WO2018020827A1 - 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、固体電解質含有シートおよび全固体二次電池の製造方法、ならびに、セグメント化ポリマー、ポリマーおよびセグメント化ポリマーの非水溶媒分散物 - Google Patents

固体電解質組成物、固体電解質含有シートおよび全固体二次電池、固体電解質含有シートおよび全固体二次電池の製造方法、ならびに、セグメント化ポリマー、ポリマーおよびセグメント化ポリマーの非水溶媒分散物 Download PDF

Info

Publication number
WO2018020827A1
WO2018020827A1 PCT/JP2017/020415 JP2017020415W WO2018020827A1 WO 2018020827 A1 WO2018020827 A1 WO 2018020827A1 JP 2017020415 W JP2017020415 W JP 2017020415W WO 2018020827 A1 WO2018020827 A1 WO 2018020827A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
solid electrolyte
bond
solid
Prior art date
Application number
PCT/JP2017/020415
Other languages
English (en)
French (fr)
Inventor
雅臣 牧野
宏顕 望月
智則 三村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201780045387.4A priority Critical patent/CN109526241B/zh
Priority to EP17833837.2A priority patent/EP3493317A1/en
Priority to JP2018529395A priority patent/JP6839189B2/ja
Publication of WO2018020827A1 publication Critical patent/WO2018020827A1/ja
Priority to US16/254,903 priority patent/US20190157710A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/348Hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/36Hydroxylated esters of higher fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4063Mixtures of compounds of group C08G18/62 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • C08G18/5024Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
    • C08G18/503Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups being in latent form
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6204Polymers of olefins
    • C08G18/6208Hydrogenated polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6659Compounds of group C08G18/42 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6662Compounds of group C08G18/42 with compounds of group C08G18/36 or hydroxylated esters of higher fatty acids of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • C08G18/7642Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the aromatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate groups, e.g. xylylene diisocyanate or homologues substituted on the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/024Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
    • C08G81/027Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G containing polyester or polycarbonate sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/024Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
    • C08G81/028Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G containing polyamide sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • H01M2300/0022Room temperature molten salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures

Definitions

  • the present invention relates to a solid electrolyte composition, a solid electrolyte-containing sheet and an all-solid secondary battery, and a method for producing a solid electrolyte-containing sheet and an all-solid secondary battery.
  • the invention also relates to segmented polymers and non-aqueous solvent dispersions of polymers and segmented polymers.
  • a lithium ion secondary battery is a storage battery that has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and enables charging and discharging by reciprocating lithium ions between the two electrodes.
  • an organic electrolytic solution has been used as an electrolyte in a lithium ion secondary battery.
  • the organic electrolyte is liable to leak, and there is a possibility that a short circuit occurs inside the battery due to overcharge or overdischarge, resulting in ignition, and further improvements in safety and reliability are required. Under such circumstances, an all-solid secondary battery using an inorganic solid electrolyte instead of an organic electrolyte has been attracting attention.
  • All-solid-state secondary batteries are composed of a solid negative electrode, electrolyte, and positive electrode, which can greatly improve safety and reliability, which is a problem of batteries using organic electrolytes, and can also extend the life. It will be. Furthermore, the all-solid-state secondary battery can have a structure in which electrodes and an electrolyte are directly arranged in series. Therefore, it is possible to increase the energy density as compared with a secondary battery using an organic electrolyte, and application to an electric vehicle, a large storage battery, and the like is expected.
  • Patent Document 1 describes a method of using an adhesive polymer as a dispersant as a method for producing a sulfide solid electrolyte material capable of miniaturizing a sulfide solid electrolyte.
  • attempts have been made to impart flexibility to a solid electrolyte layer and the like by adding a polymer as a binder, thereby improving workability and moldability.
  • Patent Document 2 as a solid electrolyte layer capable of suppressing an increase in resistance due to deterioration of a sulfide solid electrolyte, a solid electrolyte layer using a hydrophobic polymer binding a sulfide solid electrolyte and an all solid using the same A lithium battery or the like is described.
  • the present invention can be used to form a solid electrolyte-containing sheet constituting an all-solid-state secondary battery, thereby further improving the binding property between solid particles constituting the sheet and realizing excellent cycle characteristics.
  • Solid electrolyte composition, polymer suitable for use therein and non-aqueous solvent dispersion thereof, solid electrolyte-containing sheet using the solid electrolyte composition, and all-solid-state secondary battery using the solid electrolyte-containing sheet The task is to do.
  • this invention makes it a subject to provide the manufacturing method of the said solid electrolyte containing sheet and an all-solid-state secondary battery.
  • this segmented polymer can form fine particles by phase inversion emulsification without using an emulsifier, and forms a non-aqueous solvent dispersion I found out that The present invention has been further studied based on these findings and has been completed.
  • the polymer (B) (sometimes referred to as (B) polymer in the present invention) has a hydrocarbon polymer segment in the main chain, and the main chain has at least one bond selected from the following bond group (I).
  • the polymer is a segmented polymer having in the polymer main chain at least one segment selected from polyester, polyamide, polyurethane, polyurea, polyimide, polyether and polycarbonate and a hydrocarbon polymer segment.
  • the solid electrolyte composition as described in 1).
  • An all-solid secondary battery comprising a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer, At least one of a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer is (A) an inorganic solid electrolyte having conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table; And (B) the polymer has a hydrocarbon polymer segment in the main chain, and the main chain includes at least one bond selected from the following bond group (I): . ⁇ Coupling group (I)> Ester bond, amide bond, urethane bond, urea bond, imide bond, ether bond and carbonate bond. (18) The manufacturing method of an all-solid-state secondary battery which manufactures an all-solid-state secondary battery via the manufacturing method as described in (16).
  • Ra represents a divalent hydrocarbon group having a mass average molecular weight of 1000 or more.
  • Rb 1 represents an aromatic hydrocarbon group having 6 to 22 carbon atoms, an aliphatic hydrocarbon group having 1 to 15 carbon atoms, or a group formed by combining two or more of these groups.
  • Rb 2 represents an alkylene group having 2 to 6 carbon atoms.
  • R b2 has a substituent, this substituent does not have a group selected from the following functional group (II) or (III).
  • Rb 3 represents an alkylene group having at least one functional group selected from the following functional group group (II).
  • Rb 4 represents an alkylene group having at least one functional group selected from the following functional group group (III).
  • Rb 5 is a divalent chain having a mass average molecular weight of 200 or more, and represents a polyalkylene oxide chain, a polycarbonate chain, a polyester chain, a silicone chain, or a combination of these chains.
  • Xa, Xb 2 , Xb 3 , Xb 4 and Xb 5 represent an oxygen atom or —NH—.
  • a is 0.1 to 30 mol%
  • b1 40 to 60 mol%
  • b2 is 0 to 30 mol%
  • b3 is 0 to 30 mol%
  • b4 is 0 to 30 mol%
  • b5 0 to 30 mol% is there.
  • b2 + b3 + b4 + b5 0 mol% is not satisfied.
  • Non-aqueous solvent dispersion of (B) polymer which has a hydrocarbon polymer segment in the main chain, and the main chain contains at least one bond selected from the following bond group (I).
  • bond group (I) Ester bond, amide bond, urethane bond, urea bond, imide bond, ether bond and carbonate bond.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • acryl or “(meth) acryl” is simply described, it means methacryl and / or acryl.
  • the term “acryloyl” or “(meth) acryloyl” simply means methacryloyl and / or acryloyl.
  • the respective substituents may be the same unless otherwise specified. May be different. The same applies to the definition of the number of substituents and the like.
  • each repeating unit present in the polymer may be the same or different.
  • the number of carbon atoms of the group is limited, the number of carbon atoms of this group means the total number of carbon atoms including substituents unless otherwise specified.
  • the mass average molecular weight (Mw) can be measured as a molecular weight in terms of polystyrene by GPC.
  • GPC device HLC-8220 manufactured by Tosoh Corporation
  • G3000HXL + G2000HXL is used as the column
  • the flow rate is 1 mL / min at 23 ° C.
  • detection is performed by RI.
  • the eluent can be selected from THF (tetrahydrofuran), chloroform, NMP (N-methyl-2-pyrrolidone), m-cresol / chloroform (manufactured by Shonan Wako Pure Chemical Industries, Ltd.) and dissolves. If present, use THF.
  • the glass transition temperature (Tg) is a differential scanning calorimeter “X-DSC7000” (trade name, manufactured by SII Nanotechnology Co., Ltd.) using a dry sample. And measured under the following conditions. The measurement is performed twice on the same sample, and the second measurement result is adopted. Measurement chamber atmosphere: Nitrogen (50 mL / min) Temperature increase rate: 5 ° C / min Measurement start temperature: -100 ° C Measurement end temperature: 200 ° C Sample pan: Aluminum pan Mass of measurement sample: 5 mg Calculation of Tg: Tg is calculated by rounding off the decimal point of the intermediate temperature between the lowering start point and the lowering end point of the DSC chart.
  • the solid electrolyte composition of the present invention has excellent binding properties when a solid electrolyte-containing sheet is formed.
  • the solid electrolyte-containing sheet of the present invention can realize excellent binding properties and excellent cycle characteristics in an all-solid secondary battery.
  • the all-solid-state secondary battery of the present invention is excellent in binding properties and cycle characteristics.
  • seat and all-solid-state secondary battery of this invention can each be manufactured suitably. According to the present invention, more preferably, the following effects can be obtained.
  • the segmented polymer of the present invention and the non-aqueous solvent dispersion of the polymer and the segmented polymer are used for an all-solid secondary battery, thereby providing excellent binding properties and excellent ionic conductivity, and excellent cycle characteristics.
  • the solid electrolyte composition of the present invention the solid electrolyte-containing sheet of the present invention or the all-solid secondary battery of the present invention (the form using the segmented polymer of the present invention), the total solid obtained
  • the ionic conductivity of the secondary battery can be further increased, and an all-solid secondary battery with excellent cycle characteristics can be realized.
  • FIG. 1 is a longitudinal sectional view schematically showing an all solid state secondary battery according to a preferred embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view schematically showing the apparatus used in the examples.
  • FIG. 3 is a longitudinal sectional view schematically showing an all solid state secondary battery (coin battery) produced in the example.
  • FIG. 1 is a cross-sectional view schematically showing an all solid state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all-solid-state secondary battery 10 of this embodiment has a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order as viewed from the negative electrode side. .
  • Each layer is in contact with each other and has a laminated structure.
  • the solid electrolyte composition of the present invention can be preferably used as a molding material for the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer.
  • the solid electrolyte-containing sheet of the present invention is suitable as the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer.
  • the all solid state secondary battery having the layer configuration of FIG. 1 may be referred to as an all solid state secondary battery sheet.
  • a positive electrode active material layer (hereinafter also referred to as a positive electrode layer) and a negative electrode active material layer (hereinafter also referred to as a negative electrode layer) may be collectively referred to as an electrode layer or an active material layer.
  • the thicknesses of the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 are not particularly limited. In consideration of general battery dimensions, the thickness is preferably 10 to 1,000 ⁇ m, more preferably 20 ⁇ m or more and less than 500 ⁇ m. In the all solid state secondary battery of the present invention, it is more preferable that the thickness of at least one of the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 is 50 ⁇ m or more and less than 500 ⁇ m.
  • the solid electrolyte composition of the present invention comprises (A) an inorganic solid electrolyte having conductivity of metal ions belonging to Group 1 or Group 2 of the periodic table, (B) a specific polymer, and (C) a dispersion medium. Containing.
  • the components (A) to (C) are all components of the solid electrolyte composition of the present invention, and each of the components (A) is an ion of a metal belonging to Group 1 or Group 2 of the periodic table.
  • the component (B) is a specific (B) polymer described later, and the component (C) is a dispersion medium.
  • the inorganic solid electrolyte is an inorganic solid electrolyte, and the solid electrolyte is a solid electrolyte capable of moving ions inside. Since it does not contain organic substances as the main ion conductive material, organic solid electrolytes (polymer electrolytes typified by polyethylene oxide (PEO), etc., organics typified by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from the electrolyte salt). In addition, since the inorganic solid electrolyte is solid in a steady state, it is not usually dissociated or released into cations and anions.
  • organic solid electrolytes polymer electrolytes typified by polyethylene oxide (PEO), etc.
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • inorganic electrolyte salts such as LiPF 6 , LiBF 4 , LiFSI, LiCl, etc.
  • the inorganic solid electrolyte is not particularly limited as long as it has conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table, and generally does not have electron conductivity.
  • the inorganic solid electrolyte has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table.
  • a solid electrolyte material applied to this type of product can be appropriately selected and used.
  • Typical examples of inorganic solid electrolytes include (i) sulfide-based inorganic solid electrolytes and (ii) oxide-based inorganic solid electrolytes.
  • a sulfide-based inorganic solid electrolyte is preferably used.
  • the sulfide-based inorganic solid electrolyte contains a sulfur atom (S) and has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and Those having electronic insulating properties are preferred.
  • the sulfide-based inorganic solid electrolyte preferably contains at least Li, S and P as elements and has lithium ion conductivity. However, depending on the purpose or the case, other than Li, S and P may be used. An element may be included.
  • a lithium ion conductive inorganic solid electrolyte satisfying the composition represented by the following formula (I) can be mentioned.
  • L represents an element selected from Li, Na and K, and Li is preferred.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al, and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
  • a1 is further preferably 1 to 9, and more preferably 1.5 to 7.5.
  • b1 is preferably 0 to 3.
  • d1 is preferably 2.5 to 10, and more preferably 3.0 to 8.5.
  • e1 is preferably 0 to 5, and more preferably 0 to 3.
  • composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass ceramic), or only a part may be crystallized.
  • glass glass
  • glass ceramic glass ceramic
  • Li—PS system glass containing Li, P and S, or Li—PS system glass ceramics containing Li, P and S can be used.
  • the sulfide-based inorganic solid electrolyte includes, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), simple phosphorus, simple sulfur, sodium sulfide, hydrogen sulfide, lithium halide (for example, LiI, LiBr, LiCl) and a sulfide of an element represented by M (for example, SiS 2 , SnS, GeS 2 ) can be produced by reaction of at least two raw materials.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • simple phosphorus simple sulfur
  • sodium sulfide sodium sulfide
  • hydrogen sulfide lithium halide
  • a sulfide of an element represented by M for example, SiS 2 , SnS, GeS 2
  • the ratio of Li 2 S and P 2 S 5 in the Li—PS system glass and Li—PS system glass ceramic is a molar ratio of Li 2 S: P 2 S 5 , preferably 60:40 to 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be increased.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more. Although there is no particular upper limit, it is practical that it is 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li 2 S—P 2 S 5 Li 2 S—P 2 S 5 —LiCl, Li 2 S—P 2 S 5 —H 2 S, Li 2 S—P 2 S 5 —H 2 S—LiCl, Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—LiBr—P 2 S 5 , Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 S—P 2 S 5 —P 2 O 5 , Li 2 S—P 2 S 5 —SiS 2 , Li 2 S—P 2 S 5 —SiS 2 —LiCl, Li 2 S—P 2 S 5 —SnS, Li 2 S—P 2 S 5 —Al 2 S 3 , Li 2
  • Examples of a method for synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition include an amorphization method.
  • Examples of the amorphization method include a mechanical milling method, a solution method, and a melt quench method. This is because processing at room temperature is possible, and the manufacturing process can be simplified.
  • Oxide-based inorganic solid electrolyte contains an oxygen atom (O) and has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and A compound having an electronic insulating property is preferable.
  • Li xc B yc M cc zc Onc (M cc is C, S, Al, Si, Ga, Ge, In, Sn are at least one element, xc satisfies 0 ⁇ xc ⁇ 5, yc satisfies 0 ⁇ yc ⁇ 1, and zc satisfies 0 ⁇ zc ⁇ met 1, nc satisfies 0 ⁇ nc ⁇ 6.), Li xd ( l, Ga) yd (Ti, Ge) zd Si ad P md O nd ( provided that, 1 ⁇ xd ⁇ 3,0 ⁇ yd ⁇ 1,0 ⁇ zd ⁇ 2,0 ⁇ ad ⁇ 1,1 ⁇ md
  • D ee represents a halogen atom or Represents a combination of two or more halogen atoms.
  • Li 3 BO 3 —Li 2 SO 4 Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—SiO 2 , Li 6 BaLa 2 ta 2 O 12, Li 3 PO (4-3 / 2w) N w (w is w ⁇ 1), LI ICON (Lithium super ionic conductor) type Li 3.5 Zn 0.25 GeO 4 having a crystal structure, La 0.55 Li 0.35 TiO 3 having a perovskite crystal structure, NASICON (Natrium super ionic conductor) type crystal structure
  • Li, P and O Phosphorus compounds containing Li, P and O are also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON obtained by replacing a part of oxygen of lithium phosphate with nitrogen
  • LiPOD 1 LiPOD 1
  • LiA 1 ON A 1 is at least one selected from Si, B, Ge, Al, C, Ga, etc.
  • the volume average particle diameter of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more. As an upper limit, it is preferable that it is 100 micrometers or less, and it is more preferable that it is 50 micrometers or less.
  • the measurement of the average particle diameter of an inorganic solid electrolyte particle is performed in the following procedures.
  • the inorganic solid electrolyte particles are diluted and adjusted in a 20 ml sample bottle using water (heptane in the case of a substance unstable to water).
  • the diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that.
  • the content of the solid component in the solid electrolyte composition of the inorganic solid electrolyte is 100% by mass of the solid component when considering the reduction of the interface resistance when used in an all-solid secondary battery and the maintenance of the reduced interface resistance. It is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 20% by mass or more. As an upper limit, it is preferable that it is 99.9 mass% or less from the same viewpoint, It is more preferable that it is 99.5 mass% or less, It is especially preferable that it is 99 mass% or less.
  • the said inorganic solid electrolyte may be used individually by 1 type, and may be used in combination of 2 or more type.
  • solid content refers to a component that does not disappear by evaporation or evaporation when subjected to a drying treatment at 170 ° C. for 6 hours in a nitrogen atmosphere. Typically, it refers to components other than the dispersion medium described below.
  • the solid electrolyte composition of the present invention contains (B) a polymer.
  • the polymer (B) used in the present invention has a hydrocarbon polymer segment in the main chain, and the main chain contains at least one bond selected from the following bond group (I). ⁇ Coupling group (I)> Ester bond, amide bond, urethane bond, urea bond, imide bond, ether bond and carbonate bond.
  • the “main chain” is a line in which all molecular chains (long molecular chain and / or short molecular chain) other than the main chain among all molecular chains in the polymer can be regarded as a pendant with respect to the main chain.
  • the longest chain among the molecular chains constituting the polymer is the main chain.
  • the functional group possessed by the polymer terminal is not included in the main chain and is separately defined as a terminal functional group.
  • the bond selected from the above bond group (I) is not particularly limited as long as it is contained in the main chain of the polymer, and is an aspect contained in the structural unit as a subunit and / or a bond linking different structural units. Any of the aspects included as However, a bond selected from the above bond group (I) is not contained in the main chain of the hydrocarbon polymer segment.
  • the bond selected from the bond group (I) is contained as a subunit in the structural unit
  • the bond selected from the bond group (I) is It is preferable to have a hydrophilic segment contained as a unit in the main chain of the polymer (B), and at least one segment selected from polyester, polyamide, polyurethane, polyurea, polyimide, polyether and polycarbonate (hereinafter also referred to as hydrophilic segment) It is more preferable to have (B) in the main chain of the polymer.
  • this (B) polymer is polyester, polyamide, polyurethane, polyurea, polyimide, polyether and polycarbonate. Any of a random polymer and a polycondensation type segmented polymer of a hydrocarbon polymer having a functional group at the end thereof for reaction with at least one polymer selected from From the viewpoint of forming particles by the phase inversion emulsification method described later, a polycondensation type segmented polymer is preferable.
  • the polymer is a polycondensation type segmented polymer
  • the polymer is at least one selected from the above-mentioned hydrocarbon polymer segments and polyester, polyamide, polyurethane, polyurea, polyimide, polyether and polycarbonate.
  • a segmented polymer having segments is preferred.
  • the mass average molecular weight of the polymer is preferably from 5,000 to less than 5,000,000, more preferably from 5,000 to less than 500,000, and even more preferably from 5,000 to less than 50,000.
  • the upper limit of the glass transition temperature of the polymer is preferably 80 ° C. or lower, more preferably 50 ° C. or lower, and further preferably 30 ° C. or lower.
  • the lower limit is not particularly limited, but is generally ⁇ 80 ° C. or higher.
  • the polymer (B) is preferably a linear polymer (that is, a linear polymer) from the viewpoint of forming polymer particles by the phase inversion emulsification method described below.
  • the linear polymer is not only a polymer having no completely branched structure, but also a substantially linear polymer having a branched structure as long as particles can be formed by the phase inversion emulsification method described later.
  • a linear polymer having a short molecular chain in addition to the main chain is included.
  • the polymer (B) used in the present invention has a hydrocarbon polymer segment in the main chain.
  • the hydrocarbon polymer segment means a segment composed of an oligomer or polymer composed of carbon atoms and hydrogen atoms (hereinafter also referred to as hydrocarbon polymer), strictly speaking, a polymer composed of carbon atoms and hydrogen atoms. In which at least two atoms (for example, a hydrogen atom) or a group (for example, a methyl group) are removed. As will be described later, it is assumed that the functional group for bonding with the hydrophilic segment or the like that may be present at the polymer terminal is not included in the hydrocarbon polymer segment.
  • the hydrocarbon polymer is a polymer having a structure in which at least two structural repeating units are linked.
  • the hydrocarbon polymer is preferably composed of at least 50 carbon atoms.
  • the hydrocarbon polymer may have a carbon-carbon unsaturated bond, and may have an aliphatic ring and / or an aromatic ring structure. That is, the hydrocarbon polymer may be a hydrocarbon polymer composed of hydrocarbons selected from aliphatic hydrocarbons and aromatic hydrocarbons. In view of the effect of steric repulsion when it is flexible and present as polymer particles, a hydrocarbon polymer composed of an aliphatic hydrocarbon is preferred.
  • the hydrocarbon polymer is preferably an elastomer, and specific examples thereof include a diene elastomer having a double bond in the main chain and a non-diene elastomer having no double bond in the main chain.
  • diene elastomers include styrene-butadiene rubber (SBR), styrene-ethylene-butadiene rubber (SEBR), butyl rubber (copolymer rubber of isobutylene and isoprene, IIR), butadiene rubber (BR), and isoprene rubber (IR). And ethylene-propylene-diene rubber.
  • non-diene elastomer examples include olefin elastomers such as ethylene-propylene rubber and styrene-ethylene-butylene rubber, and hydrogen reduction elastomers of the diene elastomer.
  • the mass average molecular weight of the hydrocarbon polymer segment is preferably 1,000 or more, more preferably 1,000 or more and less than 1,000,000 from the viewpoint of improving the particle dispersibility of the polymer (B) and obtaining fine particles.
  • 1,000 to less than 100,000 is more preferred, and 1,000 to less than 10,000 is particularly preferred.
  • the upper limit of the glass transition temperature of the hydrocarbon polymer segment is preferably 0 ° C. or less, more preferably ⁇ 20 ° C. or less, and ⁇ 40 ° C. or less from the viewpoint of improving the particle dispersibility of the polymer (B) and obtaining fine particles. Is more preferable.
  • the lower limit is not particularly limited, but is generally ⁇ 150 ° C. or higher.
  • the upper limit of the SP (Solubility Parameter) value of the hydrocarbon polymer segment is preferably less than 9.0, more preferably less than 8.7, and even more preferably less than 8.5.
  • the lower limit is not particularly limited, but is generally 6.0 or more.
  • the SP value is a solubility parameter ⁇ t calculated by the Hoy method.
  • the solubility parameter ⁇ t is literature "Properties of Polymers 3 rd, ELSEVIER , (1990)" The ⁇ t obtained for Amorphous Polymers according to the 214-220 pages, "2) Method of Hoy (1985,1989)” column of Meaning and calculated according to the description in the above column of the above document.
  • the unit of SP value is “(cal / cm 3 ) 1/2 ”.
  • the content of the hydrocarbon polymer segment in the polymer is preferably 1% by mass or more and 80% by mass or less, more preferably 5% by mass or more and 80% by mass or less from the viewpoint of the dispersibility and strength of the polymer (B). It is preferably 5% by mass or more and 50% by mass or less, more preferably 10% by mass or more and 40% by mass or less, and most preferably 10% by mass or more and 30% by mass or less.
  • the hydrocarbon polymer preferably has a functional group for forming a bond with a hydrophilic segment or the like at the polymer end, and more preferably has a functional group capable of polycondensation.
  • the functional group capable of polycondensation include a hydroxy group, a carboxy group, an amino group, a sulfanyl group, and an acid anhydride, and among them, a hydroxy group is preferable.
  • hydrocarbon polymer having a functional group capable of polycondensation at the polymer terminal are, under the trade name, NISSO-PB-G series (manufactured by Nippon Soda Co., Ltd.), NISSO-PB-GI series (Nippon Soda ( Co., Ltd.), Claysol series (manufactured by Sakai Kogyo Co., Ltd.), PolyVEST-HT series (manufactured by Evonik Co., Ltd.), poly-bd series (manufactured by Idemitsu Kosan Co., Ltd.), poly-ip series (Idemitsu Kosan Co., Ltd.) EPOL (manufactured by Idemitsu Kosan Co., Ltd.) and polytail series (manufactured by Mitsubishi Chemical Corporation) are preferably used.
  • the polymer (B) used in the present invention contains at least one bond selected from the above bond group (I) in the main chain.
  • the polymer (B) used in the present invention preferably has at least one segment (hydrophilic segment) selected from polyester, polyamide, polyurethane, polyurea, polyimide, polyether and polycarbonate.
  • segment (hydrophilic segment) selected from polyester, polyamide, polyurethane, polyurea, polyimide, polyether and polycarbonate.
  • bonds other than the polymer which comprises a hydrophilic segment for example, the aspect of the segment which consists of a polyurethane which has a carbonate bond in a molecular chain is mentioned.
  • Compounds (including oligomers and polymers) having a bond selected from the above bond group (I) can be obtained by a conventional method such as the following method.
  • a polymer having an ester bond can be obtained by condensation of a carboxylic acid or carboxylic acid chloride with an alcohol.
  • a polymer having an amide bond is obtained by condensation of a carboxylic acid or carboxylic acid chloride with an amine.
  • a polymer having a urethane bond is obtained by condensation of an isocyanate and an alcohol.
  • a polymer having a urea bond is obtained by condensation of an isocyanate and an amine.
  • a polymer having an imide bond can be obtained by reacting a carboxylic dianhydride with an amine.
  • a polymer having a carbonate bond is obtained by condensation of a low molecular weight carbonate (for example, dimethyl carbonate, diethyl carbonate and diphenyl carbonate) with an alcohol.
  • a polymer having an ether bond is obtained by a substitution reaction between a halide (for example, alkyl halide) or a sulfonate ester and an alcohol.
  • the functional group in these compounds is suitably a bifunctional or higher polyfunctional compound, and from the point of forming a linear (B) polymer, It is preferable to use a bifunctional compound.
  • the raw materials used for the synthesis of the hydrophilic polymer unit are described, for example, in the section of the polymer having an amide bond, the polymer having a urethane bond and the polymer having a urea bond described in JP-A-2015-88480. It can be used suitably.
  • the following raw materials can be polycondensed in a desired combination to synthesize corresponding polyester, polyamide, polyurethane, polyurea, polyimide, and the like.
  • the diisocyanate compound is not particularly limited and may be appropriately selected. Examples thereof include a compound represented by the following formula (M1).
  • R M1 is a divalent aliphatic or aromatic carbonization that may have a substituent (eg, an alkyl group, an aralkyl group, an aryl group, an alkoxy group, or a halogen atom is preferable).
  • a substituent eg, an alkyl group, an aralkyl group, an aryl group, an alkoxy group, or a halogen atom is preferable.
  • R M1 is optionally other functional group that does not react with an isocyanato group, such as an ester group (a group having an ester bond, such as an acyloxy group, an alkoxycarbonyl group, or an aryloxycarbonyl group), a urethane group, an amide group, and Any of the ureido groups may be contained.
  • the diisocyanate compound represented by the formula (M1) is not particularly limited, and examples thereof include diisocyanates, triisocyanate compounds (compounds described in paragraph numbers 0034 to 0035 of JP-A-2005-250438), ethylenic compounds, and the like. Examples thereof include products obtained by addition reaction with 1 equivalent of monofunctional alcohol having a unsaturated group or monofunctional amine compound (compound described in paragraph Nos. 0037 to 0040 of JP-A-2005-250438). It is done.
  • the group represented by the following formula (M2) is included.
  • X represents a single bond, —CH 2 —, —C (CH 3 ) 2 —, —SO 2 —, —S—, —CO— or —O—. From the viewpoint of binding properties, —CH 2 — or —O— is preferable, and —CH 2 — is more preferable.
  • the alkylene group exemplified here may be substituted with a halogen atom (preferably a fluorine atom).
  • R M2 to R M5 each independently represent a hydrogen atom, a monovalent organic group, a halogen atom, —OR M6 , —N (R M6 ) 2 or —SR M6 .
  • R M6 represents a hydrogen atom or a monovalent organic group.
  • the monovalent organic group include an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, —OR M7 [wherein R M7 is a monovalent organic group (preferably an alkyl group having 1 to 20 carbon atoms).
  • R M2 to R M5 are preferably a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or —OR M7, more preferably a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and even more preferably a hydrogen atom.
  • the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
  • the diisocyanate compound represented by the formula (M1) includes a group represented by the following formula (M3).
  • X has the same meaning as X in formula (M2), and the preferred range is also the same.
  • composition ratio of the aromatic groups represented by the formulas (M1) to (M3) is preferably 10 mol% or more, more preferably 10 mol% to 50 mol%, still more preferably 30 mol% to 50 mol% in the polymer.
  • diisocyanate compound represented by the formula (M1) are not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 2,4-tolylene diisocyanate and 2,4-tolylene diisocyanate. Dimer, 2,6-tolylene diisocyanate, p-xylylene diisocyanate, m-xylylene diisocyanate, 4,4'-diphenylmethane diisocyanate (MDI), 1,5-naphthylene diisocyanate, 3,3'-dimethyl Aromatic diisocyanate compounds such as biphenyl-4,4′-diisocyanate; Aliphatic diisocyanate compounds such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, dimer acid diisocyanate; isophorone diisocyanate Alicyclic diisocyanate compounds such as 4,4′-methylenebis (cyclohexyl), 2,4
  • MDI 4,4'-diphenylmethane diisocyanate
  • H12MDI 4,4'-methylenebis (cyclohexyl isocyanate)
  • diol compound examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, neopentyl glycol, 1,3-butylene glycol, 1,6-hexane.
  • Diethylene glycol triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, heptaethylene glycol, octaethylene glycol, di-1,2-propylene glycol, tri-1,2-propylene glycol, tetra-1,2- Propylene glycol, hexa-1,2-propylene glycol, di-1,3-propylene glycol, tri-1,3-propylene glycol, tetra-1,3-propylene glycol, di-1,3-butylene glycol, tri- 1,3-butylene glycol, hexa-1,3-butylene glycol, polyethylene glycol having an average molecular weight of 200, polyethylene glycol having an average molecular weight of 400, polyethylene glycol having an average molecular weight of 600, an average molecule 1,000 polyethylene glycol, polyethylene glycol having an average molecular weight of 1,500, polyethylene glycol having an average molecular weight of 2,000, polyethylene glycol having
  • the diol compound is also available as a commercial product.
  • PE-68 New Pole PE-71, New Pole PE-74, New Pole PE-75, New Pole PE-78, New Pole PE-108, New Pole PE-128, New Pole BPE-20, New Pole BPE- 20F, New Pole BPE-20NK, New Pole BPE-20T, New Pole BPE-20G, New Pole BPE-40, New Pole BPE-60, New Pole BPE-100, New Pole BPE-180, New Pole BP-2P, New Pole BPE-23P, New Pole BPE-3P, New Pole BPE-5P, New Pole 50HB-100, New Pole 50HB-260, New Pole 50HB-400, New Pole 50HB-660, New Pole 50HB-2000, New Pole 50HB Examples include polyether diol compounds such as ⁇ 5100 (all trade names), polyester diol compounds, polycarbonate diol compounds, and silicone diol compounds.
  • Polyester diol compounds are all trade names, such as Polylite series (DIC), Kuraray polyol P series, Kuraray polyol F series, Kuraray polyol N series, Kuraray polyol PMNA series (manufactured by Kuraray Co., Ltd.), Plaxel Series (manufactured by Daicel Chemical Co., Ltd.) can be suitably used.
  • polycarbonate diol compound all are trade names, DURANOL series (made by Asahi Kasei Chemicals Co., Ltd.), etanacol series (made by Ube Industries, Ltd.), Plaxel CD series (made by Daicel Chemical Co., Ltd.) Kuraray polyol C series (manufactured by Kuraray Co., Ltd.) can be preferably used.
  • silicone diol compound carbinol-modified silicone oil manufactured by Shin-Etsu Chemical Co., Ltd. can be used under the trade name. Specifically, KF-6000, KF-6001, KF-6002, KF-6003 and the like can be preferably used.
  • the diol preferably has a polyethylene oxide chain, a polypropylene oxide chain, a polycarbonate chain, a polyester chain, or a silicone chain.
  • the diol is a group having a carbon-carbon unsaturated bond and / or a polar group (alcoholic hydroxyl group, phenolic hydroxyl group, mercapto group, carboxy group, sulfo group, sulfonamido group, phosphoric acid group, cyano group, amino group, It preferably has a zwitterion-containing group, a metal hydroxide group, or a metal alkoxide group.
  • diol having a group having a carbon-carbon unsaturated bond and / or a polar group for example, 2,2-bis (hydroxymethyl) propionic acid can be used.
  • diol compound containing a group having a carbon-carbon unsaturated bond a compound described in JP-A No. 2007-187836 as well as Bremer GLM (trade name, manufactured by NOF Corporation) is preferably used as a commercially available product. Can be used.
  • monoalcohol or monoamine can be used as a polymerization terminator.
  • a polymerization terminator is introduced into the terminal site of the polyurethane main chain.
  • Polyalkylene glycol monoalkyl ether polyethylene glycol monoalkyl ether and polypropylene monoalkyl ether are preferred
  • polycarbonate diol monoalkyl ether polycarbonate diol monoalkyl ether
  • polyester diol monoalkyl ether polyester monoalcohol, etc.
  • diamine component examples include ethylenediamine, 1-methylethyldiamine, 1,3-propylenediamine, tetramethylenediamine, pentamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodeca Examples thereof include aliphatic diamines such as methylene diamine, and other examples include cyclohexane diamine, bis (4,4′-aminohexyl) methane, and paraxylylene diamine.
  • diamine having a polypropyleneoxy chain As the diamine having a polypropyleneoxy chain, Jeffamine (manufactured by Huntsman Co., Ltd.), polypropylene glycol-bis-2-aminopropyl ether (manufactured by Aldrich Co., Ltd.) (both trade names) can also be used.
  • diamine component 1) One benzene nucleus diamine such as paraphenylenediamine (1,4-diaminobenzene; PPD), 1,3-diaminobenzene, 2,4-toluenediamine, 2,5-toluenediamine, 2,6-toluenediamine, etc. ,
  • PPD paraphenylenediamine
  • 1,3-diaminobenzene 1,3-diaminobenzene
  • 2,4-toluenediamine 2,4-toluenediamine
  • 2,5-toluenediamine 2,6-toluenediamine
  • Diaminodiphenyl ethers such as 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 3,3′-dimethyl-4,4 ′ -Diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4 ' -Diaminodiphenylmethane, 3,3'-dicarboxy-4,4'-diaminodiphenylmethane, 3,3 ', 5,5'-tetramethyl-4,4'-diaminodiphenylmethane, bis (4-aminophenyl) sulfide, 4,4'-diaminobenz
  • the diamine for example, the diamine structure described above can be used.
  • the diamine is preferably a structure having amino groups at both ends of a polyethylene oxide chain, a polypropylene oxide chain, a polycarbonate chain, and a polyester chain.
  • “Jeffamine” series manufactured by Huntsman Co., Ltd., Mitsui Chemicals Fine Co., Ltd.
  • Carboxylic acid or its acid chloride As the carboxylic acid component, aliphatic dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, sebacic acid, pimelic acid, spellic acid, azelaic acid, undecanoic acid, undecadioic acid, dodecadioic acid, adipic acid, dimer acid, Examples include 4-cyclohexanedicarboxylic acid, paraxylylene dicarboxylic acid, metaxylylene dicarboxylic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, terephthalic acid, and the like.
  • the acid chloride include those corresponding to the acid chloride of the carboxylic acid.
  • tetracarboxylic dianhydride Specific examples include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) and pyromellitic dianhydride (PMDA).
  • s-BPDA 4,4′-biphenyltetracarboxylic dianhydride
  • PMDA pyromellitic dianhydride
  • 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (a-BPDA), oxydiphthalic dianhydride, diphenylsulfone-3,4,3 ′, 4′-tetracarboxylic dianhydride, Bis (3,4-dicarboxyphenyl) sulfide dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2 , 3,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, p-phenylenebis (trimellitic acid monoester acid anhydride), p-b
  • the tetracarboxylic acid component preferably contains at least s-BPDA and / or PMDA.
  • s-BPDA is preferably contained in an amount of 50 mol% or more, more preferably 70 mol% or more, and further preferably 75 mol% or more in 100 mol% of the tetracarboxylic acid component. Since tetracarboxylic acid dihydrate desirably functions as a hard segment, it preferably has a rigid benzene ring.
  • the main chain terminal of the polymer (B) is determined by the mixing ratio of the raw material monomer and raw material oligomer constituting the polymer. For example, when it has a polyurethane segment, since it has a segment obtained by reacting a diisocyanate compound as a raw material with a diol compound, the main chain terminal of the polymer (B) is a functional group of the compound having the largest molar amount among the above compounds. It is common for the polymerization to stop.
  • the principal chain terminal of the polymer (B) of this invention it does not specifically limit about the principal chain terminal of the polymer (B) of this invention, It is suggested that they are an isocyanate group, a hydroxy group, an amino group, a carboxy group, a carboxylic acid chloride group, an acid anhydride group, etc. Further, these functional groups at the ends of the main chain may be further reacted as necessary to be converted into other functional groups.
  • Another functional group includes an alkyl group having 1 to 30 carbon atoms and an aryl group having 6 to 20 carbon atoms for enhancing dispersibility, a crosslinkable functional group for increasing the elastic modulus by polymerization, an active material, and an inorganic solid.
  • the functional group at the end of the main chain may be any compound for which the main chain end is not described.
  • the polymer (B) used in the present invention preferably has a functional group for enhancing wettability and / or adsorption to the solid particle surface.
  • the functional group include a functional group exhibiting an interaction such as a hydrogen bond on the surface of the solid particle and a functional group capable of forming a chemical bond with the group on the surface of the solid particle. It preferably has at least one functional group selected from:
  • the polymer (B) has two or more functional groups capable of forming a bond between functional groups. It is preferable not to have.
  • the salt may be sufficient as a sulfonic acid group and a phosphoric acid group, for example, a sodium salt and a calcium salt are mentioned.
  • the alkoxysilyl group may be a silyl group in which a Si atom is substituted with at least one alkoxy group (preferably having 1 to 12 carbon atoms).
  • Other substituents on the Si atom include an alkyl group, an aryl group, and an aryl group. Groups and the like.
  • the alkoxysilyl group for example, the description of the alkoxysilyl group in the substituent P described later can be preferably applied.
  • the group having a condensed ring structure of three or more rings is preferably a group having a cholesterol ring structure or a group having a structure in which three or more aromatic rings are condensed, more preferably a cholesterol residue or a pyrenyl group.
  • the polymer (B) used in the present invention preferably has a functional group selected from the functional group group (II) at a position other than the hydrocarbon polymer segment, and more preferably in the hydrophilic segment.
  • the content of the functional group selected from the functional group group (II) in the (B) polymer used in the present invention is not particularly limited, but all of the (B) polymers used in the present invention constitute the polymer.
  • the proportion of the repeating unit having a functional group selected from the functional group group (II) in the repeating unit is preferably 1 to 50 mol%, more preferably 5 to 20 mol%.
  • the polymer (B) used in the present invention preferably has a functional group capable of forming a crosslinked structure by a radical polymerization reaction, a cationic polymerization reaction or an anionic polymerization reaction (hereinafter also referred to as a crosslinkable functional group).
  • a crosslinkable functional group capable of forming a crosslinked structure by a radical polymerization reaction, a cationic polymerization reaction or an anionic polymerization reaction (hereinafter also referred to as a crosslinkable functional group).
  • the crosslinkable functional groups react with each other to form a bond
  • the polymer (B) used in the present invention can produce a crosslinked structure in the polymer particles or between the polymer particles, thereby improving the strength.
  • the crosslinkable functional group is preferably a group having a carbon-carbon unsaturated bond and / or a cyclic ether group.
  • the group having a carbon-carbon unsaturated bond is a group capable of forming a crosslinked structure by a radical polymerization reaction (that is, a group having a polymerizable carbon-carbon unsaturated bond), specifically, an alkenyl group.
  • the number of carbon atoms is preferably 2 to 12, more preferably 2 to 8.
  • an alkynyl group (the number of carbon atoms is preferably 2 to 12, more preferably 2 to 8)
  • an acryloyl group and a methacryloyl group. More preferred are a vinyl group, an ethynyl group, an acryloyl group, a methacryloyl group and a 2-trifluoromethylpropenoyl group.
  • the cyclic ether group is a group capable of forming a crosslinked structure by a cationic polymerization reaction, and specifically, an epoxy group and an oxetanyl group are preferably exemplified. That is, the polymer (B) used in the present invention preferably has at least one functional group selected from the following functional group group (III).
  • a group having a carbon-carbon unsaturated bond, an epoxy group and an oxetanyl group Preferred examples of the group having a carbon-carbon unsaturated bond include the above groups, and among them, a vinyl group, an ethynyl group, an acryloyl group, a methacryloyl group, or a 2-trifluoromethylpropenoyl group is preferable.
  • the polymer (B) used in the present invention preferably has the crosslinkable functional group at a position other than the hydrocarbon polymer segment, and more preferably in the hydrophilic segment.
  • a crosslinkable functional group composed of carbon atoms and hydrogen atoms for example, vinyl group and propenyl group
  • the polymer (B) used in the present invention is a segmented polymer, the crosslinking in the polymer particles easily proceeds by the crosslinkable functional group in the hydrophilic segment, while the crosslinking in the hydrocarbon polymer segment.
  • the crosslinks between the polymer particles are facilitated by the functional functional group.
  • the content of the crosslinkable functional group in the polymer (B) used in the present invention is not particularly limited, but the crosslinkability in all repeating units constituting the polymer (B) used in the present invention.
  • the proportion of the repeating unit having a functional group is preferably 1 to 50 mol%, more preferably 5 to 20 mol%.
  • a polymerization initiator (radical, cation or anionic polymerization initiator) corresponding to each crosslinkable functional group is contained in the solid electrolyte composition of the present invention, and polymerization of these is performed. You may make it react by an initiator and may make it react by the oxidation reduction reaction at the time of a battery drive.
  • the radical polymerization initiator may be either a thermal radical polymerization initiator that is cleaved by heat to generate an initiation radical, or a photo radical polymerization initiator that generates an initiation radical by light, electron beam, or radiation.
  • a commonly used polymerization initiator can be used without any particular limitation.
  • h1, h2, i1, i2, j1 to j3, k1 to k3, m, n1, n2, p, q, r, and t each independently represent the number of repeating units (average number of units).
  • h1 is preferably 0 to 60, more preferably 2 to 50, and h2 is preferably 0 to 60, and more preferably 2 to 30.
  • i1 is preferably from 0 to 60, more preferably from 2 to 50, and i2 is preferably from 0 to 60, more preferably from 2 to 30.
  • j1 is preferably 0 to 30, more preferably 2 to 20, j2 is preferably 0 to 50, more preferably 2 to 40, and j3 is preferably 0 to 20, more preferably 2 to 10.
  • k1 is preferably 0-30, more preferably 2-20, k2 is preferably 0-50, more preferably 2-40, and k3 is preferably 0-20, more preferably 2-20.
  • m is preferably 2 to 20, and more preferably 2 to 10.
  • n1 and n2 are each independently preferably 3 to 100, more preferably 5 to 50.
  • Example Compounds (B-20) and (B-21) represents a structure having a repeating unit represented by h1 and h2.
  • a compound, partial structure or group for which substitution or non-substitution is not clearly specified means that the compound, partial structure or group may have an appropriate substituent. This is also synonymous for compounds that do not specify substituted or unsubstituted.
  • Preferable substituents include the following substituent P. Examples of the substituent P include the following.
  • alkyl group preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl A group preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like
  • a cycloalkyl group preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc., but in this specification,
  • an aryloyl group (preferably an aryloyl group having 7 to 23 carbon atoms, such as benzoyl, etc., but an acyl group in this specification usually means an aryloyl group).
  • An acyloxy group (preferably an acyloxy group having 1 to 20 carbon atoms, such as acetyloxy), an aryloyloxy group (preferably an aryloyloxy group having 7 to 23 carbon atoms, such as benzoyloxy, etc., provided that In this specification, an acyloxy group usually means an aryloyloxy group), a carbamoyl group (preferably a carbamoyl group having 1 to 20 carbon atoms, such as N, N-dimethylcarbamoyl, N-phenylcarbamoyl, etc.
  • An acylamino group (preferably an acylamino group having 1 to 20 carbon atoms, such as acetylamino, benzoylamino, etc.), an alkylsulfanyl group (preferably an alkylsulfanyl group having 1 to 20 carbon atoms, such as methylsulfanyl, ethyl Sulfanyl, isopropyl Sulfanyl, benzylsulfanyl, etc.), arylsulfanyl groups (preferably arylsulfanyl groups having 6 to 26 carbon atoms, such as phenylsulfanyl, 1-naphthylsulfanyl, 3-methylphenylsulfanyl, 4-methoxyphenylsulfanyl, etc.), alkylsulfonyl A group (preferably an alkylsulfonyl group having 1 to 20 carbon atoms, such as methylsulfonyl or ethyls
  • a silyl group (preferably an alkylsilyl group having 1 to 20 carbon atoms, such as monomethylsilyl, dimethylsilyl, trimethylsilyl, triethylsilyl, etc.), an arylsilyl group (preferably 6 to 4 carbon atoms)
  • Arylsilyl groups such as triphenylsilyl
  • alkoxysilyl groups preferably alkoxysilyl groups having 1 to 20 carbon atoms such as monomethoxysilyl, dimethoxysilyl, trimethoxysilyl, triethoxysilyl, etc.
  • aryl An oxysilyl group (preferably an aryloxysilyl group having 6 to 42 carbon atoms, such as triphenyloxysilyl), a phosphoryl group (preferably a phosphoryl group having 0 to 20 carbon atoms, such as —OP ( ⁇ O) (R P ) 2 ), a phosphonyl group (preferably a phosphonyl
  • Groups such as -P (R P ) 2 ), (meth) acryloyl groups, (meth) acryloyloxy groups, ( (Meth) acryloylumimino group ((meth) acrylamide group), hydroxy group, sulfanyl group, carboxy group, phosphoric acid group, phosphonic acid group, sulfonic acid group, cyano group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, Iodine atom).
  • each of the groups listed as the substituent P may be further substituted with the substituent P described above.
  • substituent, linking group and the like include an alkyl group, an alkylene group, an alkenyl group, an alkenylene group, an alkynyl group and / or an alkynylene group, these may be cyclic or linear, and may be linear or branched. It may be substituted as described above or unsubstituted.
  • the shape of the polymer (B) used in the present invention is not particularly limited, and may be particulate or indefinite in the solid electrolyte composition, the solid electrolyte-containing sheet, or the all-solid secondary battery.
  • the polymer is an insoluble particle in the dispersion medium, the viewpoint of dispersion stability of the solid electrolyte composition, and the viewpoint of obtaining an all-solid secondary battery having high ionic conductivity.
  • “(B) polymer is a particle insoluble in the dispersion medium” means that the average particle diameter does not decrease by 5% or more even when added to the dispersion medium at 30 ° C. and left to stand for 24 hours. Is preferably 3% or less, more preferably 1% or less.
  • the amount of change in the average particle diameter with respect to that before the addition is 0%.
  • the polymer (B) in the solid electrolyte composition is preferably in the form of particles in order to suppress a decrease in interparticle ion conductivity such as an inorganic solid electrolyte, and the average particle diameter is preferably 10 nm to 1000 nm, preferably 100 nm. More preferably, ⁇ 500 nm.
  • the average particle diameter of the polymer particles (B) used in the present invention is based on the measurement conditions and definitions described below unless otherwise specified.
  • the polymer particles are diluted and prepared in a 20 ml sample bottle using an arbitrary solvent (dispersion medium used for preparing the solid electrolyte composition, for example, octane).
  • the diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that.
  • the measurement from the produced all-solid-state secondary battery is performed, for example, after disassembling the battery and peeling off the electrode, then measuring the electrode material according to the method for measuring the average particle diameter of the polymer particles, This can be done by eliminating the measured value of the average particle diameter of the particles other than the polymer particles that have been measured.
  • a polymer may be used individually by 1 type and may be used in combination of 2 or more type.
  • the particle When the polymer is a particle, the particle may not be uniform and may have a core-shell shape or a hollow shape.
  • an organic substance or an inorganic substance may be included in the core part forming the inside of the polymer. Examples of the organic substance included in the core include a dispersion medium, a dispersant, a lithium salt, an ionic liquid, and a conductive auxiliary agent described later.
  • the water concentration of the polymer (B) used in the present invention is preferably 100 ppm (mass basis) or less.
  • the polymer (B) used in the present invention may be used in a solid state, or may be used in the state of a polymer particle dispersion or a polymer solution.
  • the content of the polymer (B) used in the present invention in the solid electrolyte composition is 100 masses of a solid component in consideration of good interfacial resistance reduction and maintainability when used in an all-solid secondary battery.
  • 10 mass% or less is preferable from a viewpoint of a battery characteristic, 5 mass% or less is more preferable, and 3 mass% or less is further more preferable.
  • (B) the mass ratio of the total mass (total amount) of the inorganic solid electrolyte and the active material to the mass of the polymer [(mass of the inorganic solid electrolyte + mass of the active material) / (B) the mass of the polymer] is: A range of 1,000 to 1 is preferred. This ratio is more preferably 500 to 2, and further preferably 100 to 10.
  • (B) polymer used for this invention has a functional group selected from crosslinkable functional group and / or functional group group (II) which can couple
  • (B) polymer has a crosslinked structure.
  • the aspect which is forming and / or the aspect which forms the bond between solid particles shall be included.
  • (B) As a polymer synthesis method, an example of the synthesis method when (B) the polymer is a segmented polymer is described below. First, a prepolymer molecule having a bond selected from the above bond group (I) is synthesized by general polycondensation. Subsequently, the resulting prepolymer molecule and terminal functional group are obtained by reacting the terminal functional group (a) of the resulting prepolymer molecule with the terminal functional group (b) in the terminal functionalized hydrocarbon polymer. And (B) a method of preparing a polymer solution.
  • this (B) polymer solution may be used as it is, or may be used as a solid of (B) polymer after removing the solvent. It may be used as a dispersion liquid of (B) polymer (preferably (B) dispersion of polymer in nonaqueous solvent in which (B) polymer is dispersed in a nonaqueous solvent) which can be prepared by a method.
  • the nonaqueous solvent dispersion of polymer can be suitably used for an all-solid-state secondary battery as described later in (B1) Nonaqueous solvent dispersion of segmented polymer.
  • the description of the non-aqueous solvent in the non-aqueous solvent dispersion of the segmented polymer (B1) described later can be preferably applied.
  • a terminal termination reaction for example, addition of methanol into the (B) polymer solution
  • a side chain modification reaction after the polymerization reaction and polyamic acid dehydration are appropriately performed.
  • various monomers and a terminal functionalized hydrocarbon polymer can be synthesized by simultaneous polymerization from the polymerization initiation stage.
  • the solvent for synthesizing the polymer is not particularly limited, it is preferable to use a polar solvent, specifically, a ketone solvent, an ester solvent and an ether solvent are more preferable, and the description in the dispersion medium described later is preferably applied. can do.
  • a polar solvent specifically, a ketone solvent, an ester solvent and an ether solvent are more preferable, and the description in the dispersion medium described later is preferably applied. can do.
  • the solvent constituting the polymer solution (B) is replaced with a dispersion medium capable of emulsifying and dispersing the polymer (B), (B) The solvent constituting the polymer solution is removed.
  • the boiling point of the solvent (for example, the solvent for synthesizing the polymer (B)) constituting the polymer solution (B) is lower than the boiling point of the dispersion medium capable of emulsifying and dispersing the polymer (B).
  • the dispersion medium capable of emulsifying and dispersing the polymer (B) the description of the dispersion medium capable of emulsifying and dispersing the segmented polymer (B1) described below can be preferably applied.
  • the (B1) segmented polymer of the present invention mainly comprises a hydrocarbon polymer segment and at least one segment (hydrophilic segment) selected from polyester, polyamide, polyurethane, polyurea, polyimide, polyether and polycarbonate. Have in the chain.
  • segment when simply referred to as “segmented polymer”, it means a polymer composed of a hydrocarbon polymer segment and a hydrophilic segment (a polymer that does not include segments other than these segments).
  • the hydrocarbon polymer segment and the hydrophilic segment the description in the hydrocarbon polymer segment and the hydrophilic segment in the polymer (B) can be preferably applied.
  • the (B1) segmented polymer of the present invention has a hydrophobic segment composed of a hydrocarbon polymer segment and a specific hydrophilic segment in the polymer main chain.
  • the hydrophilic segment is strongly agglomerated in the center by hydrogen bonding, while the hydrophobic segment is composed of a hydrocarbon polymer.
  • emulsification can be performed by a phase inversion emulsification method without using an emulsifier.
  • Emulsification / dispersion can be carried out regardless of whether the polymer (B) is a segmented polymer or not a segmented polymer, but a segmented polymer is desirable for the above reasons.
  • Ra represents a hydrocarbon polymer segment, and the other part represents a hydrophilic segment.
  • Ra represents a divalent hydrocarbon group having a mass average molecular weight of 1000 or more.
  • Rb 1 represents an aromatic hydrocarbon group having 6 to 22 carbon atoms, an aliphatic hydrocarbon group having 1 to 15 carbon atoms, or a group formed by combining two or more of these groups.
  • Rb 2 represents an alkylene group having 2 to 6 carbon atoms. However, when R b2 has a substituent, this substituent does not have a group selected from the following functional group (II) or (III).
  • Rb 3 represents an alkylene group having at least one functional group selected from the following functional group group (II).
  • Rb 4 represents an alkylene group having at least one functional group selected from the following functional group group (III).
  • Rb 5 is a divalent chain having a mass average molecular weight of 200 or more, and represents a polyalkylene oxide chain, a polycarbonate chain, a polyester chain, a silicone chain, or a combination of these chains.
  • Xa, Xb 2 , Xb 3 , Xb 4 and Xb 5 represent an oxygen atom or —NH—.
  • a is 0.1 to 30 mol%
  • b1 is 40 to 60 mol%
  • b2 is 0 to 30 mol%
  • b3 is 0 to 30 mol%
  • b4 is 0 to 30 mol%
  • b5 is 0 to 30 mol% is there.
  • b2 + b3 + b4 + b5 0 mol% is not satisfied.
  • ⁇ Functional group group (III)> A group having a carbon-carbon unsaturated bond, an epoxy group and an oxetanyl group; Note that the arrangement of the structural units having the molar ratio of b1 to b5 is in no particular order.
  • the description of the hydrocarbon polymer segment in the polymer (B) can be preferably applied.
  • the aromatic hydrocarbon group having 6 to 22 carbon atoms (preferably 6 to 14, more preferably 6 to 10) in Rb 1 include phenylene and naphthalenediyl.
  • the aliphatic hydrocarbon group having 1 to 15 carbon atoms (preferably 1 to 13) in R b1 may be saturated or unsaturated, may be linear or cyclic, and may have a branch.
  • 1, 1, Examples include 3-trimethylcyclohexanediyl and methylenebis (cyclohexylene).
  • a group formed by combining two or more of the aromatic hydrocarbon group having 6 to 22 carbon atoms and the aliphatic hydrocarbon group having 1 to 15 carbon atoms in R b1 is a phenylene group and an aliphatic hydrocarbon group having 1 to 15 carbon atoms.
  • a group formed by combining two or more group hydrocarbon groups is more preferable, and the number of carbon atoms is preferably 7 to 15, more preferably 8 to 15. Examples include biphenylene, methylene bis (phenylene), and phenylene dimethylene.
  • the functional group (II) in Rb 3 and the functional group (III) in Rb 4 the description of the functional group (II) and functional group (III) in the polymer (B) is preferably applied.
  • the alkylene group for Rb 3 may be linear or cyclic, and may have a branch.
  • the number of carbon atoms is preferably 1 to 15, more preferably 1 to 10, and still more preferably 1 to 8.
  • An example is 2-ethylpropylene.
  • the alkylene group for Rb 4 may be linear or cyclic, and may have a branch.
  • the number of carbon atoms is preferably 1 to 15, more preferably 1 to 10, and still more preferably 1 to 8.
  • An example is propylene.
  • the divalent chain having a mass average molecular weight of 200 or more in Rb 5 preferably has a mass average molecular weight of 200 to 100,000, more preferably 500 to 10,000, and still more preferably 800 to 5,000.
  • the number of carbon atoms of the alkylene oxide chain is preferably 1 to 10, more preferably 1 to 8, and the total number of repeating alkylene oxide chains is preferably 1 to 100, more preferably 3 to 100. 5 to 50 is more preferable.
  • the carbon number of the carbonate chain is preferably 1 to 15, more preferably 1 to 10, and the number of repetitions is preferably 4 to 40, and more preferably 4 to 20.
  • the polyester chain in Rb 5 means a poly (alkylene-ester) chain or a poly (arylene-ester) chain.
  • the alkylene preferably has 1 to 10 carbon atoms, more preferably 1 to 8, and the arylene preferably has 6 to 14 carbon atoms, more preferably 6 to 10 carbon atoms.
  • the number of repetitions is preferably 2 to 40, more preferably 2 to 20.
  • the silicone chain in Rb 5 means a chain having a siloxane bond (—Si—O—Si—, where the Si atom has two organic groups such as an alkyl group and an aryl group), and the number of repetitions is 1 to 200. Preferably, 1 to 100 is more preferable.
  • Each chain in R b5 may have a group such as an alkylene group at the terminal for the convenience of polymer synthesis based on the structure of the commercial product used.
  • the total number of chain repeats means the total number of chain repeats when the chain has a different structure (for example, a polyethylene oxide chain and a polypropylene oxide chain).
  • Examples of the chain formed by combining the above-mentioned chains in Rb 5 include a chain formed by combining a polyalkylene oxide chain and a polycarbonate chain or a polyester chain. A polycarbonate chain or a polyester chain is included in the polyalkylene oxide chain. The chain having is preferred.
  • Examples of the bond that can be formed by —C ( ⁇ O) NH— in Xa, Xb 2 , Xb 3 , Xb 4 , Xb 5 and () b1 include polyurethane and polyurea.
  • a is preferably from 0.3 to 20 mol%, more preferably from 0.5 to 15 mol%, still more preferably from 1 to 10 mol%.
  • b1 is preferably 43 to 58 mol%, more preferably 45 to 55 mol%.
  • b2 is preferably from 0 to 25 mol%, more preferably from 1 to 20 mol%, still more preferably from 5 to 20 mol%.
  • b3 is preferably from 0 to 25 mol%, more preferably from 1 to 25 mol%, still more preferably from 5 to 25 mol%.
  • b4 is preferably 0 to 25 mol%, more preferably 0 to 20 mol%, and still more preferably 0 to 10 mol%.
  • b5 is preferably from 0 to 25 mol%, more preferably from 1 to 25 mol%, still more preferably from 5 to 25 mol%.
  • the example compound (B-3) will be described with respect to how to calculate the molar ratio of each structural unit.
  • (B1) a solution of the segmented polymer obtained by the method for synthesizing the polymer (B1) is dropped into a dispersion medium in which the segmented polymer can be emulsified and dispersed, and emulsified ( B1) A segmented polymer dispersion is obtained.
  • the segmented polymer dispersion obtained above is concentrated under reduced pressure or heated under an inert air stream to selectively remove the solvent constituting the polymer solution and (B1) emulsify and disperse the segmented polymer. It is preferable to increase the concentration of the dispersion medium that can be used.
  • the dispersion medium that can emulsify and disperse the segmented polymer is not particularly limited as long as it is a solvent that dissolves the hydrocarbon polymer segment that is a hydrophobic segment and does not dissolve the hydrophilic segment.
  • Group hydrocarbon or aliphatic hydrocarbon examples include hexane, heptane, normal octane, isooctane, nonane, decane, dodecane, cyclohexane, cycloheptane, cyclooctane, methylcyclohexane, ethylcyclohexane, decalin, light oil, kerosene, and gasoline.
  • Examples of the aromatic hydrocarbon include benzene, toluene, ethylbenzene, xylene, mesitylene, and tetralin.
  • a dispersion medium may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • a polar solvent such as an ether solvent, a ketone solvent, or an ester solvent
  • the mass ratio of the hydrocarbon dispersion medium to the polar solvent is preferably 100/0 to 70/30, more preferably 100/0 to 90/10, and more preferably 100/0 to 99/1 is most preferred.
  • the boiling point at normal pressure of the dispersion medium capable of emulsifying and dispersing the segmented polymer is preferably 80 ° C or higher, preferably 100 ° C or higher, and preferably 120 ° C or higher.
  • the preferred SP value range of the dispersion medium is preferably the same range as the SP value of the hydrocarbon polymer segment from the viewpoint of improving particle dispersibility. “Strong stirring” is not particularly limited as long as mechanical energy such as impact, shear, shear stress, friction and vibration is applied to the polymer solution.
  • a device such as a homogenizer, a homodisper, a grinder, a dissolver, a tie-tech mixer, a stirrer feather in a stirrer tank, a high-pressure jet disperser, an ultrasonic disperser, a ball mill and a bead mill, for example, 300 to 1000 rpm
  • “Slow dripping” is not particularly limited as long as it is not added all at once, but for example, 0.1 mL of a dispersion medium capable of emulsifying and dispersing (B1) segmented polymer in 100 mL of (B1) segmented polymer solution. A mode in which it is dropped at a rate of ⁇ 10.0 mL / min is mentioned.
  • the obtained (B1) segmented polymer particles of the present invention have a very small particle diameter and can adopt a form containing no emulsifier. Therefore, by using it as a binder for an all-solid secondary battery, in an all-solid secondary battery, it is possible to achieve both a good binding effect between solid particles and a high suppression effect of a decrease in ionic conductivity. The cycle characteristics of the solid secondary battery can be further improved.
  • the (B1) segmented polymer according to the present invention is not limited to all-solid-state secondary battery applications, but can be applied to non-aqueous solvent latex polymers, such as semiconductors, printing plates, inkjet inks, image sensors, It can be widely applied to organic EL, liquid crystal image devices, solar cells, lithium ion batteries, fuel cells, asphalt modifiers, lubricants, adhesives, and adhesives, and exhibits excellent effects.
  • the non-aqueous solvent dispersion of (B1) segmented polymer of the present invention is a dispersion in which (B1) segmented polymer particles are dispersed in a non-aqueous solvent, and (B1) segmentation by the phase inversion emulsification method described above. It can be prepared by a method for preparing polymer particles.
  • a non-aqueous solvent means a solvent other than water, and a dispersion medium capable of preparing (B1) segmented polymer particles by the above-described phase inversion emulsification method is preferable.
  • the non-aqueous solvent dispersion of the segmented polymer of the present invention may contain water as long as the (B1) segmented polymer is dispersed as particles. Since the non-aqueous solvent dispersion of the segmented polymer (B1) of the present invention can take a form that does not contain a solvent that can decompose the inorganic solid electrolyte and lower the ionic conductivity, it can be suitably used for an all-solid secondary battery. Can be used.
  • the non-aqueous solvent dispersion of the segmented polymer (B1) of the present invention can be added and mixed with the solid electrolyte composition of the present invention as it is in the solvent system, no complicated steps are required, Moreover, the removal process of the water etc. which remain
  • the non-aqueous solvent dispersion of the segmented polymer (B1) according to the present invention can adopt a form that does not use an emulsifier, when the emulsifier is not used, the polymer solution is dried when dried.
  • the non-aqueous solvent dispersion of the segmented polymer (B1) according to the present invention is not limited to the all-solid-state secondary battery application, and can be applied to, for example, an adhesive and a pressure-sensitive adhesive, and has excellent effects. Demonstrate.
  • the solid electrolyte composition of the present invention contains a dispersion medium for dispersing solid components.
  • Specific examples of the dispersion medium include the following.
  • alcohol compound solvent examples include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, 1,3-butanediol, and 1,4-butane. Diols are mentioned.
  • ether compound solvents examples include alkylene glycol alkyl ethers (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol dimethyl ether, dipropylene glycol.
  • alkylene glycol alkyl ethers ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol dimethyl ether, dipropylene glycol.
  • amide compound solvent examples include N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, N -Methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide and hexamethylphosphoric triamide.
  • amino compound solvents examples include triethylamine and tributylamine.
  • ketone compound solvent examples include acetone, methyl ethyl ketone, diethyl ketone, dipropyl ketone, and dibutyl ketone.
  • ester compound solvent examples include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, pentyl acetate, hexyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate, methyl butyrate, ethyl butyrate, butyric acid.
  • ester compound solvent examples include propyl, butyl butyrate, pentyl butyrate, methyl valerate, ethyl valerate, propyl valerate, butyl valerate, methyl caproate, ethyl caproate, propyl caproate and butyl caproate.
  • aromatic compound solvent examples include benzene, toluene, xylene, and mesitylene.
  • aliphatic compound solvent examples include hexane, heptane, cyclohexane, methylcyclohexane, ethylcyclohexane, octane, pentane, cyclopentane, cyclooctadiene, cyclooctane, light oil, kerosene, naphtha, and gasoline.
  • nitrile compound solvent examples include acetonitrile, propyronitrile, and butyronitrile.
  • Examples of the carbonate compound solvent include ethylene carbonate, dimethyl carbonate, and diethyl carbonate.
  • the dispersion medium preferably has a boiling point of 50 ° C. or higher, more preferably 70 ° C. or higher at normal pressure (1 atm).
  • the upper limit is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower.
  • the said dispersion medium may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the (C) dispersion medium used in the present invention may be used in any combination, but (B1) one that does not dissolve the segmented polymer particles is preferred.
  • the (C) dispersion medium used in the present invention is preferably an ether compound solvent, a ketone compound solvent, an ester compound solvent or a hydrocarbon solvent (aromatic compound solvent or aliphatic compound solvent), and the solid of the present invention.
  • a hydrocarbon solvent (aromatic compound solvent or aliphatic compound solvent) is more preferable from the viewpoint that the electrolyte composition may contain the particulate (B) polymer.
  • the content of the hydrocarbon solvent (aromatic compound solvent or aliphatic compound solvent) in the dispersion medium is the lower limit from the point that the solid electrolyte composition of the present invention can contain the particulate (B) polymer. Is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 90% by mass or more.
  • the upper limit is not particularly limited, but is preferably 100% by mass.
  • the aromatic solvent is preferably toluene or xylene
  • the aliphatic solvent is preferably heptane, octane, cyclohexane, cyclooctadiene or cyclooctane.
  • the content of the (C) dispersion medium in the solid electrolyte composition of the present invention is not particularly limited, but is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and particularly preferably 40 to 60% by mass. .
  • the dispersion medium is contained in the solid electrolyte composition, but it is preferably removed in the process of producing the solid electrolyte-containing sheet or the all-solid secondary battery and does not remain in the solid electrolyte-containing sheet or the all-solid-state secondary battery.
  • the upper limit of the remaining amount of the (C) dispersion medium in the solid electrolyte-containing sheet or all-solid battery is preferably 5% or less, more preferably 1% or less, still more preferably 0.1% or less, 0 .05% or less is most preferable. Although the lower limit is not particularly defined, it is actually 1 ppb or more.
  • the solid electrolyte composition of the present invention may contain an active material (D) capable of inserting and releasing ions of metal elements belonging to Group 1 or Group 2 of the periodic table.
  • the active material is also simply referred to as an active material.
  • the active material include a positive electrode active material and a negative electrode active material, and a transition metal oxide that is a positive electrode active material or a metal oxide that is a negative electrode active material is preferable.
  • a solid electrolyte composition containing an active material positive electrode active material, negative electrode active material
  • an electrode composition positive electrode composition, negative electrode composition
  • the positive electrode active material that may be contained in the solid electrolyte composition of the present invention is preferably one that can reversibly insert and release lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide, an organic substance, an element that can be complexed with Li, such as sulfur, or a complex of sulfur and metal.
  • the positive electrode active material it is preferable to use a transition metal oxide, and a transition metal oxide having a transition metal element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu and V). More preferred.
  • this transition metal oxide includes an element M b (an element of the first (Ia) group of the metal periodic table other than lithium, an element of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Elements such as Sb, Bi, Si, P or B) may be mixed.
  • the mixing amount is preferably 0 ⁇ 30 mol% relative to the amount of the transition metal element M a (100mol%). Those synthesized by mixing so that the molar ratio of Li / Ma is 0.3 to 2.2 are more preferable.
  • transition metal oxide examples include (MA) a transition metal oxide having a layered rock salt structure, (MB) a transition metal oxide having a spinel structure, (MC) a lithium-containing transition metal phosphate compound, (MD And lithium-containing transition metal halide phosphate compounds and (ME) lithium-containing transition metal silicate compounds.
  • transition metal oxides having (MA) layered rock-salt structure LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 ( lithium nickelate) LiNi 0.85 Co 0.10 Al 0.05 O 2 (lithium nickel cobalt aluminate [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (nickel manganese lithium cobaltate [NMC]) and LiNi 0.5 Mn 0.5 O 2 (manganese) Lithium nickelate).
  • transition metal oxides having (MB) spinel structure include LiMn 2 O 4 (LMO), LiCoMnO 4, Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li 2 NiMn 3 O 8 is mentioned.
  • (MC) lithium-containing transition metal phosphate compounds include olivine-type phosphate iron salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , LiCoPO 4, and the like. And monoclinic Nasicon type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (vanadium lithium phosphate).
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F Cobalt fluorophosphates such as
  • Examples of the (ME) lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4, and Li 2 CoSiO 4 .
  • a transition metal oxide having a (MA) layered rock salt structure is preferable, and LCO, LMO, NCA or NMC is more preferable.
  • the shape of the positive electrode active material is not particularly limited, but is preferably particulate.
  • the volume average particle diameter (sphere conversion average particle diameter) of the positive electrode active material is not particularly limited.
  • the thickness can be 0.1 to 50 ⁇ m.
  • an ordinary pulverizer or classifier may be used.
  • the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the volume average particle diameter (sphere-converted average particle diameter) of the positive electrode active material particles can be measured using a laser diffraction / scattering particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA).
  • the said positive electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the mass (mg) (weight per unit area) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. This can be determined as appropriate according to the designed battery capacity.
  • the content of the positive electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 95% by mass, more preferably 30 to 90% by mass, and even more preferably 50 to 85% by mass at 100% by mass. Preferably, it is 55 to 80% by mass.
  • the negative electrode active material that may be contained in the solid electrolyte composition of the present invention is preferably one that can reversibly insert and release lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and is a carbonaceous material, a metal oxide such as tin oxide, a silicon oxide, a metal composite oxide, a lithium simple substance and a lithium alloy such as a lithium aluminum alloy, and , Metals such as Sn, Si, Al, and In that can form an alloy with lithium.
  • a carbonaceous material or a lithium composite oxide is preferably used from the viewpoint of reliability.
  • the metal composite oxide is preferably capable of inserting and extracting lithium.
  • the material is not particularly limited, but preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
  • the carbonaceous material used as the negative electrode active material is a material substantially made of carbon.
  • various synthetics such as petroleum pitch, carbon black such as acetylene black (AB), graphite (natural graphite, artificial graphite such as vapor-grown graphite), PAN (polyacrylonitrile) -based resin, furfuryl alcohol resin, etc.
  • the carbonaceous material which baked resin can be mentioned.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber, and activated carbon fiber. Examples thereof include mesophase microspheres, graphite whiskers, and flat graphite.
  • an amorphous oxide is particularly preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used. It is done.
  • amorphous as used herein means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2 ⁇ , and is a crystalline diffraction line. You may have.
  • the amorphous oxide of the metalloid element and the chalcogenide are more preferable, and elements of Groups 13 (IIIB) to 15 (VB) of the periodic table, Al , Ga, Si, Sn, Ge, Pb, Sb and Bi are used alone or in combination of two or more thereof, and chalcogenides are particularly preferable.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 and SnSiS 3 are preferred. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
  • the negative electrode active material contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics due to small volume fluctuations during the insertion and release of lithium ions, and the deterioration of the electrodes is suppressed, and the lithium ion secondary This is preferable in that the battery life can be improved.
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • a Si-based negative electrode it is also preferable to apply a Si-based negative electrode.
  • a Si negative electrode can occlude more Li ions than a carbon negative electrode (such as graphite and acetylene black). That is, the amount of occlusion of Li ions per unit mass increases. Therefore, the battery capacity can be increased. As a result, there is an advantage that the battery driving time can be extended.
  • the shape of the negative electrode active material is not particularly limited, but is preferably particulate.
  • the average particle size of the negative electrode active material is preferably 0.1 to 60 ⁇ m.
  • a normal pulverizer or classifier is used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill, and a sieve are preferably used.
  • pulverizing wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary.
  • classification is preferably performed.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
  • the average particle diameter of the negative electrode active material particles can be measured by the same method as the above-described method for measuring the volume average particle diameter of the positive electrode active material.
  • the chemical formula of the compound obtained by the above firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method, and from a mass difference between powders before and after firing as a simple method.
  • ICP inductively coupled plasma
  • the said negative electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the mass (mg) (weight per unit area) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. This can be determined as appropriate according to the designed battery capacity.
  • the content of the negative electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 80% by mass, and more preferably 20 to 80% by mass with a solid content of 100% by mass.
  • the surfaces of the positive electrode active material and the negative electrode active material may be coated with another metal oxide.
  • the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si, or Li. Specific examples include spinel titanate, tantalum-based oxides, niobium-based oxides, lithium niobate-based compounds, and the like. Specifically, Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 , LiTaO 3.
  • the electrode surface containing a positive electrode active material or a negative electrode active material may be surface-treated with sulfur or phosphorus. Further, the particle surface of the positive electrode active material or the negative electrode active material may be subjected to surface treatment with actinic rays or an active gas (plasma or the like) before and after the surface coating.
  • the solid electrolyte composition of the present invention may contain a lithium salt.
  • the lithium salt is not particularly limited, and for example, lithium salts described in paragraphs 0082 to 0085 of JP-A-2015-088486 are preferable.
  • the content of the lithium salt is preferably 0 part by mass or more and more preferably 2 parts by mass or more with respect to 100 parts by mass of the inorganic solid electrolyte. As an upper limit, 50 mass parts or less are preferable, and 20 mass parts or less are more preferable.
  • the solid electrolyte composition of the present invention may contain an ionic liquid from the viewpoint of further improving the ionic conductivity. Although it does not specifically limit as an ionic liquid, What melt
  • (I) Cation Examples of the cation include an imidazolium cation, a pyridinium cation, a piperidinium cation, a pyrrolidinium cation, a morpholinium cation, a phosphonium cation, and a quaternary ammonium cation.
  • these cations have the following substituents.
  • one kind of these cations may be used alone, or two or more kinds may be used in combination.
  • a quaternary ammonium cation an imidazolium cation, a piperidinium cation or a pyrrolidinium cation is preferable, and a quaternary ammonium cation, a piperidinium cation or a pyrrolidinium cation is more preferable.
  • Examples of the substituent that the cation has include an alkyl group (carbon number is preferably 1-8, more preferably 1-4), a hydroxyalkyl group (carbon number is preferably 1-3), an alkyloxyalkyl group ( The number of carbon atoms is preferably 2 to 8, more preferably 2 to 4.), a group having an ether bond (a group having at least one ether bond in the carbon chain of the alkyl group), an allyl group, an aminoalkyl group (carbon The number is preferably 1 to 8, more preferably 1 to 4, and an aryl group (the number of carbon is preferably 6 to 12, more preferably 6 to 8).
  • the substituent may form a cyclic structure containing a cation moiety.
  • the substituent may further have the aforementioned substituent P.
  • Anions As anions, chloride ions, bromide ions, iodide ions, boron tetrafluoride ions, nitrate ions, dicyanamide ions, acetate ions, iron tetrachloride ions, bis (trifluoromethanesulfonyl) imide ions, bis ( Fluorosulfonyl) imide ion, bis (perfluorobutylmethanesulfonyl) imide ion, allyl sulfonate ion, hexafluorophosphate ion, trifluoromethane sulfonate ion and the like.
  • these anions may be used alone or in combination of two or more.
  • Preferred are boron tetrafluoride ion, bis (trifluoromethanesulfonyl) imide ion, bis (fluorosulfonyl) imide ion, hexafluorophosphate ion, dicyanamide ion or allyl sulfonate ion, more preferably bis (trifluoromethanesulfonyl) imide ion.
  • the ionic liquid examples include 1-allyl-3-ethylimidazolium bromide, 1-ethyl-3-methylimidazolium bromide, 1- (2-hydroxyethyl) -3-methylimidazolium bromide, 1- ( 2-methoxyethyl) -3-methylimidazolium bromide, 1-octyl-3-methylimidazolium chloride, N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium tetrafluoroborate, 1- Ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide (EMImTFSI), 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide, 1-ethyl-3-methylimidazolium dicyanamide, 1-butyl- 1-methylpyrrolidinium bis (trifluoro Tansulfonyl) imide, trimethyl
  • the content of the ionic liquid is preferably 0 part by mass or more, more preferably 1 part by mass or more, and most preferably 2 parts by mass or more with respect to 100 parts by mass of the inorganic solid electrolyte. As an upper limit, 50 mass parts or less are preferable, and 20 mass parts or less are more preferable.
  • the solid electrolyte composition of the present invention may contain a conductive additive.
  • a conductive support agent What is known as a general conductive support agent can be used.
  • graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor-grown carbon fiber and carbon nanotubes, which are electron conductive materials
  • Carbon fibers such as graphene, carbonaceous materials such as graphene and fullerene, metal powders such as copper and nickel, and metal fibers may be used, and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives may be used.
  • the content of the conductive assistant is preferably 0 parts by mass or more, more preferably 0.5 parts by mass or more, and most preferably 1 part by mass or more with respect to 100 parts by mass of the inorganic solid electrolyte. As an upper limit, 50 mass parts or less are preferable, and 20 mass parts or less are more preferable.
  • the solid electrolyte composition of the present invention may contain a commonly used binder in addition to the polymer (B) used in the present invention within the range where the effects of the present invention are exhibited.
  • commonly used binders include organic polymers.
  • binders made of the resins described below are preferably used.
  • fluorine-containing resin examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP).
  • hydrocarbon-based thermoplastic resin examples include polyethylene, polypropylene, styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber (HSBR), butylene rubber, acrylonitrile-butadiene rubber, polybutadiene, and polyisoprene.
  • acrylic resin examples include various (meth) acrylic monomers, (meth) acrylamide monomers, and copolymers of these monomers (preferably a copolymer of acrylic acid and methyl acrylate). It is done. Further, a copolymer (copolymer) with other vinyl monomers is also preferably used. Examples thereof include a copolymer of methyl (meth) acrylate and styrene, a copolymer of methyl (meth) acrylate and acrylonitrile, and a copolymer of butyl (meth) acrylate, acrylonitrile, and styrene.
  • the copolymer may be either a statistical copolymer or a periodic copolymer, and a block copolymer is preferred.
  • other resins include polyurethane resin, polyurea resin, polyamide resin, polyimide resin, polyester resin, polyether resin, polycarbonate resin, and cellulose derivative resin. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the above binder exhibits strong binding properties (inhibition of peeling from the current collector and improvement in cycle life due to binding at the solid interface)
  • the above-mentioned acrylic resin, polyurethane resin, polyurea resin, polyimide resin, fluorine-containing resin And at least one selected from the group consisting of hydrocarbon-based thermoplastic resins.
  • the binder preferably has a polar group in order to improve wettability and / or adsorption to the particle surface.
  • the polar group is preferably a monovalent group containing a hetero atom, for example, a monovalent group containing a structure in which any one of an oxygen atom, a nitrogen atom and a sulfur atom is bonded to a hydrogen atom.
  • Specific examples include a carboxy group, A hydroxy group, an amino group, a phosphate group, and a sulfo group are mentioned.
  • the description of the polymer (B) used in the present invention can be preferably applied to the description of the shape of the binder and the average particle diameter of the particles.
  • the average particle diameter of the binder is usually preferably 10 nm to 30 ⁇ m, and more preferably 10 to 1000 nm nanoparticles.
  • the description of the polymer (B) used in the present invention can be preferably applied.
  • the mass average molecular weight (Mw) of the binder is preferably 10,000 or more, more preferably 20,000 or more, and further preferably 30,000 or more. As an upper limit, 1,000,000 or less is preferable, 200,000 or less is more preferable, and 100,000 or less is more preferable.
  • the said binder can use a commercial item. Moreover, it can also prepare by a conventional method.
  • the solid electrolyte composition of the present invention may contain a dispersant. Even when the concentration of either the electrode active material or the inorganic solid electrolyte is high by adding a dispersant, or even when the particle diameter is small and the surface area is increased, the aggregation is suppressed, and the uniform active material layer and solid electrolyte layer Can be formed.
  • a dispersant those usually used for all-solid secondary batteries can be appropriately selected and used. In general, compounds intended for particle adsorption and steric repulsion and / or electrostatic repulsion are preferably used.
  • the solid electrolyte composition of the present invention can be prepared by dispersing (A) an inorganic solid electrolyte in the presence of (C) a dispersion medium and forming a slurry.
  • Slurry can be performed by mixing an inorganic solid electrolyte and a dispersion medium using various mixers.
  • the mixing apparatus is not particularly limited, and examples thereof include a ball mill, a bead mill, a planetary mixer, a blade mixer, a roll mill, a kneader, and a disk mill.
  • the mixing conditions are not particularly limited. For example, when a ball mill is used, the mixing is preferably performed at 150 to 700 rpm (rotation per minute) for 1 to 24 hours.
  • a solid electrolyte composition containing components such as an active material and a particle dispersant
  • it may be added and mixed simultaneously with the dispersion step of the above (A) inorganic solid electrolyte, or separately added and mixed.
  • (B) polymer may be added and mixed simultaneously with the dispersion
  • the form when (B) the polymer is added and / or mixed may be (B) the polymer itself or (B) a solution of the polymer.
  • a polymer dispersion may be used.
  • a polymer dispersion is preferable from the viewpoint that the decomposition of the inorganic solid electrolyte is suppressed and the ion conductivity can be ensured by being scattered on the particle surfaces of the active material and the inorganic solid electrolyte.
  • the solid electrolyte-containing sheet of the present invention has a layer containing (A) an inorganic solid electrolyte having conductivity of metal ions belonging to Group 1 or Group 2 of the periodic table, and (B) a polymer.
  • This (B) polymer has a hydrocarbon polymer segment in the main chain and includes at least one bond selected from the following bond group (I) in the main chain. ⁇ Coupling group (I)> Ester bond, amide bond, urethane bond, urea bond, imide bond, ether bond and carbonate bond.
  • the description of the (B) polymer in the solid electrolyte composition of the present invention can be preferably applied unless otherwise specified.
  • the solid electrolyte-containing sheet of the present invention in particular, the solid electrolyte-containing sheet of the present invention produced using the solid electrolyte composition of the present invention contains (B) a polymer, and therefore has a hydrocarbon polymer segment so that it is carbonized. Since it has the same flexibility as hydrogen rubber, can improve the wettability to the particle surface, and has high adhesiveness, it has excellent binding properties between solid particles. As a result, the all-solid-state secondary battery incorporating the solid electrolyte-containing sheet of the present invention is considered to exhibit excellent cycle characteristics.
  • the solid electrolyte of the present invention is converted from the solid electrolyte composition of the present invention.
  • the polymer wets and spreads on the solid surface as (C) the dispersion medium is removed.
  • the average particle diameter of the polymer (B) is extremely small, it is estimated that the polymer particles are wet and spread without completely covering the surface of the solid particles. The inhibition of conductivity can be greatly reduced.
  • the solid electrolyte-containing sheet of the present invention can achieve both high binding properties and high ionic conductivity, and the all-solid-state secondary battery incorporating the solid electrolyte-containing sheet of the present invention has a high battery voltage. It is considered that excellent cycle characteristics are exhibited.
  • the solid electrolyte-containing sheet of the present invention can be suitably used for an all-solid-state secondary battery, and includes various modes depending on the application.
  • a sheet preferably used for a solid electrolyte layer also referred to as a solid electrolyte sheet for an all-solid secondary battery or a solid electrolyte sheet
  • a sheet preferably used for an electrode or a laminate of an electrode and a solid electrolyte layer an all-solid secondary battery
  • Electrode sheet may be collectively referred to as an all-solid secondary battery sheet.
  • the all-solid-state secondary battery sheet may be a sheet having a solid electrolyte layer or an active material layer (electrode layer), or a sheet in which a solid electrolyte layer or an active material layer (electrode layer) is formed on a substrate. Further, it may be a sheet which does not have a substrate and is formed from a solid electrolyte layer or an active material layer (electrode layer).
  • the sheet in an embodiment having a solid electrolyte layer or an active material layer (electrode layer) on the substrate will be described in detail.
  • the all-solid-state secondary battery sheet may have other layers as long as it has a base material and a solid electrolyte layer or an active material layer.
  • Examples of other layers include a protective layer, a current collector, and a coat layer (current collector, solid electrolyte layer, active material layer) and the like.
  • Examples of the solid electrolyte sheet for an all-solid secondary battery include a sheet having a solid electrolyte layer and a protective layer in this order on a base material.
  • the base material is not particularly limited as long as it can support the solid electrolyte layer, and examples thereof include materials (sheet-like bodies) such as materials, organic materials, and inorganic materials described later.
  • Examples of the organic material include various polymers, and specific examples include polyethylene terephthalate, polypropylene, polyethylene, and cellulose.
  • Examples of the inorganic material include glass and ceramic.
  • the thickness of the solid electrolyte layer of the all-solid-state secondary battery sheet is the same as the thickness of the solid electrolyte layer described in the above-described all-solid-state secondary battery of the present invention.
  • This sheet is obtained by forming (coating and drying) the solid electrolyte composition of the present invention on a base material (which may be via another layer) to form a solid electrolyte layer on the base material. It is done.
  • the solid electrolyte composition of the present invention can be prepared by the above-described method.
  • An electrode sheet for an all-solid-state secondary battery of the present invention is a sheet for forming an active material layer of an all-solid-state secondary battery, and is on a metal foil as a current collector.
  • the electrode sheet having an active material layer is usually a sheet having a current collector and an active material layer, but an embodiment having a current collector, an active material layer, and a solid electrolyte layer in this order, and a current collector, an active material layer, and a solid electrolyte The aspect which has a layer and an active material layer in this order is also included.
  • each layer thickness of each layer constituting the electrode sheet is the same as the layer thickness of each layer described in the above-described all solid state secondary battery of the present invention.
  • the structure of each layer which comprises an electrode sheet is the same as the structure of each layer demonstrated in the postscript and the all-solid-state secondary battery of this invention.
  • the electrode sheet is obtained by forming (coating and drying) the solid electrolyte composition containing the active material of the present invention on a metal foil to form an active material layer on the metal foil.
  • the all solid state secondary battery of the present invention has a positive electrode, a negative electrode facing the positive electrode, and a solid electrolyte layer between the positive electrode and the negative electrode.
  • the positive electrode has a positive electrode active material layer on a positive electrode current collector.
  • the negative electrode has a negative electrode active material layer on a negative electrode current collector.
  • At least one of the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer is preferably formed using the solid electrolyte composition of the present invention.
  • the active material layer and / or the solid electrolyte layer formed by using the solid electrolyte composition are preferably in the solid content of the solid electrolyte composition unless otherwise specified with respect to the component species and the content ratio thereof.
  • the (B) polymer used in the present invention has a crosslinkable functional group and / or a functional group selected from the functional group group (II) capable of binding to solid particles
  • the (B) polymer forms a cross-linked structure. And / or an embodiment in which a bond is formed with the solid particles.
  • a preferred embodiment of the present invention will be described with reference to FIG. 1, but the present invention is not limited to this.
  • any one of a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer is produced using the solid electrolyte composition of the present invention. That is, when the solid electrolyte layer 3 is produced using the solid electrolyte composition of the present invention, the solid electrolyte layer 3 includes (A) an inorganic solid electrolyte and (B) a polymer.
  • the solid electrolyte layer usually does not contain a positive electrode active material and / or a negative electrode active material.
  • the positive electrode active material layer 4 and / or the negative electrode active material layer 2 are produced using the solid electrolyte composition of the present invention containing an active material
  • the positive electrode active material layer 4 and the negative electrode active material layer 2 are respectively And a positive electrode active material or a negative electrode active material, and further includes (A) an inorganic solid electrolyte and (B) a polymer.
  • the active material layer contains an inorganic solid electrolyte, the ionic conductivity can be improved.
  • the (A) inorganic solid electrolyte and (B) polymer contained in the positive electrode active material layer 4, the solid electrolyte layer 3 and the negative electrode active material layer 2 may be the same or different from each other.
  • the solid electrolyte composition in which any one of the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer in the all-solid-state secondary battery contains (A) an inorganic solid electrolyte and (B) a polymer. This is a layer containing (A) an inorganic solid electrolyte and (B) a polymer.
  • the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electronic conductors. In the present invention, either or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
  • Materials for forming the positive electrode current collector include aluminum, aluminum alloy, stainless steel, nickel and titanium, as well as the surface of aluminum or stainless steel treated with carbon, nickel, titanium or silver (formation of a thin film) Among them, aluminum and aluminum alloys are more preferable.
  • the material for forming the negative electrode current collector is treated with carbon, nickel, titanium or silver on the surface of aluminum, copper, copper alloy or stainless steel. What was made to do is preferable, and aluminum, copper, a copper alloy, and stainless steel are more preferable.
  • the current collector is usually in the form of a film sheet, but a net, a punched one, a lath, a porous body, a foam, a fiber group molded body, or the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m.
  • the current collector surface is roughened by surface treatment.
  • a functional layer, a member, or the like is appropriately interposed or disposed between or outside each of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector. May be.
  • Each layer may be composed of a single layer or a plurality of layers.
  • the basic structure of the all-solid-state secondary battery can be manufactured by arranging each of the above layers. Depending on the application, it may be used as an all-solid secondary battery as it is, but in order to form a dry battery, it is further enclosed in a suitable housing.
  • the housing may be metallic or made of resin (plastic). When using a metallic thing, the thing made from an aluminum alloy and stainless steel can be mentioned, for example.
  • the metallic housing is preferably divided into a positive-side housing and a negative-side housing, and electrically connected to the positive current collector and the negative current collector, respectively.
  • the casing on the positive electrode side and the casing on the negative electrode side are preferably joined and integrated through a gasket for preventing a short circuit.
  • the solid electrolyte-containing sheet of the present invention forms a solid electrolyte layer on a substrate by forming (coating and drying) the solid electrolyte composition of the present invention on the substrate (may be through another layer). Is obtained.
  • seat which has (A) inorganic solid electrolyte and (B) polymer on a base material can be produced.
  • a base material can be peeled from the produced solid electrolyte containing sheet, and the solid electrolyte containing sheet which consists of a solid electrolyte layer can also be produced.
  • the solid electrolyte-containing sheet may contain the (C) dispersion medium within a range that does not affect the battery performance. Specifically, you may contain 1 ppm or more and 10000 ppm or less in the total mass.
  • seat of this invention can be measured with the following method.
  • the solid electrolyte-containing sheet is punched out with a 20 mm square and immersed in deuterated tetrahydrofuran in a glass bottle.
  • the obtained eluate is filtered through a syringe filter, and quantitative operation is performed by 1 H-NMR.
  • the correlation between the 1 H-NMR peak area and the amount of solvent is determined by preparing a calibration curve.
  • Manufacture of all-solid-state secondary battery and electrode sheet for all-solid-state secondary battery can be performed by a conventional method. Specifically, the all-solid-state secondary battery and the electrode sheet for the all-solid-state secondary battery can be manufactured by forming each of the above layers using the solid electrolyte composition of the present invention. This will be described in detail below.
  • the all-solid-state secondary battery of the present invention includes a step of applying the solid electrolyte composition of the present invention on a base material (for example, a metal foil to be a current collector) to form a coating film (film formation) ( Can be manufactured by a method.
  • a solid electrolyte composition containing a positive electrode active material is applied as a positive electrode material (positive electrode composition) on a metal foil that is a positive electrode current collector to form a positive electrode active material layer, and an all-solid secondary A positive electrode sheet for a battery is prepared.
  • a solid electrolyte composition for forming a solid electrolyte layer is applied on the positive electrode active material layer to form a solid electrolyte layer.
  • a solid electrolyte composition containing a negative electrode active material is applied as a negative electrode material (negative electrode composition) on the solid electrolyte layer to form a negative electrode active material layer.
  • An all-solid secondary battery having a structure in which a solid electrolyte layer is sandwiched between a positive electrode active material layer and a negative electrode active material layer is obtained by stacking a negative electrode current collector (metal foil) on the negative electrode active material layer. Can do. If necessary, this can be enclosed in a housing to obtain a desired all-solid secondary battery.
  • each layer is reversed, and a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is stacked to manufacture an all-solid secondary battery.
  • Another method includes the following method. That is, a positive electrode sheet for an all-solid secondary battery is produced as described above. Further, a negative electrode active material layer is formed by applying a solid electrolyte composition containing a negative electrode active material as a negative electrode material (negative electrode composition) on a metal foil as a negative electrode current collector, and forming an all-solid secondary A negative electrode sheet for a battery is prepared. Next, a solid electrolyte layer is formed on one of the active material layers of these sheets as described above. Furthermore, the other of the positive electrode sheet for an all solid secondary battery and the negative electrode sheet for an all solid secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other.
  • Another method includes the following method. That is, as described above, a positive electrode sheet for an all-solid secondary battery and a negative electrode sheet for an all-solid secondary battery are produced. Separately from this, a solid electrolyte composition is applied on a substrate to produce a solid electrolyte sheet for an all-solid secondary battery comprising a solid electrolyte layer. Furthermore, it laminates
  • An all-solid-state secondary battery can also be manufactured by a combination of the above forming methods. For example, as described above, a positive electrode sheet for an all-solid secondary battery, a negative electrode sheet for an all-solid secondary battery, and a solid electrolyte sheet for an all-solid secondary battery are produced. Then, after laminating the solid electrolyte layer peeled off from the base material on the negative electrode sheet for an all solid secondary battery, an all solid secondary battery can be produced by pasting the positive electrode sheet for the all solid secondary battery. it can. In this method, the solid electrolyte layer can be laminated on the positive electrode sheet for an all-solid secondary battery, and bonded to the negative electrode sheet for an all-solid secondary battery.
  • the method for applying the solid electrolyte composition is not particularly limited, and can be appropriately selected. Examples thereof include coating (preferably wet coating), spray coating, spin coating coating, dip coating, slit coating, stripe coating, and bar coating coating. At this time, the solid electrolyte composition may be dried after being applied, or may be dried after being applied in multiple layers.
  • the drying temperature is not particularly limited.
  • the lower limit is preferably 30 ° C or higher, more preferably 60 ° C or higher, and still more preferably 80 ° C or higher.
  • the upper limit is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 200 ° C. or lower.
  • (C) a dispersion medium By heating in such a temperature range, (C) a dispersion medium can be removed and it can be set as a solid state. Moreover, it is preferable because the temperature is not excessively raised and each member of the all-solid-state secondary battery is not damaged. Thereby, in the all-solid-state secondary battery, excellent overall performance can be exhibited and good binding properties can be obtained.
  • each layer or all-solid secondary battery After producing the applied solid electrolyte composition or all-solid-state secondary battery. Moreover, it is also preferable to pressurize in the state which laminated
  • An example of the pressurizing method is a hydraulic cylinder press.
  • the applied pressure is not particularly limited and is generally preferably in the range of 50 to 1500 MPa. Moreover, you may heat the apply
  • the heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. It is also possible to press at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
  • the pressurization may be performed in a state where the coating solvent or the dispersion medium is previously dried, or may be performed in a state where the solvent or the dispersion medium remains.
  • each composition may be applied simultaneously, and application and drying presses may be performed simultaneously and / or sequentially. You may laminate
  • the atmosphere during pressurization is not particularly limited, and may be any of the following: air, dry air (dew point -20 ° C. or lower), and inert gas (for example, argon gas, helium gas, nitrogen gas).
  • the pressing time may be a high pressure in a short time (for example, within several hours), or a medium pressure may be applied for a long time (1 day or more).
  • a restraining tool screw tightening pressure or the like
  • the pressing pressure may be uniform or different with respect to the pressed part such as the sheet surface.
  • the pressing pressure can be changed according to the area and film thickness of the pressed part. Also, the same part can be changed stepwise with different pressures.
  • the press surface may be smooth or roughened.
  • the all solid state secondary battery manufactured as described above is preferably initialized after manufacture or before use.
  • the initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging in a state where the press pressure is increased, and then releasing the pressure until the general use pressure of the all-solid secondary battery is reached.
  • the all solid state secondary battery of the present invention can be applied to various uses. Although there is no particular limitation on the application mode, for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax machine, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, portable tape recorder, radio, backup power supply, memory card, etc.
  • Others for consumer use include automobiles (electric cars, etc.), electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.) . Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
  • An all-solid secondary battery in which at least one of a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer contains a lithium salt.
  • a method for producing an all-solid-state secondary battery wherein the solid electrolyte layer is wet-coated with a slurry in which a lithium salt and a sulfide-based inorganic solid electrolyte are dispersed by a dispersion medium.
  • a solid electrolyte composition containing an active material for producing the all-solid secondary battery [4] A solid electrolyte composition containing a conductive additive for producing the all-solid secondary battery.
  • the preferred methods for producing the all-solid-state secondary battery and the battery electrode sheet of the present invention are both wet processes. Thereby, even in a region where the content of the inorganic solid electrolyte in at least one of the positive electrode active material layer and the negative electrode active material layer is as low as 10% by mass or less, the adhesiveness between the active material and the inorganic solid electrolyte is increased, and an efficient ion conduction path. Can be maintained, and an all-solid-state secondary battery having a high energy density (Wh / kg) and high power density (W / kg) per battery mass can be manufactured.
  • An all-solid secondary battery refers to a secondary battery in which the positive electrode, the negative electrode, and the electrolyte are all solid. In other words, it is distinguished from an electrolyte type secondary battery using a carbonate-based solvent as an electrolyte.
  • this invention presupposes an inorganic all-solid-state secondary battery.
  • the all-solid-state secondary battery includes an organic (polymer) all-solid-state secondary battery that uses a polymer compound such as polyethylene oxide as an electrolyte, and an inorganic all-solid-state that uses the above-described Li—PS glass, LLT, LLZ, or the like. It is divided into secondary batteries.
  • an organic compound to an inorganic all-solid secondary battery is not hindered, and the organic compound can be applied as a binder or additive for a positive electrode active material, a negative electrode active material, and an inorganic solid electrolyte.
  • the inorganic solid electrolyte is distinguished from an electrolyte (polymer electrolyte) using the above-described polymer compound as an ion conductive medium, and the inorganic compound serves as an ion conductive medium. Specific examples include the above-described Li—PS glass, LLT, and LLZ.
  • the inorganic solid electrolyte itself does not release cations (Li ions) but exhibits an ion transport function.
  • electrolyte a material that is added to the electrolytic solution or the solid electrolyte layer and serves as a source of ions that release cations (Li ions) is sometimes called an electrolyte.
  • electrolyte salt When distinguishing from the electrolyte as the above ion transport material, this is called “electrolyte salt” or “supporting electrolyte”.
  • electrolyte salt An example of the electrolyte salt is LiTFSI.
  • composition means a mixture in which two or more components are uniformly mixed. However, as long as the uniformity is substantially maintained, aggregation or uneven distribution may partially occur within a range in which a desired effect is achieved.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • THF terminal diol-modified hydrogenated polyisoprene, manufactured by Idemitsu Kosan Co., Ltd., Mw 2,500
  • the obtained polymer solution was diluted with THF so as to be 5% by mass.
  • 96 g of octane was added dropwise over 1 hour to the polymer solution obtained as described above, which was vigorously stirred at 500 rpm. Got.
  • the emulsion was heated at 85 ° C.
  • a 10 mass% octane dispersion of Exemplified Compound (B-2) was obtained by the same method as the synthesis.
  • Mw of the obtained exemplary compound (B-2) was 22,300, and the average particle size was 270 nm.
  • (3) Synthesis of Exemplary Compound (B-3) In a 200 mL three-necked flask, 0.90 g of 1,4-butanediamine and 6.0 g of Jeffamine ED-600 (trade name, polyetheramine, manufactured by Huntsman, Mw 600) were added. In addition, it was dissolved in 50 mL of THF.
  • the obtained polymer solution was diluted with THF so as to be 5% by mass.
  • 96 g of octane was added dropwise over 1 hour to the polymer solution obtained as described above, which was vigorously stirred at 500 rpm. Got.
  • the emulsion was heated at 85 ° C. with nitrogen flow to remove the THF remaining in the emulsion, and then the operation of adding 50 g of octane to the residue and removing the solvent in the same manner was repeated four times to remove the THF.
  • a 10% by mass octane dispersion of Exemplified Compound (B-3) in an amount of 1% by mass or less was obtained.
  • Mw of the obtained exemplary compound (B-3) was 37,500, and the average particle size was 190 nm.
  • Neostan U-600 was added and heated and stirred at 80 ° C. for 6 hours to obtain a prepolymer having Mw of 7,500.
  • MEK solution of 1.9 g of Epol (trade name, terminal diol-modified hydrogenated polyisoprene, manufactured by Idemitsu Kosan Co., Ltd., Mw 2,500) was added, and further heated at 80 ° C. for 3 hours. Subsequently, a cloudy viscous polymer solution was obtained.
  • Neostan U-600 (trade name, bismuth catalyst, manufactured by Nitto Kasei Co., Ltd.) was added and stirred at 60 ° C. for 4 hours to obtain a cloudy viscous polymer solution. 1 g of methanol was added to this solution to seal the polymer ends, and the polymerization reaction was stopped. Next, 96 g of octane was added dropwise over 1 hour to the polymer solution obtained above, which was vigorously stirred at 500 rpm, to obtain a polymer emulsion. The emulsion was heated at 85 ° C.
  • Example 1 ⁇ Preparation example of solid electrolyte composition> 180 zirconia beads with a diameter of 5 mm are put into a 45 mL container (manufactured by Fritsch) made of zirconia, and 9.0 g of an inorganic solid electrolyte and 0.9 g of polymer (in the case of a dispersion or a solution, an amount equivalent to 0.9 g of solid content) ) And 18 g of the dispersion medium, the container was set on a planetary ball mill P-7 manufactured by Fritsch, and mixed at room temperature for 2 hours at a rotational speed of 300 rpm to prepare a solid electrolyte composition.
  • the solid electrolyte composition contained an active material
  • the active material was added and further mixed for 5 minutes at a rotation speed of 150 rpm to prepare a solid electrolyte composition.
  • the solid electrolyte composition contained a lithium salt, an ionic liquid and / or a conductive aid
  • the solid electrolyte composition was prepared by adding and mixing simultaneously when the inorganic solid electrolyte was dispersed. In this way, No. 1 described in Table 1 below.
  • Solid electrolyte compositions of S-1 to S-15 and T-1 to T-4 were prepared.
  • no. S-1 to S-15 are examples of the present invention.
  • T-1 to T-4 are comparative examples.
  • Inorganic solid electrolyte LLT Li 0.33 La 0.55 TiO 3 (average particle size 3.25 ⁇ m, manufactured by Toshima Seisakusho)
  • Li-PS Li-PS system glass
  • B polymer synthesized above (B-1) to (B-10): Exemplified compounds (B-1) to (B-10) synthesized above (B-6 ′): MEK solution of exemplary compound (B-6) synthesized above
  • SBR Styrene Butadiene Rubber (manufactured by JSR)
  • HSBR Hydrogenated Styrene Butadiene Rubber (manufactured by JSR)
  • HB-1) Butylene rubber having an amino group as a terminal functional group (manufactured by JSR) Note that (B-6 ′), SBR, HSBR, and (HB-1) do not exist in the form of particles.
  • (C) Dispersion medium In the case of a mixed dispersion medium, it means a mixed dispersion medium having a contained mass ratio described in parentheses.
  • LiFSI Lithium bis (fluorosulfonyl) imide (ionic liquid)
  • EMImTFSI 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide
  • the solid electrolyte composition S-1 prepared above was applied onto a stainless steel (SUS) foil having a thickness of 20 ⁇ m, which is a current collector, with a bar coder.
  • the SUS foil is placed on a hot plate with the bottom surface, heated at 80 ° C. for 1 hour to remove the dispersion medium, and further pressed under pressure at 300 MPa to have a solid electrolyte layer with a thickness of about 130 ⁇ m and a thickness of about 150 ⁇ m.
  • No. A solid electrolyte containing sheet 101 was prepared. No. In the same manner as the production of the solid electrolyte-containing sheet of No. 101, No.
  • Solid electrolyte-containing sheets of 102 to 115 and c11 to c14 were produced.
  • no. Nos. 101 to 115 are the present invention.
  • c11 to c14 are comparative examples.
  • Binding Test A 180 ° peel strength test (JIS Z0237-2009) was performed on the obtained solid electrolyte-containing sheet.
  • An adhesive tape (width: 24 mm, length: 300 mm) (trade name: Cellotape (registered trademark) CT-24, manufactured by Nichiban) was attached to the surface of the solid electrolyte layer of the solid electrolyte-containing sheet.
  • the solid part of the portion where the pressure-sensitive adhesive tape is peeled off to the lower jig installed in the following tester One end of the electrolyte-containing sheet was fixed, and one end A of the adhesive tape was fixed to the upper jig.
  • the peeling test of the adhesive tape was performed at a load speed of 300 mm / min. After the measurement was started, the 50 mm adhesive tape was peeled off.
  • the measured adhesive strength values for each 0.05 mm length were averaged, and the peel adhesive strength value (average peel strength (N)) And the average peel strength was evaluated according to the following evaluation criteria.
  • An evaluation “B” or higher is a passing level of this test.
  • the peel strength was measured by combining a standard type digital force gauge ZTS-5N and a vertical electric measurement stand MX2 series (both trade names, manufactured by Imada Co., Ltd.).
  • No. 1 was prepared from a solid electrolyte composition containing a polymer that did not satisfy the provisions of the present invention.
  • the comparative solid electrolyte-containing sheets c11 to c14 all had low peel strength and were not excellent in binding properties.
  • the solid electrolyte-containing sheets prepared from the solid electrolyte composition of the present invention containing the polymer satisfying the provisions of the present invention all showed high peel strength and excellent binding properties. .
  • the obtained all-solid-state secondary battery sheet 17 was put in a stainless steel 2032 type coin case 16 incorporating a spacer and a washer. This was installed in the apparatus shown in FIG. 2, and the screw S was tightened with a torque of 8 Newton (N) with a torque wrench.
  • the half cells of the all solid state secondary batteries 201 to 211, c21 and c22 (hereinafter also simply referred to as all solid state secondary batteries) were produced.
  • no. Nos. 201 to 211 are examples of the present invention.
  • c21 and c22 are comparative examples.
  • Each all-solid secondary battery after initialization was charged at a current density of 0.2 mA / cm 2 until the battery voltage reached 3.6V, then discharged at a current density of 0.2mA / cm 2, 5mAh / g It was read battery voltage V C after discharge.
  • the battery voltage VA after charging was read.
  • (Iii) Voltage change rate The voltage change rate with respect to the battery voltage before charging and discharging was calculated by the following formula, and the voltage change rate was evaluated according to the following criteria.
  • the voltage change rate means a voltage drop rate in the case of the positive electrode half cell, and a voltage increase rate in the case of the negative electrode half cell.
  • a voltage change rate is low.
  • No. 1 was prepared using a solid electrolyte-containing sheet containing a polymer that does not satisfy the provisions of the present invention.
  • the all solid state secondary battery for comparison between c21 and c22 had a large voltage change rate in both the positive electrode half cell and the negative electrode half cell, and the cycle characteristics were not good.
  • the all-solid-state secondary battery of the present invention having the solid electrolyte-containing sheet prepared from the solid electrolyte composition of the present invention as an electrode has a small voltage change rate for both the positive electrode half cell and the negative electrode half cell, and good results. showed that. Further, the all solid state secondary battery of the present invention was excellent in cycle characteristics.
  • the specific polymer (B) satisfying the definition of the present invention has improved the cycle characteristics of the all-solid-state secondary battery as a result of imparting the binding property between the solid particles.
  • the (B1) segmented polymer of the present invention can further improve ionic conductivity, and the voltage change rate of the all-solid-state secondary battery is smaller, which is considered to improve the cycle characteristics.
  • the present application includes Japanese Patent Application No. 2016-146051 filed in Japan on July 26, 2016, Japanese Patent Application No. 2016-225650 filed in Japan on November 21, 2016, and May 23, 2017. Claims priority based on Japanese Patent Application No. 2017-102092 filed in Japan on the day, and the contents of all of them are incorporated herein as a part of the description of this specification.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Conductive Materials (AREA)

Abstract

無機固体電解質と、主鎖中に、炭化水素ポリマーセグメント及び特定の結合を有するポリマーと、分散媒とを含有する固体電解質組成物、無機固体電解質と上記ポリマーとを含有する層を有する固体電解質含有シート及び全固体二次電池、固体電解質含有シート及び全固体二次電池の製造方法、並びに、炭化水素ポリマーセグメント及び特定の親水性セグメントを有するセグメント化ポリマー、ポリマー及びセグメント化ポリマーの非水溶媒分散物。

Description

固体電解質組成物、固体電解質含有シートおよび全固体二次電池、固体電解質含有シートおよび全固体二次電池の製造方法、ならびに、セグメント化ポリマー、ポリマーおよびセグメント化ポリマーの非水溶媒分散物
 本発明は、固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法に関する。
 また、本発明は、セグメント化ポリマーならびにポリマーおよびセグメント化ポリマーの非水溶媒分散物に関する。
 リチウムイオン二次電池は、負極と、正極と、負極及び正極の間に挟まれた電解質とを有し、両極間にリチウムイオンを往復移動させることにより充放電を可能とした蓄電池である。リチウムイオン二次電池には、従来、電解質として有機電解液が用いられてきた。しかし、有機電解液は液漏れを生じやすく、また、過充電または過放電により電池内部で短絡が生じ発火するおそれもあり、安全性と信頼性とのさらなる向上が求められている。
 このような状況下、有機電解液に代えて、無機固体電解質を用いた全固体二次電池が注目されている。全固体二次電池は負極、電解質および正極のすべてが固体からなり、有機電解液を用いた電池の課題とされる安全性ないし信頼性を大きく改善することができ、また長寿命化も可能になるとされる。さらに、全固体二次電池は、電極と電解質を直接並べて直列に配した構造とすることができる。そのため、有機電解液を用いた二次電池に比べて高エネルギー密度化が可能となり、電気自動車や大型蓄電池等への応用が期待されている。
 上記のような各利点から、次世代のリチウムイオン電池として全固体二次電池、全固体二次電池に用いられる硫化物固体電解質および固体電解質層、並びにこれらの製造方法等の開発が進められている。例えば、特許文献1には、硫化物固体電解質の微細化を可能とする硫化物固体電解質材料の製造方法として、接着性ポリマーを分散剤として用いる方法が記載されている。また、結着材としてポリマーを添加することにより、固体電解質層等に可撓性を付与し、加工性や成形性を向上させる試みもなされている。例えば、特許文献2には、硫化物固体電解質の劣化による抵抗増加を抑制し得る固体電解質層として、硫化物固体電解質を結着する疎水性ポリマーを用いた固体電解質層及びこれを用いた全固体リチウム電池等が記載されている。
特開2012-243496号公報 特開2011-076792号公報
 近年、全固体二次電池の実用化に向けた開発が活発に進められ、サイクル特性等の全固体二次電池の性能向上に対する要求が益々高まっている。
 全固体二次電池は、充放電の繰返しによって活物質が膨張収縮し、これに伴い生じる活物質及び無機固体電解質等の固体粒子間の隙間が、イオン伝導度の低下の要因となると考えられている。そのため、固体粒子同士の結着性を高めるために、結着材(バインダーとも称される。)としてポリマーを固体電解質層等に添加する試みがなされている(特許文献2等)。しかし、特許文献2記載の技術をはじめ従来の技術では、近年要求される高いサイクル特性を実現する等の観点からは、いまだ十分な結着性を実現するには至っていない。
 また、結着剤としてポリマーを使用した場合、このポリマーに起因してイオン伝導度の低下が生じる場合がある。そのため、結着剤自体の作用によるイオン伝導度の低下を抑制することも、全固体二次電池のサイクル特性の向上において重要である。
 すなわち、本発明は、全固体二次電池を構成する固体電解質含有シートの形成に用いることにより、シートを構成する固体粒子間の結着性をより向上させることができ、優れたサイクル特性を実現できる固体電解質組成物、これに用いるのに好適なポリマー及びその非水溶媒分散物、この固体電解質組成物を用いた固体電解質含有シート、この固体電解質含有シートを用いた全固体二次電池を提供することを課題とする。また本発明は、上記固体電解質含有シート及び全固体二次電池の製造方法を提供することを課題とする。
 本発明者らが鋭意検討した結果、(a)無機固体電解質と、(b)主鎖に炭化水素ポリマーセグメントを有するポリマーであって、主鎖に特定の結合を少なくとも1つ含むポリマーと、(c)分散媒とを含有する固体電解質組成物を用いて作製した固体電解質含有シートが、従来のポリマーを用いた固体電解質含有シートに比べて、優れた結着性を示すこと、この固体電解質含有シートを用いることにより、サイクル特性に優れる全固体二次電池を実現できることを見出した。また、本発明者らのさらなる研究の結果、上記(b)の特定のポリマーのなかでも、(b1)特定の親水性セグメントと、特定の炭化水素ポリマーセグメントとを有するセグメント化ポリマーが、優れた結着性に加え、より優れたイオン伝導性をも付与できること、さらに、このセグメント化ポリマーが、乳化剤を用いることなく、転相乳化法により微細な粒子を形成でき、非水溶媒分散物の形態を採ることができることを見出した。
 本発明はこれらの知見に基づきさらに検討を重ね、完成されるに至ったものである。
 すなわち、上記の課題は以下の手段により解決された。
(1)
 (A)周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質と、(B)ポリマーと、(C)分散媒とを含有する固体電解質組成物であって、
 (B)のポリマー(本発明では(B)ポリマーと称することがある)が、炭化水素ポリマーセグメントを主鎖に有し、主鎖が、下記結合群(I)から選択される結合を少なくとも1つ含む、固体電解質組成物。
<結合群(I)>
エステル結合、アミド結合、ウレタン結合、ウレア結合、イミド結合、エーテル結合およびカーボネート結合。
(2)
 (B)ポリマーが、ポリマー主鎖中に、ポリエステル、ポリアミド、ポリウレタン、ポリウレア、ポリイミド、ポリエーテルおよびポリカーボネートから選択される少なくとも1つのセグメントと炭化水素ポリマーセグメントとを有する、セグメント化ポリマーである、(1)に記載の固体電解質組成物。
(3)
 (B)ポリマーが、下記官能基群(II)から選択される官能基を少なくとも1つ有する、(1)または(2)に記載の固体電解質組成物。
<官能基群(II)>
カルボキシ基、スルホン酸基、リン酸基、アミノ基、ヒドロキシ基、スルファニル基、イソシアナト基、アルコキシシリル基および3つ以上の環が縮環した基。
(4)
 (B)ポリマーが、下記官能基群(III)から選択される官能基を少なくとも1つ有する、(1)~(3)のいずれか1つに記載の固体電解質組成物。
<官能基群(III)>
炭素-炭素不飽和結合を有する基、エポキシ基およびオキセタニル基。
(5)
 炭化水素ポリマーセグメントが、脂肪族炭化水素である、(1)~(4)のいずれか1つに記載の固体電解質組成物。
(6)
 (B)ポリマー中における、炭化水素ポリマーセグメントの含有量が、5質量%以上80質量%以下である、(1)~(5)のいずれか1つに記載の固体電解質組成物。
(7)
 (B)ポリマーが直鎖状ポリマーである、(1)~(6)のいずれか1つに記載の固体電解質組成物。
(8)
 (B)ポリマーが粒子状であって、体積平均粒子径が10nm以上1000nm以下である、(1)~(7)のいずれか1つに記載の固体電解質組成物。
(9)
 (A)周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質が硫化物系無機固体電解質である、(1)~(8)のいずれか1つに記載の固体電解質組成物。
(10)
 (C)分散媒の50質量%以上が炭化水素溶媒である、(1)~(9)のいずれか1つに記載の固体電解質組成物。
(11)
 (D)活物質を含有する、(1)~(10)のいずれか1つに記載の固体電解質組成物。
(12)
 (E)リチウム塩を含有する、(1)~(11)のいずれか1つに記載の固体電解質組成物。
(13)
 イオン液体を含有する、(1)~(12)のいずれか1つに記載の固体電解質組成物。
(14)
 (F)導電助剤を含有する、(1)~(13)のいずれか1つに記載の固体電解質組成物。
(15)
 (A)周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質と、(B)ポリマーとを含有する層を有する固体電解質含有シートであって、
 (B)ポリマーが、炭化水素ポリマーセグメントを主鎖に有し、主鎖に、下記結合群(I)から選択される結合を少なくとも1つ含む、固体電解質含有シート。
<結合群(I)>
エステル結合、アミド結合、ウレタン結合、ウレア結合、イミド結合、エーテル結合およびカーボネート結合。
(16)
 (15)に記載の固体電解質含有シートの製造方法であって、
 (A)周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質と、(B)ポリマーと、(C)分散媒とを含有する固体電解質組成物を基材上に塗布する工程と、
 加熱乾燥する工程とを含む固体電解質含有シートの製造方法。
(17)
 正極活物質層、負極活物質層および固体電解質層を具備する全固体二次電池であって、
 正極活物質層、負極活物質層および固体電解質層の少なくとも1つの層が、(A)周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質と、(B)ポリマーとを含有し、(B)ポリマーが、炭化水素ポリマーセグメントを主鎖に有し、主鎖に、下記結合群(I)から選択される結合を少なくとも1つ含む、全固体二次電池。
<結合群(I)>
エステル結合、アミド結合、ウレタン結合、ウレア結合、イミド結合、エーテル結合およびカーボネート結合。
(18)
 (16)に記載の製造方法を介して全固体二次電池を製造する、全固体二次電池の製造方法。
(19)
 ポリマー主鎖中に、ポリエステル、ポリアミド、ポリウレタン、ポリウレア、ポリイミド、ポリエーテルおよびポリカーボネートから選択される少なくとも1つのセグメントと炭化水素ポリマーセグメントとを有する、セグメント化ポリマー。
(20)
 下記式で表される、(19)に記載のセグメント化ポリマー。
Figure JPOXMLDOC01-appb-C000002
 上記式中、Raは質量平均分子量1000以上の2価の炭化水素基を示す。Rbは炭素数6~22の芳香族炭化水素基もしくは炭素数1~15の脂肪族炭化水素基、または、これらの基を2以上組み合わせてなる基を示す。Rbは、炭素数2~6のアルキレン基を示す。ただし、Rb2が置換基を有する場合、この置換基は下記官能基群(II)または(III)から選択される基を有さない。Rbは下記官能基群(II)から選択される官能基を少なくとも1つ有するアルキレン基を示す。Rbは下記官能基群(III)から選択される官能基を少なくとも1つ有するアルキレン基を示す。Rbは、質量平均分子量200以上の2価の鎖であって、ポリアルキレンオキシド鎖、ポリカーボネート鎖、ポリエステル鎖及びシリコーン鎖のいずれかまたはこれらの鎖を組み合わせてなる鎖を示す。Xa、Xb、Xb、Xb及びXbは酸素原子又は-NH-を示す。a、b1、b2、b3、b4及びb5は各構造単位のモル比であり、a+b1+b2+b3+b4+b5=100モル%である。aは0.1~30モル%、b1は40~60モル%、b2は0~30モル%、b3は0~30モル%、b4は0~30モル%、b5は0~30モル%である。ただし、b2+b3+b4+b5=0モル%ではない。
<官能基群(II)>
カルボキシ基、スルホン酸基、リン酸基、アミノ基、ヒドロキシ基、スルファニル基、イソシアナト基、アルコキシシリル基および3つ以上の環が縮環した基。
<官能基群(III)>
炭素-炭素不飽和結合を有する基、エポキシ基およびオキセタニル基。
(21)
 (19)または(20)に記載のセグメント化ポリマーの非水溶媒分散物。
(22)
 炭化水素ポリマーセグメントを主鎖に有し、主鎖が、下記結合群(I)から選択される結合を少なくとも1つ含む(B)ポリマーの非水溶媒分散物。
<結合群(I)>
エステル結合、アミド結合、ウレタン結合、ウレア結合、イミド結合、エーテル結合およびカーボネート結合。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、単に「アクリル」又は「(メタ)アクリル」と記載するときは、メタクリル及び/又はアクリルを意味する。また、単に「アクリロイル」又は「(メタ)アクリロイル」と記載するときは、メタクリロイル及び/又はアクリロイルを意味する。
 本明細書おいて、特定の符号で表示された置換基等が複数あるとき、又は、複数の置換基等を同時に規定するときには、特段の断りがない限り、それぞれの置換基等は互いに同一でも異なっていてもよい。このことは、置換基等の数の規定についても同様である。また、複数の置換基等が近接(特に隣接)するとき、特段の断りがない限り、それらが互いに連結して環を形成してもよい。
 本発明において、ポリマー中に同一の化学構造で表された複数の繰り返し単位が存在する場合、ポリマー中に存在する各繰り返し単位は同一でも異なっていてもよい。このことは、繰り返し単位を形成する各基についても同様である。
 また、基の炭素数が限定されている場合、この基の炭素数は、特段の断りがない限り、置換基を含めた全炭素数を意味する。
 本明細書において、質量平均分子量(Mw)は、特段の断りがない限り、GPCによってポリスチレン換算の分子量として計測することができる。このとき、GPC装置HLC-8220(東ソー(株)社製)を用い、カラムはG3000HXL+G2000HXLを用い、23℃で流量は1mL/minで、RIで検出することとする。溶離液としては、THF(テトラヒドロフラン)、クロロホルム、NMP(N-メチル-2-ピロリドン)、m-クレゾール/クロロホルム(湘南和光純薬(株)社製)から選定することができ、溶解するものであればTHFを用いることとする。
 本明細書において、ガラス転移温度(Tg)は、特段の断りがない限り、乾燥試料を用いて、示差走査熱量計「X-DSC7000」(商品名、SII・ナノテクノロジー(株)社製)を用いて下記の条件で測定する。測定は同一の試料で2回実施し、2回目の測定結果を採用する。
    測定室内の雰囲気:窒素(50mL/min)
    昇温速度:5℃/min
    測定開始温度:-100℃
    測定終了温度:200℃
    試料パン:アルミニウム製パン
    測定試料の質量:5mg
    Tgの算定:DSCチャートの下降開始点と下降終了点の中間温度の小数点以下を四捨五入することでTgを算定する。
 本発明によれば、以下の効果が得られる。すなわち、本発明の固体電解質組成物は、固体電解質含有シートを形成した際の結着性に優れる。本発明の固体電解質含有シートは、全固体二次電池において優れた結着性及び優れたサイクル特性を実現できる。また、本発明の全固体二次電池は結着性及びサイクル特性に優れる。また、本発明の製造方法によれば、本発明の、固体電解質含有シート及び全固体二次電池それぞれを好適に製造することができる。
 本発明によれば、さらに好ましくは、以下の効果が得られる。すなわち、本発明の、セグメント化ポリマー並びにポリマー及びセグメント化ポリマーの非水溶媒分散物は、全固体二次電池に用いることにより、優れた結着性及び優れたイオン伝導性、並びに優れたサイクル特性を実現できる。すなわち、本発明の固体電解質組成物、本発明の固体電解質含有シートないし本発明の全固体二次電池の一実施形態(上記本発明のセグメント化ポリマーを用いた形態)においては、得られる全固体二次電池のイオン伝導性をより高めることができ、サイクル特性により優れた全固体二次電池を実現することができる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は、本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。 図2は、実施例で使用した装置を模式的に示す縦断面図である。 図3は、実施例で作製した全固体二次電池(コイン電池)を模式的に示す縦断面図である。
<好ましい実施形態>
 図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5を、この順に有する。各層はそれぞれ接触しており、積層した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位6に電子が供給される。図示した例では、作動部位6に電球を採用しており、放電によりこれが点灯するようにされている。本発明の固体電解質組成物は、上記負極活物質層、正極活物質層、固体電解質層の成形材料として好ましく用いることができる。また、本発明の固体電解質含有シートは、上記負極活物質層、正極活物質層、固体電解質層として好適である。以下、図1の層構成を有する全固体二次電池を全固体二次電池シートと称することもある。
 本明細書において、正極活物質層(以下、正極層とも称す。)と負極活物質層(以下、負極層とも称す。)をあわせて電極層または活物質層と称することがある。
 正極活物質層4、固体電解質層3、負極活物質層2の厚さは特に限定されない。なお、一般的な電池の寸法を考慮すると、10~1,000μmが好ましく、20μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層4、固体電解質層3および負極活物質層2の少なくとも1層の厚さが、50μm以上500μm未満であることがさらに好ましい。
<固体電解質組成物>
 本発明の固体電解質組成物は、(A)周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質と、(B)特定のポリマーと、(C)分散媒とを含有する。
 ここで、成分(A)~(C)はいずれも本発明の固体電解質組成物の成分であって、それぞれ、成分(A)は、周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質であって、成分(B)は、後述する特定の(B)ポリマーであり、成分(C)は、分散媒である。
((A)無機固体電解質)
 無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオンおよびアニオンに解離または遊離していない。この点で、電解液やポリマー中でカチオンおよびアニオンが解離または遊離している無機電解質塩(LiPF、LiBF、LiFSI、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族または第2族に属する金属のイオンの伝導性を有するものであれば特に限定されず電子伝導性を有さないものが一般的である。
 本発明において、無機固体電解質は、周期律表第1族または第2族に属する金属のイオン伝導性を有する。上記無機固体電解質は、この種の製品に適用される固体電解質材料を適宜選定して用いることができる。無機固体電解質は(i)硫化物系無機固体電解質と(ii)酸化物系無機固体電解質が代表例として挙げられる。本発明において、活物質と無機固体電解質との間により良好な界面を形成することができるため、硫化物系無機固体電解質が好ましく用いられる。
(i)硫化物系無機固体電解質
 硫化物系無機固体電解質は、硫黄原子(S)を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLi、SおよびPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的または場合に応じて、Li、SおよびP以外の他の元素を含んでもよい。
 例えば下記式(I)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
 
   La1b1c1d1e1 式(I)
 
 式中、LはLi、NaおよびKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1はさらに、1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましい。d1はさらに、2.5~10が好ましく、3.0~8.5がより好ましい。e1はさらに、0~5が好ましく、0~3がより好ましい。
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、PおよびSを含有するLi-P-S系ガラス、またはLi、PおよびSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mであらわされる元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
 Li-P-S系ガラスおよびLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。たとえばLiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法および溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
(ii)酸化物系無機固体電解質
 酸化物系無機固体電解質は、酸素原子(O)を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 具体的な化合物例としては、例えばLixaLayaTiO〔xa=0.3~0.7、ya=0.3~0.7〕(LLT)、LixbLaybZrzbbb mbnb(MbbはAl,Mg,Ca,Sr,V,Nb,Ta,Ti,Ge,In,Snの少なくとも1種以上の元素でありxbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)、Lixcyccc zcnc(MccはC,S,Al,Si,Ga,Ge,In,Snの少なくとも1種以上の元素でありxcは0≦xc≦5を満たし、ycは0≦yc≦1を満たし、zcは0≦zc≦1を満たし、ncは0≦nc≦6を満たす。)、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(ただし、1≦xd≦3、0≦yd≦1、0≦zd≦2、0≦ad≦1、1≦md≦7、3≦nd≦13)、Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子または2種以上のハロゲン原子の組み合わせを表す。)、LixfSiyfzf(1≦xf≦5、0<yf≦3、1≦zf≦10)、Lixgygzg(1≦xg≦3、0<yg≦2、1≦zg≦10)、LiBO-LiSO、LiO-B-P、LiO-SiO、LiBaLaTa12、LiPO(4-3/2w)(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(ただし、0≦xh≦1、0≦yh≦1)、ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。
 無機固体電解質の体積平均粒子径は特に限定されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。なお、無機固体電解質粒子の平均粒子径の測定は、以下の手順で行う。無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調整する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
 無機固体電解質の固体電解質組成物中の固形成分における含有量は、全固体二次電池に用いたときの界面抵抗の低減と低減された界面抵抗の維持を考慮したとき、固形成分100質量%において、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
 上記無機固体電解質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 なお、本明細書において固形分(固形成分)とは、窒素雰囲気下170℃で6時間乾燥処理を行ったときに、揮発ないし蒸発して消失しない成分をいう。典型的には、後述の分散媒以外の成分を指す。
((B)ポリマー)
 本発明の固体電解質組成物は、(B)ポリマーを含有する。
 本発明に用いられる(B)ポリマーは、炭化水素ポリマーセグメントを主鎖に有し、かつ、主鎖は下記結合群(I)から選択される結合を少なくとも1つ含む。
<結合群(I)>
エステル結合、アミド結合、ウレタン結合、ウレア結合、イミド結合、エーテル結合およびカーボネート結合。
 本明細書において、「主鎖」とは、ポリマーにおける全ての分子鎖のうち、主鎖以外のすべての分子鎖(長分子鎖及び/又は短分子鎖)が、主鎖に対するペンダントとみなし得る線状分子鎖を意味する。典型的には、ポリマーを構成する分子鎖のうち最長鎖が主鎖である。ただし、ポリマー末端が有する官能基は主鎖に含まず、末端官能基として別に規定する。
 上記結合群(I)から選択される結合は、ポリマーの主鎖中に含まれる限り特に制限されるものでなく、副単位として構成単位中に含まれる態様及び/又は異なる構成単位同士を繋ぐ結合として含まれる態様のいずれでもよい。ただし、上記結合群(I)から選択される結合が、炭化水素ポリマーセグメントの主鎖中に含まれることはない。
 上記結合群(I)から選択される結合が副単位として構成単位中に含まれる態様の場合、(B)ポリマーの構成単位の1つとして、上記結合群(I)から選択される結合が副単位として含まれる親水性セグメントを(B)ポリマーの主鎖に有することが好ましく、ポリエステル、ポリアミド、ポリウレタン、ポリウレア、ポリイミド、ポリエーテルおよびポリカーボネートから選択される少なくとも1つのセグメント(以下、親水性セグメントとも称す。)を(B)ポリマーの主鎖に有することがより好ましい。
 (B)ポリマーが上記親水性セグメントを有する場合、親水性セグメントと炭化水素ポリマーセグメントとの結合部位として、上記結合群(I)から選択される結合をさらに有してもよい。
 (B)ポリマーが、上記親水性セグメントと上記の炭化水素ポリマーセグメントとをそれぞれ主鎖に有してなる場合、この(B)ポリマーは、ポリエステル、ポリアミド、ポリウレタン、ポリウレア、ポリイミド、ポリエーテルおよびポリカーボネートから選択される少なくとも1つのポリマーと、これらのポリマー末端との反応のため、末端が官能基化された炭化水素ポリマーとの、ランダム重合体、および、重縮合型セグメント化ポリマーのいずれでもよく、後述の転相乳化法により粒子を形成する観点からは、重縮合型セグメント化ポリマーが好ましい。
 (B)ポリマーが重縮合型セグメント化ポリマーである場合、(B)ポリマーは、上記の炭化水素ポリマーセグメントと、ポリエステル、ポリアミド、ポリウレタン、ポリウレア、ポリイミド、ポリエーテルおよびポリカーボネートから選択される少なくとも1つのセグメントとを有するセグメント化ポリマーであることが好ましい。
 (B)ポリマーの質量平均分子量は、5,000以上5,000,000未満が好ましく、5,000以上500,000未満がより好ましく、5,000以上50,000未満がさらに好ましい。
 (B)ポリマーのガラス転移温度は、上限は80℃以下が好ましく、50℃以下がより好ましく、30℃以下がさらに好ましい。下限は特に限定されないが、一般的には-80℃以上である。
 (B)ポリマーは、後述の転相乳化法によりポリマー粒子を形成する観点からは、線状ポリマー(すなわち、直鎖状ポリマー)であることが好ましい。
 ここで、直鎖状ポリマーとは、完全に分岐構造を有さないポリマーだけでなく、後述の転相乳化法により粒子を形成することが可能な範囲で、分岐構造を有する略直鎖状ポリマーを含む意味であり、例えば、主鎖の他に短分子鎖を有する直鎖状ポリマーが含まれる。
<炭化水素ポリマーセグメント>
 本発明に用いられる(B)ポリマーは、炭化水素ポリマーセグメントを主鎖に有する。
 炭化水素ポリマーセグメントとは、炭素原子及び水素原子から構成されるオリゴマー又はポリマー(以下、炭化水素ポリマーとも称す。)からなるセグメントを意味し、厳密には、炭素原子及び水素原子から構成されるポリマーの少なくとも2つの原子(例えば、水素原子)または基(例えば、メチル基)が脱離した構造を意味する。
 なお、後述するように、ポリマー末端に有し得る、上記親水性セグメント等との結合のための官能基は、炭化水素ポリマーセグメントには含まれないものとする。
 炭化水素ポリマーは、少なくとも2個以上の構成繰り返し単位が連なった構造を有するポリマーである。また、炭化水素ポリマーは、少なくとも50個以上の炭素原子から構成されることが好ましい。炭化水素ポリマーとしては、炭素-炭素不飽和結合を有していてもよく、脂肪族環及び/又は芳香族環の環構造を有していてもよい。すなわち、炭化水素ポリマーは、脂肪族炭化水素及び芳香族炭化水素から選択される炭化水素で構成される炭化水素ポリマーであればよい。柔軟性を有し、かつポリマー粒子として存在する場合の立体反発の効果を示す点からは、脂肪族炭化水素で構成される炭化水素ポリマーが好ましい。
 上記炭化水素ポリマーは、エラストマーであることが好ましく、具体的には、主鎖に二重結合を有するジエン系エラストマー、及び、主鎖に二重結合を有しない非ジエン系エラストマーが挙げられる。ジエン系エラストマーとしては、例えば、スチレン-ブタジエンゴム(SBR)、スチレン-エチレン-ブタジエンゴム(SEBR)、ブチルゴム(イソブチレンとイソプレンの共重合ゴム、IIR)、ブタジエンゴム(BR)、イソプレンゴム(IR)及びエチレン-プロピレン-ジエンゴム等が挙げられる。非ジエン系エラストマーとしては、エチレン-プロピレンゴム及びスチレン-エチレン-ブチレンゴム等のオレフィン系エラストマー、並びに、上記ジエン系エラストマーの水素還元エラストマーが挙げられる。
 炭化水素ポリマーセグメントの質量平均分子量は、(B)ポリマーの粒子分散性を向上させ、微細な粒子を得る点から、1,000以上が好ましく、1,000以上1,000,000未満がより好ましく、1,000以上100,000未満がさらに好ましく、1,000以上10,000未満が特に好ましい。
 炭化水素ポリマーセグメントのガラス転移温度は、(B)ポリマーの粒子分散性を向上させ、微細な粒子を得る点から、上限は0℃以下が好ましく、-20℃以下がより好ましく、-40℃以下がさらに好ましい。下限は特に限定されないが、一般的には-150℃以上である。
 炭化水素ポリマーセグメントのSP(Solubility Parameter)値は、上限は9.0未満が好ましく、8.7未満がより好ましく、8.5未満がさらに好ましい。下限は特に限定されないが、一般的には6.0以上である。
 上記SP値とは、Hoy法により算出される溶解度パラメータδtである。この溶解度パラメータδtは、文献“Properties of Polymers 3rd,ELSEVIER,(1990)”の第214~220頁、「2) Method of Hoy (1985,1989)」欄に記載のAmorphous Polymersについて求められるδtを意味し、上記文献の上記の欄の記載に従い算出される。本発明においてSP値の単位は「(cal/cm1/2」である。
 (B)ポリマー中における、炭化水素ポリマーセグメントの含有量は、(B)ポリマーの分散性及び強度の点から、1質量%以上80質量%以下が好ましく、5質量%以上80質量%以下がより好ましく、5質量%以上50質量%以下がさらに好ましく、10質量%以上40質量%以下が特に好ましく、10質量%以上30質量%以下が最も好ましい。
 (B)ポリマーを合成する点から、炭化水素ポリマーは、ポリマー末端に親水性セグメント等との結合を形成するための官能基を有することが好ましく、縮重合可能な官能基を有することがより好ましい。縮重合可能な官能基としては、ヒドロキシ基、カルボキシ基、アミノ基、スルファニル基及び酸無水物等が挙げられ、なかでもヒドロキシ基が好ましい。
 ポリマー末端に縮重合可能な官能基を有する炭化水素ポリマーとしては、たとえば、いずれも商品名で、NISSO-PB-Gシリーズ(日本曹達(株)製)、NISSO-PB-GIシリーズ(日本曹達(株)製)、クレイソールシリーズ(巴工業(株)製)、PolyVEST-HTシリーズ(エボニック(株)製)、poly-bdシリーズ(出光興産(株)製)、poly-ipシリーズ(出光興産(株)製)、EPOL(出光興産(株)製)及びポリテールシリーズ(三菱化学(株)製)等が好適に用いられる。
<親水性セグメント>
 本発明に用いられる(B)ポリマーは、上記結合群(I)から選択される結合を少なくとも1つ主鎖に含む。なかでも、本発明に用いられる(B)ポリマーは、ポリエステル、ポリアミド、ポリウレタン、ポリウレア、ポリイミド、ポリエーテルおよびポリカーボネートから選択される少なくとも1つのセグメント(親水性セグメント)を有することが好ましい。なお、上記親水性セグメント中に、親水性セグメントを構成するポリマー以外の結合を有してもよく、例えば、カーボネート結合を分子鎖中に有するポリウレタンからなるセグメントの態様が挙げられる。
 上記結合群(I)から選択される結合を有する化合物(オリゴマー及びポリマーを含む。)は、下記方法等の常法により得られる。
 エステル結合を有するポリマーは、カルボン酸またはカルボン酸クロリドとアルコールとの縮合により得られる。
 アミド結合を有するポリマーは、カルボン酸またはカルボン酸クロリドとアミンとの縮合により得られる。
 ウレタン結合を有するポリマーは、イソシアネートとアルコールとの縮合により得られる。
 ウレア結合を有するポリマーは、イソシアネートとアミンとの縮合により得られる。
 イミド結合を有するポリマーは、カルボン酸二無水物とアミンとの反応により得られる。
 カーボネート結合を有するポリマーは、低分子量カーボネート(例えば、ジメチルカーボネート、ジエチルカーボネート及びジフェニルカーボネート)とアルコールとの縮合により得られる。
 エーテル結合を有するポリマーは、ハロゲン化物(例えば、ハロゲン化アルキル)またはスルホン酸エステルとアルコールとの置換反応により得られる。
 これらの化合物における官能基は、構成繰り返し単位を有するポリマーを形成する場合には、適宜2官能以上の多官能化した化合物が用いられ、直鎖状の(B)ポリマーを形成する点からは、2官能の化合物を用いることが好ましい。
 親水性ポリマーユニットの合成に用いられる原料は、例えば、特開2015-88480号公報に記載のアミド結合を有するポリマー、ウレタン結合を有するポリマー及びウレア結合を有するポリマーの項で記載されておりこれらを好適に用いることができる。
 下記原料は所望の組み合わせで重縮合させることで、対応するポリエステル、ポリアミド、ポリウレタン、ポリウレア及びポリイミド等を合成することができる。
-ジイソシアネート化合物-
 ジイソシアネート化合物としては、特に制限はなく、適宜選択することができ、例えば、下記式(M1)で表される化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000003
 ただし、式(M1)中、RM1は、置換基(例えば、アルキル基、アラルキル基、アリール基、アルコキシ基またはハロゲン原子が好ましい)を有していてもよい2価の脂肪族もしくは芳香族炭化水素を表す。必要に応じ、RM1は、イソシアナト基と反応しない他の官能基、例えば、エステル基(エステル結合を有する基で、アシルオキシ基、アルコキシカルボニル基またはアリールオキシカルボニル基など)、ウレタン基、アミド基およびウレイド基のいずれかを有していてもよい。
 式(M1)で表されるジイソシアネート化合物としては、特に制限はなく、例えば、ジイソシアネートと、トリイソシアネート化合物(特開2005-250438号公報の段落番号0034~0035等に記載の化合物)と、エチレン性不飽和基を有する単官能のアルコール又は単官能のアミン化合物(特開2005-250438号公報の段落番号0037~0040等に記載の化合物)1当量とを付加反応させて得られる生成物などが挙げられる。
 式(M1)で表されるジイソシアネート化合物としては、特に制限はなく、目的に応じて適宜選択することができる。なお、下記式(M2)で表される基を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000004
 式(M2)中、Xは、単結合、-CH-、-C(CH-、-SO-、-S-、-CO-または-O-を表す。結着性の観点で、-CH-または-O-が好ましく、-CH-がより好ましい。ここで例示した上記アルキレン基はハロゲン原子(好ましくはフッ素原子)で置換されていてもよい。
 RM2~RM5はそれぞれ独立に、水素原子、1価の有機基、ハロゲン原子、-ORM6、―N(RM6または-SRM6を表す。RM6は、水素原子または1価の有機基を表す。
 1価の有機基としては、炭素数1~20のアルキル基、炭素数1~20のアルケニル基、-ORM7〔ただし、RM7は1価の有機基(好ましくは炭素数1~20のアルキル基、炭素数6~10のアリール基等)を表す〕、アルキルアミノ基(炭素数は、1~20が好ましく、1~6がより好ましい)、アリールアミノ基(炭素数は、6~40が好ましく、6~20がより好ましい)などが挙げられる。
 RM2~RM5は、水素原子、炭素数1~20のアルキル基または-ORM7が好ましく、水素原子または炭素数1~20のアルキル基がより好ましく、水素原子がさらに好ましい。ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子が挙げられる。
 式(M1)で表されるジイソシアネート化合物としては、下記式(M3)で表される基を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000005
 式(M3)中、Xは、式(M2)のXと同義であり、好ましい範囲も同じである。
 式(M1)~(M3)で表される芳香族基の組成比率としては、ポリマー中、10mol%以上が好ましく、10mol%~50mol%がより好ましく、30mol%~50mol%が更に好ましい。
 式(M1)で表されるジイソシアネート化合物の具体例としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、2,4-トリレンジイソシアネート、2,4-トリレンジイソシアネートの二量体、2,6-トリレンジレンジイソシアネート、p-キシリレンジイソシアネート、m-キシリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート(MDI)、1,5-ナフチレンジイソシアネート、3,3’-ジメチルビフェニル-4,4’-ジイソシアネート等の芳香族ジイソシアネート化合物;ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、ダイマー酸ジイソシアネート等の脂肪族ジイソシアネート化合物;イソホロンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)、メチルシクロヘキサン-2,4(又は2,6)ジイソシアネート、1,3-(イソシアネートメチル)シクロヘキサン、ノルボルナンジイソシアネート等の脂環族ジイソシアネート化合物;1,3-ブチレングリコール1モルとトリレンジイソシアネート2モルとの付加体等のジオールとジイソシアネートとの反応物であるジイソシアネート化合物;などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、4,4’-ジフェニルメタンジイソシアネート(MDI)または4,4’-メチレンビス(シクロヘキシルイソシアネート)(H12MDI)、が好ましい。
-ジオール化合物-
 ジオール化合物の具体例としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ネオペンチルグリコール、1,3-ブチレングリコール、1,6-ヘキサンジオール、2-ブテン-1,4-ジオール、2,2,4-トリメチル-1,3-ペンタンジオール、1,4-ビス-β-ヒドロキシエトキシシクロヘキサン、シクロヘキサンジメタノール、トリシクロデカンジメタノール、水添ビスフェノールA、水添ビスフェノールF、ビスフェノールAのエチレンオキサイド付加体、ビスフェノールAのプロピレンオキサイド付加体、ビスフェノールFのエチレンオキサイド付加体、ビスフェノールFのプロピレンオキサイド付加体、水添ビスフェノールAのエチレンオキサイド付加体、水添ビスフェノールAのプロピレンオキサイド付加体、ヒドロキノンジヒドロキシエチルエーテル、p-キシリレングリコール、ジヒドロキシエチルスルホン、ビス(2-ヒドロキシエチル)-2,4-トリレンジカルバメート、2,4-トリレン-ビス(2-ヒドロキシエチルカルバミド)、ビス(2-ヒドロキシエチル)-m-キシリレンジカルバメート、ビス(2-ヒドロキシエチル)イソフタレート、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,10-デカンジオール、2-ブテン-1,4-ジオール、cis-2-ブテン-1,4-ジオール、trans-2-ブテン-1,4-ジオール、
カテコール、レゾルシン、ハイドロキノン、4-メチルカテコール、4-t-ブチルカテコール、4-アセチルカテコール、3-メトキシカテコール、4-フェニルカテコール、4-メチルレゾルシン、4-エチルレゾルシン、4-t-ブチルレゾルシン、4-ヘキシルレゾルシン、4-クロロレゾルシン、4-ベンジルレゾルシン、4-アセチルレゾルシン、4-カルボメトキシレゾルシン、2-メチルレゾルシン、5-メチルレゾルシン、t-ブチルハイドロキノン、2,5-ジ-t-ブチルハイドロキノン、2,5-ジ-t-アミルハイドロキノン、テトラメチルハイドロキノン、テトラクロロハイドロキノン、メチルカルボアミノハイドロキノン、メチルウレイドハイドロキノン、メチルチオハイドロキノン、ベンゾノルボルネン-3,6-ジオール、ビスフェノールA、ビスフェノールS、3,3’-ジクロロビスフェノールS、4,4’-ジヒドロキシベンゾフェノン、4,4’-ジヒドロキシビフェニル、4,4’-チオジフェノール、2,2’-ジヒドロキシジフェニルメタン、3,4-ビス(p-ヒドロキシフェニル)ヘキサン、1,4-ビス(2-(p-ヒドロキシフェニル)プロピル)ベンゼン、ビス(4-ヒドロキシフェニル)メチルアミン、1,3-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、1,5-ジヒドロキシアントラキノン、2-ヒドロキシベンジルアルコール、4-ヒドロキシベンジルアルコール、2-ヒドロキシ-3,5-ジ-t-ブチルベンジルアルコール、4-ヒドロキシ-3,5-ジ-t-ブチルベンジルアルコール、4-ヒドロキシフェネチルアルコール、2-ヒドロキシエチル-4-ヒドロキシベンゾエート、2-ヒドロキシエチル-4-ヒドロキシフェニルアセテート、レゾルシンモノ-2-ヒドロキシエチルエーテル、
ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール、ヘキサエチレングリコール、ヘプタエチレングリコール、オクタエチレングリコール、ジ-1,2-プロピレングリコール、トリ-1,2-プロピレングリコール、テトラ-1,2-プロピレングリコール、ヘキサ-1,2-プロピレングリコール、ジ-1,3-プロピレングリコール、トリ-1,3-プロピレングリコール、テトラ-1,3-プロピレングリコール、ジ-1,3-ブチレングリコール、トリ-1,3-ブチレングリコール、ヘキサ-1,3-ブチレングリコール、平均分子量200のポリエチレングリコール、平均分子量400のポリエチレングリコール、平均分子量600のポリエチレングリコール、平均分子量1,000のポリエチレングリコール、平均分子量1,500のポリエチレングリコール、平均分子量2,000のポリエチレングリコール、平均分子量3,000のポリエチレングリコール、平均分子量7,500のポリエチレングリコール、平均分子量400のポリプロピレングリコール、平均分子量700のポリプロピレングリコール、平均分子量1,000のポリプロピレングリコール、平均分子量2,000のポリプロピレングリコール、平均分子量3,000のポリプロピレングリコール、平均分子量4,000のポリプロピレングリコールなどが挙げられる。
 ジオール化合物は市販品としても入手可能であり、例えば、三洋化成工業(株)社製PTMG650、PTMG1000、PTMG20000、PTMG3000、ニューポールPE-61、ニューポールPE-62、ニューポールPE-64、ニューポールPE-68、ニューポールPE-71、ニューポールPE-74、ニューポールPE-75、ニューポールPE-78、ニューポールPE-108、ニューポールPE-128、ニューポールBPE-20、ニューポールBPE-20F、ニューポールBPE-20NK、ニューポールBPE-20T、ニューポールBPE-20G、ニューポールBPE-40、ニューポールBPE-60、ニューポールBPE-100、ニューポールBPE-180、ニューポールBP-2P、ニューポールBPE-23P、ニューポールBPE-3P、ニューポールBPE-5P、ニューポール50HB-100、ニューポール50HB-260、ニューポール50HB-400、ニューポール50HB-660、ニューポール50HB-2000、ニューポール50HB-5100(いずれも商品名)等のポリエーテルジオール化合物、さらにポリエステルジオール化合物、ポリカーボネートジオール化合物およびシリコーンジオール化合物が挙げられる。
 ポリエステルジオール化合物としては、いずれも商品名で、ポリライトシリーズ(DIC社製)やクラレポリオールPシリーズ、クラレポリオールFシリーズ、クラレポリオールNシリーズ、クラレポリオールPMNAシリーズ((株)クラレ社製)、プラクセルシリーズ((株)ダイセル化学社製)を好適に用いることができる。
 ポリカーボネートジオール化合物としては、いずれも商品名で、デュラノールシリーズ(旭化成ケミカルズ(株)社製)、エタナコールシリーズ(宇部興産(株)社製)、プラクセルCDシリーズ((株)ダイセル化学社製)、クラレポリオールCシリーズ((株)クラレ社製)を好適に用いることができる。
 シリコーンジオール化合物としては、商品名で、信越化学工業(株)社製のカルビノール変性シリコーンオイルを用いることができる。具体的にはKF-6000、KF-6001、KF-6002、KF-6003などを好適に用いることができる。
 また、3,5-ジヒドロキシ安息香酸、2,2-ビス(ヒドロキシメチル)プロピオン酸、2,2-ビス(2-ヒドロキシエチル)プロピオン酸、2,2-ビス(3-ヒドロキシプロピル)プロピオン酸、ビス(ヒドロキシメチル)酢酸、ビス(4-ヒドロキシフェニル)酢酸、2,2-ビス(ヒドロキシメチル)酪酸、4,4-ビス(4-ヒドロキシフェニル)ペンタン酸、酒石酸、N,N-ジヒドロキシエチルグリシン、N,N-ビス(2-ヒドロキシエチル)-3-カルボキシ-プロピオンアミド等のカルボキシ基を含有するジオール化合物と組み合わせて用いることもできる。
 また、特開2003-177533号公報、特開平11-352691号公報、特開平10-260530号公報、特開2005-250158号公報、特開2009-86321号公報に記載されているジオール化合物も好ましく用いることができる。
 ジオールとしては、ポリエチレンオキシド鎖、ポリプロピレンオキシド鎖、ポリカーボネート鎖、ポリエステル鎖、シリコーン鎖を有していることが好ましい。またジオールは、炭素-炭素不飽和結合を有する基及び/又は極性基(アルコール性水酸基、フェノール性水酸基、メルカプト基、カルボキシ基、スルホ基、スルホンアミド基、リン酸基、シアノ基、アミノ基、双性イオン含有基、金属ヒドロキシド基、金属アルコキシド基)を有していることが好ましい。炭素-炭素不飽和結合を有する基及び/又は極性基を有するジオールとしては、例えば、2,2-ビス(ヒドロキシメチル)プロピオン酸を用いることができる。
 炭素-炭素不飽和結合を有する基を含有するジオール化合物は、市販品としてブレンマーGLM(商品名、日油(株)社製)の他、特開2007-187836号公報に記載の化合物を好適に用いることができる。
 ポリウレタンの場合、重合停止剤としてモノアルコールやモノアミンを用いることができる。重合停止剤はポリウレタン主鎖の末端部位に導入される。ソフトセグメントをポリウレタン末端に導入する方法として、ポリアルキレングリコールモノアルキルエーテル(ポリエチレングリコールモノアルキルエーテル、ポリプロピレンモノアルキルエーテルが好ましい)や、ポリカーボネートジオールモノアルキルエーテル、ポリエステルジオールモノアルキルエーテル、ポリエステルモノアルコールなどを用いることができる。
 また、極性基及び/又は炭素-炭素不飽和結合を有する基を有するモノアルコールやモノアミンを用いることで、ポリウレタン主鎖の末端に極性基及び/又は炭素-炭素不飽和結合を有する基の導入が可能である。例えば、ヒドロキシ酢酸、ヒドロキシプロピオン酸、4-ヒドロキシベンジルアルコール、3-メルカプト-1-プロパノール、2,3-ジメルカプト-1-プロパノール、3-メルカプト-1-ヘキサノール、3-ヒドロキシプロパンスルホン酸、2-シアノエタノール、3-ヒドロキシグルタロニトリル、2-アミノエタノール、2-ヒドロキシエチルメタクリレート、2-ヒドロキシエチルアクリレート、2-アミノエチルメタクリレート、2-アミノエチルアクリレートなどが挙げられる。
-ジアミン化合物-
 ジアミン成分としては、エチレンジアミン、1-メチルエチルジアミン、1,3-プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミンなどの脂肪族ジアミン類が挙げられ、その他にも、シクロヘキサンジアミン、ビス(4,4’-アミノヘキシル)メタン、パラキシリレンジアミンなどが挙げられる。ポリプロピレンオキシ鎖を有するジアミンとして、ジェファーミン(ハンツマン(株)社製)、ポリプロピレングリコール-ビス-2-アミノプロピルエーテル(アルドリッチ(株)製)(いずれも商品名)を用いることもできる。
 ジアミン成分の具体例として、
1)パラフェニレンジアミン(1,4-ジアミノベンゼン;PPD)、1,3-ジアミノベンゼン、2,4-トルエンジアミン、2,5-トルエンジアミン、2,6-トルエンジアミンなどのベンゼン核1つのジアミン、
2)4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテルなどのジアミノジフェニルエーテル類、4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジカルボキシ-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、ビス(4-アミノフェニル)スルフィド、4,4’-ジアミノベンズアニリド、3,3’-ジクロロベンジジン、3,3’-ジメチルベンジジン、2,2’-ジメチルベンジジン、3,3’-ジメトキシベンジジン、2,2’-ジメトキシベンジジン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、3,3’-ジアミノ-4,4’-ジクロロベンゾフェノン、3,3’-ジアミノ-4,4’-ジメトキシベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、2,2-ビス(3-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、3,3’-ジアミノジフェニルスルホキシド、3,4’-ジアミノジフェニルスルホキシド、4,4’-ジアミノジフェニルスルホキシドなどのベンゼン核2つのジアミン、
3)1,3-ビス(3-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(3-アミノフェニル)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)-4-トリフルオロメチルベンゼン、3,3’-ジアミノ-4-(4-フェニル)フェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジ(4-フェニルフェノキシ)ベンゾフェノン、1,3-ビス(3-アミノフェニルスルフィド)ベンゼン、1,3-ビス(4-アミノフェニルスルフィド)ベンゼン、1,4-ビス(4-アミノフェニルスルフィド)ベンゼン、1,3-ビス(3-アミノフェニルスルホン)ベンゼン、1,3-ビス(4-アミノフェニルスルホン)ベンゼン、1,4-ビス(4-アミノフェニルスルホン)ベンゼン、1,3-ビス〔2-(4-アミノフェニル)イソプロピル〕ベンゼン、1,4-ビス〔2-(3-アミノフェニル)イソプロピル〕ベンゼン、1,4-ビス〔2-(4-アミノフェニル)イソプロピル〕ベンゼンなどのベンゼン核3つのジアミン、
4)3,3’-ビス(3-アミノフェノキシ)ビフェニル、3,3’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス〔3-(3-アミノフェノキシ)フェニル〕エーテル、ビス〔3-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(3-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔3-(3-アミノフェノキシ)フェニル〕ケトン、ビス〔3-(4-アミノフェノキシ)フェニル〕ケトン、ビス〔4-(3-アミノフェノキシ)フェニル〕ケトン、ビス〔4-(4-アミノフェノキシ)フェニル〕ケトン、ビス〔3-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(3-アミノフェノキシ)フェニル〕スルホン、ビス〔3-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔3-(3-アミノフェノキシ)フェニル〕メタン、ビス〔3-(4-アミノフェノキシ)フェニル〕メタン、ビス〔4-(3-アミノフェノキシ)フェニル〕メタン、ビス〔4-(4-アミノフェノキシ)フェニル〕メタン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔3-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔3-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパンなどのベンゼン核4つのジアミンなどを挙げることができる。これらは単独で用いてもよく、2種以上を混合して用いてもよい。用いるジアミンは、所望の特性などに応じて適宜選択することができる。
 ジアミンとしては、例えば、前述したジアミン構造を用いることができる。ジアミンは、ポリエチレンオキシド鎖、ポリプロピレンオキシド鎖、ポリカーボネート鎖、ポリエステル鎖の両末端にアミノ基を有する構造であっても好ましい。上記ソフトセグメント含有ジアミンは、例えば、市販品として「ジェファーミン」シリーズ(ハンツマン(株)社製、三井化学ファイン(株)社製)を用いることができる。具体的には、いずれも商品名で、ジェファーミンD-230、ジェファーミンD-400、ジェファーミンD-2000、ジェファーミンED-600、ジェファーミンED-900、ジェファーミンED-2003、ジェファーミンXTJ-510、ジェファーミンXTJ-500、ジェファーミンXTJ-501、ジェファーミンXTJ-502、ジェファーミンHK-511、ジェファーミンEDR-148、ジェファーミンXTJ-512、ジェファーミンXTJ-542、ジェファーミンXTJ-533、ジェファーミンXTJ-536が挙げられる。
-カルボン酸またはその酸クロリド-
 カルボン酸成分としては、マロン酸、コハク酸、グルタル酸、セバシン酸、ピメリン酸、スペリン酸、アゼライン酸、ウンデカン酸、ウンデカジオン酸、ドデカジオン酸、アジピン酸、ダイマー酸などの脂肪族ジカルボン酸類、1,4-シクロヘキサンジカルボン酸、パラキシリレンジカルボン酸、メタキシリレンジカルボン酸、フタル酸、2,6-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、テレフタル酸などが挙げられる。酸クロリドは上記カルボン酸の酸クロリドに対応したものが挙げられる。
-カルボン酸二無水物-
 テトラカルボン酸二無水物の具体例としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)およびピロメリット酸二無水物(PMDA)が挙げられ、その他に、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(a-BPDA)、オキシジフタル酸二無水物、ジフェニルスルホン-3,4,3’,4’-テトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)スルフィド二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、p-ビフェニレンビス(トリメリット酸モノエステル酸無水物)、m-ターフェニル-3,4,3’,4’-テトラカルボン酸二無水物、p-ターフェニル-3,4,3’,4’-テトラカルボン酸二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ビフェニル二無水物、2,2-ビス〔(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物などを挙げることができる。これらは単独で用いてもよく、2種以上を混合して用いてもよい。
 テトラカルボン酸成分は、少なくともs-BPDAおよび/またはPMDAを含むことが好ましい。例えば、テトラカルボン酸成分100モル%中に、s-BPDAを好ましくは50モル%以上、より好ましくは70モル%以上、さらに好ましくは75モル%以上含む。テトラカルボン酸二水和物はハードセグメントとして機能することが望ましいため、剛直なベンゼン環を有していることが好ましい。
 ポリマー(B)の主鎖末端はポリマーを構成する原料モノマー、原料オリゴマーの混合比によって決まる。例えばポリウレタンセグメントを有する場合、原料となるジイソシアネート化合物とジオール化合物とを反応して得られるセグメントを有するため、ポリマー(B)の主鎖末端は上記化合物のうちモル量の最も多い化合物の官能基で重合が停止するのが一般的である。従って、本発明のポリマー(B)の主鎖末端については特に限定されないが、イソシアネート基、ヒドロキシ基、アミノ基、カルボキシ基、カルボン酸クロリド基、酸無水物基等であることが示唆される。
 またこれらの主鎖末端の官能基は、必要に応じてさらに反応させて別の官能基に変換してもよい。別の官能基としては、分散性を高めるため炭素数1~30のアルキル基及び炭素数6~20のアリール基、重合により弾性率を高めるための架橋性官能基、ならびに、活物質、無機固体電解質および集電体等との密着性を高めるためのアルコキシシリル基等が挙げられる。後述の例示化合物中、主鎖末端の記載がない化合物は、主鎖末端の官能基はいずれであってもよい。
<官能基群(II)から選択される官能基>
 本発明に用いられる(B)ポリマーは、固体粒子表面への濡れ性及び/又は吸着性を高めるための官能基を有することが好ましい。官能基としては、固体粒子表面において水素結合等の相互作用を示す官能基及び固体粒子表面の基と化学結合を形成し得る官能基が挙げられ、具体的には、下記官能基群(II)から選択される官能基を少なくとも1つ有することが好ましい。ただし、固体粒子表面への濡れ性及び/又は吸着性をより効果的に発現する観点からは、(B)ポリマーは、官能基同士で結合を形成することが可能な2種以上の官能基を有さないことが好ましい。
<官能基群(II)>
カルボキシ基、スルホン酸基(-SOH)、リン酸基(-PO)、アミノ基(-NH)、ヒドロキシ基、スルファニル基、イソシアナト基、アルコキシシリル基および3環以上の縮環構造を有する基。
 なお、スルホン酸基及びリン酸基は、その塩でもよく、例えば、ナトリウム塩及びカルシウム塩が挙げられる。
 アルコキシシリル基は、少なくとも一つのアルコキシ基(炭素数は1~12が好ましい。)でSi原子が置換されたシリル基であればよく、Si原子上のその他の置換基としては、アルキル基、アリール基等が挙げられる。アルコキシシリル基としては、例えば、後述の置換基Pにおけるアルコキシシリル基の記載が好ましく適用できる。
 3環以上の縮環構造を有する基は、コレステロール環構造を有する基、または3環以上の芳香族環が縮環した構造を有する基が好ましく、コレステロール残基またはピレニル基がより好ましい。
 本発明に用いられる(B)ポリマーは、上記官能基群(II)から選択される官能基を炭化水素ポリマーセグメント以外の位置に有することが好ましく、親水性セグメント中に有することがより好ましい。
 本発明に用いられる(B)ポリマー中における官能基群(II)から選択される官能基の含有量は、特に制限されるものではないが、本発明に用いられる(B)ポリマーを構成する全繰り返し単位中、上記官能基群(II)から選択される官能基を有する繰返し単位の割合は、1~50mol%が好ましく、5~20mol%がより好ましい。
<架橋性官能基>
 本発明に用いられる(B)ポリマーは、ラジカル重合反応、カチオン重合反応又はアニオン重合反応により架橋構造を形成することが可能な官能基(以下、架橋性官能基とも称す。)を有することも好ましい。上記架橋性官能基同士が反応して結合を形成することにより、本発明に用いられる(B)ポリマーは、ポリマー粒子内またはポリマー粒子間で架橋された構造を生じ、強度を向上することができる。
 上記架橋性官能基としては、炭素-炭素不飽和結合を有する基及び/又は環状エーテル基が好ましい。炭素-炭素不飽和結合を有する基は、ラジカル重合反応により架橋構造を形成することが可能な基(すなわち、重合性炭素-炭素不飽和結合を有する基)であり、具体的には、アルケニル基(炭素数は2~12が好ましく、2~8がより好ましい。)、アルキニル基(炭素数は2~12が好ましく、2~8がより好ましい。)、アクリロイル基及びメタクリロイル基が好ましく挙げられ、ビニル基、エチニル基、アクリロイル基、メタクリロイル基及び2-トリフルオロメチルプロペノイル基がより好ましく挙げられる。環状エーテル基は、カチオン重合反応により架橋構造を形成することが可能な基であり、具体的には、エポキシ基およびオキセタニル基が好ましく挙げられる。
 すなわち、本発明に用いられる(B)ポリマーは、下記官能基群(III)から選択される官能基を少なくとも1つ有することが好ましい。
<官能基群(III)>
炭素-炭素不飽和結合を有する基、エポキシ基およびオキセタニル基。
 炭素-炭素不飽和結合を有する基としては、上記の基が好ましく挙げられ、なかでも、ビニル基、エチニル基、アクリロイル基、メタクリロイル基又は2-トリフルオロメチルプロペノイル基が好ましい。
 本発明に用いられる(B)ポリマーは、上記架橋性官能基を炭化水素ポリマーセグメント以外の位置に有することが好ましく、親水性セグメント中に有することがより好ましい。なお、炭化水素ポリマー中に炭素-炭素不飽和結合を有する場合(例えば、ポリブタジエン及びポリイソプレン)には、炭素原子及び水素原子から構成される架橋性官能基(例えば、ビニル基及びプロペニル基)は、炭化水素ポリマーセグメント中に存在し得る。
 特に、本発明に用いられる(B)ポリマーがセグメント化ポリマーである場合には、親水性セグメント中の架橋性官能基によってポリマー粒子内での架橋が進行しやすく、一方炭化水素ポリマーセグメント中の架橋性官能基によってポリマー粒子間での架橋が進行しやすくなる。
 本発明に用いられる(B)ポリマー中における上記架橋性官能基の含有量は、特に制限されるものではないが、本発明に用いられる(B)ポリマーを構成する全繰り返し単位中、上記架橋性官能基を有する繰返し単位の割合は、1~50mol%が好ましく、5~20mol%がより好ましい。
 上記架橋性官能基同士の反応は、本発明の固体電解質組成物中に、各架橋性官能基に対応する重合開始剤(ラジカル、カチオン又はアニオン重合開始剤)を含有させておき、これらの重合開始剤により反応させてもよく、また、電池駆動時の酸化還元反応により反応させてもよい。なお、ラジカル重合開始剤は、熱によって開裂して開始ラジカルを発生する熱ラジカル重合開始剤、及び、光、電子線又は放射線で開始ラジカルを生成する光ラジカル重合開始剤のいずれでもよい。
 本発明の固体電解質組成物が含有してもよい重合開始剤としては、常用される重合開始剤を特に制限することなく用いることができる。
 下記に本発明に用いられる(B)ポリマーの例示化合物を記載するが、本発明はこれに限定されるものではない。化学式表記中、数字は( )又は[ ]で表される構成単位のモル%比(モル%は省略して記載)を示す。h1、h2、i1、i2、j1~j3、k1~k3、m、n1、n2、p、q、r及びtは、各々独立に繰り返し単位数(平均単位数)を表す。h1は、0~60が好ましく、2~50がより好ましく、h2は、0~60が好ましく、2~30がより好ましい。i1は、0~60が好ましく、2~50がより好ましく、i2は、0~60が好ましく、2~30がより好ましい。j1は、0~30が好ましく、2~20がより好ましく、j2は、0~50が好ましく、2~40がより好ましく、j3は、0~20が好ましく、2~10がより好ましい。k1は、0~30が好ましく、2~20がより好ましく、k2は、0~50が好ましく、2~40がより好ましく、k3は、0~20が好ましく、2~20がより好ましい。mは、2~20が好ましく、2~10がより好ましい。n1及びn2は各々独立に、3~100が好ましく、5~50がより好ましい。p、q及びrは各々独立に、1~20が好ましく、2~10がより好ましい。tは2~20が好ましく、2~10がより好ましい。なお、h1+h2、i1+i2、j1+j2+j3、k1+k2+k3は、各々独立に2以上である。なお、例示化合物(B-20)及び(B-21)における[ ]は、h1及びh2で表される繰り返し単位を有する構造を示している。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 本明細書において置換または無置換を明記していない化合物、部分構造ないし基については、その化合物、部分構造ないし基に適宜の置換基を有していてもよい意味である。これは置換または無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Pが挙げられる。
 置換基Pとしては、下記のものが挙げられる。
 アルキル基(好ましくは炭素原子数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等、ただし本明細書においてアルキル基というときには通常シクロアルキル基を含む意味である。)、アリール基(好ましくは炭素原子数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、アラルキル基(好ましくは炭素数7~23のアラルキル基、例えば、ベンジル、フェネチル等)、ヘテロ環基(好ましくは炭素原子数2~20のヘテロ環基、好ましくは、環構成原子として酸素原子、硫黄原子および窒素原子から選択される少なくとも1つを有する5又は6員環のヘテロ環基が好ましく、例えば、テトラヒドロピラニル、テトラヒドロフラニル、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル、ピロリドン基等)、アルコキシ基(好ましくは炭素原子数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等、ただし本明細書においてアルコキシ基というときには通常アリーロイル基を含む意味である。)、アルコキシカルボニル基(好ましくは炭素原子数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素原子数6~26のアリールオキシカルボニル基、例えば、フェノキシカルボニル、1-ナフチルオキシカルボニル、3-メチルフェノキシカルボニル、4-メトキシフェノキシカルボニル等)、アミノ基(好ましくは炭素原子数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素原子数0~20のスルファモイル基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(好ましくは炭素原子数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル等)、アリーロイル基(好ましくは炭素原子数7~23のアリーロイル基、例えば、ベンゾイル等、ただし本明細書においてアシル基というときには通常アリーロイル基を含む意味である。)、アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、アセチルオキシ等)、アリーロイルオキシ基(好ましくは炭素原子数7~23のアリーロイルオキシ基、例えば、ベンゾイルオキシ等、ただし本明細書においてアシルオキシ基というときには通常アリーロイルオキシ基を含む意味である。)、カルバモイル基(好ましくは炭素原子数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、アルキルスルファニル基(好ましくは炭素原子数1~20のアルキルスルファニル基、例えば、メチルスルファニル、エチルスルファニル、イソプロピルスルファニル、ベンジルスルファニル等)、アリールスルファニル基(好ましくは炭素原子数6~26のアリールスルファニル基、例えば、フェニルスルファニル、1-ナフチルスルファニル、3-メチルフェニルスルファニル、4-メトキシフェニルスルファニル等)、アルキルスルホニル基(好ましくは炭素原子数1~20のアルキルスルホニル基、例えば、メチルスルホニル、エチルスルホニル等)、アリールスルホニル基(好ましくは炭素原子数6~22のアリールスルホニル基、例えば、ベンゼンスルホニル等)、アルキルシリル基(好ましくは炭素原子数1~20のアルキルシリル基、例えば、モノメチルシリル、ジメチルシリル、トリメチルシリル、トリエチルシリル等)、アリールシリル基(好ましくは炭素原子数6~42のアリールシリル基、例えば、トリフェニルシリル等)、アルコキシシリル基(好ましくは炭素原子数1~20のアルコキシシリル基、例えば、モノメトキシシリル、ジメトキシシリル、トリメトキシシリル、トリエトキシシリル等)、アリールオキシシリル基(好ましくは炭素原子数6~42のアリールオキシシリル基、例えば、トリフェニルオキシシリル等)、ホスホリル基(好ましくは炭素原子数0~20のホスホリル基、例えば、-OP(=O)(R)、ホスホニル基(好ましくは炭素原子数0~20のホスホニル基、例えば、-P(=O)(R)、ホスフィニル基(好ましくは炭素原子数0~20のホスフィニル基、例えば、-P(R)、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルイミノ基((メタ)アクリルアミド基)、ヒドロキシ基、スルファニル基、カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)が挙げられる。
 また、これらの置換基Pで挙げた各基は、上記の置換基Pがさらに置換していてもよい。
 化合物、置換基および連結基等がアルキル基、アルキレン基、アルケニル基、アルケニレン基、アルキニル基および/またはアルキニレン基等を含むとき、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよく、上記のように置換されていても無置換でもよい。
 本発明に用いられる(B)ポリマーの形状は特に限定されず、固体電解質組成物、固体電解質含有シートまたは全固体二次電池中において粒子状であっても不定形状であってもよい。
 本発明において、(B)ポリマーが分散媒に対して不溶の粒子であることが、固体電解質組成物の分散安定性の観点、及び、高いイオン伝導性を有する全固体二次電池を得られる観点から好ましい。ここで、「(B)ポリマーが分散媒に対して不溶の粒子である」とは、30℃の分散媒に添加し、24時間静置しても、平均粒子径が5%以上低下しないことを意味し、3%以上低下しないことが好ましく、1%以上低下しないことがより好ましい。
 なお、(B)ポリマーの粒子が分散媒に全く溶解していない状態では、添加前に対する平均粒子径の上記変化量は0%である。
 また、固体電解質組成物中における(B)ポリマーは、無機固体電解質等の粒子間イオン伝導性の低下抑制のため、粒子状であることが好ましく、平均粒子径は、10nm~1000nmが好ましく、100nm~500nmがより好ましい。
 本発明に用いられる(B)ポリマー粒子の平均粒子径は、特に断らない限り、以下に記載の測定条件および定義に基づくものとする。
 (B)ポリマー粒子を任意の溶媒(固体電解質組成物の調製に用いる分散媒。例えば、オクタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、得られた体積平均粒子径を平均粒子径とする。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製して測定し、その平均値を採用する。
 なお、作製された全固体二次電池からの測定は、例えば、電池を分解し電極を剥がした後、その電極材料について上記ポリマー粒子の平均粒子径の測定方法に準じてその測定を行い、あらかじめ測定していたポリマー粒子以外の粒子の平均粒子径の測定値を排除することにより行うことができる。
 (B)ポリマーは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 (B)ポリマーが粒子の場合、粒子は均一ではなくコアシェル形状や中空形状であってもよい。また(B)ポリマー内部を形成するコア部に有機物や無機物を内包していても良い。コア部に内包される有機物としては後述の分散媒、分散剤、リチウム塩、イオン液体、導電助剤等が挙げられる。
 本発明に用いられる(B)ポリマーの水分濃度は、100ppm(質量基準)以下が好ましい。
 また、本発明に用いられる(B)ポリマーは、固体の状態で使用しても良いし、ポリマー粒子分散液またはポリマー溶液の状態で用いてもよい。
 本発明に用いられる(B)ポリマーの固体電解質組成物中での含有量は、全固体二次電池に用いたときの良好な界面抵抗の低減性とその維持性を考慮すると、固形成分100質量%において、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、1質量%以上がさらに好ましい。上限としては、電池特性の観点から、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下がさらに好ましい。
 本発明では、(B)ポリマーの質量に対する、無機固体電解質と活物質の合計質量(総量)の質量比[(無機固体電解質の質量+活物質の質量)/(B)ポリマーの質量]は、1,000~1の範囲が好ましい。この比率はさらに500~2がより好ましく、100~10がさらに好ましい。
 なお、本発明に用いられる(B)ポリマーが架橋性官能基及び/又は固体粒子と結合し得る官能基群(II)から選択される官能基を有する場合、(B)ポリマーは、架橋構造を形成している態様及び/又は固体粒子との間に結合を形成している態様を含むものとする。
<(B)ポリマーの合成方法>
 (B)ポリマーの合成方法として、(B)ポリマーがセグメント化ポリマーである場合の合成方法の一例を下記に記載する。
 まず、一般的な重縮合により上記の結合群(I)から選択される結合を有するプレポリマー分子を合成する。続いて、得られたプレポリマー分子の末端官能基(a)と、末端官能基化された炭化水素ポリマーにおける末端官能基(b)との反応により、得られたプレポリマー分子と末端官能基化された炭化水素ポリマーとを結合し、(B)ポリマーの溶液を調製する方法が挙げられる。
 本発明の固体電解質組成物を調製するに際し、この(B)ポリマー溶液は、溶液のまま用いてもよく、溶媒を除去して(B)ポリマーの固体として用いてもよく、後述の転相乳化法により調製し得る(B)ポリマーの分散液(好ましくは、(B)ポリマーが非水溶媒に分散された、(B)ポリマーの非水溶媒分散物)として用いてもよい。(B)ポリマーの非水溶媒分散物は、(B1)セグメント化ポリマーの非水溶媒分散物で後述するように、全固体二次電池用として好適に用いることができる。非水溶媒としては、後述する(B1)セグメント化ポリマーの非水溶媒分散物における非水溶媒の記載を好ましく適用することができる。
 なお、上記(B)ポリマーの合成反応においては、適宜、末端停止反応(例えば、メタノールの(B)ポリマー溶液中への添加)、高分子化反応後の側鎖の修飾反応及びポリアミック酸の脱水によるポリイミド化反応等を行うことができる。
 ポリマー(B)がセグメント化ポリマーではない場合、各種モノマーと末端官能基化された炭化水素ポリマーとを重合開始段階からの同時重合により合成することができる。
 (B)ポリマーを合成する際の溶媒は特に限定されないが、極性溶媒を用いることが好ましく、具体的には、ケトン溶媒、エステル溶媒及びエーテル溶媒がより好ましく、後述の分散媒における記載を好ましく適用することができる。
 なお、後述の転相乳化法により(B)ポリマーの分散液を調製する際には、(B)ポリマーの溶液を構成する溶媒を、(B)ポリマーを乳化分散し得る分散媒に置換し、(B)ポリマーの溶液を構成する溶媒を除去する。そのため、(B)ポリマーの溶液を構成する溶媒(例えば、(B)ポリマーを合成する際の溶媒)の沸点は、(B)ポリマーを乳化分散し得る分散媒の沸点より低いことが好ましい。(B)ポリマーを乳化分散し得る分散媒としては、後述の(B1)セグメント化ポリマーを乳化分散し得る分散媒の記載を好ましく適用することができる。
((B1)セグメント化ポリマー)
 本発明の(B1)セグメント化ポリマーは、炭化水素ポリマーセグメントと、ポリエステル、ポリアミド、ポリウレタン、ポリウレア、ポリイミド、ポリエーテルおよびポリカーボネートから選択される少なくとも1つのセグメント(親水性セグメント)とを、いずれも主鎖に有する。
 本発明において、単に「セグメント化ポリマー」と称する場合、炭化水素ポリマーセグメントと親水性セグメントから構成されたポリマー(これらのセグメント以外のセグメントを含まないポリマー)を意味する。
 炭化水素ポリマーセグメント及び親水性セグメントとしては、上記(B)ポリマーにおける炭化水素ポリマーセグメント及び親水性セグメントにおける記載を好ましく適用することができる。
 本発明の(B1)セグメント化ポリマーは、ポリマー主鎖に、炭化水素ポリマーセグメントからなる疎水性セグメントと、特定の親水性セグメントとを有する。このため、(B1)ポリマー中に存在する疎水性セグメントと親水性セグメントのうち、親水性セグメントは水素結合により強固に中央部に凝集し、一方疎水性セグメントは炭化水素ポリマーからなるため、疎水性溶媒中でポリマー粒子の外側に向いて立体反発することができ、以下に記載するように、乳化剤を用いることなく転相乳化法により乳化することができると推定される。乳化分散はポリマー(B)がセグメント化ポリマーであってもセグメント化ポリマーでなくても行うことができるが、上記理由からセグメント化ポリマーであることが望ましい。
 本発明の(B1)セグメント化ポリマーとしては、下記式で表されるセグメント化ポリマーが好ましい。下記式中、Raが炭化水素ポリマーセグメントを示し、その他の部分が親水性セグメントを示す。
Figure JPOXMLDOC01-appb-C000011
 上記式中、Raは質量平均分子量1000以上の2価の炭化水素基を示す。Rbは炭素数6~22の芳香族炭化水素基もしくは炭素数1~15の脂肪族炭化水素基、または、これらの基を2以上組み合わせてなる基を示す。Rbは、炭素数2~6のアルキレン基を示す。ただし、Rb2が置換基を有する場合、この置換基は下記官能基群(II)または(III)から選択される基を有さない。Rbは下記官能基群(II)から選択される官能基を少なくとも1つ有するアルキレン基を示す。Rbは下記官能基群(III)から選択される官能基を少なくとも1つ有するアルキレン基を示す。Rbは、質量平均分子量200以上の2価の鎖であって、ポリアルキレンオキシド鎖、ポリカーボネート鎖、ポリエステル鎖及びシリコーン鎖のいずれかまたはこれらの鎖を組み合わせてなる鎖を示す。Xa、Xb、Xb、Xb及びXbは酸素原子又は-NH-を示す。a、b1、b2、b3、b4及びb5は各構造単位のモル比であり、a+b1+b2+b3+b4+b5=100モル%である。aは0.1~30モル%、b1は40~60モル%、b2は0~30モル%、b3は0~30モル%、b4は0~30モル%、b5は0~30モル%である。ただし、b2+b3+b4+b5=0モル%ではない。
<官能基群(II)>
カルボキシ基、スルホン酸基、リン酸基、アミノ基、ヒドロキシ基、スルファニル基、イソシアナト基、アルコキシシリル基および3つ以上の環が縮環した基。
<官能基群(III)>
炭素-炭素不飽和結合を有する基、エポキシ基およびオキセタニル基。
 なお、上記b1~b5のモル比を有する各構成単位の並びは順不同である。
 Raにおける質量平均分子量1000以上の2価の炭化水素基としては、前述のポリマー(B)における炭化水素ポリマーセグメントの記載を好ましく適用することができる。
 Rbにおける炭素数6~22(好ましくは6~14、より好ましくは6~10)の芳香族炭化水素基は、例えば、フェニレン、ナフタレンジイルが挙げられる。Rb1における炭素数1~15(好ましくは1~13)の脂肪族炭化水素基は、飽和でも不飽和でもよく、鎖状でも環状でもよく、分岐を有していよく、例えば、1,1,3-トリメチルシクロヘキサンジイル、メチレンビス(シクロヘキシレン)が挙げられる。
 また、Rb1における上記炭素数6~22の芳香族炭化水素基および上記炭素数1~15の脂肪族炭化水素基を2以上組み合わせてなる基は、フェニレン基および上記炭素数1~15の脂肪族炭化水素基を2以上組み合わせてなる基がより好ましく、炭素数は7~15が好ましく、8~15がより好ましい。例えば、ビフェニレン、メチレンビス(フェニレン)、フェニレンジメチレンが挙げられる。
 Rbにおける上記官能基群(II)およびRbにおける上記官能基群(III)としては、前述のポリマー(B)における官能基群(II)および官能基群(III)の記載を好ましく適用することができる。
 Rbにおけるアルキレン基としては、鎖状でも環状でもよく、分岐を有していてもよく、炭素数は1~15が好ましく、1~10がより好ましく、1~8がさらに好ましい。例えば、2-エチルプロピレンが挙げられる。
 Rbにおけるアルキレン基としては、鎖状でも環状でもよく、分岐を有していてもよく、炭素数は1~15が好ましく、1~10がより好ましく、1~8がさらに好ましい。例えば、プロピレンが挙げられる。
 Rbにおける質量平均分子量200以上の2価の鎖は、質量平均分子量は200~100000が好ましく、500~10000がより好ましく、800~5000がさらに好ましい。
 Rbにおけるポリアルキレンオキシド鎖としては、アルキレンオキシド鎖の炭素数は1~10が好ましく、1~8がより好ましく、アルキレンオキシド鎖の合計繰り返し数は1~100が好ましく、3~100がより好ましく、5~50がさらに好ましい。
 Rbにおけるポリカーボネート鎖としては、カーボネート鎖の炭素数は1~15が好ましく、1~10がより好ましく、繰り返し数は4~40が好ましく、4~20がより好ましい。
 Rbにおけるポリエステル鎖は、ポリ(アルキレン-エステル)鎖またはポリ(アリーレン-エステル)鎖を意味する。上記アルキレンの炭素数は、1~10が好ましく、1~8がより好ましく、上記アリーレンの炭素数は、6~14が好ましく、6~10がより好ましい。繰り返し数は2~40が好ましく、2~20がより好ましい。
 Rbにおけるシリコーン鎖は、シロキサン結合(-Si-O-Si-、Si原子はアルキル基、アリール基等の有機基を2つ有する。)を有する鎖を意味し、繰り返し数は1~200が好ましく、1~100がより好ましい。
 上記Rb5における各鎖は、使用する市販品の構造等に基づくポリマー合成の都合上、その末端にアルキレン基等の基を有していてもよい。
 上記Rb5における各鎖において、鎖の合計繰り返し数とは、異なる構造の鎖(例えば、ポリエチレンオキシド鎖とポリプロピレンオキシド鎖)を有する場合には、各鎖の繰返し数の合計を意味する。
 また、Rbにおける上記の鎖を組み合わせてなる鎖としては、例えば、ポリアルキレンオキシド鎖とポリカーボネート鎖又はポリエステル鎖とを組み合わせてなる鎖が挙げられ、ポリアルキレンオキシド鎖中にポリカーボネート鎖又はポリエステル鎖を有する鎖が好ましい。
 Xa、Xb、Xb、Xb、Xbおよび( )b1における-C(=O)NH-により形成されうる結合としては、ポリウレタンおよびポリウレアが挙げられる。
 aは0.3~20モル%が好ましく、0.5~15モル%がより好ましく、1~10モル%がさらに好ましい。
 b1は43~58モル%が好ましく、45~55モル%がより好ましい。
 b2は0~25モル%が好ましく、1~20モル%がより好ましく、5~20モル%がさらに好ましい。
 b3は0~25モル%が好ましく、1~25モル%がより好ましく、5~25モル%がさらに好ましい。
 b4は0~25モル%が好ましく、0~20モル%がより好ましく、0~10モル%がさらに好ましい。
 b5は0~25モル%が好ましく、1~25モル%がより好ましく、5~25モル%がさらに好ましい。
 各構成単位のモル比の数え方について例示化合物(B-3)を例に説明すると、a=5モル%、b1=50モル%、b2=25モル%、b5=20モル%である。
(転相乳化法による(B1)セグメント化ポリマーの粒子の調製方法)
 強く撹拌している、上述の(B)ポリマーの合成方法で得られた(B1)セグメント化ポリマーの溶液中へ、(B1)セグメント化ポリマーを乳化分散し得る分散媒をゆっくりと滴下し、乳化させることで、(B1)セグメント化ポリマーの分散液を得られる。
 別の態様としては、(B1)セグメント化ポリマーを乳化分散し得る分散媒中に、(B)ポリマーの合成方法で得られた(B1)セグメント化ポリマーの溶液を滴下し、乳化することで(B1)セグメント化ポリマーの分散液が得られる。
 上記で得られたセグメント化ポリマーの分散液を減圧濃縮または不活性気流下で加熱することにより、ポリマーの溶液を構成していた溶媒を選択的に除去し、(B1)セグメント化ポリマーを乳化分散し得る分散媒の濃度を高めることが好ましい。
 (B1)セグメント化ポリマーを乳化分散し得る分散媒は、疎水性セグメントである炭化水素ポリマーセグメントは溶解し、親水性セグメントは溶解しない溶媒であれば、特に限定されないが、炭化水素分散媒(芳香族炭化水素または脂肪族炭化水素)が好ましい。脂肪族炭化水素は、例えば、ヘキサン、ヘプタン、ノルマルオクタン、イソオクタン、ノナン、デカン、ドデカン、シクロヘキサン、シクロヘプタン、シクロオクタン、メチルシクロヘキサン、エチルシクロヘキサン、デカリン、軽油、灯油、ガソリン等が挙げられる。芳香族炭化水素は、例えば、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン、テトラリン等が挙げられる。
 分散媒は1種単独で用いてもよく、2種以上を混合して用いてもよい。ポリマーの乳化分散を阻害しない限りにおいて極性溶媒(エーテル溶媒、ケトン溶媒、エステル溶媒等)を添加してもよい。
 炭化水素分散媒と極性溶媒との質量比率[炭化水素分散媒の質量/極性溶媒の質量]は100/0~70/30が好ましく、100/0~90/10がより好ましく、100/0~99/1が最も好ましい。
 (B1)セグメント化ポリマーを乳化分散し得る分散媒の常圧における沸点は、80℃以上が好ましく、100℃以上が好ましく、120℃以上が好ましい。分散媒の好ましいSP値の範囲は粒子分散性向上の観点から、炭化水素ポリマーセグメントのSP値と同じ範囲であることが好ましい。
 「強く撹拌」とは、ポリマー溶液に衝撃、せん断、ずり応力、摩擦及び振動等の機械的エネルギーを加える限り特に制限されない。例えば、ホモジナイザー、ホモディスパー、しんとう機、ディゾルバー、タイテックミキサー、攪絆槽での攪絆羽、高圧噴射式分散機、超音波分散機、ボールミル及びビーズミル等の装置を用い、例えば、300~1000rpmの回転数等の条件で撹拌する態様が挙げられる。
 「ゆっくりと滴下」とは、一括で添加しない限り特に制限されないが、例えば、100mLの(B1)セグメント化ポリマー溶液に対して、(B1)セグメント化ポリマーを乳化分散し得る分散媒を0.1~10.0mL/分の速度で滴下する態様が挙げられる。
 得られる本発明の(B1)セグメント化ポリマーの粒子は、粒子径が極めて小さく、また、乳化剤を含有しない形態を採用することが可能である。そのため、全固体二次電池用バインダーとして用いることで、全固体二次電池において、良好な固体粒子間の結着性及びイオン伝導度の低下の高い抑制効果を両立することが可能であり、全固体二次電池のサイクル特性をより向上することができる。
 また、本発明に係る(B1)セグメント化ポリマーは、全固体二次電池用途に限らず、非水溶媒系のラテックスポリマーが適用可能な用途、例えば、半導体、印刷版、インクジェットインキ、イメージセンサー、有機EL、液晶画像装置、太陽電池、リチウムイオン電池、燃料電池、アスファルト改質剤、潤滑剤、接着剤及び粘着剤に対して広く適用することができ、その優れた効果を発揮する。
((B1)セグメント化ポリマーの非水溶媒分散物)
 本発明の(B1)セグメント化ポリマーの非水溶媒分散物は、(B1)セグメント化ポリマーの粒子が非水溶媒に分散された分散物であり、上述の転相乳化法による(B1)セグメント化ポリマーの粒子の調製方法により調製することができる。
 本明細書中、非水溶媒とは、水以外の溶媒を意味し、上述の転相乳化法により(B1)セグメント化ポリマーの粒子を調製し得る分散媒が好ましい。具体的には、下記(C)分散媒が挙げられ、炭化水素溶媒、エーテル溶媒及びケトン溶媒が好ましい。なお、本発明のセグメント化ポリマーの非水溶媒分散物には、(B1)セグメント化ポリマーが粒子として分散されている限り、水が含まれていてもよい。
 本発明の(B1)セグメント化ポリマーの非水溶媒分散物は、無機固体電解質を分解し、イオン伝導度を低下させ得る溶媒を含まない形態を取り得るため、全固体二次電池用として好適に用いることができる。例えば、本発明の(B1)セグメント化ポリマーの非水溶媒分散物は、そのままの溶媒系体で、本発明の固体電解質組成物に添加混合することができるため、煩雑な工程を必要とせず、また、溶媒に残存する水等の除去工程が不要である。
 また、本発明に係る(B1)セグメント化ポリマーの非水溶媒分散物は、乳化剤を使用しない形態を採用することが可能なため、乳化剤を使用しない場合には、乾燥するとポリマー溶液を乾燥した場合と同程度の高い接着性を有する。このため、本発明に係る(B1)セグメント化ポリマーの非水溶媒分散物は、全固体二次電池用途に限らず、例えば、接着剤及び粘着剤に適用することもでき、その優れた効果を発揮する。
((C)分散媒)
 本発明の固体電解質組成物は、固形成分を分散させるため分散媒を含有する。分散媒の具体例としては下記のものが挙げられる。
 アルコール化合物溶媒としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、1,3-ブタンジオール及び1,4-ブタンジオールが挙げられる。
 エーテル化合物溶媒としては、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジブチルエーテル、テトラエチレングリコールジメチルエーテル(テトラグライム)、トリエチレングリコールジメチルエーテル(トリグライム)、テトラエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、テトラエチレングリコール、トリエチレングリコール等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジブチルエーテル等)、テトラヒドロフラン及びジオキサン(1,2-、1,3-及び1,4-の各異性体を含む)が挙げられる。
 アミド化合物溶媒としては、例えば、N,N-ジメチルホルムアミド、1-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド及びヘキサメチルホスホリックトリアミドが挙げられる。
 アミノ化合物溶媒としては、例えば、トリエチルアミン、及びトリブチルアミンが挙げられる。
 ケトン化合物溶媒としては、例えば、アセトン、メチルエチルケトン、ジエチルケトン、ジプロピルケトン及びジブチルケトンが挙げられる。
 エステル系化合物溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸ペンチル、酢酸ヘキシル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、酪酸メチル、酪酸エチル、酪酸プロピル、酪酸ブチル、酪酸ペンチル、吉草酸メチル、吉草酸エチル、吉草酸プロピル、吉草酸ブチル、カプロン酸メチル、カプロン酸エチル、カプロン酸プロピル及びカプロン酸ブチルが挙げられる。
 芳香族化合物溶媒としては、例えば、ベンゼン、トルエン、キシレン及びメシチレンが挙げられる。
 脂肪族化合物溶媒としては、例えば、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、オクタン、ペンタン、シクロペンタン、シクロオクタジエン、シクロオクタン、軽油、灯油、ナフサ及びガソリンが挙げられる。
 ニトリル化合物溶媒としては、例えば、アセトニトリル、プロピロニトリル及びブチロニトリルが挙げられる。
 カーボネート化合物溶媒としては、例えばエチレンカーボネート、ジメチルカーボネート及びジエチルカーボネートが挙げられる。
 分散媒は常圧(1気圧)での沸点が50℃以上であることが好ましく、70℃以上であることがより好ましい。上限は250℃以下であることが好ましく、220℃以下であることがさらに好ましい。上記分散媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明に用いられる(C)分散媒は、任意の組み合わせで用いても良いが、(B1)セグメント化ポリマーの粒子を溶解しないものが好ましい。
 具体的には、本発明に用いられる(C)分散媒は、エーテル化合物溶媒、ケトン化合物溶媒、エステル化合物溶媒または炭化水素溶媒(芳香族化合物溶媒もしくは脂肪族化合物溶媒)が好ましく、本発明の固体電解質組成物が粒子状の(B)ポリマーを含有し得る点から、炭化水素溶媒(芳香族化合物溶媒もしくは脂肪族化合物溶媒)がより好ましい。
 (C)分散媒中の炭化水素溶媒(芳香族化合物溶媒もしくは脂肪族化合物溶媒)の含有量は、本発明の固体電解質組成物が粒子状の(B)ポリマーを含有し得る点から、下限値は、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上がさらに好ましい。上限値は、特に制限はないが100質量%であることが好ましい。
 なかでも、芳香族化合物溶媒としてはトルエンまたはキシレンが好ましく、脂肪族化合物溶媒としてはヘプタン、オクタン、シクロヘキサン、シクロオクタジエンまたはシクロオクタンが好ましい。
 なお、本発明の固体電解質組成物中の(C)分散媒の含有量は特に制限されないが、20~80質量%が好ましく、30~70質量%がより好ましく、40~60質量%が特に好ましい。
 (C)分散媒は固体電解質組成物に含まれるが、固体電解質含有シートまたは全固体二次電池の作製過程において除去され、固体電解質含有シートまたは全固体二次電池中に残存しないことが好ましい。これら(C)分散媒体の、固体電解質含有シートまたは全固体電池中における残存量の許容量は、上限として5%以下が好ましく、1%以下がより好ましく、0.1%以下がさらに好ましく、0.05%以下が最も好ましい。下限は特に規定されないが1ppb以上が実際である。
((D)活物質)
 本発明の固体電解質組成物は、周期律表第1族又は第2族に属する金属元素のイオンの挿入放出が可能な(D)活物質を含有してもよい。以下、(D)活物質を単に活物質とも称する。
 活物質としては、正極活物質及び負極活物質が挙げられ、正極活物質である遷移金属酸化物、又は、負極活物質である金属酸化物が好ましい。
 本発明において、活物質(正極活物質、負極活物質)を含有する固体電解質組成物を、電極用組成物(正極用組成物、負極用組成物)ということがある。
 -正極活物質-
 本発明の固体電解質組成物が含有してもよい正極活物質は、可逆的にリチウムイオンを挿入および放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物や、有機物、硫黄などのLiと複合化できる元素や硫黄と金属の複合物などでもよい。
 中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、CuおよびVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、PまたはBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0~30mol%が好ましい。Li/Maのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物および(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])およびLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO4、LiFeMn、LiCuMn、LiCrMnおよびLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePOおよびLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類ならびにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩およびLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiOおよびLiCoSiO等が挙げられる。
 本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO、LMO、NCA又はNMCがより好ましい。
 正極活物質の形状は特に制限されないが粒子状が好ましい。正極活物質の体積平均粒子径(球換算平均粒子径)は特に限定されない。例えば、0.1~50μmとすることができる。正極活物質を所定の粒子径にするには、通常の粉砕機や分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。正極活物質粒子の体積平均粒子径(球換算平均粒子径)は、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて測定することができる。
 上記正極活物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
 正極活物質の、固体電解質組成物中における含有量は、特に限定されず、固形分100質量%において、10~95質量%が好ましく、30~90質量%がより好ましく、50~85質量がさらに好ましく、55~80質量%が特に好ましい。
 -負極活物質-
 本発明の固体電解質組成物が含有してもよい負極活物質は、可逆的にリチウムイオンを挿入および放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、酸化錫等の金属酸化物、酸化ケイ素、金属複合酸化物、リチウム単体およびリチウムアルミニウム合金等のリチウム合金、並びに、Sn、Si、AlおよびIn等のリチウムと合金形成可能な金属等が挙げられる。中でも、炭素質材料又はリチウム複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵および放出可能であることが好ましい。その材料は、特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂やフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。さらに、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維および活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカーならびに平板状の黒鉛等を挙げることもできる。
 負極活物質として適用される金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、さらに金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、SbおよびBiの1種単独あるいはそれらの2種以上の組み合わせからなる酸化物、ならびにカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、SbおよびSnSiSが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。
 負極活物質はチタン原子を含有することも好ましい。より具体的にはLiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。
 本発明においては、Si系の負極を適用することもまた好ましい。一般的にSi負極は、炭素負極(黒鉛およびアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。
 負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質の平均粒子径は、0.1~60μmが好ましい。所定の粒子径にするには、通常の粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミルおよび旋回気流型ジェットミルや篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式および湿式ともに用いることができる。負極活物質粒子の平均粒子径は、前述の正極活物質の体積平均粒子径の測定方法と同様の方法により測定することができる。
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。
 上記負極活物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
 負極活物質の、固体電解質組成物中における含有量は、特に限定されず、固形分100質量%において、10~80質量%であることが好ましく、20~80質量%がより好ましい。
 正極活物質および負極活物質の表面は別の金属酸化物で表面被覆されていてもよい。表面被覆剤としてはTi,Nb、Ta,W,Zr、Al,SiまたはLiを含有する金属酸化物等が挙げられる。具体的には、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、ニオブ酸リチウム系化合物等が挙げられ、具体的には、LiTi12,LiTi,LiTaO,LiNbO,LiAlO,LiZrO,LiWO,LiTiO,Li,LiPO,LiMoO,LiBO,LiBO,LiCO,LiSiO,SiO,TiO,ZrO,Al,B等が挙げられる。
 また、正極活物質または負極活物質を含む電極表面は硫黄またはリンで表面処理されていてもよい。
 さらに、正極活物質または負極活物質の粒子表面は、上記表面被覆の前後において活性光線または活性気体(プラズマ等)により表面処理を施されていても良い。
((E)リチウム塩)
 本発明の固体電解質組成物は、リチウム塩を含有してもよい。
 リチウム塩としては、特に制限はなく、例えば、特開2015-088486号公報の段落0082~0085記載のリチウム塩が好ましい。
 リチウム塩の含有量は、無機固体電解質100質量部に対して0質量部以上が好ましく、2質量部以上がより好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましい。
(イオン液体)
 本発明の固体電解質組成物は、イオン伝導度をより向上させる点から、イオン液体を含有してもよい。イオン液体としては、特に限定されないが、上述したリチウム塩を溶解するものが好ましい。例えば、下記のカチオンと、アニオンとの組み合わせよりなる化合物が挙げられる。
 (i)カチオン
 カチオンとしては、イミダゾリウムカチオン、ピリジニウムカチオン、ピペリジニウムカチオン、ピロリジニウムカチオン、モルホリニウムカチオン、ホスホニウムカチオン及び第四級アンモニウムカチオン等が挙げられる。ただし、これらのカチオンは以下の置換基を有する。
 カチオンとしては、これらのカチオンを1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 カチオンとしては、第四級アンモニウムカチオン、イミダゾリウムカチオン、ピペリジニウムカチオン又はピロリジニウムカチオンが好ましく、第四級アンモニウムカチオン、ピペリジニウムカチオン又はピロリジニウムカチオンがより好ましい。
 上記カチオンが有する置換基としては、アルキル基(炭素数は1~8が好ましく、1~4がより好ましい。)、ヒドロキシアルキル基(炭素数は1~3が好ましい。)、アルキルオキシアルキル基(炭素数は2~8が好ましく、2~4がより好ましい。)、エーテル結合を有する基(上記アルキル基の炭素鎖中にエーテル結合を少なくとも1つ有する基)、アリル基、アミノアルキル基(炭素数は1~8が好ましく、1~4がより好ましい。)、アリール基(炭素数は6~12が好ましく、6~8がより好ましい。)が挙げられる。上記置換基はカチオン部位を含有する形で環状構造を形成していてもよい。置換基はさらに前述の置換基Pを有していてもよい。
 (ii)アニオン
 アニオンとしては、塩化物イオン、臭化物イオン、ヨウ化物イオン、四フッ化ホウ素イオン、硝酸イオン、ジシアナミドイオン、酢酸イオン、四塩化鉄イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(フルオロスルホニル)イミドイオン、ビス(パーフルオロブチルメタンスルホニル)イミドイオン、アリルスルホネートイオン、ヘキサフルオロリン酸イオン及びトリフルオロメタンスルホネートイオン等が挙げられる。
 アニオンとしては、これらのアニオンを1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 好ましくは、四フッ化ホウ素イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(フルオロスルホニル)イミドイオン、ヘキサフルオロリン酸イオン、ジシアナミドイオン又はアリルスルホネートイオンであり、より好ましくはビス(トリフルオロメタンスルホニル)イミドイオン、ビス(フルオロスルホニル)イミドイオン又はアリルスルホネートイオンである。
 上記のイオン液体としては、例えば、1-アリル-3-エチルイミダゾリウムブロミド、1-エチル-3-メチルイミダゾリウムブロミド、1-(2-ヒドロキシエチル)-3-メチルイミダゾリウムブロミド、1-(2-メトキシエチル)-3-メチルイミダゾリウムブロミド、1-オクチル-3-メチルイミダゾリウムクロリド、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムテトラフルオロボラート、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(EMImTFSI)、1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド、1-エチル-3-メチルイミダゾリウムジシアナミド、1-ブチル-1-メチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド、トリメチルブチルアンモニウムビス(トリフルオロメタンスルホニル)イミド(TMBATFSI)、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム ビス(トリフルオロメタンスルホニル)イミド、N-(2-メトキシエチル)-N-メチルピロリジニウム テトラフルオロボラート、1-ブチル-1-メチルピロリジニウム ビス(フルオロスルホニル)イミド、(2-アクリロイルエチル)トリメチルアンモニウムビス(トリフルオロメタンスルホニル)イミド、1-エチルー1-メチルピロリジニウムアリルスルホネート、1-エチルー3-メチルイミダゾリウムアリルスルホネート及び塩化トリヘキシルテトラデシルホスホニウムが挙げられる。
 イオン液体の含有量は、無機固体電解質100質量部に対して0質量部以上が好ましく、1質量部以上がより好ましく、2質量部以上が最も好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましい。
 リチウム塩とイオン液体の質量比はリチウム塩:イオン液体=1:20~20:1が好ましく、1:10~10:1がより好ましく、1:5~2:1が最も好ましい。
((F)導電助剤)
 本発明の固体電解質組成物は、導電助剤を含有してもよい。導電助剤としては、特に制限はなく、一般的な導電助剤として知られているものを用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維やカーボンナノチューブなどの炭素繊維類、グラフェンやフラーレンなどの炭素質材料であっても良いし、銅、ニッケルなどの金属粉、金属繊維でも良く、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体など導電性高分子を用いても良い。またこれらの内1種を用いても良いし、2種以上を用いても良い。
 導電助剤の含有量は、無機固体電解質100質量部に対して0質量部以上が好ましく、0.5質量部以上がより好ましく、1質量部以上が最も好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましい。
(バインダー)
 本発明の固体電解質組成物は、本発明の効果を奏する範囲内で、本発明に用いられる前述の(B)ポリマーの他に、通常用いられるバインダーを含有してもよい。
 通常用いられるバインダーとしては有機ポリマーが挙げられ、例えば、以下に述べる樹脂からなるバインダーが好ましく使用される。
 含フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニレンジフルオリド(PVdF)、ポリビニレンジフルオリドとヘキサフルオロプロピレンとの共重合体(PVdF-HFP)が挙げられる。
 炭化水素系熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、水素添加スチレンブタジエンゴム(HSBR)、ブチレンゴム、アクリロニトリル-ブタジエンゴム、ポリブタジエン、ポリイソプレンが挙げられる。
 アクリル樹脂としては、各種の(メタ)アクリルモノマー類、(メタ)アクリルアミドモノマー類、およびこれら樹脂を構成するモノマーの共重合体(好ましくは、アクリル酸とアクリル酸メチルとの共重合体)が挙げられる。
 また、そのほかのビニル系モノマーとの共重合体(コポリマー)も好適に用いられる。例えば、(メタ)アクリル酸メチルとスチレンとの共重合体、(メタ)アクリル酸メチルとアクリロニトリルとの共重合体、(メタ)アクリル酸ブチルとアクリロニトリルとスチレンとの共重合体が挙げられる。本願明細書において、コポリマーは、統計コポリマーおよび周期コポリマーのいずれでもよく、ブロックコポリマーが好ましい。
 その他の樹脂としては例えばポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、セルロース誘導体樹脂等が挙げられる。
 これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記バインダーは、強い結着性を示す(集電体からの剥離抑制および、固体界面の結着によるサイクル寿命の向上)ため、上述のアクリル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリイミド樹脂、含フッ素樹脂および炭化水素系熱可塑性樹脂からなる群から選択される少なくとも1種であることが好ましい。
 上記バインダーは、粒子表面への濡れ性及び/又は吸着性を高めるため、極性基を有することが好ましい。極性基とは、ヘテロ原子を含む1価の基、例えば、酸素原子、窒素原子および硫黄原子のいずれかと水素原子が結合した構造を含む1価の基が好ましく、具体例としては、カルボキシ基、ヒドロキシ基、アミノ基、リン酸基およびスルホ基が挙げられる。
 上記バインダーの形状及び粒子の平均粒子径の記載は、本発明に用いられる(B)ポリマーの記載を好ましく適用することができる。
 ただし、上記バインダーの平均粒子径は、通常10nm~30μmが好ましく、10~1000nmのナノ粒子がより好ましい。
 上記バインダーの水分濃度の記載は、本発明に用いられる(B)ポリマーの記載を好ましく適用することができる。
 上記バインダーの質量平均分子量(Mw)は10,000以上が好ましく、20,000以上がより好ましく、30,000以上がさらに好ましい。上限としては、1,000,000以下が好ましく、200,000以下がより好ましく、100,000以下がさらに好ましい。
 なお、上記バインダーは市販品を用いることができる。また、常法により調製することもできる。
(分散剤)
 本発明の固体電解質組成物は分散剤を含有してもよい。分散剤を添加することで電極活物質及び無機固体電解質のいずれかの濃度が高い場合や、粒子径が細かく表面積が増大する場合においてもその凝集を抑制し、均一な活物質層及び固体電解質層を形成することができる。分散剤としては、全固体二次電池に通常使用されるものを適宜選定して用いることができる。一般的には粒子吸着と立体反発および/または静電反発を意図した化合物が好適に使用される。
(固体電解質組成物の調製)
 本発明の固体電解質組成物は、(A)無機固体電解質を(C)分散媒の存在下で分散して、スラリー化することで調製することができる。
 スラリー化は、各種の混合機を用いて無機固体電解質と分散媒とを混合することにより行うことができる。混合装置としては、特に限定されないが、例えば、ボールミル、ビーズミル、プラネタリミキサ―、ブレードミキサ―、ロールミル、ニーダーおよびディスクミルが挙げられる。混合条件は特に制限されないが、例えば、ボールミルを用いた場合、150~700rpm(rotation per minute)で1時間~24時間混合することが好ましい。
 活物質、粒子分散剤等の成分を含有する固体電解質組成物を調製する場合には、上記の(A)無機固体電解質の分散工程と同時に添加及び混合してもよく、別途添加及び混合してもよい。なお、(B)ポリマーは、上記の無機固体電解質(A)及び/又は活物質、粒子分散剤等の成分の分散工程と同時に添加及び混合してもよく、別途添加及び混合してもよい。また、本発明の固体電解質組成物を調製するため、(B)ポリマーを添加及び/又は混合する際の形態は、(B)ポリマーそのものであっても、(B)ポリマーの溶液であっても、(B)ポリマーの分散液であってもよい。なかでも、無機固体電解質の分解を抑制し、かつ、活物質と無機固体電解質の粒子表面に点在化してイオン伝導度を担保できる点からは、ポリマー分散液が好ましい。
[全固体二次電池用シート]
 本発明の固体電解質含有シートは、(A)周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質と、(B)ポリマーとを含有する層を有する。この(B)ポリマーは、炭化水素ポリマーセグメントを主鎖に有し、主鎖に、下記結合群(I)から選択される結合を少なくとも1つ含む。
<結合群(I)>
エステル結合、アミド結合、ウレタン結合、ウレア結合、イミド結合、エーテル結合およびカーボネート結合。
 (B)ポリマーについては、特に断りがない限り、本発明の固体電解質組成物における(B)ポリマーの記載を好ましく適用することができる。
 本発明の固体電解質含有シート、特に、本発明の固体電解質組成物を用いて作製される本発明の固体電解質含有シートは、(B)ポリマーを含有するため、炭化水素ポリマーセグメントを有することで炭化水素ゴムと同等の柔軟性を有し、かつ粒子表面への濡れ性が向上でき、高い接着性を有するため、固体粒子間の結着性に優れる。この結果、本発明の固体電解質含有シートを組み込んだ全固体二次電池は、優れたサイクル特性を示すと考えられる。
 また、本発明の固体電解質含有シートに含有される(B)ポリマーが、炭化水素ポリマーセグメントおよび親水性セグメントを有する上記セグメント化ポリマーである場合、本発明の固体電解質組成物から本発明の固体電解質含有シートを形成する過程において、(C)分散媒の除去に伴い(B)ポリマーは固体表面に濡れ広がると考えられる。この際、(B)ポリマーの平均粒子径は極めて小さい為、固体粒子表面を完全に覆うことなく濡れ広がると推定され、上記結着性の効果を示しつつ、通常用いられるバインダーに対して、イオン伝導度の阻害を大きく低減することができる。この結果、本発明の固体電解質含有シートは高い結着性と高いイオン伝導度とを両立することが可能となり、本発明の固体電解質含有シートを組み込んだ全固体二次電池は、高い電池電圧と優れたサイクル特性とを示すと考えられる。
 本発明の固体電解質含有シートは、全固体二次電池に好適に用いることができ、その用途に応じて種々の態様を含む。例えば、固体電解質層に好ましく用いられるシート(全固体二次電池用固体電解質シートまたは固体電解質シートともいう)、電極又は電極と固体電解質層との積層体に好ましく用いられるシート(全固体二次電池用電極シート)等が挙げられる。本発明において、これら各種のシートをまとめて全固体二次電池用シートということがある。
 全固体二次電池用シートは、固体電解質層又は活物質層(電極層)を有するシートであればよく、固体電解質層又は活物質層(電極層)が基材上に形成されているシートでも、基材を有さず、固体電解質層又は活物質層(電極層)から形成されているシートであってもよい。以降、基材上に固体電解質層又は活物質層(電極層)を有する態様のシートを例に、詳細に説明する。
 この全固体二次電池用シートは、基材と固体電解質層又は活物質層を有していれば、他の層を有してもよいが、活物質を含有するものは後述する全固体二次電池用電極シートに分類される。他の層としては、例えば、保護層、集電体、コート層(集電体、固体電解質層、活物質層)等が挙げられる。
 全固体二次電池用固体電解質シートとして、例えば、固体電解質層と保護層とを基材上に、この順で有するシートが挙げられる。
 基材としては、固体電解質層を支持できるものであれば特に限定されず、後記集電体で説明する材料、有機材料および無機材料等のシート体(板状体)等が挙げられる。有機材料としては、各種ポリマー等が挙げられ、具体的には、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレンおよびセルロース等が挙げられる。無機材料としては、例えば、ガラスおよびセラミック等が挙げられる。
 全固体二次電池用シートの固体電解質層の層厚は、上述の、本発明の全固体二次電池において説明した固体電解質層の層厚と同じである。
 このシートは、本発明の固体電解質組成物を基材上(他の層を介していてもよい)に製膜(塗布乾燥)して、基材上に固体電解質層を形成することにより、得られる。
 ここで、本発明の固体電解質組成物は、上記の方法によって、調製できる。
 本発明の全固体二次電池用電極シート(単に「電極シート」ともいう。)は、全固体二次電池の活物質層を形成するためのシートであって、集電体としての金属箔上に活物質層を有する電極シートである。この電極シートは、通常、集電体及び活物質層を有するシートであるが、集電体、活物質層及び固体電解質層をこの順に有する態様、並びに、集電体、活物質層、固体電解質層及び活物質層をこの順に有する態様も含まれる。
 電極シートを構成する各層の層厚は、上述の、本発明の全固体二次電池において説明した各層の層厚と同じである。また、電極シートを構成する各層の構成は、後記、本発明の全固体二次電池において説明した各層の構成と同じである。
 電極シートは、本発明の、活物質を含有する固体電解質組成物を金属箔上に製膜(塗布乾燥)して、金属箔上に活物質層を形成することにより、得られる。
[全固体二次電池]
 本発明の全固体二次電池は、正極と、この正極に対向する負極と、正極及び負極の間の固体電解質層とを有する。正極は、正極集電体上に正極活物質層を有する。負極は、負極集電体上に負極活物質層を有する。
 負極活物質層、正極活物質層及び固体電解質層の少なくとも1つの層は、本発明の固体電解質組成物を用いて形成されることが好ましい。
 固体電解質組成物を用いて形成された活物質層および/または固体電解質層は、好ましくは、含有する成分種及びその含有量比について、特段の断りをしない限り、固体電解質組成物の固形分におけるものと基本的に同じである。本発明に用いられる(B)ポリマーが架橋性官能基及び/又は固体粒子と結合し得る官能基群(II)から選択される官能基を有する場合、(B)ポリマーは、架橋構造を形成している態様及び/又は固体粒子との間に結合を形成している態様を含むものとする。
 以下に、図1を参照して、本発明の好ましい実施形態について説明するが、本発明はこれに限定されない。
〔正極活物質層、固体電解質層、負極活物質層〕
 全固体二次電池10においては、正極活物質層、固体電解質層及び負極活物質層のいずれかが本発明の固体電解質組成物を用いて作製されている。
 すなわち、固体電解質層3が本発明の固体電解質組成物を用いて作製されている場合、固体電解質層3は、(A)無機固体電解質と(B)ポリマーとを含む。固体電解質層は、通常、正極活物質及び/又は負極活物質を含まない。
 正極活物質層4及び/又は負極活物質層2が、活物質を含有する本発明の固体電解質組成物を用いて作製されている場合、正極活物質層4及び負極活物質層2は、それぞれ、正極活物質又は負極活物質を含み、さらに、(A)無機固体電解質と(B)ポリマーとを含む。活物質層が無機固体電解質を含有するとイオン伝導度を向上させることができる。
 正極活物質層4、固体電解質層3及び負極活物質層2が含有する(A)無機固体電解質及び(B)ポリマーは、それぞれ、互いに同種であっても異種であってもよい。
 本発明においては、全固体二次電池における負極活物質層、正極活物質層及び固体電解質層のいずれかの層が、(A)無機固体電解質と(B)ポリマーとを含有する固体電解質組成物を用いて作製され、(A)無機固体電解質と(B)ポリマーとを含有する層である。
〔集電体(金属箔)〕
 正極集電体5及び負極集電体1は、電子伝導体が好ましい。
 本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
 正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケルおよびチタンなどの他に、アルミニウムまたはステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウムおよびアルミニウム合金がより好ましい。
 負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケルおよびチタンなどの他に、アルミニウム、銅、銅合金またはステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金およびステンレス鋼がより好ましい。
 集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 集電体の厚みは、特に限定されないが、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
 本発明において、負極集電体、負極活物質層、固体電解質層、正極活物質層及び正極集電体の各層の間又はその外側には、機能性の層や部材等を適宜介在ないし配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。
〔筐体〕
 上記の各層を配置して全固体二次電池の基本構造を作製することができる。用途によってはこのまま全固体二次電池として使用してもよいが、乾電池の形態とするためにはさらに適当な筐体に封入して用いる。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金およびステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
[固体電解質含有シートの製造]
 本発明の固体電解質含有シートは、本発明の固体電解質組成物を基材上(他の層を介していてもよい)に製膜(塗布乾燥)して、基材上に固体電解質層を形成することにより、得られる。
 上記態様により、(A)無機固体電解質と(B)ポリマーとを基材上に有する固体電解質含有シートを作製することができる。また、作製した固体電解質含有シートから基材を剥がし、固体電解質層からなる固体電解質含有シートを作製することもできる。
 その他、塗布等の工程については、下記全固体二次電池の製造に記載の方法を使用することができる。
 なお、固体電解質含有シートは、電池性能に影響を与えない範囲内で(C)分散媒を含有してもよい。具体的には、全質量中1ppm以上10000ppm以下含有してもよい。
 なお、本発明の固体電解質含有シート中の(C)分散媒の含有割合は、以下の方法で測定することができる。
 固体電解質含有シートを20mm角で打ち抜き、ガラス瓶中で重テトラヒドロフランに浸漬させる。得られた溶出物をシリンジフィルターでろ過してH-NMRにより定量操作を行う。H-NMRピーク面積と溶媒の量の相関性は検量線を作成して求める。
[全固体二次電池及び全固体二次電池用電極シートの製造]
 全固体二次電池及び全固体二次電池用電極シートの製造は、常法によって行うことができる。具体的には、全固体二次電池及び全固体二次電池用電極シートは、本発明の固体電解質組成物等を用いて、上記の各層を形成することにより、製造できる。以下詳述する。
 本発明の全固体二次電池は、本発明の固体電解質組成物を、基材(例えば、集電体となる金属箔)上に塗布し、塗膜を形成(製膜)する工程を含む(介する)方法により、製造できる。
 例えば、正極集電体である金属箔上に、正極用材料(正極用組成物)として、正極活物質を含有する固体電解質組成物を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、この正極活物質層の上に、固体電解質層を形成するための固体電解質組成物を塗布して、固体電解質層を形成する。さらに、固体電解質層の上に、負極用材料(負極用組成物)として、負極活物質を含有する固体電解質組成物を塗布して、負極活物質層を形成する。負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。必要によりこれを筐体に封入して所望の全固体二次電池とすることができる。
 また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。
 別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シートを作製する。また、負極集電体である金属箔上に、負極用材料(負極用組成物)として、負極活物質を含有する固体電解質組成物を塗布して負極活物質層を形成し、全固体二次電池用負極シートを作製する。次いで、これらシートのいずれか一方の活物質層の上に、上記のようにして、固体電解質層を形成する。さらに、固体電解質層の上に、全固体二次電池用正極シート及び全固体二次電池用負極シートの他方を、固体電解質層と活物質層とが接するように積層する。このようにして、全固体二次電池を製造することができる。
 また別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シート及び全固体二次電池用負極シートを作製する。また、これとは別に、固体電解質組成物を基材上に塗布して、固体電解質層からなる全固体二次電池用固体電解質シートを作製する。さらに、全固体二次電池用正極シート及び全固体二次電池用負極シートで、基材から剥がした固体電解質層を挟むように積層する。このようにして、全固体二次電池を製造することができる。
 上記の形成法の組み合わせによっても全固体二次電池を製造することができる。例えば、上記のようにして、全固体二次電池用正極シート、全固体二次電池用負極シート及び全固体二次電池用固体電解質シートをそれぞれ作製する。次いで、全固体二次電池用負極シート上に、基材から剥がした固体電解質層を積層した後に、上記全固体二次電池用正極シートと張り合わせることで全固体二次電池を製造することができる。この方法において、固体電解質層を全固体二次電池用正極シートに積層し、全固体二次電池用負極シートと張り合わせることもできる。
(各層の形成(成膜))
 固体電解質組成物の塗布方法は、特に限定されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート、スリット塗布、ストライプ塗布およびバーコート塗布が挙げられる。
 このとき、固体電解質組成物は、それぞれ塗布した後に乾燥処理を施してもよいし、重層塗布した後に乾燥処理をしてもよい。乾燥温度は特に限定されない。下限は30℃以上が好ましく、60℃以上がより好ましく、80℃以上がさらに好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下がさらに好ましい。このような温度範囲で加熱することで、(C)分散媒を除去し、固体状態にすることができる。また、温度を高くしすぎず、全固体二次電池の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性を得ることができる。
 塗布した固体電解質組成物、又は、全固体二次電池を作製した後に、各層又は全固体二次電池を加圧することが好ましい。また、各層を積層した状態で加圧することも好ましい。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては、特に限定されず、一般的には50~1500MPaの範囲であることが好ましい。
 また、塗布した固体電解質組成物は、加圧と同時に加熱してもよい。加熱温度としては、特に限定されず、一般的には30~300℃の範囲である。無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。
 加圧は塗布溶媒又は分散媒をあらかじめ乾燥させた状態で行ってもよいし、溶媒又は分散媒が残存している状態で行ってもよい。
 なお、各組成物は同時に塗布しても良いし、塗布乾燥プレスを同時および/または逐次行っても良い。別々の基材に塗布した後に、転写により積層してもよい。
 加圧中の雰囲気としては、特に限定されず、大気下、乾燥空気下(露点-20℃以下)および不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。
 プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。全固体二次電池用シート以外、例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
 プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
 プレス圧は被圧部の面積や膜厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
 プレス面は平滑であっても粗面化されていてもよい。
(初期化)
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化は、特に限定されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を開放することにより、行うことができる。
[全固体二次電池の用途]
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車(電気自動車等)、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
 本発明の好ましい実施形態によれば、以下のような各応用形態が導かれる。
〔1〕正極活物質層、固体電解質層および負極活物質層の少なくとも1層がリチウム塩を含有する全固体二次電池。
〔2〕固体電解質層が、分散媒によって、リチウム塩および硫化物系無機固体電解質が分散されたスラリーを湿式塗布し製膜される全固体二次電池の製造方法。
〔3〕上記全固体二次電池作製用の活物質を含有する固体電解質組成物。
〔4〕上記全固体二次電池作製用の導電助剤を含有する固体電解質組成物。
〔5〕上記固体電解質組成物を金属箔上に適用し、製膜してなる電池用電極シート。
〔6〕上記固体電解質組成物を金属箔上に適用し、製膜する電池用電極シートの製造方法。
 上記好ましい実施形態の〔2〕および〔6〕に記載するように、本発明の全固体二次電池および電池用電極シートの好ましい製造方法は、いずれも湿式プロセスである。これにより、正極活物質層および負極活物質層の少なくとも1層における無機固体電解質の含有量が10質量%以下の低い領域でも、活物質と無機固体電解質の密着性が高まり効率的なイオン伝導パスを維持することができ、電池質量あたりのエネルギー密度(Wh/kg)および出力密度(W/kg)が高い全固体二次電池を製造することができる。
 全固体二次電池とは、正極、負極、電解質がともに固体で構成された二次電池を言う。換言すれば、電解質としてカーボネート系の溶媒を用いるような電解液型の二次電池とは区別される。このなかで、本発明は無機全固体二次電池を前提とする。全固体二次電池には、電解質としてポリエチレンオキサイド等の高分子化合物を用いる有機(高分子)全固体二次電池と、上記のLi-P-S系ガラス、LLTやLLZ等を用いる無機全固体二次電池とに区分される。なお、無機全固体二次電池に有機化合物を適用することは妨げられず、正極活物質、負極活物質、無機固体電解質のバインダーや添加剤として有機化合物を適用することができる。
 無機固体電解質とは、上述した高分子化合物をイオン伝導媒体とする電解質(高分子電解質)とは区別されるものであり、無機化合物がイオン伝導媒体となるものである。具体例としては、上記のLi-P-S系ガラス、LLTやLLZが挙げられる。無機固体電解質は、それ自体が陽イオン(Liイオン)を放出するものではなく、イオンの輸送機能を示すものである。これに対して、電解液ないし固体電解質層に添加して陽イオン(Liイオン)を放出するイオンの供給源となる材料を電解質と呼ぶことがある。上記のイオン輸送材料としての電解質と区別する際には、これを「電解質塩」または「支持電解質」と呼ぶ。電解質塩としては、例えばLiTFSIが挙げられる。
 本発明において「組成物」というときには、2種以上の成分が均一に混合された混合物を意味する。ただし、実質的に均一性が維持されていればよく、所望の効果を奏する範囲で、一部において凝集や偏在が生じていてもよい。
 以下に、実施例に基づき本発明についてさらに詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。以下の実施例において組成を表す「部」及び「%」は、特に断らない限り質量基準である。また、「室温」は25℃を意味する。
<硫化物系無機固体電解質LPSの合成>
 硫化物系無機固体電解質として、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.HamGa,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235およびA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして、Li-P-S系ガラスを合成した。
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g及び五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳棒を用いて、5分間混合した。LiS及びPの混合比は、モル比でLiS:P=75:25とした。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、上記の硫化リチウムと五硫化二リンの混合物全量を投入し、アルゴン雰囲気下で容器を完全に密閉した。フリッチュ社製遊星ボールミルP-7(商品名、フリッチュ社製)に容器をセットし、温度25℃で、回転数510rpmで20時間メカニカルミリングを行うことで、黄色粉体の硫化物系無機固体電解質(Li-P-Sガラス、LPSと表記することがある。)6.20gを得た。
<(B)ポリマーの合成例>
(1)例示化合物(B-1)の合成
 500mL3つ口フラスコに1,4-ブタンジオール0.90gを加え、THF(テトラヒドロフラン、以下同じ。)50mLに溶解した。5℃に冷却撹拌しているこの溶液に、イソフタル酸ジクロリド2.5gのTHF溶液を滴下した後、室温で撹拌し、均一に溶解させた。室温で2時間撹拌した後、エポール(商品名、末端ジオール変性水添ポリイソプレン、出光興産社製、Mw2,500)0.95gのTHF溶液を加えてさらに室温で2時間撹拌した。得られたポリマー溶液を5質量%となるようにTHFで希釈した
 次に、500rpmで強く撹拌している上記で得られたポリマー溶液に、オクタン96gを1時間かけて滴下し、ポリマーの乳化液を得た。窒素フローしながらこの乳化液を85℃で加熱して、乳化液中に残存するTHFを除去した後、残留物にオクタン50gを加えて同様に溶媒を除去する操作を4回繰り返して、THFを1質量%以下とした例示化合物(B-1)の10質量%オクタン分散液を得た。得られた例示化合物(B-1)のMwは18,300で、平均粒子径は320nmであった。
(2)例示化合物(B-2)の合成
 例示化合物(B-1)の合成において、1,4-ブタンジオールを1,4-ブタンジアミンに変更した以外は上記例示化合物(B-1)の合成と同様の方法により、例示化合物(B-2)の10質量%オクタン分散液を得た。得られた例示化合物(B-2)のMwは22,300で、平均粒子径は270nmであった。
(3)例示化合物(B-3)の合成
 200mL3つ口フラスコに1,4-ブタンジアミン0.90gとジェファーミンED-600(商品名、ポリエーテルアミン、ハンツマン社製、Mw600)6.0gを加え、THF50mLに溶解した。5℃に冷却撹拌しているこの溶液に、イソホロンジイソシアネート4.7gのTHF溶液を滴下した後、室温で撹拌し、均一に溶解させた。室温で2時間撹拌した後、poly bd R-45HT(商品名、末端ジオール変性ポリブタジエン、出光興産社製、Mw2,800)2.5gのTHF溶液を加え、ネオスタンU-600(商品名、ビスマス系触媒、日東化成社製)50mgをさらに添加して、60℃で4時間加熱撹伴した。得られたポリマー溶液を5質量%となるようにTHFで希釈した
 次に、500rpmで強く撹拌している上記で得られたポリマー溶液に、オクタン96gを1時間かけて滴下し、ポリマーの乳化液を得た。窒素フローしながらこの乳化液を85℃で加熱して、乳化液中に残存するTHFを除去した後、残留物にオクタン50gを加えて同様に溶媒を除去する操作を4回繰り返して、THFを1質量%以下とした例示化合物(B-3)の10質量%オクタン分散液を得た。得られた例示化合物(B-3)のMwは37,500で、平均粒子径は190nmであった。
(4)例示化合物(B-4)の合成
 500mL3つ口フラスコに1,4-ブタンジオール0.54g及びポリエチレングリコール(Mw600)3.6gを加え、THF50mLに溶解した。この溶液に、4,4’-ジフェニルメタンジイソシアネート3.6gを加えて60℃で撹拌し、均一に溶解させた。この溶液に、ネオスタンU-600(商品名、ビスマス系触媒、日東化成社製)50mgを添加して60℃で1時間加熱攪伴し、Mw9,700のプレポリマーを得た。得られたプレポリマーに、エポール(商品名、末端ジオール変性水添ポリイソプレン、出光興産社製、Mw2,500)1.9gのTHF溶液10gを加えて、さらに60℃で1時間加熱攪伴を続け、白濁した粘性ポリマー溶液を得た。この溶液にメタノール1gを加えてポリマー末端を封止して、重合反応を停止した。
 次に、500rpmで強く撹拌している上記で得られたポリマー溶液に、オクタン96gを1時間かけて滴下し、ポリマーの乳化液を得た。窒素フローしながらこの乳化液を85℃で加熱して、乳化液中に残存するTHFを除去した後、残留物にオクタン50gを加えて同様に溶媒を除去する操作を4回繰り返して、THFを1質量%以下とした例示化合物(B-4)の10質量%オクタン分散液を得た。得られた例示化合物(B-4)のMwは45,400で、平均粒子径は167nmであった。
(5)例示化合物(B-5)の合成
 上記例示化合物(B-4)の合成において、エポールをPoly bd R-45HT(商品名、末端ジオール変性ポリブタジエン、出光興産社製、Mw2,800)に変更した以外は上記例示化合物(B-4)の合成と同様の方法で、例示化合物(B-5)の10質量%オクタン分散液を得た。得られた例示化合物(B-5)のMwは52,100で、平均粒子径は298nmであった。
(6)例示化合物(B-6)の合成
 500mL3つ口フラスコに1,4-ブタンジオール0.54gと2,2-ビス(ヒドロキシメチル)酪酸0.44gとポリカーボネートジオール(商品名:デュラノールT5650E、旭化成社製 Mw800)3.0gとを加え、MEK(メチルエチルケトン、以下同じ。)50mLに溶解した。この溶液に、4,4’-ジシクロヘキシルメタンジイソシアネート3.8gを加えて80℃で撹拌し、均一に溶解させた。この溶液に、ネオスタンU-600 50mgを添加して80℃で6時間加熱攪伴し、Mw7,500のプレポリマーを得た。得られたプレポリマーに、エポール(商品名、末端ジオール変性水添ポリイソプレン、出光興産社製、Mw2,500)1.9gのMEK溶液10gを加えて、さらに80℃で3時間加熱攪伴を続け、白濁した粘性ポリマー溶液を得た。この溶液にメタノール1gを加えてポリマー末端を封止して、重合反応を停止し、MEKで希釈して例示化合物(B-6)の5質量%MEK溶液を得た。
 次に、500rpmで強く撹拌している上記で得られたポリマー溶液に、オクタン96gを1時間かけて滴下し、ポリマーの乳化液を得た。窒素フローしながらこの乳化液を85℃で加熱して、乳化中に残存するMEKを除去した後、残留物にオクタン50gを加えて同様に溶媒を除去する操作を4回繰り返して、MEKを完全に除去して例示化合物(B-6)の10質量%オクタン分散液を得た。得られた例示化合物(B-6)のMwは25,400で、平均粒子径は199nmであった。
(7)例示化合物(B-7)の合成
 上記例示化合物(B-6)の合成において、エポールをPoly ip(商品名、末端ジオール変性ポリイソプレン、出光興産社製、Mw2,800)に変更した以外は上記例示化合物(B-6)の合成と同様の方法で、例示化合物(B-7)の10質量%オクタン分散液を得た。得られた例示化合物(B-7)のMwは18,800で、平均粒子径は206nmであった。
(8)例示化合物(B-8)の合成
 上記例示化合物(B-6)の合成において、1,4-ブタンジオール、2,2-ビス(ヒドロキシメチル)酪酸及びポリカーボネートジオールに加えて、ブレンマーGLM(商品名、グリセリンモノメタクリレート、日油社製)0.52gを追加した以外は上記例示化合物(B-6)の合成と同様の方法で、例示化合物(B-8)の10質量%オクタン分散液を得た。得られた例示化合物(B-8)のMwは20,300で、平均粒子径は153nmであった。
(9)例示化合物(B-9)の合成
 上記例示化合物(B-4)の合成において、1,4-ブタンジオールをプロパンジオールに、ポリエチレングリコール(Mw600)をポリプロピレングリコール(Mw700)に、4,4’-ジフェニルメタンジイソシアネートをキシレンジイソシアネートにそれぞれ変更した以外は、上記例示化合物(B-4)の合成と同様の方法で、例示化合物(B-9)の10質量%オクタン分散液を得た。得られた例示化合物(B-9)のMwは12,700で、平均粒子径は360nmであった。
(10)例示化合物(B-10)の合成
 500mL3つ口フラスコに、1,4-ブタンジオール0.64gとポリエチレングリコール(Mw600)3.1gとエポール(商品名、末端ジオール変性水添ポリイソプレン、出光興産社製、Mw2,500)1.9gとを加え、THF50mLに溶解した。この溶液に、4,4’-ジフェニルメタンジイソシアネート3.6gを加えて60℃で撹拌し、均一に溶解させた。この溶液に、ネオスタンU-600(商品名、ビスマス系触媒、日東化成社製)50mgを添加して60℃で4時間加熱攪伴し、白濁した粘性ポリマー溶液を得た。この溶液にメタノール1gを加えてポリマー末端を封止して、重合反応を停止した。
 次に、500rpmで強く撹拌している上記で得られたポリマー溶液に、オクタン96gを1時間かけて滴下し、ポリマーの乳化液を得た。窒素フローしながらこの乳化液を85℃で加熱して、乳化液中に残存するTHFを除去した後、残留物にオクタン50gを加えて同様に溶媒を除去する操作を4回繰り返して、THFを1質量%以下とした例示化合物(B-10)の10質量%オクタン分散液を得た。得られた例示化合物(B-4)のMwは89,600で、平均粒子径は480nmであった
[実施例1]
<固体電解質組成物の調製例>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、無機固体電解質9.0gとポリマー0.9g(分散液または溶液の場合は、固形分0.9gに相当量)と分散媒18gとを投入した後に、フリッチュ社製遊星ボールミルP-7に容器をセットし、室温下、回転数300rpmで2時間混合して固体電解質組成物を調製した。なお、固体電解質組成物が活物質を含有する場合は、活物質を投入してさらに回転数150rpmで5分間混合し、固体電解質組成物を調製した。また、固体電解質組成物がリチウム塩、イオン液体及び/又は導電助剤を含有する場合は、上記無機固体電解質の分散の際に同時に投入して混合し、固体電解質組成物を調製した。このようにして、下記表1に記載の、No.S-1~S-15およびT-1~T-4の固体電解質組成物を調製した。
 ここで、No.S-1~S-15が本発明例であり、No.T-1~T-4が比較例である。
Figure JPOXMLDOC01-appb-T000012
<表の注>
(A)無機固体電解質
 LLT:Li0.33La0.55TiO(平均粒径3.25μm豊島製作所製)
 Li-P-S:上記で合成したLi-P-S系ガラス
(B)ポリマー
 (B-1)~(B-10):上記で合成した例示化合物(B-1)~(B-10)
 (B-6’):上記で合成した例示化合物(B-6)のMEK溶液
 SBR:スチレンブタフエジエンゴム(JSR社製)
 HSBR:水素添加スチレンブタフエジエンゴム(JSR社製)
 (HB-1):アミノ基を末端官能基として有するブチレンゴム(JSR社製)
 なお、(B-6’)、SBR、HSBR、(HB-1)は、粒子状で存在していない。
(C)分散媒
 混合分散媒の場合、括弧内に記載の含有質量比からなる混合分散媒であることを意味する。
(D)活物質
 LCO:LiCoO(コバルト酸リチウム)
 NCA:LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム)
 NMC:LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム)
(E)リチウム塩
 LiTFSI:リチウムビス(トリフルオロメタンスルホニル)イミド
 LiFSI:リチウムビス(フルオロスルホニル)イミド
(イオン液体)
TMBATFSI:トリメチルブチルアンモニウムビス(トリフルオロメタンスルホニル)イミド
EMImTFSI:1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド
(F)導電助剤
 AB:アセチレンブラック
 VGCF:カーボンナノファイバー(商品名、昭和電工社製)
<固体電解質含有シートの作製>
 上記で調製した固体電解質組成物S-1を、集電体である厚み20μmのステンレス鋼(SUS)箔上にバーコーダーにより塗工した。SUS箔を下面としてホットプレート上に設置し、80℃で1時間加熱して分散媒を除去し、さらに300MPaで加圧プレスして、厚さ約130μmの固体電解質層を有する、厚み約150μmのNo.101の固体電解質含有シートを作製した。No.101の固体電解質含有シートの作製と同様にして、下記表2に記載のNo.S-2~S-15およびT-1~T-4の固体電解質組成物を用いて、No.102~115およびc11~c14の固体電解質含有シートを作製した。ここで、No.101~115が本発明であり、No.c11~c14が比較例である。
<試験>
 上記で作製した固体電解質含有シートについて結着性試験を行った。以下に試験方法を記載し、結果を下記表2にまとめて記載する。
[試験例1]結着性試験
 得られた固体電解質含有シートについて180°ピール強度試験(JIS Z0237-2009)を行った。
 固体電解質含有シートの固体電解質層の面に粘着テープ(幅24mm、長さ300mm)(商品名:セロテープ(登録商標)CT-24、ニチバン社製)を貼り付けた。上記粘着テープの片端Aを把持して180°に折り返して固体電解質含有シートから25mmはがした後、下記試験機に設置した下側の治具に、上記の粘着テープをはがした部分の固体電解質含有シートの片端を固定し、上側の治具に粘着テープの片端Aを固定した。
 300mm/分の負荷速度で粘着テープの引き剥がし試験を実施した。測定開始後50mm粘着テープを引き剥がした。上記引き剥がし試験で固体電解質含有シートから引きはがされた50mmの粘着テープについて、長さ0.05mmごとの粘着力測定値を平均し、引きはがし粘着力の値(平均ピール強度(N))を算出し、平均ピール強度を下記評価基準により評価した。なお、平均ピール強度が高いほど結着力が高い、すなわち結着性に優れることを示す。評価「B」以上が本試験の合格レベルである。
 ピール強度は標準タイプデジタルフォースゲージZTS-5Nと、縦型電動計測スタンドMX2シリーズ(いずれも商品名、イマダ社製)とを組み合わせて行った。
-評価基準-
  A:2.0N以上
  B:1.0N以上2.0N未満
  C:0.5N以上1.0N未満
  D:0.5N未満
Figure JPOXMLDOC01-appb-T000013
 上記表2から明らかなように、本発明の規定を満たさないポリマーを含有する固体電解質組成物から作製した、No.c11~c14の比較の固体電解質含有シートは、ピール強度がいずれも低く、結着性に優れなかった。
 これに対して、本発明の規定を満たすポリマーを含有する本発明の固体電解質組成物から作製した固体電解質含有シートは、いずれも高いピール強度を示し、優れた結着性を有することがわかった。
<全固体二次電池の製造>
(全固体二次電池シートの作製)
 上記で作製した正極用電極シートまたは負極用電極シートを直径14.5mmの円板状に切り出して電極とし、固体電解質層として上記で合成したLi-P-S系ガラス、対極としてLiホイルを組み込み、160MPaで加圧し、全固体二次電池シートを製造した。この全固体二次電池シートは、電極(正極用または負極用電極シート)/固体電解質層(Li-P-S)/対極(Liホイル)の順に積層された構造を有する。
(全固体二次電池の作製)
 得られた全固体二次電池シート17を、図3に示すように、スペーサーとワッシャーを組み込んだステンレス製の2032型コインケース16に入れた。これを図2に記載の装置に設置し、トルクレンチでネジSを8ニュートン(N)の力で締め付け、No.201~211、c21およびc22の各全固体二次電池のハーフセル(以下、単に全固体二次電池とも称す。)を作製した。
 ここで、No.201~211が本発明例であり、No.c21およびc22が比較例である。
<評価>
 上記で作製した、実施例及び比較例の全固体二次電池に対して以下の評価を行った。評価結果は、後記表3に示す。
[試験例2]電圧変化率の評価
 上記で作製した全固体二次電池の電圧変化率を、東洋システム社製の充放電評価装置「TOSCAT-3000(商品名)」により、以下の手順で測定した。
(i)正極ハーフセルの場合
 充電は電流密度0.1mA/cmで、電池電圧が3.6Vに達するまで行った。放電は電流密度0.1mA/cmで電池電圧が1.9Vに達するまで行った。上記条件で3サイクル充放電を繰り返すことで初期化を行った。
 初期化後の各全固体二次電池について、電流密度0.2mA/cmで電池電圧が3.6Vに達するまで充電し、次いで、電流密度0.2mA/cmで放電し、5mAh/g放電後の電池電圧Vを読み取った。
(ii)負極ハーフセルの場合
 放電は電流密度0.1mA/cmで、電池電圧が-0.6Vに達するまで行った。充電は電流密度0.1mA/cmで電池電圧が0.88Vに達するまで行った。上記条件で3サイクル充放電を繰り返すことで初期化を行った。
 初期化後の各全固体二次電池について、電流密度0.2mA/cmで電池電圧が-0.6Vに達するまで放電し、次いで、電流密度0.2mA/cmで充電し、5mAh/g充電後の電池電圧Vを読み取った。
(iii)電圧変化率
 充放電前の電池電圧に対する電圧変化率を下記式により算出し、電圧変化率を以下の基準で評価した。なお、電圧変化率は、正極ハーフセルの場合は電圧降下率を、負極ハーフセルの場合は電圧上昇率をそれぞれ意味する。
 電圧降下率(%)=(3.6-V)/3.6×100%
 電圧上昇率(%)=(0.6-(-V))/0.6×100%
 なお、電圧変化率が低い程、イオン伝導及び電子移動の阻害が抑制されているものと考えられる。
-評価基準-
  A:1%未満
  B:1%以上5%未満
  C:5%以上10%未満
  D:10%以上
[試験例3] サイクル特性の評価
 上記で作製した全固体二次電池のサイクル特性を、東洋システム社製の充放電評価装置「TOSCAT-3000(商品名)」により、以下の手順で測定した。
(i)正極ハーフセルの場合
 充電は電流密度0.1mA/cmで電池電圧が3.6Vに達するまで行った。放電は電流密度0.1mA/cmで電池電圧が1.9Vに達するまで行った。上記条件で3サイクル充放電を繰り返すことで初期化を行った。
 初期化後の各全固体二次電池について、電流密度0.2mA/cmで電池電圧が3.6Vに達するまで充電し、次いで、電流密度0.2mA/cmで電池電圧が1.9Vに達するまで放電した。この充放電を1サイクルとして、充放電を繰り返した。
(ii)負極ハーフセルの場合
 放電は電流密度0.1mA/cmで、電池電圧が-0.6Vに達するまで行った。充電は電流密度0.1mA/cmで電池電圧が0.88Vに達するまで行った。上記条件で3サイクル充放電を繰り返すことで初期化を行った。
 初期化後の各全固体二次電池について、電流密度0.2mA/cmで電池電圧が-0.6Vに達するまで放電し、次いで、電流密度0.2mA/cmで電池電圧が0.88Vに達するまで充電した。この充放電を1サイクルとして、充放電を繰り返した。
(iii)サイクル特性
 この充放電サイクルにおいて、初期化後1サイクル目の放電容量を100とした際に、放電容量が80未満に達するサイクル数を、以下の基準で評価した。
 なお、評価「C」以上が本試験の合格レベルである。
-評価基準-
  A:30回以上
  B:20回以上30回未満
  C:10回以上20回未満
  D:10回未満
Figure JPOXMLDOC01-appb-T000014
 上記表3から明らかなように、本発明の規定を満たさないポリマーを含有する固体電解質含有シートを用いて作製した、No.c21およびc22の比較の全固体二次電池は、正極ハーフセルおよび負極ハーフセルのいずれにおいても電圧変化率が大きく、サイクル特性も良好とはいえなかった。
 これに対して、本発明の固体電解質組成物から作製した固体電解質含有シートを電極として有する、本発明の全固体二次電池は、正極ハーフセルおよび負極ハーフセル共に、電圧変化率が小さく、良好な結果を示した。また、本発明の全固体二次電池はサイクル特性にも優れていた。本発明の規定を満たす(B)特定のポリマーは、固体粒子間の結着性を付与した結果、全固体二次電池のサイクル特性が向上したと考えられる。本発明の(B1)セグメント化ポリマーは、さらにイオン伝導性も向上することができ、全固体二次電池の電圧変化率がより小さく、サイクル特性を向上したと考えられる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2016年7月26日に日本国で特許出願された特願2016-146051、2016年11月21日に日本国で特許出願された特願2016-225650、及び、2017年5月23日に日本国で特許出願された特願2017-102092に基づく優先権を主張するものであり、これらはいずれもここに参照してその内容を本明細書の記載の一部として取り込む。
1 負極集電体
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
11 上部支持板
12 下部支持板
13 全固体二次電池
14 コインケース
15 全固体二次電池シート
S ネジ
16 2032型コインケース
17 全固体二次電池シート
18 全固体二次電池

Claims (22)

  1.  (A)周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質と、(B)ポリマーと、(C)分散媒とを含有する固体電解質組成物であって、
     前記(B)ポリマーが、炭化水素ポリマーセグメントを主鎖に有し、前記主鎖が、下記結合群(I)から選択される結合を少なくとも1つ含む、固体電解質組成物。
    <結合群(I)>
    エステル結合、アミド結合、ウレタン結合、ウレア結合、イミド結合、エーテル結合およびカーボネート結合。
  2.  前記(B)ポリマーが、ポリマー主鎖中に、ポリエステル、ポリアミド、ポリウレタン、ポリウレア、ポリイミド、ポリエーテルおよびポリカーボネートから選択される少なくとも1つのセグメントと前記炭化水素ポリマーセグメントとを有する、セグメント化ポリマーである、請求項1に記載の固体電解質組成物。
  3.  前記(B)ポリマーが、下記官能基群(II)から選択される官能基を少なくとも1つ有する、請求項1または2に記載の固体電解質組成物。
    <官能基群(II)>
    カルボキシ基、スルホン酸基、リン酸基、アミノ基、ヒドロキシ基、スルファニル基、イソシアナト基、アルコキシシリル基および3つ以上の環が縮環した基。
  4.  前記(B)ポリマーが、下記官能基群(III)から選択される官能基を少なくとも1つ有する、請求項1~3のいずれか1項に記載の固体電解質組成物。
    <官能基群(III)>
    炭素-炭素不飽和結合を有する基、エポキシ基およびオキセタニル基。
  5.  前記炭化水素ポリマーセグメントが、脂肪族炭化水素である、請求項1~4のいずれか1項に記載の固体電解質組成物。
  6.  前記(B)ポリマー中における、前記炭化水素ポリマーセグメントの含有量が、5質量%以上80質量%以下である、請求項1~5のいずれか1項に記載の固体電解質組成物。
  7.  前記(B)ポリマーが直鎖状分子である、請求項1~6のいずれか1項に記載の固体電解質組成物。
  8.  前記(B)ポリマーが粒子状であって、体積平均粒子径が10nm以上1000nm以下である、請求項1~7のいずれか1項に記載の固体電解質組成物。
  9.  前記(A)周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質が硫化物系無機固体電解質である、請求項1~8のいずれか1項に記載の固体電解質組成物。
  10.  前記(C)分散媒の50質量%以上が炭化水素溶媒である、請求項1~9のいずれか1項に記載の固体電解質組成物。
  11.  (D)活物質を含有する、請求項1~10のいずれか1項に記載の固体電解質組成物。
  12.  (E)リチウム塩を含有する、請求項1~11のいずれか1項に記載の固体電解質組成物。
  13.  イオン液体を含有する、請求項1~12のいずれか1項に記載の固体電解質組成物。
  14.  (F)導電助剤を含有する、請求項1~13のいずれか1項に記載の固体電解質組成物。
  15.  (A)周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質と、(B)ポリマーとを含有する層を有する固体電解質含有シートであって、
     前記(B)ポリマーが、炭化水素ポリマーセグメントを主鎖に有し、前記主鎖に、下記結合群(I)から選択される結合を少なくとも1つ含む、固体電解質含有シート。
    <結合群(I)>
    エステル結合、アミド結合、ウレタン結合、ウレア結合、イミド結合、エーテル結合およびカーボネート結合。
  16.  請求項15に記載の固体電解質含有シートの製造方法であって、
     前記(A)周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質と、前記(B)ポリマーと、(C)分散媒とを含有する固体電解質組成物を基材上に塗布する工程と、
     加熱乾燥する工程とを含む固体電解質含有シートの製造方法。
  17.  正極活物質層、負極活物質層および固体電解質層を具備する全固体二次電池であって、
     前記正極活物質層、前記負極活物質層および前記固体電解質層の少なくとも1つの層が、(A)周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質と、(B)ポリマーとを含有し、該(B)ポリマーが、炭化水素ポリマーセグメントを主鎖に有し、前記主鎖に、下記結合群(I)から選択される結合を少なくとも1つ含む、全固体二次電池。
    <結合群(I)>
    エステル結合、アミド結合、ウレタン結合、ウレア結合、イミド結合、エーテル結合およびカーボネート結合。
  18.  請求項16に記載の製造方法を介して全固体二次電池を製造する、全固体二次電池の製造方法。
  19.  ポリマー主鎖中に、ポリエステル、ポリアミド、ポリウレタン、ポリウレア、ポリイミド、ポリエーテルおよびポリカーボネートから選択される少なくとも1つのセグメントと炭化水素ポリマーセグメントとを有する、セグメント化ポリマー。
  20.  下記式で表される、請求項19に記載のセグメント化ポリマー。
    Figure JPOXMLDOC01-appb-C000001
     上記式中、Raは質量平均分子量1000以上の2価の炭化水素基を示す。Rbは炭素数6~22の芳香族炭化水素基もしくは炭素数1~15の脂肪族炭化水素基、または、これらの基を2以上組み合わせてなる基を示す。Rbは、炭素数2~6のアルキレン基を示す。ただし、Rb2が置換基を有する場合、該置換基は下記官能基群(II)または(III)から選択される基を有さない。Rbは下記官能基群(II)から選択される官能基を少なくとも1つ有するアルキレン基を示す。Rbは下記官能基群(III)から選択される官能基を少なくとも1つ有するアルキレン基を示す。Rbは、質量平均分子量200以上の2価の鎖であって、ポリアルキレンオキシド鎖、ポリカーボネート鎖、ポリエステル鎖及びシリコーン鎖のいずれかまたはこれらの鎖を組み合わせてなる鎖を示す。Xa、Xb、Xb、Xb及びXbは酸素原子又は-NH-を示す。a、b1、b2、b3、b4及びb5は各構造単位のモル比であり、a+b1+b2+b3+b4+b5=100モル%である。aは0.1~30モル%、b1は40~60モル%、b2は0~30モル%、b3は0~30モル%、b4は0~30モル%、b5は0~30モル%である。ただし、b2+b3+b4+b5=0モル%ではない。
    <官能基群(II)>
    カルボキシ基、スルホン酸基、リン酸基、アミノ基、ヒドロキシ基、スルファニル基、イソシアナト基、アルコキシシリル基および3つ以上の環が縮環した基。
    <官能基群(III)>
    炭素-炭素不飽和結合を有する基、エポキシ基およびオキセタニル基。
  21.  請求項19または20に記載のセグメント化ポリマーの非水溶媒分散物。
  22.  炭化水素ポリマーセグメントを主鎖に有し、前記主鎖が、下記結合群(I)から選択される結合を少なくとも1つ含む(B)ポリマーの非水溶媒分散物。
    <結合群(I)>
    エステル結合、アミド結合、ウレタン結合、ウレア結合、イミド結合、エーテル結合およびカーボネート結合。
PCT/JP2017/020415 2016-07-26 2017-06-01 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、固体電解質含有シートおよび全固体二次電池の製造方法、ならびに、セグメント化ポリマー、ポリマーおよびセグメント化ポリマーの非水溶媒分散物 WO2018020827A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780045387.4A CN109526241B (zh) 2016-07-26 2017-06-01 固体电解质组合物、片材及电池及相关制造方法和聚合物
EP17833837.2A EP3493317A1 (en) 2016-07-26 2017-06-01 Solid electrolyte composition, solid-electrolyte-containing sheet and all-solid-state secondary battery, production method for solid-electrolyte-containing sheet and all-solid-state secondary battery, segmented polymer, and non-aqueous-solvent dispersion of polymer and segmented polymer
JP2018529395A JP6839189B2 (ja) 2016-07-26 2017-06-01 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、固体電解質含有シートおよび全固体二次電池の製造方法、ならびに、セグメント
US16/254,903 US20190157710A1 (en) 2016-07-26 2019-01-23 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, methods for manufacturing solid electrolyte-containing sheet and all-solid state secondary battery, segmented polymer, and non-aqueous solvent dispersion of polymer and segmented polymer

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-146051 2016-07-26
JP2016146051 2016-07-26
JP2016-225650 2016-11-21
JP2016225650 2016-11-21
JP2017-102092 2017-05-23
JP2017102092 2017-05-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/254,903 Continuation US20190157710A1 (en) 2016-07-26 2019-01-23 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, methods for manufacturing solid electrolyte-containing sheet and all-solid state secondary battery, segmented polymer, and non-aqueous solvent dispersion of polymer and segmented polymer

Publications (1)

Publication Number Publication Date
WO2018020827A1 true WO2018020827A1 (ja) 2018-02-01

Family

ID=61016694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020415 WO2018020827A1 (ja) 2016-07-26 2017-06-01 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、固体電解質含有シートおよび全固体二次電池の製造方法、ならびに、セグメント化ポリマー、ポリマーおよびセグメント化ポリマーの非水溶媒分散物

Country Status (5)

Country Link
US (1) US20190157710A1 (ja)
EP (1) EP3493317A1 (ja)
JP (1) JP6839189B2 (ja)
CN (1) CN109526241B (ja)
WO (1) WO2018020827A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019164993A (ja) * 2018-03-14 2019-09-26 株式会社リコー 電極形成用組成物、電極の製造方法及び非水系蓄電素子の製造方法
WO2020067107A1 (ja) 2018-09-27 2020-04-02 富士フイルム株式会社 全固体二次電池の製造方法、並びに、全固体二次電池用電極シート及びその製造方法
WO2020075749A1 (ja) 2018-10-11 2020-04-16 富士フイルム株式会社 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池
WO2020080262A1 (ja) 2018-10-15 2020-04-23 富士フイルム株式会社 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法
WO2020138122A1 (ja) * 2018-12-27 2020-07-02 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
WO2020196041A1 (ja) * 2019-03-28 2020-10-01 富士フイルム株式会社 固体電解質組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2020240786A1 (ja) * 2019-05-30 2020-12-03 昭和電工マテリアルズ株式会社 電池用スラリ組成物、並びに、電極、電解質シート、及び電池部材の製造方法
WO2021014852A1 (ja) 2019-07-19 2021-01-28 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021039949A1 (ja) 2019-08-30 2021-03-04 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021039950A1 (ja) 2019-08-30 2021-03-04 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021039468A1 (ja) 2019-08-30 2021-03-04 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021193826A1 (ja) 2020-03-27 2021-09-30 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP2022514278A (ja) * 2018-12-21 2022-02-10 ソルヴェイ(ソシエテ アノニム) 固体複合電解質
KR20220025009A (ko) 2019-07-26 2022-03-03 후지필름 가부시키가이샤 무기 고체 전해질 함유 조성물, 전고체 이차 전지용 시트 및 전고체 이차 전지, 및 전고체 이차 전지용 시트 및 전고체 이차 전지의 제조 방법
CN114207883A (zh) * 2021-03-24 2022-03-18 宁德新能源科技有限公司 粘结剂及包括该粘结剂的电化学装置
KR20220041887A (ko) 2019-08-30 2022-04-01 후지필름 가부시키가이샤 무기 고체 전해질 함유 조성물, 전고체 이차 전지용 시트 및 전고체 이차 전지, 전고체 이차 전지용 시트 및 전고체 이차 전지의 제조 방법, 및, 복합 폴리머 입자

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10418622B2 (en) * 2017-10-26 2019-09-17 GM Global Technology Operations LLC Battery state estimation control logic and architectures for electric storage systems
US11302996B2 (en) 2019-08-19 2022-04-12 GM Global Technology Operations LLC Battery modules with integrated interconnect board assemblies having cell tab comb features
US11207982B2 (en) 2019-12-11 2021-12-28 GM Global Technology Operations LLC Electronic power module assemblies and control logic with direct-cooling heat pipe systems
US11375642B2 (en) 2019-12-23 2022-06-28 GM Global Technology Operations LLC Electronic power module assemblies and control logic with direct-cooling vapor chamber systems
JP7226371B2 (ja) * 2020-02-21 2023-02-21 トヨタ自動車株式会社 全固体電池
US11801574B2 (en) 2020-03-06 2023-10-31 GM Global Technology Operations LLC Welding systems and methods with knurled weld interfaces for metallic workpieces
US11387525B2 (en) 2020-03-09 2022-07-12 GM Global Technology Operations LLC Two-stage plunger press systems and methods for forming battery cell tabs
US11600842B2 (en) 2020-03-16 2023-03-07 GM Global Technology Operations LLC Multistage plunger press systems and methods with interlocking fingers for forming battery cell tabs
CN111786013B (zh) * 2020-06-22 2022-05-27 安徽迅启新能源科技有限公司 一种复合固体电解质及其制备方法
US11804639B2 (en) 2020-07-23 2023-10-31 GM Global Technology Operations LLC Multistage plunger systems and methods for forming battery cell tabs
US11799149B2 (en) 2020-08-26 2023-10-24 GM Global Technology Operations LLC Energy storage assembly
US11581618B2 (en) 2020-11-18 2023-02-14 GM Global Technology Operations LLC Thermomechanical fuses for heat propagation mitigation of electrochemical devices
KR102655782B1 (ko) * 2021-06-03 2024-04-08 전남대학교산학협력단 이차전지용 전해질 및 이를 포함하는 이차전지

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253569A (ja) * 1995-03-15 1996-10-01 Japan Synthetic Rubber Co Ltd ポリ(アミド−エステル)重合体およびその製造方法
JPH10260530A (ja) 1997-03-19 1998-09-29 Fuji Photo Film Co Ltd ポジ型感光性組成物
JPH11352691A (ja) 1998-04-09 1999-12-24 Fuji Photo Film Co Ltd 平版印刷版の製造方法、レーザ走査露光用平版印刷版原版、および光重合性組成物
JP2003177533A (ja) 2001-12-13 2003-06-27 Fuji Photo Film Co Ltd 感赤外線感光性組成物
JP2005250158A (ja) 2004-03-04 2005-09-15 Fuji Photo Film Co Ltd 重合性組成物及び平版印刷版原版
JP2005250438A (ja) 2004-02-02 2005-09-15 Fuji Photo Film Co Ltd 重合性組成物
JP2007187836A (ja) 2006-01-12 2007-07-26 Fujifilm Corp 平版印刷版原版
JP2009086321A (ja) 2007-09-28 2009-04-23 Fujifilm Corp 重合性組成物及びそれを用いた平版印刷版原版、アルカリ可溶性ポリウレタン樹脂、並びに、ジオール化合物の製造方法
JP2009117168A (ja) * 2007-11-06 2009-05-28 Sumitomo Electric Ind Ltd 全固体電池およびその製造方法
JP2011076792A (ja) 2009-09-29 2011-04-14 Toyota Motor Corp 固体電解質層、電極活物質層、全固体リチウム電池、固体電解質層の製造方法、および電極活物質層の製造方法
JP2012515231A (ja) * 2009-01-12 2012-07-05 ユニバーシティ オブ マサチューセッツ ローウェル ポリイソブチレン系ポリウレタン
JP2012243496A (ja) 2011-05-18 2012-12-10 Toyota Motor Corp 硫化物固体電解質材料の製造方法および硫化物固体電解質材料
JP2013159702A (ja) * 2012-02-06 2013-08-19 Unitika Ltd 共重合ポリエステル樹脂組成物
JP2015071746A (ja) * 2013-09-03 2015-04-16 大日精化工業株式会社 ポリウレタン系樹脂組成物及びリチウムイオン電池用外装体
JP2015088480A (ja) 2013-09-25 2015-05-07 富士フイルム株式会社 固体電解質組成物および全固体二次電池用のバインダー、ならびにこれらを用いた電池用電極シートおよび全固体二次電池
JP2015088486A (ja) 2013-09-25 2015-05-07 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池
JP2016035913A (ja) * 2014-07-31 2016-03-17 富士フイルム株式会社 全固体二次電池、ならびに、無機固体電解質粒子、固体電解質組成物、電池用電極シートおよび全固体二次電池の製造方法
JP2016146051A (ja) 2015-02-06 2016-08-12 パナソニックIpマネジメント株式会社 ゲームシステム及びリーダライタ装置
JP2016225650A (ja) 2009-12-04 2016-12-28 株式会社半導体エネルギー研究所 半導体装置
JP2017102092A (ja) 2015-12-04 2017-06-08 大成建設株式会社 プレキャスト部材用寸法計測装置およびプレキャスト部材の寸法計測方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186141A (ja) * 2011-02-18 2012-09-27 Sumitomo Electric Ind Ltd 電気化学デバイス
JPWO2012120929A1 (ja) * 2011-03-09 2014-07-17 日本電気株式会社 電極用活物質、及び二次電池
WO2016035713A1 (ja) * 2014-09-05 2016-03-10 富士フイルム株式会社 全固体二次電池、固体電解質組成物、これを用いた電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法
JP2016181448A (ja) * 2015-03-24 2016-10-13 富士フイルム株式会社 硫化物系固体電解質組成物、電池用電極シートおよびその製造方法、並びに、全固体二次電池およびその製造方法

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253569A (ja) * 1995-03-15 1996-10-01 Japan Synthetic Rubber Co Ltd ポリ(アミド−エステル)重合体およびその製造方法
JPH10260530A (ja) 1997-03-19 1998-09-29 Fuji Photo Film Co Ltd ポジ型感光性組成物
JPH11352691A (ja) 1998-04-09 1999-12-24 Fuji Photo Film Co Ltd 平版印刷版の製造方法、レーザ走査露光用平版印刷版原版、および光重合性組成物
JP2003177533A (ja) 2001-12-13 2003-06-27 Fuji Photo Film Co Ltd 感赤外線感光性組成物
JP2005250438A (ja) 2004-02-02 2005-09-15 Fuji Photo Film Co Ltd 重合性組成物
JP2005250158A (ja) 2004-03-04 2005-09-15 Fuji Photo Film Co Ltd 重合性組成物及び平版印刷版原版
JP2007187836A (ja) 2006-01-12 2007-07-26 Fujifilm Corp 平版印刷版原版
JP2009086321A (ja) 2007-09-28 2009-04-23 Fujifilm Corp 重合性組成物及びそれを用いた平版印刷版原版、アルカリ可溶性ポリウレタン樹脂、並びに、ジオール化合物の製造方法
JP2009117168A (ja) * 2007-11-06 2009-05-28 Sumitomo Electric Ind Ltd 全固体電池およびその製造方法
JP2012515231A (ja) * 2009-01-12 2012-07-05 ユニバーシティ オブ マサチューセッツ ローウェル ポリイソブチレン系ポリウレタン
JP2011076792A (ja) 2009-09-29 2011-04-14 Toyota Motor Corp 固体電解質層、電極活物質層、全固体リチウム電池、固体電解質層の製造方法、および電極活物質層の製造方法
JP2016225650A (ja) 2009-12-04 2016-12-28 株式会社半導体エネルギー研究所 半導体装置
JP2012243496A (ja) 2011-05-18 2012-12-10 Toyota Motor Corp 硫化物固体電解質材料の製造方法および硫化物固体電解質材料
JP2013159702A (ja) * 2012-02-06 2013-08-19 Unitika Ltd 共重合ポリエステル樹脂組成物
JP2015071746A (ja) * 2013-09-03 2015-04-16 大日精化工業株式会社 ポリウレタン系樹脂組成物及びリチウムイオン電池用外装体
JP2015088480A (ja) 2013-09-25 2015-05-07 富士フイルム株式会社 固体電解質組成物および全固体二次電池用のバインダー、ならびにこれらを用いた電池用電極シートおよび全固体二次電池
JP2015088486A (ja) 2013-09-25 2015-05-07 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池
JP2016035913A (ja) * 2014-07-31 2016-03-17 富士フイルム株式会社 全固体二次電池、ならびに、無機固体電解質粒子、固体電解質組成物、電池用電極シートおよび全固体二次電池の製造方法
JP2016146051A (ja) 2015-02-06 2016-08-12 パナソニックIpマネジメント株式会社 ゲームシステム及びリーダライタ装置
JP2017102092A (ja) 2015-12-04 2017-06-08 大成建設株式会社 プレキャスト部材用寸法計測装置およびプレキャスト部材の寸法計測方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Method of Hoy (1985, 1989", 1990, ELSEVIER, article "Properties of Polymers 3", pages: 214 - 220
A. HAYASHI; S. HAMA; H. MORIMOTO; M. TATSUMISAGO; T. MINAMI, CHEM. LETT., 2001, pages 872,873
See also references of EP3493317A4
T. OHTOMO; A. HAYASHI; M. TATSUMISAGO; Y. TSUCHIDA; S. HAMGA; K. KAWAMOTO, JOURNAL OF POWER SOURCES, vol. 233, 2013, pages 231 - 235

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019164993A (ja) * 2018-03-14 2019-09-26 株式会社リコー 電極形成用組成物、電極の製造方法及び非水系蓄電素子の製造方法
WO2020067107A1 (ja) 2018-09-27 2020-04-02 富士フイルム株式会社 全固体二次電池の製造方法、並びに、全固体二次電池用電極シート及びその製造方法
WO2020075749A1 (ja) 2018-10-11 2020-04-16 富士フイルム株式会社 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池
WO2020080262A1 (ja) 2018-10-15 2020-04-23 富士フイルム株式会社 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法
JP2022514278A (ja) * 2018-12-21 2022-02-10 ソルヴェイ(ソシエテ アノニム) 固体複合電解質
WO2020138122A1 (ja) * 2018-12-27 2020-07-02 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
JP7096366B2 (ja) 2018-12-27 2022-07-05 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
CN113228343A (zh) * 2018-12-27 2021-08-06 富士胶片株式会社 固体电解质组合物、含固体电解质的片材及全固态二次电池、以及含固体电解质的片材及全固态二次电池的制造方法
JPWO2020138122A1 (ja) * 2018-12-27 2021-09-30 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
WO2020196041A1 (ja) * 2019-03-28 2020-10-01 富士フイルム株式会社 固体電解質組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JPWO2020196041A1 (ja) * 2019-03-28 2021-11-04 富士フイルム株式会社 固体電解質組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP7096426B2 (ja) 2019-03-28 2022-07-05 富士フイルム株式会社 固体電解質組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
KR20210134748A (ko) 2019-03-28 2021-11-10 후지필름 가부시키가이샤 고체 전해질 조성물, 전고체 이차 전지용 시트 및 전고체 이차 전지, 및 전고체 이차 전지용 시트 및 전고체 이차 전지의 제조 방법
CN113614960A (zh) * 2019-03-28 2021-11-05 富士胶片株式会社 固体电解质组合物、全固态二次电池用片材及全固态二次电池、以及全固态二次电池用片材及全固态二次电池的制造方法
WO2020240786A1 (ja) * 2019-05-30 2020-12-03 昭和電工マテリアルズ株式会社 電池用スラリ組成物、並びに、電極、電解質シート、及び電池部材の製造方法
WO2021014852A1 (ja) 2019-07-19 2021-01-28 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
KR20220025009A (ko) 2019-07-26 2022-03-03 후지필름 가부시키가이샤 무기 고체 전해질 함유 조성물, 전고체 이차 전지용 시트 및 전고체 이차 전지, 및 전고체 이차 전지용 시트 및 전고체 이차 전지의 제조 방법
WO2021039468A1 (ja) 2019-08-30 2021-03-04 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021039950A1 (ja) 2019-08-30 2021-03-04 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
KR20220041887A (ko) 2019-08-30 2022-04-01 후지필름 가부시키가이샤 무기 고체 전해질 함유 조성물, 전고체 이차 전지용 시트 및 전고체 이차 전지, 전고체 이차 전지용 시트 및 전고체 이차 전지의 제조 방법, 및, 복합 폴리머 입자
WO2021039949A1 (ja) 2019-08-30 2021-03-04 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
EP4023593A4 (en) * 2019-08-30 2023-07-19 FUJIFILM Corporation COMPOSITION WITH AN INORGANIC SOLID STATE ELECTROLYTE, FOIL FOR SOLID STATE SECONDARY BATTERIES, SOLID STATE SECONDARY BATTERY, METHOD OF MANUFACTURE OF FOIL FOR SOLID STATE SECONDARY BATTERY AND METHOD OF MANUFACTURE OF SOLID STATE SECONDARY BATTERY
WO2021193826A1 (ja) 2020-03-27 2021-09-30 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
CN114207883A (zh) * 2021-03-24 2022-03-18 宁德新能源科技有限公司 粘结剂及包括该粘结剂的电化学装置

Also Published As

Publication number Publication date
US20190157710A1 (en) 2019-05-23
EP3493317A4 (en) 2019-06-05
CN109526241B (zh) 2022-07-01
JPWO2018020827A1 (ja) 2019-03-14
JP6839189B2 (ja) 2021-03-03
EP3493317A1 (en) 2019-06-05
CN109526241A (zh) 2019-03-26

Similar Documents

Publication Publication Date Title
JP6839189B2 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、固体電解質含有シートおよび全固体二次電池の製造方法、ならびに、セグメント
CN108432024B (zh) 固体电解质组合物、全固态二次电池及其制造法、该电池用片、该电池用电极片及其制造法
JP6110823B2 (ja) 固体電解質組成物および全固体二次電池用のバインダー、ならびにこれらを用いた電池用電極シートおよび全固体二次電池
WO2017099248A1 (ja) 固体電解質組成物、バインダー粒子、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、これらの製造方法
US20190319303A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, and methods for manufacturing solid electrolyte-containing sheet and all-solid state secondary battery
WO2018151161A1 (ja) 固体電解質組成物、固体電解質含有シート及びその製造方法、全固体二次電池及びその製造方法、並びに、ポリマーとその非水溶媒分散物
JP6744928B2 (ja) 固体電解質組成物、固体電解質含有シート及びその製造方法、全固体二次電池及びその製造方法、並びに、ポリマー及びその非水溶媒分散物
JP6607694B2 (ja) 全固体二次電池、電極活物質層用組成物および全固体二次電池用電極シートならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP6840776B2 (ja) 固体電解質組成物、固体電解質含有シート及びその製造方法、全固体二次電池及びその製造方法、並びに、ポリマーとその非水溶媒分散物及びジオール化合物
WO2016125716A1 (ja) 全固体二次電池、これに用いる固体電解質組成物および電池用電極シートならびに電池用電極シートおよび全固体二次電池の製造方法
JP6591655B2 (ja) 二次電池用電極活物質、固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、二次電池用電極活物質、全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP2016181448A (ja) 硫化物系固体電解質組成物、電池用電極シートおよびその製造方法、並びに、全固体二次電池およびその製造方法
JP6442607B2 (ja) 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
WO2020022205A1 (ja) 固体電解質組成物、固体電解質含有シート、全固体二次電池用電極シート及び全固体二次電池、固体電解質含有シート及び全固体二次電池の製造方法、並びに、粒子状バインダーの製造方法
WO2020067108A1 (ja) 全固体二次電池の負極用組成物、全固体二次電池用負極シート及び全固体二次電池、並びに、全固体二次電池用負極シート及び全固体二次電池の製造方法
WO2021020031A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018529395

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017833837

Country of ref document: EP

Effective date: 20190226