WO2018194159A1 - 電気化学デバイス用電極及びその製造方法、電気化学デバイス、並びにポリマ電解質組成物 - Google Patents

電気化学デバイス用電極及びその製造方法、電気化学デバイス、並びにポリマ電解質組成物 Download PDF

Info

Publication number
WO2018194159A1
WO2018194159A1 PCT/JP2018/016318 JP2018016318W WO2018194159A1 WO 2018194159 A1 WO2018194159 A1 WO 2018194159A1 JP 2018016318 W JP2018016318 W JP 2018016318W WO 2018194159 A1 WO2018194159 A1 WO 2018194159A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
salt
polymer
electrolyte
positive electrode
Prior art date
Application number
PCT/JP2018/016318
Other languages
English (en)
French (fr)
Inventor
祐介 瀬良
秀之 小川
紘揮 三國
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2017/016079 external-priority patent/WO2018193627A1/ja
Priority claimed from PCT/JP2017/016084 external-priority patent/WO2018193630A1/ja
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to US16/606,334 priority Critical patent/US11462767B2/en
Priority to CN202310599693.XA priority patent/CN116404107A/zh
Priority to KR1020197029920A priority patent/KR102595311B1/ko
Priority to JP2019513702A priority patent/JP7163909B2/ja
Priority to EP18787019.1A priority patent/EP3614469A4/en
Priority to CN201880026140.2A priority patent/CN110537274B/zh
Publication of WO2018194159A1 publication Critical patent/WO2018194159A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode for an electrochemical device and a method for producing the same, an electrochemical device, and a polymer electrolyte composition.
  • Lithium ion secondary batteries are energy devices having a high energy density, and are used for portable devices such as notebook computers and mobile phones, and power sources for electric vehicles, taking advantage of their characteristics.
  • a separator is sandwiched between a positive electrode and a negative electrode, and the separator is impregnated with an organic electrolyte.
  • the organic electrolyte since the organic electrolyte is flammable, it may ignite when an abnormality occurs and the temperature of the battery rises. It is important to improve safety when starting to increase energy density and size in lithium ion secondary batteries, and it is required to avoid situations such as ignition from the configuration of lithium ion secondary batteries. Yes.
  • Patent Document 1 discloses a method of adding an inorganic solid electrolyte to an electrode mixture layer in a lithium ion battery.
  • the inorganic solid electrolyte used in the method described in Patent Document 1 has poor flexibility, and it is difficult to change the shape in accordance with the shape of the voids in the electrode mixture layer in the positive electrode and the negative electrode. Characteristics may not be obtained.
  • the amount of the inorganic solid electrolyte added is increased in order to improve the interface forming property, the ratio of the electrode active material in the electrode relatively decreases, so that the battery characteristics tend to decrease.
  • the present invention has been made in view of the above circumstances, and an electrode for an electrochemical device capable of enhancing battery characteristics even when a battery is produced by adding a solid electrolyte to an electrode mixture layer and its electrode
  • An object is to provide a manufacturing method.
  • an object of this invention is to provide the electrochemical device using such an electrode for electrochemical devices.
  • an object of this invention is to provide the polymer electrolyte composition which can improve the ionic conductivity of an electrode mixture layer.
  • a first aspect of the present invention comprises an electrode current collector and an electrode mixture layer provided on at least one main surface of the electrode current collector, the electrode mixture layer comprising an electrode active material,
  • a polymer having a structural unit represented by the following general formula (1) hereinafter sometimes simply referred to as “polymer”
  • electrolyte salt lithium salt, sodium salt, calcium salt, and magnesium salt 1 type of electrolyte salt
  • molten salt molten salt having a melting point of 250 ° C. or less
  • the electrode for an electrochemical device of the first aspect of the present invention since a good interface is formed between the electrode active material and the polymer in the electrode mixture layer, a solid electrolyte is added to the electrode mixture layer. Even when the battery is manufactured, the battery characteristics can be improved.
  • the anion of the electrolyte salt is selected from the group consisting of PF 6 ⁇ , BF 4 ⁇ , N (FSO 2 ) 2 ⁇ , N (CF 3 SO 2 ) 2 ⁇ , B (C 2 O 4 ) 2 ⁇ , and ClO 4 ⁇ . It may be at least one selected.
  • the electrolyte salt may be a lithium salt.
  • the content of the molten salt may be 10 to 80% by mass based on the total amount of the polymer, the electrolyte salt, and the molten salt.
  • Electrode device electrode may be a positive electrode. That is, the electrode current collector may be a positive electrode current collector, the electrode mixture layer may be a positive electrode mixture layer, and the electrode active material may be a positive electrode active material.
  • the electrode for an electrochemical device may be a negative electrode. That is, the electrode current collector may be a negative electrode current collector, the electrode mixture layer may be a negative electrode mixture layer, and the electrode active material may be a negative electrode active material.
  • the negative electrode active material may contain graphite. When the negative electrode active material contains graphite, the electrolyte salt preferably contains LiN (FSO 2 ) 2 .
  • the second aspect of the present invention is an electrochemical device comprising the above-described electrode for an electrochemical device.
  • the electrochemical device may be a secondary battery.
  • a step of preparing an electrode precursor in which an electrode active material layer containing an electrode active material is provided on at least one main surface of an electrode current collector, and an electrode active material of the electrode precursor
  • the layer has a polymer having a structural unit represented by the following general formula (1), at least one electrolyte salt selected from the group consisting of a lithium salt, a sodium salt, a calcium salt, and a magnesium salt, and a melting point of 250.
  • the anion of the electrolyte salt is selected from the group consisting of PF 6 ⁇ , BF 4 ⁇ , N (FSO 2 ) 2 ⁇ , N (CF 3 SO 2 ) 2 ⁇ , B (C 2 O 4 ) 2 ⁇ , and ClO 4 ⁇ . It may be at least one selected.
  • the content of the molten salt may be 10 to 80% by mass based on the total amount of the polymer, the electrolyte salt, and the molten salt.
  • the dispersion medium may contain acetone.
  • the mass ratio of the dispersion medium content to the polymer content (“dispersion medium content” / “polymer content”) may be 6 or less.
  • At least one electrolyte selected from the group consisting of a polymer having a structural unit represented by the following general formula (1), and a lithium salt, a sodium salt, a calcium salt, and a magnesium salt.
  • a polymer electrolyte composition comprising a salt and a molten salt having a melting point of 250 ° C. or lower.
  • the anion of the electrolyte salt is selected from the group consisting of PF 6 ⁇ , BF 4 ⁇ , N (FSO 2 ) 2 ⁇ , N (CF 3 SO 2 ) 2 ⁇ , B (C 2 O 4 ) 2 ⁇ , and ClO 4 ⁇ . It may be at least one selected.
  • the electrolyte salt may be a lithium salt.
  • the content of the molten salt may be 10 to 80% by mass based on the total amount of the polymer, the electrolyte salt, and the molten salt.
  • the polymer electrolyte composition may further contain a dispersion medium.
  • the dispersion medium may contain acetone.
  • the mass ratio of the content of the dispersion medium to the content of the polymer may be 6 or less.
  • an electrode for an electrochemical device and a method for producing the same that can improve battery characteristics even when a battery is produced by adding a solid electrolyte to an electrode mixture layer.
  • the electrochemical device using such an electrode for electrochemical devices is provided.
  • the polymer electrolyte composition which can improve the ionic conductivity of an electrode mixture layer is provided.
  • FIG. 1 is a perspective view showing an electrochemical device according to a first embodiment. It is a disassembled perspective view which shows the electrode group of the electrochemical device shown in FIG. 2A is a cross-sectional view taken along the line II of FIG. 2 for illustrating an electrode for an electrochemical device (positive electrode) according to one embodiment, and FIG. 2B is for an electrochemical device according to another embodiment. It is a schematic cross section which shows an electrode (positive electrode). 2A is a cross-sectional view taken along the line II-II in FIG. 2 for illustrating an electrode for an electrochemical device (negative electrode) according to one embodiment, and FIG. 2B is for an electrochemical device according to another embodiment. It is a schematic cross section which shows an electrode (negative electrode).
  • FIG. 3A is a cross-sectional view taken along the line III-III of FIG. 2 for explaining an electrode for an electrochemical device (bipolar electrode) according to another embodiment
  • FIG. It is a schematic cross section which shows the electrode for devices (bipolar electrode).
  • A) is a scanning electron microscope image of the positive electrode produced in Example 1-1
  • (b) is an image showing the distribution of cobalt by energy dispersive X-ray analysis in the positive electrode shown in FIG. 7 (a).
  • (C) is the image which shows distribution of sulfur by the energy dispersive X-ray analysis in the positive electrode shown to Fig.7 (a).
  • Example 6 is a graph showing battery performance evaluation of the secondary batteries produced in Example 1-1 and Comparative Example 1-1.
  • A is a scanning electron microscope image of the positive electrode produced in Example 3-1, and (b) is a scanning electron microscope image of the positive electrode produced in Example 3-2.
  • A) is a scanning electron microscope image of the positive electrode produced in Example 3-3, and (b) is a scanning electron microscope image of the positive electrode produced in Example 3-4.
  • a numerical range indicated using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • electrode means a positive electrode or a negative electrode.
  • electrode current collector an electrode mixture layer, an electrode active material, an electrode active material layer, and an electrode precursor.
  • FIG. 1 is a perspective view showing an electrochemical device according to the first embodiment.
  • the electrochemical device may be a secondary battery.
  • aspects of the secondary battery will be described.
  • the secondary battery 1 includes an electrode group 2 composed of an electrode for an electrochemical device and an electrolyte layer, and a bag-shaped battery exterior body 3 that houses the electrode group 2.
  • the electrode for an electrochemical device may be a positive electrode or a negative electrode.
  • the electrode for an electrochemical device (positive electrode and negative electrode) is provided with a positive electrode current collecting tab 4 and a negative electrode current collecting tab 5, respectively.
  • the positive electrode current collecting tab 4 and the negative electrode current collecting tab 5 protrude from the inside of the battery outer package 3 to the outside so that the positive electrode and the negative electrode can be electrically connected to the outside of the secondary battery 1, respectively.
  • the battery outer package 3 may be formed of, for example, a laminate film.
  • the laminate film may be a laminate film in which a resin film such as a polyethylene terephthalate (PET) film, a metal foil such as aluminum, copper, and stainless steel, and a sealant layer such as polypropylene are laminated in this order.
  • PET polyethylene terephthalate
  • metal foil such as aluminum, copper, and stainless steel
  • sealant layer such as polypropylene
  • FIG. 2 is an exploded perspective view showing an embodiment of the electrode group 2 in the secondary battery 1 shown in FIG.
  • the electrode group 2 ⁇ / b> A includes a positive electrode 6, an electrolyte layer 7, and a negative electrode 8 in this order.
  • the positive electrode 6 includes a positive electrode current collector 9 and a positive electrode mixture layer 10 provided on at least one main surface of the positive electrode current collector 9.
  • the positive electrode current collector 9 is provided with a positive electrode current collector tab 4.
  • the negative electrode 8 includes a negative electrode current collector 11 and a negative electrode mixture layer 12 provided on at least one main surface of the negative electrode current collector 11.
  • the negative electrode current collector 11 is provided with a negative electrode current collector tab 5.
  • FIG. 3A is a cross-sectional view taken along the line II of FIG.
  • the positive electrode 6 (first electrode for electrochemical device 13A) includes a positive electrode current collector 9 and a positive electrode composite provided on at least one main surface of the positive electrode current collector 9.
  • the agent layer 10 is provided.
  • FIG. 3B is a schematic cross-sectional view showing a first electrode for an electrochemical device according to another embodiment.
  • the first electrochemical device electrode 13B includes a positive electrode current collector 9, a positive electrode mixture layer 10, and an electrolyte layer 7 in this order.
  • the first electrochemical device electrode 13 ⁇ / b> A includes a positive electrode current collector 9.
  • the positive electrode current collector 9 may be formed of aluminum, stainless steel, titanium, or the like.
  • the positive electrode current collector 9 may be, for example, an aluminum perforated foil having a hole diameter of 0.1 to 10 mm, an expanded metal, a foamed metal plate, or the like.
  • the positive electrode current collector 9 may be formed of any material as long as it does not cause changes such as dissolution and oxidation during use of the battery, and its shape, manufacturing method, etc. Not limited.
  • the thickness of the positive electrode current collector 9 may be 1 ⁇ m or more, 5 ⁇ m or more, or 10 ⁇ m or more.
  • the thickness of the positive electrode current collector 9 may be 100 ⁇ m or less, 50 ⁇ m or less, or 20 ⁇ m or less.
  • the first electrochemical device electrode 13 ⁇ / b> A includes the positive electrode mixture layer 10.
  • the positive electrode mixture layer 10 contains a positive electrode active material, a specific polymer, a specific electrolyte salt, and a specific molten salt.
  • the positive electrode mixture layer 10 contains a positive electrode active material.
  • the positive electrode active material may be, for example, a lithium transition metal compound such as a lithium transition metal oxide or a lithium transition metal phosphate.
  • the lithium transition metal oxide may be lithium manganate, lithium nickelate, lithium cobaltate, or the like.
  • Lithium transition metal oxide is a part of transition metals such as Mn, Ni, Co, etc. contained in lithium manganate, lithium nickelate, lithium cobaltate, etc., one or more other transition metals, or A lithium transition metal oxide substituted with a metal element (typical element) such as Mg or Al may also be used. That is, the lithium transition metal oxide may be a compound represented by LiM 1 O 2 or LiM 1 O 4 (M 1 includes at least one transition metal).
  • lithium transition metal oxides are Li (Co 1/3 Ni 1/3 Mn 1/3 ) O 2 , LiNi 1/2 Mn 1/2 O 2 , LiNi 1/2 Mn 3/2 O. It may be 4 etc.
  • the lithium transition metal oxide may be a compound represented by the following formula (A) from the viewpoint of further improving the energy density.
  • Lithium transition metal phosphates are LiFePO 4 , LiMnPO 4 , LiMn x M 3 1-x PO 4 (0.3 ⁇ x ⁇ 1, M 3 is Fe, Ni, Co, Ti, Cu, Zn, Mg, and Or at least one element selected from the group consisting of Zr).
  • the content of the positive electrode active material may be 70% by mass or more, 80% by mass or more, or 90% by mass or more based on the total amount of the positive electrode mixture layer.
  • the content of the positive electrode active material may be 99% by mass or less based on the total amount of the positive electrode mixture layer.
  • the positive electrode mixture layer 10 contains a polymer having a structural unit represented by the following general formula (1).
  • X ⁇ represents a counter anion.
  • X ⁇ for example, BF 4 ⁇ (tetrafluoroborate anion), PF 6 ⁇ (hexafluorophosphate anion), N (FSO 2 ) 2 ⁇ (bis (fluorosulfonyl) imide anion, [FSI ] -), N (CF 3 SO 2) 2 - ( bis (trifluoromethanesulfonyl) imide anion, [TFSI] -), C (SO 2 F) 3 - ( tris (fluorosulfonyl) carbanions, [f3C] - ), B (C 2 O 4 ) 2 ⁇ (bisoxalate borate anion, [BOB] ⁇ ), BF 3 (CF 3 ) ⁇ , BF 3 (C 2 F 5 ) ⁇ , BF 3 (C 3 F 7 ) ⁇ , BF 3 (C 4 F 9 ) ⁇ , C
  • X ⁇ is preferably at least one selected from the group consisting of BF 4 ⁇ , PF 6 ⁇ , [FSI] ⁇ , [TFSI] ⁇ , and [f3C] ⁇ , more preferably [TFSI] ⁇ . Or [FSI] ⁇ .
  • the viscosity average molecular weight Mv (g ⁇ mol ⁇ 1 ) of the polymer having the structural unit represented by the general formula (1) is not particularly limited, but is preferably 1.0 ⁇ 10 4 or more, more preferably 1.0 ⁇ . 10 5 or more. Further, the viscosity average molecular weight of the polymer is preferably 5.0 ⁇ 10 6 or less, more preferably 1.0 ⁇ 10 6 or less.
  • the “viscosity average molecular weight” can be evaluated by a viscosity method which is a general measurement method. For example, from the intrinsic viscosity [ ⁇ ] measured based on JIS K 7367-3: 1999. Can be calculated.
  • the polymer having the structural unit represented by the general formula (1) is preferably a polymer consisting only of the structural unit represented by the general formula (1), that is, a homopolymer, from the viewpoint of ion conductivity.
  • the polymer having the structural unit represented by the general formula (1) may be a polymer represented by the following general formula (2).
  • n 300 to 4000
  • Y ⁇ represents a counter anion.
  • Y ⁇ those similar to those exemplified for X ⁇ can be used.
  • N is 300 or more, preferably 400 or more, more preferably 500 or more. Moreover, it is 4000 or less, preferably 3500 or less, more preferably 3000 or less. N is 300 to 4000, preferably 400 to 3500, and more preferably 500 to 3000.
  • the production method of the polymer having the structural unit represented by the general formula (1) is not particularly limited, and for example, the production method described in Journal of Power Sources 2009, 188, 558-563 can be used.
  • poly (diallyldimethylammonium) chloride [P (DADMA)] [Cl]
  • P (DADMA)] [Cl] poly (diallyldimethylammonium) chloride
  • a commercially available product can be used as it is.
  • Li [TFSI] is dissolved in deionized water to prepare an aqueous solution containing Li [TFSI].
  • the molar ratio of Li [TFSI] to [P (DADMA)] [Cl] was 1.2 to 2.0.
  • the two aqueous solutions are mixed and stirred for 2 to 8 hours to precipitate a solid, and the obtained solid is collected by filtration.
  • a polymer having a structural unit represented by the general formula (1) ([P (DADMA)] [TFSI]) can be obtained by washing the solid with deionized water and vacuum drying for 12 to 48 hours. it can.
  • the content of the polymer having the structural unit represented by the general formula (1) may be 5 to 50% by mass based on the total amount of the polymer, the electrolyte salt described later, and the molten salt described later.
  • the content of the polymer is more preferably 8% by mass or more, further preferably 15% by mass or more, based on the total amount of the polymer, the electrolyte salt, and the molten salt.
  • the content of the polymer is more preferably 35% by mass or less, still more preferably 25% by mass or less, based on the total amount of the polymer, the electrolyte salt, and the molten salt.
  • the positive electrode mixture layer 10 contains at least one electrolyte salt selected from the group consisting of a lithium salt, a sodium salt, a magnesium salt, and a calcium salt.
  • the electrolyte salt one used as an electrolyte salt of an electrolyte solution for a normal ion battery can be used.
  • the anion of the electrolyte salt includes halide ions (I ⁇ , Cl ⁇ , Br ⁇ etc.), SCN ⁇ , BF 4 ⁇ , BF 3 (CF 3 ) ⁇ , BF 3 (C 2 F 5 ) ⁇ , BF 3 (C 3 F 7 ) ⁇ , BF 3 (C 4 F 9 ) ⁇ , PF 6 ⁇ , ClO 4 ⁇ , SbF 6 ⁇ , [FSI] ⁇ , [TFSI] ⁇ , N (C 2 F 5 SO 2 ) 2 ⁇ , BPh 4 ⁇ , B (C 2 H 4 O 2 ) 2 ⁇ , [f3C] ⁇ , C (CF 3 SO 2 ) 3 ⁇ , CF 3 COO ⁇ , CF 3 SO 2 O ⁇ , C 6 F 5 SO 2 O -, [BOB] -, RCOO - (.
  • R is an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a naphthyl group), or the like.
  • the anion of the electrolyte salt is preferably at least one selected from the group consisting of PF 6 ⁇ , BF 4 ⁇ , [FSI] ⁇ , [TFSI] ⁇ , [BOB] ⁇ , and ClO 4 ⁇ .
  • [TFSI] ⁇ or [FSI] ⁇ is more preferable, and [FSI] ⁇ is more preferable.
  • Lithium salts include LiPF 6 , LiBF 4 , Li [FSI], Li [TFSI], Li [f 3 C], Li [BOB], LiClO 4 , LiBF 3 (CF 3 ), LiBF 3 (C 2 F 5 ), LiBF 3 (C 3 F 7 ), LiBF 3 (C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiCF 3 SO 2 O, LiCF 3 COO, LiRCOO (R is an alkyl group having 1 to 4 carbon atoms, A phenyl group or a naphthyl group). These may be used alone or in combination of two or more.
  • Sodium salts include NaPF 6 , NaBF 4 , Na [FSI], Na [TFSI], Na [f 3 C], Na [BOB], NaClO 4 , NaBF 3 (CF 3 ), NaBF 3 (C 2 F 5 ), NaBF 3 (C 3 F 7 ), NaBF 3 (C 4 F 9 ), NaC (SO 2 CF 3 ) 3 , NaCF 3 SO 2 O, NaCF 3 COO, NaRCOO (R is an alkyl group having 1 to 4 carbon atoms, A phenyl group or a naphthyl group). These may be used alone or in combination of two or more.
  • Magnesium salts are Mg (PF 6 ) 2 , Mg (BF 4 ) 2 , Mg [FSI] 2 , Mg [TFSI] 2 , Mg [f 3 C] 2 , Mg [BOB] 2 , Mg (ClO 4 ) 2 , Mg [BF 3 (CF 3 ) 3 ] 2 , Mg [BF 3 (C 2 F 5 )] 2 , Mg [BF 3 (C 3 F 7 )] 2 , Mg [BF 3 (C 4 F 9 )] 2 , Mg [C (SO 2 CF 3 ) 3 ] 2 , Mg (CF 3 SO 2 O) 2 , Mg (CF 3 COO) 2 , Mg (RCOO) 2 (R is an alkyl group having 1 to 4 carbon atoms, phenyl Or a naphthyl group). These may be used alone or in combination of two or more.
  • the calcium salts are Ca (PF 6 ) 2 , Ca (BF 4 ) 2 , Ca [FSI] 2 , Ca [TFSI] 2 , Ca [f3C] 2 , Ca [BOB] 2 , Ca (ClO 4 ) 2 , Ca [BF 3 (CF 3 ) 3 ] 2 , Ca [BF 3 (C 2 F 5 )] 2 , Ca [BF 3 (C 3 F 7 )] 2 , Ca [BF 3 (C 4 F 9 )] 2 , Ca [C (SO 2 CF 3 ) 3 ] 2 , Ca (CF 3 SO 2 O) 2 , Ca (CF 3 COO) 2 , Ca (RCOO) 2 (R is an alkyl group having 1 to 4 carbon atoms, phenyl Or a naphthyl group). These may be used alone or in combination of two or more.
  • a lithium salt more preferably LiPF 6 , LiBF 4 , Li [FSI], Li [TFSI], Li [f3C], Li [BOB], And at least one selected from the group consisting of LiClO 4 , more preferably Li [TFSI] or Li [FSI], particularly preferably Li [FSI].
  • the mass ratio of the electrolyte salt to the polymer having the structural unit represented by the general formula (1) is not particularly limited. Preferably it is 0.1 or more, More preferably, it is 0.15 or more, More preferably, it is 0.2 or more.
  • the mass ratio is preferably 1.0 or less, more preferably 0.9 or less, and still more preferably 0.8 or less. When the mass ratio is 0.1 or more, the ion carrier concentration is sufficient, and the ionic conductivity tends to be further improved. When the mass ratio is 1.0 or less, the flexibility of the electrolyte tends to be further improved.
  • the content of the electrolyte salt may be 5 to 30% by mass based on the total amount of the polymer, the electrolyte salt, and the molten salt described later.
  • the content of the electrolyte salt is more preferably 10% by mass or more based on the total amount of the polymer, the electrolyte salt, and the molten salt. Further, the content of the molten salt is more preferably 25% by mass or less based on the total amount of the polymer, the electrolyte salt, and the molten salt.
  • the content of the electrolyte salt is not particularly limited, but may be 0.1% by mass or more based on the total amount of the positive electrode mixture layer.
  • the content of the electrolyte salt may be 15% by mass or less based on the total amount of the positive electrode mixture layer.
  • the positive electrode mixture layer 10 contains a molten salt having a melting point of 250 ° C. or lower.
  • the molten salt is composed of a cation and an anion.
  • a normal ionic liquid or a plastic crystal can be used without any particular limitation.
  • ionic liquid means a molten salt that is liquid at 30 ° C., that is, a molten salt having a melting point of 30 ° C. or less
  • plastic crystal is a molten salt that is solid at 30 ° C. It means a salt, that is, a molten salt having a melting point higher than 30 ° C.
  • the ionic liquid can be used without particular limitation as long as it is a molten salt that is liquid at 30 ° C.
  • a molten salt that is liquid at 30 ° C.
  • [TFSI] -, or [F3C] - a combination of a include those which are liquid at 30 ° C..
  • the melting point of the ionic liquid is not particularly limited, but is preferably 25 ° C. or less, more preferably 10 ° C. or less, and further preferably 0 ° C. or less. When the melting point is 25 ° C. or lower, the ionic conductivity tends not to decrease even at room temperature (for example, 25 ° C.) or lower.
  • the lower limit of the melting point of the ionic liquid is not particularly limited, but may be ⁇ 150 ° C. or higher, ⁇ 120 ° C. or higher, or ⁇ 90 ° C. or higher.
  • the plastic crystal can be used without particular limitation as long as it is a solid at 30 ° C. and is a molten salt having a melting point of 250 ° C. or lower.
  • [TFSI] -, or [F3C] - a combination of, those of the solid at 30 ° C..
  • the cation of the molten salt is preferably [EMI] + , [DEME] + , [Py12] + , or [Py13] + , more preferably [EMI] + from the viewpoint of ionic conductivity.
  • the anion of the molten salt is preferably [FSI] ⁇ or [TFSI] ⁇ , more preferably [FSI] ⁇ from the viewpoint of ionic conductivity.
  • the molten salt is [EMI] [FSI], [DEME] [FSI], [Py12] [FSI], [Py13] [FSI], [EMI] [TFSI], [DEME] [ [TFSI], [Py12] [TFSI], or [Py13] [TFSI] is preferably included, and [EMI] [FSI] is more preferably included.
  • the melting point of the plastic crystal is 250 ° C. or less, preferably 200 ° C. or less, more preferably 150 ° C. or less, and further preferably 100 ° C. or less.
  • the ionic conductivity tends to increase.
  • fusing point of molten salt is not restrict
  • the content of the molten salt may be 10 to 80% by mass based on the total amount of the polymer, the electrolyte salt, and the molten salt.
  • the content of the molten salt is more preferably 20% by mass or more, further preferably 30% by mass or more, and particularly preferably 40% by mass or more based on the total amount of the polymer, the electrolyte salt, and the molten salt.
  • the content of the molten salt is more preferably 75% by mass or less, still more preferably 70% by mass or less, based on the total amount of the polymer, the electrolyte salt, and the molten salt.
  • the content of the molten salt is not particularly limited, but may be 0.5% by mass or more based on the total amount of the positive electrode mixture layer.
  • the content of the molten salt may be 25% by mass or less based on the total amount of the positive electrode mixture layer.
  • the positive electrode mixture layer 10 may further contain a conductive agent, a binder and the like.
  • the conductive agent may be carbon black, graphite, carbon fiber, carbon nanotube, acetylene black or the like.
  • the content of the conductive agent may be 1 to 15% by mass based on the total amount of the positive electrode mixture layer.
  • the binder is a resin such as polyvinylidene fluoride, polyacrylonitrile, styrene / butadiene rubber, carboxymethyl cellulose, fluorine rubber, ethylene / propylene rubber, polyacrylic acid, polyimide, polyamide; copolymer resin having these resins as a main skeleton ( For example, it may be a polyvinylidene fluoride-hexafluoropropylene copolymer).
  • the content of the binder may be 1 to 15% by mass based on the total amount of the positive electrode mixture layer.
  • the thickness of the positive electrode mixture layer 10 is not particularly limited, but may be 10 ⁇ m or more, 20 ⁇ m or more, or 30 ⁇ m or more.
  • the thickness of the positive electrode mixture layer 10 may be 100 ⁇ m or less, 80 ⁇ m or less, or 60 ⁇ m or less.
  • the mixture density of the positive electrode mixture layer 10 may be 1 g / cm 3 or more.
  • the electrolyte layer 7 contains a solid electrolyte, an electrolyte salt, and a molten salt.
  • the electrolyte layer 7 what formed the electrolyte composition containing the said component in the sheet form (electrolyte sheet
  • solid electrolytes examples include polymer electrolytes and inorganic solid electrolytes.
  • the polymer electrolyte and the inorganic solid electrolyte are not particularly limited, and those used as a polymer electrolyte and an inorganic solid electrolyte for a normal ion battery can be used.
  • the polymer having the structural unit represented by the general formula (1) described above may have properties as a polymer electrolyte. Therefore, the polymer can be suitably used as a polymer electrolyte.
  • the inorganic solid electrolyte may be Li 7 La 3 Zr 2 O 12 (LLZ) or the like.
  • the electrolyte salt and molten salt may be the same as the electrolyte salt and molten salt contained in the positive electrode mixture layer described above.
  • the electrolyte composition may further contain an additive having lithium salt dissociation ability such as borate ester and aluminate ester, if necessary.
  • an additive having lithium salt dissociation ability such as borate ester and aluminate ester, if necessary.
  • the electrolyte sheet is formed by forming an electrolyte composition containing oxide particles, a binder, an electrolyte salt, and an ionic liquid into a sheet shape. It may be.
  • the oxide particles are, for example, inorganic oxide particles.
  • the inorganic oxide is an inorganic oxide containing, for example, Li, Mg, Al, Si, Ca, Ti, Zr, La, Na, K, Ba, Sr, V, Nb, B, Ge and the like as constituent elements. Good.
  • the oxide particles are at least one particle selected from the group consisting of SiO 2 , Al 2 O 3 , AlOOH, MgO, CaO, ZrO 2 , TiO 2 , Li 7 La 3 Zr 2 O 12 , and BaTiO 3. May be. Since the oxide particles have polarity, it is possible to promote dissociation of the electrolyte in the electrolyte layer 7 and improve battery characteristics.
  • the binder, electrolyte salt, and ionic liquid may be the same as the binder, electrolyte salt, and ionic liquid contained in the positive electrode mixture layer described above.
  • the thickness of the electrolyte layer 7 may be 5 to 200 ⁇ m from the viewpoint of increasing strength and improving safety.
  • FIG. 4A is a cross-sectional view taken along the line II-II in FIG.
  • the negative electrode 8 (second electrochemical device electrode 14A) includes a negative electrode current collector 11 and a negative electrode composite provided on at least one main surface of the negative electrode current collector 11. And an agent layer 12.
  • FIG. 4B is a schematic cross-sectional view showing a second electrode for an electrochemical device according to another embodiment.
  • the second electrode for electrochemical device 14B includes a negative electrode current collector 11, a negative electrode mixture layer 12, and an electrolyte layer 7 in this order. Since the electrolyte layer 7 is the same as the electrolyte layer 7 in the first electrode for electrochemical devices described above, the description thereof is omitted below.
  • the second electrochemical device electrode 14 ⁇ / b> A includes the negative electrode current collector 11.
  • the negative electrode current collector 11 may be formed of copper, stainless steel, titanium, nickel, or the like. Specifically, the negative electrode current collector 11 may be a rolled copper foil, a copper perforated foil having holes having a hole diameter of 0.1 to 10 mm, an expanded metal, a foamed metal plate, or the like.
  • the negative electrode current collector 11 may be formed of any material other than the above, and its shape, manufacturing method, and the like are not limited.
  • the thickness of the negative electrode current collector 11 may be 1 ⁇ m or more, 5 ⁇ m or more, or 10 ⁇ m or more.
  • the thickness of the negative electrode current collector 11 may be 100 ⁇ m or less, 50 ⁇ m or less, or 20 ⁇ m or less.
  • the second electrochemical device electrode 14 ⁇ / b> A includes the negative electrode mixture layer 12.
  • the negative electrode mixture layer 12 contains a negative electrode active material, a specific polymer, a specific electrolyte salt, and a specific molten salt.
  • the negative electrode mixture layer 12 contains a negative electrode active material. What is used as a negative electrode active material of the field
  • the negative electrode active material include lithium metal, lithium alloy, metal compound, carbon material, metal complex, and organic polymer compound. These may be used alone or in combination of two or more.
  • the negative electrode active material is preferably a carbon material. Examples of the carbon material include graphite such as natural graphite (flaky graphite, etc.), artificial graphite, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, amorphous carbon, Examples thereof include carbon fiber.
  • the negative electrode active material preferably contains graphite.
  • the content of the negative electrode active material may be 60% by mass or more, 65% by mass or more, or 70% by mass or more based on the total amount of the negative electrode mixture layer.
  • the content of the negative electrode active material may be 99% by mass or less, 95% by mass or less, or 90% by mass or less based on the total amount of the negative electrode mixture layer.
  • the negative electrode mixture layer 12 is selected from the group consisting of a polymer having a structural unit represented by the general formula (1) contained in the positive electrode mixture layer 10 and a lithium salt, sodium salt, calcium salt, and magnesium salt. At least one electrolyte salt and a molten salt having a melting point of 250 ° C. or lower. These contents are the same as those of the positive electrode mixture layer 10.
  • the electrolyte salt preferably contains Li [FSI].
  • the battery characteristics of the obtained secondary battery tend to be further improved.
  • the negative electrode mixture layer 12 may further contain a conductive agent, a binder and the like contained in the positive electrode mixture layer 10 described above. These contents are the same as those of the positive electrode mixture layer 10.
  • the thickness of the negative electrode mixture layer 12 is not particularly limited, but may be 10 ⁇ m or more, 15 ⁇ m or more, or 20 ⁇ m or more.
  • the thickness of the negative electrode mixture layer 12 may be 50 ⁇ m or less, 45 ⁇ m or less, or 40 ⁇ m or less.
  • the mixture density of the negative electrode mixture layer 12 may be 1 g / cm 3 or more.
  • the manufacturing method of the secondary battery 1 includes a first step of manufacturing the first electrochemical device electrode 13A (positive electrode 6), and a second electrochemical device electrode 14A (negative electrode 8). A third step of providing an electrolyte layer 7 between the first electrochemical device electrode 13A (positive electrode 6) and the second electrochemical device electrode 14A (negative electrode 8); .
  • a positive electrode active material layer containing a positive electrode active material is provided on at least one main surface of the positive electrode current collector.
  • a step of preparing a positive electrode precursor, a polymer having a structural unit represented by the general formula (1) in the positive electrode active material layer of the positive electrode precursor, and a group consisting of lithium salt, sodium salt, calcium salt, and magnesium salt A step of adding a slurry containing at least one electrolyte salt selected from the group, a molten salt having a melting point of 250 ° C.
  • the positive electrode mixture layer can be composed of an electrode active material, a polymer, an electrolyte salt, and a molten salt.
  • the positive electrode active material layer in the positive electrode precursor is prepared, for example, by preparing a slurry for forming a positive electrode active material layer in which a material containing a positive electrode active material, a conductive agent, a binder or the like is dispersed in a dispersion medium, and the positive electrode active material layer forming slurry.
  • a dispersion medium is not particularly limited, but may be water, an aqueous solvent such as a mixed solvent of alcohol and water, or an organic solvent such as N-methyl-2-pyrrolidone.
  • a slurry (a slurry for forming a positive electrode mixture layer) in which a material containing a polymer, an electrolyte salt, and a molten salt is dispersed in a dispersion medium is prepared, and the slurry is added to the positive electrode active material layer.
  • the method for adding the slurry is not particularly limited, and examples thereof include dripping, coating, and printing.
  • the dispersion medium is not particularly limited as long as it dissolves the polymer, but may be acetone, ethyl methyl ketone, ⁇ -butyrolactone, or the like. Among these, it is preferable that a dispersion medium contains acetone.
  • the content of the polymer, the content of the electrolyte salt, and the content of the molten salt relative to the total amount of the polymer, the electrolyte salt, and the molten salt in the slurry are the same as those of the polymer, electrolyte salt, and molten salt in the positive electrode mixture layer 10 described above. It may be the same as the polymer content, the electrolyte salt content, and the molten salt content relative to the total amount.
  • the mass ratio of the content of the dispersion medium to the content of the polymer may be 6 or less.
  • the mass ratio of the content of the dispersion medium to the content of the polymer is more preferably 5.5 or less, and even more preferably 5 or less.
  • the mass ratio of the content of the dispersion medium to the content of the polymer is 6 or less, the polymer filling property of the positive electrode mixture layer can be further improved, and better ionic conductivity tends to be obtained.
  • the lower limit value of the mass ratio of the dispersion medium content to the polymer content is not particularly limited, and may be, for example, 0.1 or more, 0.5 or more, 1 or more, or 2 or more.
  • volatile components are removed from the slurry added to the positive electrode active material layer to form the positive electrode mixture layer 10.
  • the method for removing the volatile component is not particularly limited, and can be performed by a commonly used method.
  • the second electrochemical device electrode 14A (negative electrode 8) in the second step can be produced by the same manufacturing method as the first electrochemical device electrode 13A (positive electrode 6) in the first step described above. it can. That is, the manufacturing method of the second electrode for electrochemical device 14A (negative electrode 8) prepares a negative electrode precursor in which a negative electrode active material layer containing a negative electrode active material is provided on at least one main surface of a negative electrode current collector.
  • At least selected from the group consisting of a polymer having a structural unit represented by the general formula (1) and a lithium salt, sodium salt, calcium salt, and magnesium salt in the negative electrode active material layer of the negative electrode precursor A step of adding a slurry containing one type of electrolyte salt, a molten salt having a melting point of 250 ° C. or less, and a dispersion medium; and removing a volatile component from the slurry added to the negative electrode active material layer; Forming an agent layer. Since the volatile component (dispersion medium) is removed, the negative electrode mixture layer can be composed of an electrode active material, a polymer, an electrolyte salt, and a molten salt.
  • the electrolyte layer 7 is at least one of the positive electrode mixture layer 10 side of the first electrochemical device electrode 13A (positive electrode 6) and the negative electrode mixture layer 12 side of the second electrochemical device electrode 14A (negative electrode 8). One is formed by coating. The electrolyte layer 7 is applied to both the positive electrode mixture layer 10 side of the first electrochemical device electrode 13A (positive electrode 6) and the negative electrode mixture layer 12 side of the second electrochemical device electrode 14A (negative electrode 8). May be formed. In this case, for example, the positive electrode 6 provided with the electrolyte layer 7 (that is, the first electrochemical device electrode 13B) and the negative electrode 8 provided with the electrolyte layer 7 (that is, the second electrochemical device electrode 14B). ) Are stacked such that the electrolyte layers 7 are in contact with each other, whereby the secondary battery 1 can be manufactured.
  • the electrolyte layer 7 is obtained by kneading the material used for the electrolyte layer 7 and dispersing it in a dispersion medium to obtain an electrolyte sheet forming slurry. And can be prepared by coating on a substrate and removing the dispersion medium.
  • the dispersion medium may be an organic solvent such as acetone, ethyl methyl ketone, ⁇ -butyrolactone, N-methyl-2-pyrrolidone.
  • the first electrochemical device electrode 13A (positive electrode 6), the electrolyte layer 7, and the second electrochemical device electrode 14A (negative electrode 8) are laminated by, for example, lamination.
  • the secondary battery 1 can be manufactured.
  • the electrolyte layer 7 is on the positive electrode mixture layer 10 side of the first electrochemical device electrode 13A (positive electrode 6) and on the negative electrode mixture layer 12 side of the second electrochemical device electrode 14A (negative electrode 8).
  • the positive electrode current collector 9, the positive electrode mixture layer 10, the electrolyte layer 7, the negative electrode mixture layer 12, and the negative electrode current collector 11 are stacked in this order.
  • the method for forming the electrolyte layer 7 on the positive electrode mixture layer 10 of the positive electrode 6 is, for example, by dispersing the material used for the electrolyte layer 7 in a dispersion medium.
  • An example is a method in which after the slurry for forming an electrolyte layer is obtained, the slurry for forming an electrolyte layer is applied onto the positive electrode mixture layer 10 using an applicator.
  • the dispersion medium may be an organic solvent such as acetone, ethyl methyl ketone, ⁇ -butyrolactone, N-methyl-2-pyrrolidone.
  • the electrolyte salt may be dissolved in the molten salt in advance and then dispersed in the dispersion medium together with other materials.
  • the method for forming the electrolyte layer 7 on the negative electrode mixture layer 12 of the negative electrode 8 (that is, the method for producing the second electrochemical device electrode 14B) is to form the electrolyte layer 7 on the positive electrode mixture layer 10 of the positive electrode 6. It may be similar to the method.
  • FIG. 5 is an exploded perspective view showing an electrode group of the secondary battery according to the second embodiment.
  • the secondary battery in the second embodiment is different from the secondary battery in the first embodiment in that the electrode group 2 ⁇ / b> B further includes a bipolar electrode 15. That is, the electrode group 2B includes the positive electrode 6, the first electrolyte layer 7, the bipolar electrode 15, the second electrolyte layer 7, and the negative electrode 8 in this order.
  • the bipolar electrode 15 is provided on the surface of the bipolar electrode current collector 16, the positive electrode mixture layer 10 provided on the surface of the bipolar electrode current collector 16 on the negative electrode 8 side, and the surface of the bipolar electrode current collector 16 on the positive electrode 6 side.
  • the negative electrode mixture layer 12 is provided.
  • FIG. 6A is a cross-sectional view taken along line III-III in FIG.
  • the bipolar electrode 15 constitutes a third electrochemical device electrode. That is, as shown in FIG. 6A, the third electrode 17 ⁇ / b> A for electrochemical devices includes a bipolar electrode current collector 16 and a positive electrode mixture layer provided on one surface of the bipolar electrode current collector 16. 10 and a negative electrode mixture layer 12 provided on the other surface of the bipolar electrode current collector 16.
  • FIG. 6B is a schematic cross-sectional view showing a third electrode for an electrochemical device (bipolar electrode member) according to another embodiment.
  • the third electrode for electrochemical device 17B includes a bipolar electrode current collector 16, and a positive electrode mixture layer 10 provided on one surface of the bipolar electrode current collector 16.
  • a second electrolyte layer 7 provided on the opposite side of the positive electrode mixture layer 10 from the bipolar electrode current collector 16, a negative electrode mixture layer 12 provided on the other surface of the bipolar electrode current collector 16, And a first electrolyte layer 7 provided on the opposite side of the negative electrode mixture layer 12 from the bipolar electrode current collector 16.
  • the bipolar electrode current collector 16 may be aluminum, stainless steel, titanium or the like, or may be a clad material formed by rolling and joining aluminum and copper or stainless steel and copper.
  • the first electrolyte layer 7 and the second electrolyte layer 7 may be the same or different from each other.
  • the polymer electrolyte composition includes a polymer having a structural unit represented by the general formula (1), at least one electrolyte salt selected from the group consisting of a lithium salt, a sodium salt, a calcium salt, and a magnesium salt, and a melting point And a molten salt having a temperature of 250 ° C. or lower.
  • the polymer electrolyte composition may further contain a dispersion medium.
  • the polymer, electrolyte salt, and molten salt may be the same as those exemplified in the polymer, electrolyte salt, and molten salt in the positive electrode mixture layer 10 described above.
  • the content of the polymer, the content of the electrolyte salt, and the content of the molten salt relative to the total amount of the polymer, the electrolyte salt, and the molten salt are the total amount of the polymer, the electrolyte salt, and the molten salt in the positive electrode mixture layer 10 described above.
  • the content may be the same as the numerical values exemplified for the polymer content, the electrolyte salt content, and the molten salt content.
  • the dispersion medium may be the same as the dispersion medium exemplified in the slurry (the slurry for forming the positive electrode mixture layer) in the first step for producing the first electrode for electrochemical device 13A (positive electrode 6).
  • the mass ratio of the content of the dispersion medium to the content of the polymer is the mass ratio of the content of the dispersion medium to the content of the polymer in the first step for producing the first electrode for electrochemical device 13A (positive electrode 6). It may be the same as the exemplified numerical value.
  • This positive electrode active material layer forming slurry was applied to both surfaces (both main surfaces) on a positive electrode current collector (a 20 ⁇ m thick aluminum foil), dried at 120 ° C., rolled, and coated on one side at 60 g / m. 2.
  • a positive electrode active material layer having a mixture density of 2.3 g / cm 3 was formed to prepare a positive electrode precursor.
  • This slurry for forming a negative electrode active material layer was applied to both sides of a negative electrode current collector (aluminum foil having a thickness of 20 ⁇ m), dried at 120 ° C. and rolled, and the coating amount on one side was 67 g / m 2 .
  • a negative electrode active material layer of 8 g / cm 3 was formed to prepare a negative electrode precursor.
  • the mass ratio of the content of the dispersion medium to the content of the polymer of the slurry A was 3. Further, 2 parts by mass of Li [TFSI] as an electrolyte salt, 10 parts by mass of [Py12] [TFSI] as a molten salt, and 16 parts by mass of acetone as a dispersion medium are added to 8 parts by mass of the obtained polymer. Stirring was performed to obtain slurry B (slurry for forming an electrolyte sheet).
  • Slurry B was dropped on a SUS plate having a diameter of 16 mm and dried at 40 ° C. for 2 hours to volatilize acetone. Then, it dried under reduced pressure of 1.0 ⁇ 10 4 Pa or less (0.1 atm or less) at 60 ° C. for 10 hours to obtain an electrolyte sheet having a thickness of 400 ⁇ m.
  • Example 1-1 Preparation of positive electrode> Slurry A was added to the positive electrode active material layer of the positive electrode precursor prepared above by a doctor blade method with a gap of 200 ⁇ m. Then, using a vacuum desiccator, 0.05 MPa pressure reduction and atmospheric pressure release were repeated 10 times to remove volatile components to produce a positive electrode mixture layer, and a positive electrode provided with a positive electrode mixture layer was obtained.
  • Slurry A was added to the negative electrode active material layer of the negative electrode precursor prepared above by a doctor blade method with a gap of 200 ⁇ m. Then, using a vacuum desiccator, 0.05 MPa pressure reduction and atmospheric pressure release were repeated 10 times to remove volatile components to produce a negative electrode mixture layer, and a negative electrode provided with a negative electrode mixture layer was obtained.
  • Slurry B was applied to the positive electrode mixture layer of the obtained positive electrode by a doctor blade method with a gap of 250 ⁇ m.
  • a vacuum desiccator 0.05 MPa pressure reduction and atmospheric pressure release were repeated 10 times, and vacuum drying was performed at 60 ° C. for 12 hours to obtain a positive electrode having an electrolyte layer with a thickness of 30 ⁇ m on the positive electrode mixture layer.
  • a negative electrode having an electrolyte layer with a thickness of 30 ⁇ m was obtained on the negative electrode mixture layer of the negative electrode.
  • the positive electrode and negative electrode having the electrolyte layer prepared above were punched out to ⁇ 15 mm in order to produce a coin-type battery.
  • the positive electrode and the negative electrode were overlapped and placed in a CR2032-type coin cell container so that the electrolyte layers were in contact with each other.
  • the obtained laminated body was sealed by caulking the upper part of the battery container via an insulating gasket, whereby the secondary battery of Example 1 was obtained.
  • battery preparation was performed in the glove box of argon atmosphere.
  • FIG. 7A is a cross-sectional image of one location with the positive electrode produced in Example 1, taken with a scanning electron microscope (SEM).
  • the positive electrode includes a positive electrode current collector 30 and a positive electrode mixture layer 20 provided on at least one main surface of the positive electrode current collector 30.
  • FIGS. 7B and 7C The results of surface analysis (element mapping) at the location shown in FIG. 7A are shown in FIGS. 7B and 7C.
  • Surface analysis was performed by energy dispersive X-ray analysis (SEM-EDX) attached to the SEM.
  • the pale (white) spot in FIG. 7B is a spot where cobalt is present.
  • Cobalt is derived from Li (Co 1/3 Ni 1/3 Mn 1/3 ) O 2 which is a positive electrode active material.
  • the pale (white) spot in FIG. 7C is a spot where sulfur is present.
  • Sulfur is derived from [TFSI] of [P (DADMA)] [TFSI], Li [TFSI], and [Py12] [TFSI].
  • components such as a polymer are uniformly dispersed in the positive electrode material, suggesting that an interface is formed between the polymer and other components and the positive electrode material.
  • Battery performance was evaluated using the secondary battery produced by the above method. Using a charge / discharge device (Toyo System Co., Ltd., trade name: TOSCAT-3200), charge / discharge measurement was performed at 50 ° C. and 0.05C. C represents “current value [A] / design theoretical capacity [Ah]”, and 1 C represents a current value for fully charging or discharging the battery in one hour. The results are shown in Table 1. It can be said that the larger the value of the discharge capacity, the better the battery characteristics.
  • FIG. 8 is a graph showing the battery performance evaluation of the secondary batteries produced in Example 1 and Comparative Example 1.
  • the secondary battery of Example 1 was found to have a discharge capacity approximately twice that of the secondary battery of Comparative Example 1 and excellent battery characteristics. From these results, it was confirmed that the electrode for an electrochemical device of the present invention can enhance battery characteristics even when a battery is produced by adding a solid electrolyte to the electrode mixture layer.
  • This positive electrode active material layer-forming slurry is applied to the main surface of the positive electrode current collector (aluminum foil having a thickness of 20 ⁇ m), dried at 120 ° C., rolled, and coated on one side at 120 g / m 2 .
  • a positive electrode active material layer of 2.7 g / cm 3 was formed to prepare a positive electrode precursor.
  • carbon nanotube conductive agent, trade name: VGCF, fiber diameter 150 nm (manufacturer catalog value), Showa Denko KK) 0.4 part by mass
  • This negative electrode active material layer forming slurry is applied to the main surface on the negative electrode current collector (copper foil having a thickness of 10 ⁇ m), dried at 80 ° C. and rolled, and the coating amount on one side is 60 g / m 2 , the mixture density is 1.
  • a negative electrode active material layer of .6 g / cm 3 was formed to prepare a negative electrode precursor.
  • an ionic liquid solution of Li [TFSI] is prepared by dissolving the electrolyte salt in [DEME] [TFSI] so that the concentration of the electrolyte salt is 1.5 mol / L. did.
  • the obtained ionic liquid solution, SiO 2 particles, binder (trade name: Kureha KF Polymer # 8500, Kureha Co., Ltd.), and NMP were mixed in 43 parts by mass, 23 parts by mass, 34 parts by mass, and 143 parts by mass, respectively.
  • a slurry for forming an electrolyte sheet was prepared.
  • This slurry for forming an electrolyte sheet was applied to the main surface on the support film and dried at 80 ° C. to prepare an electrolyte sheet having a thickness of 20 ⁇ m. In order to produce a secondary battery, the obtained electrolyte sheet was punched into a circular shape.
  • Example 2-1 Preparation of positive electrode and negative electrode> Slurry C was added to the positive electrode active material layer of the positive electrode precursor and negative electrode active material layer of the negative electrode precursor produced above by applying a slurry with a gap of 150 ⁇ m by the doctor blade method. Then, the volatile component (dispersion medium) is removed by vacuum drying at 60 ° C. for 12 hours to produce a positive electrode mixture layer and a negative electrode mixture layer. A negative electrode provided was obtained. In order to produce a secondary battery, the obtained positive electrode and negative electrode were punched into a circular shape.
  • a positive electrode, an electrolyte sheet, and a negative electrode punched into a circular shape were stacked in this order and placed in a CR2032-type coin cell container.
  • the obtained laminated body was sealed by caulking the upper part of the battery container via an insulating gasket, to obtain a secondary battery of Example 2-1.
  • Example 2-2 A secondary battery of Example 2-2 was obtained in the same manner as Example 2-1, except that the slurry C was changed to the slurry D.
  • Example 2-3 A secondary battery of Example 2-3 was obtained in the same manner as Example 2-1, except that the slurry C was changed to the slurry E.
  • Example 2-4 A secondary battery of Example 2-4 was obtained in the same manner as Example 2-1, except that the slurry C was changed to the slurry F.
  • Example 2-5 A secondary battery of Example 2-5 was obtained in the same manner as Example 2-1, except that the slurry C was changed to the slurry G.
  • Comparative Example 2-1 A secondary battery of Comparative Example 2-1 was obtained in the same manner as in Example 2-1, except that the slurry C was not applied to the positive electrode active material layer of the positive electrode precursor and the negative electrode active material layer of the negative electrode precursor. .
  • Battery performance was evaluated using the secondary batteries of Examples 2-1 to 2-5 and Comparative Example 2-1 manufactured by the above method.
  • the charge / discharge capacity at 25 ° C. was measured under the following charge / discharge conditions using a charge / discharge device (Toyo System Co., Ltd., trade name: TOSCAT-3200).
  • the results are shown in Table 3. It can be said that the larger the value of the discharge capacity, the better the battery characteristics.
  • the charge capacity and discharge capacity of .05C were determined.
  • the secondary batteries of Examples 2-1 to 2-5 were found to have better battery characteristics than the secondary battery of Comparative Example 2-1. From these results, it was confirmed that the electrode for an electrochemical device of the present invention can enhance battery characteristics even when a battery is produced by adding a solid electrolyte to the electrode mixture layer.
  • This positive electrode active material layer-forming slurry is applied to the main surface of the positive electrode current collector (aluminum foil having a thickness of 20 ⁇ m), dried at 120 ° C., rolled, and coated on one side at 120 g / m 2 .
  • a positive electrode active material layer of 2.7 g / cm 3 was formed to prepare a positive electrode precursor. Then, the electrode was processed for production of a laminate type cell.
  • carbon nanotube conductive agent, trade name: VGCF, fiber diameter 150 nm (manufacturer catalog value), Showa Denko KK) 0.4 part by mass
  • This negative electrode active material layer forming slurry is applied to the main surface on the negative electrode current collector (copper foil having a thickness of 10 ⁇ m), dried at 80 ° C. and rolled, and the coating amount on one side is 60 g / m 2 , the mixture density is 1.
  • a negative electrode active material layer of .6 g / cm 3 was formed to prepare a negative electrode precursor. Then, the electrode was processed for production of a laminate type cell.
  • Li [FSI] is used as an electrolyte salt, and dissolved in [Py13] [FSI] which is an ionic liquid so that the concentration of the electrolyte salt is 1.5 mol / L to prepare an ionic liquid solution of Li [FSI].
  • the obtained ionic liquid solution, SiO 2 particles, binder (trade name: Kureha KF Polymer # 8500, Kureha Co., Ltd.), and NMP were mixed in 43 parts by mass, 23 parts by mass, 34 parts by mass, and 143 parts by mass, respectively.
  • a slurry for forming an electrolyte sheet was prepared. This slurry for forming an electrolyte sheet was applied to the main surface on the support film and dried at 80 ° C. to prepare an electrolyte sheet having a thickness of 20 ⁇ m.
  • Example 3-1 Preparation of positive electrode and negative electrode> Slurry H was added to the positive electrode active material layer of the positive electrode precursor and negative electrode active material layer of the negative electrode precursor produced above by applying a slurry blade with a gap of 150 ⁇ m by the doctor blade method. Then, the volatile component (dispersion medium) is removed by vacuum drying at 60 ° C. for 12 hours to prepare a positive electrode mixture layer and a negative electrode mixture layer, and a positive electrode and a negative electrode mixture layer including the positive electrode mixture layer are provided. A negative electrode was obtained.
  • Example 3-2 A secondary battery of Example 3-2 was obtained in the same manner as Example 3-1, except that the slurry H was changed to the slurry I.
  • Example 3-3 A secondary battery of Example 3-3 was obtained in the same manner as Example 3-1, except that the slurry H was changed to the slurry J.
  • Example 3-4 A secondary battery of Example 3-4 was obtained in the same manner as Example 3-1, except that the slurry H was changed to the slurry K.
  • Battery performance was evaluated using the secondary batteries of Examples 3-1 to 3-4 produced by the above method.
  • the charge / discharge capacity at 25 ° C. was measured at 5 ° C. and 0.05 C using a charge / discharge device (Toyo System Co., Ltd., trade name: TOSCAT-3200).
  • Discharge capacity is a constant current (CCCV) charge at a final voltage of 4.2V and 0.05C, and then a cycle of constant current (CC) discharge to a final voltage of 2.7V at 0.05C.
  • C means “current value (A) / battery capacity (Ah)”.
  • the results are shown in Table 5. It can be said that the larger the value of the discharge capacity, the better the battery characteristics.
  • FIGS. 9 (a) and 9 (b) and FIGS. 10 (a) and 10 (b) show one location of the positive electrode produced in Examples 3-1 to 3-4, which was taken with a scanning electron microscope (SEM). It is a cross-sectional image.
  • the positive electrode includes a positive electrode current collector 30 and a positive electrode mixture layer 20 provided on at least one main surface of the positive electrode current collector 30. From the comparison of the cross-sectional image shown in FIG. 9 and the cross-sectional image shown in FIG. 10, it was observed that the polymer filling property of the positive electrode mixture layer tends to improve as the acetone used in the slurry decreases.
  • the secondary batteries of Examples 3-1 to 3-4 were all excellent in battery characteristics. From these results, it was confirmed that the electrode for an electrochemical device of the present invention can enhance battery characteristics even when a battery is produced by adding a solid electrolyte to the electrode mixture layer. On the other hand, as the mass ratio of the content of the dispersion medium to the content of the polymer becomes smaller, the positive electrode mixture layer can be more fully filled with the polymer, and better ion conductivity tends to be obtained. It was suggested that there is.
  • an electrode for an electrochemical device and a method for producing the same that can improve battery characteristics even when a battery is produced by adding a solid electrolyte to an electrode mixture layer.
  • the electrochemical device using such an electrode for electrochemical devices is provided.
  • the polymer electrolyte composition which can improve the ionic conductivity of an electrode mixture layer is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

電極集電体と、電極集電体の少なくとも一方の主面上に設けられた電極合剤層と、を備え、電極合剤層が、電極活物質と、下記一般式(1)で表される構造単位を有するポリマと、リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選択される少なくとも1種の電解質塩と、融点が250℃以下である溶融塩と、を含有する、電気化学デバイス用電極が開示される。 [式(1)中、X-は対アニオンを示す。]

Description

電気化学デバイス用電極及びその製造方法、電気化学デバイス、並びにポリマ電解質組成物
 本発明は、電気化学デバイス用電極及びその製造方法、電気化学デバイス、並びにポリマ電解質組成物に関する。
 リチウムイオン二次電池は、高エネルギー密度を有するエネルギーデバイスであり、その特性を活かして、ノートパソコン、携帯電話等のポータブル機器、電気自動車の電源などに使用されている。
 現在、主に用いられているリチウムイオン二次電池は、正極と負極との間にセパレータを挟み、セパレータには有機電解液が含浸されている。このようなリチウムイオン二次電池では、有機電解液が可燃性であるため、異常が発生し電池の温度が上昇した場合、発火する可能性がある。リチウムイオン二次電池において、高エネルギー密度化及び大型化に着手する上で、安全性を向上させることが重要であり、リチウムイオン二次電池の構成から発火等の事態を避けることが求められている。
 このようなことから、発火等の原因となり得る有機電解液を使用しない構成のリチウムイオン二次電池の開発が進められている。中でも、固体電解質の開発が盛んである。しかし、固体電解質を電解質層として用いる場合、固体電解質の流動性の低さから、固体電解質と電極合剤層に含まれる電極活物質との間で界面が形成され難い傾向にある。これを解消する手段の1つとして、電極合剤層のイオン導電性を向上させることが検討されている。
 例えば、特許文献1には、リチウムイオン電池において、電極合剤層に無機固体電解質を加える方法が開示されている。
特開2013-191547号公報
 しかし、特許文献1に記載の方法で使用される無機固体電解質は、柔軟性に乏しく、正極及び負極における電極合剤層内部の空隙の形に合わせた形状変化が困難であるため、所望の電池特性が得られないことがある。また、界面形成性を向上させるために無機固体電解質の添加量を増加した場合には、相対的に電極内の電極活物質比率が低下するため、電池特性が低下する傾向にある。
 本発明は、上記事情に鑑みてなされたものであり、電極合剤層に固体電解質を加えて電池を作製した場合であっても、電池特性を高めることが可能な電気化学デバイス用電極及びその製造方法を提供することを目的とする。また、本発明は、このような電気化学デバイス用電極を用いた電気化学デバイスを提供することを目的とする。さらに、本発明は、電極合剤層のイオン導電性を向上させることが可能なポリマ電解質組成物を提供することを目的とする。
 本発明の第1の態様は、電極集電体と、電極集電体の少なくとも一方の主面上に設けられた電極合剤層と、を備え、電極合剤層が、電極活物質と、下記一般式(1)で表される構造単位を有するポリマ(以下、単に「ポリマ」という場合がある。)と、リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選択される少なくとも1種の電解質塩(以下、単に「電解質塩」という場合がある。)と、融点が250℃以下である溶融塩(以下、単に「溶融塩」という場合がある。)と、を含有する、電気化学デバイス用電極である。
Figure JPOXMLDOC01-appb-C000004
[式(1)中、Xは対アニオンを示す。]
 本発明の第1の態様の電気化学デバイス用電極によれば、電極合剤層において、電極活物質とポリマとの間で良好な界面が形成されるため、電極合剤層に固体電解質を加えて電池を作製した場合であっても、電池特性を高めることができる。
 電解質塩のアニオンは、PF 、BF 、N(FSO 、N(CFSO 、B(C 、及びClO からなる群より選ばれる少なくとも1種であってよい。電解質塩はリチウム塩であってよい。
 溶融塩の含有量は、ポリマ、電解質塩、及び溶融塩の合計量を基準として、10~80質量%であってよい。
 電気化学デバイス用電極は正極であってよい。すなわち、電極集電体は正極集電体であってよく、電極合剤層は正極合剤層であってよく、電極活物質は正極活物質であってよい。
 電気化学デバイス用電極は負極であってよい。すなわち、電極集電体は負極集電体であってよく、電極合剤層は負極合剤層であってよく、電極活物質は負極活物質であってよい。負極活物質は黒鉛を含んでいてよい。負極活物質が黒鉛を含む場合、電解質塩はLiN(FSOを含むことが好ましい。
 本発明の第2の態様は、上述の電気化学デバイス用電極を備える、電気化学デバイスである。電気化学デバイスは二次電池であってよい。
 本発明の第3の態様は、電極集電体の少なくとも一方の主面上に電極活物質を含む電極活物質層が設けられた電極前駆体を用意する工程と、電極前駆体の電極活物質層に、下記一般式(1)で表される構造単位を有するポリマと、リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選択される少なくとも1種の電解質塩と、融点が250℃以下である溶融塩と、分散媒と、を含有するスラリを加える工程と、電極活物質層に加えられたスラリから揮発成分を除去して、電極合剤層を形成する工程と、を備える、電気化学デバイス用電極の製造方法である。
Figure JPOXMLDOC01-appb-C000005
[式(1)中、Xは対アニオンを示す。]
 電解質塩のアニオンは、PF 、BF 、N(FSO 、N(CFSO 、B(C 、及びClO からなる群より選ばれる少なくとも1種であってよい。
 溶融塩の含有量は、ポリマ、電解質塩、及び溶融塩の合計量を基準として、10~80質量%であってよい。
 分散媒はアセトンを含んでいてよい。ポリマの含有量に対する分散媒の含有量の質量比(「分散媒の含有量」/「ポリマの含有量」)は6以下であってよい。
 本発明の第4の態様は、下記一般式(1)で表される構造単位を有するポリマと、リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選択される少なくとも1種の電解質塩と、融点が250℃以下である溶融塩と、を含有する、ポリマ電解質組成物である。
Figure JPOXMLDOC01-appb-C000006
[式(1)中、Xは対アニオンを示す。]
 電解質塩のアニオンは、PF 、BF 、N(FSO 、N(CFSO 、B(C 、及びClO からなる群より選ばれる少なくとも1種であってよい。電解質塩は、リチウム塩であってよい。
 溶融塩の含有量は、ポリマ、電解質塩、及び溶融塩の合計量を基準として、10~80質量%であってよい。
 ポリマ電解質組成物は分散媒をさらに含有していてもよい。分散媒はアセトンを含んでいてよい。ポリマの含有量に対する分散媒の含有量の質量比は6以下であってよい。
 本発明によれば、電極合剤層に固体電解質を加えて電池を作製した場合であっても、電池特性を高めることが可能な電気化学デバイス用電極及びその製造方法が提供される。また、本発明によれば、このような電気化学デバイス用電極を用いた電気化学デバイスが提供される。さらに、本発明によれば、電極合剤層のイオン導電性を向上させることが可能なポリマ電解質組成物が提供される。
第1実施形態に係る電気化学デバイスを示す斜視図である。 図1に示した電気化学デバイスの電極群を示す分解斜視図である。 (a)は一実施形態に係る電気化学デバイス用電極(正極)を説明するための図2のI-I線矢視断面図であり、(b)は他の実施形態に係る電気化学デバイス用電極(正極)を示す模式断面図である。 (a)は一実施形態に係る電気化学デバイス用電極(負極)を説明するための図2のII-II線矢視断面図であり、(b)は他の実施形態に係る電気化学デバイス用電極(負極)を示す模式断面図である。 第2実施形態に係る電気化学デバイスの電極群を示す分解斜視図である。 (a)は他の実施形態に係る電気化学デバイス用電極(バイポーラ電極)を説明するための図2のIII-III線矢視断面図であり、(b)は他の実施形態に係る電気化学デバイス用電極(バイポーラ電極)を示す模式断面図である。 (a)は実施例1-1で作製した正極の走査型電子顕微鏡像であり、(b)は図7(a)に示す正極におけるエネルギー分散型X線分析によるコバルトの分布を示す像であり、(c)は図7(a)に示す正極におけるエネルギー分散型X線分析による硫黄の分布を示す像である。 実施例1-1及び比較例1-1で作製した二次電池の電池性能評価を示すグラフである。 (a)は実施例3-1で作製した正極の走査型電子顕微鏡像であり、(b)は実施例3-2で作製した正極の走査型電子顕微鏡像である。 (a)は実施例3-3で作製した正極の走査型電子顕微鏡像であり、(b)は実施例3-4で作製した正極の走査型電子顕微鏡像である。
 以下、図面を適宜参照しながら、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(ステップ等も含む)は、特に明示した場合を除き、必須ではない。各図における構成要素の大きさは概念的なものであり、構成要素間の大きさの相対的な関係は各図に示されたものに限定されない。
 本明細書における数値及びその範囲についても同様であり、本発明を制限するものではない。本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書中、「電極」とは、正極又は負極を意味する。電極集電体、電極合剤層、電極活物質、電極活物質層、電極前駆体等の他の類似の表現においても同様である。
 本明細書中、略称として以下を用いる場合がある。
 [EMI]:1-エチル-3-メチルイミダゾリウムカチオン
 [DEME]:N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムカチオン
 [Py12]:N-エチル-N-メチルピロリジニウムカチオン
 [Py13]:N-メチル-N-プロピルピロリジニウムカチオン
 [PP13]:N-メチル-N-プロピルピペリジニウムカチオン
 [FSI]:ビス(フルオロスルホニル)イミドアニオン
 [TFSI]:ビス(トリフルオロメタンスルホニル)イミドアニオン
 [f3C]:トリス(フルオロスルホニル)カルボアニオン
 [BOB]:ビスオキサレートボラートアニオン
 [P(DADMA)][Cl]:ポリ(ジアリルジメチルアンモニウム)クロライド
 [P(DADMA)][TFSI]:ポリ(ジアリルジメチルアンモニウム)ビス(トリフルオロメタンスルホニル)イミド
[第1の態様(電気化学デバイス用電極)、第2の態様(電気化学デバイス)、及び第3の態様(電気化学デバイス用電極の製造方法)]
 図1は、第1実施形態に係る電気化学デバイスを示す斜視図である。電気化学デバイスは、二次電池であってよい。以下、二次電池の態様について説明する。
 図1に示すように、二次電池1は、電気化学デバイス用電極及び電解質層から構成される電極群2と、電極群2を収容する袋状の電池外装体3とを備えている。電気化学デバイス用電極は、正極であってもよく、負極であってもよい。電気化学デバイス用電極(正極及び負極)には、それぞれ正極集電タブ4及び負極集電タブ5が設けられている。正極集電タブ4及び負極集電タブ5は、それぞれ正極及び負極が二次電池1の外部と電気的に接続可能なように、電池外装体3の内部から外部へ突き出している。
 電池外装体3は、例えば、ラミネートフィルムで形成されていてよい。ラミネートフィルムは、例えば、ポリエチレンテレフタレート(PET)フィルム等の樹脂フィルムと、アルミニウム、銅、ステンレス鋼等の金属箔と、ポリプロピレン等のシーラント層とがこの順で積層された積層フィルムであってよい。
 図2は、図1に示した二次電池1における電極群2の一実施形態を示す分解斜視図である。図2に示すように、電極群2Aは、正極6と、電解質層7と、負極8とをこの順に備えている。正極6は、正極集電体9と、正極集電体9の少なくとも一方の主面上に設けられた正極合剤層10とを備えている。正極集電体9には、正極集電タブ4が設けられている。負極8は、負極集電体11と、負極集電体11の少なくとも一方の主面上に設けられた負極合剤層12とを備えている。負極集電体11には、負極集電タブ5が設けられている。
 図3(a)は、図2のI-I線矢印断面図である。正極6(第1の電気化学デバイス用電極13A)は、図3(a)に示すように、正極集電体9と、正極集電体9の少なくとも一方の主面上に設けられた正極合剤層10と、を備える。
 図3(b)は、他の実施形態に係る第1の電気化学デバイス用電極を示す模式断面図である。図3(b)に示すように、第1の電気化学デバイス用電極13Bは、正極集電体9と、正極合剤層10と、電解質層7と、をこの順に備えている。
 第1の電気化学デバイス用電極13Aは、正極集電体9を備える。正極集電体9は、アルミニウム、ステンレス鋼、チタン等で形成されていてよい。正極集電体9は、具体的には、例えば、孔径0.1~10mmの孔を有するアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板等であってよい。正極集電体9は、上記以外にも、電池の使用中に溶解、酸化等の変化を生じないものであれば、任意の材料で形成されていてよく、また、その形状、製造方法等も制限されない。
 正極集電体9の厚さは、1μm以上、5μm以上、又は10μm以上であってよい。正極集電体9の厚さは、100μm以下、50μm以下、又は20μm以下であってよい。
 第1の電気化学デバイス用電極13Aは、正極合剤層10を備える。正極合剤層10は、一実施形態において、正極活物質と、特定のポリマと、特定の電解質塩と、特定の溶融塩と、を含有する。
 正極合剤層10は、正極活物質を含有する。正極活物質は、例えば、リチウム遷移金属酸化物、リチウム遷移金属リン酸塩等のリチウム遷移金属化合物であってよい。
 リチウム遷移金属酸化物は、マンガン酸リチウム、ニッケル酸リチウム、コバルト酸リチウム等であってよい。リチウム遷移金属酸化物は、マンガン酸リチウム、ニッケル酸リチウム、コバルト酸リチウム等に含有されるMn、Ni、Co等の遷移金属の一部を、1種若しくは2種以上の他の遷移金属、又はMg、Al等の金属元素(典型元素)で置換したリチウム遷移金属酸化物であってもよい。すなわち、リチウム遷移金属酸化物は、LiM又はLiM(Mは少なくとも1種の遷移金属を含む)で表される化合物であってもよい。リチウム遷移金属酸化物は、具体的には、Li(Co1/3Ni1/3Mn1/3)O、LiNi1/2Mn1/2、LiNi1/2Mn3/2等であってもよい。
 リチウム遷移金属酸化物は、エネルギー密度をさらに向上させる観点から、下記式(A)で表される化合物であってよい。
 LiNiCo 2+e (A)
[式(A)中、Mは、Al、Mn、Mg、及びCaからなる群より選ばれる少なくとも1種であり、a、b、c、d、及びeは、それぞれ0.2≦a≦1.2、0.5≦b≦0.9、0.1≦c≦0.4、0≦d≦0.2、-0.2≦e≦0.2、かつb+c+d=1を満たす数である。]
 リチウム遷移金属リン酸塩は、LiFePO、LiMnPO、LiMn 1-xPO(0.3≦x≦1、MはFe、Ni、Co、Ti、Cu、Zn、Mg、及びZrからなる群より選ばれる少なくとも1種の元素である)等であってよい。
 正極活物質の含有量は、正極合剤層全量を基準として、70質量%以上、80質量%以上、又は90質量%以上であってよい。正極活物質の含有量は、正極合剤層全量を基準として、99質量%以下であってよい。
 正極合剤層10は、下記一般式(1)で表される構造単位を有するポリマを含有する。
Figure JPOXMLDOC01-appb-C000007
 一般式(1)中、Xは対アニオンを示す。ここで、Xとしては、例えば、BF (テトラフルオロボラートアニオン)、PF (ヘキサフルオロホスファートアニオン)、N(FSO (ビス(フルオロスルホニル)イミドアニオン、[FSI])、N(CFSO (ビス(トリフルオロメタンスルホニル)イミドアニオン、[TFSI])、C(SOF) (トリス(フルオロスルホニル)カルボアニオン、[f3C])、B(C (ビスオキサレートボラートアニオン、[BOB])、BF(CF、BF(C、BF(C、BF(C、C(SOCF 、CFSO、CFCOO、RCOO(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)等が挙げられる。これらの中でも、Xは、好ましくはBF 、PF 、[FSI]、[TFSI]、及び[f3C]からなる群より選ばれる少なくとも1種、より好ましくは[TFSI]又は[FSI]である。
 一般式(1)で表される構造単位を有するポリマの粘度平均分子量Mv(g・mol-1)は、特に制限されないが、好ましくは1.0×10以上、より好ましくは1.0×10以上である。また、ポリマの粘度平均分子量は、好ましくは5.0×10以下、より好ましくは1.0×10以下である。
 本明細書において、「粘度平均分子量」とは、一般的な測定方法である粘度法によって評価することができ、例えば、JIS K 7367-3:1999に基づいて測定した極限粘度数[η]から算出することができる。
 一般式(1)で表される構造単位を有するポリマは、イオン伝導性の観点から、一般式(1)で表される構造単位のみからなるポリマ、すなわちホモポリマであることが好ましい。
 一般式(1)で表される構造単位を有するポリマは、下記一般式(2)で表されるポリマであってよい。
Figure JPOXMLDOC01-appb-C000008
 一般式(2)中、nは300~4000であり、Yは対アニオンを示す。Yは、Xで例示したものと同様のものを用いることができる。
 nは、300以上、好ましくは400以上、より好ましくは500以上である。また、4000以下、好ましくは3500以下、より好ましくは3000以下である。また、nは、300~4000、好ましくは400~3500、より好ましくは500~3000である。
 一般式(1)で表される構造単位を有するポリマの製造方法は、特に制限されないが、例えば、Journal of Power Sources 2009,188,558-563に記載の製造方法を用いることができる。
 一般式(1)で表される構造単位を有するポリマ(X=[TFSI])は、例えば、以下の製造方法によって得ることができる。
 まず、ポリ(ジアリルジメチルアンモニウム)クロライド([P(DADMA)][Cl])を脱イオン水に溶解し、撹拌して[P(DADMA)][Cl]水溶液を作製する。[P(DADMA)][Cl]は、例えば、市販品をそのまま用いることができる。次いで、別途、Li[TFSI]を脱イオン水に溶解し、Li[TFSI]を含む水溶液を作製する。その後、[P(DADMA)][Cl]に対するLi[TFSI]のモル比(Li[TFSI]のモル数/[P(DADMA)][Cl]のモル数)が1.2~2.0になるように、2つの水溶液を混合して2~8時間撹拌し、固体を析出させ、得られた固体をろ過回収する。脱イオン水を用いて固体を洗浄し、12~48時間真空乾燥することによって、一般式(1)で表される構造単位を有するポリマ([P(DADMA)][TFSI])を得ることができる。
 一般式(1)で表される構造単位を有するポリマの含有量は、ポリマ、後述の電解質塩、及び後述の溶融塩の合計量を基準として、5~50質量%であってよい。ポリマの含有量は、ポリマ、電解質塩、及び溶融塩の合計量を基準として、より好ましくは8質量%以上、さらに好ましくは15質量%以上である。また、ポリマの含有量は、ポリマ、電解質塩、及び溶融塩の合計量を基準として、より好ましくは35質量%以下、さらに好ましくは25質量%以下である。
 一般式(1)で表される構造単位を有するポリマの含有量は、特に制限されないが、正極合剤層全量基準として、0.5質量%以上であってよい。また、ポリマの含有量は、正極合剤層全量基準として、25質量%以下であってよい。
 正極合剤層10は、リチウム塩、ナトリウム塩、マグネシウム塩、及びカルシウム塩からなる群より選ばれる少なくとも1種の電解質塩を含有する。電解質塩は、通常のイオン電池用の電解液の電解質塩として使用されるものを使用することができる。電解質塩のアニオンは、ハロゲン化物イオン(I、Cl、Br等)、SCN、BF 、BF(CF、BF(C、BF(C、BF(C、PF 、ClO 、SbF 、[FSI]、[TFSI]、N(CSO 、BPh 、B(C 、[f3C]、C(CFSO 、CFCOO、CFSO、CSO、[BOB]、RCOO(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)等であってよい。これらの中でも、電解質塩のアニオンは、好ましくはPF 、BF 、[FSI]、[TFSI]、[BOB]、及びClO からなる群より選ばれる少なくとも1種、より好ましくは[TFSI]又は[FSI]、さらに好ましくは[FSI]である。
 リチウム塩は、LiPF、LiBF、Li[FSI]、Li[TFSI]、Li[f3C]、Li[BOB]、LiClO、LiBF(CF)、LiBF(C)、LiBF(C)、LiBF(C)、LiC(SOCF、LiCFSOO、LiCFCOO、LiRCOO(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)等であってよい。これらは、単独で使用してもよく、2種以上を併用していてもよい。
 ナトリウム塩は、NaPF、NaBF、Na[FSI]、Na[TFSI]、Na[f3C]、Na[BOB]、NaClO、NaBF(CF)、NaBF(C)、NaBF(C)、NaBF(C)、NaC(SOCF、NaCFSOO、NaCFCOO、NaRCOO(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)等であってよい。これらは、単独で使用してもよく、2種以上を併用していてもよい。
 マグネシウム塩は、Mg(PF、Mg(BF、Mg[FSI]、Mg[TFSI]、Mg[f3C]、Mg[BOB]、Mg(ClO、Mg[BF(CF、Mg[BF(C)]、Mg[BF(C)]、Mg[BF(C)]、Mg[C(SOCF、Mg(CFSOO)、Mg(CFCOO)、Mg(RCOO)(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)等であってよい。これらは、単独で使用してもよく、2種以上を併用していてもよい。
 カルシウム塩は、Ca(PF、Ca(BF、Ca[FSI]、Ca[TFSI]、Ca[f3C]、Ca[BOB]、Ca(ClO、Ca[BF(CF、Ca[BF(C)]、Ca[BF(C)]、Ca[BF(C)]、Ca[C(SOCF、Ca(CFSOO)、Ca(CFCOO)、Ca(RCOO)(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)等であってよい。これらは、単独で使用してもよく、2種以上を併用していてもよい。
 これらの中でも、解離性及び電気化学的安定性の観点から、好ましくはリチウム塩、より好ましくはLiPF、LiBF、Li[FSI]、Li[TFSI]、Li[f3C]、Li[BOB]、及びLiClOからなる群より選ばれる少なくとも1種、さらに好ましくはLi[TFSI]又はLi[FSI]、特に好ましくLi[FSI]である。
 一般式(1)で表される構造単位を有するポリマに対する電解質塩の質量比(電解質塩の質量/一般式(1)で表される構造単位を有するポリマの質量)は、特に制限されないが、好ましくは0.1以上、より好ましくは0.15以上、さらに好ましくは0.2以上である。また、質量比は、好ましくは1.0以下、より好ましくは0.9以下、さらに好ましくは0.8以下である。質量比が0.1以上であると、イオンキャリア濃度が充分となり、イオン伝導度がより向上する傾向にある。質量比が1.0以下であると、電解質の柔軟性がより向上する傾向にある。
 電解質塩の含有量は、ポリマ、電解質塩、及び後述の溶融塩の合計量を基準として、5~30質量%であってよい。電解質塩の含有量は、ポリマ、電解質塩、及び溶融塩の合計量を基準として、より好ましくは10質量%以上である。また、溶融塩の含有量は、ポリマ、電解質塩、及び溶融塩の合計量を基準として、より好ましくは25質量%以下である。
 電解質塩の含有量は、特に制限されないが、正極合剤層全量基準として、0.1質量%以上であってよい。また、電解質塩の含有量は、正極合剤層全量基準として、15質量%以下であってよい。
 正極合剤層10は、融点が250℃以下である溶融塩を含有する。溶融塩は、カチオンとアニオンとから構成されるものである。溶融塩は、融点が250℃以下であれば、特に制限されずに、通常のイオン液体又は柔粘性結晶(プラスチッククリスタル)を使用することができる。
 なお、本明細書において、「イオン液体」は、30℃で液体である溶融塩、すなわち、融点が30℃以下である溶融塩を意味し、「柔粘性結晶」は30℃で固体である溶融塩、すなわち、融点が30℃より高い溶融塩を意味する。
 イオン液体は、30℃で液体である溶融塩であれば、特に制限されることなく、使用することができる。具体的には、例えば、カチオンとして、[EMI]、[DEME]、[Py12]、[Py13]、又は[PP13]と、アニオンとして、PF 、BF 、[FSI]、[TFSI]、又は[f3C]とを組み合わせたもので、30℃で液体のものが挙げられる。より具体的には、[EMI][TFSI](融点:-15℃)、[DEME][TFSI](融点:-83℃)、[EMI][FSI](融点:-13℃)、[DEME][FSI](融点:<25℃)、[Py13][FSI](融点:-10℃)等が挙げられる。これらは、単独で使用してもよく、2種以上を併用していてもよい。また、後述の柔粘性結晶と組み合わせて使用してもよい。
 イオン液体の融点は、特に制限されないが、好ましくは25℃以下、より好ましくは10℃以下、さらに好ましくは0℃以下である。融点が25℃以下であると、室温(例えば、25℃)以下においても、イオン伝導度が低下し難い傾向にある。イオン液体の融点の下限は、特に制限されないが、-150℃以上、-120℃以上、又は-90℃以上であってよい。
 柔粘性結晶は、30℃で固体であり、融点が250℃以下である溶融塩であれば、特に制限されることなく、使用することができる。具体的には、カチオンとして、[EMI]、[DEME]、[Py12]、[Py13]、又は[PP13]と、アニオン成分として、PF 、BF 、[FSI]、[TFSI]、又は[f3C]との組み合わせたもので、30℃で固体のものが挙げられる。より具体的には、[Py12][TFSI](融点:90℃)、[Py12][FSI](融点:205℃)、[DEME][f3C](融点:69℃)、[Py13][f3C](融点:177℃)、[PP13][f3C](融点:146℃)等が挙げられる。これらは、単独で使用してもよく、2種以上を併用していてもよい。また、前述のイオン液体と組み合わせて使用してもよい。柔粘性結晶は、融点が80℃以上であると、通常の電池使用時に液漏れをより抑制できる傾向にある。したがって、柔粘性結晶を用いることによって、単一セル内に電極が直列に積層されたバイポーラ電極を有する電池を実現することが可能となり得る。
 溶融塩のカチオンは、イオン伝導度の観点から、好ましくは[EMI]、[DEME]、[Py12]、又は[Py13]、より好ましくは[EMI]である。溶融塩のアニオンは、イオン伝導度の観点から、好ましくは[FSI]又は[TFSI]、より好ましくは[FSI]である。溶融塩は、イオン伝導度の観点から、[EMI][FSI]、[DEME][FSI]、[Py12][FSI]、[Py13][FSI]、[EMI][TFSI]、[DEME][TFSI]、[Py12][TFSI]、又は[Py13][TFSI]を含むことが好ましく、[EMI][FSI]を含むことがより好ましい。
 柔粘性結晶の融点は、250℃以下であり、好ましくは200℃以下、より好ましくは150℃以下、さらに好ましくは100℃以下である。融点が250℃以下であると、イオン伝導度が高まる傾向にある。溶融塩の融点の下限は、特に制限されないが、例えば、80℃以上とすることができる。
 溶融塩の含有量は、ポリマ、電解質塩、及び溶融塩の合計量を基準として、10~80質量%であってよい。溶融塩の含有量は、ポリマ、電解質塩、及び溶融塩の合計量を基準として、より好ましくは20質量%以上、さらに好ましくは30質量%以上、特に好ましくは40質量%以上である。また、溶融塩の含有量は、ポリマ、電解質塩、及び溶融塩の合計量を基準として、より好ましくは75質量%以下、さらに好ましくは70質量%以下である。
 溶融塩の含有量は、特に制限されないが、正極合剤層全量基準として、0.5質量%以上であってよい。また、溶融塩の含有量は、正極合剤層全量基準として、25質量%以下であってよい。
 正極合剤層10は、導電剤、バインダ等をさらに含有していてもよい。
 導電剤は、カーボンブラック、黒鉛、炭素繊維、カーボンナノチューブ、アセチレンブラック等であってよい。
 導電剤の含有量は、正極合剤層全量を基準として、1~15質量%であってよい。
 バインダは、ポリフッ化ビニリデン、ポリアクリロニトリル、スチレン・ブタジエンゴム、カルボキシメチルセルロース、フッ素ゴム、エチレン・プロピレンゴム、ポリアクリル酸、ポリイミド、ポリアミド等の樹脂;これら樹脂を主骨格として有する共重合体の樹脂(例えば、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体等)などであってよい。
 バインダの含有量は、正極合剤層全量を基準として、1~15質量%であってよい。
 正極合剤層10の厚さは、特に制限されないが、10μm以上、20μm以上、又は30μm以上であってよい。正極合剤層10の厚さは、100μm以下、80μm以下、又は60μm以下であってよい。
 正極合剤層10の合剤密度は、1g/cm以上であってよい。
 電解質層7は、一実施形態において、固体電解質と、電解質塩と、溶融塩と、を含有する。電解質層7としては、例えば、当該成分を含有する電解質組成物をシート状に形成したもの(電解質シート)を用いることができる。
 固体電解質としては、例えば、ポリマ電解質、無機固体電解質等が挙げられる。ポリマ電解質及び無機固体電解質は、特に制限されず、通常のイオン電池用のポリマ電解質及び無機固体電解質として使用されるものを用いることができる。
 上述した一般式(1)で表される構造単位を有するポリマは、ポリマ電解質としての性質を有し得る。そのため、当該ポリマは、ポリマ電解質として、好適に用いることができる。
 無機固体電解質は、LiLaZr12(LLZ)等であってよい。
 電解質塩及び溶融塩は、上述した正極合剤層に含有される電解質塩及び溶融塩と同様のものであってよい。
 電解質組成物は、必要に応じて、ホウ酸エステル、アルミン酸エステル等のリチウム塩解離能を有する添加剤などをさらに含有していてもよい。
 電解質層7として予めシート状に形成された電解質シートを用いる場合、電解質シートは、酸化物粒子と、バインダと、電解質塩と、イオン液体と、を含有する電解質組成物をシート状に形成したものであってもよい。
 酸化物粒子は、例えば、無機酸化物の粒子である。無機酸化物は、例えば、Li、Mg、Al、Si、Ca、Ti、Zr、La、Na、K、Ba、Sr、V、Nb、B、Ge等を構成元素として含む無機酸化物であってよい。酸化物粒子は、SiO、Al、AlOOH、MgO、CaO、ZrO、TiO、LiLaZr12、及びBaTiOからなる群より選ばれる少なくとも1種の粒子であってもよい。酸化物粒子は極性を有するため、電解質層7中の電解質の解離を促進し、電池特性を高めることができる。
 バインダ、電解質塩、及びイオン液体は、上述した正極合剤層に含有されるバインダ、電解質塩、及びイオン液体と同様のものであってよい。
 電解質層7の厚さは、強度を高め安全性を向上させる観点から、5~200μmであってよい。
 図4(a)は、図2のII-II線矢印断面図である。負極8(第2の電気化学デバイス用電極14A)は、図4(a)に示すように、負極集電体11と、負極集電体11の少なくとも一方の主面上に設けられた負極合剤層12と、を備える。
 図4(b)は、他の実施形態に係る第2の電気化学デバイス用電極を示す模式断面図である。図4(b)に示すように、第2の電気化学デバイス用電極14Bは、負極集電体11と、負極合剤層12と、電解質層7と、をこの順に備えている。電解質層7は、上述した第1の電気化学デバイス用電極における電解質層7と同様であるので、以下では説明を省略する。
 第2の電気化学デバイス用電極14Aは、負極集電体11を備える。負極集電体11は、銅、ステンレス鋼、チタン、ニッケル等で形成されていてよい。負極集電体11は、具体的には、圧延銅箔、孔径0.1~10mmの孔を有する銅製穿孔箔、エキスパンドメタル、発泡金属板等であってもよい。負極集電体11は、上記以外の任意の材料で形成されていてもよく、また、その形状、製造方法等も制限されない。
 負極集電体11の厚さは、1μm以上、5μm以上、又は10μm以上であってよい。負極集電体11の厚さは、100μm以下、50μm以下、又は20μm以下であってよい。
 第2の電気化学デバイス用電極14Aは、負極合剤層12を備える。負極合剤層12は、一実施形態において、負極活物質と、特定のポリマと、特定の電解質塩と、特定の溶融塩と、を含有する。
 負極合剤層12は、負極活物質を含有する。負極活物質は、二次電池等の通常のエネルギーデバイスの分野の負極活物質として使用されるものを使用することができる。負極活物質としては、例えば、金属リチウム、リチウム合金、金属化合物、炭素材料、金属錯体、有機高分子化合物等が挙げられる。これらは、単独で使用してもよく、2種以上を併用していてもよい。これらの中でも、負極活物質は、炭素材料であることが好ましい。炭素材料としては、例えば、天然黒鉛(鱗片状黒鉛等)、人工黒鉛等の黒鉛、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、非晶質炭素、炭素繊維などが挙げられる。負極活物質は、黒鉛を含むことが好ましい。
 負極活物質の含有量は、負極合剤層全量を基準として、60質量%以上、65質量%以上、又は70質量%以上であってよい。負極活物質の含有量は、負極合剤層全量を基準として、99質量%以下、95質量%以下、又は90質量%以下であってよい。
 負極合剤層12は、正極合剤層10に含有される、一般式(1)で表される構造単位を有するポリマと、リチウム塩、ナトリウム塩、カルシウム塩及びマグネシウム塩からなる群より選択される少なくとも1種の電解質塩と、融点が250℃以下である溶融塩と、を含有する。これらの含有量は、正極合剤層10と同様である。
 負極活物質が黒鉛を含む場合、電解質塩は、Li[FSI]を含むことが好ましい。負極活物質が黒鉛を含み、かつ電解質塩がLi[FSI]を含むことによって、得られる二次電池の電池特性がより向上する傾向にある。
 負極合剤層12は、上述した正極合剤層10に含有される導電剤、バインダ等をさらに含有していてもよい。これらの含有量は、正極合剤層10と同様である。
 負極合剤層12の厚さは、特に制限されないが、10μm以上、15μm以上、又は20μm以上であってよい。負極合剤層12の厚さは、50μm以下、45μm以下、又は40μm以下であってよい。
 負極合剤層12の合剤密度は、1g/cm以上であってよい。
 続いて、上述した二次電池1の製造方法について説明する。第1実施形態に係る二次電池1の製造方法は、第1の電気化学デバイス用電極13A(正極6)を製造する第1の工程と、第2の電気化学デバイス用電極14A(負極8)を製造する第2の工程と、第1の電気化学デバイス用電極13A(正極6)と第2の電気化学デバイス用電極14A(負極8)との間に電解質層7を設ける第3の工程と、を備える。
 上述の第1の工程における第1の電気化学デバイス用電極13A(正極6)の製造方法は、正極集電体の少なくとも一方の主面上に正極活物質を含む正極活物質層が設けられた正極前駆体を用意する工程と、正極前駆体の正極活物質層に、一般式(1)で表される構造単位を有するポリマと、リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選択される少なくとも1種の電解質塩と、融点が250℃以下である溶融塩と、分散媒と、を含有するスラリを加える工程と、正極活物質層に加えられたスラリから揮発成分を除去して、正極合剤層を形成する工程と、を備える。正極合剤層は、揮発成分(分散媒)が除去されることから、電極活物質、ポリマ、電解質塩、及び溶融塩で構成され得る。
 正極前駆体における正極活物質層は、例えば、正極活物質、導電剤、バインダ等を含む材料を分散媒に分散させた正極活物質層形成用スラリを調製し、当該正極活物質層形成用スラリを正極集電体9に塗布・乾燥することによって作製することができる。分散媒は、特に制限されないが、水、アルコールと水との混合溶媒等の水系溶剤、N-メチル-2-ピロリドン等の有機溶剤であってよい。
 次いで、ポリマ、電解質塩、及び溶融塩を含む材料を分散媒に分散させたスラリ(正極合剤層形成用スラリ)を調製し、当該スラリを正極活物質層に加える。スラリを加える方法としては、特に制限されず、滴下、塗布、印刷等が挙げられる。分散媒は、ポリマが溶解するものであれば特に制限されないが、アセトン、エチルメチルケトン、γ-ブチロラクトン等であってよい。これらの中でも、分散媒はアセトンを含むことが好ましい。
 スラリにおけるポリマ、電解質塩、及び溶融塩の合計量に対するポリマの含有量、電解質塩の含有量、及び溶融塩の含有量は、上述の正極合剤層10におけるポリマ、電解質塩、及び溶融塩の合計量に対するポリマの含有量、電解質塩の含有量、及び溶融塩の含有量と同様であってよい。
 ポリマの含有量に対する分散媒の含有量の質量比は、6以下であってよい。ポリマの含有量に対する分散媒の含有量の質量比は、より好ましくは5.5以下、さらに好ましくは5以下である。ポリマの含有量に対する分散媒の含有量の質量比が6以下であると、正極合剤層のポリマ充填性をより向上させることができ、より良好なイオン伝導性を得ることができる傾向にある。ポリマの含有量に対する分散媒の含有量の質量比の下限値は、特に制限されないが、例えば、0.1以上、0.5以上、1以上、又は2以上であってよい。
 その後、正極活物質層に加えられたスラリから揮発成分を除去して、正極合剤層10を形成する。揮発成分を除去する方法としては、特に制限されず、通常用いられる方法で行うことができる。
 第2の工程における第2の電気化学デバイス用電極14A(負極8)は、上述の第1の工程における第1の電気化学デバイス用電極13A(正極6)と同様の製造方法によって作製することができる。すなわち、第2の電気化学デバイス用電極14A(負極8)の製造方法は、負極集電体の少なくとも一方の主面上に負極活物質を含む負極活物質層が設けられた負極前駆体を用意する工程と、負極前駆体の負極活物質層に、一般式(1)で表される構造単位を有するポリマと、リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選択される少なくとも1種の電解質塩と、融点が250℃以下である溶融塩と、分散媒と、を含有するスラリを加える工程と、負極活物質層に加えられたスラリから揮発成分を除去して、負極合剤層を形成する工程と、を備える。負極合剤層は、揮発成分(分散媒)が除去されることから、電極活物質、ポリマ、電解質塩、及び溶融塩で構成され得る。
 電解質層7は、第1の電気化学デバイス用電極13A(正極6)の正極合剤層10側及び第2の電気化学デバイス用電極14A(負極8)の負極合剤層12側の少なくともいずれか一方に塗布により形成される。電解質層7は、第1の電気化学デバイス用電極13A(正極6)の正極合剤層10側及び第2の電気化学デバイス用電極14A(負極8)の負極合剤層12側の両方に塗布により形成されていてもよい。この場合、例えば、電解質層7が設けられた正極6(すなわち、第1の電気化学デバイス用電極13B)と、電解質層7が設けられた負極8(すなわち、第2の電気化学デバイス用電極14B)とを、電解質層7同士が接するように積層することで、二次電池1を作製することができる。
 第3の工程では、他の実施形態において、電解質層7は、電解質層7に用いる材料を混練し、分散媒に分散させて電解質シート形成用スラリを得た後、この電解質シート形成用スラリを用いて、基材上に塗布し、分散媒を除去することによって作製することができる。分散媒は、アセトン、エチルメチルケトン、γ-ブチロラクトン、N-メチル-2-ピロリドン等の有機溶剤であってよい。この場合、第3の工程では、第1の電気化学デバイス用電極13A(正極6)、電解質層7及び第2の電気化学デバイス用電極14A(負極8)を、例えば、ラミネートにより積層することで二次電池1を作製することができる。このとき、電解質層7が、第1の電気化学デバイス用電極13A(正極6)の正極合剤層10側かつ第2の電気化学デバイス用電極14A(負極8)の負極合剤層12側に位置するように、すなわち、正極集電体9、正極合剤層10、電解質層7、負極合剤層12、及び負極集電体11がこの順で配置されるように積層する。
 正極6の正極合剤層10上に電解質層7を形成する方法(すなわち、第1の電気化学デバイス用電極13Bの製造方法)は、例えば、電解質層7に用いる材料を分散媒に分散させて電解質層形成用スラリを得た後、この電解質層形成用スラリを正極合剤層10上にアプリケータを用いて塗布する方法が挙げられる。分散媒は、アセトン、エチルメチルケトン、γ-ブチロラクトン、N-メチル-2-ピロリドン等の有機溶剤であってよい。電解質層7に用いる材料を分散媒に分散させる場合、予め電解質塩を溶融塩に溶解させてから、他の材料とともに分散媒に分散させてもよい。
 負極8の負極合剤層12に電解質層7を形成する方法(すなわち、第2の電気化学デバイス用電極14Bの製造方法)は、正極6の正極合剤層10上に電解質層7を形成する方法と同様であってよい。
 次に、第2実施形態に係る二次電池について説明する。図5は、第2実施形態に係る二次電池の電極群を示す分解斜視図である。図5に示すように、第2実施形態における二次電池が第1実施形態における二次電池と異なる点は、電極群2Bが、バイポーラ電極15をさらに備えている点である。すなわち、電極群2Bは、正極6と、第1の電解質層7と、バイポーラ電極15と、第2の電解質層7と、負極8とをこの順に備えている。
 バイポーラ電極15は、バイポーラ電極集電体16と、バイポーラ電極集電体16の負極8側の面に設けられた正極合剤層10と、バイポーラ電極集電体16の正極6側の面に設けられた負極合剤層12とを備えている。
 図6(a)は、図5のIII-III線矢視断面図である。バイポーラ電極15は、第3の電気化学デバイス用電極を構成する。すなわち、図6(a)に示すように、第3の電気化学デバイス用電極17Aは、バイポーラ電極集電体16と、バイポーラ電極集電体16の一方の面上に設けられた正極合剤層10と、バイポーラ電極集電体16の他方の面上に設けられた負極合剤層12と、を備えるバイポーラ電極部材である。
 図6(b)は、他の実施形態に係る第3の電気化学デバイス用電極(バイポーラ電極部材)を示す模式断面図である。図6(b)に示すように、第3の電気化学デバイス用電極17Bは、バイポーラ電極集電体16と、バイポーラ電極集電体16の一方の面上に設けられた正極合剤層10と、正極合剤層10のバイポーラ電極集電体16と反対側に設けられた第2の電解質層7と、バイポーラ電極集電体16の他方の面上に設けられた負極合剤層12と、負極合剤層12のバイポーラ電極集電体16と反対側に設けられた第1の電解質層7と、を備えている。
 バイポーラ電極集電体16は、アルミニウム、ステンレス鋼、チタン等であってよく、アルミニウムと銅又はステンレス鋼と銅とを圧延接合してなるクラッド材等であってよい。
 第1の電解質層7と第2の電解質層7とは、互いに同種であっても異種であってもよい。
[第4の態様(ポリマ電解質組成物)]
 ポリマ電解質組成物は、一般式(1)で表される構造単位を有するポリマと、リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選択される少なくとも1種の電解質塩と、融点が250℃以下である溶融塩と、を含有する。ポリマ電解質組成物は、電極合剤層に適用することによって、電極合剤層のイオン導電性を向上させることが可能となる。そのため、ポリマ電解質組成物は、電極合剤層形成用として好適に用いることができる。ポリマ電解質組成物は、分散媒をさらに含有していてもよい。
 ポリマ、電解質塩、及び溶融塩は、上述の正極合剤層10におけるポリマ、電解質塩、及び溶融塩で例示したものと同様であってよい。ポリマ、電解質塩、及び溶融塩の合計量に対するポリマの含有量、電解質塩の含有量、及び溶融塩の含有量は、上述の正極合剤層10におけるポリマ、電解質塩、及び溶融塩の合計量に対するポリマの含有量、電解質塩の含有量、及び溶融塩の含有量で例示した数値と同様であってよい。
 分散媒は、第1の電気化学デバイス用電極13A(正極6)を製造する第1の工程のスラリ(正極合剤層形成用スラリ)で分散媒として例示したものと同様であってよい。ポリマの含有量に対する分散媒の含有量の質量比は、第1の電気化学デバイス用電極13A(正極6)を製造する第1の工程のポリマの含有量に対する分散媒の含有量の質量比で例示した数値と同様であってよい。
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
1.二次電池の作製及び評価-1
[二次電池用電極及び二次電池の作製]
<正極前駆体の作製>
 Li(Co1/3Ni1/3Mn1/3)O(正極活物質)80質量部、アセチレンブラック(導電剤、商品名:HS-100、平均粒径48nm(製造元カタログ値)、電気化学工業株式会社)10質量部、ポリフッ化ビニリデン溶液(バインダ、商品名:クレハKFポリマ#1120、固形分:12質量%、株式会社クレハ)83質量部、及びN-メチル-2-ピロリドン(分散媒、NMP)2.5質量部を混合して正極活物質層形成用スラリを調製した。この正極活物質層形成用スラリを正極集電体(厚さ20μmのアルミニウム箔)上の両面(両方の主面)に塗布し、120℃で乾燥後、圧延して、片面塗布量60g/m、合剤密度2.3g/cmの正極活物質層を形成し、正極前駆体を作製した。
<負極前駆体の作製>
 LiTi12(負極活物質)88質量部、アセチレンブラック(導電剤、商品名:HS-100、平均粒径48nm(製造元カタログ値)、電気化学工業株式会社)5質量部、ポリフッ化ビニリデン溶液(バインダ、商品名:クレハKFポリマ#9130、固形分:13質量%、株式会社クレハ)54質量部、及びN-メチル-2-ピロリドン(分散媒、NMP)23質量部を混合して負極活物質層形成用スラリを調製した。この負極活物質層形成用スラリを負極集電体(厚さ20μmのアルミニウム箔)上の両面に塗布し、120℃で乾燥後圧延して、片面塗布量67g/m、合剤密度1.8g/cmの負極活物質層を形成し、負極前駆体を作製した。
<ポリマ[P(DADMA)][TFSI]の合成>
 一般式(1)で表される構造単位を有するポリマは、ポリ(ジアリルジメチルアンモニウム)クロライドの対アニオンClを[TFSI]に変換することによって合成した。
 [P(DADMA)][Cl]水溶液(20質量%水溶液、Aldrich社製)100質量部を、蒸留水500質量部で希釈し、希釈ポリマ水溶液を作製した。次に、Li[TFSI](キシダ化学株式会社製)43質量部を水100質量部に溶解し、Li[TFSI]水溶液を作製した。これを希釈ポリマ水溶液に滴下し、2時間撹拌することによって白色析出物を得た。析出物をろ過によって分離し、400質量部の蒸留水で洗浄後、再度ろ過を行った。洗浄及びろ過は5回繰り返した。その後、105℃の真空乾燥によって水分を蒸発させ、[P(DADMA)][TFSI]を得た。[P(DADMA)][TFSI]の粘度平均分子量は、2.11×10g・mol-1であった。
 粘度平均分子量Mvは、ポリメタクリル酸メチル(PMMA)を標準物質として用いて、ウベローデ粘度計を使用して25℃におけるポリマの粘度[η]を測定した後、[η]=KMv(ここで、Kは拡張因子を示し、その値は、温度、ポリマ、及び溶媒性質に依存する。)に基づき、算出した。
<スラリの調製>
 得られたポリマ8質量部に対して、電解質塩としてLi[TFSI]を2質量部、溶融塩として[Py12][TFSI](関東化学株式会社製、融点:90℃)を10質量部、及び分散媒としてアセトンを24質量部加えて撹拌し、スラリA(電極合剤層形成用スラリ)を得た。スラリAの溶融塩の含有量は、ポリマ、電解質塩、及び溶融塩の合計量を基準として、50質量%であった。スラリAのポリマの含有量に対する分散媒の含有量の質量比は3であった。また、得られたポリマ8質量部に対して、電解質塩としてLi[TFSI]を2質量部、溶融塩として[Py12][TFSI]を10質量部、及び分散媒としてアセトンを16質量部加えて撹拌し、スラリB(電解質シート形成用スラリ)を得た。
<電解質シートの調製>
 スラリBをφ16mmのSUS板上に滴下し、40℃で2時間乾燥させ、アセトンを揮発させた。その後、60℃で1.0×10Pa以下(0.1気圧以下)の減圧下で10時間乾燥し、厚さ400μmの電解質シートを得た。
(実施例1-1)
<正極の作製>
 上記で作製した正極前駆体の正極活物質層に、スラリAをドクターブレード法にて、ギャップ200μmで塗布することによって加えた。その後、真空デシケータを用いて、0.05MPa減圧及び大気圧開放を10回繰り返すことによって、揮発成分を除去して正極合剤層を作製し、正極合剤層を備える正極を得た。
<負極の作製>
 上記で作製した負極前駆体の負極活物質層に、スラリAをドクターブレード法にて、ギャップ200μmで塗布することによって加えた。その後、真空デシケータを用いて、0.05MPa減圧及び大気圧開放を10回繰り返すことによって、揮発成分を除去して負極合剤層を作製し、負極合剤層を備える負極を得た。
<電解質層の作製>
 得られた正極の正極合剤層に、スラリBをドクターブレード法にて、ギャップ250μmで塗布した。真空デシケータを用いて、0.05MPa減圧及び大気圧開放を10回繰り返し、60℃、12時間真空乾燥することによって、正極合剤層上に、厚さ30μmの電解質層を有する正極を得た。同様にして、負極の負極合剤層上に、厚さ30μmの電解質層を有する負極を得た。
<二次電池の作製>
 上記で作製した電解質層を有する正極及び負極を、コイン型電池を作製するため、φ15mmに打ち抜いた。電解質層同士が接するように、正極及び負極を重ねて、CR2032型のコインセル容器内に配置した。得られた積層体を、絶縁性のガスケットを介して電池容器上部をかしめて密閉することによって、実施例1の二次電池を得た。なお、電池作製はアルゴン雰囲気のグローブボックス内で行った。
[走査型電子顕微鏡による分析]
 実施例1で作製した正極について、走査型電子顕微鏡(SEM)を用いて、エネルギー分散型X線分析(EDX)によるコバルト及び硫黄の分布を分析した。分析結果を図7に示す。
 図7(a)は、走査型電子顕微鏡(SEM)によって撮影した、実施例1で作製した正極のある一カ所の断面像である。図7(a)に示すように、正極は、正極集電体30と、正極集電体30の少なくとも一方の主面上に設けられた正極合剤層20と、を備えている。図7(a)に示す箇所の面分析(元素マッピング)の結果を、図7(b)及び(c)に示す。面分析は、SEMに付属のエネルギー分散型X線分析(SEM-EDX)によって行った。図7(b)における色の淡い(白い)箇所は、コバルトが存在している箇所である。コバルトは、正極活物質であるLi(Co1/3Ni1/3Mn1/3)Oに由来する。図7(c)における色の淡い(白い)箇所は、硫黄が存在している箇所である。硫黄は、[P(DADMA)][TFSI]、Li[TFSI]、及び[Py12][TFSI]の[TFSI]に由来する。図7(c)に示すように、ポリマ等の成分が正極物質に均一に分散されており、ポリマ等の成分と正極物質との間で界面が形成していることが示唆された。
[電池性能評価]
 上記の方法で作製した二次電池を用いて電池性能の評価を行った。充放電装置(東洋システム株式会社、商品名:TOSCAT-3200)を用いて、50℃、0.05Cで充放電測定を実施した。なお、Cは「電流値[A]/設計理論容量[Ah]」を意味し、1Cは電池を1時間で満充電又は満放電するための電流値を示す。結果を表1に示す。放電容量はその値が大きいほど電池特性に優れるといえる。
(比較例1-1)
<二次電池の作製>
 上記で作製した正極前駆体、電解質シート、及び負極前駆体を、正極活物質層と負極活物質層とが電解質シートに接するように、この順に重ねて、CR2032型のコインセル容器内に配置した。得られた積層体を、絶縁性のガスケットを介して電池容器上部をかしめて密閉することによって、比較例1の二次電池を得た。なお、電池作製はアルゴン雰囲気のグローブボックス内で行った。得られた二次電池について、実施例1と同様に、電池性能評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000009
 図8は、実施例1及び比較例1で作製した二次電池の電池性能評価を示すグラフである。実施例1の二次電池は、比較例1の二次電池に比べて、放電容量が約2倍であり、電池特性に優れていることが判明した。これらの結果から、本発明の電気化学デバイス用電極が、電極合剤層に固体電解質を加えて電池を作製した場合であっても、電池特性を高めることが可能であることが確認された。
2.二次電池の作製及び評価-2
[二次電池用電極及び二次電池の作製]
<正極前駆体の作製>
 Li(Co1/3Ni1/3Mn1/3)O(正極活物質)66質量部、アセチレンブラック(導電剤、商品名:Li400、平均粒径48nm(製造元カタログ値)、電気化学工業株式会社)4質量部、ポリフッ化ビニリデン溶液(バインダ、商品名:クレハKFポリマ#1120、固形分:12質量%、株式会社クレハ)14質量部、及びN-メチル-2-ピロリドン(分散媒、NMP)15質量部を混合して正極活物質層形成用スラリを調製した。この正極活物質層形成用スラリを正極集電体(厚さ20μmのアルミニウム箔)上の主面に塗布し、120℃で乾燥後、圧延して、片面塗布量120g/m、合剤密度2.7g/cmの正極活物質層を形成し、正極前駆体を作製した。
<負極前駆体の作製>
 黒鉛(負極活物質)52質量部、カーボンナノチューブ(導電剤、商品名:VGCF、繊維径150nm(製造元カタログ値)、昭和電工株式会社)0.4質量部、高純度黒鉛(導電剤、商品名:JSP、平均粒径7μm(製造元カタログ値)、日本黒鉛株式会社)1.4質量部、ポリフッ化ビニリデン溶液(バインダ、商品名:クレハKFポリマ#9130、固形分:13質量%、株式会社クレハ)21.8質量部、及びN-メチル-2-ピロリドン(分散媒、NMP)24.4質量部を混合して負極活物質層形成用スラリを調製した。この負極活物質層形成用スラリを負極集電体(厚さ10μmの銅箔)上の主面に塗布し、80℃で乾燥後圧延して、片面塗布量60g/m、合剤密度1.6g/cmの負極活物質層を形成し、負極前駆体を作製した。
<ポリマ[P(DADMA)][FSI]の合成>
 Li[TFSI]の代わりにLi[FSI]を用いた以外は、上記ポリマ[P(DADMA)][TFSI]の合成と同様にして、[P(DADMA)][FSI]を合成した。
<スラリの調製>
 ポリマとして上述で合成した[P(DADMA)][TFSI]又は[P(DADMA)][FSI]、電解質塩としてのLi[FSI]、溶融塩として[Py13][FSI](関東化学株式会社製)又は[EMI][FSI](関東化学株式会社製)、及び分散媒としてアセトンを、表2に示す質量部で撹拌し、スラリC~G(電極合剤層形成用スラリ)を調製した。
Figure JPOXMLDOC01-appb-T000010
<電解質シートの作製>
 Li[TFSI]を電解質塩として用い、イオン液体である[DEME][TFSI]に、電解質塩の濃度が1.5mol/Lとなるように溶解させて、Li[TFSI]のイオン液体溶液を調製した。得られたイオン液体溶液、SiO粒子、バインダ(商品名:クレハKFポリマ#8500、株式会社クレハ)、及びNMPをそれぞれ43質量部、23質量部、34質量部、及び143質量部を混合して電解質シート形成用スラリを調製した。この電解質シート形成用スラリを支持フィルム上の主面に塗布し、80℃で乾燥して、厚さ20μmの電解質シートを作製した。二次電池の作製のため、得られた電解質シートを円型に打ち抜いた。
(実施例2-1)
<正極及び負極の作製>
 上記で作製した正極前駆体の正極活物質層及び負極前駆体の負極活物質層に、スラリCをドクターブレード法にて、ギャップ150μmで塗布することによって加えた。その後、60℃、12時間真空乾燥することによって、揮発成分(分散媒)を除去し、正極合剤層及び負極合剤層を作製して、正極合剤層を備える正極及び負極合剤層を備える負極を得た。二次電池の作製のため、得られた正極及び負極を円型に打ち抜いた。
<二次電池の作製>
 円型に打ち抜かれた正極、電解質シート、及び負極をこの順に重ねて、CR2032型のコインセル容器内に配置した。得られた積層体を、絶縁性のガスケットを介して電池容器上部をかしめて密閉することによって、実施例2-1の二次電池を得た。
(実施例2-2)
 スラリCをスラリDに変更した以外は、実施例2-1と同様にして、実施例2-2の二次電池を得た。
(実施例2-3)
 スラリCをスラリEに変更した以外は、実施例2-1と同様にして、実施例2-3の二次電池を得た。
(実施例2-4)
 スラリCをスラリFに変更した以外は、実施例2-1と同様にして、実施例2-4の二次電池を得た。
(実施例2-5)
 スラリCをスラリGに変更した以外は、実施例2-1と同様にして、実施例2-5の二次電池を得た。
(比較例2-1)
 スラリCを正極前駆体の正極活物質層及び負極前駆体の負極活物質層に塗布しなかった以外は、実施例2-1と同様にして、比較例2-1の二次電池を得た。
[電池性能評価]
 上記の方法で作製した実施例2-1~2-5及び比較例2-1の二次電池を用いて電池性能の評価を行った。25℃での充放電容量を充放電装置(東洋システム株式会社、商品名:TOSCAT-3200)を用いて、以下の充放電条件下で測定した。結果を表3に示す。放電容量はその値が大きいほど電池特性に優れるといえる。
(1)終止電圧4.2V、0.05Cで定電流定電圧(CCCV)充電を行った後、0.05Cで終止電圧2.7Vまで定電流(CC)放電するサイクルを1サイクル行い、0.05Cの充電容量及び放電容量を求めた。なお、Cは「電流値[A]/設計理論容量[Ah]」を意味し、1Cは電池を1時間で満充電又は満放電するための電流値を示す。
(2)次いで、終止電圧4.2V、0.05Cで定電流定電圧(CCCV)充電を行った後、0.2Cで終止電圧2.7Vまで定電流(CC)放電するサイクルを1サイクル行い、0.2Cの放電容量を求めた。
(3)次いで、終止電圧4.2V、0.05Cで定電流定電圧(CCCV)充電を行った後、0.5Cで終止電圧2.7Vまで定電流(CC)放電するサイクルを1サイクル行い、0.5Cの放電容量を求めた。
Figure JPOXMLDOC01-appb-T000011
 実施例2-1~2-5の二次電池は、比較例2-1の二次電池に比べて、電池特性に優れていることが判明した。これらの結果から、本発明の電気化学デバイス用電極が、電極合剤層に固体電解質を加えて電池を作製した場合であっても、電池特性を高めることが可能であることが確認された。
3.二次電池の作製及び評価-3
[二次電池用電極及び二次電池の作製]
<正極前駆体の作製>
 Li(Co1/3Ni1/3Mn1/3)O(正極活物質)66質量部、アセチレンブラック(導電剤、商品名:Li400、平均粒径48nm(製造元カタログ値)、電気化学工業株式会社)4質量部、ポリフッ化ビニリデン溶液(バインダ、商品名:クレハKFポリマ#1120、固形分:12質量%、株式会社クレハ)14質量部、及びN-メチル-2-ピロリドン(分散媒、NMP)15質量部を混合して正極活物質層形成用スラリを調製した。この正極活物質層形成用スラリを正極集電体(厚さ20μmのアルミニウム箔)上の主面に塗布し、120℃で乾燥後、圧延して、片面塗布量120g/m、合剤密度2.7g/cmの正極活物質層を形成し、正極前駆体を作製した。その後、ラミネート型セル作製のために電極を加工した。
<負極前駆体の作製>
 黒鉛(負極活物質)52質量部、カーボンナノチューブ(導電剤、商品名:VGCF、繊維径150nm(製造元カタログ値)、昭和電工株式会社)0.4質量部、高純度黒鉛(導電剤、商品名:JSP、平均粒径7μm(製造元カタログ値)、日本黒鉛株式会社)1.4質量部、ポリフッ化ビニリデン溶液(バインダ、商品名:クレハKFポリマ#9130、固形分:13質量%、株式会社クレハ)21.8質量部、及びN-メチル-2-ピロリドン(分散媒、NMP)24.4質量部を混合して負極活物質層形成用スラリを調製した。この負極活物質層形成用スラリを負極集電体(厚さ10μmの銅箔)上の主面に塗布し、80℃で乾燥後圧延して、片面塗布量60g/m、合剤密度1.6g/cmの負極活物質層を形成し、負極前駆体を作製した。その後、ラミネート型セル作製のために電極を加工した。
<スラリの調製>
 ポリマとして上述で合成した[P(DADMA)][TFSI]、電解質塩としてのLi[FSI]、溶融塩として[EMI][FSI](関東化学株式会社製)、及び分散媒としてアセトンを、表4に示す質量部で撹拌し、スラリH~K(電極合剤層形成用スラリ)を調製した。
Figure JPOXMLDOC01-appb-T000012
<電解質シートの作製>
 Li[FSI]を電解質塩として用い、イオン液体である[Py13][FSI]に、電解質塩の濃度が1.5mol/Lとなるように溶解させて、Li[FSI]のイオン液体溶液を調製した。得られたイオン液体溶液、SiO粒子、バインダ(商品名:クレハKFポリマ#8500、株式会社クレハ)、及びNMPをそれぞれ43質量部、23質量部、34質量部、及び143質量部を混合して電解質シート形成用スラリを調製した。この電解質シート形成用スラリを支持フィルム上の主面に塗布し、80℃で乾燥して、厚さ20μmの電解質シートを作製した。
(実施例3-1)
<正極及び負極の作製>
 上記で作製した正極前駆体の正極活物質層及び負極前駆体の負極活物質層に、スラリHをドクターブレード法にて、ギャップ150μmで塗布することによって加えた。その後、60℃、12時間真空乾燥することによって揮発成分(分散媒)を除去し、正極合剤層及び負極合剤層を作製して、正極合剤層を備える正極及び負極合剤層を備える負極を得た。
<二次電池の作製>
 正極、電解質シート、及び負極をこの順に重ねて、ラミネート型セルを作製し、実施例3-1の二次電池を得た。
(実施例3-2)
 スラリHをスラリIに変更した以外は、実施例3-1と同様にして、実施例3-2の二次電池を得た。
(実施例3-3)
 スラリHをスラリJに変更した以外は、実施例3-1と同様にして、実施例3-3の二次電池を得た。
(実施例3-4)
 スラリHをスラリKに変更した以外は、実施例3-1と同様にして、実施例3-4の二次電池を得た。
[電池性能評価]
 上記の方法で作製した実施例3-1~3-4の二次電池を用いて電池性能の評価を行った。25℃での充放電容量を充放電装置(東洋システム株式会社、商品名:TOSCAT-3200)を用いて、5℃、0.05Cで充放電測定を行った。放電容量は、終止電圧4.2V、0.05Cで定電流定電圧(CCCV)充電を行った後、0.05Cで終止電圧2.7Vまで定電流(CC)放電するサイクルを1サイクル行うことによって求めた。なお、Cとは「電流値(A)/電池容量(Ah)」を意味する。結果を表5に示す。放電容量はその値が大きいほど電池特性に優れるといえる。
Figure JPOXMLDOC01-appb-T000013
[走査型電子顕微鏡による分析]
 実施例3-1~3-4で作製した正極について、走査型電子顕微鏡(SEM)を用いて、二次電池の断面を分析した。分析結果を図9及び図10に示す。
 図9(a)及び(b)並びに図10(a)及び(b)は、走査型電子顕微鏡(SEM)によって撮影した、実施例3-1~3-4で作製した正極のある一カ所の断面像である。図9及び図10に示すように、正極は、正極集電体30と、正極集電体30の少なくとも一方の主面上に設けられた正極合剤層20と、を備えている。図9に示す断面像と図10に示す断面像との対比から、スラリに使用されるアセトンが減少するにつれて、正極合剤層のポリマ充填性が向上する傾向にあることが観察された。
 実施例3-1~3-4の二次電池は、いずれも電池特性に優れていた。これらの結果から、本発明の電気化学デバイス用電極が、電極合剤層に固体電解質を加えて電池を作製した場合であっても、電池特性を高めることが可能であることが確認された。一方で、ポリマの含有量に対する分散媒の含有量の質量比が小さくなるにつれて、正極合剤層にポリマをより充分に充填することができ、より良好なイオン伝導性を得ることができる傾向にあることが示唆された。
 本発明によれば、電極合剤層に固体電解質を加えて電池を作製した場合であっても、電池特性を高めることが可能な電気化学デバイス用電極及びその製造方法が提供される。また、本発明によれば、このような電気化学デバイス用電極を用いた電気化学デバイスが提供される。さらに、本発明によれば、電極合剤層のイオン導電性を向上させることが可能なポリマ電解質組成物が提供される。
 1…二次電池、2,2A,2B…電極群、3…電池外装体、4…正極集電タブ、5…負極集電タブ、6…正極、7…電解質層、8…負極、9、30…正極集電体、10、20…正極合剤層、11…負極集電体、12…負極合剤層、13A,13B…第1の電気化学デバイス用電極、14A,14B…第2の電気化学デバイス用電極、15…バイポーラ電極、16…バイポーラ電極集電体、17A,17B…第3の電気化学デバイス用電極。

Claims (21)

  1.  電極集電体と、前記電極集電体の少なくとも一方の主面上に設けられた電極合剤層と、を備え、
     前記電極合剤層が、
     電極活物質と、
     下記一般式(1)で表される構造単位を有するポリマと、
     リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選択される少なくとも1種の電解質塩と、
     融点が250℃以下である溶融塩と、
    を含有する、電気化学デバイス用電極。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Xは対アニオンを示す。]
  2.  前記電解質塩のアニオンが、PF 、BF 、N(FSO 、N(CFSO 、B(C 、及びClO からなる群より選ばれる少なくとも1種である、請求項1に記載の電気化学デバイス用電極。
  3.  前記電解質塩がリチウム塩である、請求項1又は2に記載の電気化学デバイス用電極。
  4.  前記溶融塩の含有量が、ポリマ、電解質塩、及び溶融塩の合計量を基準として、10~80質量%である、請求項1~3のいずれか一項に記載の電気化学デバイス用電極。
  5.  前記電気化学デバイス用電極が正極であり、
     前記電極集電体が正極集電体であり、前記電極合剤層が正極合剤層であり、前記電極活物質が正極活物質である、請求項1~4のいずれか一項に記載の電気化学デバイス用電極。
  6.  前記電気化学デバイス用電極が負極であり、
     前記電極集電体が負極集電体であり、前記電極合剤層が負極合剤層であり、前記電極活物質が負極活物質である、請求項1~4のいずれか一項に記載の電気化学デバイス用電極。
  7.  前記負極活物質が黒鉛を含む、請求項6に記載の電気化学デバイス用電極。
  8.  前記電解質塩がLiN(FSOを含む、請求項7に記載の電気化学デバイス用電極。
  9.  請求項1~8のいずれか一項に記載の電気化学デバイス用電極を備える、電気化学デバイス。
  10.  電極集電体の少なくとも一方の主面上に電極活物質を含む電極活物質層が設けられた電極前駆体を用意する工程と、
     前記電極前駆体の前記電極活物質層に、
     下記一般式(1)で表される構造単位を有するポリマと、
     リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選択される少なくとも1種の電解質塩と、
     融点が250℃以下である溶融塩と、
     分散媒と、
    を含有するスラリを加える工程と、
     前記電極活物質層に加えられた前記スラリから揮発成分を除去して、電極合剤層を形成する工程と、
    を備える、電気化学デバイス用電極の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    [式(1)中、Xは対アニオンを示す。]
  11.  前記電解質塩のアニオンが、PF 、BF 、N(FSO 、N(CFSO 、B(C 、及びClO からなる群より選ばれる少なくとも1種である、請求項10に記載の電気化学デバイス用電極の製造方法。
  12.  前記溶融塩の含有量が、ポリマ、電解質塩、及び溶融塩の合計量を基準として、10~80質量%である、請求項10又は11に記載の電気化学デバイス用電極の製造方法。
  13.  前記分散媒がアセトンを含む、請求項10~12のいずれか一項に記載の電気化学デバイス用電極の製造方法。
  14.  前記ポリマの含有量に対する前記分散媒の含有量の質量比が6以下である、請求項10~13のいずれか一項に記載の電気化学デバイス用電極の製造方法。
  15.  下記一般式(1)で表される構造単位を有するポリマと、
     リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選択される少なくとも1種の電解質塩と、
     融点が250℃以下である溶融塩と、
    を含有する、ポリマ電解質組成物。
    Figure JPOXMLDOC01-appb-C000003
    [式(1)中、Xは対アニオンを示す。]
  16.  前記電解質塩のアニオンが、PF 、BF 、N(FSO 、N(CFSO 、B(C 、及びClO からなる群より選ばれる少なくとも1種である、請求項15に記載のポリマ電解質組成物。
  17.  前記電解質塩がリチウム塩である、請求項15又は16に記載のポリマ電解質組成物。
  18.  前記溶融塩の含有量が、ポリマ、電解質塩、及び溶融塩の合計量を基準として、10~80質量%である、請求項15~17のいずれか一項に記載のポリマ電解質組成物。
  19.  分散媒をさらに含有する、請求項15~18のいずれか一項に記載のポリマ電解質組成物。
  20.  前記分散媒がアセトンを含む、請求項19に記載のポリマ電解質組成物。
  21.  前記ポリマの含有量に対する前記分散媒の含有量の質量比が6以下である、請求項19又は20に記載のポリマ電解質組成物。
PCT/JP2018/016318 2017-04-21 2018-04-20 電気化学デバイス用電極及びその製造方法、電気化学デバイス、並びにポリマ電解質組成物 WO2018194159A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/606,334 US11462767B2 (en) 2017-04-21 2018-04-20 Electrochemical device electrode. method for producing electrochemical device electrode and electrochemical device
CN202310599693.XA CN116404107A (zh) 2017-04-21 2018-04-20 电化学装置用电极及电化学装置
KR1020197029920A KR102595311B1 (ko) 2017-04-21 2018-04-20 전기 화학 디바이스용 전극 및 그의 제조 방법, 전기 화학 디바이스, 그리고 폴리머 전해질 조성물
JP2019513702A JP7163909B2 (ja) 2017-04-21 2018-04-20 電気化学デバイス用電極の製造方法
EP18787019.1A EP3614469A4 (en) 2017-04-21 2018-04-20 ELECTRODE OF ELECTROCHEMICAL DEVICE AND MANUFACTURING METHOD FOR IT, ELECTROCHEMICAL DEVICE, AND POLYMER ELECTROLYTE COMPOSITION
CN201880026140.2A CN110537274B (zh) 2017-04-21 2018-04-20 电极及其制造方法、电化学装置和聚合物电解质组合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/016079 WO2018193627A1 (ja) 2017-04-21 2017-04-21 ポリマ電解質組成物及びポリマ二次電池
PCT/JP2017/016084 WO2018193630A1 (ja) 2017-04-21 2017-04-21 電気化学デバイス用電極及び電気化学デバイス
JPPCT/JP2017/016084 2017-04-21
JPPCT/JP2017/016079 2017-04-21

Publications (1)

Publication Number Publication Date
WO2018194159A1 true WO2018194159A1 (ja) 2018-10-25

Family

ID=63855968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016318 WO2018194159A1 (ja) 2017-04-21 2018-04-20 電気化学デバイス用電極及びその製造方法、電気化学デバイス、並びにポリマ電解質組成物

Country Status (7)

Country Link
US (1) US11462767B2 (ja)
EP (1) EP3614469A4 (ja)
JP (1) JP7163909B2 (ja)
KR (1) KR102595311B1 (ja)
CN (2) CN110537274B (ja)
TW (1) TWI794224B (ja)
WO (1) WO2018194159A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198723A1 (ja) * 2018-04-11 2019-10-17 日立化成株式会社 二次電池用電池部材の製造方法
WO2019198715A1 (ja) * 2018-04-11 2019-10-17 日立化成株式会社 二次電池用電池部材の製造方法
JPWO2021033424A1 (ja) * 2019-08-22 2021-02-25

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193630A1 (ja) 2017-04-21 2018-10-25 日立化成株式会社 電気化学デバイス用電極及び電気化学デバイス
EP3614481A4 (en) * 2017-04-21 2020-11-25 Hitachi Chemical Company, Ltd. POLYMER ELECTROLYTE COMPOSITION AND POLYMER SECONDARY BATTERY
KR102595311B1 (ko) 2017-04-21 2023-10-26 주식회사 엘지에너지솔루션 전기 화학 디바이스용 전극 및 그의 제조 방법, 전기 화학 디바이스, 그리고 폴리머 전해질 조성물
KR20210155878A (ko) * 2020-06-17 2021-12-24 현대자동차주식회사 리튬공기전지의 양극재료 및 이를 이용한 양극 제조방법
JP2024532863A (ja) * 2021-08-20 2024-09-10 ディーキン ユニバーシティ 固体電極用イオン結合剤

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077539A (ja) * 2001-09-04 2003-03-14 Mitsubishi Materials Corp ゲル状ポリマー電解質及びそれを用いたリチウムポリマー電池
JP2006032237A (ja) * 2004-07-20 2006-02-02 Dai Ichi Kogyo Seiyaku Co Ltd イオンポリマーゲル電解質およびその前駆体組成物
JP2006049158A (ja) * 2004-08-06 2006-02-16 Trekion Co Ltd リチウム・ポリマー電池およびその製造方法
JP2011171185A (ja) * 2010-02-19 2011-09-01 Nissan Motor Co Ltd 二次電池用集電体
JP2013191547A (ja) 2012-02-14 2013-09-26 Nippon Shokubai Co Ltd 正極合材組成物

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4005660B2 (ja) 1997-03-28 2007-11-07 Tdk株式会社 高分子固体電解質の製造方法、高分子固体電解質およびこれを用いた電気化学デバイス
JPH11162513A (ja) 1997-11-27 1999-06-18 Daikin Ind Ltd ポリマー電解質及びこれを用いたリチウム二次電池
WO1999040025A1 (fr) * 1998-02-03 1999-08-12 Acep Inc. Nouveaux materiaux utiles en tant que solutes electrolytiques
KR20000019372A (ko) 1998-09-10 2000-04-06 박호군 균질상의 고체고분자합금 전해질 및 그 제조방법과, 그 전해질을 이용한 복합전극, 리튬고분자전지, 리튬이온고분자전지 및그 제조방법
JP4081895B2 (ja) 1998-11-26 2008-04-30 ソニー株式会社 リチウムイオン二次電池用のゲル状電解質及びゲル状電解質リチウムイオン二次電池
US7732099B2 (en) * 2003-03-31 2010-06-08 Trekion Co., Ltd. Composite polymer electrolyte composition
JP3769291B2 (ja) 2004-03-31 2006-04-19 株式会社東芝 非水電解質電池
JP5214088B2 (ja) 2004-10-22 2013-06-19 株式会社Gsユアサ 非水電解質電池
JP4496366B2 (ja) 2005-04-07 2010-07-07 国立大学法人三重大学 高分子固体電解質リチウム2次電池用負極材及びその製造方法
JP4774941B2 (ja) 2005-11-14 2011-09-21 ソニー株式会社 ゲル電解質およびゲル電解質電池
JP2008053135A (ja) 2006-08-28 2008-03-06 Sumitomo Electric Ind Ltd 薄膜電池
JP5577565B2 (ja) * 2006-09-19 2014-08-27 ソニー株式会社 リチウムイオン二次電池
JP4363436B2 (ja) 2006-10-13 2009-11-11 ソニー株式会社 二次電池
US8178009B2 (en) 2006-11-07 2012-05-15 Sumitomo Bakelite Co., Ltd. Slurry for secondary battery electrode, electrode for secondary battery, process for production of electrode for secondary battery, and secondary battery
JP5036284B2 (ja) * 2006-11-22 2012-09-26 日本碍子株式会社 セラミックス構造体の製造方法
JP2008243736A (ja) 2007-03-28 2008-10-09 Arisawa Mfg Co Ltd リチウムイオン二次電池およびその製造方法
EP2362468A1 (en) 2008-11-28 2011-08-31 Sumitomo Chemical Company, Limited Electrode film, electrode, method for manufacturing the electrode, and electrical storage device
FR2942235B1 (fr) 2009-02-13 2011-07-22 Centre Nat Rech Scient Gels conducteurs ioniques, leur procede de preparation et leur utilisation comme electrolyte
JP5688527B2 (ja) * 2009-03-30 2015-03-25 パイオトレック株式会社 フッ素系重合体の製法
JP5391940B2 (ja) 2009-09-04 2014-01-15 コニカミノルタ株式会社 固体電解質、その製造方法および二次電池
JP2011070793A (ja) 2009-09-24 2011-04-07 Konica Minolta Holdings Inc 二次電池用電解質組成物および二次電池
WO2011037060A1 (ja) 2009-09-24 2011-03-31 コニカミノルタホールディングス株式会社 電解質組成物、及びリチウムイオン二次電池
JP5381636B2 (ja) 2009-11-18 2014-01-08 コニカミノルタ株式会社 電池用固体電解質およびリチウムイオン二次電池
JP2011129400A (ja) 2009-12-18 2011-06-30 Konica Minolta Holdings Inc イオン液体を有する二次電池およびその製造方法
KR20120136355A (ko) 2010-02-05 2012-12-18 다이킨 고교 가부시키가이샤 이차 전지용 겔 전해질 복합 필름 및 이차 전지
CN103329335A (zh) 2010-12-08 2013-09-25 丰田自动车株式会社 电极体的制造方法
JP2013019154A (ja) 2011-07-11 2013-01-31 Miwa Lock Co Ltd 携帯型鍵
US20130106029A1 (en) 2011-10-27 2013-05-02 Infinite Power Solutions, Inc. Fabrication of High Energy Density Battery
CN102522589A (zh) 2011-12-16 2012-06-27 浙江大东南集团有限公司 一种新型具有互穿网络结构凝胶聚合物电解质及其制备方法和应用
JP6150424B2 (ja) * 2012-03-08 2017-06-21 国立大学法人名古屋大学 イオン伝導性固体電解質およびそれを用いたイオン二次電池
JP6283795B2 (ja) 2012-06-22 2018-02-28 国立大学法人東北大学 キャパシタ用電解質およびキャパシタ
JP6532186B2 (ja) * 2013-05-23 2019-06-19 株式会社日本触媒 電極前駆体、電極、及び、二次電池
JP2015011823A (ja) 2013-06-27 2015-01-19 住友電気工業株式会社 リチウム電池
KR102155696B1 (ko) 2013-09-13 2020-09-15 삼성전자주식회사 복합막, 그 제조방법 및 이를 포함한 리튬 공기 전지
JP2015090777A (ja) 2013-11-05 2015-05-11 ソニー株式会社 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム
KR20150063269A (ko) * 2013-11-29 2015-06-09 삼성전자주식회사 리튬 공기 전지용 복합전극, 그 제조방법 및 이를 포함한 리튬 공기 전지
KR102123719B1 (ko) 2013-12-27 2020-06-16 가부시키가이샤 무라타 세이사쿠쇼 전지, 전해질, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템
KR102386841B1 (ko) * 2014-12-19 2022-04-14 삼성전자주식회사 복합전해질 및 이를 포함하는 리튬전지
US10186730B2 (en) 2015-07-15 2019-01-22 Samsung Electronics Co., Ltd. Electrolyte solution for secondary battery and secondary battery
CN107431242B (zh) 2015-09-16 2021-03-23 松下知识产权经营株式会社 电池
WO2017094396A1 (ja) 2015-12-04 2017-06-08 ソニー株式会社 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
KR102626915B1 (ko) 2016-08-02 2024-01-18 삼성전자주식회사 복합막, 그 제조방법 및 이를 포함하는 리튬공기전지
EP3614481A4 (en) * 2017-04-21 2020-11-25 Hitachi Chemical Company, Ltd. POLYMER ELECTROLYTE COMPOSITION AND POLYMER SECONDARY BATTERY
KR102595311B1 (ko) 2017-04-21 2023-10-26 주식회사 엘지에너지솔루션 전기 화학 디바이스용 전극 및 그의 제조 방법, 전기 화학 디바이스, 그리고 폴리머 전해질 조성물
WO2018193630A1 (ja) * 2017-04-21 2018-10-25 日立化成株式会社 電気化学デバイス用電極及び電気化学デバイス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077539A (ja) * 2001-09-04 2003-03-14 Mitsubishi Materials Corp ゲル状ポリマー電解質及びそれを用いたリチウムポリマー電池
JP2006032237A (ja) * 2004-07-20 2006-02-02 Dai Ichi Kogyo Seiyaku Co Ltd イオンポリマーゲル電解質およびその前駆体組成物
JP2006049158A (ja) * 2004-08-06 2006-02-16 Trekion Co Ltd リチウム・ポリマー電池およびその製造方法
JP2011171185A (ja) * 2010-02-19 2011-09-01 Nissan Motor Co Ltd 二次電池用集電体
JP2013191547A (ja) 2012-02-14 2013-09-26 Nippon Shokubai Co Ltd 正極合材組成物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANNE-LAURE PONT ET AL.: "Pyrrolidinium-based polymeric ionic liquids as mechanically andelectrochemically stable polymer electrolytes", JOURNAL OF POWER SOURCES, vol. 188, no. 2, 2009, pages 558 - 563, XP055559917, Retrieved from the Internet <URL:DOI:10.1016/j.jpowsour.2008.11.115> *
G.B . APPETECCHI ET AL.: "Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionicliquids for lithium batteries", JOURNAL OF POWER SOURCES, vol. 195, no. 11, 1 June 2010 (2010-06-01), pages 3668 - 3675, XP055559907, Retrieved from the Internet <URL:DOI:10.1016/j.jpowsour.2009.11.146> *
JOURNAL OF POWER SOURCES, vol. 188, 2009, pages 558 - 563

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198723A1 (ja) * 2018-04-11 2019-10-17 日立化成株式会社 二次電池用電池部材の製造方法
WO2019198715A1 (ja) * 2018-04-11 2019-10-17 日立化成株式会社 二次電池用電池部材の製造方法
JPWO2021033424A1 (ja) * 2019-08-22 2021-02-25

Also Published As

Publication number Publication date
CN110537274B (zh) 2023-06-13
KR20190139221A (ko) 2019-12-17
KR102595311B1 (ko) 2023-10-26
EP3614469A1 (en) 2020-02-26
TW201843206A (zh) 2018-12-16
EP3614469A4 (en) 2021-01-13
CN116404107A (zh) 2023-07-07
US11462767B2 (en) 2022-10-04
US20200136181A1 (en) 2020-04-30
TWI794224B (zh) 2023-03-01
JP7163909B2 (ja) 2022-11-01
CN110537274A (zh) 2019-12-03
JPWO2018194159A1 (ja) 2020-02-27

Similar Documents

Publication Publication Date Title
WO2018194159A1 (ja) 電気化学デバイス用電極及びその製造方法、電気化学デバイス、並びにポリマ電解質組成物
JP4519685B2 (ja) 非水電解質電池
WO2018193630A1 (ja) 電気化学デバイス用電極及び電気化学デバイス
WO2019163895A1 (ja) 負極活物質のプレドープ方法、負極の製造方法、及び蓄電デバイスの製造方法
WO2018193628A1 (ja) ポリマ電解質組成物及びポリマ二次電池
WO2020145338A1 (ja) 電解液、電解質スラリ組成物及び二次電池
WO2018193627A1 (ja) ポリマ電解質組成物及びポリマ二次電池
JPWO2019035190A1 (ja) 二次電池用電池部材及び二次電池
JP2019129119A (ja) イオン伝導性セパレータ及び電気化学デバイス
CN111742428A (zh) 负极活性物质的预掺杂方法、负极的制造方法、以及蓄电装置的制造方法
JPWO2019208110A1 (ja) 電解質スラリー組成物、電解質シートの製造方法、及び二次電池の製造方法
WO2018198168A1 (ja) 二次電池用電池部材、並びに、二次電池及びその製造方法
JPWO2018221668A1 (ja) 電解質組成物及び二次電池
TWI784154B (zh) 二次電池用電極、二次電池用電解質層及二次電池
Nanda et al. High-capacity electrode materials for electrochemical energy storage: Role of nanoscale effects
WO2020017439A1 (ja) 電解質シートの製造方法及び二次電池の製造方法
JP6981071B2 (ja) ポリマ電解質組成物及びポリマ二次電池
WO2018193631A1 (ja) ポリマ電解質組成物及びポリマ二次電池
JP2019021539A (ja) ポリマ電解質組成物及びポリマ二次電池
JP2020113527A (ja) 電解質スラリ組成物及びその製造方法、並びに、電解質シート及びその製造方法
JP2023117209A (ja) 固体電解質電池用負極及び固体電解質電池
JP2021150065A (ja) 活物質層、電極及びリチウムイオン二次電池
JP2021153010A (ja) リチウム二次電池
JP2020202020A (ja) 固体電解質電池用添加剤、組成物、二次電池用電極及びその製造方法、二次電池用電池部材、並びに二次電池
JP2021018925A (ja) 非水電解液、並びにそれを用いた半固体電解質シート及び半固体電解質複合シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787019

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513702

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197029920

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018787019

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018787019

Country of ref document: EP

Effective date: 20191121