步骤:
使尾气通过尾气除尘电场阳极和尾气除尘电场阴极产生的尾气电离除尘电场;
选择所述尾气除尘电场阳极或/和尾气除尘电场阴极。
于本发明一实施例中,选择的所述尾气除尘电场阳极或/和尾气除尘电场阴极尺寸使电场耦合次数≤3。
具体地,选择所述尾气除尘电场阳极的集尘面积与尾气除尘电场阴极的放电面积的比。优选地,选择所述尾气除尘电场阳极的积尘面积与所述尾气除尘电场阴极的放电面积的比为1.667:1-1680:1。
更为优选地,选择所述尾气除尘电场阳极的积尘面积与所述尾气除尘电场阴极的放电面积的比为6.67:1-56.67:1。
于本发明一实施例中,所述尾气除尘电场阳极与所述尾气除尘电场阴极的相对距离根据温度进行调整;其中温度对应调整范围为20-72毫米对应120-200摄氏度。
优选地,选择所述尾气除尘电场阳极和所述尾气除尘电场阴极的极间距小于150mm。
优选地,选择所述尾气除尘电场阳极与所述尾气除尘电场阴极的极间距为2.5~139.9mm。更为优选地,选择所述尾气除尘电场阳极与所述尾气除尘电场阴极的极间距为5.0~100mm。
优选地,选择所述尾气除尘电场阳极长度为10~180mm。更为优选地,选择所述尾气除尘电场阳极长度为60~180mm。
优选地,选择所述尾气除尘电场阴极长度为30~180mm。更为优选地,选择所述尾气除尘电场阴极长度为54~176mm。
于本发明一实施例中,所述尾气除尘电场阴极包括若干根阴极丝。阴极丝的直径可为0.1mm-20mm,该尺寸参数根据应用场合及积尘要求做调整。于本发明一实施例中阴极丝的直径不大于3mm。于本发明一实施例中阴极丝使用容易放电的金属丝或合金丝,耐温且能支撑自身重量,电化学稳定。于本发明一实施例中阴极丝的材质选用钛。阴极丝的具体形状根据尾气除尘电场阳极的形状调整,例如,若尾气除尘电场阳极的积尘面是平面,则阴极丝的截面呈圆形;若尾气除尘电场阳极的积尘面是圆弧面,阴极丝需要设计成多面形。阴极丝的长度根据尾气除尘电场阳极进行调整。
于本发明一实施例中,所述尾气除尘电场阴极包括若干阴极棒。于本发明一实施例中,所述阴极棒的直径不大于3mm。于本发明一实施例中阴极棒使用容易放电的金属棒或合金棒。阴极棒的形状可以为针状、多角状、毛刺状、螺纹杆状或柱状等。阴极棒的形状可以根据尾气除尘电场阳极的形状进行调整,例如,若尾气除尘电场阳极的积尘面是平面,则阴极棒的截面需要设计成圆形;若尾气除尘电场阳极的积尘面是圆弧面,则阴极棒需要设计成多面形。
于本发明一实施例中,尾气除尘电场阴极穿设于尾气除尘电场阳极内。
于本发明一实施例中,尾气除尘电场阳极包括一个或多个并行设置的中空阳极管。当中空阳极管有多个时,全部中空阳极管构成蜂窝状的除尘电场阳极。于本发明一实施例中,中空阳极管的截面可呈圆形或多边形。若中空阳极管的截面呈圆形,尾气除尘电场阳极和尾气 除尘电场阴极之间能形成均匀电场,中空阳极管的内壁不容易积尘。若中空阳极管的截面为三边形时,中空阳极管的内壁上可以形成3个积尘面,3个远角容尘角,此种结构的中空阳极管的容尘率最高。若中空阳极管的截面为四边形,可以获得4个积尘面,4个容尘角,但拼组结构不稳定。若中空阳极管的截面为六边形,可以形成6个积尘面,6个容尘角,积尘面和容尘率达到平衡。若中空阳极管的截面呈更多边形时,可以获得更多的积尘边,但损失容尘率。于本发明一实施例中,中空阳极管的管内切圆直径取值范围为5mm-400mm。
一种尾气除尘方法,包括如下步骤:
1)利用尾气电离除尘电场吸附尾气中的颗粒物;
2)利用尾气电离除尘电场给尾气驻极体元件充电。
于本发明一实施例中,所述尾气驻极体元件靠近尾气电场装置出口,或者,所述尾气驻极体元件设于尾气电场装置出口。
于本发明一实施例中,所述尾气除尘电场阳极和所述尾气除尘电场阴极形成尾气流道,所述尾气驻极体元件设于所述尾气流道中。
于本发明一实施例中,所述尾气流道包括尾气流道出口,所述尾气驻极体元件靠近所述尾气流道出口,或者,所述尾气驻极体元件设于所述尾气流道出口。
于本发明一实施例中,当尾气电离除尘电场无上电驱动电压时,利用充电的尾气驻极体元件吸附尾气中的颗粒物。
于本发明一实施例中,在充电的尾气驻极体元件吸附一定的尾气中的颗粒物后,将其替换为新的尾气驻极体元件。
于本发明一实施例中,替换为新的尾气驻极体元件后重新启动尾气电离除尘电场吸附尾气中的颗粒物,并给新的尾气驻极体元件充电。
于本发明一实施例中,所述尾气驻极体元件的材料包括具有驻极性能的无机化合物。所述驻极性能是指尾气驻极体元件在外接电源充电后带有电荷,并在完全脱离电源的条件下,依然保持有一定的电荷,从而作为电极起到电场电极作用的能力。
于本发明一实施例中,所述无机化合物选自含氧化合物、含氮化合物或玻璃纤维中的一种或多种组合。
于本发明一实施例中,所述含氧化合物选自金属基氧化物、含氧复合物、含氧的无机杂多酸盐中的一种或多种组合。
于本发明一实施例中,所述金属基氧化物选自氧化铝、氧化锌、氧化锆、氧化钛、氧化钡、氧化钽、氧化硅、氧化铅、氧化锡中的一种或多种组合。
于本发明一实施例中,所述金属基氧化物为氧化铝。
于本发明一实施例中,所述含氧复合物选自钛锆复合氧化物或钛钡复合氧化物中的一种或多种组合。
于本发明一实施例中,所述含氧的无机杂多酸盐选自钛酸锆、锆钛酸铅或钛酸钡中的一种或多种组合。
于本发明一实施例中,所述含氮化合物为氮化硅。
于本发明一实施例中,所述尾气驻极体元件的材料包括具有驻极性能的有机化合物。所述驻极性能是指尾气驻极体元件在外接电源充电后带有电荷,并在完全脱离电源的条件下,依然保持有一定的电荷,从而作为电极起到电场电极作用的能力。
于本发明一实施例中,所述有机化合物选自氟聚合物、聚碳酸酯、PP、PE、PVC、天然蜡、树脂、松香中的一种或多种组合。
于本发明一实施例中,所述氟聚合物选自聚四氟乙烯(PTFE)、聚全氟乙丙烯(Teflon-FEP)、可溶性聚四氟乙烯(PFA)、聚偏氟乙烯(PVDF)中的一种或多种组合。
于本发明一实施例中,所述氟聚合物为聚四氟乙烯。
于本发明一实施例中,所述发动机尾气处理系统包括尾气臭氧净化系统。
于本发明一实施例中,所述尾气臭氧净化系统包括反应场,用于将臭氧流股与尾气流股混合反应。例如:所述尾气臭氧净化系统可以用于处理汽车发动机210的尾气,利用尾气中的水以及尾气管道220,产生氧化反应,将尾气中的有机挥发份氧化为二氧化碳和水;硫、硝等无害化收集。所述尾气臭氧净化系统还可以包括外置的臭氧发生器230,通过臭氧输送管240给尾气管道220提供臭氧,如图1所示,图中箭头方向为尾气流动方向。
臭氧流股与尾气流股的摩尔比可为2~10,如5~6、5.5~6.5、5~7、4.5~7.5、4~8、3.5~8.5、3~9、2.5~9.5、2~10。
本发明一实施例可以采用不同方式获得臭氧。比如,延面放电产生臭氧为管式、板式放电部件和交流高压电源组成,利用静电吸附粉尘、除水、富氧后的空气进入放电通道,空气氧被电离产生臭氧、高能离子、高能粒子,通过正压或负压通入反应场如尾气通道中。使用管式延面放电结构,放电管内和外层放电管外都通入一冷却液,在管内电极和外管导体间形成电极,电极间通入18kHz、10kV高压交流电,外管内壁和内管外壁面产生高能电离,氧气被电离,产生臭氧。臭氧使用正压送入反应场如尾气通道。臭氧流股与尾气流股的摩尔比为2时,VOCs去除率50%;臭氧流股与尾气流股的摩尔比为5时,VOCs去除率95%以上,然后氮氧化合物气体浓度下降,氮氧化合物去除率90%;臭氧流股与尾气流股的摩尔比大于10 时,VOCs去除率99%以上,然后氮氧化合物气体浓度下降,氮氧化合物去除率99%。电耗增加到30w/克。
紫外线灯管产生臭氧为气体放电产生11-195纳米波长紫外线,直接辐照灯管周围空气,产生生臭氧、高能离子、高能粒子,通过正压或负压通入反应场如尾气通道中。使用172纳米波长和185纳米波长紫外放电管,通过点亮灯管,在灯管外壁的气体中氧气被电离,产生大量氧离子,结合为臭氧。通过正压送入反应场如尾气通道。使用185纳米紫外线臭氧流股与尾气流股的摩尔比为2时,VOCs去除率40%;185纳米紫外线臭氧流股与尾气流股的摩尔比为5时,VOCs去除率85%以上,然后氮氧化合物气体浓度下降,氮氧化合物去除率70%;185纳米紫外线臭氧流股与尾气流股的摩尔比大于10时,VOCs去除率95%以上,然后氮氧化合物气体浓度下降,氮氧化合物去除率95%。电耗25w/克。
使用172纳米紫外线臭氧流股与尾气流股的摩尔比为2时,VOCs去除率45%;172纳米紫外线臭氧流股与尾气流股的的摩尔比为5时,VOCs去除率89%以上,然后氮氧化合物气体浓度下降,氮氧化合物去除率75%;172纳米紫外线臭氧流股与尾气流股的的摩尔比大于10时,VOCs去除率97%以上,然后氮氧化合物气体浓度下降,氮氧化合物去除率95%。电耗22w/克。
于本发明一实施例中,所述反应场包括管道和/或反应器。
于本发明一实施例中,所述反应场还包括如下技术特征中的至少一项:
1)管道直径为100-200毫米;
2)管道长度大于管道直径0.1倍;
3)所述反应器选自如下至少一种:
反应器一:所述反应器具有反应腔室,尾气与臭氧在所述反应腔室混合并反应;
反应器二:所述反应器包括若干蜂窝状腔体,用于提供尾气与臭氧混合并反应的空间;所述蜂窝状腔体内之间设有间隙,用于通入冷态介质,控制尾气与臭氧的反应温度;
反应器三:所述反应器包括若干载体单元,所述载体单元提供反应场地(例如蜂窝结构的介孔陶瓷体载体),没有载体单元时为气相中反应,有载体单元时则为界面反应,加快反应时间;
反应器四:所述反应器包括催化剂单元,所述催化剂单元用于促进尾气的氧化反应;
1)所述反应场设有臭氧进口,所述臭氧进口选自喷口、喷格栅、喷嘴、旋流喷嘴、设有文丘里管的喷口中的至少一种;设有文丘里管的喷口:所述文丘里管设于喷口中,采用文丘里原理混入臭氧;
2)所述反应场设有臭氧进口,所述臭氧通过所述臭氧进口进入反应场与尾气进行接触,臭氧进口的设置形成如下方向中至少一种:与尾气流动的方向相反、与尾气流动的方向垂直、与尾气流动的方向相切、插入尾气流动方向、多个方向与尾气进行接触;所述与尾气流动的方向相反即为反方向进入,增加反应时间,减少体积;所述与尾气流动的方向垂直,使用文氏效应;与尾气流动的方向相切,便于混合;插入尾气流动方向,克服漩涡流;多个方向,克服重力。
于本发明一实施例中,所述反应场包括排气管、蓄热体装置或催化器,臭氧可对蓄热体、催化剂、陶瓷体清洁再生。
于本发明一实施例中,所述反应场的温度为-50~200℃,可以为60~70℃,50~80℃、40~90℃、30~100℃、20~110℃、10~120℃、0~130℃、-10~140℃、-20~150℃、-30~160℃、-40~170℃、-50~180℃、-180~190℃或190~200℃。
于本发明一实施例中,所述反应场的温度为60~70℃。
于本发明一实施例中,所述尾气臭氧净化系统还包括臭氧源,用于提供臭氧流股。所述臭氧流股可以为臭氧发生器即时生成也可以为存储的臭氧。所述反应场可以与臭氧源流体连通,臭氧源所提供的臭氧流股可以被引入反应场中,从而可以与尾气流股混合,使尾气流股经受氧化处理。
于本发明一实施例中,所述臭氧源包括存储臭氧单元和/或臭氧发生器。所述臭氧源可以包括臭氧引入管道,还可以包括臭氧发生器,所述臭氧发生器可以是包括但不限于电弧臭氧发生器即延面放电臭氧发生器、工频电弧臭氧发生器、高频感应臭氧发生器、低气压臭氧发生器、紫外线臭氧发生器、电解液臭氧发生器、化学药剂臭氧发生器、射线辐照粒子发生器等中的一种或多种的组合。
于本发明一实施例中,所述臭氧发生器包括延面放电臭氧发生器、工频电弧臭氧发生器、高频感应臭氧发生器、低气压臭氧发生器、紫外线臭氧发生器、电解液臭氧发生器、化学药剂臭氧发生器和射线辐照粒子发生器中的一种或多种的组合。
于本发明一实施例中,所述臭氧发生器包括电极,所述电极上设有催化剂层,所述催化剂层包括氧化催化键裂解选择性催化剂层。
于本发明一实施例中,所述电极包括高压电极或设有阻挡介质层的高压电极,当所述电极包括高压电极时,所述氧化催化键裂解选择性催化剂层250设于所述高压电极260表面上(如图2所示),当所述电极包括阻挡介质层270的高压电极260时,所述氧化催化键裂解选择性催化剂层250设于阻挡介质层270的表面上(如图3所示)。
高压电极是指电压高于500V的直流或交流电极。电极是指用做导电介质(固体、气体、真空或电解质溶液)中输入或导出电流的极板。输入电流的一极叫阳极或正极,放出电流的一极叫阴极或负极。
放电式臭氧产生机理主要为物理(电学)方法。放电式臭氧发器也有很多类型,但其基本原理就是利用高电压产生电场,再利用电场的电能削弱乃至打断氧气的双键,生成臭氧。现有的放电式臭氧发生器结构原理图如图4所示,该放电式臭氧发生器包括高压交流电源280、高压电极260、阻挡介质层270、气隙290、地极291。在高压电场作用下,气隙290中的氧气分子的双氧键被电能打断,产生臭氧。但利用电场能量产生臭氧是有极限的,目前行业标准要求每kg臭氧的电耗不超过8kWh,行业平均水平7.5kWh左右。
于本发明一实施例中,所述阻挡介质层选自陶瓷板、陶瓷管、石英玻璃板、石英板和石英管中的至少一种。所述陶瓷板、陶瓷管可以为氧化铝、氧化锆、氧化硅等氧化物或其复合氧化物的陶瓷板、陶瓷管。
于本发明一实施例中,当所述电极包括高压电极时,所述氧化催化键裂解选择性催化剂层的厚度为1~3mm,该氧化催化键裂解选择性催化剂层兼作阻挡介质,如1~1.5mm或1.5~3mm;当所述电极包括阻挡介质层的高压电极时,所述氧化催化键裂解选择性催化剂层的负载量包括阻挡介质层的1~12wt%,如1~5wt%或5~12wt%。
于本发明一实施例中,所述氧化催化键裂解选择性催化剂层包括如下重量百分比的各组分:
活性组分 5~15%,如5~8%、8~10%、10~12%、12~14%或14~15%;
涂层 85~95%,如85~86%、86~88%、88~90%、90~92%或92~95%;
其中,所述活性组分选自金属M和金属元素M的化合物中的至少一种,金属元素M选自碱土金属元素、过渡金属元素、第四主族金属元素、贵金属元素和镧系稀土元素中的至少一种;
所述涂层选自氧化铝、氧化铈、氧化锆、氧化锰、金属复合氧化物、多孔材料和层状材料中的至少一种,所述金属复合氧化物包括铝、铈、锆和锰中一种或多种金属的复合氧化物。
于本发明一实施例中,所述碱土金属元素选自镁、锶和钙中的至少一种。
于本发明一实施例中,所述过渡金属元素选自钛、锰、锌、铜、铁、镍、钴、钇和锆中的至少一种。
于本发明一实施例中,所述第四主族金属元素为锡。
于本发明一实施例中,所述贵金属元素选自铂、铑、钯、金、银和铱中的至少一种。
于本发明一实施例中,所述镧系稀土元素选自镧、铈、镨和钐中的至少一种。
于本发明一实施例中,所述金属元素M的化合物选自氧化物、硫化物、硫酸盐、磷酸盐、碳酸盐,以及钙钛矿中的至少一种。
于本发明一实施例中,所述多孔材料选自分子筛、硅藻土、沸石和纳米碳管中的至少一种。多孔材料孔隙率为60%以上,如60~80%,比表面积为300-500平方米/克,平均孔径为10-100纳米。
于本发明一实施例中,所述层状材料选自石墨烯和石墨中的至少一种。
所述氧化催化键裂解选择性催化剂层将化学和物理方法相结合,降低、削弱甚至直接打断双氧键,充分发挥和利用电场和催化的协同作用,达到大幅度提高臭氧产生速率和产生量的目的,以本发明的臭氧发生器与现有的放电式臭氧发生器相比,同样条件臭氧产生量提高10~30%、产生速率提高10~20%。
于本发明一实施例中,所述尾气臭氧净化系统还包括臭氧量控制装置,用于控制臭氧量以致有效氧化尾气中待处理的气体组分,所述臭氧量控制装置包括控制单元。
于本发明一实施例中,所述臭氧量控制装置还包括臭氧处理前尾气组分检测单元,用于检测臭氧处理前尾气组分含量。
于本发明一实施例中,所述控制单元根据所述臭氧处理前尾气组分含量控制混合反应所需臭氧量。
于本发明一实施例中,所述臭氧处理前尾气组分检测单元选自以下检测单元中至少一个:
第一挥发性有机化合物检测单元,用于检测臭氧处理前尾气中挥发性有机化合物含量,如挥发性有机化合物传感器等;
第一CO检测单元,用于检测臭氧处理前尾气中CO含量,如CO传感器等;
第一氮氧化物检测单元,用于检测臭氧处理前尾气中氮氧化物含量,如氮氧化物(NO
x)传感器等。
于本发明一实施例中,所述控制单元根据至少一个所述臭氧处理前尾气组分检测单元的输出值控制混合反应所需臭氧量。
于本发明一实施例中,所述控制单元用于按照预设的数学模型控制混合反应所需臭氧量。所述预设的数学模型与臭氧处理前尾气组分含量相关,通过上述含量及尾气组分与臭氧的反应摩尔比来确定混合反应所需臭氧量,确定混合反应所需臭氧量时可增加臭氧量,使臭氧过量。
于本发明一实施例中,所述控制单元用于按照理论估计值控制混合反应所需臭氧量。
于本发明一实施例中,所述理论估计值为:臭氧通入量与尾气中待处理物的摩尔比为2~10。例如:13L柴油发动机可控制臭氧通入量为300~500g;2L汽油发动机可控制臭氧通入量为5~20g。
于本发明一实施例中,所述臭氧量控制装置包括臭氧处理后尾气组分检测单元,用于检测臭氧处理后尾气组分含量。
于本发明一实施例中,所述控制单元根据所述臭氧处理后尾气组分含量控制混合反应所需臭氧量。
于本发明一实施例中,所述臭氧处理后尾气组分检测单元选自以下检测单元中至少一个:
第一臭氧检测单元,用于检测臭氧处理后尾气中臭氧含量;
第二挥发性有机化合物检测单元,用于检测臭氧处理后尾气中挥发性有机化合物含量;
第二CO检测单元,用于检测臭氧处理后尾气中CO含量;
第二氮氧化物检测单元,用于检测臭氧处理后尾气中氮氧化物含量。
于本发明一实施例中,所述控制单元根据至少一个所述臭氧处理后尾气组分检测单元的输出值控制臭氧量。
于本发明一实施例中,所述尾气臭氧净化系统还包括脱硝装置,用于脱除臭氧流股与尾气流股混合反应产物中的硝酸。
于本发明一实施例中,所述脱硝装置包括电凝装置,所述电凝装置包括:电凝流道、位于电凝流道中的第一电极、及第二电极。
于本发明一实施例中,所述脱硝装置包括冷凝单元,用于将臭氧处理后的尾气进行冷凝,实现气液分离。
于本发明一实施例中,所述脱硝装置包括淋洗单元,用于将臭氧处理后的尾气进行淋洗,例如:水和/或碱进行淋洗。
于本发明一实施例中,所述脱硝装置还包括淋洗液单元,用于向所述淋洗单元提供淋洗液。
于本发明一实施例中,所述淋洗液单元中淋洗液包括水和/或碱。
于本发明一实施例中,所述脱硝装置还包括脱硝液收集单元,用于存储尾气中脱除的硝酸水溶液和/或硝酸盐水溶液。
于本发明一实施例中,当所述脱硝液收集单元中存储有硝酸水溶液时,所述脱硝液收集单元设有碱液加入单元,用于与硝酸形成硝酸盐。
于本发明一实施例中,所述尾气臭氧净化系统还包括臭氧消解器,用于消解经反应场处 理后的尾气中的臭氧。所述臭氧消解器可以通过紫外线,催化等方式进行臭氧消解。
于本发明一实施例中,所述臭氧消解器选自紫外线臭氧消解器和催化臭氧消解器中的至少一种。
于本发明一实施例中,所述尾气臭氧净化系统还包括第一脱硝装置,用于脱除尾气中氮氧化物;所述反应场用于将经所述第一脱硝装置处理后的尾气与臭氧流股混合反应,或者,用于将尾气在经所述第一脱硝装置处理前先与臭氧流股混合反应。
所述第一脱硝装置可以为现有技术中实现脱硝的装置,例如:非催化还原装置(如氨气脱硝)、选择性催化还原装置(SCR:氨气加催化剂脱硝)、非选择性催化还原装置(SNCR)和电子束脱硝装置等中的至少一种。所述第一脱硝装置处理后发动机尾气中氮氧化物(NO
x)含量不达标,在所述第一脱硝装置处理后或者处理前的尾气与臭氧流股混合反应可达到最新标准。
于本发明一实施例中,所述第一脱硝装置选自非催化还原装置、选择性催化还原装置、非选择性催化还原装置和电子束脱硝装置中的至少一种。
本领域技术人员基于现有技术认为:臭氧处理发动机尾气中氮氧化物NO
X时,氮氧化物NO
X被臭氧氧化成高价态氮氧化物如NO
2、N
2O
5和NO
3等,所述高价态氮氧化物还是气体,仍然不能从发动机尾气中脱除,即臭氧处理发动机尾气中氮氧化物NO
X无效,但是,本申请人却发现臭氧和尾气中氮氧化物反应产生的高价态氮氧化物并不是最后的产物,高价态氮氧化物会和水反应产生硝酸,硝酸则更容易从发动机尾气中脱除,比如使用电凝和冷凝,该效果对所属技术领域的技术人员来说是预料不到的。该预料不到的技术效果是因为本领域技术人员没有认识到臭氧还会和发动机尾气中的VOC反应产生足够水和高价氮氧化物反应产生硝酸。
用臭氧来处理发动机尾气时,臭氧最优先与挥发性有机化合物VOC反应,被氧化成CO
2和水,然后再与氮氧化合物NO
X,被氧化成高价态氮氧化物如NO
2、N
2O
5和NO
3等,最后再与一氧化碳CO反应,被氧化成CO
2,即反应优先顺序为挥发性有机化合物VOC>氮氧化合物NO
X>一氧化碳CO,而且尾气中有足够的挥发性有机化合物VOC产生足够的水可以充分与高价态氮氧化物反应生成硝酸,因此,用臭氧来处理发动机尾气使得臭氧除NO
X效果更好,该效果对所属技术领域的技术人员来说是预料不到的技术效果。
臭氧处理发动机尾气可达到如下脱除效果:氮氧化物NO
X脱除效率:60~99.97%;一氧化碳CO脱除效率:1~50%;挥发性有机化合物VOC脱除效率:60~99.97%,对所属技术领域的技术人员来说是预料不到的技术效果。
所述高价态氮氧化物与挥发性有机化合物VOC被氧化得到的水反应得到的硝酸更易脱除且脱除得到的硝酸可回收利用,例如可以通过本发明的电凝装置脱除硝酸、也可以通过现有技术中脱除硝酸的方法例如碱洗脱除硝酸。本发明电凝装置包括第一电极和第二电极,含硝酸水雾流经第一电极时,含硝酸水雾将带电,第二电极给带电的含硝酸水雾施加吸引力,含硝酸水雾向第二电极移动,直至含硝酸水雾附着在第二电极上,然后再进行收集,本发明电凝装置对含硝酸水雾的收集能力更强、收集效率更高。
尾气电离除尘时空气中的氧气参与电离,形成臭氧,尾气电离除尘系统与尾气臭氧净化系统结合后,电离形成的臭氧可用于氧化尾气中的污染物,如氮氧化合物NO
X、挥发性有机化合物VOC、一氧化碳CO,即电离形成的臭氧可被臭氧处理NO
X用来处理污染物,氧化氮氧化合物NO
X的同时还会氧化挥发性有机化合物VOC、一氧化碳CO,节省臭氧处理NO
X的臭氧消耗量,而且也不需要再增加除臭氧机构对电离形成的臭氧进行消解,不会造成温室效应,破坏大气中的紫外线,可见,尾气电离除尘装置尾气电场系统与尾气臭氧净化系统结合后,在功能上彼此支持,并取得了新的技术效果:电离形成的臭氧被尾气臭氧净化系统用来处理污染物,节省臭氧处理污染物的臭氧消耗量,而且也不需要再增加除臭氧机构对电离形成的臭氧进行消解,不会造成温室效应,破坏大气中的紫外线,具有突出的实质性特点和显著的进步。
一种尾气臭氧净化方法,包括如下步骤:将臭氧流股与尾气流股混合反应。
于本发明一实施例中,所述尾气流股包括氮氧化物和挥发性有机化合物。所述尾气流股可以是发动机尾气,所述发动机通常是将燃料的化学能转化为机械能的装置,具体可以是内燃机等,更具体可以是如柴油发动机尾气等。所述尾气流股中氮氧化物(NO
x)与臭氧流股混合反应,被氧化成高价态的氮氧化物如NO
2、N
2O
5和NO
3等。所述尾气流股中挥发性有机化合物(VOC)与臭氧流股混合反应,被氧化成CO
2和水。所述高价态的氮氧化物与挥发性有机化合物(VOC)被氧化得到的水反应得到硝酸。经过上述反应,尾气流股中的氮氧化物(NO
x)得以脱除,以硝酸的形态存在于废气中。
于本发明一实施例中,于尾气的低温段,臭氧流股与尾气流股的混合反应。
于本发明一实施例中,臭氧流股与尾气流股混合反应温度为-50~200℃,可以为60~70℃,50~80℃、40~90℃、30~100℃、20~110℃、10~120℃、0~130℃、-10~140℃、-20~150℃、-30~160℃、-40~170℃、-50~180℃、-180~190℃或190~200℃。
于本发明一实施例中,臭氧流股与尾气流股混合反应温度为60~70℃。
于本发明一实施例中,臭氧流股与尾气流股的混合方式选自文丘里混合、正压混合、插 入混合、动力混合和流体混合中至少一种。
于本发明一实施例中,当臭氧流股与尾气流股的混合方式为正压混合时,臭氧进气的压力大于尾气的压力。当臭氧流股进气的压力小于尾气流股的排压时,可同时使用文丘里混合方式。
于本发明一实施例中,在臭氧流股与尾气流股混合反应前,提高尾气流股流速,采用文丘里原理混入臭氧流股。
于本发明一实施例中,臭氧流股与尾气流股混合方式选自尾气出口逆流通入、反应场前段混入、除尘器前后插入、脱硝装置前后混入、催化装置前后混入、水洗装置前后通入、过滤装置前后混入、消音装置前后混入、尾气管道内发生混入、吸附装置外置混入和凝露装置前后混入中至少一种。可设于发动机尾气的低温段,避免臭氧的消解。
于本发明一实施例中,臭氧流股与尾气流股混合反应的反应场包括管道和/或反应器。
于本发明一实施例中,所述反应场包括排气管、蓄热体装置或催化器。
于本发明一实施例中,还包括如下技术特征中的至少一项:
1)管道直径为100~200毫米;
2)管道长度大于管道直径0.1倍;
3)所述反应器选自如下至少一种:
反应器一:所述反应器具有反应腔室,尾气与臭氧在所述反应腔室混合并反应;
反应器二:所述反应器包括若干蜂窝状腔体,用于提供尾气与臭氧混合并反应的空间;所述蜂窝状腔体内之间设有间隙,用于通入冷态介质,控制尾气与臭氧的反应温度;
反应器三:所述反应器包括若干载体单元,所述载体单元提供反应场地(例如蜂窝结构的介孔陶瓷体载体),没有载体单元时为气相中反应,有载体单元时则为界面反应,加快反应时间;
反应器四:所述反应器包括催化剂单元,所述催化剂单元用于促进尾气的氧化反应;
1)所述反应场设有臭氧进口,所述臭氧进口选自喷口、喷格栅、喷嘴、旋流喷嘴、设有文丘里管的喷口中的至少一种;设有文丘里管的喷口:所述文丘里管设于喷口中,采用文丘里原理混入臭氧;
2)所述反应场设有臭氧进口,所述臭氧通过所述臭氧进口进入反应场与尾气进行接触,臭氧进口的设置形成如下方向中至少一种:与尾气流动的方向相反、与尾气流动的方向垂直、与尾气流动的方向相切、插入尾气流动方向、多个方向与尾气进行接触;所述与尾气流动的方向相反即为反方向进入,增加反应时间,减少体积;所述与尾气流动的方向垂直,使用文 氏效应;与尾气流动的方向相切,便于混合;插入尾气流动方向,克服漩涡流;多个方向,克服重力。
于本发明一实施例中,所述臭氧流股由存储臭氧单元和/或臭氧发生器提供。
于本发明一实施例中,所述臭氧发生器包括延面放电臭氧发生器、工频电弧臭氧发生器、高频感应臭氧发生器、低气压臭氧发生器、紫外线臭氧发生器、电解液臭氧发生器、化学药剂臭氧发生器和射线辐照粒子发生器中的一种或多种的组合。
于本发明一实施例中,所述臭氧流股提供方法:在电场和氧化催化键裂解选择性催化剂层作用下,含有氧气的气体产生臭氧,其中形成电场的电极上负载氧化催化键裂解选择性催化剂层。
于本发明一实施例中,所述电极包括高压电极或设有阻挡介质层的电极,当所述电极包括高压电极时,所述氧化催化键裂解选择性催化剂层负载于所述高压电极表面上,当所述电极包括阻挡介质层的高压电极时,所述氧化催化键裂解选择性催化剂层负载于阻挡介质层的表面上。
于本发明一实施例中,当所述电极包括高压电极时,所述氧化催化键裂解选择性催化剂层的厚度为1~3mm,该氧化催化键裂解选择性催化剂层兼作阻挡介质,如1~1.5mm或1.5~3mm;当所述电极包括阻挡介质层的高压电极时,所述氧化催化键裂解选择性催化剂层的负载量包括阻挡介质层的1~12wt%,如1~5wt%或5~12wt%。
于本发明一实施例中,所述氧化催化键裂解选择性催化剂层包括如下重量百分比的各组分:
活性组分 5~15%,如5~8%、8~10%、10~12%、12~14%或14~15%;
涂层 85~95%,如85~86%、86~88%、88~90%、90~92%或92~95%;
其中,所述活性组分选自金属M和金属元素M的化合物中的至少一种,金属元素M选自碱土金属元素、过渡金属元素、第四主族金属元素、贵金属元素和镧系稀土元素中的至少一种;
所述涂层选自氧化铝、氧化铈、氧化锆、氧化锰、金属复合氧化物、多孔材料和层状材料中的至少一种,所述金属复合氧化物包括铝、铈、锆和锰中一种或多种金属的复合氧化物。
于本发明一实施例中,所述碱土金属元素选自镁、锶和钙中的至少一种。
于本发明一实施例中,所述过渡金属元素选自钛、锰、锌、铜、铁、镍、钴、钇和锆中的至少一种。
于本发明一实施例中,所述第四主族金属元素为锡。
于本发明一实施例中,所述贵金属元素选自铂、铑、钯、金、银和铱中的至少一种。
于本发明一实施例中,所述镧系稀土元素选自镧、铈、镨和钐中的至少一种。
于本发明一实施例中,所述金属元素M的化合物选自氧化物、硫化物、硫酸盐、磷酸盐、碳酸盐,以及钙钛矿中的至少一种。
于本发明一实施例中,所述多孔材料选自分子筛、硅藻土、沸石和纳米碳管中的至少一种。多孔材料孔隙率为60%以上,如60~80%,比表面积为300-500平方米/克,平均孔径为10-100纳米。
于本发明一实施例中,所述层状材料选自石墨烯和石墨中的至少一种。
于本发明一实施例中,所述电极通过浸渍和/或喷涂的方法负载氧双催化键裂解选择性催化剂。
于本发明一实施例中,包括如下步骤:
1)按照催化剂组成配比,将涂层原料的浆料负载于高压电极表面上或阻挡介质层的表面上,干燥,煅烧,得到负载涂层的高压电极或阻挡介质层;
2)按照催化剂组成配比,将含金属元素M的原料溶液或浆料负载到步骤1)得到涂层上,干燥,煅烧,当涂层负载于阻挡介质层的表面上时,煅烧后在阻挡介质层相对于负载涂层的另一面设置高压电极,即得所述臭氧发生器用电极;或者,按照催化剂组成配比,将含金属元素M的原料溶液或浆料负载到步骤1)得到涂层上,干燥,煅烧和后处理,当涂层负载于阻挡介质层的表面上时,后处理后在阻挡介质层相对于负载涂层的另一面设置高压电极,即得所述臭氧发生器用电极;
其中,通过对煅烧温度和气氛,以及后处理实现对电极用催化剂中活性组分形态的控制。
于本发明一实施例中,包括如下步骤:
1)按照催化剂组成配比,将含金属元素M的原料溶液或浆料负载涂层原料上,干燥,煅烧,得到负载有活性组份的涂层材料;
2)按照催化剂组成配比,将步骤1)得到的负载有活性组份的涂层材料制成浆料,负载在高压电极表面上或阻挡介质层的表面上,干燥,煅烧,当涂层负载在阻挡介质层的表面上时,煅烧后在阻挡介质层相对于负载涂层的另一面设置高压电极,即得所述臭氧发生器用电极;或者,按照催化剂组成配比,将步骤1)得到的负载有活性组份的涂层材料制成浆料,负载在高压电极表面上或阻挡介质层的表面上,干燥,煅烧和后处理,当涂层负载在阻挡介质层的表面上时,后处理后在阻挡介质层相对于负载涂层的另一面设置高压电极,即得所述臭氧发生器用电极;
其中,通过对煅烧温度和气氛,以及后处理实现对电极用催化剂中活性组分形态的控制。
上述负载方式可以为浸渍、喷涂、涂刷等等,能实现负载即可。
活性组分包括金属元素M的硫酸盐、磷酸盐、碳酸盐中的至少一种时,含金属元素M的硫酸盐、磷酸盐、碳酸盐中的至少一种的溶液或浆料负载涂层原料上,干燥,煅烧,煅烧温度不能超过活性组分的分解温度,例如:要获得金属元素M的硫酸盐则煅烧温度不能超过硫酸盐的分解温度(分解温度一般在600℃以上)。
通过对煅烧温度和气氛,以及后处理实现对电极用催化剂中活性组分形态的控制,例如:活性组分包括金属M时,煅烧后可再进行还原气还原(后处理)获得,煅烧温度可为200~550℃;活性组分包括金属元素M的硫化物时,煅烧后可再与硫化氢反应(后处理)获得,煅烧温度可为200~550℃。
于本发明一实施例中,包括:控制臭氧流股的臭氧量以致有效氧化尾气中待处理的气体组分。
于本发明一实施例中,控制臭氧流股的臭氧量达到如下脱除效率:
氮氧化物脱除效率:60~99.97%;
CO脱除效率:1~50%;
挥发性有机化合物脱除效率:60~99.97%。
于本发明一实施例中,包括:检测臭氧处理前尾气组分含量。
于本发明一实施例中,根据所述臭氧处理前尾气组分含量控制混合反应所需臭氧量。
于本发明一实施例中,检测臭氧处理前尾气组分含量选自以下至少一个:
检测臭氧处理前尾气中挥发性有机化合物含量;
检测臭氧处理前尾气中CO含量;
检测臭氧处理前尾气中氮氧化物含量。
于本发明一实施例中,根据至少一个检测臭氧处理前尾气组分含量的输出值控制混合反应所需臭氧量。
于本发明一实施例中,按照预设的数学模型控制混合反应所需臭氧量。所述预设的数学模型与臭氧处理前尾气组分含量相关,通过上述含量及尾气组分与臭氧的反应摩尔比来确定混合反应所需臭氧量,确定混合反应所需臭氧量时可增加臭氧量,使臭氧过量。
于本发明一实施例中,按照理论估计值控制混合反应所需臭氧量。
于本发明一实施例中,所述理论估计值为:臭氧通入量与尾气中待处理物的摩尔比为2~10,如5~6、5.5~6.5、5~7、4.5~7.5、4~8、3.5~8.5、3~9、2.5~9.5、2~10。例如:13L柴油 发动机可控制臭氧通入量为300~500g;2L汽油发动机可控制臭氧通入量为5~20g。
于本发明一实施例中,包括:检测臭氧处理后尾气组分含量。
于本发明一实施例中,根据所述臭氧处理后尾气组分含量控制混合反应所需臭氧量。
于本发明一实施例中,检测臭氧处理后尾气组分含量选自以下至少一个:
检测臭氧处理后尾气中臭氧含量;
检测臭氧处理后尾气中挥发性有机化合物含量;
检测臭氧处理后尾气中CO含量;
检测臭氧处理后尾气中氮氧化物含量。
于本发明一实施例中,根据至少一个检测臭氧处理后尾气组分含量的输出值控制臭氧量。
于本发明一实施例中,所述尾气臭氧净化方法还包括如下步骤:脱除臭氧流股与尾气流股混合反应产物中的硝酸。
于本发明一实施例中,使带硝酸雾的气体流经第一电极;当带硝酸雾的气体流经第一电极时,第一电极使气体中的硝酸雾带电,第二电极给带电的硝酸雾施加吸引力,使硝酸雾向第二电极移动,直至硝酸雾附着在第二电极上。
于本发明一实施例中,脱除臭氧流股与尾气流股混合反应产物中的硝酸的方法:将臭氧流股与尾气流股混合反应产物进行冷凝。
于本发明一实施例中,脱除臭氧流股与尾气流股混合反应产物中的硝酸的方法:将臭氧流股与尾气流股混合反应产物进行淋洗。
于本发明一实施例中,脱除臭氧流股与尾气流股混合反应产物中的硝酸的方法还包括:向臭氧流股与尾气流股混合反应产物提供淋洗液。
于本发明一实施例中,所述淋洗液为水和/或碱。
于本发明一实施例中,脱除臭氧流股与尾气流股混合反应产物中的硝酸的方法还包括:存储尾气中脱除的硝酸水溶液和/或硝酸盐水溶液。
于本发明一实施例中,当存储有硝酸水溶液时,加入碱液,与硝酸形成硝酸盐。
于本发明一实施例中,所述尾气臭氧净化方法还包括如下步骤:对脱除硝酸的尾气进行臭氧消解,例如:可以通过紫外线,催化等方式进行消解。
于本发明一实施例中,所述臭氧消解选自紫外线消解和催化消解中的至少一种。
于本发明一实施例中,所述尾气臭氧净化方法还包括如下步骤:第一次脱除尾气中氮氧化物;第一次脱除氮氧化物后的尾气流股与臭氧流股混合反应,或者,在第一次脱除尾气中氮氧化物前先与臭氧流股混合反应。
第一次脱除尾气中氮氧化物可以为现有技术中实现脱硝的方法,例如:非催化还原方法(如氨气脱硝)、选择性催化还原方法(SCR:氨气加催化剂脱硝)、非选择性催化还原方法(SNCR)和电子束脱硝方法等中的至少一种。第一次脱除尾气中氮氧化物后的发动机尾气中氮氧化物(NO
x)含量不达标,在第一次脱除尾气中氮氧化物后或前经与臭氧混合反应后可达到最新标准。于本发明一实施例中,所述第一次脱除尾气中氮氧化物选自非催化还原方法、选择性催化还原方法、非选择性催化还原方法和电子束脱硝方法等中的至少一种。
于本发明一实施例中提供一种电凝装置,包括:电凝流道、位于电凝流道中的第一电极、及第二电极。当尾气流经电凝流道中的第一电极时,尾气中含硝酸的水雾、即硝酸液将带电,第二电极给带电的硝酸液施加吸引力,含硝酸的水雾向第二电极移动,直至含硝酸的水雾附着在第二电极上,从而实现对尾气中硝酸液的去除。该电凝装置也称作电凝除雾装置。
于本发明一实施例中电凝装置的第一电极可为固体、液体、气体分子团、等离子体、导电混合态物质、生物体自然混合导电物质、或物体人工加工形成导电物质中的一种或多种形态的组合。当第一电极为固体时,第一电极可采用固态金属、比如304钢,或其它固态的导体、比如石墨等;当第一电极为液体时,第一电极可以是含离子导电液体。
于本发明一实施例中第一电极的形状可以呈点状、线状、网状、孔板状、板状、针棒状、球笼状、盒状、管状、自然形态物质、或加工形态物质等。当第一电极呈板状、球笼状、盒状或管状时,第一电极可以是无孔结构,也可以是有孔结构。当第一电极为有孔结构时,第一电极上可以设有一个或多个前通孔。于本发明一实施例中前通孔的形状可以是多角形、圆形、椭圆形、正方形、长方形、梯形、或菱形等。于本发明一实施例中前通孔的孔径大小可以为10~100mm、10~20mm、20~30mm、30~40mm、40~50mm、50~60mm、60~70mm、70~80mm、80~90mm、或90~100mm。另外,在其它实施例中第一电极还可以是其它形状。
于本发明一实施例中电凝装置的第二电极的形状可以呈多层网状、网状、孔板状、管状、桶状、球笼状、盒状、板状、颗粒堆积层状、折弯板状、或面板状。当第二电极呈板状、球笼状、盒状或管状时,第二电极也可以是无孔结构,或有孔结构。当第二电极为有孔结构时,第二电极上可以设有一个或多个后通孔。于本发明一实施例中后通孔的形状可以是多角形、圆形、椭圆形、正方形、长方形、梯形、或菱形等。后通孔的孔径大小可以为10~100mm、10~20mm、20~30mm、30~40mm、40~50mm、50~60mm、60~70mm、70~80mm、80~90mm、或90~100mm。
于本发明一实施例中电凝装置的第二电极由导电物质制成。于本发明一实施例中第二电极的表面具有导电物质。
于本发明一实施例中电凝装置的第一电极与第二电极之间具有电凝电场,该电凝电场可以是点面电场、线面电场、网面电场、点桶电场、线桶电场、或网桶电场中的一种或多种电场的组合。比如:第一电极呈针状或线状,第二电极呈面状,且第一电极垂直或平行于第二电极,从而形成线面电场;或第一电极呈网状,第二电极呈面状,第一电极平行于第二电极,从而形成网面电场;或第一电极呈点状,并通过金属丝或金属针进行固定,第二电极呈桶状,第一电极位于第二电极的几何对称中心处,从而形成点桶电场;或第一电极呈线状,并通过金属丝或金属针进行固定,第二电极呈桶状,第一电极位于第二电极的几何对称轴上,从而形成线桶电场;或第一电极呈网状,并通过金属丝或金属针进行固定,第二电极呈桶状,第一电极位于第二电极的几何对称中心处,从而形成网桶电场。当第二电极呈面状时,具体可以是平面状、曲面状、或球面状。当第一电极呈线状时,具体可以是直线状、曲线状、或圆圈状。第一电极还可以是圆弧状。当第一电极呈网状时,具体可以是平面的、球面的或其它几何面状,也可以是矩形,或不规则形状。第一电极也可以呈点状,且可以是直径很小的真实点,也可以是一个小球,还可以是一个网状球。当第二电极呈桶状时,第二电极还可以进一步演化成各种盒状。第一电极也可作相应变化,形成电极和电凝电场层套。
于本发明一实施例中电凝装置的第一电极呈线状,第二电极呈面状。于本发明一实施例中第一电极垂直于第二电极。于本发明一实施例中第一电极和第二电极相平行。于本发明一实施例中第一电极和第二电极均呈面状,且第一电极和第二电极相平行。于本发明一实施例中第一电极采用金属丝网。于本发明一实施例中第一电极呈平面状或球面状。于本发明一实施例中第二电极呈曲面状或球面状。于本发明一实施例中第一电极呈点状、线状、或网状,第二电极呈桶状,第一电极位于第二电极的内部,且第一电极位于第二电极的中心对称轴上。
于本发明一实施例中电凝装置的第一电极与电源的一个电极电性连接;第二电极与电源的另一个电极电性连接。于本发明一实施例中第一电极具体与电源的阴极电性连接,第二电极具体与电源的阳极电性连接。
同时,于本发明一些实施例中电凝装置的第一电极可以具有正电势或负电势;当第一电极具有正电势时,第二电极具有负电势;当第一电极具有负电势时,第二电极具有正电势,第一电极和第二电极均与电源电性连接,具体地第一电极和第二电极可分别与电源的正负极电性连接。该电源的电压称作上电驱动电压,上电驱动电压大小的选择与环境温度、介质温度等有关。例如,电源的上电驱动电压范围可以为5~50KV、10~50KV、5~10KV、10~20KV、20~30KV、30~40KV、或40~50KV,从生物电至空间雾霾治理用电。电源可以是直流电源或交流电源,其上电驱动电压的波形可以是直流波形、正弦波、或调制波形。直流电源作为吸 附的基本应用;正弦波作为移动使用,如正弦波的上电驱动电压作用于第一电极和第二电极之间,所产生的电凝电场将驱动电凝电场中带电的粒子、如雾滴等向第二电极移动;斜波作为拉动使用,根据拉动力度需要调制波形,如非对称电凝电场的两端边缘处,对其中的介质所产生的拉力具有明显的方向性,以驱动电凝电场中的介质沿该方向移动。当电源采用交流电源时,其变频脉冲的范围可以为0.1Hz~5GHz、0.1Hz~1Hz、0.5Hz~10Hz、5Hz~100Hz、50Hz~1KHz、1KHz~100KHz、50KHz~1MHz、1MHz~100MHz、50MHz~1GHz、500MHz~2GHz、或1GHz~5GHz,适用生物体至污染物颗粒的吸附。第一电极可作为导线,在与含硝酸的水雾接触时,直接将正负电子导入含硝酸的水雾,此时含硝酸的水雾本身可作为电极。第一电极可通过能量波动的方法使电子转移到含硝酸的水雾或电极上,这样第一电极就可以不接触含硝酸的水雾。含硝酸的水雾在由第一电极向第二电极移动过程中,将重复得到电子和失去电子;与此同时,大量电子在位于第一电极和第二电极之间的多个含硝酸的水雾之间进行传递,使更多雾滴带电,并最终到达第二电极,从而形成电流,该电流也称作上电驱动电流。上电驱动电流的大小与环境温度、介质温度、电子量、被吸附物质量、逃逸量有关。比如,随电子量增加,可移动的粒子、如雾滴增加,由移动的带电粒子形成的电流会随之增加。单位时间内被吸附的带电物质、如雾滴越多,电流越大。逃逸的雾滴只是带了电,但并未到达第二电极,也就是说未形成有效的电中和,从而在相同的条件下,逃逸的雾滴越多,电流越小。相同的条件下,环境温度越高,气体粒子和雾滴速度越快,其自身的动能也就越高,其自身与第一电极和第二电极碰撞机率就会越大,也越不易被第二电极吸附住,从而产生逃逸,但由于其逃逸是发生在电中和之后,且可能是发生了反复多次的电中和之后,从而相应的增加了电子传导速度,电流也就相应增加。同时,由于环境温度越高,气体分子、雾滴等的动量越高,且越不易被第二电极吸附,即使第二电极吸附后,再次从第二电极逃逸、即电中和之后逃逸的机率也越大,因此在第一电极与第二电极的间距不变的情况下,需要增加上述上电驱动电压,该上电驱动电压的极限为达到空气击穿的效果。另外,介质温度的影响基本与环境温度的影响相当。介质温度越低,需激发介质、如雾滴带电的能量小,且其自身所具有的动能也越小,在同样的电凝电场力作用下,越容易被吸附到第二电极上,从而形成的电流较大。电凝装置对冷态的含硝酸的水雾吸附效果更好。而随介质、如雾滴的浓度增加,带电的介质在与第二电极碰撞之前已与其它介质产生电子传递的机率越大,从而形成有效电中和的机会也会越大,形成的电流也相应地会越大;所以当介质浓度越高时,形成的电流越大。上电驱动电压与介质温度的关系与上电驱动电压与环境温度的关系基本相同。
于本发明一实施例中与第一电极和第二电极相连接的电源的上电驱动电压可小于起始起 晕电压。该起始起晕电压为能使第一电极和第二电极之间产生放电并电离气体的最小电压值。对于不同的气体、及不同的工作环境等,起始起晕电压的大小可能会不相同。但对于本领域技术人员来说,针对确定的气体、及工作环境,所对应的起始起晕电压是确定的。于本发明一实施例中电源的上电驱动电压具体可为0.1-2kv/mm。电源的上电驱动电压小于空气电晕起晕电压。
于本发明一实施例中第一电极和第二电极均沿左右方向延伸,第一电极的左端位于第二电极的左端的左方。
于本发明一实施例中第二电极有两个,第一电极位于两个第二电极之间。
第一电极与第二电极之间的距离可根据两者间的上电驱动电压大小、水雾的流速、以及含硝酸的水雾的带电能力等进行设置。比如,第一电极和第二电极的间距可以为5~50mm、5~10mm、10~20mm、20~30mm、30~40mm、或40~50mm。第一电极和第二电极的间距越大,需要的上电驱动电压越高,以形成足够强大的电凝电场,用于驱动带电的介质快速移向第二电极,以免介质逃逸。同样的条件下,第一电极和第二电极的间距越大,顺着气流方向,越靠近中心位置,物质流速越快;越靠近第二电极的物质的流速越慢;而垂直于气流方向,带电介质粒子、如雾粒,随第一电极和第二电极的间距增加,在没有发生碰撞的情况下,被电凝电场加速的时间越长,因此,物质在接近第二电极之前沿垂直方向的移动速度越大。在同样的条件下,如果上电驱动电压不变,随距离增加,电凝电场强度不断减小,电凝电场中介质带电的能力也就越弱。
第一电极和第二电极构成吸附单元。吸附单元可以有一个或多个,具体数量依据实际需要来确定。在一种实施例中,吸附单元有一个。在另一种实施例中吸附单元有多个,以利用多个吸附单元吸附更多的硝酸液,从而提高收集硝酸液的效率。当吸附单元有多个时,全部吸附单元的分布形式可以根据需要灵活进行调整;全部吸附单元可以是相同的,也可以是不同的。比如,全部吸附单元可沿左右方向、前后方向、斜向或螺旋方向中的一个方向或多个方向进行分布,以满足不同风量的要求。全部吸附单元可以呈矩形阵列分布,也可以呈金字塔状分布。上述各种形状的第一电极和第二电极可以自由组合形成吸附单元。例如,线状的第一电极插入管状的第二电极形成吸附单元,再与线状的第一电极组合,形成新的吸附单元,此时两个线状的第一电极可电连接;新的吸附单元再在左右方向、上下方向、斜向或螺旋方向中的一个方向或多个方向进行分布。再例如,线状的第一电极插入管状的第二电极形成吸附单元,此吸附单元在左右方向、上下方向、斜向或螺旋方向中的一个方向或多个方向进行分布,形成新的吸附单元,该新的吸附单元再与上述各种形状的第一电极进行组合,以形成 新的吸附单元。吸附单元中的第一电极和第二电极之间的距离可以任意调整,以适应不同的工作电压和吸附对象的要求。不同的吸附单元之间可以进行组合。不同的吸附单元可以使用同一电源,也可以使用不同的电源。当使用不同的电源时,各电源的上电驱动电压可以是相同的,也可以是不同的。另外,本电凝装置也可以有多个,且全部电凝装置可以沿左右方向、上下方向、螺旋方向或斜向中的一个方向或多个方向进行分布。
于本发明一实施例中电凝装置还包括电凝壳体,该电凝壳体包括电凝进口、电凝出口及电凝流道,电凝流道的两端分别与电凝进口和电凝出口相连通。于本发明一实施例中电凝进口呈圆形,且电凝进口的直径为300~1000mm、或500mm。于本发明一实施例中电凝出口呈圆形,且电凝出口的直径为300~1000mm、或500mm。于本发明一实施例中电凝壳体包括由电凝进口至电凝出口方向依次分布的第一壳体部、第二壳体部、及第三壳体部,电凝进口位于第一壳体部的一端,电凝出口位于第三壳体部的一端。于本发明一实施例中第一壳体部的轮廓大小由电凝进口至电凝出口方向逐渐增大。于本发明一实施例中第一壳体部呈直管状。于本发明一实施例中第二壳体部呈直管状,且第一电极和第二电极安装在第二壳体部中。于本发明一实施例中第三壳体部的轮廓大小由电凝进口至电凝出口方向逐渐减小。于本发明一实施例中第一壳体部、第二壳体部、及第三壳体部的截面均呈矩形。于本发明一实施例中电凝壳体的材质为不锈钢、铝合金、铁合金、布、海绵、分子筛、活性炭、泡沫铁、或泡沫碳化硅。于本发明一实施例中第一电极通过电凝绝缘件与电凝壳体相连接。于本发明一实施例中电凝绝缘件的材质为绝缘云母。于本发明一实施例中电凝绝缘件呈柱状、或塔状。于本发明一实施例中第一电极上设有呈圆柱形的前连接部,且前连接部与电凝绝缘件固接。于本发明一实施例中第二电极上设有呈圆柱形的后连接部,且后连接部与电凝绝缘件固接。
于本发明一实施例中第一电极位于电凝流道中。于本发明一实施例中第一电极的截面面积与电凝流道的截面面积比为99%~10%、或90~10%、或80~20%、或70~30%、或60~40%、或50%。第一电极的截面面积是指第一电极沿截面上实体部分的面积之和。
在收集含硝酸的水雾过程中,含硝酸的水雾由电凝进口进入电凝壳体,并朝向电凝出口处移动;在含硝酸的水雾朝向电凝出口移动过程中,含硝酸的水雾将经过第一电极,并带电;第二电极将带电的含硝酸的水雾吸附住,以将含硝酸的水雾收集在第二电极上。本发明利用电凝壳体引导尾气及含硝酸的水雾流经第一电极,以利用第一电极使硝酸的水雾带电,并利用第二电极收集硝酸的水雾,从而有效降低由电凝出口处流出的硝酸的水雾。于本发明一些实施例中电凝壳体的材质可以是金属、非金属、导体、非导体、水、各类导电液体、各类多孔材料、或各类泡沫材料等。当电凝壳体的材质为金属时,其材质具体可以是不锈钢、或铝 合金等。当电凝壳体的材质是非金属时,其材质具体可以是布、或海绵等。当电凝壳体的材质是导体时,其材质具体可以是铁合金等。当电凝壳体的材质是非导体时,其表面形成水层水即成为电极,如吸水后的沙层。当电凝壳体的材质为水和各类导电液体时,电凝壳体是静止或流动的。当电凝壳体的材质为各类多孔材料时,其材质具体可以是分子筛或活性炭。当电凝壳体的材质为各类泡沫材料时,其材质具体可以是泡沫铁、泡沫碳化硅等。在一种实施例中第一电极通过电凝绝缘件与电凝壳体固接,电凝绝缘件的材质可以为绝缘云母。同时,在一种实施例中第二电极直接与电凝壳体电连接,此种连接方式使得电凝壳体可以与第二电极具有相同的电势,这样电凝壳体也能吸附带电的含硝酸的水雾,电凝壳体也构成一种第二电极。电凝壳体中设有上述电凝流道,第一电极安装在电凝流道中。
当含硝酸的水雾附着在第二电极后,将形成凝露。于本发明一些实施例中第二电极可沿上下方向延伸,这样堆积在第二电极上的凝露达到一定重量时,将在重力的作用下沿第二电极向下流动,并最终汇集在设定位置或装置中,从而实现对附着在第二电极上的硝酸液的回收。本电凝装置可用于制冷除雾。另外,也可以采用外加电凝电场的方式对附着在第二电极上的物质进行收集。对第二电极上的物质收集方向既可以同气流相同,也可以与气流方向不同。在具体实施时,因为是要充分利用重力作用,使第二电极上的水滴或水层尽快流入收集槽中的;同时会尽量利用气流方向及其作用力,来加速第二电极上水流的速度。因此会根据不同的安装条件,以及绝缘的方便性、经济性和可行性等,尽量达到上述目的,不拘束于特定的方向。
另外,当前已有的静电场荷电理论是利用电晕放电,电离氧气,产生大量的负氧离子,负氧离子和粉尘接触,粉尘荷电,荷电后的粉尘被异极吸附。但当遇到含硝酸的水雾等低比电阻物质时,现有的电场吸附作用几乎没有。因低比电阻物质在得电后容易失电,当移动中的负氧离子使低比电阻物质荷电后,低比电阻物质又将很快失电,而负氧离子只移动一次,导致如含硝酸的水雾等低比电阻物质失电后难以再带电,或此种带电方式大大降低了低比电阻物质带电的几率,使得低比电阻物质整体处于不带电状态,这样异极就难以对低比电阻物质持续施加吸附力,最终导致现有的电场对含硝酸的水雾等低比电阻物质的吸附效率极低。上述电凝装置及电凝方法,不是采用荷电方式让水雾带电,而是直接将电子传递给含硝酸的水雾使其带电,在某个雾滴带电又失电后,新的电子将快速由第一电极、并通过其它雾滴传递到该失电的雾滴上,使得雾滴失电后又能快速得电,大大增加了雾滴带电几率,如次重复,使得雾滴整体处于得电状态,并使得第二电极能持续给雾滴施加吸引力,直至吸附住雾滴,从而保证本电凝装置对含硝酸的水雾的收集效率更高。本发明采用的上述使雾滴带电的方法, 不需要使用电晕线、电晕极、或电晕板等,简化了本电凝装置的整体结构,降低了本电凝装置的制造成本。同时,本发明采用上述上电方式,也使得第一电极上的大量电子,将通过雾滴传递给第二电极,并形成电流。当流经本电凝装置的水雾的浓度越大时,第一电极上的电子更容易通过含硝酸的水雾传递给第二电极,更多的电子将在雾滴间传递,使得第一电极和第二电极之间形成的电流更大,并使得雾滴的带电几率更高,且使本电凝装置对水雾的收集效率更高。
于本发明一实施例中提供一种电凝除雾方法,包括如下步骤:
使带水雾的气体流经第一电极;
当带水雾的气体流经第一电极时,第一电极使气体中的水雾带电,第二电极给带电的水雾施加吸引力,使水雾向第二电极移动,直至水雾附着在第二电极上。
于本发明一实施例中第一电极将电子导入水雾,电子在位于第一电极和第二电极之间的雾滴之间进行传递,使更多雾滴带电。
于本发明一实施例中第一电极和第二电极之间通过水雾传导电子、并形成电流。
于本发明一实施例中第一电极通过与水雾接触的方式使水雾带电。
于本发明一实施例中第一电极通过能量波动的方式使水雾带电。
于本发明一实施例中附着在第二电极上的水雾形成水滴,第二电极上的水滴流入收集槽中。
于本发明一实施例中第二电极上的水滴在重力作用下流入收集槽。
于本发明一实施例中气体流动时,将吹动水滴流入收集槽中。
于本发明一实施例中使带硝酸雾的气体流经第一电极;当带硝酸雾的气体流经第一电极时,第一电极使气体中的硝酸雾带电,第二电极给带电的硝酸雾施加吸引力,使硝酸雾向第二电极移动,直至硝酸雾附着在第二电极上。
于本发明一实施例中第一电极将电子导入硝酸雾,电子在位于第一电极和第二电极之间的雾滴之间进行传递,使更多雾滴带电。
于本发明一实施例中第一电极和第二电极之间通过硝酸雾传导电子、并形成电流。
于本发明一实施例中第一电极通过与硝酸雾接触的方式使硝酸雾带电。
于本发明一实施例中第一电极通过能量波动的方式使硝酸雾带电。
于本发明一实施例中附着在第二电极上的硝酸雾形成水滴,第二电极上的水滴流入收集槽中。
于本发明一实施例中第二电极上的水滴在重力作用下流入收集槽。
于本发明一实施例中气体流动时,将吹动水滴流入收集槽中。
实施例1
如图5所示,所述尾气除尘系统包括除水装置207和尾气电场装置。所述尾气电场装置包括括尾气除尘电场阳极10211和尾气除尘电场阴极10212,所述尾气除尘电场阳极10211和所述尾气除尘电场阴极10212用于产生尾气电离除尘电场。所述除水装置207用于在尾气电场装置入口之前去除液体水,当尾气温度低于100℃时,所述除水装置207脱除尾气中的液体水,所述除水装置207为电凝装置,图中箭头方向为尾气流动方向。
一种尾气除尘方法,包括以下步骤:尾气温度低于100℃时,脱除尾气中的液体水,然后电离除尘,其中采用电凝除雾方法脱除尾气中的液体水,所述尾气为汽油发动机冷启动时的尾气,减少尾气中的水珠即液体水,减少尾气电离除尘电场放电不均匀及尾气除尘电场阴极和尾气除尘电场阳极击穿,提高电离除尘效率,电离除尘效率为99.9%以上,未脱除尾气中的液体水的除尘方法的电离除尘效率为70%以下。因此,尾气温度低于100℃时,脱除尾气中的液体水,然后电离除尘,减少尾气中的水珠即液体水,减少尾气电离除尘电场放电不均匀及尾气除尘电场阴极和尾气除尘电场阳极击穿,提高电离除尘效率。
实施例2
如图6所示,所述尾气除尘系统包括补氧装置208和尾气电场装置。所述尾气电场装置包括尾气除尘电场阳极10211和尾气除尘电场阴极10212,所述尾气除尘电场阳极10211和所述尾气除尘电场阴极10212用于产生尾气电离除尘电场。所述补氧装置208用于在尾气电离除尘电场之前添加包括氧气的气体,所述补氧装置208通过通入外界空气的方式添加氧气,根据尾气颗粒含量决定补氧量。图中箭头方向为补氧装置添加包括氧气的气体流动方向。
一种尾气除尘方法,包括以下步骤:在尾气电离除尘电场之前添加包括氧气的气体,进行电离除尘,通过通入外界空气方式添加氧气,根据尾气颗粒含量决定补氧量。
本发明尾气除尘系统:包括补氧装置,可以通过单纯增氧、通入外界空气、通入压缩空气和/或通入臭氧的方式添加氧气,提高进入尾气电离除尘电场尾气含氧量,从而当尾气流经尾气除尘电场阴极和尾气除尘电场阳极之间的尾气电离除尘电场时,增加电离的氧气,使得尾气中更多的粉尘荷电,进而在尾气除尘电场阳极的作用下将更多的荷电的粉尘收集起来,使得尾气电场装置的除尘效率更高,有利于尾气电离除尘电场收集尾气颗粒物,同时还能起到降温的作用,增加电力系统效率,而且,补氧也会提高尾气电离除尘电场臭氧含量,有利于提高尾气电离除尘电场对尾气中有机物进行净化、自洁、脱硝等处理的效率。
实施例3
本实施例所述发动机尾气处理系统还包括尾气处理装置,所述尾气处理装置用于处理欲排入大气中的废气。
请参阅图7,显示为尾气处理装置于一实施例中的结构示意图。如图7所示,所述尾气处理装置102包括尾气电场装置1021、尾气绝缘机构1022、尾气均风装置、尾气滤水机构及尾气臭氧机构。本发明中尾气滤水机构是可选的,即本发明提供的尾气除尘系统中可包括尾气滤水机构,也可不包括尾气滤水机构。
所述尾气电场装置1021包括尾气除尘电场阳极10211和设置于尾气除尘电场阳极10211内的尾气除尘电场阴极10212,尾气除尘电场阳极10211与尾气除尘电场阴极10212之间形成非对称静电场,其中,待含有颗粒物的气体通过所述尾气均风装置的排气口进入所述尾气电场装置1021后,由于所述尾气除尘电场阴极10212放电,电离所述气体,以使所述颗粒物获得负电荷,向所述尾气除尘电场阳极10211移动,并沉积在所述尾气除尘电场阴极10212上。
具体地,所述尾气除尘电场阴极10212的内部由呈蜂窝状、且中空的阳极管束组组成,阳极管束的端口的形状为六边形。
所述尾气除尘电场阴极10212包括若干根电极棒,其一一对应地穿设所述阳极管束组中的每一阳极管束,其中,所述电极棒的形状呈针状、多角状、毛刺状、螺纹杆状或柱状。
在本实施例中,所述尾气除尘电场阴极10212的进气端低于所述尾气除尘电场阳极10211的进气端,且所述尾气除尘电场阴极10212的出气端与所述尾气除尘电场阳极10211的出气端齐平,以使所述尾气电场装置1021内部形成加速电场。
气道外悬的所述尾气绝缘机构1022包括绝缘部和隔热部。所述绝缘部的材料采用陶瓷材料或玻璃材料。所述绝缘部为伞状串陶瓷柱,伞内外挂釉。请参阅图8,显示为呈伞状的尾气绝缘机构于一实施例中的结构示意图。
如图7所示,于本发明一实施例中尾气除尘电场阴极10212安装在尾气阴极支撑板10213上,尾气阴极支撑板10213与尾气除尘电场阳极10211通过尾气绝缘机构1022相连接。于本发明一实施例中尾气除尘电场阳极10211包括第三阳极部102112和第四阳极部102111,即所述第三阳极部102112靠近尾气除尘装置入口,第四阳极部102111靠近尾气除尘装置出口。尾气阴极支撑板10213和尾气绝缘机构1022在第三阳极部102112和第四阳极部102111之间,即尾气绝缘机构1022安装在尾气电离电场中间、或尾气除尘电场阴极10212中间,可以对尾气除尘电场阴极10212起到良好的支撑作用,并对尾气除尘电场阴极10212起到相对于尾气 除尘电场阳极10211的固定作用,使尾气除尘电场阴极10212和尾气除尘电场阳极10211之间保持设定的距离。
所述尾气均风装置1023设置于所述尾气电场装置1021的进气端处的。请参阅图9A、图9B及图9C,显示为尾气均风装置的三种实施结构图。
如图9A所示,当所述尾气除尘电场阳极10211的外型呈圆柱体时,所述尾气均风装置1023为位于尾气除尘系统入口与所述尾气除尘电场阳极10211和所述尾气除尘电场阴极10212形成的尾气电离除尘电场之间、且由若干围绕所述尾气除尘系统入口中心旋转的均风叶片10231组成。所述尾气均风装置1023能够使发动机在各种转速下变化的进气量均匀通过所述尾气除尘电场阳极产生的电场。同时能够保持所述尾气除尘电场阳极内部温度恒定,氧气充足。
如图9B所示,当所述尾气除尘电场阳极10211的外型呈立方体时,所述尾气均风装置包括:
设置于位于所述尾气除尘电场阳极一侧边的进气管10232;及
设置于所述除尘电场阳极另一侧边的出气管10233;其中,安装进气管10232的侧边与安装出气管10233的另一侧边相对立。
如图9C所示,所述尾气均风装置还可以包括设置于所述尾气除尘电场阳极的进气端的第二文氏板均风机构10234和设置于所述尾气除尘电场阳极的出气端的第三文氏板均风机构10235(第三文氏板均风机构俯视时呈折型),所述第三文氏板均风机构上开设与进气孔,所述第三文氏板均风机构上开设有出气孔,所述进气孔与所述出气孔错位排布,且正面进气侧面出气,形成旋风结构。
设置于所述尾气电场装置1021内的尾气滤水机构包括作为第一电极的导电网板,所述导电网板用于在上电后,将电子传导给水(低比电阻物质)。用于吸附带电的水的第二电极于本实施例中为所述尾气电场装置的尾气除尘电场阳极10211。
所述尾气滤水机构的第一电极设置于所述进气口,所述第一电极为一带有负电势导电网板。同时,本实施例的第二电极设置于所述进气装置内呈面网状,且第二电极带有正电势,该第二电极也称作收集极。本实施例中第二电极具体呈平面网状,且第一电极平行于第二电极。本实施例中第一电极和第二电极之间形成网面电场。另外,第一电极由金属丝制成的网状结构,该第一电极由金属丝网构成。本实施例中第二电极的面积大于第一电极的面积。
实施例4
一种尾气臭氧净化系统,如图10所示,包括:
臭氧源201,用于提供臭氧流股,所述臭氧流股为臭氧发生器即时生成。
反应场202,用于将臭氧流股与尾气流股混合反应。
脱硝装置203,用于脱除臭氧流股与尾气流股混合反应产物中的硝酸;所述脱硝装置203包括电凝装置2031,用于将臭氧处理后的发动机尾气进行电凝,含硝酸的水雾堆积在电凝装置中的第二电极上。所述脱硝装置203还包括脱硝液收集单元2032,用于存储废气中脱除的硝酸水溶液和/或硝酸盐水溶液;当所述脱硝液收集单元中存储有硝酸水溶液时,所述脱硝液收集单元设有碱液加入单元,用于与硝酸形成硝酸盐。
臭氧消解器204,用于消解经反应场处理后的尾气中的臭氧。臭氧消解器可以通过紫外线,催化等方式进行臭氧消解。
所述反应场202为反应器二,如图11所示,内设有若干蜂窝状腔体2021,用于提供尾气与臭氧混合并反应的空间;所述蜂窝状腔体内之间设有间隙2022,用于通入冷态介质,控制尾气与臭氧的反应温度,图中右侧箭头为冷媒进口,左侧箭头为冷媒出口。
所述电凝装置包括:
第一电极301,能将电子传导给含硝酸的水雾(低比电阻物质);当电子被传导给含硝酸的水雾时,含硝酸的水雾带电;
第二电极302,能给带电的含硝酸的水雾施加吸引力。
本实施例中第一电极301有两个,两个第一电极301均呈网状且呈球笼状。本实施例中第二电极302有一个,该第二电极302呈网状且呈球笼状。第二电极302位于两个第一电极301之间。同时,如图25所示,本实施例中电凝装置还包括具有进口3031和出口3032的外壳303,第一电极301和第二电极302均安装在外壳303中。且第一电极301通过绝缘件304与外壳303的内壁固接,第二电极302直接与外壳303固接。本实施例中绝缘件304呈柱状,又称作绝缘柱。本实施例中第一电极301具有负电势,第二电极302具有正电势。同时,本实施例中外壳303与第二电极302具有相同的电势,该外壳303同样对带电的物质具有吸附作用。
本实施例中电凝装置用于处理含有酸雾的工业尾气。本实施例中进口3031与排放工业尾气的口相连通。本实施例中电凝装置的工作原理如下:工业尾气由进口3031流入外壳303,并经出口3032流出;在此过程中,工业尾气将先流经其中一个第一电极301,当工业尾气中的酸雾与该第一电极301接触时,或与该第一电极301的距离达到一定值时,第一电极301将电子传递给酸雾,部分酸雾带电,第二电极302给带电的酸雾施加吸引力,酸雾向第二电极302移动,并附着在第二电极302上;另有一部分酸雾未被吸附在第二电极302上,该部 分酸雾继续向出口3032方向流动,当该部分酸雾与另一个第一电极301接触时,或与另一个第一电极301的距离达到一定值时,该部分酸雾将带电,外壳303给该部分带电的酸雾施加吸附力,使得该部分带电的酸雾附着在外壳303的内壁上,从而大大减少了工业尾气中酸雾的排放量,且本实施例中处理装置能去除工业尾气中90%的酸雾,去除酸雾的效果非常显著。另外,本实施例中进口3031和出口3032均呈圆形,进口3031也可称作进气口,出口3032也可称作出气口。
实施例5
如图12所示,实施例4中尾气臭氧净化系统还包括臭氧量控制装置209,用于控制臭氧量以致有效氧化尾气中待处理的气体组分,所述臭氧量控制装置209包括控制单元2091。所述臭氧量控制装置209还包括臭氧处理前尾气组分检测单元2092,用于检测臭氧处理前尾气组分含量。所述控制单元根据所述臭氧处理前尾气组分含量控制混合反应所需臭氧量。
所述臭氧处理前尾气组分检测单元2092选自以下检测单元中至少一个:
第一挥发性有机化合物检测单元20921,用于检测臭氧处理前尾气中挥发性有机化合物含量,如挥发性有机化合物传感器等;
第一CO检测单元20922,用于检测臭氧处理前尾气中CO含量,如CO传感器等;
第一氮氧化物检测单元20923,用于检测臭氧处理前尾气中氮氧化物含量,如氮氧化物(NO
x)传感器等。
所述控制单元2091根据至少一个所述臭氧处理前尾气组分检测单元2092的输出值控制混合反应所需臭氧量。
所述控制单元用于按照理论估计值控制混合反应所需臭氧量。所述理论估计值为:臭氧通入量与尾气中待处理物的摩尔比为2~10。
所述臭氧量控制装置209包括臭氧处理后尾气组分检测单元2093,用于检测臭氧处理后尾气组分含量。所述控制单元2091根据所述臭氧处理后尾气组分含量控制混合反应所需臭氧量。
所述臭氧处理后尾气组分检测单元2093选自以下检测单元中至少一个:
第一臭氧检测单元20931,用于检测臭氧处理后尾气中臭氧含量;
第二挥发性有机化合物检测单元20932,用于检测臭氧处理后尾气中挥发性有机化合物含量;
第二CO检测单元20933,用于检测臭氧处理后尾气中CO含量;
第二氮氧化物检测单元20934,用于检测臭氧处理后尾气中氮氧化物含量。
所述控制单元2091根据至少一个所述臭氧处理后尾气组分检测单元2093的输出值控制臭氧量。
实施例6
制备臭氧发生器用电极:
取长300mm,宽30mm,厚1.5mm的α-氧化铝板材作为阻挡介质层;
催化剂(含涂层和活性组份)涂覆在阻挡介质层的一面,涂覆催化剂之后,所述催化剂为所述阻挡介质层质量的12%,所述催化剂包括如下重量百分比的各组分:活性组分为12wt%,涂层为88wt%,其中,所述活性组分为氧化铈和氧化锆(依次物质的量比为1:1.3),所述涂层为gama氧化铝;
在涂覆好催化剂的阻挡介质层另一面贴铜箔,制成电极。
其中,催化剂涂覆方法如下:
(1)取200g 800目的gama氧化铝粉、5g硝酸铈、4g硝酸锆、4g草酸、5g拟薄水铝石、1g硝酸铝、0.5g EDTA(分解用),倒入玛瑙磨中。再加入1300g去离子水。200rpm/min下研磨10个小时。制成浆料;
(2)把上述阻挡介质层放入烘箱中于150℃下烘干2小时,烘干时打开烘箱风扇。然后保持烘箱门关闭的条件下冷却到室温;
(3)把上述催化剂浆料装入通过高压喷枪,均匀喷涂到烘干后的阻挡介质层表面。放入真空干燥器中阴干2小时;
(4)阴干后放入马弗中加热至550℃,加热升温速度为每分钟5℃。恒温两小时,保持炉门关闭条件下,自然冷却到室温。涂覆过程完成。
以同样的方法,制备4块电极。取河南迪诺环保科技股份有限公司XF-B-3-100型臭氧发生器,把其中的4块电极全换成上述制成的电极。进行比对试验,试验条件为:纯氧气气源,进气压力为0.6MPa,进气风量为每小时1.5立方米,交流电压,5000V,2万赫兹的正弦波。通过出气风量和质量浓度检测结果计算得每小时臭氧产生量。
实验结果如下:
XF-B-3-100型原臭氧产生量为120g/小时;更换电极后,同样的试验条件下,臭氧产生量为160g/小时。实验条件下,功率损耗均为830W。
实施例7
制备臭氧发生器用电极:
取长300mm,宽30mm,厚1.5mm的α-氧化铝板材作为阻挡介质层;
催化剂(含涂层和活性组份)涂覆在阻挡介质层的一面,涂覆催化剂之后,所述催化剂为所述阻挡介质层质量的5%,所述催化剂包括如下重量百分比的各组分:活性组分占催化剂总重15wt%,涂层85%,其中,所述活性组分为MnO和CuO,所述涂层为gama氧化铝;
在涂覆好催化剂的阻挡介质层另一面贴铜箔,制成电极。
其中,催化剂涂覆方法如下:
(1)取200g 800目的gama氧化铝粉、4g草酸、5g拟薄水铝石、1g硝酸铝、0.5g表面活性剂(分解用),倒入玛瑙磨中。再加入1300g去离子水。200rpm/min下研磨10个小时。制成浆料;
(2)把上述阻挡介质层放入烘箱中于150℃下烘干2小时,烘干时打开烘箱风扇。然后保持烘箱门关闭的条件下冷却到室温。通过测量烘干前后的质量变化,测出阻挡介质层的吸水量(A);
(3)把上述浆料装入通过高压喷枪,均匀喷涂到烘干后的阻挡介质层表面。放入真空干燥器中阴干2小时;
(4)阴干后放入马弗中加热至550℃,加热升温速度为每分钟5℃。恒温两小时,保持炉门关闭条件下,自然冷却到室温。称重。
(5)将上述负载有涂层的阻挡介质层浸入水中1分钟后取出,吹净表面浮水,称重。计算得到其吸水量(B);
(6)计算得到涂层的净吸水量C(C=B–A)。根据活性组份目标负载量,涂层净吸水量C,计算得活性组份水溶液的浓度。以此配制活性组份溶液;(活性组份目标负载量CuO 0.1g;MnO 0.2g)
(7)将负载有涂层的阻挡介质层150℃烘干2小时,保持烘箱门关闭条件下冷却至室温。不需负载活组份的面进行防水保护。
(8)取(6)配制好的活性组份溶液(硝酸铜和硝酸锰),以浸渍法负载到涂层中去,吹去表面浮液。150℃烘干2小时。转入马弗炉中焙烧。以每分钟15℃加热到550℃,恒温3小时。微开炉门,冷却到室温。涂覆过程完成。
同样的方法,制备4块电极。取河南迪诺环保科技股份有限公司XF-B-3-100型臭氧发生器,把其中的4块电极全换成上述制成的电极。进行比对试验,试验条件为:纯氧气气源,进气压力为0.6MPa,进气风量为每小时1.5立方米,交流电压,5000V、2万赫兹的正弦波。通过出气风量和质量浓度检测结果计算得每小时臭氧产生量。
实验结果如下:
XF-B-3-100型原臭氧产生量为120g/小时;更换电极后,同样的试验条件下,臭氧产生量为168g/小时。实验条件下,功率损耗均为830W。
实施例8
制备臭氧发生器用电极:
取长300mm,宽30mm,厚1.5mm的石英玻璃板作为阻挡介质层;
催化剂(含涂层和活性组份)涂覆在阻挡介质层的一面,涂覆催化剂之后,所述催化剂为所述阻挡介质层质量的1%,所述催化剂包括如下重量百分比的各组分:活性组分为5wt%,涂层为95wt%,其中,所述活性组分为银、铑、铂、钴和镧(依次物质的量比为1:1:1:2:1.5),所述涂层为氧化锆;
在涂覆好催化剂的阻挡介质层另一面贴铜箔,制成电极。
其中,催化剂涂覆方法如下:
(1)取400g氧化锆、1.7g硝酸银、2.89g硝酸铑、3.19g硝酸铂、4.37g硝酸钴、8.66g硝酸镧、15g草酸、25g EDTA(分解用),倒入玛瑙磨中。再加入1500g去离子水。200rpm/min下研磨10个小时。制成浆料;
(2)把上述阻挡介质层放入烘箱中于150℃下烘干2小时,烘干时打开烘箱风扇。然后保持烘箱门关闭的条件下冷却到室温;
(3)把上述催化剂浆料装入通过高压喷枪,均匀喷涂到烘干后的阻挡介质层表面。放入真空干燥器中阴干2小时;
(4)阴干后放入马弗中加热至550℃,加热升温速度为每分钟5℃。恒温两小时,保持炉门关闭条件下,自然冷却到室温;然后于220℃在氢气还原气氛下进行还原1.5小时。涂覆过程完成。
以同样的方法,制备4块电极。取河南迪诺环保科技股份有限公司XF-B-3-100型臭氧发生器,把其中的4块电极全换成上述制成的电极。进行比对试验,试验条件为:纯氧气气源,进气压力为0.6MPa,进气风量为每小时1.5立方米,交流电压,5000V、2万赫兹的正弦波。通过出气风量和质量浓度检测结果计算得每小时臭氧产生量。
实验结果如下:
XF-B-3-100型原臭氧产生量为120g/小时;更换电极后,同样的试验条件下,臭氧产生量为140g/小时。实验条件下,功率损耗均为830W。
实施例9
制备臭氧发生器用电极:
催化剂(含涂层和活性组份)涂覆在铜箔(电极)的一面,涂覆催化剂之后,所述催化剂的厚度为1.5mm,所述催化剂包括如下重量百分比的各组分:活性组分为8wt%,涂层为92wt%,其中,所述活性组分为硫酸锌、硫酸钙、硫酸钛和硫酸镁(依次物质的量比为1:2:1:1),所述涂层为石墨烯。
其中,催化剂涂覆方法如下:
(1)取100g石墨烯、1.61g硫酸锌、3.44g硫酸钙、2.39g硫酸钛、1.20g硫酸镁、25g草酸、15g EDTA(分解用),倒入玛瑙磨中。再加入800g去离子水。200rpm/min下研磨10个小时。制成浆料;
(2)把上述催化剂浆料装入通过高压喷枪,均匀喷涂到铜箔(电极)的表面上。放入真空干燥器中阴干2小时;
(3)阴干后放入马弗中加热至350℃,加热升温速度为每分钟5℃。恒温两小时,保持炉门关闭条件下,自然冷却到室温。
以同样的方法,制备4块电极。取河南迪诺环保科技股份有限公司XF-B-3-100型臭氧发生器,把其中的4块电极全换成上述制成的电极。进行比对试验,试验条件为:纯氧气气源,进气压力为0.6MPa,进气风量为每小时1.5立方米,交流电压,5000V、2万赫兹的正弦波。通过出气风量和质量浓度检测结果计算得每小时臭氧产生量。
实验结果如下:
XF-B-3-100型原臭氧产生量为120g/小时;更换电极后,同样的试验条件下,臭氧产生量为165g/小时。实验条件下,功率损耗均为830W。
实施例10
制备臭氧发生器用电极:
催化剂(含涂层和活性组份)涂覆在铜箔(电极)的一面,涂覆催化剂之后,所述催化剂的厚度为3mm,所述催化剂包括如下重量百分比的各组分:活性组分为10wt%,涂层为90wt%,其中,所述活性组分为氧化镨、氧化钐和氧化钇(依次物质的量比为1:1:1),所述涂层为氧化铈和氧化锰(依次物质的量比为1:1)。
其中,催化剂涂覆方法如下:
(1)取62.54g氧化铈、31.59g氧化锰、3.27g硝酸镨、3.36g硝酸钐、3.83g硝酸钇、12g草酸、20g EDTA(分解用),倒入玛瑙磨中。再加入800g去离子水。200rpm/min下研磨10 个小时。制成浆料;
(2)把上述催化剂浆料装入通过高压喷枪,均匀喷涂到铜箔(电极)的表面上。放入真空干燥器中阴干2小时;
(3)阴干后放入马弗中加热至500℃,加热升温速度为每分钟5℃。恒温两小时,保持炉门关闭条件下,自然冷却到室温。
以同样的方法,制备4块电极。取河南迪诺环保科技股份有限公司XF-B-3-100型臭氧发生器,把其中的4块电极全换成上述制成的电极。进行比对试验,试验条件为:纯氧气气源,进气压力为0.6MPa,进气风量为每小时1.5立方米,交流电压,5000V、2万赫兹的正弦波。通过出气风量和质量浓度检测结果计算得每小时臭氧产生量。
实验结果如下:
XF-B-3-100型原臭氧产生量为120g/小时;更换电极后,同样的试验条件下,臭氧产生量为155g/小时。实验条件下,功率损耗均为830W。
实施例11
制备臭氧发生器用电极:
催化剂(含涂层和活性组份)涂覆在铜箔(电极)的一面,涂覆催化剂之后,所述催化剂的厚度为1mm,所述催化剂包括如下重量百分比的各组分:活性组分为14wt%,涂层为86wt%,其中,所述活性组分为硫化锶、硫化镍、硫化锡和硫化铁(依次物质的量比为2:1:1:1),所述涂层为硅藻土,孔隙率为80%,比表面积为350平方米/克,平均孔径为30纳米。
其中,催化剂涂覆方法如下:
(1)取58g硅藻土、3.66g硫酸锶、2.63g硫酸镍、2.18g硫酸亚锡、2.78g硫酸亚铁、3g草酸、5g EDTA(分解用),倒入玛瑙磨中。再加入400g去离子水。200rpm/min下研磨10个小时。制成浆料;
(2)把上述催化剂浆料装入通过高压喷枪,均匀喷涂到铜箔(电极)的表面上。放入真空干燥器中阴干2小时;
(3)阴干后放入马弗中加热至500℃,加热升温速度为每分钟5℃。恒温两小时,保持炉门关闭条件下,自然冷却到室温;然后再通入CO进行硫化反应,涂敷过程完成。
以同样的方法,制备4块电极。取河南迪诺环保科技股份有限公司XF-B-3-100型臭氧发生器,把其中的4块电极全换成上述制成的电极。进行比对试验,试验条件为:纯氧气气源,进气压力为0.6MPa,进气风量为每小时1.5立方米,交流电压,5000V、2万赫兹的正弦波。 通过出气风量和质量浓度检测结果计算得每小时臭氧产生量。
实验结果如下:
XF-B-3-100型原臭氧产生量为120g/小时;更换电极后,同样的试验条件下,臭氧产生量为155g/小时。实验条件下,功率损耗均为830W。
实施例12
本实施例中电场发生单元可应用于进气电场装置,也可应用于尾气电场装置,如图13所示,包括用于发生电场的除尘电场阳极4051和除尘电场阴极4052,所述除尘电场阳极4051和除尘电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述除尘电场阳极4051和除尘电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中除尘电场阳极4051具有正电势,除尘电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阳极4051和除尘电场阴极4052之间形成放电电场,该放电电场是一种静电场。
如图13、图14和图15所示,本实施例中除尘电场阳极4051呈中空的正六边形管状,除尘电场阴极4052呈棒状,除尘电场阴极4052穿设在除尘电场阳极4051中。
减少电场耦合的方法,包括如下步骤:选择除尘电场阳极4051的集尘面积与除尘电场阴极4052的放电面积的比为6.67:1,除尘电场阳极4051和除尘电场阴极4052的极间距为9.9mm,除尘电场阳极4051长度为60mm,除尘电场阴极4052长度为54mm,所述除尘电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述除尘电场阴极4052置于所述流体通道中,所述除尘电场阴极4052沿集尘极流体通道的方向延伸,除尘电场阳极4051的进口端与除尘电场阴极4052的近进口端齐平,除尘电场阳极4051的出口端与除尘电场阴极4052的近出口端之间具有夹角α,且α=118°,进而在除尘电场阳极4051和除尘电场阴极4052的作用下,能将更多的待处理物质收集起来,实现电场耦合次数≤3,能够减少电场对气溶胶、水雾、油雾、松散光滑颗粒物的耦合消耗,节省电场电能30~50%。
本实施例中进气电场装置或尾气电场装置包括由多个上述电场发生单元构成的电场级,所述电场级有多个,以利用多个集尘单元有效提高本电场装置的集尘效率。同一电场级中,各除尘电场阳极为相同极性,各除尘电场阴极为相同极性。
多个电场级中各电场级之间串联,串联电场级通过连接壳体连接,相邻两级的电场级的距离大于极间距的1.4倍。如图16所示,所述电场级为两级即第一级电场和第二级电场,第一级电场和第二级电场通过连接壳体串联连接。
本实施例中上述待处理物质可以是呈颗粒状的粉尘,也可以是其它需处理的杂质,如气 溶胶、水雾、油雾等。
本实施例中上述气体可以是欲进入发动机的气体,或发动机排出的气体。
实施例13
本实施例中电场发生单元可应用于进气电场装置,也可应用于尾气电场装置,如图13所示,包括用于发生电场的除尘电场阳极4051和除尘电场阴极4052,所述除尘电场阳极4051和除尘电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述除尘电场阳极4051和除尘电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中除尘电场阳极4051具有正电势,除尘电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阳极4051和除尘电场阴极4052之间形成放电电场,该放电电场是一种静电场。
本实施例中除尘电场阳极4051呈中空的正六边形管状,除尘电场阴极4052呈棒状,除尘电场阴极4052穿设在除尘电场阳极4051中。
减少电场耦合的方法,包括如下步骤:选择除尘电场阳极4051的集尘面积与除尘电场阴极4052的放电面积的比为1680:1,除尘电场阳极4051和除尘电场阴极4052的极间距为139.9mm,除尘电场阳极4051长度为180mm,除尘电场阴极4052长度为180mm,所述除尘电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述除尘电场阴极4052置于所述流体通道中,所述除尘电场阴极4052沿集尘极流体通道的方向延伸,除尘电场阳极4051的进口端与除尘电场阴极4052的近进口端齐平,除尘电场阳极4051的出口端与除尘电场阴极4052的近出口端齐平,进而在除尘电场阳极4051和除尘电场阴极4052的作用下,能将更多的待处理物质收集起来,实现电场耦合次数≤3,能够减少电场对气溶胶、水雾、油雾、松散光滑颗粒物的耦合消耗,节省电场电能20~40%。
本实施例中上述待处理物质可以是呈颗粒状的粉尘,也可以是其它需处理的杂质,如气溶胶、水雾、油雾等。
本实施例中上述气体可以是欲进入发动机的气体,或发动机排出的气体。
实施例14
本实施例中电场发生单元可应用于进气电场装置,也可应用于尾气电场装置,如图13所示,包括用于发生电场的除尘电场阳极4051和除尘电场阴极4052,所述除尘电场阳极4051和除尘电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述除尘电场阳极4051和除尘电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中除尘电 场阳极4051具有正电势,除尘电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阳极4051和除尘电场阴极4052之间形成放电电场,该放电电场是一种静电场。
本实施例中除尘电场阳极4051呈中空的正六边形管状,除尘电场阴极4052呈棒状,除尘电场阴极4052穿设在除尘电场阳极4051中。
减少电场耦合的方法,包括如下步骤:选择除尘电场阳极4051的集尘面积与除尘电场阴极4052的放电面积的比为1.667:1,除尘电场阳极4051和除尘电场阴极4052的极间距为2.4mm,除尘电场阳极4051长度为30mm,除尘电场阴极4052长度为30mm,所述除尘电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述除尘电场阴极4052置于所述流体通道中,所述除尘电场阴极4052沿集尘极流体通道的方向延伸,除尘电场阳极4051的进口端与除尘电场阴极4052的近进口端齐平,除尘电场阳极4051的出口端与除尘电场阴极4052的近出口端齐平,进而在除尘电场阳极4051和除尘电场阴极4052的作用下,能将更多的待处理物质收集起来,实现电场耦合次数≤3,能够减少电场对气溶胶、水雾、油雾、松散光滑颗粒物的耦合消耗,节省电场电能10~30%。
本实施例中上述待处理物质可以是呈颗粒状的粉尘,也可以是其它需处理的杂质,如气溶胶、水雾、油雾等。
本实施例中上述气体可以是欲进入发动机的气体,或发动机排出的气体。
实施例15
本实施例中电场发生单元可应用于进气电场装置,也可应用于尾气电场装置,如图13所示,包括用于发生电场的除尘电场阳极4051和除尘电场阴极4052,所述除尘电场阳极4051和除尘电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述除尘电场阳极4051和除尘电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中除尘电场阳极4051具有正电势,除尘电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阳极4051和除尘电场阴极4052之间形成放电电场,该放电电场是一种静电场。
如图13、图14和图15所示,本实施例中除尘电场阳极4051呈中空的正六边形管状,除尘电场阴极4052呈棒状,除尘电场阴极4052穿设在除尘电场阳极4051中,除尘电场阳极4051的集尘面积与除尘电场阴极4052的放电面积的比为6.67:1,所述除尘电场阳极4051和除尘电场阴极4052的极间距为9.9mm,除尘电场阳极4051长度为60mm,除尘电场阴极4052长度为54mm,所述除尘电场阳极4051包括流体通道,所述流体通道包括进口端与出口 端,所述除尘电场阴极4052置于所述流体通道中,所述除尘电场阴极4052沿集尘极流体通道的方向延伸,除尘电场阳极4051的进口端与除尘电场阴极4052的近进口端齐平,除尘电场阳极4051的出口端与除尘电场阴极4052的近出口端之间具有夹角α,且α=118°,进而在除尘电场阳极4051和除尘电场阴极4052的作用下,能将更多的待处理物质收集起来,保证本电场发生单元的集尘效率更高,典型尾气颗粒pm0.23集尘效率为99.99%。
本实施例中进气电场装置或尾气电场装置包括由多个上述电场发生单元构成的电场级,所述电场级有多个,以利用多个集尘单元有效提高本电场装置的集尘效率。同一电场级中,各除尘电场阳极为相同极性,各除尘电场阴极为相同极性。
多个电场级中各电场级之间串联,串联电场级通过连接壳体连接,相邻两级的电场级的距离大于极间距的1.4倍。如图16所示,所述电场级为两级即第一级电场4053和第二级电场4054,第一级电场4053和第二级电场4054通过连接壳体4055串联连接。
本实施例中上述待处理物质可以是呈颗粒状的粉尘,也可以是其它需处理的杂质,如气溶胶、水雾、油雾等。
本实施例中上述气体可以是欲进入发动机的气体,或发动机排出的气体。
实施例16
本实施例中电场发生单元可应用于进气电场装置,也可应用于尾气电场装置,如图13所示,包括用于发生电场的除尘电场阳极4051和除尘电场阴极4052,所述除尘电场阳极4051和除尘电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述除尘电场阳极4051和除尘电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中除尘电场阳极4051具有正电势,除尘电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阳极4051和除尘电场阴极4052之间形成放电电场,该放电电场是一种静电场。
本实施例中除尘电场阳极4051呈中空的正六边形管状,除尘电场阴极4052呈棒状,除尘电场阴极4052穿设在除尘电场阳极4051中,除尘电场阳极4051的集尘面积与除尘电场阴极4052的放电面积的比为1680:1,所述除尘电场阳极4051和除尘电场阴极4052的极间距为139.9mm,除尘电场阳极4051长度为180mm,除尘电场阴极4052长度为180mm,所述除尘电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述除尘电场阴极4052置于所述流体通道中,所述除尘电场阴极4052沿集尘极流体通道的方向延伸,除尘电场阳极4051的进口端与除尘电场阴极4052的近进口端齐平,除尘电场阳极4051的出口端与除尘电场阴极4052的近出口端齐平,进而在除尘电场阳极4051和除尘电场阴极4052的作用 下,能将更多的待处理物质收集起来,保证本电场装置的集尘效率更高,典型尾气颗粒pm0.23集尘效率为99.99%。
本实施例中进气电场装置或尾气电场装置包括由多个上述电场发生单元构成的电场级,所述电场级有多个,以利用多个集尘单元有效提高本电场装置的集尘效率。同一电场级中,各除尘电场阳极为相同极性,各除尘电场阴极为相同极性。
本实施例中上述待处理物质可以是呈颗粒状的粉尘,也可以是其它需处理的杂质,如气溶胶、水雾、油雾等。
本实施例中上述气体可以是欲进入发动机的气体,或发动机排出的气体。
实施例17
本实施例中电场发生单元可应用于进气电场装置,也可应用于尾气电场装置,如图13所示,包括用于发生电场的除尘电场阳极4051和除尘电场阴极4052,所述除尘电场阳极4051和除尘电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述除尘电场阳极4051和除尘电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中除尘电场阳极4051具有正电势,除尘电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阳极4051和除尘电场阴极4052之间形成放电电场,该放电电场是一种静电场。
本实施例中除尘电场阳极4051呈中空的正六边形管状,除尘电场阴极4052呈棒状,除尘电场阴极4052穿设在除尘电场阳极4051中,除尘电场阳极4051的集尘面积与除尘电场阴极4052的放电面积的比为1.667:1,所述除尘电场阳极4051和除尘电场阴极4052的极间距为2.4mm。除尘电场阳极4051长度为30mm,除尘电场阴极4052长度为30mm,所述除尘电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述除尘电场阴极4052置于所述流体通道中,所述除尘电场阴极4052沿集尘极流体通道的方向延伸,除尘电场阳极4051的进口端与除尘电场阴极4052的近进口端齐平,除尘电场阳极4051的出口端与除尘电场阴极4052的近出口端齐平,进而在除尘电场阳极4051和除尘电场阴极4052的作用下,能将更多的待处理物质收集起来,保证本电场装置的集尘效率更高,典型尾气颗粒pm0.23集尘效率为99.99%。
本实施例中除尘电场阳极4051及除尘电场阴极4052构成集尘单元,且该集尘单元有多个,以利用多个集尘单元有效提高本电场装置的集尘效率。
本实施例中上述待处理物质可以是呈颗粒状的粉尘,也可以是其它需处理的杂质,如气溶胶、水雾、油雾等。
本实施例中上述气体可以是欲进入发动机的气体,或发动机排出的气体。
实施例18
本实施例中发动机排气系统,包括上述实施例15、实施例16或实施例17中的电场装置。由发动机排出的气体需先流经该电场装置,以利用该电场装置有效地将气体中的粉尘等污染物清除掉;随后,经处理后的气体再排放至大气,以降低发动机尾气对大气造成的影响。该发动机排气系统也称作尾气处理装置。
实施例19
本实施例中电场发生单元可应用于进气电场装置,也可应用于尾气电场装置,如图13所示,包括用于发生电场的除尘电场阳极4051和除尘电场阴极4052,所述除尘电场阳极4051和除尘电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述除尘电场阳极4051和除尘电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中除尘电场阳极4051具有正电势,除尘电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阳极4051和除尘电场阴极4052之间形成放电电场,该放电电场是一种静电场。
本实施例中除尘电场阳极4051呈中空的正六边形管状,除尘电场阴极4052呈棒状,除尘电场阴极4052穿设在除尘电场阳极4051中,除尘电场阳极4051长度为5cm,除尘电场阴极4052长度为5cm,所述除尘电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述除尘电场阴极4052置于所述流体通道中,所述除尘电场阴极4052沿集尘极流体通道的方向延伸,除尘电场阳极4051的进口端与除尘电场阴极4052的近进口端齐平,除尘电场阳极4051的出口端与除尘电场阴极4052的近出口端齐平,所述除尘电场阳极4051和除尘电场阴极4052的极间距为9.9mm,进而在除尘电场阳极4051和除尘电场阴极4052的作用下,使得其耐高温冲击,而且能将更多的待处理物质收集起来,保证本电场发生单元的集尘效率更高。电场温度为200℃对应的集尘效率为99.9%;电场温度为400℃对应的集尘效率为90%;电场温度为500℃对应的集尘效率为50%。
本实施例中进气电场装置或尾气电场装置包括由多个上述电场发生单元构成的电场级,所述电场级有多个,以利用多个集尘单元有效提高本电场装置的集尘效率。同一电场级中,各除尘电场阳极为相同极性,各除尘电场阴极为相同极性。
本实施例中上述待处理物质可以是呈颗粒状的粉尘。
本实施例中上述气体可以是欲进入发动机的气体,或发动机排出的气体。
实施例20
本实施例中电场发生单元可应用于进气电场装置,也可应用于尾气电场装置,如图13所示,包括用于发生电场的除尘电场阳极4051和除尘电场阴极4052,所述除尘电场阳极4051和除尘电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述除尘电场阳极4051和除尘电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中除尘电场阳极4051具有正电势,除尘电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阳极4051和除尘电场阴极4052之间形成放电电场,该放电电场是一种静电场。
本实施例中除尘电场阳极4051呈中空的正六边形管状,除尘电场阴极4052呈棒状,除尘电场阴极4052穿设在除尘电场阳极4051中,除尘电场阳极4051长度为9cm,除尘电场阴极4052长度为9cm,所述除尘电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述除尘电场阴极4052置于所述流体通道中,所述除尘电场阴极4052沿集尘极流体通道的方向延伸,除尘电场阳极4051的进口端与除尘电场阴极4052的近进口端齐平,除尘电场阳极4051的出口端与除尘电场阴极4052的近出口端齐平,所述除尘电场阳极4051和除尘电场阴极4052的极间距为139.9mm,进而在除尘电场阳极4051和除尘电场阴极4052的作用下,使得其耐高温冲击,而且能将更多的待处理物质收集起来,保证本电场发生单元的集尘效率更高。电场温度为200℃对应的集尘效率为99.9%;电场温度为400℃对应的集尘效率为90%;电场温度为500℃对应的集尘效率为50%。
本实施例中进气电场装置或尾气电场装置包括由多个上述电场发生单元构成的电场级,所述电场级有多个,以利用多个集尘单元有效提高本电场装置的集尘效率。同一电场级中,各存储电场阳极为相同极性,各除尘电场阴极为相同极性。
本实施例中上述待处理物质可以是呈颗粒状的粉尘。
本实施例中上述气体可以是欲进入发动机的气体,或发动机排出的气体。
实施例21
本实施例中电场发生单元可应用于进气电场装置,也可应用于尾气电场装置,如图13所示,包括用于发生电场的除尘电场阳极4051和除尘电场阴极4052,所述除尘电场阳极4051和除尘电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述除尘电场阳极4051和除尘电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中除尘电场阳极4051具有正电势,除尘电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阳极4051和除尘电场阴极4052之间形成放电电场,该放电电场是一种静电场。
本实施例中除尘电场阳极4051呈中空的正六边形管状,除尘电场阴极4052呈棒状,除尘电场阴极4052穿设在除尘电场阳极4051中,除尘电场阳极4051长度为1cm,除尘电场阴极4052长度为1cm,所述除尘电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述除尘电场阴极4052置于所述流体通道中,所述除尘电场阴极4052沿集尘极流体通道的方向延伸,除尘电场阳极4051的进口端与除尘电场阴极4052的近进口端齐平,除尘电场阳极4051的出口端与除尘电场阴极4052的近出口端齐平,所述除尘电场阳极4051和除尘电场阴极4052的极间距为2.4mm,进而在除尘电场阳极4051和除尘电场阴极4052的作用下,使得其耐高温冲击,而且能将更多的待处理物质收集起来,保证本电场发生单元的集尘效率更高。电场温度为200℃对应的集尘效率为99.9%;电场温度为400℃对应的集尘效率为90%;电场温度为500℃对应的集尘效率为50%。
本实施例中进气电场装置或尾气电场装置包括由多个上述电场发生单元构成的电场级,所述电场级有多个,以利用多个集尘单元有效提高本电场装置的集尘效率。同一电场级中,各除尘电场阳极为相同极性,各除尘电场阴极为相同极性。
多个电场级中各电场级之间串联,串联电场级通过连接壳体连接,相邻两级的电场级的距离大于极间距的1.4倍。所述电场级为两级即第一级电场和第二级电场,第一级电场和第二级电场通过连接壳体串联连接。
本实施例中上述待处理物质可以是呈颗粒状的粉尘。
本实施例中上述气体可以是欲进入发动机的气体,或发动机排出的气体。
实施例22
本实施例中电场发生单元可应用于进气电场装置,也可应用于尾气电场装置,如图13所示,包括用于发生电场的除尘电场阳极4051和除尘电场阴极4052,所述除尘电场阳极4051和除尘电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述除尘电场阳极4051和除尘电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中除尘电场阳极4051具有正电势,除尘电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阳极4051和除尘电场阴极4052之间形成放电电场,该放电电场是一种静电场。
如图13和图14所示,本实施例中除尘电场阳极4051呈中空的正六边形管状,除尘电场阴极4052呈棒状,除尘电场阴极4052穿设在除尘电场阳极4051中,除尘电场阳极4051长 度为3cm,除尘电场阴极4052长度为2cm,所述除尘电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述除尘电场阴极4052置于所述流体通道中,所述除尘电场阴极4052沿集尘极流体通道的方向延伸,除尘电场阳极4051的进口端与除尘电场阴极4052的近进口端齐平,除尘电场阳极4051的出口端与除尘电场阴极4052的近出口端之间具有夹角α,且α=90°,所述除尘电场阳极4051和除尘电场阴极4052的极间距为20mm,进而在除尘电场阳极4051和除尘电场阴极4052的作用下,使得其耐高温冲击,而且能将更多的待处理物质收集起来,保证本电场发生单元的集尘效率更高。电场温度为200℃对应的集尘效率为99.9%;电场温度为400℃对应的集尘效率为90%;电场温度为500℃对应的集尘效率为50%。
本实施例中进气电场装置或尾气电场装置包括由多个上述电场发生单元构成的电场级,所述电场级有多个,以利用多个集尘单元有效提高本电场装置的集尘效率。同一电场级中,各集尘极为相同极性,各放电极为相同极性。
多个电场级中各电场级之间串联,串联电场级通过连接壳体连接,相邻两级的电场级的距离大于极间距的1.4倍。如图16所示,所述电场级为两级即第一级电场和第二级电场,第一级电场和第二级电场通过连接壳体串联连接。
本实施例中上述待处理物质可以是呈颗粒状的粉尘。
本实施例中上述气体可以是欲进入发动机的气体,或发动机排出的气体。
实施例23
本实施例中发动机排气系统,包括上述实施例19、实施例20、实施例21或实施例22中的电场装置。由发动机排出的气体需先流经该电场装置,以利用该电场装置有效地将气体中的粉尘等污染物清除掉;随后,经处理后的气体再排放至大气,以降低发动机尾气对大气造成的影响。该发动机排气系统也称作尾气处理装置。
实施例24
本实施例中电离装置可应用于进气系统,也可应用于尾气系统,包括除尘电场阴极5081和除尘电场阳极5082分别与直流电源的阴极和阳极电性连接,辅助电极5083与直流电源的阳极电性连接。本实施例中除尘电场阴极5081具有负电势,除尘电场阳极5082和辅助电极5083均具有正电势。
同时,如图17所示,本实施例中辅助电极5083与除尘电场阳极5082固接。在除尘电场阳极5082与直流电源的阳极电性连接后,也实现了辅助电极5083与直流电源的阳极电性连 接,且辅助电极5083与除尘电场阳极5082具有相同的正电势。
如图17所示,本实施例中辅助电极5083可沿前后方向延伸,即辅助电极5083的长度方向可与除尘电场阳极5082的长度方向相同。
如图17所示,本实施例中除尘电场阳极5082呈管状,除尘电场阴极5081呈棒状,除尘电场阴极5081穿设在除尘电场阳极5082中。同时本实施例中上述辅助电极5083也呈管状,辅助电极5083与除尘电场阳极5082构成阳极管5084。阳极管5084的前端与除尘电场阴极5081齐平,阳极管5084的后端向后超出了除尘电场阴极5081的后端,该阳极管5084相比于除尘电场阴极5081向后超出的部分为上述辅助电极5083。即本实施例中除尘电场阳极5082和除尘电场阴极5081的长度相同,除尘电场阳极5082和除尘电场阴极5081在前后方向上位置相对;辅助电极5083位于除尘电场阳极5082和除尘电场阴极5081的后方。这样,辅助电极5083与除尘电场阴极5081之间形成辅助电场,该辅助电场给除尘电场阳极5082和除尘电场阴极5081之间带负电荷的氧离子流施加向后的力,使得除尘电场阳极5082和除尘电场阴极5081间带负电荷的氧离子流具有向后的移动速度。当含有待处理物质的气体由前向后流入阳极管5084,带负电荷的氧离子在向除尘电场阳极5082且向后移动过程中将与待处理物质相结合,由于氧离子具有向后的移动速度,氧离子在与待处理物质相结合时,两者间不会产生较强的碰撞,从而避免因较强碰撞而造成较大的能量消耗,使得氧离子易于与待处理物质相结合,并使得气体中待处理物质的荷电效率更高,进而在除尘电场阳极5082及阳极管5084的作用下,能将更多的待处理物质收集起来,保证本电场装置的除尘效率更高。
另外,如图9所示,本实施例中阳极管5084的后端与除尘电场阴极5081的后端之间具有夹角α,且0°<α≤125°、或45°≤α≤125°、或60°≤α≤100°、或α=90°。
本实施例中除尘电场阳极5082、辅助电极5083、及除尘电场阴极5081构成除尘单元,且该除尘单元有多个,以利用多个除尘单元有效提高本电场装置的除尘效率。
本实施例中上述待处理物质可以是呈颗粒状的粉尘,也可以是其它需处理的杂质。
本实施例中上述气体可以是欲进入发动机的气体,或发动机排出的气体。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阴极5081和除尘电场阳极5082之间形成放电电场,该放电电场是一种静电场。在无上述辅助电极5083的情况下,除尘电场阴极5081和除尘电场阳极5082之间电场中离子流沿垂直于电极方向,且在两电极间折返流动,并导致离子在电极间来回折返消耗。为此,本实施例利用辅助电极5083使电极相对位置错开,形成除尘电场阳极5082和除尘电场阴极5081间相对不平衡,这个不平衡会使电场中离子流发生偏转。本电场装置利用辅助电极5083形成能使离子流具有方向性的电场。 本实施例中上述电场装置也称作一种有加速方向电场装置。本电场装置对顺离子流方向进入电场的颗粒物的收集率比对逆离子流方向进入电场的颗粒物的收集率提高近一倍,从而提高电场积尘效率,减少电场电耗。另外,现有技术中集尘电场的除尘效率较低的主要原因也是粉尘进入电场方向与电场内离子流方向相反或垂直交叉,从而导致粉尘与离子流相互冲撞剧烈并产生较大能量消耗,同时也影响荷电效率,进而使现有技术中电场集尘效率下降,且能耗增加。
本实施例中电场装置在用于收集气体中的粉尘时,气体及粉尘顺离子流方向进入电场,粉尘荷电充分,电场消耗小;单极电场集尘效率会达到99.99%。当气体及粉尘逆离子流方向进入电场,粉尘荷电不充分,电场电耗也会增加,集尘效率会在40%-75%。另外,本实施例中电场装置形成的离子流有利于无动力风扇流体输送、增氧、热量交换等。
实施例25
本实施例中电场装置可应用于进气系统,也可应用于尾气系统,包括除尘电场阴极5081和除尘电场阳极5082分别与直流电源的阴极和阳极电性连接,辅助电极5083与直流电源的阴极电性连接。本实施例中辅助电极5083和除尘电场阴极5081均具有负电势,除尘电场阳极5082具有正电势。
本实施例中辅助电极5083可与除尘电场阴极5081固接。这样,在实现除尘电场阴极5081与直流电源的阴极电性连接后,也实现了辅助电极5083与直流电源的阴极电性连接。同时,本实施例中辅助电极5083沿前后方向延伸。
本实施例中除尘电场阳极5082呈管状,除尘电场阴极5081呈棒状,除尘电场阴极5081穿设在除尘电场阳极5082中。同时本实施例中上述辅助电极5083也棒状,且辅助电极5083和除尘电场阴极5081构成阴极棒。该阴极棒的前端向前超出除尘电场阳极5082的前端,该阴极棒与除尘电场阳极5082相比向前超出的部分为上述辅助电极5083。即本实施例中除尘电场阳极5082和除尘电场阴极5081的长度相同,除尘电场阳极5082和除尘电场阴极5081在前后方向上位置相对;辅助电极5083位于除尘电场阳极5082和除尘电场阴极5081的前方。这样,辅助电极5083与除尘电场阳极5082之间形成辅助电场,该辅助电场给除尘电场阳极5082和除尘电场阴极5081之间带负电荷的氧离子流施加向后的力,使得除尘电场阳极5082和除尘电场阴极5081间带负电荷的氧离子流具有向后的移动速度。当含有待处理物质的气体由前向后流入管状的除尘电场阳极5082,带负电荷的氧离子在向除尘电场阳极5082且向后移动过程中将与待处理物质相结合,由于氧离子具有向后的移动速度,氧离子在与待处理物质相结合时,两者间不会产生较强的碰撞,从而避免因较强碰撞而造成较大的能量消耗,使 得氧离子易于与待处理物质相结合,并使得气体中待处理物质的荷电效率更高,进而在除尘电场阳极5082作用下,能将更多的待处理物质收集起来,保证本电场装置的除尘效率更高。
本实施例中除尘电场阳极5082、辅助电极5083、及除尘电场阴极5081构成除尘单元,且该除尘单元有多个,以利用多个除尘单元有效提高本电场装置的除尘效率。
本实施例中上述待处理物质可以是呈颗粒状的粉尘,也可以是其它需处理的杂质。
实施例26
如图18所示,本实施例中电场装置可应用于进气系统,也可应用于尾气系统,辅助电极5083沿左右方向延伸。本实施例中辅助电极5083的长度方向与除尘电场阳极5082和除尘电场阴极5081的长度方向不同。且辅助电极5083具体可与除尘电场阳极5082相垂直。
本实施例中除尘电场阴极5081和除尘电场阳极5082分别与直流电源的阴极和阳极电性连接,辅助电极5083与直流电源的阳极电性连接。本实施例中除尘电场阴极5081具有负电势,除尘电场阳极5082和辅助电极5083均具有正电势。
如图18所示,本实施例中除尘电场阴极5081和除尘电场阳极5082在前后方向上位置相对,辅助电极5083位于除尘电场阳极5082和除尘电场阴极5081的后方。这样,辅助电极5083与除尘电场阴极5081之间形成辅助电场,该辅助电场给除尘电场阳极5082和除尘电场阴极5081之间带负电荷的氧离子流施加向后的力,使得除尘电场阳极5082和除尘电场阴极5081间带负电荷的氧离子流具有向后的移动速度。当含有待处理物质的气体由前向后流入除尘电场阳极5082和除尘电场阴极5081之间的电场,带负电荷的氧离子在向除尘电场阳极5082且向后移动过程中将与待处理物质相结合,由于氧离子具有向后的移动速度,氧离子在与待处理物质相结合时,两者间不会产生较强的碰撞,从而避免因较强碰撞而造成较大的能量消耗,使得氧离子易于与待处理物质相结合,并使得气体中待处理物质的荷电效率更高,进而在除尘电场阳极5082的作用下,能将更多的待处理物质收集起来,保证本电场装置的除尘效率更高。
实施例27
如图19所示,本实施例中电场装置可应用于进气系统,也可应用于尾气系统,辅助电极5083沿左右方向延伸。本实施例中辅助电极5083的长度方向与除尘电场阳极5082和除尘电场阴极5081的长度方向不同。且辅助电极5083具体可与除尘电场阴极5081相垂直。
本实施例中除尘电场阴极5081和除尘电场阳极5082分别与直流电源的阴极和阳极电性连接,辅助电极5083与直流电源的阴极电性连接。本实施例中除尘电场阴极5081和辅助电极5083均具有负电势,除尘电场阳极5082具有正电势。
如图19所示,本实施例中除尘电场阴极5081和除尘电场阳极5082在前后方向上位置相对,辅助电极5083位于除尘电场阳极5082和除尘电场阴极5081的前方。这样,辅助电极5083与除尘电场阳极5082之间形成辅助电场,该辅助电场给除尘电场阳极5082和除尘电场阴极5081之间带负电荷的氧离子流施加向后的力,使得除尘电场阳极5082和除尘电场阴极5081间带负电荷的氧离子流具有向后的移动速度。当含有待处理物质的气体由前向后流入除尘电场阳极5082和除尘电场阴极5081之间的电场,带负电荷的氧离子在向除尘电场阳极5082且向后移动过程中将与待处理物质相结合,由于氧离子具有向后的移动速度,氧离子在与待处理物质相结合时,两者间不会产生较强的碰撞,从而避免因较强碰撞而造成较大的能量消耗,使得氧离子易于与待处理物质相结合,并使得气体中待处理物质的荷电效率更高,进而在除尘电场阳极5082的作用下,能将更多的待处理物质收集起来,保证本电场装置的除尘效率更高。
实施例28
本实施例中发动机排气装置,包括上述实施例24、25、26、或27中的电场装置。由发动机排出的气体需先流经该电场装置,以利用该电场装置有效地将气体中的粉尘等污染物清除掉;随后,经处理后的气体再排放至大气,以降低发动机尾气对大气造成的影响。本实施例中发动机排气装置也称作尾气处理装置,尾气除尘机构也称作尾气电场装置,除尘电场阴极5081也称作尾气除尘电场阴极,除尘电场阳极5082也称作尾气除尘电场阳极。
实施例29
本实施例提供一种尾气电场装置,包括尾气除尘电场阴极和尾气除尘电场阳极。尾气除尘电场阴极和尾气除尘电场阳极分别与直流电源的两个电极电性连接,尾气除尘电场阴极和尾气除尘电场阳极之间具有尾气电离除尘电场,尾气电场装置还包括补氧装置。补氧装置用于在所述尾气电离除尘电场之前向尾气中添加包括氧气的气体。补氧装置可通过单纯增氧、通入外界空气、通入压缩空气和/或通入臭氧的方式添加氧气。本实施例中尾气电场装置,利用补氧装置向尾气中补充氧气,以提高气体含氧量,从而当尾气流经尾气电离除尘电场时,使得气体中更多的粉尘荷电,进而在尾气除尘电场阳极的作用下将更多的荷电的粉尘收集起来,使得本尾气电场装置的除尘效率更高。
本实施例中至少根据尾气颗粒含量决定补氧量。
本实施例中尾气除尘电场阴极和尾气除尘电场阳极分别与直流电源的阴极和阳极电性连接,使得尾气除尘电场阳极具有正电势、尾气除尘电场阴极具有负电势。同时,本实施例中直流电源具体可为高压直流电源。本实施例中尾气除尘电场阴极和尾气除尘电场阳极之间形 成的电场具体可称作一种静电场。
本实施例中尾气电场装置适用于低氧环境中,该尾气电场装置也称作一种适用于低氧环境的电场装置。本实施例中补氧装置包括风机,以利用风机将外界的空气及氧气补入尾气中,让进入电场的尾气中氧的浓度得以提高,从而提高尾气中粉尘等颗粒物的荷电几率,进而提高电场及本尾气电场装置对氧浓度较低的尾气中粉尘等物质的收集效率。另外,风机向尾气中补入的空气也能作为冷却风,对尾气起到降温的作用。本实施例中风机将空气通入尾气中,并在尾气电场装置入口之前,对尾气起到降温的作用。通入的空气可以是尾气的50%至300%、或100%至180%、或120%至150%。
本实施例中尾气电离除尘电场及尾气电场装置具体可用于收集燃油发动机尾气或燃烧炉尾气中的粉尘等颗粒物,即上述气体具体可为燃油发动机尾气或燃烧炉尾气。本实施例利用补氧装置向尾气中补入新风或单纯增氧,以提高尾气的含氧量,就能提升尾气电离除尘电场收集尾气中颗粒物以及气溶胶态物质的效率。同时,还能对尾气起到降温的作用,从而更有利于电场收集尾气中的颗粒物。
本实施例也可通过补氧装置向尾气中通入压缩空气、或臭氧等方式实现尾气增氧;同时调整前级发动机或锅炉等设备的燃烧情况,使产生的尾气含氧量稳定,从而满足电场荷电及集尘需要。
本实施例中补氧装置具体可包括正压风机和管道。尾气除尘电场阴极和尾气除尘电场阳极构成电场组件,且上述尾气除尘电场阴极也称作一种电晕极。高压直流电源和电源线构成电源组件。本实施例利用补氧装置将空气中的氧气补充到尾气中,使粉尘充荷电,避免尾气因氧含量波动引发电场效率波动。同时,补氧也会提高电场臭氧含量,有利于提高电场对尾气中有机物进行净化、自洁、脱硝等处理的效率。
本实施例中尾气电场装置也称作一种除尘器。上述尾气除尘电场阴极和尾气除尘电场阳极之间具有除尘通道,该除尘通道中形成上述尾气电离除尘电场。如图20和图21所示,本尾气电场装置还包括与除尘通道相通的叶轮涵道3091、与叶轮涵道3091相通的尾气通道3092、及与叶轮涵道3091相通的增氧涵道3093。叶轮涵道3091中安装有叶轮3094,该叶轮3094构成上述风机,即上述补氧装置包括叶轮3094。增氧涵道3093位于尾气通道3092的外围,增氧涵道3093也称作外涵道。增氧涵道3093的一端设有空气进口30931,尾气通道3092的一端设有尾气进口30921,且该尾气进口30921与燃油发动机或燃烧炉的排气口相通。这样,发动机或燃烧炉等排放的尾气将通过尾气进口30921及尾气通道3092进入叶轮涵道3091,并推动叶轮涵道3091中的叶轮3094旋转,同时起到对尾气降温的作用,且叶轮3094旋转时 将外界的空气由空气进口30931吸入增氧涵道3093及叶轮涵道3091,从而使空气混入尾气中,达到对尾气增氧降温的目的;补入氧气的尾气再经叶轮涵道3091流经除尘通道,进而利用电场对增氧后的尾气进行除尘,且使得除尘效率更高。本实施例中上述叶轮涵道3091及叶轮3094构成涡扇。
实施例30
如图22至图24所示,本实施例提供一种电凝装置,包括:
第一电极301,能将电子传导给含硝酸的水雾;当电子被传导给硝酸的水雾时,硝酸的水雾带电;
第二电极302,能给带电的水雾施加吸引力。
同时,如图22所示,本实施例中电凝装置还包括具有电凝进口3031和电凝出口3032的电凝壳体303,第一电极301和第二电极302均安装在电凝壳体303中。且第一电极301通过电凝绝缘件304与电凝壳体303的内壁固接,第二电极302直接与电凝壳体303固接。本实施例中电凝绝缘件304呈柱状,又称作绝缘柱。在另一种实施例中电凝绝缘件304还可以呈塔状等。本电凝绝缘件304主要是防污染防漏电。本实施例中第一电极301和第二电极302均呈网状,且两者均于电凝进口3031和电凝出口3032之间。第一电极301具有负电势,第二电极302具有正电势。同时,本实施例中电凝壳体303与第二电极302具有相同的电势,该电凝壳体303同样对带电的物质具有吸附作用。本实施例中电凝壳体中设有电凝流道3036,第一电极301和第二电极302均安装在电凝流道3036中,且第一电极301的截面面积与电凝流道3036的截面面积比为99%~10%、或90~10%、或80~20%、或70~30%、或60~40%、或50%。
本实施例中电凝装置还可以用于处理含有酸雾的工业尾气。当电凝装置用于处理含有酸雾的工业尾气时,本实施例中电凝进口3031与排放工业尾气的口相连通。如图22所示,本实施例中电凝装置的工作原理如下:工业尾气由电凝进口3031流入电凝壳体303,并经电凝出口3032流出;在此过程中,工业尾气将流经第一电极301,当工业尾气中的酸雾与第一电极301接触时,或与第一电极301的距离达到一定值时,第一电极301将电子传递给酸雾,酸雾带电,第二电极302给带电的酸雾施加吸引力,酸雾向第二电极302移动,并附着在第二电极302上;由于酸雾具有易带且易失电特性,某个带电的雾滴在向第二电极302移动过程中又将失电,此时其它带电的雾滴又将快速将电子传递给该失电的雾滴,如此重复,雾滴处于持续带电状态,第二电极302就能持续给雾滴施加吸附力,并使得雾滴附着在第二电极302,从而实现对工业尾气中酸雾的去除,避免酸雾直接排放至大气中,并对大气造成污染。 本实施例中上述第一电极301和第二电极302构成吸附单元。且在吸附单元仅有一个的情况下,本实施例中电凝装置能除去工业尾气中80%的酸雾,大大降低了酸雾的排放量,具有显著的环保效果。
如图24所示,本实施例中第一电极301上设有3个前连接部3011,3个前连接部3011分别通过3个电凝绝缘件304与电凝壳体303的内壁上的3个连接部固接,此种连接形式能有效增强第一电极301与电凝壳体303间的连接强度。本实施例中前连接部3011呈圆柱形,在其它实施例中前连接部3011还可以呈塔状等。本实施例中电凝绝缘件304呈圆柱状,在其它实施例中电凝绝缘件304还可以呈塔状等。本实施例中后连接部呈圆柱状,在其它实施例中电凝绝缘件304还可以呈塔状等。如图22所示,本实施例中电凝壳体303包括由电凝进口3031至电凝出口3032方向依次分布的第一壳体部3033、第二壳体部3034、及第三壳体部3035。电凝进口3031位于第一壳体部3033的一端,电凝出口3032位于第三壳体部3035的一端。第一壳体部3033的轮廓大小由电凝进口3031至电凝出口3032方向逐渐增大,第三壳体部3035的轮廓大小由电凝进口3031至电凝出口3032方向逐渐减小。本实施例中第二壳体部3034的截面呈矩形。本实施例中电凝壳体303采用上述结构设计,使尾气在电凝进口3031处达到一定的入口流速,更主要能使气流分布更加均匀,进而使尾气中的介质、如雾滴更容易在第一电极301的激发作用下带电。同时本电凝壳体303封装更加方便,减少材料用量,并节省空间,可以用管道连接,且还有利用于绝缘的考虑。任何可达到上述效果的电凝壳体303均可以接受。
本实施例中电凝进口3031和电凝出口3032均呈圆形,电凝进口3031也可称作进气口,电凝出口3032也可称作出气口。本实施例中电凝进口3031的直径为300mm~1000mm,具体为500mm。同时,本实施例中电凝进口3031的直径为300mm~1000mm,具体为500mm。
实施例31
如图25和图26所示,本实施例提供一种电凝装置,包括:
第一电极301,能将电子传导给含硝酸的水雾;当电子被传导给含硝酸的水雾时,含硝酸的水雾带电;
第二电极302,能给带电的水雾施加吸引力。
如图25和图26所示,本实施例中第一电极301有两个,两个第一电极301均呈网状且呈球笼状。本实施例中第二电极302有一个,该第二电极302呈网状且呈球笼状。第二电极302位于两个第一电极301之间。同时,如图25所示,本实施例中电凝装置还包括具有电凝进口3031和电凝出口3032的电凝壳体303,第一电极301和第二电极302均安装在电凝壳 体303中。且第一电极301通过电凝绝缘件304与电凝壳体303的内壁固接,第二电极302直接与电凝壳体303固接。本实施例中电凝绝缘件304呈柱状,又称作绝缘柱。本实施例中第一电极301具有负电势,第二电极302具有正电势。同时,本实施例中电凝壳体303与第二电极302具有相同的电势,该电凝壳体303同样对带电的物质具有吸附作用。
本实施例中电凝装置还可用于处理含有酸雾的工业尾气。本实施例中电凝进口3031可与排放工业尾气的口相连通。如图25所示,本实施例中电凝装置的工作原理如下:工业尾气由电凝进口3031流入电凝壳体303,并经电凝出口3032流出;在此过程中,工业尾气将先流经其中一个第一电极301,当工业尾气中的酸雾与该第一电极301接触时,或与该第一电极301的距离达到一定值时,第一电极301将电子传递给酸雾,部分酸雾带电,第二电极302给带电的酸雾施加吸引力,酸雾向第二电极302移动,并附着在第二电极302上;另有一部分酸雾未被吸附在第二电极302上,该部分酸雾继续向电凝出口3032方向流动,当该部分酸雾与另一个第一电极301接触时,或与另一个第一电极301的距离达到一定值时,该部分酸雾将带电,电凝壳体303给该部分带电的酸雾施加吸附力,使得该部分带电的酸雾附着在电凝壳体303的内壁上,从而大大减少了工业尾气中酸雾的排放量,且本实施例中处理装置能去除工业尾气中90%的酸雾,去除酸雾的效果非常显著。另外,本实施例中电凝进口3031和电凝出口3032均呈圆形,电凝进口3031也可称作进气口,电凝出口3032也可称作出气口。
实施例32
如图27所示,本实施例提供一种电凝装置,包括:
第一电极301,能将电子传导给水雾;当电子被传导给水雾时,水雾带电;
第二电极302,能给带电的水雾施加吸引力。
本实施例中第一电极301呈针状,且第一电极301带有负电势。同时,本实施例中第二电极302呈面状,且第二电极302带有正电势,该第二电极302也称作收集极。本实施例中第二电极302具体呈平面状,且第一电极301垂直于第二电极302。本实施例中第一电极301和第二电极302之间形成线面电场。
实施例33
如图28所示,本实施例提供一种电凝装置,包括:
第一电极301,能将电子传导给水雾;当电子被传导给水雾时,水雾带电;
第二电极302,能给带电的水雾施加吸引力。
本实施例中第一电极301呈线状,且第一电极301带有负电势。同时,本实施例中第二电极302呈面状,且第二电极302带有正电势,该第二电极302也称作收集极。本实施例中 第二电极302具体呈平面状,且第一电极301平行于第二电极302。本实施例中第一电极301和第二电极302之间形成线面电场。
实施例34
如图29所示,本实施例提供一种电凝装置,包括:
第一电极301,能将电子传导给水雾;当电子被传导给水雾时,水雾带电;
第二电极302,能给带电的水雾施加吸引力。
本实施例中第一电极301呈网状,且第一电极301带有负电势。同时,本实施例中第二电极302呈面状,且第二电极302带有正电势,该第二电极302也称作收集极。本实施例中第二电极302具体呈平面状,且第一电极301平行于第二电极302。本实施例中第一电极301和第二电极302之间形成网面电场。另外,本实施例中第一电极301由金属丝制成的网状结构,该第一电极301由金属丝网构成。本实施例中第二电极302的面积大于第一电极301的面积。
实施例35
如图30所示,本实施例提供一种电凝装置,包括:
第一电极301,能将电子传导给水雾;当电子被传导给水雾时,水雾带电;
第二电极302,能给带电的水雾施加吸引力。
本实施例中第一电极301呈点状,且第一电极301带有负电势。同时,本实施例中第二电极302呈桶状,且第二电极302带有正电势,该第二电极302也称作收集极。本实施例中第一电极301通过金属线或金属针进行固定。且本实施例中第一电极301位于桶状的第二电极302的几何对称中心处。本实施例中第一电极301和第二电极302之间形成点桶电场。
实施例36
如图31所示,本实施例提供一种电凝装置,包括:
第一电极301,能将电子传导给水雾;当电子被传导给水雾时,水雾带电;
第二电极302,能给带电的水雾施加吸引力。
本实施例中第一电极301呈线状,且第一电极301带有负电势。同时,本实施例中第二电极302呈桶状,且第二电极302带有正电势,该第二电极302也称作收集极。本实施例中第一电极301通过金属线或金属针进行固定。且本实施例中第一电极301位于桶状的第二电极302的几何对称轴上。本实施例中第一电极301和第二电极302之间形成线桶电场。
实施例37
如图32所示,本实施例提供一种电凝装置,包括:
第一电极301,能将电子传导给水雾;当电子被传导给水雾时,水雾带电;
第二电极302,能给带电的水雾施加吸引力。
本实施例中第一电极301呈网状,且第一电极301带有负电势。同时,本实施例中第二电极302呈桶状,且第二电极302带有正电势,该第二电极302也称作收集极。本实施例中第一电极301通过金属线或金属针进行固定。且本实施例中第一电极301位于桶状的第二电极302的几何对称中心处。本实施例中第一电极301和第二电极302之间形成网桶电凝电场。
实施例38
如图33所示,本实施例提供一种电凝装置,包括:
第一电极301,能将电子传导给水雾;当电子被传导给水雾时,水雾带电;
第二电极302,能给带电的水雾施加吸引力。
本实施例中第二电极302有两个,且第一电极301位于两个第二电极302之间,第一电极301沿左右方向方向上的长度大于第二电极302沿左右方向上的长度,有第一电极301的左端位于第二电极302的左方。第一电极301的左端与第二电极302的左端形成沿斜向延伸的电力线。本实施例中第一电极301与第二电极302之间形成非对称电凝电场。在使用时,低比电阻物质、如雾滴由左进入两个第二电极302之间。部分雾滴带电后,由第一电极301的左端沿斜向向第二电极302的左端移动,从而对雾滴形成拉动作用。
实施例39
如图34所示,本实施例提供一种电凝装置,包括:
第一电极,能将电子传导给水雾;当电子被传导给水雾时,水雾带电;
第二电极,能给带电的水雾施加吸引力。
本实施例中第一电极和第二电极构成吸附单元3010。本实施例中吸附单元3010有多个,且全部吸附单元3010沿水平方向分布。本实施例中全部吸附单元3010具体沿左右方向分布。
实施例40
如图35所示,本实施例提供一种电凝装置,包括:
第一电极,能将电子传导给水雾;当电子被传导给水雾时,水雾带电;
第二电极,能给带电的水雾施加吸引力。
本实施例中第一电极和第二电极构成吸附单元3010。本实施例中吸附单元3010有多个,且全部吸附单元3010沿上下方向分布。
实施例41
如图36所示,本实施例提供一种电凝装置,包括:
第一电极,能将电子传导给水雾;当电子被传导给水雾时,水雾带电;
第二电极,能给带电的水雾施加吸引力。
本实施例中第一电极和第二电极构成吸附单元3010。本实施例中吸附单元3010有多个,且全部吸附单元3010沿斜向分布。
实施例42
如图37所示,本实施例提供一种电凝装置,包括:
第一电极,能将电子传导给水雾;当电子被传导给水雾时,水雾带电;
第二电极,能给带电的水雾施加吸引力。
本实施例中第一电极和第二电极构成吸附单元3010。本实施例中吸附单元3010有多个,且全部吸附单元3010沿螺旋方向分布。
实施例43
如图38所示,本实施例提供一种电凝装置,包括:
第一电极,能将电子传导给水雾;当电子被传导给水雾时,水雾带电;
第二电极,能给带电的水雾施加吸引力。
本实施例中第一电极和第二电极构成吸附单元3010。本实施例中吸附单元3010有多个,且全部吸附单元3010沿左右方向、上下方向和斜向分布。
实施例44
如图39所示,本实施例提供一种发动机尾气处理系统,包括上述电凝装置30100和文氏板3051。本实施例中电凝装置30100与文氏板3051组合使用。
实施例45
如图40所示,本实施例提供一种发动机尾气处理系统,包括上述电凝装置30100、文氏板3051、NO
x氧化催化装置3052、及臭氧消解装置3053。本实施例中电凝装置30100和文氏板3051位于NO
x氧化催化装置3052和臭氧消解装置3053之间。且NO
x氧化催化装置3052中具有NO
x氧化催化剂,臭氧消解装置3053中具有臭氧消解催化剂。
实施例46
如图41所示,本实施例提供一种发动机尾气处理系统,包括上述电凝装置30100、电晕装置3054和文氏板3051,其中电凝装置30100位于电晕装置3054和文氏板3051之间。
实施例47
如图42所示,本实施例提供一种发动机尾气处理系统,包括上述电凝装置30100、加热装置3055和臭氧消解装置3053,其中加热装置3055位于电凝装置30100和臭氧消解装置3053 之间。
实施例48
如图43所示,本实施例提供一种发动机尾气处理系统,包括上述电凝装置30100、离心装置3056和文氏板3051,其中电凝装置30100位于离心装置3056和文氏板3051之间。
实施例49
如图44所示,本实施例提供一种发动机尾气处理系统,包括上述电凝装置30100、电晕装置3054、文氏板3051、及分子筛3057,其中文氏板3051和电凝装置30100位于电晕装置3054和分子筛3057之间。
实施例50
如图45所示,本实施例提供一种发动机尾气处理系统,包括上述电凝装置30100、电晕装置3054和电磁装置3058,其中电凝装置30100位于电晕装置3054和电磁装置3058之间。
实施例51
如图46所示,本实施例提供一种发动机尾气处理系统,包括上述电凝装置30100、电晕装置3054和辐照装置3059,其中辐照装置3059位于电晕装置3054和电凝装置30100之间。
实施例52
如图47所示,本实施例提供一种发动机尾气处理系统,包括上述电凝装置30100、电晕装置3054和湿电除尘装置3061,其中湿电除尘装置3061位于电晕装置3054和电凝装置30100之间。
实施例53
本实施例中尾气除尘系统包括尾气降温装置,用于在尾气电场装置入口之前降低尾气温度。本实施例中尾气降温装置可与尾气电场装置入口相连通。
如图48所示,本实施例提供一种尾气降温装置,包括:
换热单元3071,用于与发动机的尾气进行热交换,以将换热单元3071中液态的换热介质加热成气态的换热介质。
本实施例中换热单元3071可以包括:
尾气通过腔,与发动机的排气管路相连通,该尾气通过腔用于供发动机的尾气通过;
介质气化腔,介质气化腔用于将液态换热介质与尾气发生热交换后转化成气态的换热介质。
本实施例中介质气化腔中具有液态的换热介质,液态的换热介质与尾气通过腔中的尾气发生热交换后会转化成气态的换热介质。尾气通过腔实现对汽车尾气的收集。本实施例中介 质气化腔和尾气通过腔的长度方向可以相同,即介质气化腔的轴线与尾气通过腔的轴线相重合。本实施例中介质气化腔可以位于尾气通过腔内,或位于尾气通过腔外部。这样,当汽车尾气流过尾气通过腔时,汽车尾气携带的热量将传递给对介质气化腔内的液体,将液体加热到沸点以上,液体汽化为高温高压的蒸气等气态介质,该蒸气将在介质气化腔中流动。本实施例中介质气化腔具体可全包覆或除其前端外的部分包覆在尾气通过腔的内外侧。
本实施例中尾气降温装置还包括动力产生单元3072,该动力产生单元3072用于将换热介质的热能和/或尾气的热能转换为机械能。
本实施例中尾气降温装置还包括发电单元3073,该发电单元3073用于将动力产生单元3072产生的机械能转换为电能。
本实施例中尾气降温装置的工作原理为:换热单元3071与发动机的尾气进行热交换,以将换热单元3071中的液态的换热介质加热成气态的换热介质;动力产生单元3072将换热介质的热能或尾气的热能转换机械能;发电单元3073将动力产生单元3072产生的机械能转换为电能,从而实现利用发动机的尾气进行发电,避免尾气携带的热量及压力被浪费掉;且换热单元3071在与尾气进行热交换时,还能起到对尾气散热、降温的作用,以便于能采用其它尾气净化装置等对尾气进行处理,并提高后续对尾气处理的效率。
本实施例中换热介质可以为水、甲醇、乙醇、油、或烷等。上述换热介质为能因温度而相变的物质,同时在相变过程其体积及压力也产生相应的变化。
本实施例中换热单元3071也称作换热器。本实施例中换热单元3071可采用管式换热设备。换热单元3071的设计考虑因素包括承压、减少体积、及增加换热面积等。
如图48所示,本实施例中尾气降温装置还可以包括连接于换热单元3071与动力产生单元3072之间的介质传输单元3074。介质气化腔中形成的蒸气等气态介质通过介质传输单元3074作用于动力产生单元3072。介质传输单元3074包括承压管路。
本实施例中动力产生单元3072包括涡扇。该涡扇能将蒸气或尾气等气态介质产生的压力转换成动能。且涡扇包括涡扇轴、及至少一组固定在涡扇轴上的涡扇组件。涡扇组件包括导流扇和动力扇。当蒸气的压力作用于涡扇组件时,涡扇轴将随涡扇组件一起转动,从而将蒸气的压力转换成动能。当动力产生单元3072包括涡扇时,发动机尾气的压力也可作用于涡扇上,以带动涡扇转动。这样,蒸气的压力和尾气产生的压力可交替地、无缝切换作用于涡扇上。当涡扇以第一方向转动时,发电单元3073将动能转换为电能,实现余热发电;当产生的电能反过来带动涡扇转动,且涡扇以第二方向转动时,发电单元3073将电能转换为排气阻力,为发动机提供排气阻力,当安装于发动机上的排气制动装置起作用,产生发动机制动高温高 压尾气时,涡扇将这种制动能转换为电能,实现发动机排气制动和制动发电。本实施例可通过高速涡扇抽气产生恒定排气负压,减少了发动机的排气阻力,实现发动机助动。且当动力产生单元3072包括涡扇时,动力产生单元3072还包括涡扇调节模块,该涡扇调节模块利用发动机排气压力峰值推动涡扇产生转动惯量,进一步延时产生尾气负压,推动发动机吸气、降低使发动机排气阻力,提升发动机功率。
本实施例中尾气降温装置可应用于燃油发动机,如柴油发动机、或汽油发动机。本实施例中尾气降温装置还可应用于燃气发动机。具体地,本尾气降温装置用于车辆的柴油发动机上,即上述尾气通过腔与柴油发动机的排气口相连通。
发电单元3073包括发电机定子和发电机转子,发电机转子与动力产生单元3072的涡扇轴相连接。这样,发电机转子将随涡扇轴的转动而转动,从而与发电机定子共同作用实现发电。本实施例中发电单元3073可采用可变负荷发电机,或使用直流发电机将转矩变换为电能。同时,本发电单元3073可通过调整励磁绕组电流,调整发电量匹配尾气热量的变化;以适应车辆上坡、下坡、重载、轻载等尾气温度变化。本实施例中发电单元3073还可以包括电池组件,以利用该电池组件储存电能,即实现对发出的电暂时缓存。本实施例中电池组件中储存的电可供换热器动力扇、水泵、制冷压缩机以及车辆中其它电器使用。
如图48所示,本实施例中尾气降温装置还可以包括耦合单元3075,该耦合单元3075电性连接于动力产生单元3072和发电单元3073之间,发电单元3073通过该耦合单元3075与动力产生单元3072同轴耦合。本实施例中耦合单元3075包括电磁耦合器。
本实施例中发电单元3073还可以包括发电机调控组件,该发电机调控组件用于调节发电机的电动转矩,产生排气负压以改变发动机强制制动力大小,产生排气背压以提高余热转换效率。具体地,发电机调控组件通过调节发电励磁或发电电流,能够改变发电功输出,从而调节汽车尾气排放阻力,实现发动机做功、排气背压、排气负压平衡,提高发电机效率。
本实施例中尾气降温装置还可以包括保温管路,该保温管路连接于发动机的排气管路和换热单元3071之间。具体地,保温管路的两端分别与发动机系统的排气口和尾气通过腔相连通,以利用该保温管路来维持尾气的高温,并将尾气引入尾气通过腔中。
本实施例中尾气降温装置还可以包括风机,该风机将空气通入尾气中,并在尾气电场装置入口之前,对尾气起到降温的作用。通入的空气可以是尾气的50%至300%、或100%至180%、或120%至150%。
本实施例中尾气降温装置可以协助发动机系统实现发动机排气余热的回收再利用,有助于减少发动机排放温室气体,也助于减少燃油发动机排放有害气体,减少了污染物的排放, 并使燃油发动机排放更环保。
尾气降温装置的进气可以用来净化空气,尾气除尘系统处理过的尾气的颗粒含量比空气的颗粒含量还要少。
实施例54
如图49所示,本实施例在上述实施例53的基础上,其换热单元3071还可以包括介质循环回路3076;该介质循环回路3076的两端分别与介质气化腔的前后两端相连通,并形成封闭式的气液循环回路;介质循环回路3076上安装有冷凝器30761,冷凝器30761用于将气态的换热介质冷凝为液态的换热介质。介质循环回路3076通过动力产生单元3072与介质气化腔相连通。本实施例中介质循环回路3076的一端用于收集蒸气等气态换热介质,并将蒸气冷凝为液态的换热介质、即液体,另一端用于将液态的换热介质注入到介质气化腔中,以重新生成蒸气,从而实现了换热介质的循环回收利用。本实施例中介质循环回路3076包括蒸气回路30762,该蒸气回路30762与介质气化腔的后端相连通。另外,本实施例中上述冷凝器30761还通过介质传输单元3074与动力产生单元3072相连通。本实施例中气液循环回路与尾气通过腔不相通。
本实施例中冷凝器30761可采用风冷散热器等散热设备,具体可采用承压翘片风冷散热器。当车辆行驶时,冷凝器30761通过自然风强行散热,无自然风时,可使用电扇对冷凝器30761进行散热。具体地,介质气化腔中形成的蒸气等气态介质在作用于动力产生单元3072后将进行泄压,并流入介质循环回路3076及风冷散热器,蒸气的温度随着散热器的散热而降低,并继续冷凝为液体。
如图49所示,本实施例中介质循环回路3076的一端可以设有增压模块30763,该增压模块30763用于将冷凝后的换热介质进行加压,以推动冷凝后的换热介质流入介质气化腔。本实施例中增压模块30763包括循环水泵或高压泵,液态的换热介质在循环水泵的叶轮推动下实现增压,并通过补水管道被挤压、进入介质气化腔中,以在介质气化腔中继续进行加热、并汽化。另外,涡扇转动时可替代循环水泵或高压泵,此时液体在涡扇余压的推动下,通过补水管道被挤压进介质气化腔中,继续被加热汽化。
如图49所示,本实施例中介质循环回路3076还可以包括设置在冷凝器30761和增压模块30763之间的储液模块30764,该储液模块30764用于存储经过冷凝器30761冷凝后液态的换热介质。上述增压模块30763位于储液模块30764和介质气化腔之间的一输送管路上,储液模块30764中的液体经增压模块30763增压后注入介质气化腔。本实施例中介质循环回路3076还包括液体调节模块30765,该液体调节模块30765设置于储液模块30764与介质气 化腔之间,具体设置在位于储液模块30764与介质气化腔之间的另一输送管路上。上述液体调节模块30765用于调节向介质气化腔回流液体的量。当汽车尾气的温度持续高于液态换热介质的沸点温度时,液体调节模块30765将储液模块30764中的液体注入介质气化腔。本实施例中介质循环回路3076还包括设置于储液模块30764与介质气化腔之间的加注模块30766,该加注模块30766具体与上述增压模块30763和液体调节模块30765相通。本实施例中加注模块30766可包括喷嘴307661。喷嘴307661位于介质循环回路3076的一端,且喷嘴307661设置在介质气化腔的前端内,以通过该喷嘴307661向介质气化腔内注入液体。上述增压模块30763将储液模块30764中的液体加压后,经加注模块30766的喷嘴307661注入介质气化腔中。上述储液模块30764中的液体也可经液体调节模块30765注入加注模块30766,并经加注模块30766的喷嘴307661注入介质气化腔中。上述输送管路也称作热介质管道。
本实施例中尾气降温装置具体应于一台13升柴油发动机上,上述尾气通过腔具体与该柴油发动机的排气口相连通,发动机排放的尾气温度为650摄氏度,流量约4000立方米/小时,尾气热量约80千瓦左右。本实施例具体采用水作为介质气化腔中的换热介质,并采用涡扇为动力产生单元3072。本尾气降温装置可以回收15千瓦电能,可以用于驱动车载电器;同时,加上循环水泵的直接效能回收利用,可回收40千瓦尾气热能。本实施例中尾气降温装置既可以提高燃油经济性,还可以把尾气温度降低到露点以下,以有利于需要低温环境的湿电除尘和臭氧脱硝尾气净化工艺的进行。
综上所述,本尾气降温装置可应用于柴油、汽油、燃气发动机节能减排领域,是发动机效率提升、节省燃料技术、提高发动机经济性的创新技术。本尾气降温装置能够帮助汽车省油、提高燃油经济性;也能使发动机废热得到回收利用,实现能源高效利用。
实施例55
如图50和图51所示,本实施例中上述实施例54的基础上,其动力产生单元3072具体采用涡扇。同时,本实施例中涡扇包括涡扇轴30721和介质腔涡扇组件30722,介质腔涡扇组件30722安装在涡扇轴30721上,且介质腔涡扇组件30722位于介质气化腔30711中,具体可位于介质气化腔30711中的后端处。
本实施例中介质腔涡扇组件30722包括介质腔导流扇307221和介质腔动力扇307222。
本实施例中涡扇包括尾气腔涡扇组件30723,安装在涡扇轴30721上,且尾气腔涡扇组件30723位于尾气通过腔30712中。
本实施例中尾气腔涡扇组件30723包括尾气腔导流扇307231和尾气腔动力扇307232。
本实施例中尾气通过腔30712位于介质气化腔30711中,即介质气化腔30711套设在尾 气通过腔30712的外侧。本实施例中介质气化腔30711具体可全包覆或除其前端外的部分包覆在尾气通过腔30712的外侧。介质气化腔30711中形成的蒸气等气态介质流过介质腔涡扇组件30722,在蒸气压力的作用下推动介质腔涡扇组件30722及涡扇轴30721运转。介质腔导流扇307221具体设置在介质气化腔30711的后端处,蒸气等气态介质流经介质腔导流扇307221时,推动介质腔导流扇307221运转,并在该介质腔导流扇307221的作用下,蒸气按设定的路径流动至介质腔动力扇307222;介质腔动力扇307222设置在介质气化腔30711的后端处,具体位于介质腔导流扇307221的后方,流过介质腔导流扇307221的蒸气流动至介质腔动力扇307222,并推动介质腔动力扇307222及涡扇轴30721运转。本实施例中介质腔动力扇307222又称作第一级动力扇。尾气腔涡扇组件30723设置在介质腔涡扇组件30722的后方或前方,与介质腔涡扇组件30722同轴运转。尾气腔导流扇307231设置在尾气通过腔30712中,尾气流经尾气通过腔30712时,推动尾气腔导流扇307231运转,并在该尾气腔导流扇307231的作用下,尾气按设定的路径流动至尾气腔动力扇307232。尾气腔动力扇307232设置在尾气通过腔30712中,具体位于尾气腔导流扇307231的后方,流过尾气腔导流扇307231的尾气流动至尾气腔动力扇307232,且在尾气压力作用下推动尾气腔动力扇307232及涡扇轴30721运转,最后尾气经尾气腔动力扇307232及尾气通过腔30712排出。本实施例中尾气腔动力扇307232又称作第二级动力扇。
如图50所示,本实施例中发电单元3073包括发电机定子30731和发电机转子30732。另外,本实施例中上述发电单元3073也设置在尾气通过腔30712外部,并与涡扇同轴连接,即发电机转子30732与涡扇轴30721相连接,这样发电机转子30732将随涡扇轴30721的转动而转动。
本实施例中动力产生单元3072正是采用涡扇,使得蒸气和尾气能够快速移动,节省了体积和重量,满足汽车尾气能量转换的需求。当本实施例中涡扇以第一方向转动时,发电单元3073将涡扇轴30721的动能转换为电能,从而实现余热发电;当涡扇以第二方向转动时,发电单元3073将电能转换为排气阻力,为发动机提供排气阻力,当安装于发动机上的排气制动装置起作用,产生发动机制动高温高压尾气时,涡扇将这种制动能转换为电能,实现发动机排气制动和制动发电。具体地,涡扇产生的动能可以用于发电,从而实现汽车余热发电;所产生的电能反过来带动涡扇转动,为发动机提供排气负压,从而就实现发动机排气制动和制动发电,极大地提升了发动机的效率。
如图50和图51所示,本实施例中尾气通过腔30712全部设置在介质气化腔30711内,从而实现汽车尾气收集。本实施例中介质气化腔30711与尾气通过腔30712的横向轴向相重 合。
本实施例中动力产生单元3072还包括涡扇转动负压调节模块,该涡扇转动负压调节模块利用发动机排气压力峰值推动涡扇产生转动惯量,进一步延时产生尾气负压,推动发动机吸气、降低使发动机排气阻力,提升发动机功率。
如图50所示,本实施例中发电单元3073包括电池组件30733,以利用该电池组件30733储存电能,即实现对发出的电暂时缓存。本实施例中电池组件30733中储存的电可供换热器动力扇、水泵、制冷压缩机以及车辆中其它电器使用。
本实施例中尾气降温装置能够利用汽车尾气的余热进行发电,同时兼顾了体积和重量的要求,且热能转换效率高,换热介质可循环利用,极大地提升了能源利用率,绿色环保,实用性强。
在初始状态下,发动机排放的尾气推动尾气腔动力扇307232旋转,实现尾气压力直接换能;由尾气腔动力扇307232和涡扇轴30721的转动惯量,实现尾气排气瞬时负压;发电机调控组件3078通过调节发电励磁或发电电流,能够改变发电功输出,从而调节汽车尾气排放阻力,适应发动机做功工况。
当采用汽车尾气余热发电时,且汽车尾气温度连续高于200摄氏度时,向介质气化腔30711注入水,水吸收尾气的热量形成高温高压的蒸气,同时产生蒸气动力,继续加速推动介质腔动力扇307222,使介质腔动力扇307222和尾气腔动力扇307232转动更快,力矩更大。通过调节发动电流或励磁电流平衡发动机做功和排气背压平衡;通过调节向介质气化腔30711注入的水量,适应排气温度变化,从而恒定排气温度。
当汽车制动发电时,发动机压气通过尾气腔动力扇307232,并推动尾气腔动力扇307232转动,从而将压力转变为发电机旋转动力,通过调节发电电流或励磁电流,改变阻力大小,实现发动机制动和制动力缓释。
当汽车电动制动时,发动机压气通过尾气腔动力扇307232,推动尾气腔动力扇307232正向转动,开启电动机,输出反向转动力矩,通过涡扇轴30721传递到介质腔动力扇307222和尾气腔动力扇307232上,形成强烈反推阻力,将能耗转变为腔体热量,同时使发动机制动力增加,强制制动。
介质传输单元3074包括反推涵道。当蒸气制动时,连续压气制动蓄积热量通过蒸气,产生更大推力,并通过反推涵道,将蒸气输出到介质腔动力扇307222上,强制介质腔动力扇307222和尾气腔动力扇307232反转,实现制动发动同时进行。
实施例56
如图52所示,本实施例在上述实施例55的基础上,其介质气化腔30711位于尾气通过腔30712中;且介质腔涡扇组件30722位于介质气化腔30711中,并具体位于介质气化腔30711的后端处;尾气腔涡扇组件30723位于尾气通过腔30712中,并具体位于尾气通过腔30712的后端处。介质腔涡扇组件30722和尾气腔涡扇组件30723均安装在涡扇轴30721上。本实施例中尾气腔涡扇组件30723位于介质腔涡扇组件30722的后方。这样,流经尾气通过腔30712的汽车尾气将直接作用于尾气腔涡扇组件30723,以带动尾气腔涡扇组件30723及涡扇轴30721转动;同时,当汽车尾气流经尾气通过腔30712时,将与介质气化腔30711中的液体进行换热,并使介质气化腔30711中的液体形成蒸气,该蒸气的压力作用于介质腔涡扇组件30722,以带动介质腔涡扇组件30722及涡扇轴30721转动,从而进一步加快推动涡扇轴30721转动;涡扇轴30721转动时将带动与其相连接的发电机转子30732一起转动,进而利用发电单元3073实现发电。另外,介质气化腔30711中的蒸气在向后流经介质腔涡扇组件30722后,将流入介质循环回路3076,并经介质循环回路3076中的冷凝器30761冷凝为液体后,再重新注入介质气化腔30711,以实现换热介质的循环回收利用。尾气通过腔30712中的汽车尾气在流经尾气腔涡扇组件30723后排放至大气。
另外,本实施例中介质气化腔30711的侧壁上设有弯折段307111,该弯折段307111能有效增加介质气化腔30711与尾气通过腔30712的接触面积,即换热面积。本实施例中弯折段307111的截面呈锯齿状。
实施例57
为提高发动机热效率,需要把发动机尾气热能和背压回收换能,达到高效率,特别是混动车辆,既要燃油直接带动发电机,也要尾热高效转换为电能,这样燃油热效率可以提高15%-20%。对于混动车辆来说,在节省燃油同时可以为电池组件充更多的电,燃油转换为电能的效率可以达到70%以上。
具体地,在混动车辆燃油发动机的排气口,安装上述实施例55或实施例56中尾气降温装置,开启燃油发动机,发动机尾气进入尾气通过腔30712,在尾气背压作用下,经尾气腔导流扇307231调整方向,直接推动尾气腔动力扇307232旋转,从而在涡扇轴30721上产生旋转扭矩。由于存在转动惯量介质腔动力扇307222和尾气腔动力扇307232继续旋转时,将产生抽气,使发动机排气处于瞬时负压,这样,发动机排气阻力极低,有利于发动机继续排气并做功。同样燃油供给和输出负载情况下,提升发动机转速3%-5%左右。
发动机排气温度会因为翘片导热集聚在介质气化腔30711,当集聚温度大于水的沸点温度时,将水注入介质气化腔30711,水瞬间汽化,体积急剧膨胀,通过介质腔导流扇导向, 推动介质腔动力扇307222及涡扇轴30721进一步加速旋转,产生更大的转动惯量和转矩。继续提升发动机转速,而燃油并没有增加,负载也没有减轻,获得的额外转速提升10%-15%。在转速因回收背压和温度提升同时,发动机动力输出将增加,根据排气温度差异,提高功率输出13%-20%左右,对于提高燃油经济性、减少发动机体积来说,非常有帮助。
实施例58
本实施例将实施例55或实施例56中的尾气降温装置应用于一台13升柴油发动机上,该柴油发动机尾气温度为650摄氏度,流量约4000立方米/小时,尾气热量约80千瓦左右。同时,本实施例使用水为换热介质,本尾气降温装置可以回收20千瓦电能,可以用于驱动车载电器。因此,本实施例中尾气降温装置既可以提高燃油经济性,还可以把尾气温度降低到露点以下,有利于需要低温环境的静电除尘、湿电除尘及臭氧脱硝尾气净化工艺的实施;同时实现了发动机变扭连续高效制动和强制连续制动。
具体地,本实施例的尾气降温装置直接连接在一台13升柴油发动机的排气口,并通过在本尾气降温装置的出口、即上述尾气通过腔30712的出口连接尾气电场装置、尾气湿电除尘和臭氧脱硝系统,就能够实现尾热发电、尾气降温、发动机制动、除尘、脱硝等。本实施例中尾气降温装置安装在尾气电场装置的前方。
其中,本实施例使用3寸的介质腔动力扇307222和尾气腔动力扇307232,并使用10kw高速直流发电电动机,电池组件采用48v300ah动力电池组,使用发电电动手动切换开关。初始状态时,发动机怠速运转,转速小于750转,发动机输出功率10%左右,通过发动机排气推动尾气腔动力扇307232旋转,转速在2000转左右,实现尾气压力直接换能;尾气腔动力扇307232以及涡扇轴30721的转动惯量使尾气排气瞬时负压;由于尾气腔动力扇307232转动,在排气管道内产生瞬时负压-80kp左右,通过调节发电电流,改变发电功输出,从而调节尾气排放阻力,适应发动机做功工况,获得发电功率0.1-1.2kw。
当带负载30%时,发动机转速上升到1300转,尾气温度连续高于300摄氏度,向介质气化腔30711注入水,尾气温度下降到200摄氏度,产生大量高温高压蒸气,吸收尾气温度同时产生蒸气动力,由于介质腔导流扇和喷口限制,喷到介质腔动力扇上的蒸气压力继续加速推动介质腔动力扇转动,使介质腔动力扇及涡扇轴转动更快,力矩更大,带动发电机高速大扭矩旋转,通过调节发动电流或励磁电流平衡发动做功和排气背压平衡,获得发电量1kw-3kw,通过调节注入水量,适应排气温度变化,达到恒定排气温度目的,从而获得连续排气温度150摄氏度。低温排气有利于后续尾气电场装置回收颗粒物和臭氧脱硝,达到环保目的。
当发动机停止供油时,通过涡扇轴30721拖动发动机压气,发动机压气通过排气管路到 达尾气腔动力扇307232,推动尾气腔动力扇307232,将压力转变为涡扇轴30721旋转动力,在涡扇轴30721上同时安装的发电机,通过调节发电电流,改变通过涡扇的排气量,从而改变排气阻力大小,实现发动机制动和制动力缓释,可以获得3-10kw左右的制动力,同时回收1-5kw的发电量。
当发电机切换到电动制动模式时,发电机瞬间变成电动机,等于驾驶员快速踏下制动踏板。这时发动机压气通过尾气腔动力扇307232,推动尾气腔动力扇307232正向转动。开启电动机,输出反向转动力矩,通过涡扇轴30721传递到介质腔动力扇307222和尾气腔动力扇307232上,形成强烈反推阻力,进一步增加制动效果。大量压气做功将能耗转变为高温气体,使腔体热量蓄积,同时使发动机制动力增加,强制制动。强制制动功率15-30kw。这种制动可以间歇发电,发电功率3-5kw左右。
当使用电动反推制动同时间歇发电时,突然需要紧急制动,可以停止发电,将制动热量产生蒸气用于制动,连续压气制动蓄积热量传递给介质气化腔中的水,介质气化腔中产生的蒸气通过反推涵道,输出到介质腔动力扇307222上,且蒸气反推介质腔动力扇307222,强制介质腔动力扇307222和尾气腔动力扇307232反转,实现强制制动,可产生制动功率30kw以上。
综上所述,本发明的尾气降温装置能够基于汽车尾气实现余热发电,且热能转换效率高,换热介质可循环利用;能够应用于柴油发动机、汽油发动机和燃气发动机等的节能减排领域,使发动机废热得到回收利用,从而提高发动机的经济性;通过高速涡扇抽气产生恒定排气负压,减少了发动机的排气阻力,提了高发动机效率。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
实施例59
如图53所示的进气电场装置,包括进气除尘电场阳极10141、进气除尘电场阴极10142和进气驻极体元件205,所述进气除尘电场阳极10141和所述进气除尘电场阴极10142接通电源时形成进气电离除尘电场,所述进气驻极体元件205设于所述进气电离除尘电场中,图53中箭头方向为待处理物流动方向。所述进气驻极体元件设于进气电场装置出口。所述进气电离除尘电场给所述进气驻极体元件充电。所述进气驻极体元件具有多孔结构,所述进气驻极体元件的材料为氧化铝。所述进气除尘电场阳极内部为管状,所述进气驻极体元件外部为管状,所述进气驻极体元件外部套设于所述进气除尘电场阳极内部。所述进气驻极体元件与所述进气除尘电场阳极为可拆卸式连接。
一种进气除尘方法,包括如下步骤:
a)利用进气电离除尘电场吸附进气中的颗粒物;
b)利用进气电离除尘电场给进气驻极体元件充电。
其中,所述进气驻极体元件设于进气电场装置出口;所述进气驻极体元件的材料为氧化铝;当进气电离除尘电场无上电驱动电压时,利用充电的进气驻极体元件吸附进气中的颗粒物;在充电的进气驻极体元件吸附一定的进气中的颗粒物后,将其替换为新的进气驻极体元件;替换为新的进气驻极体元件后重新启动进气电离除尘电场吸附进气中的颗粒物,并给新的进气驻极体元件充电。
将上述进气电场装置和静电除尘的方法用于处理机动车启动后的尾气,利用进气电离除尘电场吸附机动车启动后的尾气中的颗粒物,同时利用该进气电离除尘电场给进气驻极体元件充电。当进气电离除尘电场无上电驱动电压(即故障)时,利用充电的进气驻极体元件吸附进气中的颗粒物,可达到50%以上的净化效率。
上述电场装置的结构也可作为尾气电场装置,上述除尘方法也可作为尾气除尘方法。
实施例60
如图54和图55所示的进气电场装置,包括进气除尘电场阳极10141、进气除尘电场阴极10142和进气驻极体元件205,所述进气除尘电场阳极10141和所述进气除尘电场阴极10142形成进气流道292,所述进气驻极体元件205设于所述进气流道292中,图54中箭头方向为待处理物流动方向。所述进气流道292包括进气流道出口,所述进气驻极体元件205靠近所述进气流道出口。所述进气驻极体元件于所述进气流道中的横截面占进气流道横截面10%,如图56所示,即为S2/(S1+S2)*100%,其中S2第一横截面面积为所述进气驻极体元件于所述进气流道中的横截面面积,S1第一横截面面积和S2第二横截面面积的和为进气流道横截面面积,S1第一横截面面积不包括进气除尘电场阴极10142的横截面面积。所述进气除尘电场阳极和所述进气除尘电场阴极接通电源时形成进气电离除尘电场。所述进气电离除尘电场给所述进气驻极体元件充电。所述进气驻极体元件具有多孔结构,所述进气驻极体元件的材料为聚四氟乙烯。所述进气除尘电场阳极内部为管状,所述进气驻极体元件外部为管状,所述进气驻极体元件外部套设于所述进气除尘电场阳极内部。所述进气驻极体元件与所述进气除尘电场阳极为可拆卸式连接。
一种进气除尘方法,包括如下步骤:
1)利用进气电离除尘电场吸附进气中的颗粒物;
2)利用进气电离除尘电场给进气驻极体元件充电。
其中,所述进气驻极体元件靠近所述进气流道出口;所述进气驻极体元件的材料为聚四 氟乙烯;当进气电离除尘电场无上电驱动电压时,利用充电的进气驻极体元件吸附进气中的颗粒物;在充电的进气驻极体元件吸附一定的进气中的颗粒物后,将其替换为新的进气驻极体元件;替换为新的进气驻极体元件后重新启动进气电离除尘电场吸附进气中的颗粒物,并给新的进气驻极体元件充电。
将上述进气电场装置和静电除尘的方法用于处理机动车启动后的尾气,利用进气电离除尘电场吸附机动车启动后的尾气中的颗粒物,同时利用该进气电离除尘电场给进气驻极体元件充电。当进气电离除尘电场无上电驱动电压(即故障)时,利用充电的进气驻极体元件吸附进气中的颗粒物,可达到30%以上的净化效率。
上述电场装置的结构也可作为尾气电场装置,上述除尘方法也可作为尾气除尘方法。
实施例61
如图57所示,本实施例提供一种电场装置,包括依次相通的电场装置入口3085、流道3086、电场流道3087、及电场装置出口3088,流道3086中安装有前置电极3083,前置电极3083的截面面积与流道3086的截面面积比为99%~10%,电场装置还包括除尘电场阴极3081和除尘电场阳极3082,电场流道3087位于除尘电场阴极3081和除尘电场阳极3082之间。本实施例中电场装置的工作原理为:含污染物的气体通过电场装置入口3085进入流道3086,安装在流道3086中的前置电极3083将电子传导给部分污染物,部分污染物带电,当污染物由流道3086进入电场流道3087后,除尘电场阳极3082给已带电的污染物施加吸引力,带电的污染物向除尘电场阳极3082移动,直至该部分污染物附着在除尘电场阳极3082上,同时,电场流道3087中除尘电场阴极3081和除尘电场阳极3082之间形成电离除尘电场,该电离除尘电场将使另一部分未带电的污染物带电,这样另一部分污染物在带电后同样会受到除尘电场阳极3082施加的吸引力,并最终附着在除尘电场阳极3082上,从而利用上述电场装置使污染物带电效率更高,带电更充分,进而保证除尘电场阳极3082能收集更多的污染物,并保证本电场装置对污染物的收集效率更高。
前置电极3083的截面面积是指前置电极3083沿截面上实体部分的面积之和。另外,前置电极3083的截面面积与流道3086的截面面积比可以为99%~10%、或90~10%、或80~20%、或70~30%、或60~40%、或50%。
如图57所示,本实施例中前置电极3083和除尘电场阴极3081均与直流电源的阴极电性连接,除尘电场阳极3082与直流电源的阳极电性连接。本实施例中前置电极3083和除尘电场阴极3081均具有负电势,除尘电场阳极3082具有正电势。
如图57所示,本实施例中前置电极3083具体可呈网状。这样,当气体流经流道3086时, 利用前置电极3083呈网状的结构特点,便于气体及污染物流过前置电极3083,并使气体中污染物与前置电极3083接触更加充分,从而使前置电极3083能将电子传导给更多的污染物,并使污染物的带电效率更高。
如图57所示,本实施例中除尘电场阳极3082呈管状,除尘电场阴极3081呈棒状,除尘电场阴极3081穿设在除尘电场阳极3082中。本实施例中除尘电场阳极3082和除尘电场阴极3081呈非对称结构。当气体流入除尘电场阴极3081和除尘电场阳极3082之间形的电离电场将使污染物带电,且在除尘电场阳极3082施加的吸引力作用下,将带电的污染物收集在除尘电场阳极3082的内壁上。
另外,如图57所示,本实施例中除尘电场阳极3082和除尘电场阴极3081均沿前后方向延伸,除尘电场阳极3082的前端沿前后方向上位于除尘电场阴极3081的前端的前方。且如图57所示,除尘电场阳极3082的后端沿前后方向上位于除尘电场阴极3081的后端的后方。本实施例中除尘电场阳极3082沿前后方向上的长度更长,使得位于除尘电场阳极3082内壁上的吸附面面积更大,从而对带有负电势的污染物的吸引力更大,并能收集更多的污染物。
如图57所示,本实施例中除尘电场阴极3081和除尘电场阳极3082构成电离单元,电离单元有多个,以利用多个电离单元收集更多的污染物,并使得本电场装置对污染物的收集能力更强,且收集效率更高。
本实施例中上述污染物包括导电性较弱的普通粉尘等、及导电性较强的金属粉尘、雾滴、气溶胶等。本实施例中电场装置,对气体中导电性较弱的普通粉尘,及导电性较强的污染物的收集过程为:当气体通过电场装置入口3085流入流道3086中,气体中导电性较强的金属粉尘、雾滴、或气溶胶等污染物在与前置电极3083相接触时,或与前置电极3083的距离达到一定范围时会直接带负电,随后,全部污染物随气流进入电场流道3087,除尘电场阳极3082给已带负电的金属粉尘、雾滴、或气溶胶等施加吸引力,并将该部分污染物收集起来,同时,除尘电场阳极3082与除尘电场阴极3081形成电离电场,该电离电场通过电离气体中的氧获得氧离子,且带负电荷的氧离子在与普通粉尘结合后,使普通粉尘带负电荷,除尘电场阳极3082给该部分带负电荷的粉尘施加吸引力,并将该部分污染物收集起来,从而将气体中导电性较强和导电性较弱的污染物均收集起来,并使得本电场装置所能收集物质的种类更广泛,且收集能力更强。
本实施例中上述除尘电场阴极3081也称作电晕荷电电极。上述直流电源具体为直流高压电源。前置电极3083和除尘电场阳极3082之间通入直流高压,形成导电回路;除尘电场阴极3081和除尘电场阳极3082之间通入直流高压,形成电离放电电晕电场。本实施例中前置 电极3083为密集分布的导体。当容易带电的粉尘经过前置电极3083时,前置电极3083直接将电子给粉尘,粉尘带电,随后被异极的除尘电场阳极3082吸附;同时未带电的粉尘经过除尘电场阴极3081和除尘电场阳极3082形成的电离区,电离区形成的电离氧会把电子荷电给粉尘,这样粉尘继续带电,并被异极的除尘电场阳极3082吸附。
本实施例中电场装置能形成两种及两种以上的上电方式。比如,在气体中氧气充足情况下,可利用除尘电场阴极3081和除尘电场阳极3082之间形成的电离放电电晕电场,电离氧,来使污染物荷电,再利用除尘电场阳极3082收集污染物;而在气体中氧气含量过低、或无氧状态、或污染物为导电尘雾等时,利用前置电极3083直接使污染物上电,让污染物充分带电后被除尘电场阳极3082吸附。本电场装置让电场可以收集各类粉尘同时,也可以应用在各种含氧量尾气环境中,扩大了集尘电场治理粉尘应用范围,提高了集尘效率。本实施例采用上述两种带电方式的电场,可以同时收集容易荷电的高阻值粉尘以及容易上电的低阻值金属粉尘、气溶胶、液雾等。两种上电方式同时使用,电场适用范围扩大。
本实施例中电场装置可应用于进气除尘系统和尾气除尘系统中。当本实施例中电场装置应用于进气除尘系统中时,该电场装置也称作进气电场装置,前置电极3083也称作进气前置电极,除尘电场阳极3082也称作进气除尘电场阳极,除尘电场阴极3081也称作进气除尘电场阴极,流道3086也称作进气流道。当本实施例中电场装置应用于尾气除尘系统中时,该电场装置也称作尾气电场装置,前置电极3083也称作尾气前置电极,除尘电场阳极3082也称作尾气除尘电场阳极,除尘电场阴极3081也称作尾气除尘电场阴极,流道3086也称作尾气流道。
综上所述,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。
Claims (22)
- 一种发动机尾气处理系统,其特征在于,包括发动机尾气除尘系统、发动机尾气臭氧净化系统;所述发动机尾气臭氧净化系统包括反应场,用于将臭氧流股与尾气流股混合反应。
- 根据权利要求1所述的发动机尾气处理系统,其特征在于,所述尾气臭氧净化系统还包括臭氧量控制装置,用于控制臭氧量以致有效氧化尾气中待处理的气体组分,所述臭氧量控制装置包括控制单元。
- 根据权利要求2所述的发动机尾气处理系统,其特征在于,所述臭氧量控制装置还包括臭氧处理前尾气组分检测单元,用于检测臭氧处理前尾气组分含量。
- 根据权利要求2至3中的任一项所述的发动机尾气处理系统,其特征在于,所述控制单元根据所述臭氧处理前尾气组分含量控制混合反应所需臭氧量。
- 根据权利要求3或4所述的发动机尾气处理系统,其特征在于,所述臭氧处理前尾气组分检测单元选自以下检测单元中至少一个:第一挥发性有机化合物检测单元,用于检测臭氧处理前尾气中挥发性有机化合物含量;第一CO检测单元,用于检测臭氧处理前尾气中CO含量;第一氮氧化物检测单元,用于检测臭氧处理前尾气中氮氧化物含量。
- 根据权利要求5所述的发动机尾气处理系统,其特征在于,所述控制单元根据至少一个所述臭氧处理前尾气组分检测单元的输出值控制混合反应所需臭氧量。
- 根据权利要求2至6中的任一项所述的发动机尾气处理系统,其特征在于,所述控制单元用于按照预设的数学模型控制混合反应所需臭氧量。
- 根据权利要求2至7中的任一项所述的发动机尾气处理系统,其特征在于,所述控制单元用于按照理论估计值控制混合反应所需臭氧量。
- 根据权利要求8中的任一项所述的发动机尾气处理系统,其特征在于,所述理论估计值为:臭氧通入量与尾气中待处理物的摩尔比为2~10。
- 根据权利要求2至9中的任一项所述的发动机尾气处理系统,其特征在于,所述臭氧量控制装置包括臭氧处理后尾气组分检测单元,用于检测臭氧处理后尾气组分含量。
- 根据权利要求2至10中的任一项所述的发动机尾气处理系统,其特征在于,所述控制单元根据所述臭氧处理后尾气组分含量控制混合反应所需臭氧量。
- 根据权利要求10或11所述的发动机尾气处理系统,其特征在于,所述臭氧处理后尾气组分检测单元选自以下检测单元中至少一个:第一臭氧检测单元,用于检测臭氧处理后尾气中臭氧含量;第二挥发性有机化合物检测单元,用于检测臭氧处理后尾气中挥发性有机化合物含量;第二CO检测单元,用于检测臭氧处理后尾气中CO含量;第二氮氧化物检测单元,用于检测臭氧处理后尾气中氮氧化物含量。
- 根据权利要求12所述的发动机尾气处理系统,其特征在于,所述控制单元根据至少一个所述臭氧处理后尾气组分检测单元的输出值控制臭氧量。
- 根据权利要求1至13中的任一项所述的发动机尾气处理系统,其特征在于,所述尾气臭氧净化系统还包括脱硝装置,用于脱除臭氧流股与尾气流股混合反应产物中的硝酸。
- 根据权利要求14所述的发动机尾气处理系统,其特征在于,所述脱硝装置包括冷凝单元,用于将臭氧处理后的尾气进行冷凝,实现气液分离。
- 根据权利要求15所述的发动机尾气处理系统,其特征在于,所述脱硝装置还包括脱硝液收集单元,用于存储尾气中脱除的硝酸水溶液和/或硝酸盐水溶液。
- 根据权利要求16所述的发动机尾气处理系统,其特征在于,当所述脱硝液收集单元中存储有硝酸水溶液时,所述脱硝液收集单元设有碱液加入单元,用于与硝酸形成硝酸盐。
- 根据权利要求1至17中的任一项所述的发动机尾气处理系统,其特征在于,所述尾气臭氧净化系统还包括臭氧消解器,用于消解经反应场处理后的尾气中的臭氧。
- 根据权利要求18所述的发动机尾气处理系统,其特征在于,所述臭氧消解器选自紫外线臭氧消解器和催化臭氧消解器中的至少一种。
- 根据权利要求1至19中的任一项所述的发动机尾气处理系统,其特征在于,所述尾气臭氧净化系统还包括第一脱硝装置,用于脱除尾气中氮氧化物;所述反应场用于将经所述第一脱硝装置处理后的尾气与臭氧流股混合反应,或者,用于将尾气在经所述第一脱硝装置处理前先与臭氧流股混合反应。
- 根据权利要求20所述的发动机尾气处理系统,其特征在于,所述第一脱硝装置选自非催化还原装置、选择性催化还原装置、非选择性催化还原装置和电子束脱硝装置中的至少一种。
- 根据权利要求1至21中的任一项所述的发动机尾气处理系统,其特征在于,所述发动机尾气除尘系统包括尾气除尘系统入口、尾气除尘系统出口、尾气电场装置;所述尾气电场装置包括尾气电场装置入口、尾气电场装置出口、尾气除尘电场阴极和尾气除尘电场阳极,所述尾气除尘电场阴极和所述尾气除尘电场阳极用于产生尾气电离除尘电场。
Applications Claiming Priority (42)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811227550 | 2018-10-22 | ||
CN201811227573.2 | 2018-10-22 | ||
CN201811227573 | 2018-10-22 | ||
CN201811227550.1 | 2018-10-22 | ||
CN201811307602.6 | 2018-11-05 | ||
CN201811308119 | 2018-11-05 | ||
CN201811308119.X | 2018-11-05 | ||
CN201811307602 | 2018-11-05 | ||
CN201811525874.3 | 2018-12-13 | ||
CN201811527816 | 2018-12-13 | ||
CN201811525874 | 2018-12-13 | ||
CN201811527816.4 | 2018-12-13 | ||
CN201811563797 | 2018-12-20 | ||
CN201811563797.0 | 2018-12-20 | ||
CN201910124517 | 2019-02-19 | ||
CN201910124517.4 | 2019-02-19 | ||
CN201910211284.1 | 2019-03-20 | ||
CN201910211284 | 2019-03-20 | ||
CN201910340445 | 2019-04-25 | ||
CN201910340443.8 | 2019-04-25 | ||
CN201910340445.7 | 2019-04-25 | ||
CN201910340443 | 2019-04-25 | ||
CN201910418872.2 | 2019-05-20 | ||
CN201910418872 | 2019-05-20 | ||
CN201910446294 | 2019-05-27 | ||
CN201910446294.3 | 2019-05-27 | ||
CN201910452169 | 2019-05-28 | ||
CN201910452169.3 | 2019-05-28 | ||
CN201910465124 | 2019-05-30 | ||
CN201910465124.X | 2019-05-30 | ||
CN201910512533 | 2019-06-13 | ||
CN201910512533.0 | 2019-06-13 | ||
CN201910522488 | 2019-06-17 | ||
CN201910521796 | 2019-06-17 | ||
CN201910522488.7 | 2019-06-17 | ||
CN201910521793 | 2019-06-17 | ||
CN201910521796.8 | 2019-06-17 | ||
CN201910521793.4 | 2019-06-17 | ||
CN201910605156.5 | 2019-07-05 | ||
CN201910605156 | 2019-07-05 | ||
CN201910636710 | 2019-07-15 | ||
CN201910636710.6 | 2019-07-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020083210A1 true WO2020083210A1 (zh) | 2020-04-30 |
Family
ID=70330401
Family Applications (45)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/111816 WO2020083099A1 (zh) | 2018-10-22 | 2019-10-18 | 一种发动机排放处理系统和方法 |
PCT/CN2019/111817 WO2020083100A1 (zh) | 2018-10-22 | 2019-10-18 | 一种发动机排放处理系统和方法 |
PCT/CN2019/111813 WO2020083096A1 (zh) | 2018-10-22 | 2019-10-18 | 一种发动机排放处理系统和方法 |
PCT/CN2019/111815 WO2020083098A1 (zh) | 2018-10-22 | 2019-10-18 | 一种发动机排放处理系统和方法 |
PCT/CN2019/111814 WO2020083097A1 (zh) | 2018-10-22 | 2019-10-18 | 一种发动机排放处理系统和方法 |
PCT/CN2019/112298 WO2020083224A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112310 WO2020083234A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112283 WO2020083213A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112263 WO2020083204A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112296 WO2020083223A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112255 WO2020083197A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112292 WO2020083219A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112291 WO2020083218A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112300 WO2020083226A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112256 WO2020083198A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112293 WO2020083220A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112307 WO2020083231A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112304 WO2020083229A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112301 WO2020083227A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112257 WO2020083199A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112267 WO2020083207A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112264 WO2020083205A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112262 WO2020083203A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112285 WO2020083214A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112309 WO2020083233A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112287 WO2020083215A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112281 WO2020083212A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112299 WO2020083225A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112280 WO2020083211A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112275 WO2020083210A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112303 WO2020083228A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112295 WO2020083222A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112288 WO2020083216A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112271 WO2020083209A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112306 WO2020083230A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112270 WO2020083208A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112260 WO2020083202A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112308 WO2020083232A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112259 WO2020083201A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112266 WO2020083206A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112251 WO2020083195A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112252 WO2020083196A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112250 WO2020083194A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112258 WO2020083200A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112289 WO2020083217A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
Family Applications Before (29)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/111816 WO2020083099A1 (zh) | 2018-10-22 | 2019-10-18 | 一种发动机排放处理系统和方法 |
PCT/CN2019/111817 WO2020083100A1 (zh) | 2018-10-22 | 2019-10-18 | 一种发动机排放处理系统和方法 |
PCT/CN2019/111813 WO2020083096A1 (zh) | 2018-10-22 | 2019-10-18 | 一种发动机排放处理系统和方法 |
PCT/CN2019/111815 WO2020083098A1 (zh) | 2018-10-22 | 2019-10-18 | 一种发动机排放处理系统和方法 |
PCT/CN2019/111814 WO2020083097A1 (zh) | 2018-10-22 | 2019-10-18 | 一种发动机排放处理系统和方法 |
PCT/CN2019/112298 WO2020083224A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112310 WO2020083234A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112283 WO2020083213A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112263 WO2020083204A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112296 WO2020083223A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112255 WO2020083197A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112292 WO2020083219A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112291 WO2020083218A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112300 WO2020083226A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112256 WO2020083198A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112293 WO2020083220A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112307 WO2020083231A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112304 WO2020083229A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112301 WO2020083227A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112257 WO2020083199A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112267 WO2020083207A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112264 WO2020083205A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112262 WO2020083203A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112285 WO2020083214A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112309 WO2020083233A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112287 WO2020083215A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112281 WO2020083212A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112299 WO2020083225A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112280 WO2020083211A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
Family Applications After (15)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/112303 WO2020083228A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112295 WO2020083222A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112288 WO2020083216A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112271 WO2020083209A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112306 WO2020083230A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112270 WO2020083208A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112260 WO2020083202A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112308 WO2020083232A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112259 WO2020083201A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112266 WO2020083206A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112251 WO2020083195A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112252 WO2020083196A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112250 WO2020083194A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
PCT/CN2019/112258 WO2020083200A1 (zh) | 2018-10-22 | 2019-10-21 | 排气处理系统及方法 |
PCT/CN2019/112289 WO2020083217A1 (zh) | 2018-10-22 | 2019-10-21 | 发动机尾气处理系统和方法 |
Country Status (9)
Country | Link |
---|---|
US (9) | US20220016641A1 (zh) |
EP (10) | EP3872312A4 (zh) |
JP (10) | JP2022508859A (zh) |
AU (1) | AU2019364463A1 (zh) |
BR (7) | BR112021007637A2 (zh) |
CA (1) | CA3117397A1 (zh) |
IL (1) | IL282550A (zh) |
MX (3) | MX2021004573A (zh) |
WO (45) | WO2020083099A1 (zh) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220212203A1 (en) * | 2018-10-22 | 2022-07-07 | Shanghai Bixiufu Enterprise Management Co., Ltd. | Air dust removal system and method |
US20220250087A1 (en) * | 2018-10-22 | 2022-08-11 | Shanghai Bixiufu Enterprise Management Co., Ltd. | Engine exhaust dust removing system and method |
WO2020238979A1 (zh) * | 2019-05-27 | 2020-12-03 | 上海必修福企业管理有限公司 | 一种电场装置及减少电场耦合方法 |
CN114761135A (zh) * | 2019-06-17 | 2022-07-15 | 上海必修福企业管理有限公司 | 一种电场装置及减少电场耦合方法 |
CN112090220B (zh) * | 2020-10-15 | 2024-01-19 | 中冶焦耐(大连)工程技术有限公司 | 一种湿熄焦烟气除尘脱白多重净化处理装置及方法 |
CN116490286A (zh) * | 2020-11-12 | 2023-07-25 | 上海必修福企业管理有限公司 | 电场单元、电场处理装置以及洁净环境系统 |
CN112546856B (zh) * | 2020-11-25 | 2021-12-07 | 清华大学 | 彩板制备中含有NVOCs的VOCs废气的处理方法 |
CN114622969A (zh) * | 2020-12-10 | 2022-06-14 | 长城汽车股份有限公司 | 柴油机尾气颗粒物处理系统和车辆 |
US11441464B2 (en) | 2021-02-02 | 2022-09-13 | Saudi Arabian Oil Company | Use of ozone with LNT and MnO2 catalyst for the treatment of residual pollutant for the exhaust gas of an internal engine combustion |
CN113499686A (zh) * | 2021-08-05 | 2021-10-15 | 北京航天方达科技有限公司 | 光量子束烟气低温脱硝系统 |
CN113731632B (zh) * | 2021-09-02 | 2024-06-25 | 江西金泰源陶瓷有限公司 | 一种陶瓷干法制粉收尘除杂一体化装置 |
CN114272702B (zh) * | 2021-12-28 | 2022-12-30 | 重庆大学 | 沸腾式泡沫脱硫除尘传质构件、其设计方法、和脱硫除尘装置 |
CN114950032A (zh) * | 2022-06-13 | 2022-08-30 | 湖南奇思环保设备制造有限公司 | 垃圾热解处理系统 |
CN115025602B (zh) * | 2022-07-18 | 2023-04-25 | 怀化蕲黄节能环保设备有限公司 | 一种生物质锅炉烟气脱硝处理设备 |
IL298651A (en) * | 2022-11-28 | 2024-06-01 | Tadiran Consumer And Tech Products Ltd | Air disinfection device for use in air conditioning systems |
WO2024127071A1 (en) | 2022-12-15 | 2024-06-20 | Kuregyan Kamo | Method for neutralizing exhaust gases of internal combustion engines and a device for its implementation |
GB2627532A (en) * | 2023-02-27 | 2024-08-28 | Dyson Technology Ltd | Microplasma catalytic reactor |
CN116983807B (zh) * | 2023-08-04 | 2024-02-02 | 浙江佳环电子有限公司 | 一种脉冲等离子体烟气净化装置 |
CN117570455B (zh) * | 2023-12-23 | 2024-08-16 | 山东瀚圣新能源科技股份有限公司 | 一种甲醛生产蒸发尾气热量回收装置 |
CN118341249A (zh) * | 2024-03-12 | 2024-07-16 | 上海羿清环保科技有限公司 | 锂电子电池正极材料回收过程中浸出工艺废气的处理方法及其应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1256354A (zh) * | 1998-12-04 | 2000-06-14 | 杜成林 | 一种机动车消烟消声防火除尘净化器 |
CN1834417A (zh) * | 2005-03-16 | 2006-09-20 | 丰田自动车株式会社 | 气体净化装置 |
CN103782001A (zh) * | 2011-09-05 | 2014-05-07 | 日野自动车株式会社 | 废气净化装置 |
CN103768942A (zh) * | 2014-02-19 | 2014-05-07 | 大连海事大学 | 一种等离子体净化柴油机尾气方法 |
JP2017072029A (ja) * | 2015-10-05 | 2017-04-13 | 株式会社デンソー | 燃焼システムの制御装置 |
CN108096969A (zh) * | 2017-12-05 | 2018-06-01 | 青岛科技大学 | 一种基于挥发油气净化技术的尾气光氧裂解处理方法 |
Family Cites Families (173)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2563297A (en) * | 1947-11-24 | 1951-08-07 | Research Corp | Electrical precipitator, including an electrode washing device |
US3745751A (en) * | 1970-10-26 | 1973-07-17 | American Standard Inc | Sulfur dioxide collection system |
CS178566B1 (en) * | 1974-11-14 | 1979-05-15 | Jan Skalny | Method and device for continuous concentration lowering of polycyclic aromatic hydrocarbons in gas-flow |
JPS5317566A (en) * | 1976-07-31 | 1978-02-17 | Kobe Steel Ltd | Denitration method for of exhaust gas |
US5003774A (en) * | 1987-10-09 | 1991-04-02 | Kerr-Mcgee Chemical Corporation | Apparatus for soot removal from exhaust gas |
DE3820067A1 (de) * | 1988-06-13 | 1989-12-14 | Kramb Mothermik Gmbh & Co Kg | Verfahren und vorrichtung zur entfernung von russ und kondensierbaren bestandteilen aus dieselabgasen |
EP0379760A1 (en) * | 1989-01-26 | 1990-08-01 | Univerzita Komenskeho | Device for continuously reducing concentration of carbon monoxide and other harmful types of emission |
KR910002599Y1 (ko) * | 1989-06-15 | 1991-04-22 | 삼성전자 주식회사 | 공기청정기 이온회선의 전열발생 구조 |
GB8919440D0 (en) * | 1989-08-25 | 1989-10-11 | Advanced Energy Systems Limite | Methods and apparatus to filter gas and air streams |
US5229077A (en) * | 1991-08-16 | 1993-07-20 | Environmental Elements Corp. | Sulfur rate control system |
US5236672A (en) * | 1991-12-18 | 1993-08-17 | The United States Of America As Represented By The United States Environmental Protection Agency | Corona destruction of volatile organic compounds and toxics |
JPH05317639A (ja) * | 1992-05-18 | 1993-12-03 | Daikin Ind Ltd | 空気清浄装置 |
CN1027828C (zh) * | 1992-11-11 | 1995-03-08 | 申进忠 | 臭氧-催化剂法汽车尾气净化器 |
CN2205248Y (zh) * | 1994-09-13 | 1995-08-16 | 郑天安 | 高效静电除尘器 |
KR0148563B1 (ko) * | 1995-12-28 | 1998-10-01 | 전경호 | 내연기관 및 외연기관에 있어서 매연처리 저감방법 및 그 장치 |
GB9605574D0 (en) * | 1996-03-16 | 1996-05-15 | Mountain Breeze Ltd | Treatment of particulate pollutants |
JP3108649B2 (ja) * | 1997-04-18 | 2000-11-13 | 株式会社ヤマダコーポレーション | 車両排ガス浄化装置 |
JP3530368B2 (ja) * | 1997-12-16 | 2004-05-24 | 三菱重工業株式会社 | 乾式電気集塵器 |
JPH11290719A (ja) * | 1998-04-14 | 1999-10-26 | Sumitomo Heavy Ind Ltd | 電気集塵装置 |
CN2336869Y (zh) * | 1998-07-22 | 1999-09-08 | 淄博永恒环保技术有限公司 | 高压电脉冲烟尘荷电器 |
DE19846320C1 (de) * | 1998-10-08 | 2000-06-29 | Dickels Karl | Vorrichtung zur Abscheidung von Stickoxiden und Partikeln aus einem Gasstrom |
JP2001182975A (ja) * | 1999-12-24 | 2001-07-06 | Masaya Nagashima | 家屋室内加圧装置、および、その方法 |
US6212883B1 (en) * | 2000-03-03 | 2001-04-10 | Moon-Ki Cho | Method and apparatus for treating exhaust gas from vehicles |
JP2002045643A (ja) * | 2000-08-03 | 2002-02-12 | Hitachi Plant Eng & Constr Co Ltd | 排ガス処理方法 |
JP4040833B2 (ja) * | 2000-10-24 | 2008-01-30 | 日産ディーゼル工業株式会社 | ディーゼルエンジンの排気浄化装置 |
US6969494B2 (en) * | 2001-05-11 | 2005-11-29 | Continental Research & Engineering, Llc | Plasma based trace metal removal apparatus and method |
CN1332341A (zh) * | 2001-07-06 | 2002-01-23 | 俞其进 | 空气净化机 |
JP2004027949A (ja) * | 2002-06-25 | 2004-01-29 | Yukio Kinoshita | 高効率排気ガス処理システム |
FR2841484B1 (fr) * | 2002-06-26 | 2004-09-10 | Boucq De Beaudignies Ghisla Le | Dispositif et procede de filtration de l'air et des gaz avec regeneration des particules captees |
DE10231620A1 (de) * | 2002-07-12 | 2004-01-29 | Robert Bosch Gmbh | Vorrichtung und Verfahren zur Abgasreinigung einer Brennkraftmaschine |
JP2004122301A (ja) * | 2002-10-03 | 2004-04-22 | Okuma Corp | 噴霧潤滑排気用濾過装置 |
US7514047B2 (en) * | 2003-01-15 | 2009-04-07 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purifying apparatus |
US20040188238A1 (en) * | 2003-03-28 | 2004-09-30 | Hemingway Mark David | System and method for concurrent particulate and NOx control |
JP4327506B2 (ja) * | 2003-06-03 | 2009-09-09 | 日野自動車株式会社 | 排気浄化装置 |
JP2004360512A (ja) * | 2003-06-03 | 2004-12-24 | Hino Motors Ltd | 排気浄化装置 |
CN1513753A (zh) * | 2003-06-13 | 2004-07-21 | 大连海事大学 | 一种羟基氧化二氧化硫生成硫酸的方法 |
CN2770786Y (zh) * | 2004-03-04 | 2006-04-12 | 何保海 | 电除尘器辅助电极 |
CN100418637C (zh) * | 2004-06-10 | 2008-09-17 | 中钢集团天澄环保科技股份有限公司 | 泛比电阻电除尘器及除尘方法 |
CN2767671Y (zh) * | 2004-11-03 | 2006-03-29 | 高永祥 | 汽车尾气电子净化器 |
CN2761244Y (zh) * | 2005-01-06 | 2006-03-01 | 合肥水泥研究设计院 | 低压长袋双侧脉冲袋式除尘器 |
JP4254751B2 (ja) * | 2005-06-17 | 2009-04-15 | トヨタ自動車株式会社 | 排気ガス浄化装置 |
CN2811818Y (zh) * | 2005-06-22 | 2006-08-30 | 孙一聪 | 微型空气净化器 |
JP4263711B2 (ja) * | 2005-09-16 | 2009-05-13 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
JP2007113497A (ja) * | 2005-10-20 | 2007-05-10 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
EP1985371A4 (en) * | 2006-02-14 | 2013-05-22 | Kagome Kk | FUNIGZID PROCESSES ABOUT CONIDIUM ADSORPTION USING DIELECTRIC POLARIZATION DEVICE FOR ELIMINATING FLYING ORGANISMS AND DEVICE FOR PROTECTING PLANTS |
CN2898683Y (zh) * | 2006-03-31 | 2007-05-09 | 北京禹辉水处理技术有限公司 | 全自动空气净化装置 |
ZA200703388B (en) * | 2006-05-01 | 2009-08-26 | Boc Group Inc | Ozone production process and its use in industrial processes |
CN200951364Y (zh) * | 2006-09-12 | 2007-09-26 | 党小朋 | 在线清灰脉喷袋除尘器 |
JP4453700B2 (ja) * | 2006-12-28 | 2010-04-21 | トヨタ自動車株式会社 | 内燃機関の排気ガス浄化装置 |
JP4497158B2 (ja) * | 2006-12-28 | 2010-07-07 | トヨタ自動車株式会社 | 内燃機関の排気ガス浄化装置 |
JP5119690B2 (ja) * | 2007-03-12 | 2013-01-16 | トヨタ自動車株式会社 | 内燃機関の排気ガス浄化装置 |
CN201064735Y (zh) * | 2007-07-18 | 2008-05-28 | 尤今 | 静电式烟雾净化设备 |
JP2009052440A (ja) * | 2007-08-24 | 2009-03-12 | Hitachi Plant Technologies Ltd | 舶用排ガス処理装置 |
CN201141320Y (zh) * | 2008-01-14 | 2008-10-29 | 关哲夫 | 一种发动机尾气净化装置 |
CN201168531Y (zh) * | 2008-03-17 | 2008-12-24 | 江苏科宝机械制造有限公司 | 电袋组合式收尘器 |
CN101337152A (zh) * | 2008-08-07 | 2009-01-07 | 大连海事大学 | 资源化同时脱除烟气中二氧化硫、氮氧化物的臭氧氧化干法 |
NL2002005C (nl) * | 2008-09-22 | 2010-03-23 | Stichting Energie | Werkwijze en inrichting voor het behandelen van een uitlaatgas, systeem omvattende een verbrandingsmotor en een dergelijke inrichting, alsmede schip. |
US7790127B1 (en) * | 2009-03-02 | 2010-09-07 | Gm Global Technology Operations, Inc. | NOx emission control system for hydrocarbon fueled power source |
CN201394503Y (zh) * | 2009-03-12 | 2010-02-03 | 河北大学 | 一种工业窑炉用高压静电除尘器 |
CN101524668B (zh) * | 2009-03-12 | 2011-04-13 | 河北大学 | 一种工业窑炉用高压静电除尘器 |
JP5058199B2 (ja) * | 2009-03-30 | 2012-10-24 | 京セラ株式会社 | 放電装置および放電装置を用いた反応装置 |
DE102009041091A1 (de) * | 2009-09-14 | 2011-03-24 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Vorrichtung zur Behandlung von Rußpartikel enthaltendem Abgas |
EP2489843A4 (en) * | 2009-10-14 | 2014-11-05 | Usui Kokusai Sangyo Kk | ELECTRICAL EXHAUST PROCESSING AND ELECTRICAL EXHAUST PROCESSING DEVICE |
KR101655452B1 (ko) * | 2010-01-29 | 2016-09-08 | 삼성전자주식회사 | 전기집진장치 및 그 전극판 |
CN101798944A (zh) * | 2010-02-09 | 2010-08-11 | 尤今 | 柴油发电机黑烟净化设备 |
JP2011179461A (ja) * | 2010-03-03 | 2011-09-15 | Toyota Industries Corp | 排ガス浄化装置 |
CN101757842B (zh) * | 2010-03-16 | 2012-01-25 | 仲立军 | 低温等离子废气净化装置 |
CN201644221U (zh) * | 2010-05-17 | 2010-11-24 | 山东电力研究院 | 干湿混合电除尘器 |
CN101961596A (zh) * | 2010-07-19 | 2011-02-02 | 大连海事大学 | 氧活性粒子注入烟道中的羟基自由基氧化脱硫脱硝方法 |
CN201943784U (zh) * | 2010-10-14 | 2011-08-24 | 中国石油化工股份有限公司 | 一种机动车排放尾气的脱水装置 |
CN102151609A (zh) * | 2010-12-03 | 2011-08-17 | 江苏中科节能环保技术有限公司 | 电除尘器电场收尘机构 |
JP6041418B2 (ja) * | 2010-12-16 | 2016-12-07 | 臼井国際産業株式会社 | 重油以下の低質燃料を使用する大排気量船舶用ディーゼルエンジンの排気ガス浄化装置 |
US8784762B2 (en) * | 2011-02-15 | 2014-07-22 | Ati Properties, Inc. | Treatment of NOx-containing gas streams |
CN202207630U (zh) * | 2011-09-07 | 2012-05-02 | 苏州巨联科技有限公司 | 蜂巢电场 |
CN102588050A (zh) * | 2012-02-23 | 2012-07-18 | 庄建中 | 汽车尾气净化器 |
CN102671763A (zh) * | 2012-04-30 | 2012-09-19 | 莱芜钢铁集团有限公司 | 管道式高风速双荷电区电凝聚装置 |
JP5957284B2 (ja) * | 2012-05-09 | 2016-07-27 | 株式会社Kri | 排ガス浄化装置 |
JP6062660B2 (ja) * | 2012-05-15 | 2017-01-18 | 臼井国際産業株式会社 | 重油より低質な燃料を使用する大排気量船舶用ディーゼルエンジン排ガス処理装置 |
JP2014047670A (ja) * | 2012-08-30 | 2014-03-17 | Denso Corp | オゾン生成手段を含むエンジン用NOx後処理装置の制御方法および制御装置 |
CN102958264B (zh) * | 2012-11-20 | 2015-04-22 | 浙江大学 | 一种基于催化剂反电晕沿面击穿的等离子体发生装置及方法和应用 |
CN103055675B (zh) * | 2013-01-18 | 2015-04-15 | 大恩(天津)环境技术研发有限公司 | 一种基于高级氧化作用的工业烟气综合治理系统及方法 |
CN203469745U (zh) * | 2013-09-09 | 2014-03-12 | 深圳市汇清科技有限公司 | 风口式电子除尘净化装置 |
CN204275723U (zh) * | 2013-11-15 | 2015-04-22 | 北京科之建环保工程有限公司 | 一种用于烟气综合处理装置的静电除尘器 |
CN203925685U (zh) * | 2014-02-19 | 2014-11-05 | 吕英 | 一种汽车尾气处理系统 |
CN103817003A (zh) * | 2014-02-28 | 2014-05-28 | 天津机科环保科技有限公司 | 立管式高压湿式静电精除尘器 |
CN203791052U (zh) * | 2014-02-28 | 2014-08-27 | 天津机科环保科技有限公司 | 立管式高压湿式静电精除尘器 |
CN103993934A (zh) * | 2014-03-25 | 2014-08-20 | 张子生 | 柴油机动车尾气净化装置 |
CN104941802A (zh) * | 2014-03-26 | 2015-09-30 | 王彤 | 空气净化器及用于空气净化器的高压电源控制方法 |
CN105268555A (zh) * | 2014-06-05 | 2016-01-27 | 东北师范大学 | 除尘量控制装置 |
JP6107748B2 (ja) * | 2014-06-20 | 2017-04-05 | 株式会社デンソー | 還元剤添加装置 |
CN204099004U (zh) * | 2014-09-25 | 2015-01-14 | 刘国强 | 汽车尾气综合处理系统 |
CN204380852U (zh) * | 2014-10-11 | 2015-06-10 | 国家电网公司 | 一种除尘装置 |
CN204170851U (zh) * | 2014-10-15 | 2015-02-25 | 厦门锐传科技有限公司 | 电除尘器 |
CN204219982U (zh) * | 2014-11-17 | 2015-03-25 | 安吉润风空气净化科技有限公司 | 一种介质阻挡放电的气体净化装置 |
CN104587813B (zh) * | 2015-02-03 | 2017-12-19 | 山东派力迪环保工程有限公司 | 一种中小型锅炉废气的等离子体脱硝方法 |
CN104791051A (zh) * | 2015-03-17 | 2015-07-22 | 上海唐亨能源科技有限公司 | 一种柴油机废气综合处理装置 |
CN104841557B (zh) * | 2015-03-23 | 2017-01-11 | 常州大学 | 一种柴油发动机尾气处理和检测系统 |
CN104888576B (zh) * | 2015-05-12 | 2017-02-22 | 北京建筑大学 | 一种尾气处理系统及方法 |
CN104847452B (zh) * | 2015-05-14 | 2017-11-03 | 哈尔滨工业大学 | 等离子体与静电吸附耦合的汽车尾气净化器及净化方法 |
CN204768126U (zh) * | 2015-07-14 | 2015-11-18 | 河北中清环保科技有限公司 | 一种木炭窑烟气治理系统 |
CN104984626B (zh) * | 2015-07-14 | 2018-03-30 | 河北中清环保科技有限公司 | 一种木炭窑烟气治理系统 |
CN105080715B (zh) * | 2015-08-07 | 2017-04-19 | 浙江大学 | 采用颗粒冲刷清灰的线管式高温静电除尘装置及清灰方法 |
CN204996568U (zh) * | 2015-08-07 | 2016-01-27 | 浙江大学 | 一种采用颗粒冲刷清灰的线管式高温静电除尘装置 |
CN204911793U (zh) * | 2015-08-27 | 2015-12-30 | 东方电气集团东方锅炉股份有限公司 | 一种湿式静电除尘器设备 |
JP6384429B2 (ja) * | 2015-08-27 | 2018-09-05 | 株式会社デンソー | オゾン供給装置の故障診断システム |
CN105149092B (zh) * | 2015-09-02 | 2017-08-29 | 中国科学院过程工程研究所 | 一种用于导电粉尘的除尘方法 |
CN204911132U (zh) * | 2015-09-12 | 2015-12-30 | 王伟珍 | 一种烟气高效除尘装置 |
JP6413998B2 (ja) * | 2015-09-29 | 2018-10-31 | 株式会社デンソー | オゾン供給装置の制御システム |
CN205182953U (zh) * | 2015-10-27 | 2016-04-27 | 大唐宝鸡热电厂 | 一种改进型电除尘器 |
CN205055799U (zh) * | 2015-10-27 | 2016-03-02 | 李继凤 | 一体化湿法烟气脱硫除尘的装置 |
CN105214465A (zh) * | 2015-10-27 | 2016-01-06 | 李继凤 | 一体化湿法烟气脱硫除尘的装置和方法 |
CN205199730U (zh) * | 2015-12-07 | 2016-05-04 | 福建龙净环保股份有限公司 | 一种湿式电除尘器 |
CN105464767A (zh) * | 2015-12-10 | 2016-04-06 | 成都德善能科技有限公司 | 一种基于汽车尾气发电的汽车尾气处理装置及其控制系统 |
JP6447486B2 (ja) * | 2015-12-22 | 2019-01-09 | 株式会社デンソー | 放電制御装置、ガス供給装置及び放電制御方法 |
WO2017114049A1 (zh) * | 2015-12-31 | 2017-07-06 | 靳瑞廷 | 气体介质悬浮颗粒物净化系统 |
CN105642080A (zh) * | 2015-12-31 | 2016-06-08 | 神华集团有限责任公司 | 一种烟气净化的装置和方法 |
CN105562207A (zh) * | 2016-02-02 | 2016-05-11 | 北京清新环境技术股份有限公司 | 一种管束式除尘除雾装置 |
CN205518212U (zh) * | 2016-02-02 | 2016-08-31 | 北京清新环境技术股份有限公司 | 一种管束式除尘除雾装置 |
JP2017155643A (ja) * | 2016-03-01 | 2017-09-07 | 株式会社Soken | NOx浄化装置、およびNOx浄化装置の製造方法 |
CN105749679B (zh) * | 2016-03-23 | 2018-08-28 | 航天凯天环保科技股份有限公司 | 一种高温烟气除尘方法及系统 |
CN205627552U (zh) * | 2016-04-09 | 2016-10-12 | 嘉兴天盾环保科技有限公司 | 一种高通量紧凑型电晕离子发生器 |
CN105781701B (zh) * | 2016-04-13 | 2018-07-10 | 赵会东 | 一种减少雾霾的汽油车尾气排气管及汽油车 |
CN105697110A (zh) * | 2016-04-25 | 2016-06-22 | 安徽理工大学 | 汽车尾气净化及余热回收一体化装置 |
CN205638640U (zh) * | 2016-04-29 | 2016-10-12 | 陈聪 | 一种利用汽车尾气热量发电的尾气处理装置 |
CN107433091A (zh) * | 2016-05-27 | 2017-12-05 | 深圳市汇清科技有限公司 | 风口式电子除尘净化装置 |
CN107433092A (zh) * | 2016-05-27 | 2017-12-05 | 深圳市汇清科技有限公司 | 风口式电子除尘净化装置 |
CN105952509B (zh) * | 2016-06-24 | 2018-06-15 | 王增荣 | 组合式汽车发动机尾气处理系统 |
CN206111281U (zh) * | 2016-06-29 | 2017-04-19 | 浙江中通检测科技有限公司 | 一种柴油发动机废气冷却净化装置 |
CN105944838B (zh) * | 2016-06-30 | 2018-07-06 | 广东佳德环保科技有限公司 | 湿式电除尘器用钛电极电离管 |
CN205995620U (zh) * | 2016-06-30 | 2017-03-08 | 河北安维环境工程有限公司 | 湿式电除雾装置 |
CN105921275A (zh) * | 2016-06-30 | 2016-09-07 | 河北安维环境工程有限公司 | 湿式电除雾装置 |
CN206310664U (zh) * | 2016-07-07 | 2017-07-07 | 格林韦尔(北京)科技发展有限公司 | 新风空气净化系统 |
CN106269256A (zh) * | 2016-08-10 | 2017-01-04 | 福建龙净环保股份有限公司 | 一种用于烟气净化的电除雾器 |
CN205966185U (zh) * | 2016-08-10 | 2017-02-22 | 福建龙净环保股份有限公司 | 一种用于烟气净化的电除雾器 |
CN206329373U (zh) * | 2016-08-22 | 2017-07-14 | 张济飞 | 一种汽车尾气净化处理装置 |
CN107780994A (zh) * | 2016-08-31 | 2018-03-09 | 重庆市吉德环保工程有限公司 | 一种汽车尾气扬尘收集装置 |
CN206256947U (zh) * | 2016-08-31 | 2017-06-16 | 重庆市吉德环保工程有限公司 | 一种汽车尾气扬尘收集装置 |
CN108070398A (zh) * | 2016-11-07 | 2018-05-25 | 简阳市龙兴炭素有限公司 | 炭素焙烧炉沥青烟气净化回收利用方法 |
CN206276238U (zh) * | 2016-11-17 | 2017-06-27 | 武汉大学 | 一种等离子体催化反应器及其空气净化器 |
CN108211698A (zh) * | 2016-12-14 | 2018-06-29 | 李平 | 燃煤烟气所有污染物四级净化系统及方法 |
CN106492988A (zh) * | 2016-12-23 | 2017-03-15 | 福建省沃特宝环保科技有限公司 | 一种微通道阳极除水雾装置 |
CN206509115U (zh) * | 2016-12-29 | 2017-09-22 | 天津钢铁集团有限公司 | 一种电除尘系统改进结构 |
CN106593580B (zh) * | 2016-12-30 | 2022-07-08 | 三河市科达科技有限公司 | 一种发动机废气循环净化消声系统 |
CN106907215A (zh) * | 2017-02-27 | 2017-06-30 | 上海必修福企业管理有限公司 | 一种处理发动机排放尾气的装置和方法 |
CN206661444U (zh) * | 2017-03-16 | 2017-11-24 | 淄博卓意玻纤材料有限公司 | 单丝涂塑防虫网生产用静电除尘系统 |
CN106861909A (zh) * | 2017-03-16 | 2017-06-20 | 淄博卓意玻纤材料有限公司 | 单丝涂塑防虫网生产用静电除尘工艺方法及其设备系统 |
CN206625882U (zh) * | 2017-03-30 | 2017-11-10 | 武汉大学 | 一种汽车尾气净化装置 |
CN106733194B (zh) * | 2017-03-31 | 2018-10-16 | 广东美的厨房电器制造有限公司 | 静电装置和油烟机 |
CN206716211U (zh) * | 2017-05-16 | 2017-12-08 | 孟金来 | 去除金属或石墨或炭黑粉尘用电除尘器电极 |
CN206903785U (zh) * | 2017-06-09 | 2018-01-19 | 北汽福田汽车股份有限公司 | 空气滤清器以及车辆 |
GB201710147D0 (en) * | 2017-06-24 | 2017-08-09 | Wynford Peter Holloway | Exhaust treatment device |
CN207178071U (zh) * | 2017-06-30 | 2018-04-03 | 中国大唐集团科学技术研究院有限公司华东分公司 | 一种燃气轮机进气过滤装置 |
CN206911575U (zh) * | 2017-07-06 | 2018-01-23 | 辽宁国泰众欣环保科技有限公司 | 一种带清洁阴阳极的静电除尘组件 |
CN206911574U (zh) * | 2017-07-06 | 2018-01-23 | 辽宁国泰众欣环保科技有限公司 | 一种带清洁阴阳极的静电除尘单元 |
CN207056790U (zh) * | 2017-08-02 | 2018-03-02 | 南京德力通通风设备有限公司 | 一种用于餐饮油烟净化器的高低压静电场 |
CN107387203A (zh) * | 2017-08-17 | 2017-11-24 | 南京汉尔斯生物科技有限公司 | 一种汽车尾气净化装置 |
CN107605579A (zh) * | 2017-08-24 | 2018-01-19 | 南京理工大学 | 一种利用汽车尾气废热温差发电的尾气净化器 |
CN207013155U (zh) * | 2017-09-01 | 2018-02-16 | 无锡幸运环保设备有限公司 | 带有拉瓦尔喷嘴的新型静电除尘器 |
CN207102904U (zh) * | 2017-09-26 | 2018-03-16 | 江苏菲特滤料有限公司 | 一种工业除尘设备 |
CN207385713U (zh) * | 2017-09-29 | 2018-05-22 | 广西博世科环保科技股份有限公司 | 一种高风速耐高温高效静电除尘器 |
CN107497265B (zh) * | 2017-09-30 | 2019-12-31 | 江苏大学 | 臭氧协同微波激发飞灰诱导自由基的一体化烟气净化系统及方法 |
CN107476865A (zh) * | 2017-10-09 | 2017-12-15 | 张延艳 | 一种环保型汽车尾气净化器 |
CN207342893U (zh) * | 2017-12-13 | 2018-05-11 | 平顶山市博翔碳素有限公司 | 一种冷风式电捕焦油器 |
CN207446500U (zh) * | 2017-12-13 | 2018-06-05 | 浙江深澜环境工程有限公司 | 一种高压静电除尘器 |
CN108561208A (zh) * | 2018-04-28 | 2018-09-21 | 中国计量大学 | 一种汽车尾气净化装置 |
CN209155539U (zh) * | 2018-06-11 | 2019-07-26 | 河北冀研能源科学技术研究院有限公司 | 一种电站内臭氧氧化协同scr的全负荷脱硝系统 |
CN108672089A (zh) * | 2018-06-28 | 2018-10-19 | 西安交通大学 | 一种基于石墨烯的湿式电除尘器极板 |
CN108939916A (zh) * | 2018-09-29 | 2018-12-07 | 国电环境保护研究院 | 一种利用臭氧进行scr高效脱硝的系统 |
JP2022512025A (ja) * | 2018-10-22 | 2022-02-01 | 上海必修福企業管理有限公司 | エンジン排気ガスのオゾン浄化システム及び方法 |
CN109772136A (zh) * | 2019-02-13 | 2019-05-21 | 大唐绥化热电有限公司 | 低温除尘脱硫脱硝一体化系统及脱硫脱硝工艺 |
CN109876615A (zh) * | 2019-04-09 | 2019-06-14 | 江苏科行环保股份有限公司 | 利用脉冲电晕放电进行臭氧脱硝提效的装置和方法 |
CN113522023A (zh) * | 2020-04-15 | 2021-10-22 | 上海必修福企业管理有限公司 | 一种发动机尾气中VOCs气体处理系统和方法 |
CN215784106U (zh) * | 2021-09-17 | 2022-02-11 | 北京中新国能环保科技有限公司 | 一种带自冲洗功能的湿式电除尘电极结构 |
-
2019
- 2019-10-18 US US17/309,081 patent/US20220016641A1/en not_active Abandoned
- 2019-10-18 WO PCT/CN2019/111816 patent/WO2020083099A1/zh active Application Filing
- 2019-10-18 WO PCT/CN2019/111817 patent/WO2020083100A1/zh active Application Filing
- 2019-10-18 WO PCT/CN2019/111813 patent/WO2020083096A1/zh active Application Filing
- 2019-10-18 WO PCT/CN2019/111815 patent/WO2020083098A1/zh unknown
- 2019-10-18 WO PCT/CN2019/111814 patent/WO2020083097A1/zh active Application Filing
- 2019-10-18 JP JP2021546425A patent/JP2022508859A/ja active Pending
- 2019-10-18 EP EP19876543.0A patent/EP3872312A4/en not_active Withdrawn
- 2019-10-18 MX MX2021004573A patent/MX2021004573A/es unknown
- 2019-10-21 EP EP19877452.3A patent/EP3871784A4/en not_active Withdrawn
- 2019-10-21 WO PCT/CN2019/112298 patent/WO2020083224A1/zh active Application Filing
- 2019-10-21 WO PCT/CN2019/112310 patent/WO2020083234A1/zh active Application Filing
- 2019-10-21 JP JP2021523033A patent/JP2022505945A/ja active Pending
- 2019-10-21 WO PCT/CN2019/112283 patent/WO2020083213A1/zh active Application Filing
- 2019-10-21 WO PCT/CN2019/112263 patent/WO2020083204A1/zh active Application Filing
- 2019-10-21 JP JP2021546432A patent/JP2022508866A/ja active Pending
- 2019-10-21 MX MX2021004498A patent/MX2021004498A/es unknown
- 2019-10-21 JP JP2021547628A patent/JP2022509335A/ja active Pending
- 2019-10-21 WO PCT/CN2019/112296 patent/WO2020083223A1/zh active Application Filing
- 2019-10-21 US US17/309,084 patent/US20220016640A1/en not_active Abandoned
- 2019-10-21 WO PCT/CN2019/112255 patent/WO2020083197A1/zh active Application Filing
- 2019-10-21 EP EP19875843.5A patent/EP3871753A4/en not_active Withdrawn
- 2019-10-21 WO PCT/CN2019/112292 patent/WO2020083219A1/zh active Application Filing
- 2019-10-21 US US17/287,783 patent/US20220251993A1/en not_active Abandoned
- 2019-10-21 WO PCT/CN2019/112291 patent/WO2020083218A1/zh active Application Filing
- 2019-10-21 WO PCT/CN2019/112300 patent/WO2020083226A1/zh unknown
- 2019-10-21 JP JP2021546431A patent/JP2022513366A/ja active Pending
- 2019-10-21 US US17/287,981 patent/US20210310387A1/en not_active Abandoned
- 2019-10-21 WO PCT/CN2019/112256 patent/WO2020083198A1/zh unknown
- 2019-10-21 WO PCT/CN2019/112293 patent/WO2020083220A1/zh unknown
- 2019-10-21 EP EP19876113.2A patent/EP3871752A4/en not_active Withdrawn
- 2019-10-21 JP JP2021546433A patent/JP2022508867A/ja active Pending
- 2019-10-21 WO PCT/CN2019/112307 patent/WO2020083231A1/zh active Application Filing
- 2019-10-21 WO PCT/CN2019/112304 patent/WO2020083229A1/zh unknown
- 2019-10-21 JP JP2021547627A patent/JP2022509334A/ja active Pending
- 2019-10-21 WO PCT/CN2019/112301 patent/WO2020083227A1/zh active Application Filing
- 2019-10-21 CA CA3117397A patent/CA3117397A1/en not_active Abandoned
- 2019-10-21 AU AU2019364463A patent/AU2019364463A1/en not_active Abandoned
- 2019-10-21 WO PCT/CN2019/112257 patent/WO2020083199A1/zh active Application Filing
- 2019-10-21 EP EP19876397.1A patent/EP3871789A4/en not_active Withdrawn
- 2019-10-21 JP JP2021547630A patent/JP2022509337A/ja active Pending
- 2019-10-21 EP EP19876831.9A patent/EP3871783A1/en not_active Withdrawn
- 2019-10-21 BR BR112021007637-9A patent/BR112021007637A2/pt not_active Application Discontinuation
- 2019-10-21 WO PCT/CN2019/112267 patent/WO2020083207A1/zh unknown
- 2019-10-21 JP JP2021547629A patent/JP2022509336A/ja active Pending
- 2019-10-21 BR BR112021007598-4A patent/BR112021007598A2/pt not_active Application Discontinuation
- 2019-10-21 WO PCT/CN2019/112264 patent/WO2020083205A1/zh unknown
- 2019-10-21 US US17/287,700 patent/US20210379599A1/en not_active Abandoned
- 2019-10-21 WO PCT/CN2019/112262 patent/WO2020083203A1/zh unknown
- 2019-10-21 JP JP2021523042A patent/JP2022505951A/ja active Pending
- 2019-10-21 WO PCT/CN2019/112285 patent/WO2020083214A1/zh active Application Filing
- 2019-10-21 MX MX2021004500A patent/MX2021004500A/es unknown
- 2019-10-21 BR BR112021007588-7A patent/BR112021007588A2/pt not_active Application Discontinuation
- 2019-10-21 US US17/287,714 patent/US20220275739A1/en not_active Abandoned
- 2019-10-21 WO PCT/CN2019/112309 patent/WO2020083233A1/zh active Application Filing
- 2019-10-21 WO PCT/CN2019/112287 patent/WO2020083215A1/zh active Application Filing
- 2019-10-21 WO PCT/CN2019/112281 patent/WO2020083212A1/zh active Application Filing
- 2019-10-21 WO PCT/CN2019/112299 patent/WO2020083225A1/zh active Application Filing
- 2019-10-21 WO PCT/CN2019/112280 patent/WO2020083211A1/zh active Application Filing
- 2019-10-21 WO PCT/CN2019/112275 patent/WO2020083210A1/zh active Application Filing
- 2019-10-21 US US17/309,082 patent/US20220054974A1/en not_active Abandoned
- 2019-10-21 WO PCT/CN2019/112303 patent/WO2020083228A1/zh active Application Filing
- 2019-10-21 WO PCT/CN2019/112295 patent/WO2020083222A1/zh active Application Filing
- 2019-10-21 EP EP19876825.1A patent/EP3872314A1/en not_active Withdrawn
- 2019-10-21 WO PCT/CN2019/112288 patent/WO2020083216A1/zh active Application Filing
- 2019-10-21 WO PCT/CN2019/112271 patent/WO2020083209A1/zh active Application Filing
- 2019-10-21 WO PCT/CN2019/112306 patent/WO2020083230A1/zh active Application Filing
- 2019-10-21 WO PCT/CN2019/112270 patent/WO2020083208A1/zh unknown
- 2019-10-21 WO PCT/CN2019/112260 patent/WO2020083202A1/zh active Application Filing
- 2019-10-21 WO PCT/CN2019/112308 patent/WO2020083232A1/zh active Application Filing
- 2019-10-21 BR BR112021007636-0A patent/BR112021007636A2/pt not_active Application Discontinuation
- 2019-10-21 EP EP19876827.7A patent/EP3871756A4/en not_active Withdrawn
- 2019-10-21 WO PCT/CN2019/112259 patent/WO2020083201A1/zh active Application Filing
- 2019-10-21 WO PCT/CN2019/112266 patent/WO2020083206A1/zh active Application Filing
- 2019-10-21 BR BR112021007601-8A patent/BR112021007601A2/pt not_active Application Discontinuation
- 2019-10-21 EP EP19876816.0A patent/EP3872321A1/en not_active Withdrawn
- 2019-10-21 WO PCT/CN2019/112251 patent/WO2020083195A1/zh active Application Filing
- 2019-10-21 US US17/287,682 patent/US20210404355A1/en not_active Abandoned
- 2019-10-21 WO PCT/CN2019/112252 patent/WO2020083196A1/zh active Application Filing
- 2019-10-21 BR BR112021007618-2A patent/BR112021007618A2/pt not_active Application Discontinuation
- 2019-10-21 EP EP19875278.4A patent/EP3871782A1/en not_active Withdrawn
- 2019-10-21 BR BR112021007619-0A patent/BR112021007619A2/pt not_active Application Discontinuation
- 2019-10-21 US US17/287,932 patent/US20210372308A1/en not_active Abandoned
- 2019-10-21 WO PCT/CN2019/112250 patent/WO2020083194A1/zh unknown
- 2019-10-21 WO PCT/CN2019/112258 patent/WO2020083200A1/zh active Application Filing
- 2019-10-21 WO PCT/CN2019/112289 patent/WO2020083217A1/zh active Application Filing
-
2021
- 2021-04-21 IL IL282550A patent/IL282550A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1256354A (zh) * | 1998-12-04 | 2000-06-14 | 杜成林 | 一种机动车消烟消声防火除尘净化器 |
CN1834417A (zh) * | 2005-03-16 | 2006-09-20 | 丰田自动车株式会社 | 气体净化装置 |
CN103782001A (zh) * | 2011-09-05 | 2014-05-07 | 日野自动车株式会社 | 废气净化装置 |
CN103768942A (zh) * | 2014-02-19 | 2014-05-07 | 大连海事大学 | 一种等离子体净化柴油机尾气方法 |
JP2017072029A (ja) * | 2015-10-05 | 2017-04-13 | 株式会社デンソー | 燃焼システムの制御装置 |
CN108096969A (zh) * | 2017-12-05 | 2018-06-01 | 青岛科技大学 | 一种基于挥发油气净化技术的尾气光氧裂解处理方法 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020083210A1 (zh) | 发动机尾气处理系统和方法 | |
CN113474085B (zh) | 排气处理系统及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19875374 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19875374 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19875374 Country of ref document: EP Kind code of ref document: A1 |