WO2019028228A1 - PROCESSES FOR THE PREPARATION OF PYRROLIDINE COMPOUNDS - Google Patents
PROCESSES FOR THE PREPARATION OF PYRROLIDINE COMPOUNDS Download PDFInfo
- Publication number
- WO2019028228A1 WO2019028228A1 PCT/US2018/044963 US2018044963W WO2019028228A1 WO 2019028228 A1 WO2019028228 A1 WO 2019028228A1 US 2018044963 W US2018044963 W US 2018044963W WO 2019028228 A1 WO2019028228 A1 WO 2019028228A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- process according
- reaction
- acid
- molar equivalents
- chosen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- JWUXJYZVKZKLTJ-UHFFFAOYSA-N CC(C)(C1)NC(C)(C)CC1=O Chemical compound CC(C)(C1)NC(C)(C)CC1=O JWUXJYZVKZKLTJ-UHFFFAOYSA-N 0.000 description 2
- JJXUKXQTFKDOSH-YFKPBYRVSA-N C[C@@H](CC(C)(C)N1)C1=O Chemical compound C[C@@H](CC(C)(C)N1)C1=O JJXUKXQTFKDOSH-YFKPBYRVSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/04—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D207/06—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with radicals, containing only hydrogen and carbon atoms, attached to ring carbon atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/4015—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil having oxo groups directly attached to the heterocyclic ring, e.g. piracetam, ethosuximide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/04—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D207/10—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D207/12—Oxygen or sulfur atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/18—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
- C07D207/22—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D207/24—Oxygen or sulfur atoms
- C07D207/26—2-Pyrrolidones
- C07D207/263—2-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms
Definitions
- the disclosure is drawn to processes for preparing (S)- 2,2,4-trimethylpyrrolidine free base or (,S)-2,2,4-trimethylpyrrolidine salts.
- the (,S)-2,2,4-trimethylpyrrolidine salt is (,S)-2,2,4-trimethylpyrrolidine hydrochloride.
- the disclosure is drawn to processes for preparing (R)- 2,2,4-trimethylpyrrolidine free base or (R)-2,2,4-trimethylpyrrolidine salts.
- the (R)-2,2,4-trimethylpyrrolidine salt is (R)-2,2,4-trimethylpyrrolidine hydrochloride.
- the disclosure is drawn to processes for preparing (S)- 3,5,5 -trimethylpyrrolidine-2-one .
- the disclosure is drawn to processes for (R)-3,5,5- trimethylpyrrolidine-2-one.
- Scheme 1 a process for preparing (,S)-2,2,4-trimethylpyrrolidine is depicted in Scheme 1 and comprises:
- a salt of 2,2,6,6-tetramethyl-piperidin-4-one is used.
- Non-limiting examples of salts include a hydrochloride salt, a hydrobromide salt, a sulfate salt, a phoshpate salt, a fumarate salt, an oxalate salt, a maleate salt, a citrate salt, or a benzoate salt.
- 2,2,6,6-tetramethyl-piperidin-4-one hydrochloride is used. These salts can be prepared by conventional methods in the art, by for example, treating 2,2,6,6-tetramethyl-piperidin-4-one with an acid.
- a process for preparing a salt of (S)-2,2,4- trimethylpyrrolidine comprises:
- a process for preparing a salt of (R)-2,2,4- trimethylpyrrolidine comprises:
- reaction in (b) is conducted without isolation of the product(s) of the reaction in (a). This results in a process with fewer purifications and less reliance on materials and solvents, which can provide compound 3 in higher efficiency and lower cost.
- Scheme 4 a process for preparing (,S)-3,5,5-trimethylpyrrolidin-2- one is depicted in Scheme 4 and comprises:
- Scheme 5 a process for preparing (R)-3,5,5-trimethylpyrrolidin-2- one is depicted in Scheme 5 and comprises:
- 2,2,6,6-tetramethyl-piperidin-4-one or a salt thereof is reacted with chloroform and at least one base.
- the at least one base is chosen from potassium t-butoxide, potassium hydroxide, and sodium hydroxide.
- the at least one base is sodium hydroxide.
- 3 to 15 molar equivalents of the at least one base relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one are added for the reaction in (a). In some embodiments, 5 to 12 molar equivalents of the at least one base are added. In some embodiments, 7.5 molar equivalents of the at least one base are added. In some embodiments, 10 molar equivalents of said at least one base are added. In some embodiments, 8 molar equivalents of sodium hydroxide are added.
- the at least one base in the reaction (a) is in solid form in at least one anhydrous solvent.
- the at least one anhydrous solvent is chosen from dimethyl sulfoxide and isopropyl alcohol.
- the at least one base in the reaction (a) is in the form of an aqueous solution having a concentration ranging from 20 wt% to 80 wt% relative to the total weight of the solution.
- the at least one base is 20 wt% aqueous NaOH.
- the at least one base is 30 wt% aqueous NaOH.
- the at least one base is 40 wt% aqueous NaOH.
- the at least one base is 50 wt% aqueous NaOH.
- chloroform in the reaction (a) is present in an amount ranging from 1 to 4 molar equivalents relative to the mole of 2,2,6,6-tetramethylpiperidin- 4-one. In some embodiments, the chloroform is present in an amount ranging from 1.5 to 3.5 molar equivalents relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one. In some embodiments, the chloroform is present in an amount of 1.75 molar equivalents relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one.
- 2,2,6,6-tetramethyl-piperidin-4-one or a salt thereof is reacted with chloroform, at least one base, and at least one solvent.
- the at least one solvent is chosen from organic solvents.
- the at least one solvent is immiscible with water.
- the volume of the at least one solvent ranges from 0.1 to 10 volume equivalents relative to the volume of 2,2,6,6- tetramethylpiperidin-4-one.
- the volume of the at least one solvent ranges from 1 to 4 volume equivalents relative to the volume of 2,2,6,6- tetramethylpiperidin-4-one.
- the volume of the at least one solvent ranges from 1 to 3 volume equivalents relative to the volume of 2,2,6,6- tetramethylpiperidin-4-one. In some embodiments, the volume of the at least one solvent ranges from 1.5 to 2.5 volume equivalents relative to the volume of 2,2,6,6- tetramethylpiperidin-4-one. In some embodiments, the volume of the at least one solvent is 2 volume equivalents of the at least one solvent relative to the volume of 2,2,6,6- tetramethylpiperidin-4-one.
- the at least one solvent is chosen from dichloromethane, heptane, chloroform, trifluorotoluene, tetrahydrofuran (THF), and N- methylpyrrolidone (NMP).
- the at least one solvent is chosen from dichloromethane and heptane.
- the at least one solvent is di chl oromethane .
- reaction (a) is performed without the at least one solvent.
- reaction in (a) is performed without the use of phase transfer catalyst.
- phase transfer catalyst in the reaction in (a), in addition to chloroform and at least one base, 2,2,6,6-tetramethyl-piperidin-4-one is reacted with at least one phase transfer catalyst.
- the at least one phase transfer catalyst is chosen from tetraalkylammonium salts and crown ethers such as 18-crown-6 and 15-crown-5 phase transfer catalysts.
- the at least one phase transfer catalyst is chosen from crown ethers, such as 18-crown-6 and 15-crown-5 phase transfer catalysts.
- the at least one phase transfer catalyst is chosen from
- the at least one phase transfer catalyst is chosen from tetraalkylammonium halides. In some embodiments, the at least one phase transfer catalyst is chosen from tributylmethylammonium chloride,
- tributylmethylammonium bromide tributylmethylammonium bromide, tetrabutylammonium bromide (TBAB),
- TBAC tetrabutylammonium chloride
- TBAI tetrabutylammonium iodide
- TBAH tetrabutylammonium hydroxide
- TOAB tetraoctylammonium bromide
- TO AC tetraoctyl ammonium chloride
- TOAI tetraoctylammonium iodide
- trioctylmethylammonium chloride and
- 0.01 molar equivalents to 0.2 molar equivalents of the at least one phase transfer catalyst relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one is added to the reaction in (a).
- 0.02 molar equivalents to 0.1 molar equivalents of said at least one phase transfer catalyst relative to the mole of 2,2,6,6- tetramethylpiperidin-4-one is added.
- 0.03 molar equivalents to 0.06 molar equivalents of said at least one phase transfer catalyst relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one is added.
- 0.01 molar equivalents to 1 molar equivalent such as to 0.2 molar equivalents, 0.4 molar equivalents, 0.6 molar equivalents, or 0.8 molar equivalents of said at least one phase transfer catalyst relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one is added.
- the acid of the reaction in (b) is chosen from aqueous solutions of protic acids.
- the protic acids are chosen from hydrochloric acid, methane sulfonic acid, triflic acid, and sulfuric acid.
- the concentration of said aqueous solutions of protic acids range from 1M to 18M. In some embodiments, the concentration of said aqueous solutions of protic acids range from 2M to 10M.
- the acid of the reaction in (b) is chosen from HC1 having a concentration ranging from 2M to 3M. In some embodiments, the acid of the reaction in (b) is chosen from 2M HC1.
- the acid of the reaction in (b) is chosen from 2.5M HC1. In some embodiments, the acid of the reaction in (b) is chosen from 3M HC1. In some embodiments, 0.5 to 10 molar equivalents of said acid relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one are added to the reaction in (b). In some embodiments, 1 to 4 molar equivalents of said acid relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one are added to the reaction in (b). In some embodiments, 1.5 molar equivalents of said acid relative to the mole of 2,2,6,6-tetramethylpiperidin-4- one are added to the reaction in (b).
- the yield of 5,5-dimethyl-3-methylenepyrrolidin-2-one produced from the reactions in (a) and (b) ranges from 40% to 70% relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one. In some embodiments, the yield of 5,5-dimethyl-3- methylenepyrrolidin-2-one produced from the reactions in (a) and (b) ranges from 30% to 80%) relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one. In some embodiments, the yield of 5,5-dimethyl-3-methylenepyrrolidin-2-one produced from the reactions in (a) and
- (b) ranges from 50%> to 70% relative to the mole of 2,2,6,6-tetramethylpiperidin-4-one.
- the yield of 5,5-dimethyl-3-methylenepyrrolidin-2-one produced from the reactions in (a) and (b) ranges from 60% to 80% relative to the mole of 2,2,6,6- tetramethylpiperidin-4-one.
- the hydrogenation comprises reacting 5,5-dimethyl-3- methylenepyrrolidin-2-one with at least one catalyst and hydrogen gas to produce (S)- 3,5,5-trimethyl-pyrrolidin-2-one.
- the at least one catalyst is chosen from metals from the platinum group.
- platinum group means ruthenium, rhodium, palladium, osmium, iridium, and platinum.
- the at least one catalyst is chosen from ruthenium hydrogenation catalysts, rhodium hydrogenation catalysts, and iridium hydrogenation catalysts.
- the hydrogenation comprises reacting 5,5-dimethyl-3- methylenepyrrolidin-2-one with at least one catalyst and hydrogen gas to produce (R)- 3,5,5-trimethyl-pyrrolidin-2-one.
- the at least one catalyst is chosen from ruthenium hydrogenation catalysts, rhodium hydrogenation catalysts, and iridium hydrogenation catalysts.
- the at least one catalyst may be heterogeneous or homogeneous. In some embodiments, the at least one catalyst is heterogeneous. In some embodiments, the at least one catalyst is homogenous. In some embodiments, the at least one catalyst comprises platinum. In some embodiments, the at least one catalyst comprises rhodium, ruthenium, or iridium. In some embodiments, the at least one catalyst employs at least one ligand. In some embodiments, the at least one ligand is chiral. In some embodiments, the at least one catalyst employs at least one phosphorus-containing ligand.
- the hydrogenation is enantioselective. Enantioselective hydrogenation can be done using a chiral ligand.
- the at least one catalyst employs at least one chiral phosphorus-containing ligand. In some embodiments, the at least one chiral phosphorus-containing ligand is a chiral tertiary diphosphine. In some embodiments, the at least one catalyst employs at least one atropisomeric ligand, such as BINAP, Tol-BINAP, T-BINAP, H8-BINAP, Xyl-BINAP, DM-BINAP, or MeOBiphep.
- the at least one catalyst employs at least one segphos-based ligand, such as segphos, dm-segphos, or dtbm-segphos. In some embodiments, the at least one catalyst employs at least one chiral ferrocenyl-based ligand, such as Josiphos, Walphos, Mandyphos, or Taniaphos.
- BINAP include (R)-(+)-(l, 1 '-Binaphthalene-2,2'-diyl)bis(diphenylphosphine), (R)-(+)-2,2'- Bis(diphenylphosphino)- 1 , 1 '-binaphthalene ((R)-(+)-BINAP), (S)-(-)-( 1 , 1 '-Binaphthalene- 2,2'-diyl)bis(diphenylphosphine), and (,S)-(-)-2,2'-Bis(diphenylphosphino)-l, - binaphthalene (OS)-(-)-BINAP)).
- Tol-BINAP is (R)-(+)-2,2'- Bis(di- >-tolylphosphino)-l, l '-binaphthyl.
- T-BINAP include ( ⁇ -H ⁇ '- ⁇ -tolyl-phosphino)- 1, 1 '-binaphthyl, (S)-Tol-BINAP.
- H8-BINAP examples include (R)-(+)-2,2'-Bis(diphenylphospino)-5,5',6,6',7,7',8,8'-octahydro-l, l '-binaphthyl, [(lR)-5,5',6,6',7,7',8,8'-octahydro-[l, l '-binaphthalene]-2,2'-diyl]bis[diphenylphosphine], and (5)-(-)-2,2'-Bis(diphenylphospino)-5,5',6,6',7,7',8,8'-octahydro-l, l '-binaphthyl, [(15)- 5,5',6,6',7,7',8,8'-octahydro-[l, l '-binaphthalene]-2,2'-diyl]
- Non- limiting examples of DM-BINAP include (R)-(+)-l, l '-Binaphthalene-2,2'-diyl)bis[bis(3,5- dimethylphenyl)phosphine] and (R)-(+)-2,2 '-Bi s [di(3 , 5 -xylyl)phosphino]- 1 , 1 '-binaphthyl .
- a non-limiting example of Xyl-BINAP is fR (+)-XylBINAP and (Sj-(+)-XylBINAP available from Takasago International Corp.
- MeOBiphep examples include (R)-(6,6'-Dimethoxybiphenyl-2,2'-diyl)bis[bis(3,5-di-tert-butyl-4- methoxyphenyl)phosphine, (,S)-(6,6'-Dimethoxybiphenyl-2,2'-diyl)bis[bis(3,5-di-tert- butyl-4-methoxyphenyl)phosphine, (R)-(6,6'-Dimethoxybiphenyl-2,2'-diyl)bis[bis(3,5-di- tert-butylphenyl)phosphine], (,S)-(6,6'-Dimethoxybiphenyl-2,2'-diyl)bis[bis(3,5-di-tert- butylphenyl)phosphine] , (R)-(6,6 '-Dimethoxybiphenyl
- segphos include (R)-(+)-5,5'-Bis(diphenylphosphino)-4,4'-bi-l,3-benzodioxole (or [4(R)-(4,4'-bi- l,3-benzodioxole)-5,5'-diyl]bis[diphenylphosphine]) and (S)-(-)-5,5'- Bis(diphenylphosphino)-4,4'-bi-l,3-benzodioxole.
- Non-limiting examples of dtbm- segphos include (R)-(-)-5,5'-Bis[di(3,5-di-tert-butyl-4-methoxyphenyl)phosphino]-4,4'-bi- 1,3-benzodioxole (or [(4R)-(4,4'-bi-l,3-benzodioxole)-5,5'-diyl]bis[bis(3,5-di-tert-butyl-4- methoxyphenyl)phosphine]) and (,S)-(+)-5,5'-Bis[di(3,5-di-tert-butyl-4- methoxyphenyl)phosphino]-4,4'-bi-l,3-benzodioxole.
- Examples of dm-segphos include (,S)-(+)-5,5'-Bis[di(3,5-di-tert-butyl-4-methoxyphenyl)phosphino]-4,4'-bi-l,3- benzodioxole and (R)-(+)-5,5'-Bis[di(3,5-xylyl)phosphino]-4,4'-bi-l,3-benzodioxole (or [(4R)-(4,4'-bi-l,3-benzodioxole)-5,5'-diyl]bis[bis(3,5-dimethylphenyl)phosphine]).
- Non- limiting examples of chiral ferrocenyl-based ligands can be found in US 2015/0045556 (the chiral ligand descriptions of which are incorporated herein by reference).
- Non- limiting examples chiral ferrocenyl-based ligands include:
- the hydrogenation is carried out in the presence of at least one chiral ligand.
- the at least one chiral ligand is chosen from phosphine ligands, BINOL, TADDOL, BOX, DuPhos, DiPAMP, BINAP, Tol-BINAP, T- BINAP, H8-BINAP, DM-BINAP, Xyl-BINAP, MeOBiphep, DIOP, PHOX, PyBox, SALENS, SEGPHOS, DM-SEGPHOS, DTBM-SEGPHOS, JOSIPHOS, MANDYPHOS, WALPHOS, TANIAPHOS, sPHOS, xPHOS, SPANphos, Triphos, Xantphos, and Chiraphos ligands.
- the at least one chiral ligand is a SEGPHOS ligand. In some embodiments, the at least one chiral ligand is a MANDYPHOS ligand. In some embodiments, the at least one chiral ligand is a MANDYPHOS SL-M004-1 available from, for example, Solvias. In some embodiments, the at least one chiral ligand is chosen from the following:
- the hydrogenation is carried out in the presence of at least one transition metal.
- the at least one transition metal is chosen from the platinum group metals.
- the at least one transition metal is chosen from rhodium, ruthenium, rhenium, and palladium.
- the at least one transition metal is ruthenium. In some embodiments, the at least one transition metal is rhodium. [0038] In some embodiments, hydrogenation is carried out in the presence of at least one catalyst chosen from: [Rh(nbd)Cl] 2 ; [Rh(COD) 2 OC(0)CF 3 ]; [Rh(COD)(Ligand A)BF 4 ; [Rh(COD)(Ligand B)BF 4 ; [Rh(COD)(Ligand C)BF 4 ; and [Rh(COD)(Ligand
- hydrogenation is carried out in the presence of [RuCl(p-cymene) ⁇ ( ? ) -segphos ⁇ ]Cl; [RuC ⁇ p-cymene)! ⁇ - binap ⁇ ]Cl; and/or [ 1 ⁇ 2Me 2 ][ ⁇ RuCl[fR segphos] ⁇ 2 ⁇ -Cl) 3 ].
- the hydrogenation is carried out in the presence of at least one catalyst prepared in situ with a metal precursor and a ligand.
- the at least one ligand is chosen from chiral ligands set forth above. In some embodiments, the at least one ligand is chosen from:
- At least one metal precursor is chosen from [Rh(nbd)Cl] 2 ;
- the hydrogenation is carried out at a temperature of 10 °C to 70 °C. In some embodiments, hydrogenation is carried out at a temperature of 30 °C to 50 °C. In some embodiments, hydrogenation is carried out at 45 °C. In some embodiments, hydrogenation is carried out at 30 °C.
- the disclosed process comprises reducing (S)- or (R)- 3,5,5-trimethyl-pyrrolidin-2-one to produce (S)- or (R)-2,2,4-trimethylpyrrolidine, respectively.
- the reduction is performed in the presence of at least one reducing agent.
- the at least one reducing agent is a hydride.
- the hydride is chosen from lithium aluminum hydride, lithium aluminum deuteride, sodium bis(2-methoxyethoxy)aluminumhydride, and borane. In some embodiments, 1-2 equivalents of hydride are added.
- the reducing agent is lithium aluminum hydride.
- the reduction is carried out at 40 °C to 100 °C. In some embodiments, the reduction is carried out at 40 °C to 80 °C. In some embodiments, the reduction is carried out at 50 °C to 70 °C. In some embodiments, the reduction is carried out at 68 °C.
- the reducing agent is hydrogen gas.
- the reduction is carried out in the presence of one or more catalysts and hydrogen gas. In some embodiments, the reduction is carried out in the presence of one or more metallic catalysts and hydrogen gas. In some embodiments, the reduction is carried out under a catalytic hydrogenation condition in the presence of one or more catalysts and hydrogen gas.
- the catalyst is chosen from Pt, Co, Sn, Rh, Re, and Pd. In some embodiments, the reduction is carried out in the presence of hydrogen gas and one or more catalysts chosen from Pt, Co, Sn, Rh, Re, and Pd.
- the reduction is carried out in the presence of hydrogen gas and one or more monometallic or bimetallic catalysts chosen from Pt, Pd, Pt-Re, Pt-Co, Pt-Sn, Pd-Re, and Rh-Re. Any suitable amounts of such catalysts can be used for the reduction. In some embodiments, 0.1 wt% - 5 wt% of such catalysts can be used. In some embodiments, such catalysts are used in one or more support materials selected from TiCh, S1O2, AI2O3 (e.g., theta-AhCb or gamma-AhCb), and zeolite.
- monometallic or bimetallic catalysts chosen from Pt, Pd, Pt-Re, Pt-Co, Pt-Sn, Pd-Re, and Rh-Re. Any suitable amounts of such catalysts can be used for the reduction. In some embodiments, 0.1 wt% - 5 wt% of such catalysts can be used. In some embodiments, such catalysts are used in
- the reduction is carried out in the presence of hydrogen gas and one or more monometallic or bimetallic catalysts chosen from Pt-Sn in T1O2 (or Pt-Sn/ T1O2), Pt-Re in T1O2 (or Pt-Re/ T1O2), Pt in T1O2 (or Pt/ T1O2), Rh in T1O2 (or Rh/ T1O2), Rh-Re in T1O2 (or Rh-Re/ T1O2), Pt-Sn in theta-Ah0 3 (or Pt-Sn/ theta-AhOs), Pt-Sn in S1O2 (or Pt-Sn/ S1O2), and Pt-Sn in T1O2 (or Pt-Sn/ T1O2).
- Pt-Sn in T1O2 or Pt-Sn/ T1O2
- Pt-Re in T1O2 or Pt-Re/ T1O2
- Pt in T1O2 or Pt
- the reduction is carried out in the presence of hydrogen gas and one or more monometallic or bimetallic catalysts chosen from 4wt%Pt-2 wt%Sn in T1O2 (or 4wt%Pt-2wt%Sn/Ti0 2 ), 4wt%Pt-2wt%Re in T1O2 (or 4wt%Pt-2wt%Re/Ti0 2 ), 4wt%Pt in T1O2 (or 4wt%Pt/Ti0 2 ), 4wt%Rh in T1O2 (or 4wt%Rh/Ti0 2 ), 4wt%Rh-2%Re in T1O2 (or 4wt%Rh-2wt%Re/Ti0 2 ), 4wt%Pt-2wt%Sn in theta-Al 2 0 3 (or 4wt%Pt-2wt%Sn/theta- AI2O3), 4wt%Pt-2wt%Sn in S1O
- the reducing agent is quenched after reaction. In some embodiments, the reducing agent is quenched by sodium sulfate. In some embodiments, the reducing agent is quenched by water and then 15 wt% KOH in water.
- the product from the reduction step with a hydride is further treated with acid to produce a salt.
- the acid is chosen from hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, oxalic acid, citric acid, a tartaric acid (e.g., L- or D- tartaric acid or dibenzoyl tartaric acid), a malic acid (e.g., L- or D-malic acid), a maleic acid (e.g., L- or D-maleic acid, 4-bromo-mandelic acid or 4-bromo-mandelic acid), a tartranilic acid (e.g., L- or D-tartranilic acid, (2,3)-2'-methoxy-tartranilic acid), a mandelic acid (e.g., L- or D-mandelic acid, 4-methyl-mandelic acid.
- hydrochloric acid e.g., hydrobromic acid, phosphoric acid, sulfuric acid, oxalic acid, citric acid, a tartaric acid (e.g., L- or D- tart
- O-acetyl mandelic acid or 2- chloromandelic acid a tartaric acid (e.g., L- or D-mandelic acid, di-p-toluoyltartaric acid, di-p-anisoyltartaric acid), acetic acid, alpha-methoxy-phenyl acetic acid, a lactic acid (e.g., L- or D-lactic acid, 3-phenyllactic acid), a phenylalanine (e.g., N-acetyl-phenylalanine, Boc-homophenylalanine, or Boc-phenylalanine), a glutamic acid (e.g., L- or D-glutamic acid or pyroglutamic acid), phencyphos hydrate, chlocyphos, camphor sulfonic acid, camphoric acid, anisyphos, 2-phenylpropionic acid, N-acetyl-leucine, BINAP phosphate,
- the reduction and acid treatment reactions are performed without isolation of the reduction product.
- (R)-3,5,5-trimethyl- pyrrolidin-2-one is reacted with a hydride and then with an acid to produce an (R)-2,2,4- trimethylpyrrolidine salt.
- (,S)-3,5,5-trimethyl-pyrrolidin-2-one is reacted with a hydride and then with an acid to produce an (,S)-2,2,4-trimethylpyrrolidine salt.
- the reduction step product (e.g. (S)- or (R)-2,2,4- trimethylpyrrolidine) is isolated before the acid treatment step.
- (S)- 2,2,4-trimethylpyrrolidine is treated with an acid to produce a salt of (S)-2,2,4- trimethylpyrrolidine.
- (R)-2,2,4-trimethylpyrrolidine is treated with an acid to produce a salt of (R)-2,2,4-trimethylpyrrolidine.
- Scheme 1 above the piperidone ring of Compound 2 is contracted and acid is added to promote formation of predominantly Compound 3.
- Compound 3 is hydrogenated in the presence of chiral ligands to produce Compound 4S in (S) configuration.
- the carbonyl group of Compound 4S is reduced to form Compound IS.
- the (S) configuration of Compound 4S is retained in Compound IS.
- Scheme 2 above the piperidone ring of Compound 2 is contracted and acid is added to promote formation of predominantly Compound 3.
- the olefin group of Compound 3 is hydrogenated in the presence of chiral ligands to produce Compound 4R in (R) configuration.
- the carbonyl group of Compound 4R is reduced to form Compound 1R.
- the (R) configuration of Compound 4R is retained in Compound 1R.
- Compound 2 is commercially available.
- contraction of piperidone ring of Compound 2 to yield pyrrolidine of Compound 3 is carried out in the presence of NaOH and tri-butyl methyl ammonium chloride.
- the reaction is further treated with hydrochloric acid to promote predominantly Compound 3.
- Compound 3 undergoes enantioselective hydrogenation in the presence of chiral ruthenium catalysts with phosphine ligands.
- Compound 4S or 4R is reduced with lithium aluminum hydride. In some embodiments, Compound 4S or 4R is reduced with lithium aluminum deuteride.
- structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms.
- Compounds IS, 1R, 3, 4S, and 4R, wherein one or more hydrogen atoms are replaced with deuterium or tritium, or one or more carbon atoms are replaced by a 13 C- or 14 C-enriched carbon are within the scope of this invention.
- Compounds IS, 1R, 3, 4S, and 4R, wherein one or more hydrogen atoms are replaced with deuterium are prepared by the methods described herein. Such compounds are useful, for example, as analytical tools, probes in biological assays, or compounds with improved therapeutic profile.
- a listing of exemplary embodiments includes:
- a process for preparing (,S)-2,2,4-trimethylpyrrolidine or a salt thereof comprising: (a) reacting 2,2,6,6-tetramethyl-piperidin-4-one or a salt thereof with chloroform and at least one base;
- phase transfer catalyst is chosen from tetraalkylammonium salts.
- phase transfer catalyst is chosen from tributylmethylammonium chloride, tributylmethylammonium bromide, tetrabutylammonium bromide (TBAB), tetrabutylammonium chloride (TBAC), tetrabutylammonium iodide (TBAI), tetrabutylammonium hydroxide (TBAH),
- benzyltrimethylammonium chloride tetraoctylammonium bromide (TAOB)
- TAOC tetraoctylammonium chloride
- TAOI tetraoctylammonium iodide
- trioctylmethylammonium chloride and trioctylmethylammonium bromide.
- a process for preparing 5,5-dimethyl-3-methylenepyrrolidin-2-one comprising:
- phase transfer catalyst in the reaction in (a) is chosen from tributylmethylammonium chloride, tributylmethylammonium bromide, tetrabutylammonium bromide (TBAB),
- TBAC tetrabutylammonium chloride
- TBAI tetrabutylammonium iodide
- TBAH tetrabutylammonium hydroxide
- TOAB tetraoctylammonium bromide
- TO AC tetraoctyl ammonium chloride
- TOAI tetraoctylammonium iodide
- trioctylmethylammonium chloride and trioctylmethylammonium bromide.
- protic acids are chosen from hydrochloric acid, methane sulfonic acid, triflic acid, and sulfuric acid.
- phase transfer catalyst is chosen from tributylmethylammonium chloride, tributylmethylammonium bromide, tetrabutylammonium bromide (TBAB), tetrabutylammonium chloride (TBAC), tetrabutylammonium iodide (TBAI), tetrabutylammonium hydroxide (TBAH), benzyltrimethylammonium chloride, tetraoctylammonium bromide (TOAB),
- TO AC tetraoctylammonium chloride
- TOAI tetraoctylammonium iodide
- trioctylmethylammonium chloride and trioctylmethylammonium bromide.
- protic acids are chosen from hydrochloric acid, methane sulfonic acid, triflic acid, and sulfuric acid.
- phase transfer catalyst in the reaction in (a) is chosen from tributylmethylammonium chloride, tributylmethylammonium bromide, tetrabutylammonium bromide (TBAB),
- TBAC tetrabutylammonium chloride
- TBAI tetrabutylammonium iodide
- TBAH tetrabutylammonium hydroxide
- benzyltrimethylammonium chloride tetrabutylammonium hydroxide
- TOAB tetraoctylammonium bromide
- TO AC tetraoctyl ammonium chloride
- TOAI tetraoctylammonium iodide
- trioctylmethylammonium chloride and
- protic acids are chosen from hydrochloric acid, methane sulfonic acid, triflic acid, and sulfuric acid.
- phase transfer catalyst in the reaction in (a) is chosen from tributylmethylammonium chloride, tributylmethylammonium bromide, tetrabutylammonium bromide (TBAB),
- TBAC tetrabutylammonium chloride
- TBAI tetrabutylammonium iodide
- TBAH tetrabutylammonium hydroxide
- benzyltrimethylammonium chloride tetrabutylammonium hydroxide
- TOAB tetraoctylammonium bromide
- TO AC tetraoctyl ammonium chloride
- TOAI tetraoctylammonium iodide
- trioctylmethylammonium chloride and
- protic acids are chosen from hydrochloric acid, methane sulfonic acid, triflic acid, and sulfuric acid.
- the at least one solvent is chosen from dichloromethane, heptane, chloroform, trifluorotoluene, tetrahydrofuran (THF), and N-methylpyrrolidone (NMP).
- the reaction mixture was stirred at 300 rpm, and 50 wt% NaOH (195.81 g, 133.2 mL, 2,447.863 mmol, 8.000 equiv) was added dropwise (via addition funnel) over 1.5 h while maintaining the temperature below 25 °C with intermittent ice/acetone bath.
- the reaction mixture was stirred at 500 rpm for 18 h, and monitored by GC (3% unreacted piperidinone after 18 h).
- the suspension was diluted with DCM (100.0 mL, 2.00 vol) and H2O (300.0 mL, 6.00 vol), and the phases were separated.
- the aqueous phase was extracted with DCM (100.0 mL, 2.00 vol).
- the organic phases were combined and 3 M hydrochloric acid (16.73 g, 153.0 mL, 458.974 mmol, 1.500 equiv) was added. The mixture was stirred at 500 rpm for 2 h. The conversion was complete after approximately 1 h.
- the aqueous phase was saturated with NaCl, H2O (100.0 mL, 2.00 vol) was added to help reduce the emulsion, and the phases were separated.
- the aqueous phase was extracted with DCM (100.0 mL, 2.00 vol) twice. H2O (100.0 mL, 2.00 vol) was added to help with emulsion separation.
- the organic phases were combined, dried (MgS0 4 ), and
- the suspension was diluted with DCM (683.3 kg) and water (1544.4 kg).
- the organic phase was separated.
- the aqueous phase was extracted with DCM (683.3 kg).
- the organic phases were combined, cooled to 10°C and then 3 M hydrochloric acid (867.8 kg, 2559.0 mol, 1.5 eq.) was added.
- the mixture was stirred at 10-15 °C for 2 h.
- the organic phase was separated.
- the aqueous phase was extracted with DCM (683.3 kg x 2).
- the organic phases were combined, dried over Na 2 S04 (145.0 kg) for 6 h.
- the solid was filtered off and washed with DCM (120.0 kg).
- the filtrate was stirred with active charcoal (55 kg) for 6 h.
- Step 1 Preparation of Rh Catalyst Formation: In a 3 L Schlenk flask, 1.0 L of tetrahydrofuran (THF) was degassed with an argon stream. Mandyphos Ligand SL- M004-1 (1.89 g) and [Rh(nbd)Cl] 2 (98%, 0.35 g) (chloronorbornadiene rhodium(I) dimer) were added. The resulting orange catalyst solution was stirred for 30 min at room temperature to form a catalyst solution.
- THF tetrahydrofuran
- Step 2 A 50 L stainless steel autoclave was charged with 5,5-dimethyl-3- ⁇ methylenepyrrolidin-2-one (6.0 kg, Compound (3)) and THF (29 L). The autoclave was sealed and the resulting suspension was flushed with nitrogen (3 cycles at 10 bar), and then released of pressure. Next the catalyst solution from Step 1 was added. The autoclave was flushed with nitrogen without stirring (3 cycles at 5 bar) and hydrogen (3 cycles at 5 bar). The pressure was set to 5 bar and a 50 L reservoir was connected. After 1.5 h with stirring at 1000 rpm and no hydrogen uptake the reactor was flushed again with nitrogen (3 cycles at 10 bar) with stirring and additional catalyst solution was added.
- the autoclave was again flushed to hydrogen with the above described procedure (3 x 5 bar N2, 3 x 5 bar H2) and adjusted to 5 bar. After 2 h, the pressure was released, the autoclave was flushed with nitrogen (3 cycles at 5 bar) and the product solution was discharged into a 60 L inline barrel. The autoclave was charged again with THF (5 L) and stirred with 1200 rpm for 5 min. The wash solution was added to the reaction mixture.
- Step 3 The combined solutions were transferred into a 60 L reactor.
- the inline barrel was washed with 1 L THF which was also added into the reactor.
- 20 L THF were removed by evaporation at 170 mbar and 40°C.
- 15 L heptane were added.
- the distillation was continued and the removed solvent was continuously replaced by heptane until the THF content in the residue was 1% w/w (determined by NMR).
- the reaction mixture was heated to 89°C (turbid solution) and slowly cooled down again (ramp: 14°C/h). Several heating and cooling cycles around 55 to 65°C were made.
- Example 2A and 2B Analytical chiral HPLC method for the determination of the conversion, chemoselectivity and enantiomeric excess of the products form Example 2A and 2B was made under the following conditions: Instrument: Agilent Chemstation 1100; Column: Phenomenex Lux 5u Cellulose— 2, 4.6 mm x 250 mm x 5 um, LHS6247; Solvent:
- the reaction mixture was cooled to 30° C then saturated sodium sulfate solution (20.9 ml) was added dropwise over 30 minutes, keeping the temperature below 40° C. Vigorous evolution of hydrogen was observed and the reaction mixture thickened but remained mixable. The mixture thinned towards the end of the addition.
- the mixture was cooled to 20° C, diluted with iPrOAc (100 ml) and stirred for an additional 10 minutes. The suspension was then drained and collected through the lower outlet valve, washing through with additional iPrOAc (50 ml). The collected suspension was filtered through a Celite pad on a sintered glass funnel under suction and washed with iPrOAc (2x50 ml).
- reaction mixture was cooled to 22 °C and sampled to check for completion, then cautiously quenched with the addition of EtOAc (1.0 L, 10 moles, 0.16 eq) followed by a mixture of THF (3.4 L) and water (2.5 kg, 2.0 eq) then followed by a mixture of water (1.75 kg) with 50 % aqueous sodium hydroxide (750 g, 2 eq water with 1.4 eq sodium hydroxide relative to aluminum), followed by 7.5 L water (6 eq "Fieser” quench). After the addition was completed, the reaction mixture was cooled to room temperature, and the solid was removed by filtration and washed with THF (3 x 25 L).
- the filtrate and washings were combined and treated with 5.0 L (58 moles) of aqueous 37% HC1 (1.05 equiv.) while maintaining the temperature below 30°C.
- the resultant solution was concentrated by vacuum distillation to a slurry in two equal part lots on the 20 L Buchi evaporator.
- Isopropanol (8 L) was charged and the solution reconcentrated to near dryness by vacuum distillation.
- Isopropanol (4 L) was added and the product slurried by warming to about 50 °C. Distillation from Isopropanol continued until water content by KF is ⁇ 0.1 %.
- Methyl tertbutyl ether (6 L) was added and the slurry cooled to 2-5 °C.
- reaction mixture was cooled to below 40 °C and cautiously quenched with drop-wise addition of a saturated aqueous solution of Na 2 S0 4 (209 mL) over 2 h. After the addition was completed, the reaction mixture was cooled to ambient temperature, diluted with /-PrOAc (1 L), and mixed thoroughly. The solid was removed by filtration (Celite pad) and washed with / ' -PrOAc (2 x 500 mL). With external cooling and N 2 blanket, the filtrate and washings were combined and treated with drop- wise addition of anhydrous 4 M HC1 in dioxane (492 mL; 2.95 mol; 1 equiv.) while maintaining the temperature below 20 °C.
- a reactor was charged with lithium aluminum hydride (LAH) (1.20 equiv.) and 2-MeTHF (2-methyltetrahydrofuran) (4.0 vol), and heated to internal temperature of 60 °C while stirring to disperse the LAH.
- LAH lithium aluminum hydride
- 2-MeTHF 2-methyltetrahydrofuran
- a solution of (3 ⁇ 4 ) -3,5,5-trimethylpyrrolidin-2-one (1.0 equiv) in 2-MeTHF (6.0 vol) was prepared and stirred at 25 °C to fully dissolve the (S)-
- the resulting slurry was cooled to -10 °C (-15 to -5°C) linearly over no less than 12 h.
- the slurry was stirred at -10 °C for no less than 2 h.
- the solids were isolated via filtration or centrifugation and were washed with a solution of 2-MeTHF (2.25 vol) and IPA (isopropanol) (0.75 vol).
- the solids were dried under vacuum at 45 ⁇ 5 °C for not less than 6 h to yield (,S)-2,2,4-trimethylpyrrolidine hydrochloride ((1S) » HC1).
- the reaction mixture was stirred until completion and assessed by GC analysis.
- the reaction mixture was diluted with DCM (2.0 mL, 4.0v) and H2O (3.0 mL, 6.0v).
- the phases were separated and the aqueous phase was extracted with DCM (1.0 mL, 2.0v).
- the organic phases were combined and 2 M hydrochloric acid (0.17 g, 2.3 mL, 4.59 mmol, 1.5 eq.) was added.
- the reaction mixture was stirred until completion, assessed by HPLC.
- the aqueous phase was saturated with NaCl and the phases were separated.
- the reaction mixture was stirred until completion and assessed by GC analysis.
- the reaction mixture was diluted with DCM (2.0 mL, 4.0v) and H2O (3.0 mL, 6.0v).
- the phases were separated and the aqueous phase is extracted with DCM (1.0 mL, 2.0v).
- the organic phases were combined and 2 M hydrochloric acid (0.17 g, 2.3 mL, 4.59 mmol, 1.5 eq.) was added.
- the reaction mixture was stirred until completion, assessed by HPLC.
- the aqueous phase was saturated with NaCl and the phases were separated.
- the aqueous phase was extracted with DCM (1.0 mL,
- Tetrabutylammonium hydroxide (0.01 eq.), TBAB (0.01 eq.), Tributylmethylammonium chloride (0.01 eq.), Tetrabutylammonium hydroxide (0.02 eq.), TBAB (0.02 eq.), Tributylmethylammonium chloride (0.02 eq.), Tetrabutylammonium hydroxide (0.03 eq.), TBAB (0.03 eq.), Tributylmethylammonium chloride (0.03 eq.).
- the reaction mixture was diluted with DCM (2.0 mL, 4.0v) and H 2 0 (3.0 mL, 6.0v). The phases were separated and the aqueous phase was extracted with DCM (1.0 mL, 2.0v). The organic phases were combined and 2 M hydrochloric acid (0.17 g, 2.3 mL, 4.59 mmol, 1.5 eq.) was added. The reaction mixture was stirred until completion, assessed by HPLC. The aqueous phase was saturated with NaCl and the phases were separated. The aqueous phase was extracted with DCM (1.0 mL, 2.0v) twice, the organic phases were combined, and 50 mg of biphenyl in 2 mL of MeCN was added as an internal HPLC standard. Solution yield was assessed by HPLC. The reaction results are summarized in the following table:
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Pyrrole Compounds (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Hydrogenated Pyridines (AREA)
Priority Applications (11)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP18755654.3A EP3661915B1 (en) | 2017-08-02 | 2018-08-02 | Processes for preparing pyrrolidine compounds |
| NZ761391A NZ761391B2 (en) | 2018-08-02 | Processes for preparing pyrrolidine compounds | |
| CA3071278A CA3071278A1 (en) | 2017-08-02 | 2018-08-02 | Processes for preparing pyrrolidine compounds |
| JP2020505238A JP7121794B2 (ja) | 2017-08-02 | 2018-08-02 | ピロリジン化合物を調製するためのプロセス |
| MX2020001302A MX393460B (es) | 2017-08-02 | 2018-08-02 | Procesos para preparar compuestos de pirrolidina |
| CN201880056538.0A CN111051280B (zh) | 2017-08-02 | 2018-08-02 | 制备吡咯烷化合物的方法 |
| US16/635,346 US11434201B2 (en) | 2017-08-02 | 2018-08-02 | Processes for preparing pyrrolidine compounds |
| ES18755654T ES2912657T3 (es) | 2017-08-02 | 2018-08-02 | Procesos para preparar compuestos de pirrolidina |
| AU2018309043A AU2018309043B2 (en) | 2017-08-02 | 2018-08-02 | Processes for preparing pyrrolidine compounds |
| KR1020207005613A KR102606188B1 (ko) | 2017-08-02 | 2018-08-02 | 피롤리딘 화합물을 제조하기 위한 공정 |
| IL272384A IL272384B (en) | 2017-08-02 | 2020-01-30 | A process for the preparation of pyrrolidine compounds |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201762540395P | 2017-08-02 | 2017-08-02 | |
| US62/540,395 | 2017-08-02 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2019028228A1 true WO2019028228A1 (en) | 2019-02-07 |
Family
ID=63209720
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2018/044963 Ceased WO2019028228A1 (en) | 2017-08-02 | 2018-08-02 | PROCESSES FOR THE PREPARATION OF PYRROLIDINE COMPOUNDS |
Country Status (14)
| Country | Link |
|---|---|
| US (1) | US11434201B2 (enExample) |
| EP (1) | EP3661915B1 (enExample) |
| JP (1) | JP7121794B2 (enExample) |
| KR (1) | KR102606188B1 (enExample) |
| CN (1) | CN111051280B (enExample) |
| AR (1) | AR112467A1 (enExample) |
| AU (1) | AU2018309043B2 (enExample) |
| CA (1) | CA3071278A1 (enExample) |
| ES (1) | ES2912657T3 (enExample) |
| IL (1) | IL272384B (enExample) |
| MA (1) | MA49752A (enExample) |
| MX (1) | MX393460B (enExample) |
| TW (1) | TWI799435B (enExample) |
| WO (1) | WO2019028228A1 (enExample) |
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10758534B2 (en) | 2014-10-06 | 2020-09-01 | Vertex Pharmaceuticals Incorporated | Modulators of cystic fibrosis transmembrane conductance regulator |
| US10793547B2 (en) | 2016-12-09 | 2020-10-06 | Vertex Pharmaceuticals Incorporated | Modulator of the cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator |
| US11066417B2 (en) | 2018-02-15 | 2021-07-20 | Vertex Pharmaceuticals Incorporated | Modulators of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulators |
| US11155533B2 (en) | 2017-10-19 | 2021-10-26 | Vertex Pharmaceuticals Incorporated | Crystalline forms and compositions of CFTR modulators |
| US11179367B2 (en) | 2018-02-05 | 2021-11-23 | Vertex Pharmaceuticals Incorporated | Pharmaceutical compositions for treating cystic fibrosis |
| US11186566B2 (en) | 2016-09-30 | 2021-11-30 | Vertex Pharmaceuticals Incorporated | Modulator of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator |
| US11253509B2 (en) | 2017-06-08 | 2022-02-22 | Vertex Pharmaceuticals Incorporated | Methods of treatment for cystic fibrosis |
| US11414439B2 (en) | 2018-04-13 | 2022-08-16 | Vertex Pharmaceuticals Incorporated | Modulators of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator |
| US11434201B2 (en) | 2017-08-02 | 2022-09-06 | Vertex Pharmaceuticals Incorporated | Processes for preparing pyrrolidine compounds |
| US11465985B2 (en) | 2017-12-08 | 2022-10-11 | Vertex Pharmaceuticals Incorporated | Processes for making modulators of cystic fibrosis transmembrane conductance regulator |
| US11517564B2 (en) | 2017-07-17 | 2022-12-06 | Vertex Pharmaceuticals Incorporated | Methods of treatment for cystic fibrosis |
| US11584761B2 (en) | 2019-08-14 | 2023-02-21 | Vertex Pharmaceuticals Incorporated | Process of making CFTR modulators |
| US11591350B2 (en) | 2019-08-14 | 2023-02-28 | Vertex Pharmaceuticals Incorporated | Modulators of cystic fibrosis transmembrane conductance regulator |
| US11873300B2 (en) | 2019-08-14 | 2024-01-16 | Vertex Pharmaceuticals Incorporated | Crystalline forms of CFTR modulators |
| US12186306B2 (en) | 2020-12-10 | 2025-01-07 | Vertex Pharmaceuticals Incorporated | Methods of treatment for cystic fibrosis |
| US12269831B2 (en) | 2020-08-07 | 2025-04-08 | Vertex Pharmaceuticals Incorporated | Modulators of cystic fibrosis transmembrane conductance regulator |
| US12324802B2 (en) | 2020-11-18 | 2025-06-10 | Vertex Pharmaceuticals Incorporated | Modulators of cystic fibrosis transmembrane conductance regulator |
| US12421251B2 (en) | 2019-04-03 | 2025-09-23 | Vertex Pharmaceuticals Incorporated | Cystic fibrosis transmembrane conductance regulator modulating agents |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150045556A1 (en) | 2011-07-18 | 2015-02-12 | Roland E. Dolle | Processes for the preparation of peripheral opioid antagonist compounds and intermediates thereto |
| WO2016057572A1 (en) | 2014-10-06 | 2016-04-14 | Mark Thomas Miller | Modulators of cystic fibrosis transmembrane conductance regulator |
| WO2018064632A1 (en) | 2016-09-30 | 2018-04-05 | Vertex Pharmaceuticals Incorporated | Modulator of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator |
| WO2018107100A1 (en) | 2016-12-09 | 2018-06-14 | Vertex Pharmaceuticals Incorporated | Modulator of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator |
Family Cites Families (209)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB967177A (en) * | 1959-10-13 | 1964-08-19 | Rohm & Haas | A method for preparing pyrrolidinones and piperidinones |
| EP0194599A3 (en) | 1985-03-14 | 1988-01-20 | Nissan Chemical Industries Ltd. | Benzamide derivatives, process for producing the same, and soil fungicides containing the same |
| GB9122590D0 (en) | 1991-10-24 | 1991-12-04 | Lilly Industries Ltd | Pharmaceutical compounds |
| DE4410453A1 (de) | 1994-03-25 | 1995-09-28 | Hoechst Ag | Substituierte heterocyclische Carbonsäureamidester, ihre Herstellung und ihre Verwendung als Arzneimittel |
| GB9514160D0 (en) | 1994-07-25 | 1995-09-13 | Zeneca Ltd | Aromatic compounds |
| WO1996022022A1 (en) | 1995-01-19 | 1996-07-25 | Novartis Ag | Herbicidal composition |
| EP0863708A1 (en) | 1995-11-23 | 1998-09-16 | Novartis AG | Herbicidal composition |
| AU707574B2 (en) | 1995-12-15 | 1999-07-15 | Merck Frosst Canada & Co. | Tri-aryl ethane derivatives as PDE IV inhibitors |
| JPH10114654A (ja) | 1996-10-09 | 1998-05-06 | Fujisawa Pharmaceut Co Ltd | 新規用途 |
| WO1998031226A1 (de) | 1997-01-15 | 1998-07-23 | Novartis Ag | Herbizides mittel |
| GB9716657D0 (en) | 1997-08-07 | 1997-10-15 | Zeneca Ltd | Chemical compounds |
| DE19742951A1 (de) | 1997-09-29 | 1999-04-15 | Hoechst Schering Agrevo Gmbh | Acylsulfamoylbenzoesäureamide, diese enthaltende nutzpflanzenschützende Mittel und Verfahren zu ihrer Herstellung |
| DE19802697A1 (de) | 1998-01-24 | 1999-07-29 | Bayer Ag | Selektive Herbizide auf Basis von N-Aryl-triazolin(thi)onen und N-Arylsulfonylamino(thio)carbonyltriazolin(thi)onen |
| CA2320217C (en) | 1998-02-13 | 2005-01-11 | Kureha Kagaku Kogyo Kabushiki Kaisha | N-(phenylsulfonyl) picolinamide derivatives, process for producing the same, and herbicide |
| BR9909440A (pt) | 1998-04-06 | 2000-12-26 | Fujisawa Pharmaceutical Co | Derivados de indol |
| YU86801A (sh) | 1999-06-10 | 2004-07-15 | Warner-Lambert Company | Izoindol derivati korisni u inhibiciji agregacije amiloidnih proteina i snimanju amiloidnih naslaga |
| DE19936438A1 (de) | 1999-08-03 | 2001-02-08 | Aventis Cropscience Gmbh | Kombinationen von Herbiziden und Safenern |
| DE19940860A1 (de) | 1999-08-27 | 2001-03-01 | Bayer Ag | Selektive Herbizide auf Basis eines substituierten Phenylsulfonyl aminocarbonyltriazolinons und Safenern II |
| DE19958381A1 (de) | 1999-12-03 | 2001-06-07 | Bayer Ag | Herbizide auf Basis von N-Aryl-uracilen |
| AU2001286557A1 (en) | 2000-08-23 | 2002-03-04 | Merck Frosst Canada And Co. | Method of treating or preventing urinary incontinence using prostanoid ep1 receptor antagonists |
| UY26942A1 (es) | 2000-09-20 | 2002-04-26 | Abbott Lab | N-acilsulfonamidas promotoras de la apoptosis |
| US20020055631A1 (en) | 2000-09-20 | 2002-05-09 | Augeri David J. | N-acylsulfonamide apoptosis promoters |
| US6720338B2 (en) | 2000-09-20 | 2004-04-13 | Abbott Laboratories | N-acylsulfonamide apoptosis promoters |
| US6787651B2 (en) | 2000-10-10 | 2004-09-07 | Smithkline Beecham Corporation | Substituted indoles, pharmaceutical compounds containing such indoles and their use as PPAR-γ binding agents |
| DE10119721A1 (de) | 2001-04-21 | 2002-10-31 | Bayer Cropscience Gmbh | Herbizide Mittel enthaltend Benzoylcyclohexandione und Safener |
| CN1529697B (zh) | 2001-05-31 | 2010-09-22 | 维科尔药物公司 | 用作血管紧张素ⅱ激动剂的三环化合物 |
| RS50712B (sr) | 2001-06-28 | 2010-06-30 | Pfizer Products Inc. | Triamid-supstituisani indoli, benzofurani i benzotiofeni kao inhibitori mikrozomalnog triglicerid transfer proteina (mtp) i/ili sekrecije apolipoproteina b (apo b) |
| DE10145019A1 (de) | 2001-09-13 | 2003-04-03 | Bayer Cropscience Gmbh | Kombinationen aus Herbiziden und Safenern |
| DE10146873A1 (de) | 2001-09-24 | 2003-04-17 | Bayer Cropscience Gmbh | Heterocyclische Amide und -Iminderivate, Verfahren zu ihrer Herstellung, sie enthaltende Mittel und ihre Verwendung als Schädlingsbekämpfungsmittel |
| JPWO2003043655A1 (ja) | 2001-11-19 | 2005-03-10 | 小野薬品工業株式会社 | 頻尿の治療剤 |
| DE10157545A1 (de) | 2001-11-23 | 2003-06-12 | Bayer Cropscience Gmbh | Herbizide Mittel enthaltend Benzoylpyrazole und Safener |
| AU2003220558A1 (en) | 2002-03-27 | 2004-06-03 | Smithkline Beecham Corporation | Amide compounds and methods of using the same |
| GB0212785D0 (en) | 2002-05-31 | 2002-07-10 | Glaxo Group Ltd | Compounds |
| UA80971C2 (en) | 2002-06-08 | 2007-11-26 | Herbicide-safener combination, method for protecting crops and method for selective weed control, use of compounds | |
| DE10237461A1 (de) | 2002-08-16 | 2004-02-26 | Bayer Cropscience Gmbh | Herbizide Mittel enthaltend Benzoylpyrazole und Safener |
| US20060019932A1 (en) | 2002-09-06 | 2006-01-26 | Mancini Joseph A | Treatment of rheumatoid arthritis by inhibition of pde4 |
| WO2004037798A1 (en) | 2002-10-22 | 2004-05-06 | Merck Frosst Canada & Co. | Nitric oxide releasing selective cyclooxygenase-2 inhibitors |
| GB0225548D0 (en) | 2002-11-01 | 2002-12-11 | Glaxo Group Ltd | Compounds |
| AU2003302106A1 (en) | 2002-11-21 | 2004-06-15 | Vicore Pharma Ab | New tricyclic angiotensin ii agonists |
| AU2003286347A1 (en) | 2002-12-20 | 2004-07-14 | Pfizer Products Inc. | Microsomal triglyceride transfer protein inhibitors |
| CA2505604A1 (en) | 2002-12-20 | 2004-07-08 | Pfizer Products Inc. | Microsomal triglyceride transfer protein inhibitors |
| WO2004078114A2 (en) | 2003-02-28 | 2004-09-16 | Encysive Pharmaceuticals Inc. | Pyridine, pyrimidine, quinoline, quinazoline, and naphthalene urotensin-ii receptor antagonists. |
| AU2003219291A1 (en) | 2003-03-24 | 2004-10-18 | Vicore Pharma Ab | Bicyclic compounds useful as angiotensin ii agonists |
| ATE440825T1 (de) | 2003-06-06 | 2009-09-15 | Vertex Pharma | Pyrimidin-derivate zur verwendung als modulatoren von atp-bindende kassette transportern |
| JP4869072B2 (ja) | 2003-11-14 | 2012-02-01 | バーテックス ファーマシューティカルズ インコーポレイテッド | Atp結合カセットトランスポーターのモジュレーターとして有用なチアゾールおよびオキサゾール |
| GB0328024D0 (en) | 2003-12-03 | 2004-01-07 | Glaxo Group Ltd | Compounds |
| AU2005207037A1 (en) | 2004-01-22 | 2005-08-04 | Nitromed, Inc. | Nitrosated and/or nitrosylated compounds, compositions and methods of use |
| US7977322B2 (en) | 2004-08-20 | 2011-07-12 | Vertex Pharmaceuticals Incorporated | Modulators of ATP-binding cassette transporters |
| ES2631362T3 (es) | 2004-01-30 | 2017-08-30 | Vertex Pharmaceuticals Incorporated | Moduladores de transportadores de casete de unión a ATP |
| WO2005080373A1 (en) | 2004-02-04 | 2005-09-01 | Pfizer Products Inc. | Substituted quinoline compounds |
| WO2005082414A2 (en) | 2004-03-02 | 2005-09-09 | Astellas Pharma Inc. | Concomitant drugs of a sulfonamide and another therapeutic agent |
| JP4883296B2 (ja) | 2004-03-05 | 2012-02-22 | 日産化学工業株式会社 | イソキサゾリン置換ベンズアミド化合物及び有害生物防除剤 |
| WO2005099705A2 (en) | 2004-03-24 | 2005-10-27 | Bayer Pharmaceuticals Corporation | Preparation of imidazole derivatives and methods of use |
| GB0410121D0 (en) | 2004-05-06 | 2004-06-09 | Glaxo Group Ltd | Compounds |
| NZ587549A (en) | 2004-06-24 | 2012-10-26 | Vertex Pharma | 6-Amino-indole derivatives and processes for their preparation |
| US8354427B2 (en) | 2004-06-24 | 2013-01-15 | Vertex Pharmaceutical Incorporated | Modulators of ATP-binding cassette transporters |
| WO2006030807A1 (ja) | 2004-09-15 | 2006-03-23 | Shionogi & Co., Ltd. | Hivインテグラーゼ阻害活性を有するカルバモイルピリドン誘導体 |
| AU2005292314B2 (en) | 2004-09-29 | 2011-11-03 | Portola Pharmaceuticals, Inc. | Substituted 2H-1,3-benzoxazin-4(3H)-ones |
| WO2006065204A1 (en) | 2004-12-14 | 2006-06-22 | Astrazeneca Ab | Substituted aminopyridines and uses thereof |
| AU2005318372A1 (en) | 2004-12-23 | 2006-06-29 | Glaxo Group Limited | Pyridine compounds for the treatment of prostaglandin mediated diseases |
| GB0428173D0 (en) | 2004-12-23 | 2005-01-26 | Astrazeneca Ab | Compounds |
| ATE533749T1 (de) | 2005-05-24 | 2011-12-15 | Vertex Pharma | Modulatoren von atp-bindenden kassettentransportern |
| US20070032488A1 (en) | 2005-08-05 | 2007-02-08 | Genelabs Technologies, Inc. | 6-Membered aryl and heteroaryl derivatives for treating viruses |
| EP1912983B1 (en) | 2005-08-11 | 2011-06-08 | Vertex Pharmaceuticals, Inc. | Modulators of cystic fibrosis transmembrane conductance regulator |
| WO2007053641A2 (en) | 2005-11-01 | 2007-05-10 | Mars, Incorporated | A-type procyanidins and inflammation |
| EP1974212A1 (en) | 2005-12-27 | 2008-10-01 | Vertex Pharmaceuticals Incorporated | Compounds useful in cftr assays and methods therewith |
| CA2856037C (en) | 2005-12-28 | 2017-03-07 | Vertex Pharmaceuticals Incorporated | Modulators of atp-binding cassette transporters |
| CA2635581C (en) | 2005-12-28 | 2017-02-28 | Vertex Pharmaceuticals Incorporated | Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide |
| US7671221B2 (en) | 2005-12-28 | 2010-03-02 | Vertex Pharmaceuticals Incorporated | Modulators of ATP-Binding Cassette transporters |
| WO2007113327A2 (en) | 2006-04-05 | 2007-10-11 | Bayer Cropscience Sa | Fungicide n-cyclopropyl-sulfonylamide derivatives |
| PL2674428T3 (pl) | 2006-04-07 | 2017-01-31 | Vertex Pharmaceuticals Incorporated | Modulatory transporterów z kasetą wiążącą ATP |
| JP2009536969A (ja) | 2006-05-12 | 2009-10-22 | バーテックス ファーマシューティカルズ インコーポレイテッド | N−[2,4−ビス(1,1−ジメチルエチル)−5−ヒドロキシフェニル]−1,4−ジヒドロ−4−オキソキノリン−3−カルボキサミド組成物 |
| EP2038272B8 (en) | 2006-06-30 | 2013-10-23 | Sunesis Pharmaceuticals, Inc. | Pyridinonyl pdk1 inhibitors |
| RU2009120976A (ru) | 2006-11-03 | 2010-12-10 | Вертекс Фармасьютикалз Инкорпорейтед (Us) | Производные азаиндола в качестве модуляторов cftr |
| US7754739B2 (en) | 2007-05-09 | 2010-07-13 | Vertex Pharmaceuticals Incorporated | Modulators of CFTR |
| MX2009008439A (es) | 2007-02-12 | 2009-08-13 | Intermune Inc | Nuevos inhibidores de la replicacion del virus de hepatitis c. |
| WO2008141385A1 (en) | 2007-05-21 | 2008-11-27 | Biota Scientific Management Pty Ltd | Viral polymerase inhibitors |
| US8058299B2 (en) | 2007-05-22 | 2011-11-15 | Via Pharmaceuticals, Inc. | Diacylglycerol acyltransferase inhibitors |
| JP5440984B2 (ja) | 2007-05-25 | 2014-03-12 | アムジエン・インコーポレーテツド | β−セクレターゼ修飾剤としての置換ヒドロキシエチルアミン化合物および使用方法 |
| GB0716532D0 (en) | 2007-08-24 | 2007-10-03 | Angeletti P Ist Richerche Bio | Therapeutic compounds |
| AR068107A1 (es) | 2007-08-29 | 2009-11-04 | Schering Corp | Derivados indolicos 2,3 sustituidos y una composicion farmaceutica |
| MX2010002974A (es) | 2007-09-14 | 2010-07-29 | Vertex Pharma | Formas solidas de n-[2,4-bis(1,1-dimetiletil)-5-hidroxifenil]-1,4- dihidro-4-oxoquinolin-3-carboxamida. |
| AU2013231151B2 (en) | 2007-11-16 | 2015-06-25 | Vertex Pharmaceuticals Incorporated | Isoquinoline modulators of ATP-Binding Cassette transporters |
| US8765757B2 (en) | 2007-11-16 | 2014-07-01 | Merck Sharp & Dohme Corp. | 3-heterocyclic substituted indole derivatives and methods of use thereof |
| GB0723794D0 (en) | 2007-12-05 | 2008-01-16 | Lectus Therapeutics Ltd | Potassium ion channel modulators and uses thereof |
| DK2639223T3 (en) | 2007-12-07 | 2017-06-19 | Vertex Pharma | Process for Preparation of Cycloalkylcarboxiamido-pyridine Benzoic Acids |
| HRP20170241T2 (hr) | 2007-12-07 | 2023-03-17 | Vertex Pharmaceuticals Incorporated | Čvrsti oblici 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioksol-5-il)ciklopropankarboksamido)-3-metilpiridin-2-il)benzojeve kiseline |
| AU2013270464B2 (en) | 2008-03-31 | 2016-05-26 | Vertex Pharmaceuticals Incorporated | Pyridyl derivatives as CFTR modulators |
| US20110071197A1 (en) | 2008-04-16 | 2011-03-24 | Peter Nilsson | Bis-aryl compounds for use as medicaments |
| US20110112193A1 (en) | 2008-05-14 | 2011-05-12 | Peter Nilsson | Bis-aryl compounds for use as medicaments |
| EP2145537A1 (en) | 2008-07-09 | 2010-01-20 | Bayer CropScience AG | Plant growth regulator |
| UY31982A (es) | 2008-07-16 | 2010-02-26 | Boehringer Ingelheim Int | Derivados de 1,2-dihidropiridin-3-carboxamidas n-sustituidas |
| US20100074949A1 (en) | 2008-08-13 | 2010-03-25 | William Rowe | Pharmaceutical composition and administration thereof |
| ES2660143T3 (es) | 2008-08-13 | 2018-03-21 | Vertex Pharmaceuticals Incorporated | Composición farmacéutica de N-[2,4-Bis(1,1-dimetiletilo)-5-hidroxifenilo]-1,4-dihidro-4-oxoquinolina-3carboxamida y administración de la misma |
| EP2326178A4 (en) | 2008-08-21 | 2012-10-24 | Glaxosmithkline Llc | INHIBITORS OF PROLYL-HYDROXYLASE |
| EP2321303B1 (en) | 2008-08-27 | 2019-11-27 | Calcimedica, Inc. | Compounds that modulate intracellular calcium |
| BRPI0823228B8 (pt) | 2008-11-06 | 2021-05-25 | Vertex Pharmaceuticals Incorporarted | moduladores de cassete de ligação a atp |
| UA104876C2 (uk) | 2008-11-06 | 2014-03-25 | Вертекс Фармасьютікалз Інкорпорейтед | Модулятори atф-зв'язувальних касетних транспортерів |
| UA108193C2 (uk) | 2008-12-04 | 2015-04-10 | Апоптозіндукуючий засіб для лікування раку і імунних і аутоімунних захворювань | |
| US20100160322A1 (en) | 2008-12-04 | 2010-06-24 | Abbott Laboratories | Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases |
| ES2536090T3 (es) | 2009-01-19 | 2015-05-20 | Abbvie Inc. | Agentes inductores de la apoptosis para el tratamiento del cáncer y enfermedades inmunitarias y autoinmunitarias |
| CN103641709B (zh) | 2009-03-11 | 2017-08-25 | 拜耳知识产权有限责任公司 | 被卤代烷基亚甲基氧基苯基取代的酮烯醇 |
| PL2408750T3 (pl) | 2009-03-20 | 2016-02-29 | Vertex Pharma | Sposób otrzymywania modulatorów błonowego regulatora przewodnictwa swoistego dla mukowiscydozy |
| JP5697163B2 (ja) | 2009-03-26 | 2015-04-08 | 塩野義製薬株式会社 | 置換された3−ヒドロキシ−4−ピリドン誘導体 |
| WO2010123822A1 (en) | 2009-04-20 | 2010-10-28 | Institute For Oneworld Health | Compounds, compositions and methods comprising pyridazine sulfonamide derivatives |
| BR122019016429B1 (pt) | 2009-05-26 | 2020-03-24 | Abbvie Ireland Unlimited Company | Compostos inibidores da atividade de proteínas bcl-2 antiapoptótica e composição farmacêutica compreendendo ditos compostos |
| KR20120130173A (ko) | 2009-12-24 | 2012-11-29 | 버텍스 파마슈티칼스 인코포레이티드 | 플라비바이러스 감염을 치료 또는 예방하기 위한 유사체들 |
| WO2011102514A1 (ja) | 2010-02-22 | 2011-08-25 | 武田薬品工業株式会社 | 芳香環化合物 |
| WO2011116397A1 (en) | 2010-03-19 | 2011-09-22 | Vertex Pharmaceuticals Incorporated | Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide |
| NZ700556A (en) | 2010-03-25 | 2016-04-29 | Vertex Pharma | Solid forms of (r)-1(2,2-difluorobenzo[d][1,3]dioxol-5-yl)-n-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1h-indol-5-yl) cyclopropanecarboxamide |
| RS54783B1 (sr) | 2010-04-07 | 2016-10-31 | Vertex Pharma | Čvrste forme 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioksol-5-il)ciklopropankarboksiamido)-3-metilpiridin-2-il)benzoeve kiseline |
| DK3150198T3 (da) | 2010-04-07 | 2021-11-01 | Vertex Pharma | Farmaceutiske sammensætninger af 3-(6-(1-(2,2-difluorbenzo[d][1,3]dioxol-5-yl)-cyclopropancarboxamido)-3-methylpyriodin-2-yl)benzoesyre og indgivelse deraf |
| US8344137B2 (en) | 2010-04-14 | 2013-01-01 | Hoffman-La Roche Inc. | 3,3-dimethyl tetrahydroquinoline derivatives |
| CA2797118C (en) | 2010-04-22 | 2021-03-30 | Vertex Pharmaceuticals Incorporated | Process of producing cycloalkylcarboxamido-indole compounds |
| NZ603042A (en) | 2010-04-22 | 2015-02-27 | Vertex Pharma | Pharmaceutical compositions comprising cftr modulators and administrations thereof |
| TWI520960B (zh) | 2010-05-26 | 2016-02-11 | 艾伯維有限公司 | 用於治療癌症及免疫及自體免疫疾病之細胞凋亡誘導劑 |
| US8563593B2 (en) | 2010-06-08 | 2013-10-22 | Vertex Pharmaceuticals Incorporated | Formulations of (R)-1-(2,2-difluorobenzo[D] [1,3] dioxol-5-yl)-N-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1H-indol-5-yl)cyclopropanecarboxamide |
| BR112013004443A8 (pt) | 2010-08-23 | 2018-01-02 | Vertex Pharma | composições farmacêuticas de (r)-1-(2,2-difluorbenzo[d] [1,3]dioxol-5-il)-n-(1-(2,3-di-hidróxipropil)-6-flúor-2-(1-hidróxi-2-metilpropan-2-il)-1h-indol-5-il)ciclopropano carboxamida e administração das mesmas |
| US20120064157A1 (en) | 2010-08-27 | 2012-03-15 | Vertex Pharmaceuticals Incorporated | Pharmaceutical composition and administrations thereof |
| EP2630136A1 (en) | 2010-10-21 | 2013-08-28 | Universität des Saarlandes | Selective cyp11b1 inhibitors for the treatment of cortisol dependent diseases |
| JP5847830B2 (ja) | 2010-11-10 | 2016-01-27 | アクテリオン ファーマシューティカルズ リミテッドActelion Pharmaceuticals Ltd | オレキシン受容体拮抗薬として有用なラクタム誘導体 |
| WO2012087938A1 (en) | 2010-12-20 | 2012-06-28 | Glaxosmithkline Llc | Quinazolinone derivatives as antiviral agents |
| EP2471363A1 (de) | 2010-12-30 | 2012-07-04 | Bayer CropScience AG | Verwendung von Aryl-, Heteroaryl- und Benzylsulfonamidocarbonsäuren, -carbonsäureestern, -carbonsäureamiden und -carbonitrilen oder deren Salze zur Steigerung der Stresstoleranz in Pflanzen |
| CA2825746A1 (en) | 2011-01-26 | 2012-08-02 | Kyorin Pharmaceutical Co. Ltd. | Pyrazolopyridine derivative or pharmacologically acceptable salt thereof |
| WO2012110519A1 (de) | 2011-02-17 | 2012-08-23 | Bayer Cropscience Ag | Substituierte 3-(biphenyl-3-yl)-8,8-difluor-4-hydroxy-1-azaspiro[4.5]dec-3-en-2-one zur therapie und halogensubstituierte spirocyclische ketoenole |
| JP5987007B2 (ja) | 2011-03-01 | 2016-09-06 | バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH | 2−アシルオキシピロリン−4−オン類 |
| AR085585A1 (es) | 2011-04-15 | 2013-10-09 | Bayer Cropscience Ag | Vinil- y alquinilciclohexanoles sustituidos como principios activos contra estres abiotico de plantas |
| WO2012166415A1 (en) | 2011-05-27 | 2012-12-06 | Amira Pharmaceuticals, Inc. | Heterocyclic autotaxin inhibitors and uses thereof |
| AU2012300246A1 (en) | 2011-08-30 | 2014-03-06 | Chdi Foundation, Inc. | Kynurenine-3-monooxygenase inhibitors, pharmaceutical compositions, and methods of use thereof |
| WO2013038373A1 (en) | 2011-09-16 | 2013-03-21 | Novartis Ag | Pyridine amide derivatives |
| US10301257B2 (en) | 2011-09-16 | 2019-05-28 | Bayer Intellectual Property Gmbh | Use of acylsulfonamides for improving plant yield |
| JP2014527973A (ja) | 2011-09-23 | 2014-10-23 | バイエル・インテレクチユアル・プロパテイー・ゲー・エム・ベー・ハー | 非生物的な植物ストレスに対する作用剤としての4−置換1−フェニルピラゾール−3−カルボン酸誘導体の使用 |
| MX357328B (es) | 2011-11-08 | 2018-07-05 | Vertex Pharma | Moduladores de trasportadores de casete enlazante de atp. |
| US8426450B1 (en) | 2011-11-29 | 2013-04-23 | Helsinn Healthcare Sa | Substituted 4-phenyl pyridines having anti-emetic effect |
| SG10201606135TA (en) | 2012-01-25 | 2016-09-29 | Vertex Pharma | Formulations of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid |
| JP2015083542A (ja) | 2012-02-08 | 2015-04-30 | 大日本住友製薬株式会社 | 3位置換プロリン誘導体 |
| AU2013226076B2 (en) | 2012-02-27 | 2017-11-16 | Vertex Pharmaceuticals Incorporated | Pharmaceutical composition and administration thereof |
| US8889730B2 (en) | 2012-04-10 | 2014-11-18 | Pfizer Inc. | Indole and indazole compounds that activate AMPK |
| WO2013158121A1 (en) | 2012-04-20 | 2013-10-24 | Vertex Pharmaceuticals Incorporated | Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide |
| US8952169B2 (en) | 2012-05-22 | 2015-02-10 | Xenon Pharmaceuticals Inc. | N-substituted benzamides and methods of use thereof |
| WO2013185112A1 (en) | 2012-06-08 | 2013-12-12 | Vertex Pharmaceuticals Incorporated | Pharmaceuticl compositions for the treatment of cftr -mediated disorders |
| WO2013185202A1 (en) | 2012-06-14 | 2013-12-19 | Beta Pharma Canada Inc | Apoptosis inducers |
| CN104797555B (zh) | 2012-07-06 | 2017-12-22 | 基因泰克公司 | N‑取代的苯甲酰胺及其使用方法 |
| EP2872122A1 (en) | 2012-07-16 | 2015-05-20 | Vertex Pharmaceuticals Incorporated | Pharmaceutical compositions of (r)-1-(2,2-diflurorbenzo[d][1,3]dioxol-5-yl)-n-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1h-indol-5-yl) cyclopropanecarboxamide and administration thereof |
| JP2015178458A (ja) | 2012-07-25 | 2015-10-08 | 杏林製薬株式会社 | ベンゼン環縮合含窒素5員複素環式化合物、またはその薬理学的に許容される塩 |
| JP6225187B2 (ja) | 2012-08-13 | 2017-11-01 | アッヴィ・インコーポレイテッド | アポトーシス誘発剤 |
| CA2881357C (en) | 2012-08-21 | 2020-12-08 | Peter Maccallum Cancer Institute | Perforin inhibiting benzenesulfonamide compounds, preparation and uses thereof |
| AU2013312477B2 (en) | 2012-09-06 | 2018-05-31 | Plexxikon Inc. | Compounds and methods for kinase modulation, and indications therefor |
| WO2014047427A2 (en) | 2012-09-21 | 2014-03-27 | Vanderbilt University | Substituted benzofuran, benzothiophene and indole mcl-1 inhibitors |
| SMT202500078T1 (it) | 2012-11-02 | 2025-03-12 | Vertex Pharma | Composizioni farmaceutiche per il trattamento di malattie mediate da cftr |
| US9567301B2 (en) | 2012-11-02 | 2017-02-14 | Dana-Farber Cancer Institute, Inc. | Pyrrol-1-yl benzoic acid derivatives useful as myc inhibitors |
| CA2890018A1 (en) | 2012-11-05 | 2014-05-08 | Nant Holdings Ip, Llc | Substituted indol-5-ol derivatives and their therapeutical applications |
| EP2928297A1 (de) | 2012-12-05 | 2015-10-14 | Bayer CropScience AG | Verwendung substituierter 1-(arylethinyl)-, 1-(heteroarylethinyl)-, 1-(heterocyclylethinyl)- und 1-(cyloalkenylethinyl)-bicycloalkanole als wirkstoffe gegen abiotischen pflanzenstress |
| CN105072903A (zh) | 2012-12-05 | 2015-11-18 | 拜耳作物科学股份公司 | 取代的1-(芳基乙炔基)-环己醇、1-(杂芳基乙炔基)-环己醇、1-(杂环基乙炔基)-环己醇和1-(环烯基乙炔基)-环己醇用作抵抗非生物植物胁迫的活性剂的用途 |
| UA115576C2 (uk) | 2012-12-06 | 2017-11-27 | Байєр Фарма Акцієнгезелльшафт | Похідні бензимідазолу як антагоністи ер4 |
| GB201223265D0 (en) | 2012-12-21 | 2013-02-06 | Selvita Sa | Novel benzimidazole derivatives as kinase inhibitors |
| US20140199728A1 (en) | 2013-01-14 | 2014-07-17 | Amgen Inc. | Methods of using cell-cycle inhibitors to modulate one or more properties of a cell culture |
| EP2968304B1 (en) | 2013-03-14 | 2018-10-10 | The Trustees of Columbia University in the City of New York | 4-phenylpiperidines, their preparation and use |
| ES2700541T3 (es) | 2013-03-14 | 2019-02-18 | Univ Columbia | Octahidrociclopentapirroles, su preparación y uso |
| EP2970243B1 (en) | 2013-03-15 | 2019-11-27 | Cyclerion Therapeutics, Inc. | Sgc stimulators |
| PE20151860A1 (es) | 2013-03-29 | 2015-12-16 | Takeda Pharmaceutical | Derivados de 6-(5-hidroxi-1h-pirazol-1-il)nicotinamida y su uso como inhidores de la phd |
| EP2994463B1 (en) | 2013-05-07 | 2017-10-25 | Galapagos NV | Novel compounds and pharmaceutical compositions thereof for the treatment of cystic fibrosis |
| WO2014181287A1 (en) | 2013-05-09 | 2014-11-13 | Piramal Enterprises Limited | Heterocyclyl compounds and uses thereof |
| CA2911326A1 (en) | 2013-05-24 | 2014-11-27 | The California Institute For Biomedical Research | Compounds for treatment of drug resistant and persistent tuberculosis |
| WO2015010832A1 (en) | 2013-07-22 | 2015-01-29 | Syngenta Participations Ag | Microbiocidal heterocyclic derivatives |
| US10005728B2 (en) | 2013-08-28 | 2018-06-26 | Vanderbilt University | Substituted indole Mcl-1 inhibitors |
| WO2015051043A1 (en) | 2013-10-01 | 2015-04-09 | Amgen Inc. | Biaryl acyl-sulfonamide compounds as sodium channel inhibitors |
| WO2015069287A1 (en) | 2013-11-08 | 2015-05-14 | Allergan, Inc. | Compounds as tyrosine kinase modulators |
| RU2718044C2 (ru) | 2013-11-12 | 2020-03-30 | Вертекс Фармасьютикалз Инкорпорейтед | Способ получения фармацевтических композиций для лечения опосредованных cftr заболеваний |
| RS62140B1 (sr) | 2014-04-15 | 2021-08-31 | Vertex Pharma | Farmaceutske kompozicije za lečenje bolesti posredovanih transmembranskim regulatorom provodljivosti cistične fibroze |
| KR20170063954A (ko) | 2014-10-07 | 2017-06-08 | 버텍스 파마슈티칼스 인코포레이티드 | 낭성 섬유증 막횡단 전도도 조절자의 조정제의 공-결정 |
| HRP20211194T1 (hr) | 2014-11-18 | 2021-10-29 | Vertex Pharmaceuticals Inc. | Postupak za provođenje testova velike propusnosti putem tekućinske kromatografije visoke djelotvornosti |
| CA2971855A1 (en) | 2014-12-23 | 2016-06-30 | Proteostasis Therapeutics, Inc. | Derivatives of 5-(hetero)arylpyrazol-3-carboxylic amide or 1-(hetero)aryltriazol-4-carboxylic amide useful for the treatment of inter alia cystic fibrosis |
| MA41253A (fr) | 2014-12-23 | 2017-10-31 | Proteostasis Therapeutics Inc | Composés, compositions et procédés pour augmenter l'activité du cftr |
| BR112017017052A2 (pt) | 2015-02-15 | 2018-04-10 | F. Hoffmann-La Roche Ag | derivados de 1-(het)arilsulfonil-(pirrolidina ou piperidina)-2-carboxamida e seu uso como antagonistas de trpa1 |
| AU2016243171B2 (en) | 2015-03-31 | 2020-10-08 | Concert Pharmaceuticals, Inc. | Deuterated VX-661 |
| MX388470B (es) | 2015-09-21 | 2025-03-20 | Vertex Pharmaceuticals Europe Ltd | Administración de potenciadores de regulador de la conductancia transmembrana de fibrosis quística (cftr) deuterados. |
| CN109071426A (zh) | 2016-03-30 | 2018-12-21 | 基因泰克公司 | 取代的苯甲酰胺及其使用方法 |
| EP3436446B1 (en) | 2016-03-31 | 2023-06-07 | Vertex Pharmaceuticals Incorporated | Modulators of cystic fibrosis transmembrane conductance regulator |
| CN109563047A (zh) | 2016-04-07 | 2019-04-02 | 蛋白质平衡治疗股份有限公司 | 含有硅原子的依伐卡托类似物 |
| EP3448842A1 (en) | 2016-04-26 | 2019-03-06 | AbbVie S.À.R.L. | Modulators of cystic fibrosis transmembrane conductance regulator protein |
| US10138227B2 (en) | 2016-06-03 | 2018-11-27 | Abbvie S.Á.R.L. | Heteroaryl substituted pyridines and methods of use |
| ES2954658T3 (es) | 2016-06-21 | 2023-11-23 | Proteostasis Therapeutics Inc | Compuestos, composiciones y procedimientos para aumentar la actividad de CFTR |
| US10399940B2 (en) | 2016-10-07 | 2019-09-03 | Abbvie S.Á.R.L. | Substituted pyrrolidines and methods of use |
| US9981910B2 (en) | 2016-10-07 | 2018-05-29 | Abbvie S.Á.R.L. | Substituted pyrrolidines and methods of use |
| AU2017348183A1 (en) | 2016-10-26 | 2019-05-16 | Proteostasis Therapeutics, Inc. | Compounds, compositions, and methods for modulating CFTR |
| US20190256474A1 (en) | 2016-10-26 | 2019-08-22 | Proteostasis Therapeutics, Inc. | N-phenyl-2-(3-phenyl-6-oxo-1,6-dihydropyridazin-1-yl)acetamide derivatives for treating cystic fibrosis |
| US20190248765A1 (en) | 2016-10-26 | 2019-08-15 | Proteostasis Therapeutics, Inc. | Compounds, compositions, and methods for increasing cftr activity |
| AU2017362350B2 (en) | 2016-11-18 | 2021-12-23 | Cystic Fibrosis Foundation | Pyrrolopyrimidines as CFTR potentiators |
| CN110300589B (zh) | 2016-12-16 | 2023-03-10 | 囊性纤维化基金会 | 作为cftr增效剂的双环异杂芳基衍生物 |
| WO2018116185A1 (en) | 2016-12-20 | 2018-06-28 | AbbVie S.à.r.l. | Deuterated cftr modulators and methods of use |
| WO2018127130A1 (en) | 2017-01-07 | 2018-07-12 | Shanghai Fochon Pharmaceutical Co., Ltd. | Compounds as bcl-2-selective apoptosis-inducing agents |
| TW201831471A (zh) | 2017-02-24 | 2018-09-01 | 盧森堡商艾伯維公司 | 囊腫纖化症跨膜傳導調節蛋白的調節劑及其使用方法 |
| US20180280349A1 (en) | 2017-03-28 | 2018-10-04 | Vertex Pharmaceuticals Incorporated | Methods of treating cystic fibrosis in patients with residual function mutations |
| WO2018201126A1 (en) | 2017-04-28 | 2018-11-01 | Proteostasis Therapeutics, Inc. | 4-sulfonylaminocarbonylquinoline derivatives for increasing cftr activity |
| AU2018279646B2 (en) | 2017-06-08 | 2023-04-06 | Vertex Pharmaceuticals Incorporated | Methods of treatment for cystic fibrosis |
| US20210069174A1 (en) | 2017-07-01 | 2021-03-11 | Vertex Pharmaceuticals Incorporated | Compositions and methods for treatment of cystic fibrosis |
| AU2018304168B2 (en) | 2017-07-17 | 2023-05-04 | Vertex Pharmaceuticals Incorporated | Methods of treatment for cystic fibrosis |
| US20200171015A1 (en) | 2017-07-17 | 2020-06-04 | Vertex Pharmaceuticals Incorporated | Methods of treatment for cystic fibrosis |
| EP3662079A4 (en) | 2017-07-31 | 2021-04-14 | Technion Research & Development Foundation Limited | Methods of detecting modified and unmodified dna |
| TWI799435B (zh) | 2017-08-02 | 2023-04-21 | 美商維泰克斯製藥公司 | 製備化合物之製程 |
| US10988454B2 (en) | 2017-09-14 | 2021-04-27 | Abbvie Overseas S.À.R.L. | Modulators of the cystic fibrosis transmembrane conductance regulator protein and methods of use |
| IL273752B2 (en) | 2017-10-06 | 2023-12-01 | Proteostasis Therapeutics Inc | Ingredients, compounds and methods for increasing CFTR activity |
| WO2019079760A1 (en) | 2017-10-19 | 2019-04-25 | Vertex Pharmaceuticals Incorporated | CRYSTALLINE FORMS AND COMPOSITIONS OF CFTR MODULATORS |
| US20210228489A1 (en) | 2017-12-04 | 2021-07-29 | Vertex Pharmaceuticals Incorporated | Compositions for treating cystic fibrosis |
| US11465985B2 (en) | 2017-12-08 | 2022-10-11 | Vertex Pharmaceuticals Incorporated | Processes for making modulators of cystic fibrosis transmembrane conductance regulator |
| TWI810243B (zh) | 2018-02-05 | 2023-08-01 | 美商維泰克斯製藥公司 | 用於治療囊腫纖化症之醫藥組合物 |
| US20210009560A1 (en) | 2018-03-30 | 2021-01-14 | Vertex Pharmaceuticals Incorporated | Crystalline forms of modulators of cftr |
| WO2019200246A1 (en) | 2018-04-13 | 2019-10-17 | Alexander Russell Abela | Modulators of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator |
-
2018
- 2018-08-02 TW TW107126937A patent/TWI799435B/zh active
- 2018-08-02 AU AU2018309043A patent/AU2018309043B2/en active Active
- 2018-08-02 EP EP18755654.3A patent/EP3661915B1/en active Active
- 2018-08-02 JP JP2020505238A patent/JP7121794B2/ja active Active
- 2018-08-02 KR KR1020207005613A patent/KR102606188B1/ko active Active
- 2018-08-02 MX MX2020001302A patent/MX393460B/es unknown
- 2018-08-02 US US16/635,346 patent/US11434201B2/en active Active
- 2018-08-02 CA CA3071278A patent/CA3071278A1/en active Pending
- 2018-08-02 MA MA049752A patent/MA49752A/fr unknown
- 2018-08-02 ES ES18755654T patent/ES2912657T3/es active Active
- 2018-08-02 AR ARP180102198 patent/AR112467A1/es unknown
- 2018-08-02 WO PCT/US2018/044963 patent/WO2019028228A1/en not_active Ceased
- 2018-08-02 CN CN201880056538.0A patent/CN111051280B/zh active Active
-
2020
- 2020-01-30 IL IL272384A patent/IL272384B/en unknown
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150045556A1 (en) | 2011-07-18 | 2015-02-12 | Roland E. Dolle | Processes for the preparation of peripheral opioid antagonist compounds and intermediates thereto |
| WO2016057572A1 (en) | 2014-10-06 | 2016-04-14 | Mark Thomas Miller | Modulators of cystic fibrosis transmembrane conductance regulator |
| WO2018064632A1 (en) | 2016-09-30 | 2018-04-05 | Vertex Pharmaceuticals Incorporated | Modulator of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator |
| WO2018107100A1 (en) | 2016-12-09 | 2018-06-14 | Vertex Pharmaceuticals Incorporated | Modulator of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator |
Non-Patent Citations (1)
| Title |
|---|
| JOHN T. LAI ET AL: "Rearrangement of 2,2,6,6-tetramethyl-4-piperidone in phase-transfer catalyzed reactions", JOURNAL OF ORGANIC CHEMISTRY, vol. 45, no. 8, 1 April 1980 (1980-04-01), US, pages 1513 - 1514, XP055505757, ISSN: 0022-3263, DOI: 10.1021/jo01296a034 * |
Cited By (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11426407B2 (en) | 2014-10-06 | 2022-08-30 | Vertex Pharmaceuticals Incorporated | Modulators of cystic fibrosis transmembrane conductance regulator |
| US12168009B2 (en) | 2014-10-06 | 2024-12-17 | Vertex Pharmaceuticals Incorporated | Modulators of cystic fibrosis transmembrane conductance regulator |
| US10758534B2 (en) | 2014-10-06 | 2020-09-01 | Vertex Pharmaceuticals Incorporated | Modulators of cystic fibrosis transmembrane conductance regulator |
| US11186566B2 (en) | 2016-09-30 | 2021-11-30 | Vertex Pharmaceuticals Incorporated | Modulator of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator |
| US10793547B2 (en) | 2016-12-09 | 2020-10-06 | Vertex Pharmaceuticals Incorporated | Modulator of the cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator |
| US12384762B2 (en) | 2016-12-09 | 2025-08-12 | Vertex Pharmaceuticals Incorporated | Modulator of the Cystic Fibrosis Transmembrane Conductance Regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator |
| US11453655B2 (en) | 2016-12-09 | 2022-09-27 | Vertex Pharmaceuticals Incorporated | Modulator of the cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator |
| US11253509B2 (en) | 2017-06-08 | 2022-02-22 | Vertex Pharmaceuticals Incorporated | Methods of treatment for cystic fibrosis |
| US12350262B2 (en) | 2017-07-17 | 2025-07-08 | Vertex Pharmaceuticals Incorporated | Methods of treatment for cystic fibrosis |
| US11517564B2 (en) | 2017-07-17 | 2022-12-06 | Vertex Pharmaceuticals Incorporated | Methods of treatment for cystic fibrosis |
| US11434201B2 (en) | 2017-08-02 | 2022-09-06 | Vertex Pharmaceuticals Incorporated | Processes for preparing pyrrolidine compounds |
| US11155533B2 (en) | 2017-10-19 | 2021-10-26 | Vertex Pharmaceuticals Incorporated | Crystalline forms and compositions of CFTR modulators |
| US11465985B2 (en) | 2017-12-08 | 2022-10-11 | Vertex Pharmaceuticals Incorporated | Processes for making modulators of cystic fibrosis transmembrane conductance regulator |
| US12415798B2 (en) | 2017-12-08 | 2025-09-16 | Vertex Pharmaceuticals Incorporated | Processes for making modulators of cystic fibrosis transmembrane conductance regulator |
| US11179367B2 (en) | 2018-02-05 | 2021-11-23 | Vertex Pharmaceuticals Incorporated | Pharmaceutical compositions for treating cystic fibrosis |
| US11866450B2 (en) | 2018-02-15 | 2024-01-09 | Vertex Pharmaceuticals Incorporated | Modulators of Cystic Fibrosis Transmembrane Conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulators |
| US11066417B2 (en) | 2018-02-15 | 2021-07-20 | Vertex Pharmaceuticals Incorporated | Modulators of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulators |
| US11414439B2 (en) | 2018-04-13 | 2022-08-16 | Vertex Pharmaceuticals Incorporated | Modulators of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator |
| US12421251B2 (en) | 2019-04-03 | 2025-09-23 | Vertex Pharmaceuticals Incorporated | Cystic fibrosis transmembrane conductance regulator modulating agents |
| US11873300B2 (en) | 2019-08-14 | 2024-01-16 | Vertex Pharmaceuticals Incorporated | Crystalline forms of CFTR modulators |
| US12319693B2 (en) | 2019-08-14 | 2025-06-03 | Vertex Pharmaceuticals Incorporated | Crystalline forms of CFTR modulators |
| US12122788B2 (en) | 2019-08-14 | 2024-10-22 | Vertex Pharmaceuticals Incorporated | Process of making CFTR modulators |
| US11591350B2 (en) | 2019-08-14 | 2023-02-28 | Vertex Pharmaceuticals Incorporated | Modulators of cystic fibrosis transmembrane conductance regulator |
| US11584761B2 (en) | 2019-08-14 | 2023-02-21 | Vertex Pharmaceuticals Incorporated | Process of making CFTR modulators |
| US12269831B2 (en) | 2020-08-07 | 2025-04-08 | Vertex Pharmaceuticals Incorporated | Modulators of cystic fibrosis transmembrane conductance regulator |
| US12324802B2 (en) | 2020-11-18 | 2025-06-10 | Vertex Pharmaceuticals Incorporated | Modulators of cystic fibrosis transmembrane conductance regulator |
| US12186306B2 (en) | 2020-12-10 | 2025-01-07 | Vertex Pharmaceuticals Incorporated | Methods of treatment for cystic fibrosis |
Also Published As
| Publication number | Publication date |
|---|---|
| EP3661915A1 (en) | 2020-06-10 |
| US20200369608A1 (en) | 2020-11-26 |
| EP3661915B1 (en) | 2022-03-09 |
| JP2020529414A (ja) | 2020-10-08 |
| CA3071278A1 (en) | 2019-02-07 |
| AU2018309043B2 (en) | 2022-03-31 |
| JP7121794B2 (ja) | 2022-08-18 |
| ES2912657T3 (es) | 2022-05-26 |
| MX393460B (es) | 2025-03-24 |
| MA49752A (fr) | 2021-04-21 |
| AR112467A1 (es) | 2019-10-30 |
| IL272384A (en) | 2020-03-31 |
| KR102606188B1 (ko) | 2023-11-23 |
| US11434201B2 (en) | 2022-09-06 |
| KR20200035431A (ko) | 2020-04-03 |
| TWI799435B (zh) | 2023-04-21 |
| IL272384B (en) | 2022-04-01 |
| AU2018309043A1 (en) | 2020-02-27 |
| CN111051280A (zh) | 2020-04-21 |
| NZ761391A (en) | 2024-07-26 |
| MX2020001302A (es) | 2020-03-20 |
| TW201920097A (zh) | 2019-06-01 |
| CN111051280B (zh) | 2023-12-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3661915B1 (en) | Processes for preparing pyrrolidine compounds | |
| JP4148952B2 (ja) | (1s)−4,5−ジメトキシ−1−(メチルアミノメチル)ベンゾシクロブタン及びその付加塩合成の新規な方法、並びにイバブラジン、及び薬学的に許容され得る酸とのその付加塩の合成への適用 | |
| CN114349648B (zh) | 一种手性胺类化合物的制备方法 | |
| EP2383261B1 (en) | Process for the asymmetric hydrogenation of ketones | |
| US8912345B2 (en) | Method for preparing optically pure (−)-clausenamide compound | |
| CN103183673B (zh) | (s,s)-2,8-二氮杂双环[4,3,0]壬烷的合成方法 | |
| CN102264672A (zh) | 使用转移氢化制备旋光化合物的方法 | |
| WO2011131027A1 (zh) | .l-苯福林盐酸盐的制备方法 | |
| HK40031025A (en) | Processes for preparing pyrrolidine compounds | |
| HK40031025B (en) | Processes for preparing pyrrolidine compounds | |
| CN103896826B (zh) | 氮保护的(3r,4r)-3-甲氨基-4-甲基哌啶的不对称合成方法、相关中间体及原料制备方法 | |
| CN107445999A (zh) | 金属络合物、制备方法和应用及其中间体 | |
| CN102316862A (zh) | 制备s1p受体激动剂或拮抗剂的方法 | |
| CN112094241B (zh) | 一种1,4-二氮杂螺[5,5]十一烷-3-酮的制备方法 | |
| CN112679433B (zh) | 一种艾利西平的制备方法 | |
| JP4763771B2 (ja) | 光学活性3−フェニルプロピオン酸誘導体を生成する方法、およびその誘導体の後続生成物 | |
| CN110615747A (zh) | 一种二氢茚中间体的制备方法 | |
| JP4314602B2 (ja) | 光学活性3−ヒドロキシピロリジン誘導体の製造方法 | |
| WO2008044702A1 (fr) | Procédé de production d'un dérivé azabicycloalcanol | |
| CN116730953A (zh) | 一种布瓦西坦中间体的制备方法 | |
| WO2015063790A1 (en) | Catalyst for asymmetric transfer hydrogenation of ketones and imines | |
| EA021713B1 (ru) | Новый способ синтеза ивабрадина и его фармацевтически приемлемых кислотно-аддитивных солей | |
| CN111825688A (zh) | 一种6-叔丁基-3’,3’,3-三甲基吡喃[3,2-a]咔唑的制备方法 | |
| HK1081945B (en) | Process for the synthesis of 4,5-dimethoxy-1-(methylaminomethyl)-benzocy clobutane, and the use thereof | |
| JPWO1995027694A1 (ja) | α,β−ジ置換アルコール誘導体の製造法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18755654 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 3071278 Country of ref document: CA |
|
| ENP | Entry into the national phase |
Ref document number: 2020505238 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 272384 Country of ref document: IL |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 20207005613 Country of ref document: KR Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 2018309043 Country of ref document: AU Date of ref document: 20180802 Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 2018755654 Country of ref document: EP Effective date: 20200302 |