WO2020080262A1 - 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法 - Google Patents

電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法 Download PDF

Info

Publication number
WO2020080262A1
WO2020080262A1 PCT/JP2019/040103 JP2019040103W WO2020080262A1 WO 2020080262 A1 WO2020080262 A1 WO 2020080262A1 JP 2019040103 W JP2019040103 W JP 2019040103W WO 2020080262 A1 WO2020080262 A1 WO 2020080262A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
secondary battery
group
binder
solid
Prior art date
Application number
PCT/JP2019/040103
Other languages
English (en)
French (fr)
Inventor
広 磯島
信 小澤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201980067437.8A priority Critical patent/CN112840482B/zh
Priority to JP2020553135A priority patent/JP7245847B2/ja
Priority to EP19874024.3A priority patent/EP3869588A4/en
Priority to KR1020217011717A priority patent/KR102614214B1/ko
Publication of WO2020080262A1 publication Critical patent/WO2020080262A1/ja
Priority to US17/228,714 priority patent/US12051809B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode composition, an electrode sheet for an all-solid secondary battery and an all-solid secondary battery, and an electrode composition, an electrode sheet for an all-solid secondary battery, and methods for producing the all-solid secondary battery. .
  • a lithium ion secondary battery is a storage battery that has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and can charge and discharge by moving lithium ions back and forth between both electrodes.
  • Organic electrolytes have been conventionally used as electrolytes in lithium ion secondary batteries.
  • the organic electrolytic solution is liable to leak, and there is a possibility that a short circuit may occur inside the battery due to overcharge or overdischarge, and further improvement in safety and reliability is required. Under these circumstances, an all-solid secondary battery using an inorganic solid electrolyte instead of the organic electrolyte has been receiving attention.
  • the all-solid secondary battery has a solid negative electrode, electrolyte, and positive electrode, and can greatly improve the safety and reliability of a battery using an organic electrolytic solution.
  • Patent Document 1 describes an electrode mixture containing an inorganic solid electrolyte and an electrode active material, and containing a polymer compound dispersed in the inorganic solid electrolyte in a specific content.
  • the electrode sheet for an all-solid secondary battery using the electrode mixture described in Patent Document 1 may include a sheet having a low film strength of the electrode active material layer. all right. Further, it has been found that the all-solid secondary battery incorporating the electrode sheet for all-solid secondary battery may include those having insufficient cycle characteristics.
  • the present invention provides an electrode composition which can be used as an electrode active material layer forming material to realize an electrode sheet having an electrode active material layer having excellent film strength and an all-solid secondary battery having excellent cycle characteristics.
  • the task is to do.
  • Another object of the present invention is to provide an electrode sheet for an all-solid secondary battery and an all-solid secondary battery having an electrode active material layer composed of this electrode composition.
  • this invention makes it a subject to provide each manufacturing method of the said composition for electrodes, the said electrode sheet for all the solid rechargeable batteries, and the said all the solid rechargeable batteries.
  • the present inventors have prepared an electrode composition prepared by combining an inorganic solid electrolyte, an active material, and a binder containing a polymer having a repeating unit having a specific functional group as a constituent component.
  • the electrode active material layer formed by using the distribution ratio of the distribution component containing the binder to the inorganic solid electrolyte exceeds a specific value, the electrode active material layer is excellent in film strength, and the electrode active material It was found that the all-solid secondary battery incorporating the electrode sheet having layers has excellent cycle characteristics.
  • the present invention has been completed through further studies based on these findings.
  • An inorganic solid electrolyte, an active material, and a composition for electrodes containing a distribution component bound to both of them One of the distribution components is a binder, and the polymer constituting the binder contains a repeating unit having an amino group, a sulfanyl group, a hydroxy group, a carboxy group or an anone group, A composition for electrodes, wherein the distribution ratio of the distribution component to the inorganic solid electrolyte exceeds 60% in the electrode active material layer composed of the composition for electrodes.
  • the active material is a negative electrode active material having a silicon atom or a tin atom.
  • the negative electrode active material is a negative electrode active material having a silicon atom.
  • composition for electrodes according to any one of ⁇ 1> to ⁇ 7> in which the content of the binder in all solid components contained in the composition for electrodes is more than 2% by mass and 20% by mass or less.
  • ⁇ 9> The electrode composition according to any one of ⁇ 1> to ⁇ 8>, in which the polymer constituting the binder has an elastic modulus of 10 to 500 MPa, which is measured according to JIS K 7161 (2014).
  • ⁇ 10> The composition for electrodes as described in any one of ⁇ 1> to ⁇ 9>, in which the polymer constituting the binder has a tensile breaking strain of 50 to 700%, which is measured according to JIS K 7161 (2014). object.
  • One of the distribution components is a binder, and the polymer constituting the binder contains a repeating unit having an amino group, a sulfanyl group, a hydroxy group or an anone group,
  • An electrode sheet for an all-solid secondary battery wherein the distribution ratio of the distribution component to the inorganic solid electrolyte in the electrode active material layer exceeds 60%.
  • An all-solid secondary battery comprising a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order
  • An all-solid-state secondary battery in which at least one layer of the positive electrode active material layer and the negative electrode active material layer is a layer composed of the composition for electrodes according to any one of ⁇ 1> to ⁇ 10>.
  • ⁇ 13> Mixing the inorganic solid electrolyte and a binder to obtain a mixture, The method for producing the composition for electrodes according to any one of ⁇ 1> to ⁇ 10>, which comprises a step of mixing the mixture with the active material.
  • a method for producing an electrode sheet for an all-solid secondary battery comprising a step of applying the composition for electrodes obtained by the production method according to ⁇ 13>.
  • a method for producing an all-solid secondary battery which comprises a step of producing an all-solid secondary battery using the electrode sheet for an all-solid secondary battery obtained by the production method according to ⁇ 14>.
  • anone group means a group derived from cyclohexanone.
  • a monovalent group obtained by removing one hydrogen atom from the carbon atom adjacent to the carbon atom bonded to the oxygen atom of cyclohexanone can be mentioned.
  • the present invention can provide an electrode sheet for an all-solid secondary battery and an all-solid secondary battery having an electrode active material layer composed of the above electrode composition. Furthermore, the present invention can provide the above-mentioned composition for electrodes, an electrode sheet for an all-solid secondary battery using the composition for an electrode, and a method for producing each all-solid secondary battery.
  • FIG. 1 is a vertical cross-sectional view schematically showing an all solid state secondary battery according to a preferred embodiment of the present invention.
  • the numerical range represented by “to” means a range including the numerical values before and after “to” as the lower limit value and the upper limit value.
  • the expression of a compound means the compound itself, its salt, and its ion. Further, it is meant to include a derivative in which a part of the derivative is changed, such as by introducing a substituent, within the range where the desired effect is exhibited.
  • a substituent, a linking group, etc. hereinafter, referred to as a substituent, etc.
  • a substituent, etc. which is not specified as substituted or unsubstituted in the present specification, it means that the group may have an appropriate substituent.
  • the YYY group includes not only a mode having no substituent but also a mode having a substituent. This is also synonymous for compounds that do not specify substituted or unsubstituted.
  • the following substituent Z is mentioned as a preferable substituent.
  • the respective substituents may be the same or different from each other. It means good.
  • a plurality of substituents and the like when a plurality of substituents and the like are adjacent to each other, they may be linked to each other or condensed to form a ring.
  • the electrode composition of the present invention contains an inorganic solid electrolyte, an active material, and a partitioning component that binds to both at a predetermined ratio, and an electrode active material formed using this electrode composition.
  • the distribution ratio of the distribution component to the inorganic solid electrolyte with respect to the total of the inorganic solid electrolyte and the active material exceeds 60%.
  • One of the partitioning components is a binder. Note that the above-mentioned "binding" includes not only physical binding but also electronic binding (being able to transfer and receive electrons). Even if the adsorption rate A described later is 0%, it is understood that this binder is bound to the active material as long as the binder is distributed to the active material.
  • the all-solid secondary battery electrode sheet having an electrode active material layer composed of the electrode composition of the present invention is excellent in the film strength of the electrode active material layer, and all-solid secondary battery electrode sheet for this all-solid secondary battery electrode sheet. Secondary batteries have excellent cycle characteristics. The reason for this is not yet clear, and when the distribution ratio of the distribution component containing the polymer having the repeating unit having a specific functional group exceeds 60%, the inorganic solid electrolyte-polymer network (this network) is present in the electrode active material layer. May contain a conductive auxiliary agent).
  • the film strength of the electrode active material layer can be improved, and when the all-solid secondary battery is charged / discharged, the electrode active material layer itself due to volume increase / decrease due to expansion / contraction of the active material. It is thought that the cycle characteristics of the all-solid-state secondary battery can be improved because the volume change can be reduced.
  • the electrode composition of the present invention preferably contains a dispersion medium.
  • the mixing mode of the inorganic solid electrolyte, the active material, the distribution component and the dispersion medium is not particularly limited.
  • the electrode composition of the present invention is preferably a slurry in which an inorganic solid electrolyte, an active material and a distribution component are dispersed in a dispersion medium.
  • the electrode composition of the present invention can be preferably used as a material for forming an electrode sheet for an all-solid secondary battery or an active material layer of an all-solid secondary battery.
  • the water content (also referred to as the water content) of the electrode composition of the present invention is not particularly limited, and is preferably 500 ppm or less, more preferably 200 ppm or less, and more preferably 100 ppm or less on a mass basis. Is more preferable and 50 ppm or less is particularly preferable.
  • the water content indicates the amount of water contained in the composition for electrodes (mass ratio in the composition for electrodes), and specifically, it is filtered with a 0.02 ⁇ m membrane filter and Karl Fischer titration is used. And the measured value.
  • the composition for electrodes of the present invention contains an inorganic solid electrolyte.
  • the inorganic solid electrolyte is an inorganic solid electrolyte
  • the solid electrolyte is a solid electrolyte in which ions can move. Since it does not contain an organic substance as a main ion conductive material, it is an organic solid electrolyte (a polymer electrolyte typified by polyethylene oxide (PEO) or the like, an organic typified by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) or the like. Electrolyte salt) is clearly distinguished.
  • PEO polyethylene oxide
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • the inorganic solid electrolyte since the inorganic solid electrolyte is solid in the steady state, it is usually not dissociated or liberated into cations and anions. In this respect, it is clearly distinguished from the electrolytic solution or the inorganic electrolyte salt (LiPF 6 , LiBF 4 , lithium bis (fluorosulfonyl) imide (LiFSI), LiCl, etc.) that is dissociated or liberated into cations and anions in the polymer. To be done.
  • the inorganic solid electrolyte is not particularly limited as long as it has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and generally has no electron conductivity.
  • the inorganic solid electrolyte preferably has lithium ion ionic conductivity.
  • a solid electrolyte material usually used for all solid state secondary batteries can be appropriately selected and used.
  • Representative examples of the inorganic solid electrolyte include (i) a sulfide-based inorganic solid electrolyte and (ii) an oxide-based inorganic solid electrolyte.
  • a sulfide-based inorganic solid electrolyte is preferably used from the viewpoint that a better interface can be formed between the active material and the inorganic solid electrolyte.
  • the sulfide-based inorganic solid electrolyte contains a sulfur atom, has ion conductivity of a metal belonging to Group 1 or 2 of the periodic table, and has electronic insulation. Those having properties are preferable.
  • the sulfide-based inorganic solid electrolyte preferably contains at least Li, S and P as elements and has lithium ion conductivity. Other elements other than Li, S and P may be contained depending on the purpose or the case.
  • Examples of the sulfide-based inorganic solid electrolyte include a lithium ion conductive inorganic solid electrolyte satisfying the composition represented by the following formula (A).
  • L a1 M b1 P c1 S d1 A e1 formula (A)
  • L represents an element selected from Li, Na and K, and Li is preferable.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 represent the composition ratio of each element, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
  • a1 is preferably 1 to 9, and more preferably 1.5 to 7.5.
  • b1 is preferably 0 to 3, and more preferably 0 to 1.
  • d1 is preferably 2.5 to 10, and more preferably 3.0 to 8.5.
  • e1 is preferably 0 to 5, and more preferably 0 to 3.
  • composition ratio of each element can be controlled by adjusting the compounding amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass-ceramic), or only part thereof may be crystallized.
  • glass glass
  • glass-ceramic glass-ceramic
  • Li—P—S based glass containing Li, P and S, or Li—P—S based glass ceramics containing Li, P and S can be used.
  • the sulfide-based inorganic solid electrolyte is, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, phosphorus pentasulfide (P 2 S 5 )), elemental phosphorus, elemental sulfur, sodium sulfide, hydrogen sulfide, lithium halide (eg, LiI, LiBr, LiCl) and a sulfide of the element represented by M (for example, SiS 2 , SnS, GeS 2 ) can be produced by a reaction of at least two raw materials.
  • Li 2 S lithium sulfide
  • phosphorus sulfide for example, phosphorus pentasulfide (P 2 S 5 )
  • elemental phosphorus elemental sulfur
  • sodium sulfide sodium sulfide
  • hydrogen sulfide lithium halide
  • a sulfide of the element represented by M for example, SiS 2 , Sn
  • the ratio of Li 2 S and P 2 S 5 is, Li 2 S: at a molar ratio of P 2 S 5, preferably 60: 40 ⁇ 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be increased.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more.
  • the upper limit is not particularly limited, and is practically 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li 2 S-P 2 S 5 Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -H 2 S, Li 2 S-P 2 S 5 -H 2 S-LiCl, Li 2 S-LiI-P 2 S 5 , Li 2 S-LiI-Li 2 O-P 2 S 5 , Li 2 S-LiBr-P 2 S 5 , Li 2 S-Li 2 O-P 2 S 5 , Li 2 S-Li 3 PO 4 -P 2 S 5 , Li 2 S-P 2 S 5 -P 2 O 5 , Li 2 S-P 2 S 5 -SiS 2 , Li 2 S-P 2 S 5 -SiS 2- LiCl, Li 2 S-P 2 S 5 -SnS, Li 2 S-P 2 S 5 -Al 2 S 3 , Li 2 S-Ge
  • An example of a method for synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition is an amorphization method.
  • Examples of the amorphization method include a mechanical milling method, a solution method, and a melt quenching method. This is because the treatment can be performed at room temperature and the manufacturing process can be simplified.
  • the oxide-based inorganic solid electrolyte contains an oxygen atom, has ion conductivity of a metal belonging to Group 1 or 2 of the periodic table, and has electronic insulation. Those having properties are preferable.
  • the ionic conductivity of the oxide-based inorganic solid electrolyte is preferably 1 ⁇ 10 ⁇ 6 S / cm or more, more preferably 5 ⁇ 10 ⁇ 6 S / cm or more, and 1 ⁇ 10 ⁇ 5 S. / Cm or more is particularly preferable.
  • the upper limit is not particularly limited, and is practically 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li xa La ya TiO 3 [xa satisfies 0.3 ⁇ xa ⁇ 0.7 and ya satisfies 0.3 ⁇ ya ⁇ 0.7. ] (LLT); Li xb La yb Zr zb M bb mb O nb (M bb is Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, one or more elements selected from In and Sn Xb satisfies 5 ⁇ xb ⁇ 10, yb satisfies 1 ⁇ yb ⁇ 4, zb satisfies 1 ⁇ zb ⁇ 4, mb satisfies 0 ⁇ mb ⁇ 2, and nb satisfies 5 ⁇ nb ⁇ 20.
  • Li xc Byc M cc zc Onc (M cc is one or more elements selected from C, S, Al, Si, Ga, Ge, In and Sn.
  • Xc is 0 ⁇ xc ⁇ 5.
  • Yc satisfies 0 ⁇ yc ⁇ 1, zc satisfies 0 ⁇ zc ⁇ 1, and nc satisfies 0 ⁇ nc ⁇ 6.
  • a phosphorus compound containing Li, P and O is also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON obtained by substituting a part of oxygen of lithium phosphate with nitrogen
  • LiPOD 1 (D 1 is preferably Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt and Au are one or more elements selected from the above).
  • LiA 1 ON (A 1 is one or more elements selected from Si, B, Ge, Al, C and Ga) and the like can be preferably used.
  • the inorganic solid electrolyte is preferably particles.
  • the average particle size (volume average particle size) of the inorganic solid electrolyte is not particularly limited and is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more.
  • the upper limit is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the “volume average particle diameter” is a volume-based median diameter. The median diameter corresponds to a cumulative 50% when the particle size distribution is expressed as a cumulative distribution.
  • the average particle size is measured by the following procedure.
  • the inorganic solid electrolyte particles are prepared by diluting a 1% by mass dispersion liquid in a 20 mL sample bottle with water (heptane in the case of a substance which is unstable to water).
  • the diluted dispersion sample is irradiated with ultrasonic waves of 1 kHz for 10 minutes, and immediately thereafter, used for the test.
  • a laser diffraction / scattering particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA) was used, and data was captured 50 times at a temperature of 25 ° C. using a quartz cell for measurement. Obtain the volume average particle size.
  • JIS Z 8828 2013 “Particle size analysis-dynamic light scattering method” as necessary. Five samples are prepared for each level, and the average value is adopted.
  • the inorganic solid electrolyte may be used alone or in combination of two or more.
  • the total mass (mg) (unit weight) of the active material and the inorganic solid electrolyte per unit area (cm 2 ) of the electrode active material layer is not particularly limited. It can be appropriately determined according to the designed battery capacity, and can be, for example, 1 to 100 mg / cm 2 .
  • the content of the inorganic solid electrolyte in the composition for electrodes is not particularly limited, and in terms of dispersibility, reduction of interfacial resistance and binding, at 100% by mass of solid content, the inorganic solid electrolyte and the active material described later are
  • the total content of is preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 90% by mass or more.
  • the upper limit is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, further preferably 99% by mass or less, and 95% by mass or less. Is more preferable.
  • the solid content means a component that does not disappear by volatilization or evaporation when the electrode composition is dried at 150 ° C. for 6 hours under a nitrogen atmosphere at a pressure of 1 mmHg. .
  • it refers to components other than the dispersion medium described below.
  • the electrode composition of the present invention contains an active material capable of inserting and releasing ions of a metal belonging to Group 1 or 2 of the periodic table.
  • the active material include a positive electrode active material and a negative electrode active material.
  • the positive electrode active material is preferably a transition metal oxide (preferably a transition metal oxide)
  • the negative electrode active material is preferably a metal oxide or a metal capable of forming an alloy with lithium such as Sn, Si, Al and In.
  • the positive electrode active material is preferably one that can reversibly insert or release lithium ions or one that can insert and release lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide or an element such as sulfur that can be complexed with Li.
  • the transition metal oxide contains an element M b (elements of Group 1 (Ia), elements of Group 2 (IIa), Al, Ga, In, Ge, Sn, Pb of the metal periodic table other than lithium, Elements such as Sb, Bi, Si, P and B) may be mixed.
  • the mixing amount is preferably 0 ⁇ 30 mol% relative to the amount of the transition metal element M a (100mol%). That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
  • transition metal oxide examples include (MA) a transition metal oxide having a layered rock salt type structure, (MB) a transition metal oxide having a spinel type structure, (MC) a lithium-containing transition metal phosphate compound, (MD) ) Lithium-containing transition metal halogenated phosphoric acid compounds and (ME) lithium-containing transition metal silicic acid compounds.
  • MA a transition metal oxide having a layered rock salt type structure
  • MB transition metal oxide having a spinel type structure
  • MC lithium-containing transition metal phosphate compound
  • MD Lithium-containing transition metal halogenated phosphoric acid compounds
  • ME lithium-containing transition metal silicic acid compounds.
  • transition metal oxide having a (MA) layered rock salt structure examples include LiCoO 2 (lithium cobalt oxide [LCO]), LiNi 2 O 2 (lithium nickelate), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (lithium nickel cobalt aluminum oxide [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (lithium nickel manganese cobalt oxide [NMC]), LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickelate).
  • transition metal oxide having a (MB) spinel structure examples include LiMn 2 O 4 (LMO), LiCoMnO 4 , Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li.
  • Examples of the (MC) lithium-containing transition metal phosphate compound include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , LiCoPO 4 and the like. And monobasic Nasicon-type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (lithium vanadium lithium phosphate).
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F And the like, such as cobalt fluorophosphates.
  • the (ME) lithium-containing transition metal silicic acid compound include Li 2 FeSiO 4 , Li 2 MnSiO 4 , and Li 2 CoSiO 4 .
  • a transition metal oxide having a (MA) layered rock salt type structure is preferable, and LCO or NMC is more preferable.
  • the shape of the positive electrode active material is not particularly limited, but a particulate shape is preferable.
  • the volume average particle diameter (sphere-converted average particle diameter) of the positive electrode active material is not particularly limited. For example, it can be 0.1 to 50 ⁇ m. In order to make the positive electrode active material have a predetermined particle size, an ordinary crusher or classifier may be used.
  • the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the volume average particle diameter (sphere-converted average particle diameter) of the positive electrode active material particles can be measured using a laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA).
  • the positive electrode active material may be used alone or in combination of two or more.
  • the negative electrode active material is preferably one that can reversibly insert or release lithium ions or one that can insert and release lithium ions.
  • the material is not particularly limited as long as it has the above properties, carbonaceous materials, metal oxides such as tin oxide, silicon oxide, metal composite oxides, lithium alloys such as simple lithium or lithium aluminum alloys, and , Sn, Si, Al, In, and other metals capable of forming an alloy with lithium.
  • carbonaceous materials or metal composite oxides are preferably used from the viewpoint of reliability.
  • the metal composite oxide is preferably capable of inserting and extracting lithium.
  • the material is not particularly limited, and it is preferable that it contains at least one of titanium and lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
  • the carbonaceous material used as the negative electrode active material is a material that essentially consists of carbon.
  • carbon black such as acetylene black (AB)
  • graphite natural graphite, artificial graphite such as vapor-grown graphite
  • PAN polyacrylonitrile
  • a carbonaceous material obtained by firing a resin can be used.
  • various carbon fibers such as PAN-based carbon fibers, cellulose-based carbon fibers, pitch-based carbon fibers, vapor-grown carbon fibers, dehydrated PVA (polyvinyl alcohol) -based carbon fibers, lignin carbon fibers, glassy carbon fibers, activated carbon fibers, etc. Examples thereof include mesophase microspheres, graphite whiskers, and flat graphite.
  • the carbonaceous materials can be divided into non-graphitizable carbonaceous materials and graphitic carbonaceous materials depending on the degree of graphitization.
  • the carbonaceous material preferably has the interplanar spacing or density and crystallite size described in JP-A-62-22066, JP-A-2-6856 and JP-A-3-45473.
  • the carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, etc. may be used. You can also
  • an amorphous oxide is particularly preferable, and chalcogenide which is a reaction product of a metal element and an element of Group 16 of the periodic table is also preferably used.
  • amorphous as used herein means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having an apex in the region of 20 ° to 40 ° at a 2 ⁇ value, and a crystalline diffraction line. May have.
  • the strongest intensity among the crystalline diffraction lines observed at 2 ⁇ values of 40 ° or more and 70 ° or less is 100 times or less than the diffraction line intensity at the apex of the broad scattering band observed at 2 ⁇ values of 20 ° or more and 40 ° or less. Is more preferable, it is more preferable to be 5 times or less, and it is particularly preferable not to have a crystalline diffraction line.
  • amorphous oxides of metalloid elements and chalcogenides are more preferable, and elements of Group 13 (IIIB) to 15 (VB) of the periodic table, Al , Ga, Ge, Pb, Sb, and Bi, or a chalcogenide.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , GeO, PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , and Sb 2.
  • the negative electrode active material contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charging / discharging characteristics because of its small volume fluctuation at the time of inserting and extracting lithium ions, and suppresses deterioration of the electrode to prevent lithium ion secondary It is preferable in that the life of the battery can be improved.
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • the negative electrode active material it is possible to use a negative electrode active material having a large expansion and contraction due to charge and discharge, which can be alloyed with lithium, and which has a silicon atom or a tin atom. It is preferable to use a substance, and it is more preferable to use a negative electrode active material in which the content of silicon atoms is 50 mol% or more of all the constituent atoms.
  • a silicon negative electrode and a tin negative electrode can occlude more Li ions than a carbon negative electrode (graphite, acetylene black, etc.). That is, the storage amount of Li ions per unit weight increases. Therefore, the discharge capacity can be increased. As a result, there is an advantage that the battery drive time can be lengthened.
  • the negative electrode active material having a silicon atom or a tin atom include Sn, Si, SiOx (0 ⁇ x ⁇ 1); an alloy containing titanium, vanadium, chromium, manganese, nickel, copper or lanthanum (for example, LaSi 2 , VSi 2 ) or an organized active material (for example, LaSi 2 / Si); SnO, SnO 2 , SnSiO 3 , SnS, SnS 2 , or SnSiS 3 are preferred.
  • a composite oxide with lithium oxide for example, Li 2 SnO 2 can be used.
  • SiO can be used as a negative electrode active material (semi-metal oxide) itself, and since SiO is generated by the operation of an all-solid secondary battery, an active material that can be alloyed with lithium (a precursor material thereof). ).
  • the shape of the negative electrode active material is not particularly limited, but a particulate shape is preferable.
  • the average particle diameter of the negative electrode active material is preferably 0.1 to 60 ⁇ m.
  • An ordinary crusher or classifier is used to obtain a predetermined particle size.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling airflow type jet mill or a sieve is preferably used.
  • wet pulverization in which water or an organic solvent such as methanol is allowed to coexist can be performed as necessary.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be carried out both dry and wet.
  • the average particle diameter of the negative electrode active material particles can be measured by the same method as the method for measuring the volume average particle diameter of the positive electrode active material described above.
  • the above negative electrode active materials may be used alone or in combination of two or more.
  • the surfaces of the positive electrode active material and the negative electrode active material may be surface-coated with another metal oxide.
  • the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si or Li. Specific examples include spinel titanate, tantalum-based oxides, niobium-based oxides, lithium niobate-based compounds, and the like. Specifically, Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 , and LiTaO 3 are included.
  • the surface of the electrode containing the positive electrode active material or the negative electrode active material may be surface-treated with sulfur or phosphorus. Further, the surface of the particles of the positive electrode active material or the negative electrode active material may be surface-treated with active rays or active gas (plasma etc.) before and after the surface coating.
  • the distribution component used in the present invention may be composed of a binder, or may be composed of a binder and a conductive auxiliary agent.
  • the “partitioning component” is a component that is selectively distributed to the inorganic solid electrolyte in the electrode active material layer of the present invention at a ratio of more than 60%, and in the measurement method described in Examples, the distribution ratio is calculated. This is the target component. Examples of such components include a binder and a conductive aid. In addition to these, a dispersant, a thickener and the like can be mentioned. As described above, in the electrode active material layer formed by using the electrode composition of the present invention, the distribution ratio of the distribution component to the inorganic solid electrolyte exceeds 60%.
  • the distribution ratio of the distribution component to the inorganic solid electrolyte is preferably 70% or more, more preferably 74% or more, more preferably 80% or more, further preferably 82% or more, particularly preferably 90% or more.
  • the upper limit may be 100%.
  • the distribution rate is a value calculated by the method described in the examples. When the distribution ratio exceeds 60%, a sufficient inorganic solid electrolyte-polymer network is formed in the electrode active material layer, the film strength of the electrode active material layer is increased, and the cycle characteristics of the all-solid secondary battery are improved.
  • the distribution ratio is adjusted by the mixing order of the components contained in the electrode composition, the content of repeating units having an amino group, a sulfanyl group, a hydroxy group or an anone group in all the constituent components of the polymer constituting the binder. be able to.
  • the polymer constituting the binder used in the present invention is a repeating unit having an amino group, a sulfanyl group, a hydroxy group, a carboxy group or an anone group (that is, at least one of an amino group, a sulfanyl group, a hydroxy group, a carboxy group and an anone group).
  • a repeating unit having a seed) The content of this repeating unit in all the constituent components of the polymer is not particularly limited, preferably 1 to 60% by mass, more preferably 2 to 50% by mass, and further preferably 5 to 40% by mass.
  • the adsorption rate A of the binder used in the present invention for the active material and the adsorption rate B of the binder for the inorganic solid electrolyte satisfy the following formulas I) and II).
  • the adsorption rates A and B are values calculated by the method described in the examples.
  • Formula II) Adsorption rate B> Adsorption rate A When the polymer that constitutes the binder satisfies the formula I), the inorganic solid electrolytes are sufficiently bound to each other, and when the formula II) is satisfied, the film strength of the electrode active material layer and the cycle characteristics of the all-solid secondary battery are satisfied. Can be improved.
  • the adsorption rate A and the adsorption rate B can be adjusted by the content of the repeating unit having an amino group, a sulfanyl group, a hydroxy group or an anone group in all the constituent components of the polymer constituting the binder.
  • the adsorption rate A is 25% or less. Preferably, it may be 10% or less.
  • the lower limit is preferably 0.1% or more, more preferably 1% or more.
  • the adsorption rate B is preferably 20% or more, more preferably 50% or more, more preferably 80% or more, and further preferably 90% or more.
  • the upper limit is preferably 99.9% or less, more preferably 99.0% or less.
  • the polymer that constitutes the binder may be soluble in the dispersion medium, and in particular (in terms of ionic conductivity), it is preferably insoluble (particles) in the dispersion medium.
  • being insoluble in the dispersion medium means that the polymer is added to the dispersion medium at 30 ° C. (the amount used is 10 times the mass of the polymer), and is left standing for 24 hours to give the dispersion medium. It means that the dissolved amount is 3% by mass or less, preferably 2% by mass or less, and more preferably 1% by mass or less. This dissolved amount is the ratio of the mass of the polymer obtained from the dispersion medium that has undergone solid-liquid separation after 24 hours, to the mass of the polymer added to the dispersion medium.
  • the binder may be dissolved in the dispersion medium and may be present, or may be dissolved in the dispersion medium and may be present in a solid state (preferably dispersed) (exist in a solid state).
  • the binder is called a particulate binder.
  • the binder is preferably a particulate binder in the electrode composition and further in the electrode active material layer (coating dried layer) from the viewpoint of battery resistance and cycle characteristics.
  • the shape thereof is not particularly limited, and may be flat, amorphous or the like, and spherical or granular is preferable.
  • the average particle size of the particulate binder is not particularly limited and is preferably 1000 nm or less, more preferably 500 nm or less, and further preferably 300 nm or less.
  • the lower limit value is 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more, and further preferably 50 nm or more.
  • the average particle diameter of the particulate binder is based on the measurement conditions and definitions described below.
  • the particulate binder is prepared by diluting a 1% by mass dispersion liquid in a 20 mL sample bottle using an appropriate solvent (for example, diisobutyl ketone).
  • the diluted dispersion sample is irradiated with ultrasonic waves of 1 kHz for 10 minutes, and immediately thereafter, used for the test.
  • a laser diffraction / scattering particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA) was used, and data was captured 50 times using a quartz cell for measurement at a temperature of 25 ° C.
  • the obtained volume average particle diameter is defined as the average particle diameter.
  • JIS Z 8828 2013 “Particle size analysis-dynamic light scattering method” as necessary.
  • Five samples are prepared and measured for each level, and the average value is adopted.
  • the measurement of the average particle size of the particulate binder in the active material layer of the all-solid secondary battery for example, after decomposing the all-solid secondary battery to peel off the active material layer, the above-mentioned particulate binder for the material
  • the measurement can be performed according to the method for measuring the average particle size of, and the measurement value of the average particle size of the particles other than the particulate binder that has been measured in advance can be excluded.
  • the kind of the polymer constituting the binder used in the present invention is such that the distribution ratio of the distribution component to the inorganic solid electrolyte in the electrode active material layer is more than 60%, that is, amino group and sulfanyl group. It is not particularly limited as long as it contains a repeating unit having a hydroxy group, a carboxy group or an anone group, and for example, a polymer having an amide bond, a urea bond or a urethane bond is preferable.
  • the binder used in the present invention include binders (polymers) described in JP-A-2018-44111, JP-A-2015-88486, JP-A-2015-167126, and JP-A-2016-35911. The thing which can adjust the said distribution rate to more than 60% is mentioned. Both chain polymerization type polymers and sequential polymerization type polymers can be used.
  • This polymer has a main chain containing at least one bond selected from the group consisting of an amide bond, a urea bond and a urethane bond. Further, this polymer has, as a constituent component forming the polymer, a constituent component having a side chain satisfying the conditions A and B described later. Further, this polymer has an amino group, a sulfanyl group, a hydroxy group, a carboxy group or an anone group.
  • This polymer may have an amino group, a sulfanyl group, a hydroxy group, a carboxy group or an anone group in either the main chain or the side chain, and has an amino group, a sulfanyl group, a hydroxy group or a carboxy group in the main chain. It is preferable to have an anone group in the side chain.
  • the main chain of a polymer means a linear molecular chain in which all the other molecular chains constituting the polymer can be regarded as branched or pendant with respect to the main chain.
  • the longest chain among the molecular chains constituting the polymer becomes the main chain.
  • the functional group at the polymer end is not included in the main chain.
  • the side chain of the polymer means a molecular chain other than the main chain, and includes a short molecular chain and a long molecular chain.
  • the main chain of the polymer has at least one bond selected from the group consisting of an amide bond, a urea bond and a urethane bond. These bonds included in the main chain form hydrogen bonds, thereby contributing to the improvement of the film strength of the electrode active material layer. Therefore, the hydrogen bond formed by these bonds may be the above bonds, or may be a partial structure other than the above bonds and the main chain. It is preferable that the above-mentioned bond has a hydrogen atom forming a hydrogen bond (the nitrogen atom of each bond is unsubstituted) from the viewpoint that hydrogen bonds can be formed with each other.
  • the bond is not particularly limited as long as it is contained in the main chain of the polymer, and may be contained in a structural unit (repeating unit) and / or contained as a bond connecting different structural units. .
  • the number of the above-mentioned bonds contained in the main chain is not limited to one, and may be two or more.
  • the bonding mode of the main chain is not particularly limited, and may have two or more kinds of bonds randomly, and a segmented main chain composed of a segment having a specific bond and a segment having another bond. It may be a chain.
  • the main chain having the above-mentioned bond is not particularly limited, and a main chain having at least one segment selected from polyamide, polyurea and polyurethane is preferable, and a main chain made of polyamide, polyurea or polyurethane is more preferable.
  • the main chain having the above-mentioned bond is a combination of two or more (preferably 2 to 8) constituent components represented by any one of the following formulas (I-1) to (I-4).
  • the backbone is preferred.
  • the combination of each component is appropriately selected according to the above-mentioned binding.
  • R P1 and R P2 each represent a hydrocarbon group or a molecular chain having a mass average molecular weight of 200 or more and 200,000 or less.
  • R P1 is preferably a hydrocarbon group, more preferably an aromatic hydrocarbon group.
  • R P2 is preferably an aliphatic hydrocarbon group or the above molecular chain, and more preferably an embodiment containing an aliphatic hydrocarbon group and the above molecular chain, respectively.
  • the constituent component represented by formula (I-3) or formula (I-4) is a constituent component in which R P2 is an aliphatic hydrocarbon group and a constituent component in which R P2 is the above molecular chain. Contains two of the ingredients.
  • the hydrocarbon group that can be used as R P1 and R P2 is a hydrocarbon group having a mass average molecular weight of less than 200, and examples thereof include an aliphatic or aromatic hydrocarbon group.
  • an alkylene group (having 1 to 12 carbon atoms is preferable, 1 to 6 is more preferable, 1 to 3 is further preferable), an arylene group (having 6 to 14 carbon atoms is preferable, and 6 to 10 is more preferable). Preferred), or groups consisting of combinations thereof.
  • the hydrocarbon group that can be used as R P2 is more preferably an alkylene group, further preferably an alkylene group having 2 to 6 carbon atoms, and particularly preferably an alkylene group having 2 or 3 carbon atoms.
  • the hydrocarbon group that can be used as R P1 and R P2 is, for example, a hydrocarbon group represented by the following formula (M2), or an oxygen atom in the group such as N, N′-bis (2-hydroxyethyl) oxamide. , A group containing a sulfur atom or an imino group.
  • the aliphatic hydrocarbon group is not particularly limited, and is a hydrogen-reduced product of an aromatic hydrocarbon group represented by the following formula (M2), a partial structure of a known aliphatic diisosonate compound (for example, isophoronyl group), etc. Is mentioned.
  • the aromatic hydrocarbon group is preferably a hydrocarbon group represented by the following formula (M2).
  • X represents a single bond, —CH 2 —, —C (CH 3 ) 2 —, —SO 2 —, —S—, —CO— or —O—, which is a binding point.
  • —CH 2 — or —O— is preferable, and —CH 2 — is more preferable.
  • the alkylene group exemplified here may be substituted with a halogen atom (preferably a fluorine atom).
  • R M2 to R M5 each represent a hydrogen atom or a substituent, and a hydrogen atom is preferable.
  • the substituent that can be used as R M2 to R M5 is not particularly limited, and examples thereof include an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, —OR M6 , —N (R M6 ) 2 , —SR M6 (R M6 represents a substituent, preferably an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 10 carbon atoms), halogen atom (eg, fluorine atom, chlorine atom, bromine atom) Is mentioned.
  • R M6 represents a substituent, preferably an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 10 carbon atoms
  • halogen atom eg, fluorine atom, chlorine atom, bromine atom
  • R M6 -N (R M6 ) 2 is an alkylamino group (having preferably 1 to 20 carbon atoms, more preferably 1 to 6) or an arylamino group (having 6 to 40 carbon atoms, preferably 6 to 20 carbon atoms). More preferable).
  • the molecular chain that can be used as R P1 and R P2 is preferably a hydrocarbon group chain, a polyalkylene oxide chain, a polycarbonate chain or a polyester chain, more preferably a hydrocarbon group chain or a polyalkylene oxide chain, and a hydrocarbon group chain or a polyalkylene oxide chain. More preferred are ethylene oxide chains or polypropylene oxide chains.
  • the hydrocarbon group chain is not particularly limited and is preferably composed of 18 or more, more preferably 30 or more, and further preferably 50 or more carbon atoms.
  • the upper limit is not particularly limited and may be 90, for example.
  • the hydrocarbon group chain may have a carbon-carbon unsaturated bond, and may have a ring structure of an aliphatic ring and / or an aromatic ring. That is, the hydrocarbon group chain may be a hydrocarbon group chain composed of a hydrocarbon group selected from an aliphatic hydrocarbon group and an aromatic hydrocarbon group, and a hydrocarbon group composed of an aliphatic hydrocarbon group. Base chains are preferred.
  • the hydrocarbon group chain is preferably an aliphatic saturated hydrocarbon group or an aliphatic unsaturated hydrocarbon group, or a polymer (preferably elastomer), which satisfies the above-mentioned number of carbon atoms.
  • the polymer include a diene polymer having a double bond in the main chain and a non-diene polymer having no double bond in the main chain.
  • the diene polymer include a styrene-butadiene copolymer, a styrene-ethylene-butadiene copolymer, a copolymer of isobutylene and isoprene (preferably butyl rubber (IIR)), a butadiene polymer, an isoprene polymer and ethylene.
  • IIR butyl rubber
  • the non-diene polymer include olefin polymers such as ethylene-propylene copolymer and styrene-ethylene-butylene copolymer, and hydrogen reduction products of the above diene polymers.
  • polyalkylene oxide chain examples include known polyalkylene oxide chains.
  • the alkyleneoxy group as a constituent has preferably 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms, and further preferably 2 or 3 carbon atoms (polyethylene oxide chain or polypropylene oxide chain).
  • polycarbonate chain or polyester chain examples include known chains of polycarbonate or polyester.
  • the molecular chain When the molecular chain is a polyalkylene oxide chain, a polycarbonate chain or a polyester chain, it preferably has an alkyl group (having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms) at the terminal.
  • the mass average molecular weight of the molecular chain is preferably 250 or more, more preferably 500 or more, further preferably 700 or more, and particularly preferably 1,000 or more.
  • the upper limit is preferably 100,000 or less, more preferably 10,000 or less.
  • the mass average molecular weight of the molecular chain is measured with respect to the raw material compound before being incorporated into the main chain of the polymer.
  • the raw material compound (diisocyanate compound) leading to the constituent component represented by the formula (I-1) is not particularly limited, and examples thereof include the diisocyanate represented by the formula (M1) described in International Publication No. 2018/020827. A compound and its specific example are mentioned.
  • the starting compound (carboxylic acid or its acid chloride, etc.) leading to the constituent component represented by the above formula (I-2) is not particularly limited, and may be, for example, the compound represented by the formula (I) shown in WO2018 / 020827. Examples thereof include compounds represented by M1) and specific examples thereof.
  • the raw material compounds (diol compounds or diamine compounds) that lead the constituent components represented by the above formula (I-3) or formula (I-4) are not particularly limited, and are described in, for example, International Publication No. 2018/020827. Each compound described and specific examples thereof can be mentioned, and further dihydroxyoxamide can be mentioned.
  • R P1 and R P2 may have a substituent.
  • This substituent is not particularly limited and includes, for example, the above-mentioned substituents that can be adopted as R M2 , and also a group corresponding to a side chain described later.
  • R P1 and R P2 preferably have an amino group, a sulfanyl group, a hydroxy group or a carboxy group, and among them, R P2 of the formula (I-3) preferably has an amino group, a sulfanyl group, a hydroxy group or a carboxy group. .
  • the polymer that constitutes the binder preferably has a constituent component having a specific side chain described below.
  • This side chain may be incorporated into any constituent component as long as it is a constituent component of the polymer, for example, included in any constituent component of the above formulas (I-1) to (I-4). May be. Above all, it is preferably incorporated into the constituent component represented by the above formula (I-3) or formula (I-4), and the constitution represented by the above formula (I-3) or formula (I-4).
  • R P2 is incorporated in the constituent component that is an aliphatic hydrocarbon group.
  • the side chain of the polymer that constitutes the binder preferably satisfies the following conditions A and B.
  • Condition B None of the above carbonyl group, thiocarbonyl group and phosphoryl group is bonded to a hydroxy group.
  • the chain structure part in the side chain means the structure part on the side chain terminal side of the side chain, which is separated by 4 or more atoms from the atoms constituting the main chain molecular chain.
  • the molecular chain of the main chain contains an alkylene group and the side chain is bonded to the carbon atom forming the alkylene group (carbon atom forming the main chain)
  • "4 or more atoms are separated from the atom forming the main chain”.
  • Has at least one group selected from the group consisting of a carbonyl group, a thiocarbonyl group and a phosphoryl group (> P ( O)-).
  • Starting atom the number of connecting atoms from this starting point to the carbon atom of the carbonyl group, the sulfur atom of the thiocarbonyl group or the phosphorus atom of the phosphoryl group (the atom of the starting point and the carbon atom of the carbonyl group, the sulfur atom of the thiocarbonyl group or (Including the phosphorus atom of the phosphoryl group) is 4 or more.
  • the sulfur atom bonded to the carbon atom forming the molecular chain of the main chain is used as the starting point, and the connecting atomic chain (-SCC- In C (tertiary carbon atom) -C (carbonyl carbon atom) -O-C (carbon atom of a methyl group) molecular chain with 6 connected atoms, the part where the number of connected atoms becomes 4 or more starting from the sulfur atom (When represented by a linking atom, C (carbonyl carbon atom) -O-C (carbon atom of methyl group)) becomes the chain structure part.
  • the sulfur atom bonded to the carbon atom forming the molecular chain of the main chain is used as the starting point, and the linking atomic chain (-SCCCC ( Carbonyl carbon atom) -C-C-C), the part where the number of connecting atoms becomes 4 or more starting from the sulfur atom (in terms of connecting atom, -C (carbonyl carbon atom) -C-C-C) is a chain It becomes the structure section.
  • the number of connecting atoms is reduced.
  • the chain structure part preferably has a carbonyl group.
  • the carbonyl group, the thiocarbonyl group and the phosphoryl group do not have a hydroxy group at the end of the chain structure (condition B).
  • Two of the bonds of the phosphoryl group are used for incorporation into the chain structure, and the remaining one is bonded to a hydrogen atom and a substituent other than the hydroxy group.
  • the substituent is not particularly limited, and examples thereof include the substituents described below that can be used as R 1 and R 2 .
  • the chain structure part has at least one group in one chain structure part (constituent), for example, 1 to 10, and 1 to 5 in terms of interaction with the electrode active material. Is preferable, and 1 to 3 is more preferable.
  • the group chain structure has, when defining the mass ratio, the ratio of the total mass W G of the base relative to the total weight W S of the chain structure portion [W G / W S] is not less than 0.05 It is preferably 0.1 or more, more preferably 0.2 or more, and particularly preferably 0.3 or more.
  • the upper limit is not particularly limited and may be, for example, 0.7 or less, and preferably 0.65 or less.
  • the chain structure part has a branched chain (such as a substituent)
  • the mass of the branched structure and the mass of the hydrogen atom at the end of the molecular chain are also included in the total mass of the chain structure part.
  • the number of the above groups contained in one molecule of the polymer is set appropriately. At least one type of the above-mentioned group contained in the chain structure part may be used, and two or more types may be used.
  • the side chain preferably has a partial structure represented by any of the following formulas (I) to (III), and more preferably has a partial structure represented by the following formula (II) or formula (III). It is more preferable to have a partial structure represented by the following formula (II).
  • the position at which these partial structures are incorporated into the side chain is not particularly limited as long as the carbon atom of the carbonyl group in each structure is incorporated at a position separated by 4 or more atoms from the atoms constituting the main chain.
  • the carbon atom of at least one carbonyl group may be incorporated at a position separated by 4 or more atoms from the atoms constituting the main chain.
  • L 1 to L 4 each represent a linking group.
  • the linking group that can be used as L 1 to L 4 is not particularly limited, and examples thereof include an alkylene group (having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and 1 to 6 carbon atoms).
  • an arylene group having 6 to 24 carbon atoms, more preferably 6 to 14 and particularly preferably 6 to 10
  • a heteroarylene group having 3 to 12 carbon atoms an ether group (-O-), an sulfide groups (-S-), carbonyl group, imino group (-NR N -:
  • R N is the binding site, a hydrogen atom, an alkyl group or a carbon number 6 to 10 from 1 to 6 carbon atoms Or the linking group in which two or more (preferably 2 to 10) of them are combined.
  • an alkylene group is preferable as the linking group that can be used as L 1 to L 4
  • methylene is more preferable as the linking group that can be used as L 4 .
  • the number of members of the ring formed by L 2 and L 3 together with the two carbon atoms in the formula is not particularly limited, preferably a 4- to 8-membered ring, more preferably a 5- or 6-membered ring, and a 6-membered ring (preferably, A form in which the partial structure represented by the formula (II) is an anone group) is more preferable.
  • R 1 and R 2 each represent a substituent. However, R 1 does not take “—L 4 —CO—R 2 ” in the formula (III).
  • Substituents that can be used as R 1 and R 2 are not particularly limited, and include an alkyl group (having 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms), and an aryl group (having carbon atoms 6 to 22 are preferable, 6 to 14 are more preferable, and 6 to 10 are further preferable), and a group containing a hetero atom can be mentioned.
  • the hetero atom is not particularly limited and is preferably an oxygen atom, a sulfur atom, a nitrogen atom, a phosphorus atom or the like.
  • the group containing a hetero atom include a group containing a hetero atom in the group, a group bonding to the carbonyl carbon atom in each formula with the above hetero atom, and the like.
  • a heterocyclic group preferably a heterocyclic group having 2 to 20 carbon atoms, preferably a 5- or 6-membered heterocyclic group having at least one oxygen atom, sulfur atom, or nitrogen atom.
  • the substituent that can be taken as R 1 is preferably a group containing a hetero atom (preferably having 1 to 10 carbon atoms), and the substituent that can be taken as R 2 is preferably an alkyl group.
  • the alkoxy group and the alkylthio group each have preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms.
  • the aryloxy group and the arylthio group each have preferably 6 to 24 carbon atoms, more preferably 6 to 14 carbon atoms, and particularly preferably 6 to 10 carbon atoms.
  • R 1 , R 2 , L 1 and L 4 may have an amino group, a sulfanyl group, a hydroxy group or a carboxy group.
  • the substituent that can be used as R 1 and R 2 may further have a substituent, and the substituent may be an alkyl group, an aryl group, an amino group, a phosphoryl group, an ether group, or two or more of these. (Preferably 2 to 10) combined groups can be mentioned.
  • Substituents that can be adopted as R 1 and R 2 are bonded to L 1 or L 4 or a linking group that connects the structure represented by each of the above-mentioned formulas to the polymer main chain to form a cyclohexene ring or the like. It may form a ring.
  • ** indicates a bond with the main chain of the polymer (atoms constituting the main chain).
  • the partial structure represented by the above formula (II) or (III) may be directly bonded to the main chain of the polymer, and is preferably bonded via a linking group.
  • the linking group that connects the partial structure represented by the formula (II) or (III) and the main chain of the polymer is not particularly limited, and examples thereof include linking groups that can be used as L 1 to L 4 .
  • an alkylene group, an arylene group, a heteroarylene group, an ether group, a sulfide group, a carbonyl group or an imino group, or a linking group in which two or more (preferably 2 to 10) of these are combined is preferable, and a sulfide group or an alkylene group.
  • a group or a linking group formed by combining these groups is more preferable.
  • the number of atoms constituting the linking group is preferably 1 to 30, more preferably 1 to 20, and even more preferably 1 to 15.
  • the number of connecting atoms in the connecting group is preferably 1 to 15, more preferably 1 to 12.
  • the above-mentioned number of connecting atoms means the minimum number of atoms connecting predetermined structural parts. For example, in the case of —C ( ⁇ O) —O—, the number of atoms constituting the linking group is 3 and the number of linking atoms is 2.
  • the content of the constituent can be set appropriately.
  • the content of each constituent with respect to the total number of moles of all constituents forming the polymer is preferably determined from the following range so as to be 100 mol% in total.
  • the content of the constituents represented by the above formula (I-1) or formula (I-2) is determined by the hydrogen bond formation. From the viewpoint of film strength due to the above, it is preferably 10 to 50 mol%, more preferably 20 to 50 mol%, and further preferably 30 to 50 mol% based on all the constituent components forming the polymer.
  • the content of the constituent component represented by the formula (I-3) or the formula (I-4) in which R P2 is a hydrocarbon group is hydrogen. From the viewpoint of film strength due to bond formation, etc., it is preferably 1 to 50 mol%, more preferably 2 to 40 mol%, and further preferably 3 to 30 mol% based on all the constituent components forming the polymer. It is more preferable that the amount is 3 to 20 mol%.
  • the content of each of the above constituent components is the content of a constituent component that does not include the constituent component having the side chain and that does not have the side chain.
  • the content of the constituents in which R P2 is the above molecular chain is from the viewpoint of improving the film strength, the total amount of the constituents forming the polymer. It is preferably 10 to 50 mol%, more preferably 20 to 50 mol%, and further preferably 30 to 50 mol% based on the constituent components.
  • the content of the constituent component represented by the formula (I-3) or the formula (I-4) in which R P1 is the molecular chain (constituent component M4 in Examples described later) is From the viewpoint of improving the strength, it is preferably 1 to 50 mol%, more preferably 2 to 45 mol%, and further preferably 15 to 45 mol% based on all the constituent components forming the polymer. More preferably, it is particularly preferably 30 to 45 mol%.
  • the content of each of the above constituent components is the content of a constituent component that does not include the constituent component having the side chain and that does not have the side chain.
  • the content of the above-mentioned constituent component having a side chain is 0 to 20 mol% based on all constituent components forming a polymer.
  • the content is preferably 0 to 15 mol%, more preferably 0 to 10 mol%.
  • the lower limit may be 1 mol% or 2 mol%.
  • the content of the other constituents is preferably 15 mol% or less based on all constituents forming the polymer.
  • the content of each constituent with respect to the total mass of all constituents forming the polymer is preferably determined from the following range so as to be 100 mass% in total.
  • the content of the constituents in which R P1 is a hydrocarbon group is determined by the hydrogen bond formation. From the viewpoint of film strength due to the above, it is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and 35 to 60% by mass based on the total mass of all the constituent components forming the polymer. Is more preferable.
  • the content of the constituent component represented by the formula (I-3) or the formula (I-4) in which R P2 is a hydrocarbon group is hydrogen. From the viewpoint of film strength due to bond formation, etc., it is preferably 0 (preferably more than 0) to 80% by mass, and 0 (preferably more than 0) based on the total mass of all constituent components forming the polymer. It is more preferably from 70 to 70% by mass, further preferably from 0 (preferably more than 0) to 60% by mass.
  • the content of each of the above constituent components is the content of a constituent component that does not include the constituent component having the side chain and that does not have the side chain.
  • the content of the constituent component in which R P1 is the above molecular chain is such that the total amount of the components forming a polymer is improved from the viewpoint of improving the film strength. It is preferably 0 (preferably more than 0) to 80% by mass, more preferably 0 (preferably more than 0) to 70% by mass, and more preferably 0 (preferably), based on the total mass of the constituent components. More than 0) to 60% by mass is more preferable.
  • the content of the constituent component represented by the formula (I-3) or the formula (I-4) in which R P2 is the molecular chain (constituent component M4 in Examples described later) is From the viewpoint of improving strength, it is preferably 0 (preferably more than 0) to 80% by mass, and 0 (preferably more than 0) to 70% by mass with respect to the total mass of all constituent components forming the polymer. Is more preferable, and 30 (preferably more than 0) to 60 mass% is further preferable.
  • the content of each of the above constituent components is the content of a constituent component that does not include the constituent component having the side chain and that does not have the side chain.
  • the content of the constituent component having the above side chain is from 5 to 40 mass% with respect to the total mass of all constituent constituents forming the polymer, from the viewpoint of improving cycle characteristics. It is preferably from 5 to 20% by mass, more preferably from 5 to 10% by mass.
  • the content of the other constituents is preferably 15% by mass or less based on all constituents forming the polymer.
  • the above-mentioned polymer can be synthesized by polycondensing a raw material compound according to a known method depending on the type of bond in the main chain.
  • a synthesis method for example, “ ⁇ (B) Polymer synthesis method>” described in International Publication No. 2018/020827 can be referred to.
  • the weight average molecular weight (Mw) of the polymer is not particularly limited. For example, 3,000 or more is preferable, 5,000 or more is more preferable, and 7,000 or more is further preferable.
  • the upper limit is substantially 1,000,000 or less, preferably 300,000 or less, more preferably 200,000 or less, still more preferably 40,000 or less.
  • GPC gel permeation chromatography
  • As a measuring method basically, a value measured by the method of the following condition 1 or condition 2 (priority) is used.
  • an appropriate eluent may be appropriately selected and used depending on the type of polymer (polymer or the like) to be measured.
  • Condition 2 Column: A column in which TOSOH TSKgel Super HZM-H, TOSOH TSKgel Super HZ4000, and TOSOH TSKgel Super HZ2000 are connected is used.
  • the polymer may be a non-crosslinked polymer or a crosslinked polymer. Further, when the cross-linking of the polymer progresses by heating or application of voltage, the molecular weight may be larger than the above molecular weight. Preferably, the polymer has a mass average molecular weight in the above range at the start of use of the all solid state secondary battery.
  • the water concentration of the polymer is preferably 100 ppm (mass basis) or less.
  • the polymer may be crystallized and dried, or the polymer dispersion may be used as it is.
  • the glass transition temperature of the polymer is not particularly limited, and is preferably 30 ° C. or lower, more preferably 25 ° C. or lower, further preferably 15 ° C. or lower, particularly preferably 5 ° C. or lower. .
  • the lower limit of the glass transition temperature is not particularly limited and can be set to, for example, ⁇ 200 ° C., preferably ⁇ 150 ° C. or higher, and more preferably ⁇ 120 ° C. or higher.
  • the glass transition temperature (Tg) is measured under the following conditions using a differential scanning calorimeter: X-DSC7000 (trade name, manufactured by SII Nanotechnology Inc.) with a dried polymer sample as a measurement target. The measurement is performed twice on the same sample, and the result of the second measurement is used.
  • Atmosphere in measurement chamber Nitrogen gas (50 mL / min) Temperature rising rate: 5 ° C / min Measurement start temperature: -100 ° C Measurement end temperature: 200 ° C
  • Sample pan Aluminum pan Mass of measurement sample: 5 mg Calculation of Tg: Tg is calculated by rounding off the decimal point of the intermediate temperature between the descending start point and the descending end point of the DSC chart.
  • the all-solid secondary battery is decomposed and the active material layer or the solid electrolyte layer is put in water to disperse the material, and then the remaining solid is filtered. Can be collected and the glass transition temperature can be measured by the above-mentioned measuring method.
  • the binder used in the present invention for further improving the film strength of the electrode active material layer formed of the electrode composition of the present invention and for further improving the cycle characteristics of the all-solid secondary battery having the electrode active material layer.
  • the polymer of which the elastic modulus measured according to JIS K 7161 (2014) is preferably 10 to 500 MPa, more preferably 50 to 450 MPa, and even more preferably 100 to 350 MPa.
  • the polymer constituting the polymer preferably has a tensile breaking strain measured according to JIS K 7161 (2014) of 50 to 700%, more preferably 150 to 650%, and more preferably 250 to 550%. Is more preferable.
  • the tensile breaking strain is a value obtained by subtracting 100% from the length of the polymer sample at the time of breaking, with the length of the polymer sample before being stretched being 100%.
  • the binder used in the present invention may be used alone or in combination of two or more.
  • the content of the binder in the electrode composition is preferably 1% by mass or more, more preferably 2% by mass or more, still more preferably more than 2% by mass, and 3% by mass or more in the solid content. Is more preferable and 4% by mass or more is particularly preferable.
  • the upper limit is preferably 20% by mass or less, more preferably 18% by mass or less, further preferably 16% by mass or less, and further preferably 14% by mass or less.
  • the partitioning component used in the present invention may appropriately contain a conductive auxiliary agent used for improving the electronic conductivity of the active material, if necessary.
  • a conductive auxiliary agent used for improving the electronic conductivity of the active material, if necessary.
  • a general conductive auxiliary agent can be used.
  • electron conductive materials such as graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, Ketjen black and furnace black, amorphous carbon such as needle coke, vapor grown carbon fiber or carbon nanotube.
  • Carbon fibers such as, carbonaceous materials such as graphene or fullerene, metal powders such as copper and nickel, metal fibers may be used, and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives. May be used. One of these may be used, or two or more may be used.
  • the content of the conduction aid in the composition for electrodes is preferably 0 to 10% by mass, and more preferably 3 to 5% by mass, based on the total solid components.
  • a negative electrode active material and a conductive auxiliary agent are used in combination, among the above conductive auxiliary agents, one that does not function as a negative electrode active material does not cause insertion and release of Li when the battery is charged and discharged.
  • Use as an auxiliary agent Whether or not the battery functions as a negative electrode active material when charged and discharged is not unique and is determined by a combination with the negative electrode active material.
  • the composition for electrodes of the present invention may contain a dispersion medium.
  • this electrode composition contains a dispersion medium, composition uniformity and handleability can be improved.
  • the dispersion medium may be one that disperses each component contained in the electrode composition of the present invention.
  • Examples of the dispersion medium used in the present invention include various organic solvents, and examples of the organic solvent include alcohol compounds, ether compounds, amide compounds, amine compounds, ketone compounds, aromatic compounds, aliphatic compounds, nitrile compounds, and esters. Each solvent such as a compound may be mentioned.
  • Examples of the alcohol compound include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, and 2 -Methyl-2,4-pentanediol, 1,3-butanediol and 1,4-butanediol may be mentioned.
  • alkylene glycol alkyl ether ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol monomethyl ether, dipropylene glycol Monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether, etc.), dialkyl ether (dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, etc.), cyclic ether (tetrahydrofuran, dioxy ether) Emissions (1,2, including 1,3- and 1,4-isomers of), etc.).
  • alkylene glycol alkyl ether ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene
  • amide compound examples include N, N-dimethylformamide, N-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, N- Examples thereof include methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like.
  • Examples of the amine compound include triethylamine, diisopropylethylamine, tributylamine and the like.
  • Examples of the ketone compound include acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, cyclohexanone, diisobutyl ketone (DIBK), and the like.
  • Examples of the aromatic compound include aromatic hydrocarbon compounds such as benzene, toluene and xylene.
  • Examples of the aliphatic compound include aliphatic hydrocarbon compounds such as hexane, heptane, octane and decane.
  • Examples of the nitrile compound include acetonitrile, propionitrile, isobutyronitrile and the like.
  • Examples of the ester compound include ethyl acetate, butyl acetate, propyl acetate, propyl butyrate, isopropyl butyrate, butyl butyrate, isobutyl butyrate, butyl pentanoate, ethyl isobutyrate, propyl isobutyrate, isopropyl isobutyrate, isobutyl isobutylate, and pivalic acid.
  • Examples thereof include carboxylic acid esters such as propyl, isopropyl pivalate, butyl pivalate, and isobutyl pivalate.
  • Examples of the non-aqueous dispersion medium include the above aromatic compounds and aliphatic compounds.
  • the dispersion medium is preferably a ketone compound, an ester compound, an aromatic compound or an aliphatic compound, and more preferably contains at least one selected from a ketone compound, an ester compound, an aromatic compound and an aliphatic compound. ..
  • the dispersion medium contained in the electrode composition may be one kind or two or more kinds, and preferably two or more kinds.
  • the total content of the dispersion medium in the electrode composition is not particularly limited and is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and particularly preferably 40 to 60% by mass.
  • composition for electrodes of the present invention may further contain a lithium salt, an ionic liquid, a thickener, a defoaming agent, a leveling agent, a dehydrating agent, an antioxidant, etc., as a component other than the above components, if desired.
  • the electrode composition of the present invention can be prepared by mixing the inorganic solid electrolyte, the active material, the distribution component, and optionally the dispersion medium, with various commonly used mixers.
  • the environment for mixing is not particularly limited, and examples thereof include dry air or an inert gas.
  • the mixing method is not particularly limited, and examples thereof include the following mixing methods.
  • the conductive additive may be mixed together with the active material and the binder to obtain the mixture a2.
  • the dispersion media may be combined and mixed.
  • the inorganic solid electrolyte and the conduction aid may be mixed to obtain the mixture b2, and the mixtures a2 and b2 may be mixed.
  • the film strength of an electrode active material layer formed of the obtained electrode composition is further improved, and cycle characteristics of an all-solid secondary battery having the electrode active material layer.
  • the mixing methods A and B are preferable, and the mixing method B is more preferable.
  • the mixing method B since the binding property between the inorganic solid electrolytes is enhanced, it is possible to further improve the film strength of the electrode active material layer and further improve the cycle characteristics of the all solid state secondary battery having this electrode active material layer. it can.
  • the electrode sheet for an all-solid-state secondary battery of the present invention is an electrode sheet for an all-solid-state secondary battery having an electrode active material layer containing an inorganic solid electrolyte, an active material, and a distribution component bound to both of them.
  • one of the distribution components is a binder, and the polymer constituting the binder contains a repeating unit having an amino group, a sulfanyl group, a hydroxy group, a carboxy group or an anone group.
  • the distribution ratio of the distribution component to the inorganic solid electrolyte exceeds 60%.
  • the electrode sheet for an all-solid secondary battery of the present invention may be an electrode sheet having an active material layer, and the active material layer is on a base material (current collector).
  • the sheet may be a sheet formed of an active material layer or a sheet having no base material.
  • This electrode sheet is usually a sheet having a current collector and an active material layer, an embodiment having a current collector, an active material layer and a solid electrolyte layer in this order, and a current collector, an active material layer and a solid electrolyte layer. And an embodiment having an active material layer in this order is also included.
  • the electrode sheet of the present invention may have other layers such as a protective layer and a conductor layer (for example, a carbon coat layer).
  • the layer thickness of each layer constituting the electrode sheet of the present invention is the same as the layer thickness of each layer described in the all-solid secondary battery described later.
  • the electrode sheet for an all-solid secondary battery of the present invention at least one of the positive electrode active material layer and the negative electrode active material layer is formed of the electrode composition of the present invention, and this layer has excellent film strength. In the present invention, it is also possible to effectively suppress an increase in interfacial resistance between solid particles. Therefore, the electrode sheet for an all-solid secondary battery of the present invention is preferably used as a sheet that can form an electrode active material layer of an all-solid secondary battery. For example, when manufacturing an electrode sheet for an all-solid-state secondary battery in a long line (even when it is wound up during transportation) or when it is used as a wound type battery, it is possible to suppress cracks or the like in the active material layer. You can When an all-solid secondary battery is manufactured using such an all-solid-state secondary battery electrode sheet, excellent battery performance is exhibited, and further high productivity and yield (reproducibility) can be realized.
  • the method for producing the electrode sheet for an all-solid secondary battery of the present invention is not particularly limited, and can be produced, for example, by forming an electrode active material layer using the electrode composition of the present invention.
  • the coating dried layer is a layer formed by applying the composition for an electrode of the present invention and drying the dispersion medium (that is, using the composition for an electrode of the present invention, the electrode of the present invention Layer) having a composition obtained by removing the dispersion medium from the composition for use.
  • each step such as coating and drying will be described in the following method for producing an all-solid secondary battery.
  • the method for producing an electrode sheet for an all-solid-state secondary battery of the present invention it is also possible to pressurize the dried coating layer obtained as described above.
  • the pressurizing condition and the like will be described later in the method for manufacturing an all-solid-state secondary battery.
  • the current collector, the protective layer (particularly the release sheet) and the like can be peeled off.
  • the all-solid secondary battery of the present invention includes a positive electrode active material layer, a negative electrode active material layer facing the positive electrode active material layer, and a solid electrolyte layer disposed between the positive electrode active material layer and the negative electrode active material layer.
  • the positive electrode active material layer is formed on the positive electrode current collector, if necessary, and constitutes a positive electrode.
  • the negative electrode active material layer is, if necessary, formed on the negative electrode current collector to form a negative electrode. At least one layer of the negative electrode active material layer and the positive electrode active material layer may be formed of the electrode composition of the present invention, and the negative electrode active material layer and the positive electrode active material layer may be formed of the electrode composition of the present invention. preferable.
  • the active material layer formed of the electrode composition of the present invention preferably has the same component species and the same content ratio as those in the solid content of the electrode composition of the present invention.
  • Known materials can be used for the active material layer and the solid electrolyte layer that are not formed of the electrode active material layer of the present invention.
  • the thicknesses of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer are not particularly limited.
  • the thickness of each layer is preferably 10 to 1,000 ⁇ m, more preferably 15 ⁇ m or more and less than 500 ⁇ m, in consideration of the size of a general all-solid secondary battery.
  • the thickness of at least one of the positive electrode active material layer and the negative electrode active material layer is more preferably 50 ⁇ m or more and less than 500 ⁇ m.
  • the positive electrode active material layer and the negative electrode active material layer may each include a current collector on the side opposite to the solid electrolyte layer.
  • the all-solid-state secondary battery of the present invention may be used as an all-solid-state secondary battery with the above structure depending on the application, and in order to obtain the form of a dry battery, it should be further enclosed in a suitable housing before use.
  • the housing may be made of metal or resin (plastic).
  • a metallic thing an aluminum alloy thing or a stainless steel thing can be mentioned, for example.
  • the metallic casing is preferably divided into a casing on the positive electrode side and a casing on the negative electrode side and electrically connected to the positive electrode current collector and the negative electrode current collector, respectively. It is preferable that the housing on the positive electrode side and the housing on the negative electrode side are joined and integrated via a gasket for preventing a short circuit.
  • FIG. 1 is a sectional view schematically showing an all-solid-state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all-solid-state secondary battery 10 of the present embodiment has a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order when viewed from the negative electrode side. .
  • the layers are in contact with each other and have an adjacent structure. By adopting such a structure, during charging, electrons (e ⁇ ) are supplied to the negative electrode side, and lithium ions (Li + ) are accumulated there.
  • lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons are supplied to the operating portion 6.
  • a light bulb is used as a model for the operating portion 6, and the light bulb is adapted to be lit by discharge.
  • both the positive electrode active material layer and the negative electrode active material layer are formed of the electrode composition of the present invention.
  • the all solid state secondary battery 10 exhibits excellent battery performance.
  • the inorganic solid electrolyte and the binder contained in the positive electrode active material layer 4 and the negative electrode active material layer 2 may be the same or different from each other.
  • either or both of the positive electrode active material layer and the negative electrode active material layer may be simply referred to as an active material layer or an electrode active material layer.
  • either or both of the positive electrode active material and the negative electrode active material may be simply referred to as an active material or an electrode active material.
  • the binder when used in combination with solid particles such as an inorganic solid electrolyte and an active material, it is possible to suppress an increase in interface resistance between solid particles and an increase in interface resistance between the solid particles and the current collector. To be Therefore, the all solid state secondary battery of the present invention exhibits excellent battery characteristics.
  • the negative electrode active material layer can be a lithium metal layer.
  • the lithium metal layer include a layer formed by depositing or molding lithium metal powder, a lithium foil, and a lithium vapor deposition film.
  • the thickness of the lithium metal layer may be, for example, 1 to 500 ⁇ m regardless of the thickness of the negative electrode active material layer.
  • the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electron conductors.
  • either or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
  • a current collector aluminum, aluminum alloy, stainless steel, nickel, titanium, etc., as well as aluminum or stainless steel whose surface is treated with carbon, nickel, titanium or silver (a thin film is formed) Those), and among them, aluminum and aluminum alloys are more preferable.
  • As a material for forming the negative electrode current collector in addition to aluminum, copper, copper alloy, stainless steel, nickel and titanium, etc., carbon, nickel, titanium or silver is treated on the surface of aluminum, copper, copper alloy or stainless steel. Preferred are aluminum, copper, copper alloys and stainless steel.
  • the current collector is usually in the form of a film sheet, and may be a net, a punched product, a lath, a porous body, a foam, or a molded product of fibers.
  • the thickness of the current collector is not particularly limited and is preferably 1 to 500 ⁇ m. Further, it is also preferable that the surface of the current collector is made uneven by surface treatment.
  • a functional layer, a member or the like is appropriately interposed or disposed between or outside each layer of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer and the positive electrode current collector. You may. Each layer may be composed of a single layer or multiple layers.
  • the all solid state secondary battery can also be manufactured by a conventional method. Specifically, the all-solid secondary battery can be manufactured by forming an electrode active material layer using the composition for electrodes of the present invention or the like. This makes it possible to manufacture an all-solid-state secondary battery having a low electric resistance. The details will be described below.
  • the all-solid-state secondary battery of the present invention comprises a (intermediate) method including a step of forming a coating film (forming a film) by coating the electrode composition of the present invention on a metal foil serving as a current collector, if necessary. It can be manufactured through the method for manufacturing an electrode sheet for an all-solid secondary battery of the present invention).
  • a positive electrode active material layer is formed by applying a positive electrode active material-containing electrode composition (a positive electrode composition) on a metal foil that is a positive electrode current collector, to form a positive electrode sheet for an all-solid secondary battery. Create. Then, a solid electrolyte composition for forming a solid electrolyte layer is applied onto the positive electrode active material layer to form a solid electrolyte layer.
  • a composition for an electrode containing a negative electrode active material (a composition for a negative electrode) is applied onto the solid electrolyte layer to form a negative electrode active material layer.
  • a composition for a negative electrode is applied onto the solid electrolyte layer to form a negative electrode active material layer.
  • a negative electrode current collector metal foil
  • each layer is reversed, and a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is stacked to manufacture an all-solid secondary battery. You can also do it.
  • Another method is as follows. That is, the positive electrode sheet for all-solid-state secondary batteries is produced as described above. Further, the composition for a negative electrode is applied onto a metal foil, which is a negative electrode current collector, to form a negative electrode active material layer, to prepare a negative electrode sheet for an all-solid secondary battery. Then, the solid electrolyte layer is formed on one of the active material layers of these sheets as described above. Further, the other of the positive electrode sheet for all-solid secondary battery and the negative electrode sheet for all-solid secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other. In this way, the all solid state secondary battery can be manufactured. The following method can be given as another method.
  • the positive electrode sheet for all-solid-state secondary batteries and the negative electrode sheet for all-solid-state secondary batteries are produced as described above.
  • a solid electrolyte composition is applied onto a substrate to prepare a solid electrolyte sheet for an all-solid secondary battery including a solid electrolyte layer.
  • the positive electrode sheet for all-solid secondary battery and the negative electrode sheet for all-solid secondary battery are laminated so as to sandwich the solid electrolyte layer peeled from the base material. In this way, the all solid state secondary battery can be manufactured.
  • the electrode composition of the present invention may be used in either one of the positive electrode composition and the negative electrode composition, and it is preferable to use the electrode composition of the present invention in both cases.
  • each composition is not particularly limited and can be appropriately selected. Examples thereof include coating (preferably wet coating), spray coating, spin coating, dip coating, slit coating, stripe coating and bar coating.
  • each composition may be subjected to a drying treatment after coating, or may be subjected to a multilayer treatment and then a drying treatment.
  • the drying temperature is not particularly limited.
  • the lower limit is preferably 30 ° C. or higher, more preferably 60 ° C. or higher, even more preferably 80 ° C. or higher.
  • the upper limit is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 200 ° C. or lower.
  • the dispersion medium By heating in such a temperature range, the dispersion medium can be removed and a solid state (coating dried layer) can be obtained. It is also preferable because the temperature is not too high and each member of the all solid state secondary battery is not damaged. As a result, in an all-solid-state secondary battery, excellent overall performance can be obtained, and good binding properties and good ionic conductivity can be obtained even without applying pressure.
  • the solid particles are firmly bound to each other, and in a more preferred embodiment, a dried and applied layer having a small interfacial resistance between the solid particles can be formed.
  • the pressurizing method include a hydraulic cylinder press machine and the like.
  • the pressure applied is not particularly limited and is generally preferably in the range of 50 to 1500 MPa.
  • the applied composition may be heated simultaneously with the pressurization.
  • the heating temperature is not particularly limited and is generally in the range of 30 to 300 ° C. It is also possible to press at a temperature higher than the glass transition temperature of the inorganic solid electrolyte. It is also possible to press at a temperature higher than the glass transition temperature of the binder.
  • the temperature does not exceed the melting point of the binder.
  • the pressurization may be performed in a state in which the coating solvent or the dispersion medium is dried in advance, or may be performed in the state in which the solvent or the dispersion medium remains.
  • each composition may be applied simultaneously, or may be applied and dried simultaneously or sequentially. After coating on different substrates, they may be laminated by transfer.
  • the atmosphere during pressurization is not particularly limited, and may be in the air, under dry air (dew point ⁇ 20 ° C. or lower), in an inert gas (eg, argon gas, helium gas, nitrogen gas).
  • the pressing time may be a short time (for example, within several hours) and high pressure may be applied, or a long time (one day or more) and medium pressure may be applied.
  • a retainer screw tightening pressure, etc.
  • the pressing pressure may be uniform or different with respect to the pressed portion such as the sheet surface.
  • the pressing pressure can be changed according to the area or film thickness of the pressed portion. It is also possible to change the same part stepwise by different pressures.
  • the pressed surface may be smooth or roughened.
  • the all-solid-state secondary battery manufactured as described above is preferably initialized after manufacturing or before use. Initialization is not particularly limited, and it can be performed, for example, by performing initial charging / discharging in a state where the press pressure is increased, and then releasing the pressure until it becomes a general working pressure of the all solid state secondary battery.
  • the all-solid secondary battery of the present invention can be applied to various uses.
  • the application mode is not particularly limited, but for example, when it is mounted on an electronic device, it is a notebook computer, a pen input computer, a mobile computer, an electronic book player, a mobile phone, a cordless phone handset, a pager, a handy terminal, a mobile fax, a mobile phone. Examples include copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, mini disk, electric shaver, transceiver, electronic organizer, calculator, memory card, portable tape recorder, radio and backup power supply.
  • consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game machines, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.), and the like. Furthermore, it can be used for various military purposes and for space. It can also be combined with a solar cell.
  • Neostan U-600 (trade name, manufactured by Nitto Kasei Co., Ltd.) was added to the obtained solution, and the mixture was stirred at 60 ° C. for 5 hours to obtain a viscous polymer solution.
  • 0.6 g of methanol was added to this polymer solution to seal the polymer terminal, and the polymerization reaction was stopped to obtain a 20 mass% THF solution of the polymer (polymer solution).
  • 96 g of heptane was added dropwise over 1 hour while stirring the polymer solution obtained above at 350 rpm to obtain a polymer emulsion. This emulsion was heated at 85 ° C. for 120 minutes while flowing nitrogen.
  • This solution was diluted with 80 g of ethyl acetate and washed once with 100 mL of water and 5 times with 150 mL of saturated saline. Sodium sulfate was added to the washed solution to dry it, and sodium sulfate was removed by fold-fold filtration, and then the solvent was distilled off under reduced pressure. Thus, a diol compound leading to the constituent component A-6 was obtained. The yield was 81%.
  • the composition of each polymer in the binder dispersion prepared as described above is shown in Table 1 below.
  • the constituent components M1 to M4 shown in Table 1 are as follows.
  • the constituent component M1 is a constituent component represented by the above formula (I-1) or (I-2).
  • the constituent component M2 is a constituent component represented by the above formula (I-3), in which R P2 is an aliphatic hydrocarbon group.
  • the constituent component M3 is a constituent component represented by the above formula (I-3) and having a specific side chain.
  • the constituent component M4 is a constituent component represented by the above formula (I-3), in which R P2 is the above molecular chain having a mass average molecular weight of 200 or more and 200,000 or less.
  • location indicates the position of the carbon atom of the carbonyl group in the side chain of the polymer. Specifically, in the molecular chain forming the side chain of the polymer, the shortest number of connecting atoms (including the sulfur atom and the carbon atom of the carbonyl group) from the sulfur atom of component A-5 to the carbon atom of the carbonyl group is Show.
  • Li 2 S lithium sulfide
  • P 2 S diphosphorus pentasulfide
  • the electrode sheet for all-solid-state secondary batteries was produced as follows.
  • Step 1 (mixing method A) 180 zirconia beads having a diameter of 5 mm were placed in a zirconia 45 mL container (Fritsch), and 6.6 g of LPS synthesized above and 12.3 g of heptane as a dispersion medium were placed.
  • the container was set in a planetary ball mill P-7 manufactured by Fritsch Co., and mixed at a temperature of 25 ° C. and a rotation speed of 300 rpm for 2 hours.
  • a negative electrode sheet (Condition 3) was prepared in the same manner as the negative electrode sheet (Condition 1) except that Step 1 (Mixing method A) was changed to the following mixing method B in the preparation of the negative electrode sheet (Condition 1).
  • -Mixing method B 180 zirconia beads having a diameter of 5 mm were placed in a zirconia 45 mL container (manufactured by Fritsch), and 6.6 g of the LPS synthesized above, 0.3 g of the binder dispersion shown in Table 1 in terms of solid content, dispersion medium. was added as heptane (12.3 g).
  • the container was set in a planetary ball mill P-7 manufactured by Fritsch Co., and mixed at a temperature of 25 ° C. and a rotation speed of 300 rpm for 2 hours. After that, 7.0 g of Si powder (median diameter 1 to 5 ⁇ m, Silicon Powder manufactured by Alfa Aesar) as an active material and 0.65 g of acetylene black (manufactured by Denka) as a conductive additive were put into a container, and similarly, a planetary ball mill was used. The container was set in P-7, and mixing was continued for 15 minutes at a temperature of 25 ° C. and a rotation speed of 200 rpm to prepare a negative electrode composition.
  • P-7 manufactured by Fritsch Co.
  • a negative electrode sheet (Condition 12) was prepared in the same manner as the negative electrode sheet (Condition 1) except that Step 1 (Mixing method A) was changed to the following mixing method C in the preparation of the negative electrode sheet (Condition 1).
  • -Mixing method C 180 zirconia beads having a diameter of 5 mm were placed in a zirconia 45 mL container S (made by Fritsch), 6.6 g of the LPS synthesized above and 12.3 g of heptane as a dispersion medium were placed.
  • the container S was set in a planetary ball mill P-7 manufactured by Fritsch Co., and mixed at a temperature of 25 ° C.
  • the slurry mixed in the container T of the container S was charged, and similarly, the container was set on the planetary ball mill P-7 and mixed at a temperature of 25 ° C. and a rotation speed of 200 rpm for 15 minutes to prepare a negative electrode composition.
  • an all solid state secondary battery was produced as follows.
  • the negative electrode sheet was punched into a disk shape having a diameter of 10 mm ⁇ and placed in a cylinder made of polyethylene terephthalate (PET) having a diameter of 10 mm ⁇ .
  • PET polyethylene terephthalate
  • 30 mg of the above-synthesized LPS was put on the surface of the negative electrode active material layer in the cylinder, and a 10 mm ⁇ SUS rod was inserted through the openings at both ends of the cylinder.
  • the negative electrode current collector side of the negative electrode sheet and LPS were pressure-formed by a SUS rod at a pressure of 350 MPa to form a solid electrolyte layer.
  • the SUS rod arranged on the solid electrolyte layer side was once removed, and a 9 mm ⁇ disc-shaped indium (In) sheet (thickness 20 ⁇ m) and a 9 mm ⁇ disc-shaped lithium (Li) sheet (thickness 20 ⁇ m) were removed. , In this order, was inserted on the solid electrolyte layer in the cylinder. The removed SUS rod was reinserted into the cylinder and fixed under a pressure of 50 MPa.
  • an all-solid secondary having a structure of SUS foil (thickness 20 ⁇ m) -negative electrode active material layer (thickness 25 ⁇ m) -sulfide-based inorganic solid electrolyte layer (thickness 200 ⁇ m) -In / Li sheet (thickness 30 ⁇ m) I got a battery.
  • An all-solid secondary battery was manufactured as follows using the manufactured positive electrode sheet.
  • the positive electrode sheet was punched out into a disk shape having a diameter of 10 mm ⁇ and placed in a 10 mm ⁇ PET cylinder.
  • 30 mg of the above-synthesized LPS was put on the surface of the positive electrode active material layer in the cylinder, and a 10 mm ⁇ SUS rod was inserted through the openings at both ends of the cylinder.
  • the positive electrode current collector side of the positive electrode sheet and the LPS were pressure-formed by a SUS rod at a pressure of 350 MPa to form a solid electrolyte layer.
  • the SUS rod arranged on the solid electrolyte layer side was once removed, and a 9 mm ⁇ disc-shaped indium (In) sheet (thickness 20 ⁇ m) and a 9 mm ⁇ disc-shaped lithium (Li) sheet (thickness 20 ⁇ m) were removed. , In this order, was inserted on the solid electrolyte layer in the cylinder. The SUS rod that had been removed was reinserted into the cylinder and fixed under a pressure of 50 MPa.
  • ⁇ Calculation method> The adsorption rate A of the binder with respect to the active material and the adsorption rate B of the binder with respect to the inorganic solid electrolyte were calculated as follows. Further, the distribution ratio A of the distribution component to the active material and the distribution ratio B of the distribution component to the inorganic solid electrolyte were calculated as follows. Further, the elastic modulus and tensile breaking strain of the polymer constituting the binder were calculated as follows. Note that binders other than styrene-butadiene rubber were used for measuring the adsorption rate, elastic modulus, and tensile fracture strain after removing the dispersion medium and the like from the dispersion liquid.
  • [Adsorption rate A] 1.6 g of the active material used in the electrode composition and 0.08 g of the binder were placed in a 15 mL vial, 8 g of heptane was added while stirring with a mix rotor, and the mixture was further stirred at room temperature and 80 rpm for 30 minutes. The dispersion after stirring was filtered with a filter having a pore size of 1 ⁇ m, and 2 g of the filtrate was dried to obtain the mass of the dried binder (the mass of the binder not adsorbed on the active material), and the adsorption rate A was calculated from the following formula. Was calculated.
  • [Adsorption rate B] 0.5 g of the inorganic solid electrolyte used in the composition for electrodes and 0.26 g of a binder were placed in a 15 mL vial bottle, 25 g of heptane was added while stirring with a mix rotor, and the mixture was further stirred at room temperature and 80 rpm for 30 minutes. The dispersion after stirring was filtered with a filter having a pore size of 1 ⁇ m, and 2 g of the filtrate was dried to obtain the mass of the dried binder (the mass of the binder not adsorbed in the inorganic solid electrolyte), and the adsorption rate was calculated from the following formula. B was calculated.
  • the cross section of the electrode active material layer was cut out by an ion milling device (Hitachi, IM4000PLUS (trade name)) under the conditions of an acceleration voltage of 3 kV, a discharge voltage of 1.5 V, a treatment time of 4 hours, and an argon gas flow rate of 0.1 ml / min. .
  • the cross section of the electrode active material layer was observed by AES (Auger Electron Spectroscopy, JAMP-9510F (trade name), JEOL Ltd.) at a magnification of 3500 times.
  • the image of each element acquired using ImageJ is converted into grayscale, a histogram of the luminance distribution of each element is created, and the minimum value between the histogram peaks of both-type distribution (the peak derived from the background and the peak derived from each element)
  • a mapping cross-sectional image of each element was acquired. From this mapping cross-sectional image, the position derived from the Si atom of the active material and the position derived from the carbon atom of the binder and the conductive additive (position of the distribution component) are respectively extracted, and the position of the active material existing at the edge portion (outline) of the distribution component I calculated the ratio.
  • the ratio of the length in contact with the active material was determined as the distribution ratio A (%) among the lengths of all the edge portions of the distribution component.
  • the value obtained by subtracting the distribution rate A from 100% was defined as the distribution rate B (%) of the distribution component to the inorganic solid electrolyte.
  • the peak was derived from an atom other than the carbon atoms of the active material as appropriate.
  • CGB graphite
  • the film strength of the produced electrode sheets was evaluated.
  • the electrode sheet was wrapped around rods having different diameters so that the current collector was in contact therewith, and the presence or absence of cracks or cracks in the electrode active material layer and the presence or absence of peeling of the electrode active material layer from the current collector were confirmed.
  • the film strength was evaluated based on which of the following evaluation criteria included the minimum diameter of the rod wound without chipping, cracking or peeling. It was also confirmed that the electrode active material layer was not chipped or cracked even after being wound with the rod having the minimum diameter and unwound, and that the electrode active material layer and the current collector were not separated from each other. In this test, the smaller the minimum diameter of the bar is, the better the film strength is, and “D” or more is a pass.
  • Discharge capacity maintenance rate (%) (discharge capacity at 20th cycle / discharge capacity at 1st cycle) ⁇ 100
  • Negative Electrode Current Collector Negative Electrode Active Material Layer 3 Solid Electrolyte Layer 4 Positive Electrode Active Material Layer 5 Positive Electrode Current Collector 6 Operating Site 10 All Solid State Secondary Battery 11 Coin Case 12 Laminated Body for All Solid State Secondary Battery 13 Ion Conductivity Measurement Cell (coin battery)

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

無機固体電解質と、活物質と、これの両者に対して結着する分配成分とを含有する電極用組成物であって、上記分配成分の1種がバインダーであり、このバインダーを構成するポリマーが、アミノ基、スルファニル基、ヒドロキシ基、カルボキシ基又はアノン基を有する繰り返し単位を含み、上記電極用組成物により構成される電極活物質層中、上記無機固体電解質に対する上記分配成分の分配率が60%を越える、電極用組成物、この電極用組成物を用いた、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法。

Description

電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法
 本発明は、電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法に関する。
 リチウムイオン二次電池は、負極と、正極と、負極及び正極の間に挟まれた電解質とを有し、両極間にリチウムイオンを往復移動させることにより充放電を可能とした蓄電池である。リチウムイオン二次電池には、従来、電解質として有機電解液が用いられてきた。しかし、有機電解液は液漏れを生じやすく、また、過充電又は過放電により電池内部で短絡が生じ発火するおそれもあり、安全性と信頼性の更なる向上が求められている。
 このような状況下、有機電解液に代えて、無機固体電解質を用いた全固体二次電池が注目されている。全固体二次電池は負極、電解質及び正極の全てが固体からなり、有機電解液を用いた電池の安全性及び信頼性を大きく改善することができる。
 このような全固体二次電池において、負極活物質層、固体電解質層及び正極活物質層等の構成層を形成する材料として、無機固体電解質、活物質及びポリマー等を含有する材料が、提案されている。
 例えば、特許文献1には、無機固体電解質及び電極活物質を含み、この無機系固体電解質中に分散した高分子化合物を特定の含有量で含む電極用合材が記載されている。
特許第5375975号公報
 全固体二次電池の生産性及び性能を向上させるためには、全固体二次電池用電極シートの電極活物質層に強度の向上が要求される。しかし、本発明者らの検討により、特許文献1記載の電極用合材を用いた全固体二次電池用電極シートは、電極活物質層の膜強度が低いものが含まれるおそれがあることがわかった。さらに、この全固体二次電池用電極シートを組込んだ全固体二次電池は、サイクル特性が不十分なものが含まれうることが分かった。
 本発明は、電極活物質層を形成する材料として用いることにより、膜強度に優れた電極活物質層を有する電極シート及びサイクル特性に優れた全固体二次電池を実現できる電極用組成物を提供することを課題とする。また、本発明は、この電極用組成物で構成した電極活物質層を有する、全固体二次電池用電極シート及び全固体二次電池を提供することを課題とする。また、本発明は、上記電極用組成物、上記全固体二次電池用電極シート及び上記全固体二次電池の各製造方法を提供することを課題とする。
 本発明者らは、種々検討を重ねた結果、無機固体電解質と、活物質と、特定の官能基をもつ繰り返し単位を構成成分として有するポリマーを含むバインダーとを組み合わせて調製した電極用組成物を用いて形成した電極活物質層中、無機固体電解質に対する上記バインダーを含む分配成分の分配率が特定の値を越えることで、この電極活物質層が膜強度に優れること、及び、この電極活物質層を有する電極シートを組込んだ全固体二次電池がサイクル特性に優れることを見出した。本発明はこれらの知見に基づき更に検討を重ね、完成されるに至ったものである。
 すなわち、上記の課題は以下の手段により解決された。
<1>
 無機固体電解質と、活物質と、これの両者に対して結着する分配成分とを含有する電極用組成物であって、
 上記分配成分の1種がバインダーであり、このバインダーを構成するポリマーが、アミノ基、スルファニル基、ヒドロキシ基、カルボキシ基又はアノン基を有する繰り返し単位を含み、
 上記電極用組成物により構成される電極活物質層中、上記無機固体電解質に対する上記分配成分の分配率が60%を越える、電極用組成物。
<2>
 上記バインダーの上記活物質に対する吸着率A、及び上記バインダーの上記無機固体電解質に対する吸着率Bが、下記式I)及びII)を満たす、<1>に記載の電極用組成物。
 式I)  吸着率B≧20%
 式II) 吸着率B>吸着率A
<3>
 上記吸着率Aが25%以下である、<2>に記載の電極用組成物。
<4>
 上記バインダーが粒子状バインダーである、<1>~<3>のいずれか1つに記載の電極用組成物。
<5>
 上記バインダーを構成するポリマーがアミド結合、ウレア結合又はウレタン結合を有するポリマーである、<1>~<4>のいずれか1つに記載の電極用組成物。
<6>
 上記活物質が、ケイ素原子又はスズ原子を有する負極活物質である、<1>~<5>のいずれか1つに記載の電極用組成物。
<7>
 上記負極活物質がケイ素原子を有する負極活物質である、<6>に記載の電極用組成物。
<8>
 上記電極用組成物に含まれる全固形成分中の上記バインダーの含有量が、2質量%を越え20質量%以下である、<1>~<7>のいずれか1つに記載の電極用組成物。
<9>
 JIS K 7161(2014)に準拠して測定される、上記バインダーを構成するポリマーの弾性率が10~500MPaである、<1>~<8>のいずれか1つに記載の電極用組成物。
<10>
 JIS K 7161(2014)に準拠して測定される、上記バインダーを構成するポリマーの引張破壊ひずみが50~700%である、<1>~<9>のいずれか1つに記載の電極用組成物。
<11>
 無機固体電解質と、活物質と、この両者に対して結着する分配成分とを含有する電極活物質層を有する全固体二次電池用電極シートであって、
 上記分配成分の1種がバインダーであり、このバインダーを構成するポリマーが、アミノ基、スルファニル基、ヒドロキシ基又はアノン基を有する繰り返し単位を含み、
 上記電極活物質層中、上記無機固体電解質に対する上記分配成分の分配率が60%を越える、全固体二次電池用電極シート。
<12>
 正極活物質層と固体電解質層と負極活物質層とをこの順で具備する全固体二次電池であって、
 上記正極活物質層及び上記負極活物質層の少なくとも1層が、<1>~<10>のいずれか1つに記載の電極用組成物で構成した層である、全固体二次電池。
<13>
 無機固体電解質とバインダーとを混合して混合物を得る工程と、
 上記混合物と活物質とを混合する工程とを有する、<1>~<10>のいずれか1つに記載の電極用組成物の製造方法。
<14>
 <13>に記載の製造方法により得た電極用組成物を塗布する工程を含む、全固体二次電池用電極シートの製造方法。
<15>
 <14>に記載の製造方法により得た全固体二次電池用電極シートを用いて全固体二次電池を製造する工程を含む、全固体二次電池の製造方法。
 本発明の説明において、「アノン基」とは、シクロヘキサノン由来の基を意味する。例えば、シクロヘキサノンの酸素原子に結合する炭素原子の隣の炭素原子から水素原子を1個除いた1価の基が挙げられる。
 本発明の電極用組成物は、電極活物質層を形成する材料として用いることにより、膜強度に優れた電極活物質層を有する電極シート及びサイクル特性に優れた全固体二次電池を実現できる。また、本発明は、上記電極用組成物で構成した電極活物質層を有する、全固体二次電池用電極シート及び全固体二次電池を提供できる。更に、本発明は、上記電極用組成物、上記電極用組成物を用いた全固体二次電池用電極シート及び全固体二次電池の各製造方法を提供できる。
本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において化合物の表示(例えば、化合物と末尾に付して呼ぶとき)については、この化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、所望の効果を奏する範囲で、置換基を導入するなど一部を変化させた誘導体を含む意味である。
 本明細書において置換又は無置換を明記していない置換基、連結基等(以下、置換基等という。)については、その基に適宜の置換基を有していてもよい意味である。よって、本明細書において、単に、YYY基と記載されている場合であっても、このYYY基は、置換基を有しない態様に加えて、更に置換基を有する態様も包含する。これは置換又は無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Zが挙げられる。
 本明細書において、特定の符号で示された置換基等が複数あるとき、又は複数の置換基等を同時若しくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。また、特に断らない場合であっても、複数の置換基等が隣接するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい意味である。
[電極用組成物]
 本発明の電極用組成物は、無機固体電解質と、活物質と、この両者に対して所定の割合で結着する分配成分とを含有し、この電極用組成物を用いて構成される電極活物質層中、無機固体電解質と活物質との合計に対する分配成分の無機固体電解質に対する分配率は60%を越える。上記分配成分の1種はバインダーである。なお、上記「結着」には、物理的な結着だけでなく、電子的な結着(電子の授受を行えること)も含まれる。後述の吸着率Aが0%であっても、バインダーが活物質に分配されている限り、このバインダーは活物質に結着していると解する。
 本発明の電極用組成物により構成される電極活物質層を有する全固体二次電池用電極シートは、電極活物質層の膜強度に優れ、この全固体二次電池用電極シートを有する全固体二次電池はサイクル特性に優れる。この理由は未だ定かではなく、特定の官能基をもつ繰り返し単位を有するポリマーを含む分配成分の上記分配率が60%を越えることにより、電極活物質層中、無機固体電解質-ポリマーネットワーク(このネットワークには、導電助剤が含まれてもよい)が形成されると考えられる。このネットワークが存在することにより、電極活物質層の膜強度を向上させることができ、また、全固体二次電池を充放電する際、活物質の膨張収縮による体積の増減による電極活物質層自体の体積変化を低減することができるため、全固体二次電池のサイクル特性を向上させることができると考えられる。
 本発明の電極用組成物は、好ましくは分散媒を含有する。この場合、無機固体電解質、活物質、分配成分及び分散媒の混合態様は、特に制限されない。本発明の電極用組成物は、分散媒中に無機固体電解質と活物質と分配成分とが分散したスラリーであることが好ましい。
 本発明の電極用組成物は、全固体二次電池用電極シート又は全固体二次電池の活物質層を形成する材料として好ましく用いることができる。
 本発明の電極用組成物の含水率(水分含有量ともいう。)は、特に制限されず、質量基準で500ppm以下であることが好ましく、200ppm以下であることがより好ましく、100ppm以下であることが更に好ましく、50ppm以下であることが特に好ましい。電極用組成物の含水率が少ないと、硫化物系無機固体電解質の劣化を抑制することができる。含水量は、電極用組成物中に含有している水の量(電極用組成物中の質量割合)を示し、具体的には、0.02μmのメンブレンフィルターでろ過し、カールフィッシャー滴定を用いて測定された値とする。
 以下、本発明の電極用組成物が含有する成分及び含有しうる成分について説明する。
<無機固体電解質>
 本発明の電極用組成物は、無機固体電解質を含有する。
 本発明において、無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオン及びアニオンに解離又は遊離していない。この点で、電解液、又は、ポリマー中でカチオン及びアニオンに解離若しくは遊離している無機電解質塩(LiPF、LiBF、リチウムビス(フルオロスルホニル)イミド(LiFSI)、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有するものであれば、特に限定されず、電子伝導性を有さないものが一般的である。本発明の全固体二次電池がリチウムイオン電池の場合、無機固体電解質は、リチウムイオンのイオン伝導性を有することが好ましい。
 上記無機固体電解質は、全固体二次電池に通常使用される固体電解質材料を適宜選定して用いることができる。無機固体電解質は(i)硫化物系無機固体電解質と(ii)酸化物系無機固体電解質が代表例として挙げられる。本発明において、活物質と無機固体電解質との間により良好な界面を形成することができる観点から、硫化物系無機固体電解質が好ましく用いられる。
(i)硫化物系無機固体電解質
 硫化物系無機固体電解質は、硫黄原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導性を有しているものが好ましい。目的又は場合に応じて、Li、S及びP以外の他の元素を含んでもよい。
 硫化物系無機固体電解質としては、例えば、下記式(A)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
 
   La1b1c1d1e1 式(A)
 
 式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1は1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましく、0~1がより好ましい。d1は2.5~10が好ましく、3.0~8.5がより好ましい。e1は0~5が好ましく、0~3がより好ましい。
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi-P-S系ガラス、又はLi、P及びSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mで表される元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
 Li-P-S系ガラス及びLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特に制限されず、1×10-1S/cm以下であることが実際的である。
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。例えば、LiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法及び溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
(ii)酸化物系無機固体電解質
 酸化物系無機固体電解質は、酸素原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。
 酸化物系無機固体電解質は、イオン伝導度として、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。上限は特に制限されず、1×10-1S/cm以下であることが実際的である。
 具体的な化合物例としては、例えばLixaLayaTiO〔xaは0.3≦xa≦0.7を満たし、yaは0.3≦ya≦0.7を満たす。〕(LLT); LixbLaybZrzbbb mbnb(MbbはAl、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、In及びSnから選ばれる1種以上の元素である。xbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。); Lixcyccc zcnc(MccはC、S、Al、Si、Ga、Ge、In及びSnから選ばれる1種以上の元素である。xcは0<xc≦5を満たし、ycは0<yc≦1を満たし、zcは0<zc≦1を満たし、ncは0<nc≦6を満たす。); Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(xdは1≦xd≦3を満たし、ydは0≦yd≦1を満たし、zdは0≦zd≦2を満たし、adは0≦ad≦1を満たし、mdは1≦md≦7を満たし、ndは3≦nd≦13を満たす。); Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。); LixfSiyfzf(xfは1≦xf≦5を満たし、yfは0<yf≦3を満たし、zfは1≦zf≦10を満たす。); Lixgygzg(xgは1≦xg≦3を満たし、ygは0<yg≦2を満たし、zgは1≦zg≦10を満たす。); LiBO; LiBO-LiSO; LiO-B-P; LiO-SiO; LiBaLaTa12; LiPO(4-3/2w)(wはw<1); LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO; ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO; NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12; Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(xhは0≦xh≦1を満たし、yhは0≦yh≦1を満たす。); ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。
 またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO); リン酸リチウムの酸素の一部を窒素で置換したLiPON; LiPOD(Dは、好ましくは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt及びAuから選ばれる1種以上の元素である。)等が挙げられる。
 更に、LiAON(Aは、Si、B、Ge、Al、C及びGaから選ばれる1種以上の元素である。)等も好ましく用いることができる。
 無機固体電解質は粒子であることが好ましい。この場合、無機固体電解質の平均粒径(体積平均粒子径)は特に制限されず、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。「体積平均粒子径」は、体積基準のメジアン径とする。なお、メジアン径とは粒径分布を累積分布として表したときの累積50%に相当する。
 平均粒径の測定は、以下の手順で行う。無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mLサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJIS Z 8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
 無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 電極活物質層の単位面積(cm)当たりの活物質と無機固体電解質との合計の質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができ、例えば、1~100mg/cmとすることができる。
 無機固体電解質の、電極用組成物中の含有量は、特に制限されず、分散性、界面抵抗の低減及び結着の点で、固形分100質量%において、無機固体電解質と後述の活物質との合計含有量が、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることがよりに好ましく、95質量%以下であることが更に好ましい。
 本発明において、固形分(固形成分)とは、電極用組成物を、1mmHgの気圧下、窒素雰囲気下150℃で6時間乾燥処理を行ったときに、揮発若しくは蒸発して消失しない成分をいう。典型的には、後述の分散媒以外の成分を指す。
<活物質>
 本発明の電極用組成物には、周期律表第1族若しくは第2族に属する金属のイオンの挿入放出が可能な活物質を含有する。活物質としては、以下に説明する通り、正極活物質及び負極活物質が挙げられる。正極活物質としては遷移金属酸化物(好ましくは遷移金属酸化物)が好ましく、負極活物質としては金属酸化物若しくはSn、Si、Al及びIn等のリチウムと合金形成可能な金属が好ましい。
(正極活物質)
 正極活物質は、可逆的にリチウムイオンを挿入若しくは放出できるもの又は挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物、又は、硫黄などのLiと複合化できる元素などでもよい。
 中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、Cu及びVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P及びBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0~30mol%が好ましい。Li/Mのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物及び(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])、LiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO、LiFeMn、LiCuMn、LiCrMn及びLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO及びLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類並びにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩及びLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO、LiCoSiO等が挙げられる。
 本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO又はNMCがより好ましい。
 正極活物質の形状は特に制限されないが粒子状が好ましい。正極活物質の体積平均粒子径(球換算平均粒子径)は特に制限されない。例えば、0.1~50μmとすることができる。正極活物質を所定の粒子径にするには、通常の粉砕機又は分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。正極活物質粒子の体積平均粒子径(球換算平均粒子径)は、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて測定することができる。
 正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
(負極活物質)
 負極活物質は、可逆的にリチウムイオンを挿入若しくは放出できるもの又は挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、酸化錫等の金属酸化物、酸化ケイ素、金属複合酸化物、リチウム単体又はリチウムアルミニウム合金等のリチウム合金、並びに、Sn、Si、Al、In等のリチウムと合金形成可能な金属等が挙げられる。中でも、炭素質材料又は金属複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵、放出可能であることが好ましい。その材料は、特に制限されず、構成成分としてチタン及びリチウムの少なくともいずれかを含有していることが、高電流密度充放電特性の観点で好ましい。
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂若しくはフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。更に、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維、活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー、平板状の黒鉛等を挙げることもできる。
 これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素質材料と黒鉛系炭素質材料に分けることもできる。また炭素質材料は、特開昭62-22066号公報、特開平2-6856号公報、同3-45473号公報に記載される面間隔又は密度、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料である必要はなく、特開平5-90844号公報記載の天然黒鉛と人造黒鉛の混合物、特開平6-4516号公報記載の被覆層を有する黒鉛等を用いることもできる。
 負極活物質として適用される金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、更に金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイドも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°以上70°以下に見られる結晶性の回折線の内最も強い強度が、2θ値で20°以上40°以下に見られるブロードな散乱帯の頂点の回折線強度の100倍以下であるのが好ましく、5倍以下であるのがより好ましく、結晶性の回折線を有さないことが特に好ましい。
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Ge、Pb、Sb及びBiの1種単独あるいはそれらの2種以上の組み合わせからなる酸化物、並びにカルコゲナイドがさらに好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、GeO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Sb、Bi、Bi、GeS、PbS、PbS、Sb、Sb及びSnSiSが好ましく挙げられる。
 負極活物質はチタン原子を含有することも好ましい。より具体的にはLiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。
 本発明において、負極活物質として、充放電による膨張収縮が大きく、リチウムと合金化可能な、ケイ素原子又はスズ原子を有する負極活物質を用いることができ、より容量の高いケイ素原子を有する負極活物質を用いることが好ましく、ケイ素原子の含有量が全構成原子の50mol%以上の負極活物質を用いることがより好ましい。
 一般的にケイ素負極及びスズ負極は、炭素負極(黒鉛及びアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位重量あたりのLiイオンの吸蔵量が増加する。そのため、放電容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。
 ケイ素原子又はスズ原子を有する負極活物質の具体例として、Sn、Si、SiOx(0<x≦1);チタン、バナジウム、クロム、マンガン、ニッケル、銅若しくはランタンを含む合金(例えば、LaSi、VSi)又は組織化した活物質(例えば、LaSi/Si);SnO、SnO、SnSiO、SnS、SnS、又はSnSiSが好ましく挙げられる。また、酸化リチウムとの複合酸化物、例えば、LiSnOを用いることもできる。
 SiOは、それ自体を負極活物質(半金属酸化物)として用いることができ、また、全固体二次電池の稼働によりSiを生成するため、リチウムと合金化可能な活物質(その前駆体物質)として用いることができる。
 負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質の平均粒子径は、0.1~60μmが好ましい。所定の粒子径にするには、通常の粉砕機又は分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミル又は篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級方法としては、特に制限はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式、湿式ともに用いることができる。負極活物質粒子の平均粒子径は、前述の正極活物質の体積平均粒子径の測定方法と同様の方法により測定することができる。
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
(活物質の被覆)
 正極活物質及び負極活物質の表面は別の金属酸化物で表面被覆されていてもよい。表面被覆剤としてはTi、Nb、Ta、W、Zr、Al、Si又はLiを含有する金属酸化物等が挙げられる。具体的には、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、ニオブ酸リチウム系化合物等が挙げられ、具体的には、LiTi12、LiTi、LiTaO、LiNbO、LiAlO、LiZrO、LiWO、LiTiO、Li、LiPO、LiMoO、LiBO、LiBO、LiCO、LiSiO、SiO、TiO、ZrO、Al、B等が挙げられる。
 また、正極活物質又は負極活物質を含む電極表面は硫黄又はリンで表面処理されていてもよい。
 更に、正極活物質又は負極活物質の粒子表面は、上記表面被覆の前後において活性光線又は活性気体(プラズマ等)により表面処理を施されていてもよい。
<分配成分>
 本発明に用いられる分配成分は、バインダーからなるものでもよく、バインダー及び導電助剤からなるものでもよい。「分配成分」とは、本発明の電極活物質層中、無機固体電解質に60%を越える割合で選択的に分配される成分であり、実施例に記載の測定方法において、分配率の算出の対象になる成分である。このような成分として、バインダー及び導電助剤が挙げられる。またこれら以外にも、分散剤及び増粘剤等が挙げられる。
 上述のように、本発明の電極用組成物を用いて構成される電極活物質層中、無機固体電解質に対する分配成分の分配率が60%を越える。この無機固体電解質に対する分配成分の分配率は70%以上が好ましく、74%以上がより好ましく、80%以上がより好ましく、82%以上がさらに好ましく、90%以上が特に好ましい。上限は、100%であってもよい。本発明において、分配率は、実施例に記載の方法により算出される値である。
 上記分配率を60%越えにすると、電極活物質層中、十分な無機固体電解質-ポリマーネットワークが形成され、電極活物質層の膜強度が高まり、全固体二次電池のサイクル特性が向上する。分配率は、電極用組成物が含有する成分の混合順序、バインダーを構成するポリマーの全構成成分中の、アミノ基、スルファニル基、ヒドロキシ基又はアノン基を有する繰り返し単位の含有量等により調整することができる。
(バインダー)
 本発明に用いられるバインダーを構成するポリマーは、アミノ基、スルファニル基、ヒドロキシ基、カルボキシ基又はアノン基を有する繰り返し単位(すなわち、アミノ基、スルファニル基、ヒドロキシ基、カルボキシ基及びアノン基の少なくとも1種を有する繰り返し単位)を含む。ポリマーの全構成成分に占める、この繰り返し単位の含有量は特に制限されず、1~60質量%が好ましく、2~50質量%がより好ましく、5~40質量%がさらに好ましい。
 本発明に用いられるバインダーを構成するポリマーが上記官能基を有することで、無機固体電解質と分配成分(特にバインダー)との結着性を高め、膜強度を向上させることができる。
 上述のように、本発明に用いられるバインダーの活物質に対する吸着率A、及びバインダーの無機固体電解質に対する吸着率Bが、下記式I)及びII)を満たすことが好ましい。本発明において、吸着率A及びBは、実施例に記載の方法により算出される値である。
 式I)  吸着率B≧20%
 式II) 吸着率B>吸着率A
 バインダーを構成するポリマーが式I)を満たすことで、無機固体電解質同士が十分に結着し、上記式II)を満たすことで、電極活物質層の膜強度及び全固体二次電池のサイクル特性を向上させることができる。上記吸着率A及び吸着率Bは、バインダーを構成するポリマーの全構成成分中の、アミノ基、スルファニル基、ヒドロキシ基又はアノン基を有する繰り返し単位の含有量等により調整することができる。
 本発明の電極用組成物を用いて作製される膜強度をより向上させ、この電極活物質層を有する全固体二次電池のサイクル特性をより向上させるため、吸着率Aは、25%以下であることが好ましく、10%以下であってもよい。下限は、0.1%以上が好ましく、1%以上がより好ましい。
 吸着率Bは、20%以上が好ましく、50%以上がより好ましく、80%以上がより好ましく、90%以上が更に好ましい。上限は、99.9%以下が好ましく、99.0%以下がより好ましい。
 バインダーを構成するポリマーは、分散媒に対して可溶であってもよく、特にイオン伝導性の点で、分散媒に対して不溶(の粒子)であることが好ましい。
 本発明において、分散媒に対して不溶であるとは、ポリマーを30℃の分散媒(使用量はポリマーの質量に対して10倍)に添加し、24時間静置しても、分散媒への溶解量が3質量%以下であることを意味し、2質量%以下であることが好ましく、1質量%以下であることがより好ましい。この溶解量は、分散媒に添加したポリマー質量に対する、24時間経過後に固液分離した分散媒から得られるポリマー質量の割合とする。
 上記バインダーは、電極用組成物中において、例えば分散媒に溶解して存在していてもよく、分散媒に溶解せず固体状で存在(好ましくは分散)していてもよい(固体状で存在するバインダーを粒子状バインダーという。)。本発明において、バインダーは、電極用組成物中、更には電極活物質層(塗布乾燥層)において粒子状バインダーであることが、電池抵抗及びサイクル特性の点で、好ましい。
 バインダーが粒子状バインダーである場合、その形状は特に制限されず、偏平状、無定形等であってもよく、球状若しくは顆粒状が好ましい。
 粒子状バインダーの平均粒径は、特に制限されず、1000nm以下であることが好ましく、500nm以下であることがより好ましく、300nm以下であることが更に好ましい。下限値は1nm以上であり、5nm以上であることが好ましく、10nm以上であることがより好ましく、50nm以上であることが更に好ましい。
 粒子状バインダーの平均粒径は、特に断らない限り、以下に記載の測定条件及び定義によるものとする。
 粒子状バインダーを適宜の溶媒(例えばジイソブチルケトン)を用いて20mLサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、得られた体積平均粒子径を平均粒径とする。その他の詳細な条件等は必要によりJIS Z 8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製して測定し、その平均値を採用する。
 なお、全固体二次電池の活物質層中の粒子状バインダーの平均粒径の測定は、例えば、全固体二次電池を分解して活物質層を剥がした後、その材料について上記粒子状バインダーの平均粒径の測定方法に準じてその測定を行い、予め測定していた粒子状バインダー以外の粒子の平均粒径の測定値を排除することにより行うことができる。
 本発明に用いられるバインダーを構成するポリマーの種類は、電極活物質層中、無機固体電解質に対する分配成分の分配率が60%を越えるようにすることができるものであって、アミノ基、スルファニル基、ヒドロキシ基、カルボキシ基又はアノン基を有する繰り返し単位を含むものであれば特に制限されず、例えば、アミド結合、ウレア結合又はウレタン結合を有するポリマーが好ましい。本発明に用いられるバインダーとして、例えば、特開2018-44111号公報、特開2015-88486号公報、特開2015-167126号公報、及び特開2016-35911号公報に記載のバインダー(ポリマー)で上記分配率を60%越えに調節できるものが挙げられる。なお、連鎖重合系ポリマー及び逐次重合系ポリマーのいずれも用いることができる。
 以下、本発明に好ましく用いられるバインダー(A)を構成するポリマーについて説明する。
 このポリマーは、アミド結合、ウレア結合及びウレタン結合からなる群より選択される少なくとも一つの結合を含む主鎖を有している。また、このポリマーは、ポリマーを形成する構成成分として、後述する条件A及びBを満たす側鎖を持つ構成成分を有している。また、このポリマーは、アミノ基、スルファニル基、ヒドロキシ基、カルボキシ基又はアノン基を有している。このポリマーは、アミノ基、スルファニル基、ヒドロキシ基、カルボキシ基又はアノン基を主鎖及び側鎖のいずれに有してもよく、アミノ基、スルファニル基、ヒドロキシ基又はカルボキシ基を、主鎖に有することが好ましく、アノン基を側鎖に有することが好ましい。
 本発明において、ポリマーの主鎖とは、ポリマーを構成する、それ以外のすべての分子鎖が、主鎖に対して枝分れ鎖若しくはペンダントとみなしうる線状分子鎖をいう。典型的には、ポリマーを構成する分子鎖のうち最長鎖が主鎖となる。ただし、ポリマー末端が有する官能基は主鎖に含まない。また、ポリマーの側鎖とは、主鎖以外の分子鎖をいい、短分子鎖及び長分子鎖を含む。
(ポリマーの主鎖)
 ポリマーの主鎖は、アミド結合、ウレア結合及びウレタン結合からなる群より選択される少なくとも一つの結合を有している。主鎖が含むこれら結合は、水素結合を形成することにより、電極活物質層の膜強度向上に寄与する。したがって、これらの結合が形成する水素結合は、上記結合同士であってもよく、上記結合と主鎖が有するそれ以外の部分構造であってもよい。上記結合は、互いに水素結合を形成可能な点で、水素結合を形成する水素原子を有していること(各結合の窒素原子が無置換であること)が好ましい。
 上記結合は、ポリマーの主鎖中に含まれる限り特に制限されるものでなく、構成単位(繰り返し単位)中に含まれる態様及び/又は異なる構成単位同士を繋ぐ結合として含まれる態様のいずれでもよい。また、主鎖に含まれる上記結合は、1種に限定されず、2種以上であってもよい。この場合、主鎖の結合様式は、特に制限されず、2種以上の結合をランダムに有していてもよく、特定の結合を有するセグメントと他の結合を有するセグメントとのセグメント化された主鎖でもよい。
 上記結合を有する主鎖としては、特に制限されず、ポリアミド、ポリウレア及びポリウレタンから選択される少なくとも1つのセグメントを有する主鎖が好ましく、ポリアミド、ポリウレア又はポリウレタンからなる主鎖がより好ましい。具体的には、上記結合を有する主鎖は、下記式(I-1)~(I-4)のいずれかで表される構成成分を2種以上(好ましくは2~8種)組み合わせてなる主鎖が好ましい。各構成成分の組み合わせは、上記結合に応じて適宜に選択される。
Figure JPOXMLDOC01-appb-C000001
 式中、RP1及びRP2は、それぞれ、炭化水素基、又は、質量平均分子量が200以上200,000以下の分子鎖を示す。
 RP1は、炭化水素基が好ましく、芳香族の炭化水素基がより好ましい。RP2は、脂肪族の炭化水素基又は上記分子鎖が好ましく、脂肪族の炭化水素基及び上記分子鎖をそれぞれ含む態様がより好ましい。この態様においては、式(I-3)又は式(I-4)で表される構成成分は、RP2が脂肪族の炭化水素基である構成成分と、RP2が上記分子鎖である構成成分の2種を含む。
 RP1及びRP2として採り得る炭化水素基は、質量平均分子量が200未満の炭化水素基であり、例えば、脂肪族若しくは芳香族の炭化水素基が挙げられる。炭化水素基としては、アルキレン基(炭素数は1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)、アリーレン基(炭素数は6~14が好ましく、6~10がより好ましい)、又はこれらの組み合わせからなる基が好ましい。RP2として採り得る炭化水素基としては、アルキレン基がより好ましく、炭素数2~6のアルキレン基が更に好ましく、炭素数2又は3のアルキレン基が特に好ましい。
 RP1及びRP2として採り得る炭化水素基は、例えば下記式(M2)で表される炭化水素基、更にN,N’-ビス(2-ヒドロキシエチル)オキサミドのように、基中に酸素原子、硫黄原子又はイミノ基を含む基を包含する。
 脂肪族の炭化水素基としては、特に制限されず、下記式(M2)で表される芳香族の炭化水素基の水素還元体、公知の脂肪族ジイソソアネート化合物が有する部分構造(例えばイソホロニル基)等が挙げられる。
 芳香族の炭化水素基は、下記式(M2)で表される炭化水素基が好ましい。
Figure JPOXMLDOC01-appb-C000002
 式(M2)中、Xは、単結合、-CH-、-C(CH-、-SO-、-S-、-CO-又は-O-を示し、結着性の観点で、-CH-または-O-が好ましく、-CH-がより好ましい。ここで例示した上記アルキレン基はハロゲン原子(好ましくはフッ素原子)で置換されていてもよい。
 RM2~RM5は、それぞれ、水素原子又は置換基を示し、水素原子が好ましい。RM2~RM5として採り得る置換基としては、特に制限されず、例えば、炭素数1~20のアルキル基、炭素数1~20のアルケニル基、-ORM6、―N(RM6、-SRM6(RM6は置換基を示し、好ましくは炭素数1~20のアルキル基又は炭素数6~10のアリール基を示す。)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)が挙げられる。―N(RM6としては、アルキルアミノ基(炭素数は、1~20が好ましく、1~6がより好ましい)又はアリールアミノ基(炭素数は、6~40が好ましく、6~20がより好ましい)が挙げられる。
 RP1及びRP2として採り得る上記分子鎖は、炭化水素基鎖、ポリアルキレンオキシド鎖、ポリカーボネート鎖又はポリエステル鎖が好ましく、炭化水素基鎖又はポリアルキレンオキシド鎖がより好ましく、炭化水素基鎖、ポリエチレンオキシド鎖又はポリプロピレンオキシド鎖が更に好ましい。
 炭化水素基鎖は、特に制限されず、好ましくは18個以上、より好ましくは30個以上、更に好ましくは50個以上の炭素原子から構成される。上限は、特に制限されず、例えば90個とすることができる。炭化水素基鎖は、炭素-炭素不飽和結合を有していてもよく、脂肪族環及び/又は芳香族環の環構造を有していてもよい。すなわち、炭化水素基鎖は、脂肪族炭化水素基及び芳香族炭化水素基から選択される炭化水素基で構成される炭化水素基鎖であればよく、脂肪族炭化水素基で構成される炭化水素基鎖が好ましい。炭化水素基鎖は、上記炭素原子数を満たす、脂肪族飽和炭化水素基若しくは脂肪族不飽和炭化水素基、又は重合体(好ましくはエラストマー)であることが好ましい。重合体としては、具体的には、主鎖に二重結合を有するジエン系重合体、及び、主鎖に二重結合を有しない非ジエン系重合体が挙げられる。ジエン系重合体としては、例えば、スチレン-ブタジエン共重合体、スチレン-エチレン-ブタジエン共重合体、イソブチレンとイソプレンの共重合体(好ましくはブチルゴム(IIR))、ブタジエン重合体、イソプレン重合体及びエチレン-プロピレン-ジエン共重合体等が挙げられる。非ジエン系重合体としては、エチレン-プロピレン共重合体及びスチレン-エチレン-ブチレン共重合体等のオレフィン系重合体、並びに、上記ジエン系重合体の水素還元物が挙げられる。
 ポリアルキレンオキシド鎖としては、公知のポリアルキレンオキシドからなる鎖が挙げられる。構成成分としてのアルキレンオキシ基の炭素数は、1~8であることが好ましく、1~6であることがより好ましく、2又は3であること(ポリエチレンオキシド鎖又はポリプロピレンオキシド鎖)が更に好ましい。
 ポリカーボネート鎖又はポリエステル鎖としては、公知のポリカーボネート又はポリエステルからなる鎖が挙げられる。
 上記分子鎖がポリアルキレンオキシド鎖、ポリカーボネート鎖又はポリエステル鎖である場合、末端にアルキル基(炭素数は1~12が好ましく、1~6がより好ましい)を有することが好ましい。
 分子鎖が含むアルキル基中に、エーテル基(-O-)、チオエーテル基(-S-)、カルボニル基(>C=O)、イミノ基(>NR:Rは水素原子、炭素数1~6のアルキル基若しくは炭素数6~10のアリール基)を有していてもよい。
 上記分子鎖の質量平均分子量は、250以上が好ましく、500以上がより好ましく、700以上が更に好ましく、1,000以上が特に好ましい。上限としては、100,000以下が好ましく、10,000以下がより好ましい。分子鎖の質量平均分子量は、ポリマーの主鎖に組み込む前の原料化合物について測定する。
 上記式(I-1)で表される構成成分を導く原料化合物(ジイソシアネート化合物)は、特に制限されず、例えば、国際公開第2018/020827号に記載の、式(M1)で表されるジイソシアネート化合物及びその具体例が挙げられる。また、上記式(I-2)で表される構成成分を導く原料化合物(カルボン酸若しくはその酸クロリド等)は、特に制限されず、例えば、国際公開第2018/020827号に記載の、式(M1)で表される化合物及びその具体例が挙げられる。
 上記式(I-3)又は式(I-4)で表される構成成分を導く原料化合物(ジオール化合物又はジアミン化合物)は、それぞれ、特に制限されず、例えば、国際公開第2018/020827号に記載の各化合物及びその具体例が挙げられ、更にジヒドロキシオキサミドが挙げられる。
 RP1及びRP2は、それぞれ、置換基を有していてもよい。この置換基としては、特に制限されず、例えばRM2として採りうる上記置換基が挙げられ、また後述する側鎖に対応する基も挙げられる。RP1及びRP2はアミノ基、スルファニル基、ヒドロキシ基又はカルボキシ基を有することが好ましく、中でも式(I-3)のRP2はアミノ基、スルファニル基、ヒドロキシ基又はカルボキシ基を有することが好ましい。
(側鎖を持つ構成成分)
 バインダーを構成するポリマーは、後述する特定の側鎖を持つ構成成分を有することが好ましい。この側鎖は、ポリマーを構成する構成成分であればいずれの構成成分に組み込まれていてもよく、例えば上記式(I-1)~式(I-4)のいずれの構成成分に組み込まれていてもよい。中でも、上記式(I-3)又は式(I-4)で表される構成成分に組み込まれていることが好ましく、上記式(I-3)又は式(I-4)で表される構成成分の中でもRP2が脂肪族の炭化水素基である構成成分に組み込まれていることがより好ましい。これらの構成成分が特定の側鎖を持つと、負極活物質と相互作用しやすくなる。
 - 側鎖 -
 バインダーを構成するポリマーが有する側鎖は、下記条件A及びBを満たすことが好ましい。
条件A:主鎖を構成する原子から4原子以上離れた鎖構造部に、カルボニル基、チオカルボニル基及びホスホリル基(>P(=O)-)からなる群より選択される少なくとも1つの基を有する。
条件B:上記カルボニル基、チオカルボニル基及びホスホリル基は、いずれも、ヒドロキシ基と結合していない。
 条件Aにおいて、側鎖における鎖構造部は、側鎖のうち、主鎖の分子鎖を構成する原子から4原子以上離れた側鎖末端側の構造部をいう。例えば、主鎖の分子鎖がアルキレン基を含み、側鎖がこのアルキレン基を構成する炭素原子(主鎖形成炭素原子)に結合している場合、「主鎖を構成する原子から4原子以上離れた鎖構造部に、カルボニル基、チオカルボニル基及びホスホリル基(>P(=O)-)からなる群より選択される少なくとも1つの基を有する。」とは、上記主鎖形成炭素原子に結合する原子を始点として、この始点からカルボニル基の炭素原子、チオカルボニル基の硫黄原子又はホスホリル基のリン原子までの連結原子数(始点の原子及びカルボニル基の炭素原子、チオカルボニル基の硫黄原子又はホスホリル基のリン原子を含む)が4以上であることを意味する。
 より具体的には、後述する構成成分A-1においては、主鎖の分子鎖(エチレンジオキシド鎖)を形成する炭素原子に結合するイオウ原子を始点として、連結原子鎖(-S-C-C(3級炭素原子)-C(カルボニル炭素原子)-O-C(メチル基の炭素原子)の原子連結数6の分子鎖)において、硫黄原子から数え始めて連結原子数が4以上となる部分(連結原子で示すと、C(カルボニル炭素原子)-O-C(メチル基の炭素原子))が鎖構造部となる。また、後述する構成成分A-5においては、主鎖の分子鎖(エチレンジオキシド鎖)を形成する炭素原子に結合するイオウ原子を始点として、連結原子鎖(-S-C-C-C(カルボニル炭素原子)-C-C-C)において、硫黄原子から数え始めて連結原子数が4以上となる部分(連結原子で示すと、-C(カルボニル炭素原子)-C-C-C)が鎖構造部となる。構成成分A-5のように、硫黄原子から数え始めて連結原子数が4以上となる数え方が2通り以上ある場合、連結原子数が少なくなる数え方を採用する。
 側鎖は、上述の鎖構造部に、カルボニル基、チオカルボニル基及びホスホリル基(>P(=O)-)からなる群より選択される少なくとも1つの基を有している。これにより、側鎖の分子運動のしやすさと相まって電極活物質と強固な相互作用が生じる。
 条件Aで規定する上記基のうち、鎖構造部は、カルボニル基を有することが好ましい。
 カルボニル基、チオカルボニル基及びホスホリル基(>P(=O)-)は、鎖構造部の端部としてヒドロキシ基を有しない(条件B)。更に、これらの基はいずれも水素原子と結合していないことが好ましい。すなわち、これらの基は、いずれも、鎖構造部中に組み込まれていることが好ましい。なお、ホスホリル基の結合手のうち2つが鎖構造部への組み込みに使用され、残りの1つは水素原子及びヒドロキシ基以外の置換基と結合する。この置換基としては、特に制限されず、例えばR及びRとして採り得る後記置換基が挙げられる。
 鎖構造部が有する上記基は、1つの鎖構造部(構成成分)において少なくとも1個であればよく、例えば、1~10個であり、電極活物質と相互作用の点で、1~5個が好ましく、1~3個がより好ましい。鎖構造部が有する上記基は、質量比で規定すると、鎖構造部の全質量Wに対する上記基の合計質量Wの割合[W/W]が、0.05以上であることが好ましく、0.1以上であることがより好ましく、0.2以上であることが更に好ましく、0.3以上であることが特に好ましい。上限は、特に制限されず、例えば、0.7以下とすることができ、0.65以下が好ましい。
 なお、鎖構造部が分岐鎖(置換基等)を有する場合、分岐構造の質量、及び分子鎖の端部水素原子の質量も鎖構造部の全質量に算入する。
 ポリマー1分子が有する上記基の数は、適宜に設定される。
 鎖構造部が有する上記基の種類は、少なくとも1種であればよく、2種以上であってもよい。
 上記側鎖は、下記式(I)~(III)のいずれかで表される部分構造を有することが好ましく、下記式(II)又は式(III)で表される部分構造を有することがより好ましく、下記式(II)で表される部分構造を有することが更に好ましい。
 これらの部分構造が側鎖に組み込まれる位置は、各構造中のカルボニル基の炭素原子が主鎖を構成する原子から4原子以上離れた位置に組み込まれていれば特に制限されない。なお、式(III)で表される部分構造は、少なくとも1つのカルボニル基の炭素原子が主鎖を構成する原子から4原子以上離れた位置に組み込まれていればよい。
Figure JPOXMLDOC01-appb-C000003
 式中、L~Lはそれぞれ連結基を示す。
 L~Lとして採り得る連結基としては、特に制限されず、例えば、アルキレン基(炭素数は1~30が好ましく、1~20がより好ましく、1~10がより好ましく、1~6がより好ましく、1~3が特に好ましい。)、アリーレン基(炭素数は6~24が好ましく、6~14がより好ましく、6~10が特に好ましい。)、炭素数3~12のヘテロアリーレン基、エーテル基(-O-)、スルフィド基(-S-)、カルボニル基、イミノ基(-NR-:Rは結合部位、水素原子、炭素数1~6のアルキル基若しくは炭素数6~10のアリール基)、又は、これらを2個以上(好ましくは2~10個)組み合わせた連結基が挙げられる。中でも、L~Lとして採り得る連結基としてはいずれもアルキレン基が好ましく、Lとして採り得る連結基としてはメチレンがより好ましい。L及びLが式中の2つの炭素原子とともに形成する環の員数は、特に制限されず、4~8員環が好ましく、5若しくは6員環がより好ましく、6員環(好ましくは、式(II)で表される部分構造がアノン基となる形態)がさらに好ましい。
 上記式(I)及び式(III)において、R及びRはそれぞれ置換基を示す。ただし、Rは式(III)中の「-L-CO-R」を採らない。
 R及びRとして採り得る置換基は、特に制限されず、アルキル基(炭素数は1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)、アリール基(炭素数は6~22が好ましく、6~14がより好ましく、6~10が更に好ましい)、ヘテロ原子を含む基が挙げられる。ヘテロ原子としては、特に制限されず、酸素原子、硫黄原子、窒素原子、リン原子等が好ましい。ヘテロ原子を含む基としては、基中にヘテロ原子を含む基、各式中のカルボニル炭素原子に上記ヘテロ原子で結合する基等が挙げられる。例えば、ヘテロ環基(好ましくは炭素数2~20のヘテロ環基で、好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5又は6員環のヘテロ環基である。ヘテロ環基には芳香族ヘテロ環基及び脂肪族ヘテロ環基を含む。)、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基等が挙げられる。
 Rとして採り得る置換基としてはヘテロ原子(好ましくは炭素数1~10)を含む基が好ましく、Rとして採り得る置換基はアルキル基が好ましい。
 アルコキシ基及びアルキルチオ基の炭素数は、いずれも、1~10が好ましく、1~6がより好ましく、1~3が特に好ましい。アリールオキシ基及びアリールチオ基の炭素数は、いずれも、6~24が好ましく、6~14がより好ましく、6~10が特に好ましい。
 R、R、L及びLは、アミノ基、スルファニル基、ヒドロキシ基又はカルボキシ基を有してもよい。
 R及びRとして採り得る置換基は更に置換基を有していてもよく、この置換基としては、アルキル基、アリール基、アミノ基、ホスホリル基、エーテル基、又は、これらを2個以上(好ましくは2~10個)組み合わせた基が挙げられる。
 R及びRとして採り得る置換基は、L若しくはL、又は、後述する上記各式で表される構造とポリマーの主鎖とを連結する連結基と結合して、シキロヘキセン環等の環を形成していてもよい。
 上記各式において、**は、ポリマーの主鎖(を構成する原子)との結合部を示す。
 上記式(II)又は(III)で表される部分構造は、ポリマーの主鎖に直接結合してもよく、連結基を介して結合していることが好ましい。上記式(II)又は(III)で表される部分構造とポリマーの主鎖とを結合する連結基としては、特に制限されず、例えば、L~Lとして採り得る連結基が挙げられ、中でも、アルキレン基、アリーレン基、ヘテロアリーレン基、エーテル基、スルフィド基、カルボニル基若しくはイミノ基、又は、これらを2個以上(好ましくは2~10個)組み合わせた連結基が好ましく、スルフィド基若しくはアルキレン基又はこれらを組み合わせた連結基がより好ましい。
 本発明において、連結基を構成する原子の数は、1~30であることが好ましく、1~20であることがより好ましく、1~15であることが更に好ましい。連結基の連結原子数は1~15であることが好ましく、1~12であることがより好ましい。上記連結原子数とは所定の構造部間を結ぶ最少の原子数をいう。例えば、-C(=O)-O-の場合、連結基を構成する原子の数は3であり、連結原子数は2である。
 以下に、上記条件A及びBを満たす側鎖を持つ構成成分の具体例を記載する。ただし、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000004
 上記条件A及びBを満たす側鎖を持つ構成成分を有するポリマーにおいて、構成成分の含有量は適宜に設定することができる。
 上記ポリマーを形成する全構成成分の全モル数に対する各構成成分の含有量は、以下の範囲から、合計で100モル%となるように決定されることが好ましい。
 上記式(I-1)又は式(I-2)で表される構成成分のうちRP1が炭化水素基である構成成分(後述する実施例における構成成分M1)の含有量は、水素結合形成等による膜強度の点で、ポリマーを形成する全構成成分に対して、10~50モル%であることが好ましく、20~50モル%であることがより好ましく、30~50モル%であることが更に好ましい。
 また、上記式(I-3)又は式(I-4)で表される構成成分のうちRP2が炭化水素基である構成成分(後述する実施例における構成成分M2)の含有量は、水素結合形成等による膜強度の点で、ポリマーを形成する全構成成分に対して、1~50モル%であることが好ましく、2~40モル%であることがより好ましく、3~30モル%であることが更に好ましく、3~20モル%であることが特に好ましい。
 上記各構成成分の含有量は、上記側鎖を有している構成成分を含まず、上記側鎖を有さない構成成分の含有量とする。
 上記式(I-1)又は式(I-2)で表される構成成分のうちRP2が上記分子鎖である構成成分の含有量は、膜強度を向上させる観点で、ポリマーを形成する全構成成分に対して、10~50モル%であることが好ましく、20~50モル%であることがより好ましく、30~50モル%であることが更に好ましい。
 また、上記式(I-3)又は式(I-4)で表される構成成分のうちRP1が上記分子鎖である構成成分(後述する実施例における構成成分M4)の含有量は、膜強度を向上させる観点で、ポリマーを形成する全構成成分に対して、1~50モル%であることが好ましく、2~45モル%であることがより好ましく、15~45モル%であることが更に好ましく、30~45モル%であることが特に好ましい。
 上記各構成成分の含有量は、上記側鎖を有している構成成分を含まず、上記側鎖を有しない構成成分の含有量とする。
 上記側鎖を持つ構成成分(後述する実施例における構成成分M3)の含有量は、サイクル特性を向上させる観点で、ポリマーを形成する全構成成分に対して、0~20モル%であることが好ましく、0~15モル%であることがより好ましく、0~10モル%であることが更に好ましい。下限は1モル%でもよく、2モル%であってもよい。
 ポリマーが上記構成成分以外の他の構成成分を有する場合、他の構成成分の含有量は、ポリマーを形成する全構成成分に対して、15モル%以下であることが好ましい。
 ポリマーを形成する全構成成分の全質量に対する各構成成分の含有量は、以下の範囲から、合計で100質量%となるように決定されることが好ましい。
 上記式(I-1)又は式(I-2)で表される構成成分のうちRP1が炭化水素基である構成成分(後述する実施例における構成成分M1)の含有量は、水素結合形成等による膜強度の点で、ポリマーを形成する全構成成分の全質量に対して、20~80質量%であることが好ましく、30~70質量%であることがより好ましく、35~60質量%であることが更に好ましい。
 また、上記式(I-3)又は式(I-4)で表される構成成分のうちRP2が炭化水素基である構成成分(後述する実施例における構成成分M2)の含有量は、水素結合形成等による膜強度の点で、ポリマーを形成する全構成成分の全質量に対して、0(好ましくは0を越え)~80質量%であることが好ましく、0(好ましくは0を越え)~70質量%であることがより好ましく、0(好ましくは0を越え)~60質量%であることが更に好ましい。
 上記各構成成分の含有量は、上記側鎖を有している構成成分を含まず、上記側鎖を有しない構成成分の含有量とする。
 上記式(I-1)又は式(I-2)で表される構成成分のうちRP1が上記分子鎖である構成成分の含有量は、膜強度を向上させる観点で、ポリマーを形成する全構成成分の全質量に対して、0(好ましくは0を越え)~80質量%であることが好ましく、0(好ましくは0を越え)~70質量%であることがより好ましく、0(好ましくは0を越え)~60質量%であることが更に好ましい。
 また、上記式(I-3)又は式(I-4)で表される構成成分のうちRP2が上記分子鎖である構成成分(後述する実施例における構成成分M4)の含有量は、膜強度を向上させる観点で、ポリマーを形成する全構成成分の全質量に対して0(好ましくは0を越え)~80質量%であることが好ましく、0(好ましくは0を越え)~70質量%であることがより好ましく、30(好ましくは0を越え)~60質量%であることが更に好ましい。
 上記各構成成分の含有量は、上記側鎖を有している構成成分を含まず、上記側鎖を有しない構成成分の含有量とする。
 上記側鎖を持つ構成成分(後述する実施例における構成成分M3)の含有量は、サイクル特性を向上させる観点で、ポリマーを形成する全構成成分の全質量に対して、5~40質量%であることが好ましく、5~20質量%であることがより好ましく、5~10質量%であることが更に好ましい。
 ポリマーが上記構成成分以外の他の構成成分を有する場合、他の構成成分の含有量は、ポリマーを形成する全構成成分に対して、15質量%以下であることが好ましい。
 上記ポリマーは、主鎖が有する結合の種類に応じて公知の方法により原料化合物を縮重合して、合成することができる。合成方法としては、例えば、国際公開第2018/020827号に記載の「<(B)ポリマーの合成方法>」を参照できる。
 - 質量平均分子量 -
 ポリマーの質量平均分子量(M.w.)は、特に制限されない。例えば、3,000以上が好ましく、5,000以上がより好ましく、7,000以上が更に好ましい。上限としては、1,000,000以下が実質的であり、300,000以下が好ましく、200,000以下がより好ましく、40,000以下が更に好ましい。
-分子量の測定-
 本発明において、質量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって標準ポリスチレン換算の質量平均分子量を計測する。測定法としては、基本として下記条件1又は条件2(優先)の方法により測定した値とする。ただし、測定する重合体(ポリマー等)の種類によっては適宜適切な溶離液を選定して用いればよい。
(条件1)
  カラム:TOSOH TSKgel Super AWM-Hを2本つなげる。
  キャリア:10mMLiBr/N-メチルピロリドン
  測定温度:40℃
  キャリア流量:1.0ml/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
(条件2)
  カラム:TOSOH TSKgel Super HZM-H、TOSOH TSKgel Super HZ4000、TOSOH TSKgel Super HZ2000をつないだカラムを用いる。
  キャリア:テトラヒドロフラン
  測定温度:40℃
  キャリア流量:1.0ml/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
 このポリマーは、非架橋ポリマーであっても架橋ポリマーであってもよい。また、加熱又は電圧の印加によってポリマーの架橋が進行した場合には、上記分子量より大きな分子量となっていてもよい。好ましくは、全固体二次電池の使用開始時にポリマーが上記範囲の質量平均分子量であることである。
 - 水分濃度 -
 ポリマーの水分濃度は、100ppm(質量基準)以下が好ましい。また、このポリマーは、晶析させて乾燥させてもよく、ポリマー分散液をそのまま用いてもよい。
 - ガラス転移温度 -
 ポリマーのガラス転移温度は、特に制限されず、30℃以下であることが好ましく、25℃以下であることがより好ましく、15℃以下であることが更に好ましく、5℃以下であることが特に好ましい。ガラス転移温度の下限は、特に制限されず、例えば、-200℃に設定でき、-150℃以上であることが好ましく、-120℃以上であることがより好ましい。
 ガラス転移温度(Tg)は、ポリマーの乾燥試料を測定対象として、示差走査熱量計:X-DSC7000(商品名、SII・ナノテクノロジー社製)を用いて、下記の条件で測定する。測定は同一の試料で2回実施し、2回目の測定結果を採用する。
    測定室内の雰囲気:窒素ガス(50mL/min)
    昇温速度:5℃/min
    測定開始温度:-100℃
    測定終了温度:200℃
    試料パン:アルミニウム製パン
    測定試料の質量:5mg
    Tgの算定:DSCチャートの下降開始点と下降終了点の中間温度の小数点以下を四捨五入することでTgを算定する。
 なお、全固体二次電池を用いる場合は、例えば、全固体二次電池を分解して活物質層又は固体電解質層を水に入れてその材料を分散させた後、ろ過を行い、残った固体を収集し、上記の測定法でガラス転移温度を測定することにより行うことができる。
 本発明の電極用組成物で構成される電極活物質層の膜強度をより向上させ、この電極活物質層を有する全固体二次電池のサイクル特性をより向上させるため、本発明に用いられるバインダーを構成するポリマーは、JIS K 7161(2014)に準拠して測定される弾性率が10~500MPaであることが好ましく、50~450MPaであることがより好ましく、100~350MPaであることさらに好ましい。
 本発明の電極用組成物で構成される電極活物質層の膜強度をより向上させ、この電極活物質層を有する全固体二次電池のサイクル特性をより向上させるため、本発明に用いられるバインダーを構成するポリマーは、JIS K 7161(2014)に準拠して測定される引張破壊ひずみが50~700%であることが好ましく、150~650%であることがより好ましく、250~550%であることさらに好ましい。
 なお、引張破壊ひずみは、伸ばす前のポリマー試料の長さを100%として、破断した際のポリマー試料の長さから100%を引いた値である。
 本発明に用いられるバインダーは1種単独で用いてもよく、2種以上を組合わせて用いてもよい。
 電極用組成物中の、バインダーの含有量は、その固形分中、1質量%以上が好ましく、2質量%以上がより好ましく、2質量%を越えることがさらに好ましく、3質量%以上であることがさらに好ましく、4質量%以上であることが特に好ましい。上限としては、20質量%以下であることが好ましく、18質量%以下であることがより好ましく、16質量%以下であることがさらに好ましく、14質量%以下であることがさらに好ましい。
 バインダーを上記の範囲で用いることにより、本発明の電極用組成物で構成される電極活物質層の膜強度をより向上させ、この電極活物質層を有する全固体二次電池のサイクル特性をより向上させることができる。
(導電助剤)
 本発明に用いられる分配成分は、活物質の電子導電性を向上させる等のために用いられる導電助剤を適宜必要に応じて含有してもよい。導電助剤としては、一般的な導電助剤を用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維若しくはカーボンナノチューブなどの炭素繊維類、グラフェン若しくはフラーレンなどの炭素質材料であってもよいし、銅、ニッケルなどの金属粉、金属繊維でもよく、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体などの導電性高分子を用いてもよい。またこれらの内1種を用いてもよいし、2種以上を用いてもよい。
 本発明の電極用組成物が導電助剤を含む場合、電極用組成物中の導電助剤の含有量は、全固形成分中0~10質量%が好ましく、3~5質量%がより好ましい。
 本発明において、負極活物質と導電助剤とを併用する場合、上記の導電助剤のうち、電池を充放電した際にLiの挿入と放出が起きず、負極活物質として機能しないものを導電助剤とする。電池を充放電した際に負極活物質として機能するか否かは、一義的ではなく、負極活物質との組み合わせにより決定される。
<分散媒>
 本発明の電極用組成物は、分散媒を含有することができる。この電極用組成物が分散媒を含有すると、組成均一性及び取扱性等を向上させることができる。
 分散媒は、本発明の電極用組成物に含まれる各成分を分散させるものであればよい。
 本発明に用いる分散媒としては、例えば各種の有機溶媒が挙げられ、有機溶媒としては、アルコール化合物、エーテル化合物、アミド化合物、アミン化合物、ケトン化合物、芳香族化合物、脂肪族化合物、ニトリル化合物、エステル化合物等の各溶媒が挙げられる。
 アルコール化合物としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、1,4-ブタンジオールが挙げられる。
 エーテル化合物としては、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル等)、環状エーテル(テトラヒドロフラン、ジオキサン(1,2-、1,3-及び1,4-の各異性体を含む)等)が挙げられる。
 アミド化合物としては、例えば、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなどが挙げられる。
 アミン化合物としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミンなどが挙げられる。
 ケトン化合物としては、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトン(DIBK)などが挙げられる。
 芳香族化合物としては、例えば、ベンゼン、トルエン、キシレンなどの芳香族炭化水素化合物等が挙げられる。
 脂肪族化合物としては、例えば、ヘキサン、ヘプタン、オクタン、デカンなどの脂肪族炭化水素化合物等が挙げられる。
 ニトリル化合物としては、例えば、アセトニトリル、プロピオニトリル、イソブチロニトリルなどが挙げられる。
 エステル化合物としては、例えば、酢酸エチル、酢酸ブチル、酢酸プロピル、酪酸プロピル、酪酸イソプロピル、酪酸ブチル、酪酸イソブチル、ペンタン酸ブチル、イソ酪酸エチル、イソ酪酸プロピル、イソ酪酸イソプロピル、イソ酪酸イソブチル、ピバル酸プロピル、ピバル酸イソプロピル、ピバル酸ブチル、ピバル酸イソブチルなどのカルボン酸エステル等が挙げられる。
 非水系分散媒としては、上記芳香族化合物、脂肪族化合物等が挙げられる。
 本発明において、分散媒は、ケトン化合物、エステル化合物、芳香族化合物又は脂肪族化合物が好ましく、ケトン化合物、エステル化合物、芳香族化合物及び脂肪族化合物から選択される少なくとも1種を含むことがより好ましい。
 電極用組成物に含有される分散媒は、1種であっても、2種以上であってもよく、2種以上であることが好ましい。
 分散媒の、電極用組成物中の総含有量は、特に限定されず、20~80質量%が好ましく、30~70質量%がより好ましく、40~60質量%が特に好ましい。
<他の添加剤>
 本発明の電極用組成物は、上記各成分以外の他の成分として、所望により、リチウム塩、イオン液体、増粘剤、消泡剤、レベリング剤、脱水剤、酸化防止剤等を含有することができる。
[電極用組成物の製造方法]
 本発明の電極用組成物は、無機固体電解質、活物質、分配成分、必要により分散媒等を、例えば通常用いる各種の混合機で混合することにより調製することができる。混合する環境は特に制限されず、乾燥空気下又は不活性ガス下等が挙げられる。混合方法は特に制限されず、例えば、以下の混合方法が挙げられる。
(混合方法A)
 全ての成分を一括して混合する。
(混合方法B)
 無機固体電解質とバインダーとを混合して混合物a1を得て、この混合物と、活物質、必要により導電助剤とを混合する。無機固体電解質とバインダーとを混合する際に、分散媒を合わせて混合してもよい。また、活物質と導電助剤とを混合して混合物b1を得て、混合物a1とb1とを混合してもよい。
(混合方法C)
 活物質とバインダーとを混合して混合物a2を得て、この混合物と、無機固体電解質、必要により導電助剤とを混合する。導電助剤を、活物質及びバインダー合わせて混合して混合物a2を得てもよい。活物質とバインダーとを混合する際に、分散媒を合わせて混合してもよい。また、無機固体電解質と導電助剤とを混合して混合物b2を得て、混合物a2とb2とを混合してもよい。
 本発明の電極用組成物の製造方法において、得られた電極用組成物で構成される電極活物質層の膜強度をより向上させ、この電極活物質層を有する全固体二次電池のサイクル特性をより向上させるため、上記混合方法A及びBが好ましく、混合方法Bがより好ましい。混合方法Bでは、無機固体電解質同士の結着性が高まるため、電極活物質層の膜強度をより向上させ、この電極活物質層を有する全固体二次電池のサイクル特性をより向上させることができる。
[全固体二次電池用電極シート]
 本発明の全固体二次電池用電極シートは、無機固体電解質と、活物質と、この両者に対して結着する分配成分とを含有する電極活物質層を有する全固体二次電池用電極シートであって、上記分配成分の1種がバインダーであり、このバインダーを構成するポリマーが、アミノ基、スルファニル基、ヒドロキシ基、カルボキシ基又はアノン基を有する繰り返し単位を含み、上記電極活物質層中、上記無機固体電解質に対する上記分配成分の分配率が60%を越える。
 本発明の全固体二次電池用電極シート(単に「本発明の電極シート」ともいう。)は、活物質層を有する電極シートであればよく、活物質層が基材(集電体)上に形成されているシートでも、基材を有さず、活物質層から形成されているシートであってもよい。この電極シートは、通常、集電体及び活物質層を有するシートであり、集電体、活物質層及び固体電解質層をこの順に有する態様、並びに、集電体、活物質層、固体電解質層及び活物質層をこの順に有する態様も含まれる。本発明の電極シートは保護層及び導電体層(例えばカーボンコート層)等の他の層を有してもよい。本発明の電極シートを構成する各層の層厚は、後述する全固体二次電池において説明する各層の層厚と同じである。
 本発明の全固体二次電池用電極シートは、正極活物質層及び負極活物質層の少なくとも1層が本発明の電極用組成物で形成され、この層は膜強度に優れる。本発明においては、固体粒子間の界面抵抗の上昇を効果的に抑えることもできる。したがって、本発明の全固体二次電池用電極シートは、全固体二次電池の電極活物質層を形成しうるシートとして好適に用いられる。
 例えば、全固体二次電池用電極シートを長尺状でライン製造する場合(搬送中に巻き取っても)、また、捲回型電池として用いる場合において、活物質層におけるひび割れ等を抑制することができる。このような全固体二次電池用電極シートを用いて全固体二次電池を製造すると、優れた電池性能を示し、更には高い生産性及び歩留まり(再現性)を実現できる。
[全固体二次電池用電極シートの製造方法]
 本発明の全固体二次電池用電極シートの製造方法は、特に制限されず、例えば、本発明の電極用組成物を用いて、電極活物質層を形成することにより、製造できる。例えば、必要により集電体上(他の層を介していてもよい。)に、製膜(塗布乾燥)して電極用組成物からなる層(塗布乾燥層)を形成する方法が挙げられる。これにより、必要により集電体と、塗布乾燥層とを有する全固体二次電池用電極シートを作製することができる。ここで、塗布乾燥層とは、本発明の電極用組成物を塗布し、分散媒を乾燥させることにより形成される層(すなわち、本発明の電極用組成物を用いてなり、本発明の電極用組成物から分散媒を除去した組成からなる層)をいう。
 本発明の全固体二次電池用電極シートの製造方法において、塗布、乾燥等の各工程については、下記全固体二次電池の製造方法において説明する。
 本発明の全固体二次電池用電極シートの製造方法においては、上記のようにして得られた塗布乾燥層を加圧することもできる。加圧条件等については、後述する、全固体二次電池の製造方法において説明する。
 また、本発明の全固体二次電池用電極シートの製造方法においては、集電体、保護層(特に剥離シート)等を剥離することもできる。
[全固体二次電池]
 本発明の全固体二次電池は、正極活物質層と、この正極活物質層に対向する負極活物質層と、正極活物質層及び負極活物質層の間に配置された固体電解質層とを有する。正極活物質層は、必要により正極集電体上に形成され、正極を構成する。負極活物質層は、必要により負極集電体上に形成され、負極を構成する。
 負極活物質層及び正極活物質層の少なくとも1つの層は、本発明の電極用組成物で形成され、負極活物質層及び正極活物質層が本発明の電極用組成物で形成されることが好ましい。本発明の電極用組成物で形成された活物質層は、好ましくは、含有する成分種及びその含有量比について、本発明の電極用組成物の固形分におけるものと同じである。なお、本発明の電極活物質層で形成されない活物質層及び固体電解質層については、公知の材料を用いることができる。
 負極活物質層、固体電解質層及び正極活物質層の厚さは、それぞれ、特に制限されない。各層の厚さは、一般的な全固体二次電池の寸法を考慮すると、それぞれ、10~1,000μmが好ましく、15μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層及び負極活物質層の少なくとも1層の厚さが、50μm以上500μm未満であることが更に好ましい。
 正極活物質層及び負極活物質層は、それぞれ、固体電解質層とは反対側に集電体を備えていてもよい。
〔筐体〕
 本発明の全固体二次電池は、用途によっては、上記構造のまま全固体二次電池として使用してもよく、乾電池の形態とするためには更に適当な筐体に封入して用いることが好ましい。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金又は、ステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
 以下に、図1を参照して、本発明の好ましい実施形態に係る全固体二次電池について説明する。ただし、本発明はこれに限定されない。
 図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5を、この順に有する。各層はそれぞれ接触しており、隣接した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位6に電子が供給される。図示した例では、作動部位6に電球をモデル的に採用しており、放電によりこれが点灯するようにされている。
(正極活物質層、固体電解質層、負極活物質層)
 全固体二次電池10においては、正極活物質層及び負極活物質層のいずれも本発明の電極用組成物で形成されている。この全固体二次電池10は優れた電池性能を示す。正極活物質層4及び負極活物質層2が含有する無機固体電解質及びバインダーは、それぞれ、互いに同種であっても異種であってもよい。
 本発明において、正極活物質層及び負極活物質層のいずれか、又は、両方を合わせて、単に、活物質層又は電極活物質層と称することがある。また、正極活物質及び負極活物質のいずれか、又は両方を合わせて、単に、活物質又は電極活物質と称することがある。
 本発明において、上記バインダーを無機固体電解質及び活物質等の固体粒子と組み合わせて用いると、固体粒子間の界面抵抗の上昇、固体粒子と集電体の界面抵抗の上昇を抑えることもできると考えられる。そのため、本発明の全固体二次電池は優れた電池特性を示す。
 全固体二次電池10においては、負極活物質層をリチウム金属層とすることができる。リチウム金属層としては、リチウム金属の粉末を堆積又は成形してなる層、リチウム箔及びリチウム蒸着膜等が挙げられる。リチウム金属層の厚さは、上記負極活物質層の上記厚さにかかわらず、例えば、1~500μmとすることができる。
 正極集電体5及び負極集電体1は、電子伝導体が好ましい。
 本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
 正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウム及びアルミニウム合金がより好ましい。
 負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム、銅、銅合金又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金及びステンレス鋼がより好ましい。
 集電体の形状は、通常フィルムシート状のものが使用され、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 集電体の厚みは、特に制限されず、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
 本発明において、負極集電体、負極活物質層、固体電解質層、正極活物質層及び正極集電体の各層の間又はその外側には、機能性の層、部材等を適宜介在若しくは配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。
[全固体二次電池の製造]
 全固体二次電池は、常法によっても、製造できる。具体的には、全固体二次電池は、本発明の電極用組成物等を用いて、電極活物質層を形成することにより、製造できる。これにより、小さな電気抵抗を示す全固体二次電池を製造できる。以下、詳述する。
 本発明の全固体二次電池は、必要により集電体となる金属箔上に本発明の電極用組成物を塗布し、塗膜を形成する(製膜する)工程を含む(介する)方法(本発明の全固体二次電池用電極シートの製造方法)を介して、製造できる。
 例えば、正極集電体である金属箔上に、正極活物質を含有する電極用組成物(正極用組成物)を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、この正極活物質層の上に、固体電解質層を形成するための固体電解質組成物を塗布して、固体電解質層を形成する。更に、固体電解質層の上に、負極活物質を含有する電極用組成物(負極用組成物)を塗布して、負極活物質層を形成する。負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。必要によりこれを筐体に封入して所望の全固体二次電池とすることができる。
 また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。
 別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シートを作製する。また、負極集電体である金属箔上に、負極用組成物を塗布して負極活物質層を形成し、全固体二次電池用負極シートを作製する。次いで、これらシートのいずれか一方の活物質層の上に、上記のようにして、固体電解質層を形成する。更に、固体電解質層の上に、全固体二次電池用正極シート及び全固体二次電池用負極シートの他方を、固体電解質層と活物質層とが接するように積層する。このようにして、全固体二次電池を製造することができる。
 また別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シート及び全固体二次電池用負極シートを作製する。また、これとは別に、固体電解質組成物を基材上に塗布して、固体電解質層からなる全固体二次電池用固体電解質シートを作製する。更に、全固体二次電池用正極シート及び全固体二次電池用負極シートで、基材から剥がした固体電解質層を挟むように積層する。このようにして、全固体二次電池を製造することができる。
 上記の製造方法においては、正極用組成物及び負極用組成物のいずれか1つに本発明の電極用組成物を用いればよく、いずれも、本発明の電極用組成物を用いることが好ましい。
<各層の形成(成膜)>
 各組成物の塗布方法は特に制限されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート、スリット塗布、ストライプ塗布、バーコート塗布が挙げられる。
 このとき、各組成物は、それぞれ塗布した後に乾燥処理を施してもよいし、重層塗布した後に乾燥処理をしてもよい。乾燥温度は特に制限されない。下限は30℃以上が好ましく、60℃以上がより好ましく、80℃以上が更に好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下が更に好ましい。このような温度範囲で加熱することで、分散媒を除去し、固体状態(塗布乾燥層)にすることができる。また、温度を高くしすぎず、全固体二次電池の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性と、非加圧でも良好なイオン伝導度を得ることができる。
 上記のようにして、本発明の電極用組成物を塗布乾燥すると、固体粒子が強固に結着し、更に好ましい態様では固体粒子間の界面抵抗が小さな、塗布乾燥層を形成することができる。
 塗布した組成物、又は、全固体二次電池を作製した後に、各層又は全固体二次電池を加圧することが好ましい。また、各層を積層した状態で加圧することも好ましい。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては特に制限されず、一般的には50~1500MPaの範囲であることが好ましい。
 また、塗布した組成物は、加圧と同時に加熱してもよい。加熱温度としては特に制限されず、一般的には30~300℃の範囲である。無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。また、バインダーのガラス転移温度よりも高い温度でプレスすることもできる。ただし、一般的にはバインダーの融点を越えない温度である。
 加圧は塗布溶媒又は分散媒を予め乾燥させた状態で行ってもよいし、溶媒又は分散媒が残存している状態で行ってもよい。
 なお、各組成物は同時に塗布してもよいし、塗布乾燥プレスを同時に行ってもよく逐次行ってもよい。別々の基材に塗布した後に、転写により積層してもよい。
 加圧中の雰囲気としては特に制限されず、大気下、乾燥空気下(露点-20℃以下)、不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。
 プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。全固体二次電池用電極シート以外、例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
 プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
 プレス圧は被圧部の面積又は膜厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
 プレス面は平滑であっても粗面化されていてもよい。
<初期化>
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化は特に制限されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を開放することにより、行うことができる。
[全固体二次電池の用途]
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に制限はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源などが挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
 以下に、実施例に基づき本発明について更に詳細に説明する。ただし、本発明はこれにより限定して解釈されるものではない。以下の実施例において組成を表す「%」は、特に断らない限り質量基準である。本発明において「室温」とは25℃を意味する。
<バインダー分散液の調製例(ポリマーの合成例)>
(下記表1に記載の条件2で使用するバインダー分散液の調製)
 200mL3つ口フラスコに、下記構成成分A-5を導くジオール化合物0.1gと、2,2-ジメチロール酪酸(DMBA)0.1gと、NISSO-PB GI-1000(商品名、日本曹達社製)12.6gとを加え、テトラヒドロフラン(THF)71gに溶解した。この溶液に、MDI(ジフェニルメタンジイソシアネート)2.4gを加えて60℃で撹拌し、均一に溶解させた。得られた溶液に、ネオスタンU-600(商品名、日東化成社製)270mgを添加して60℃で5時間攪伴し、粘性ポリマー溶液を得た。このポリマー溶液にメタノール0.6gを加えてポリマー末端を封止して、重合反応を停止し、ポリマーの20質量%THF溶液(ポリマー溶液)を得た。
 次に、上記で得られたポリマー溶液を350rpmで撹拌しながら、ヘプタン96gを1時間かけて滴下し、ポリマーの乳化液を得た。窒素フローしながらこの乳化液を85℃で120分加熱した。得られた残留物にヘプタン50gを加えて更に85℃で60分加熱した。この操作を4回繰り返し、THFを除去した。こうして、ポリマーからなるバインダーの10質量%ヘプタン分散液(バインダー分散液)を得た。
 上記合成例において、表1に示す各構成成分を導く原料化合物を表1に示す使用量(モル%)で用いたこと以外は上記合成例と同様にして、条件1、3、4及び7~40で使用するバインダー分散液を調製した。
(構成成分Aを導くジオール化合物の合成(参考合成例))
 200mL3つ口フラスコに、α-チオグリセロール(東京化成工業社製)35.3gと、2-シクロヘキセン-1-オン(東京化成工業社製)50gとを加え、混合した。この溶液に、トリエチルアミン(和光純薬社製)0.50gを加えて室温で4時間撹拌して、溶液を得た。この溶液を酢酸エチル80gで希釈し、水100mLで1回、飽和食塩水150mLで5回洗浄した。洗浄した溶液に硫酸ナトリウムを投入して乾燥し、ひだ折りろ過で硫酸ナトリウムを除去した後、溶媒を減圧留去した。こうして、構成成分A-6を導くジオール化合物を得た。収率は81%であった。
Figure JPOXMLDOC01-appb-C000005
<バインダー分散液中の粒子状バインダーの平均粒径の測定>
 バインダー分散液について、粒子状バインダーの平均粒径を、上記無機固体電解質の平均粒径の測定法と同様にして、測定した。その結果を表1に示す。
<ポリマーの質量平均分子量の測定>
 合成したポリマーの質量平均分子量を、上記方法(条件2)により、測定した。その結果を表1に示す。
 上述のようにして調製したバインダー分散液について、各ポリマーの組成を下記表1に示す。
 表1に示す構成成分M1~M4はそれぞれ以下の通りである。
 構成成分M1は、上記式(I-1)又(I-2)で表される構成成分である。
 構成成分M2は、上記式(I-3)で表される構成成分であって、RP2が脂肪族の炭化水素基である構成成分ある。
 構成成分M3は、上記式(I-3)で表される構成成分であって、特定の側鎖を持つ構成成分ある。
 構成成分M4は、上記式(I-3)で表される構成成分であって、RP2が、質量平均分子量が200以上200,000以下の上記分子鎖である構成成分ある。
 表1において、「存在位置」は、ポリマーの側鎖において、カルボニル基の炭素原子の位置を示す。具体的には、ポリマーの側鎖を形成する分子鎖において、構成成分A-5の硫黄原子からカルボニル基の炭素原子までの(硫黄原子及びカルボニル基の炭素原子を含む)最短の連結原子数を示す。
<硫化物系無機固体電解質の合成>
 硫化物系無機固体電解質として、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.HamGa,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235およびA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして、Li-P-S系ガラスを合成した。
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g、五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、乳鉢に投入した。LiS及びPはモル比でLiS:P=75:25とした。メノウ製乳鉢上において、メノウ製乳棒を用いて、5分間混合した。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、上記混合物全量を投入し、アルゴン雰囲気下で容器を密閉した。フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、25℃で、回転数510rpmで20時間メカニカルミリングを行うことで黄色粉体の硫化物系無機固体電解質(Li-P-S系ガラス、LPS)6.20gを得た。
<全固体二次電池用電極シートの作製>
 以下のようにして、全固体二次電池用電極シートを作製した。
(負極シート(条件1)の作製、(下記表1の条件1の負極用組成物を用いた負極シートの作製))
(工程1(混合方法A))
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLPS 6.6g、分散媒としてヘプタン12.3gを投入した。フリッチュ社製遊星ボールミルP-7に容器をセットし、温度25℃、回転数300rpmで2時間混合した。その後、活物質としてSi粉末(メジアン径1~5μm、Alfa Aesar社製Silicon Powder)7.0g、導電助剤としてアセチレンブラック(デンカ社製)0.65g、表1に示すバインダーの分散液を固形分換算で0.3gを容器に投入し、同様に、遊星ボールミルP-7に容器をセットし、温度25℃、回転数200rpmで15分間混合を続け負極用組成物を調製した。
(工程2)
 厚さ20μmのステンレス鋼(SUS)箔(負極集電体)上に、アプリケーター(商品名:SA-201ベーカー式アプリケーター、テスター産業社製)により、2.9mg/cmの目付量となるように負極用組成物を塗布し、100℃で1時間加熱乾燥して、負極集電体上に負極活物質層を有する負極シートを作製した。負極活物質層の厚さは25μmであった。
(負極シート(条件3)の作製)
 負極シート(条件1)の作製において、工程1(混合方法A)を下記の混合方法Bに変えたこと以外は、負極シート(条件1)と同様にして負極シート(条件3)を作製した。
-混合方法B-
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLPS 6.6g、表1に示すバインダーの分散液を固形分換算で0.3g、分散媒としてヘプタン12.3gを投入した。フリッチュ社製遊星ボールミルP-7に容器をセットし、温度25℃、回転数300rpmで2時間混合した。その後、活物質としてSi粉末(メジアン径1~5μm、Alfa Aesar社製Silicon Powder)7.0g、導電助剤としてアセチレンブラック(デンカ社製)0.65gを容器に投入し、同様に、遊星ボールミルP-7に容器をセットし、温度25℃、回転数200rpmで15分間混合を続け負極用組成物を調製した。
(負極シート(条件12)の作製)
 負極シート(条件1)の作製において、工程1(混合方法A)を下記の混合方法Cに変えたこと以外は、負極シート(条件1)と同様にして負極シート(条件12)を作製した。
-混合方法C-
 ジルコニア製45mL容器S(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLPS 6.6g、分散媒としてヘプタン12.3gを投入した。フリッチュ社製遊星ボールミルP-7に容器Sをセットし、温度25℃、回転数300rpmで2時間混合した。容器Tに、活物質としてSi粉末(メジアン径1~5μm、Alfa Aesar社製Silicon Powder)7.0g、導電助剤としてアセチレンブラック(デンカ社製)0.65g、表1に示すバインダーの分散液を固形分換算で0.3g、ヘプタン12.3gを容器に投入し、同様に、遊星ボールミルP-7に容器をセットし、温度25℃、回転数200rpmで15分間混合した。容器Sの容器Tで混合したスラリーを投入し、同様に、遊星ボールミルP-7に容器をセットし、温度25℃、回転数200rpmで15分間混合し、負極用組成物を調製した。
(負極シート(条件2)及び(条件7)の作製)
 条件1の負極シートの作製において、負極用組成物の組成が後記表1の組成となるように変更したこと以外は、条件1の負極シートと同様にして(条件2)及び(条件7)の負極シートを作製した。
(負極シート(条件4)~(条件6)、(条件8)~(条件11)及び(条件13)~(条件27)の作製)
 条件3の負極シートの作製において、負極用組成物の組成が後記表1の組成となるように変更したこと以外は、条件3の負極シートと同様にして(条件4)~(条件6)、(条件8)~(条件11)及び(条件13)~(条件27)の負極シートを作製した。
(正極シート(条件28)~(条件33)の作製)
 条件3の負極シートの作製において、負極用組成物に変えて後記表1の組成を有する正極用組成物を用いこと以外は、条件3の負極シートと同様にして(条件28)~(条件33)の正極シートを作製した。
(負極シート(条件34)~(条件40)の作製)
 条件3の負極シートの作製において、負極用組成物の組成が後記表1の組成となるように変更したこと以外は、条件3の負極シートと同様にして(条件34)~(条件40)の負極シートを作製した。
<全固体二次電池の作製>
 作製した負極シートを用いて、以下のように全固体二次電池を作製した。
 負極シートを直径10mmφの円盤状に打ち抜き、10mmφのポリエチレンテレフタレート(PET)製の円筒に入れた。円筒内の負極活物質層の表面上に上記合成したLPSを30mg入れて、円筒の両端開口部から10mmφのSUS製の棒を挿入した。負極シートの負極集電体側とLPSを、SUS製棒により350MPaの圧力で加圧形成して固体電解質層を形成した。その後、固体電解質層側に配置したSUS製棒を一旦外し、9mmφの円盤状のインジウム(In)シート(厚さ20μm)と、9mmφの円盤状のリチウム(Li)シート(厚さ20μm)とを、この順で、円筒内の固体電解質層の上に挿入した。外したSUS製棒を円筒内に再度挿入し、50MPaの圧力をかけた状態で固定した。こうして、SUS箔(厚さ20μm)-負極活物質層(厚さ25μm)-硫化物系無機固体電解質層(厚さ200μm)-In/Liシート(厚さ30μm)の構成を有する全固体二次電池を得た。
 作製した正極シートを用いて、以下のように全固体二次電池を作製した。
 正極シートを直径10mmφの円盤状に打ち抜き、10mmφのPET製の円筒に入れた。円筒内の正極活物質層の表面上に上記合成したLPSを30mg入れて、円筒の両端開口部から10mmφのSUS製の棒を挿入した。正極シートの正極集電体側とLPSを、SUS製棒により350MPaの圧力で加圧形成して固体電解質層を形成した。その後、固体電解質層側に配置したSUS製棒を一旦外し、9mmφの円盤状のインジウム(In)シート(厚さ20μm)と、9mmφの円盤状のリチウム(Li)シート(厚さ20μm)とを、この順で、円筒内の固体電解質層の上に挿入した。外していたSUS製棒を円筒内に再度挿入し、50MPaの圧力をかけた状態で固定した。このようにしてアルミ箔(厚さ20μm)-正極活物質層(厚さ100μm)-硫化物系無機固体電解質層(厚さ200μm)-In/Liシート(厚さ30μm)の構成を有する全固体二次電池を得た。
<算出方法>
 バインダーの活物質に対する吸着率A及びバインダーの無機固体電解質に対する吸着率Bを以下のようにして算出した。また、活物質に対する分配成分の分配率A及び無機固体電解質に対する分配成分の分配率Bを以下のようにして算出した。また、バインダーを構成するポリマーの弾性率及び引張破壊ひずみを以下のようにして算出した。
 なお、スチレンブタジエンゴム以外のバインダーについて、分散液から分散媒等を除去した後に吸着率、弾性率及び引張破壊ひずみの測定に用いた。
[吸着率A]
 電極用組成物に用いた活物質1.6gとバインダー0.08gを15mLのバイアル瓶に入れ、ミックスローターで撹拌しながら、ヘプタンを8g添加し、さらに室温、80rpmで30分撹拌した。撹拌後の分散液を孔径1μmのフィルターでろ過し、ろ液2gを乾燥し、乾固したバインダーの質量(活物質に吸着しなかったバインダーの質量)を得て、以下の式から吸着率Aを算出した。
{(0.08g-活物質に吸着しなかったバインダーの質量×8/2)/0.08g}×100(%)
[吸着率B]
 電極用組成物に用いた無機固体電解質0.5gとバインダー0.26gを15mLのバイアル瓶に入れ、ミックスローターで撹拌しながら、ヘプタンを25g添加し、さらに室温、80rpmで30分撹拌した。撹拌後の分散液を孔径1μmのフィルターでろ過し、ろ液2gを乾燥し、乾固したバインダーの質量(無機固体電解質に吸着しなかったバインダーの質量)を得て、以下の式から吸着率Bを算出した。
{(0.26g-無機固体電解質に吸着しなかったバインダーの質量×25/2)/0.26g}×100(%)
[分配率]
 電極活物質層断面をイオンミリング装置(日立製作所、IM4000PLUS(商品名))で、加速電圧3kV、放電電圧1.5V、処理時間4時間、アルゴンガスフローレート0.1ml/minの条件で切り出した。電極活物質層断面を、AES(Auger Electron Spectroscopy、日本電子社、JAMP-9510F(商品名))により3500倍の倍率で観察した。ImageJを用いて取得した各元素の画像をグレースケール変換し、各元素の輝度分布のヒストグラムを作成し、双方型分布(バックグラウンド由来のピークと各元素由来のピーク)のヒストグラムピーク間の極小値を閾値として2値化することで、各元素のマッピング断面画像を取得した。このマッピング断面画像から、活物質のSi原子由来の位置とバインダー及び導電助剤の炭素原子由来の位置(分配成分の位置)をそれぞれ抜き出し、分配成分のエッジ部(輪郭)に存在する活物質の割合を求めた。分配成分の全エッジ部分の長さのうち、活物質に接触している長さの割合を分配率A(%)として求めた。100%から分配率Aを引いた値を、無機固体電解質に対する分配成分の分配率B(%)とした。
 なお、Si以外の活物質を用いたものは、適宜、活物質の炭素原子以外の原子由来のピークにより測定を行った。活物質としてCGB(黒鉛)を用いたものは、炭素原子のシグナルを活物質の位置とし、バインダーの酸素原子由来のシグナルを分配成分の位置としてそれぞれ抜き出し、上記の方法により分配率を求めた。
[弾性率(引張弾性率)]
 JIS K 7161(2014)「プラスチック-引張特性の求め方」に記載の試験片をバインダー溶液から作製し、本規格に記載の引張弾性率を求めた。
 具体的には、バインダーを、例えばメチルエチルケトン(MEK)又はN‐メチルピロリドン(NMP)等に溶解させ、厚みが200μm程度のキャスト膜を作製した。このキャスト膜を10mm×20mmの大きさに切断し、チャック間距離(つかみ具間距離)が10mmとなるように引張試験機にセットし、応力、ひずみ線評価を実施し、弾性率を求めた。
[引張破壊ひずみ]
 JIS K 7161(2014)「プラスチック-引張特性の求め方」に記載の試験片をバインダー溶液から作製し、本規格に記載の引張破壊ひずみを求めた。
 具体的には、バインダーを、例えばメチルエチルケトン(MEK)又はN‐メチルピロリドン(NMP)等に溶解させ、厚みが200μm程度のキャスト膜を作製した。このキャスト膜を10mm×20mmの大きさに切断し、チャック間距離(つかみ具間距離)が10mmとなるように引張試験機にセットし、応力、ひずみ線評価を実施し、引張破壊ひずみを求めた。
<試験>
 以下のようにして、上記作製した全固体二次電池用電極シートの膜強度及び全固体二次電池のサイクル特性を評価した。
(膜強度試験)
 上記作製した電極シート(正極シート及び負極シート)について、膜強度を評価した。
 電極シートを、直径の異なる棒に集電体が接するようにして巻きつけ、電極活物質層の欠け又はひび割れの有無及び電極活物質層の集電体からの剥がれの有無を確認した。欠け、ひび割れ又は剥がれが発生することなく巻きつけられた棒の最小径が下記評価基準のいずれに含まれるかにより、膜強度を評価した。なお、上記最小径の棒で巻きつけ、解いた後も、電極活物質層に欠け又はひび割れがないこと、電極活物質層と集電体との間に剥がれがないことも確認した。
 本試験において、棒の最小径が小さいほど、膜強度に優れることを示し、「D」以上が合格である。
 -膜強度の評価基準-
 AA:    最小径<2mm
 A: 2mm≦最小径<4mm
 B: 4mm≦最小径<6mm
 C: 6mm≦最小径<10mm
 D:10mm≦最小径<14mm
 E:14mm≦最小径
(サイクル特性)
 上記で作製した全固体二次電池を用い、30℃の環境下、充電電流値0.13mA及び放電電流値0.13mAの条件で4.3V~3.0Vの充放電を1回行った(初期化した)。
 その後、サイクル試験として、25℃の環境下、充放電電流値0.39mAの条件で4.3V~3.0Vの充放電を繰り返した。1回の充放電を1サイクルとする。
 1サイクル目の放電容量と20サイクル目の放電容量とを測定し、下記式により放電容量維持率を測定し、この放電容量維持率を下記評価基準にあてはめサイクル特性を評価した。「D」以上が本試験の合格である。
放電容量維持率(%)=(20サイクル目の放電容量/1サイクル目の放電容量)×100
-評価基準-
AA:85%以上
A:70%以上85%未満
B:60%以上70%未満
C:50%以上60%未満
D:40%以上50%未満
E:30%以上40%未満
F:30%未満
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
<表の注>
(1)Si:メジアン径1~5μm、Alfa Aesar社製Silicon Powder
(2)CGB20:商品名、メジアン径20μmの黒鉛、日本黒鉛社製
(3)Sn:富士フイルム和光純薬社製Sn粉末、メジアン径1~5μm
(4)NMC:LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム)、メジアン径3μm
(5)LiS-P:上記合成したLPS、メジアン径1μm
(6)LLZ:LiLaZr12、メジアン径1.5μm
(7)バインダーを構成するポリマーの構成成分の含有量は、調製に用いた原料から算出した。
(8)粒径:平均粒子径(メジアン径)
(9)DAB:1,4ジアミノブタン
(10)条件10は、1,4ジアミノブタン25mol%とAA(アジピン酸)25mol%とを用いた。
(11)AB:アセチレンブラック、メジアン径0.5μm
(12)バインダー及び導電助剤が分配成分である。
 表1から明らかなように、無機固体電解質への分配成分の分配率が60%以下の比較例は、少なくともサイクル特性試験が不合格であった(条件1、2、5、6、14、30及び33)。
 これに対して、本発明の規定を満たす電極シート及び全固体二次電池は、膜強度試験及びサイクル特性試験がいずれも合格であった。条件7及び8の結果から明らかなように、特定の混合順序で無機固体電解質、活物質及び分配成分を混合することにより、より膜強度及びサイクル特性を向上させられることが分かる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2018年10月15日に日本国で特許出願された特願2018-194510及び2019年2月7日に日本国で特許出願された特願2019-21099に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。
1 負極集電体
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
11 コインケース
12 全固体二次電池用積層体
13 イオン伝導度測定用セル(コイン電池)
 

Claims (15)

  1.  無機固体電解質と、活物質と、これの両者に対して結着する分配成分とを含有する電極用組成物であって、
     前記分配成分の1種がバインダーであり、このバインダーを構成するポリマーが、アミノ基、スルファニル基、ヒドロキシ基、カルボキシ基又はアノン基を有する繰り返し単位を含み、
     前記電極用組成物により構成される電極活物質層中、前記無機固体電解質に対する前記分配成分の分配率が60%を越える、電極用組成物。
  2.  前記バインダーの前記活物質に対する吸着率A、及び前記バインダーの前記無機固体電解質に対する吸着率Bが、下記式I)及びII)を満たす、請求項1に記載の電極用組成物。
     式I)  吸着率B≧20%
     式II) 吸着率B>吸着率A
  3.  前記吸着率Aが25%以下である、請求項2に記載の電極用組成物。
  4.  前記バインダーが粒子状バインダーである、請求項1~3のいずれか1項に記載の電極用組成物。
  5.  前記バインダーを構成するポリマーがアミド結合、ウレア結合又はウレタン結合を有するポリマーである、請求項1~4のいずれか1項に記載の電極用組成物。
  6.  前記活物質が、ケイ素原子又はスズ原子を有する負極活物質である、請求項1~5のいずれか1項に記載の電極用組成物。
  7.  前記負極活物質がケイ素原子を有する負極活物質である、請求項6に記載の電極用組成物。
  8.  前記電極用組成物に含まれる全固形成分中の前記バインダーの含有量が、2質量%を越え20質量%以下である、請求項1~7のいずれか1項に記載の電極用組成物。
  9.  JIS K 7161(2014)に準拠して測定される、前記バインダーを構成するポリマーの弾性率が10~500MPaである、請求項1~8のいずれか1項に記載の電極用組成物。
  10.  JIS K 7161(2014)に準拠して測定される、前記バインダーを構成するポリマーの引張破壊ひずみが50~700%である、請求項1~9のいずれか1項に記載の電極用組成物。
  11.  無機固体電解質と、活物質と、この両者に対して結着する分配成分とを含有する電極活物質層を有する全固体二次電池用電極シートであって、
     前記分配成分の1種がバインダーであり、当該バインダーを構成するポリマーが、アミノ基、スルファニル基、ヒドロキシ基、カルボキシ基又はアノン基を有する繰り返し単位を含み、
     前記電極活物質層中、前記無機固体電解質に対する前記分配成分の分配率が60%を越える、全固体二次電池用電極シート。
  12.  正極活物質層と固体電解質層と負極活物質層とをこの順で具備する全固体二次電池であって、
     前記正極活物質層及び前記負極活物質層の少なくとも1層が、請求項1~10のいずれか1項に記載の電極用組成物で構成した層である、全固体二次電池。
  13.  無機固体電解質とバインダーとを混合して混合物を得る工程と、
     前記混合物と活物質とを混合する工程とを有する、請求項1~10のいずれか1項に記載の電極用組成物の製造方法。
  14.  請求項13に記載の製造方法により得た電極用組成物を塗布する工程を含む、全固体二次電池用電極シートの製造方法。
  15.  請求項14に記載の製造方法により得た全固体二次電池用電極シートを用いて全固体二次電池を製造する工程を含む、全固体二次電池の製造方法。
     
PCT/JP2019/040103 2018-10-15 2019-10-10 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法 WO2020080262A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980067437.8A CN112840482B (zh) 2018-10-15 2019-10-10 电极用组合物、全固态二次电池用电极片及全固态二次电池、以及三者的各制造方法
JP2020553135A JP7245847B2 (ja) 2018-10-15 2019-10-10 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法
EP19874024.3A EP3869588A4 (en) 2018-10-15 2019-10-10 ELECTRODE COMPOSITION, ELECTRODE LAYER FOR SOLID STATE SECONDARY BATTERY AND SECONDARY BATTERY, AND METHOD OF MAKING ELECTRODE LAYER FOR SOLID STATE SECONDARY BATTERY AND SECONDARY BATTERY
KR1020217011717A KR102614214B1 (ko) 2018-10-15 2019-10-10 전극용 조성물, 전고체 이차 전지용 전극 시트와 전고체 이차 전지, 및 전극용 조성물, 전고체 이차 전지용 전극 시트와 전고체 이차 전지의 각 제조 방법
US17/228,714 US12051809B2 (en) 2018-10-15 2021-04-13 Electrode composition, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and respective methods of manufacturing electrode composition, electrode sheet for all-solid state secondary battery, and all-solid state secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-194510 2018-10-15
JP2018194510 2018-10-15
JP2019-021099 2019-02-07
JP2019021099 2019-02-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/228,714 Continuation US12051809B2 (en) 2018-10-15 2021-04-13 Electrode composition, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and respective methods of manufacturing electrode composition, electrode sheet for all-solid state secondary battery, and all-solid state secondary battery

Publications (1)

Publication Number Publication Date
WO2020080262A1 true WO2020080262A1 (ja) 2020-04-23

Family

ID=70284604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040103 WO2020080262A1 (ja) 2018-10-15 2019-10-10 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法

Country Status (6)

Country Link
US (1) US12051809B2 (ja)
EP (1) EP3869588A4 (ja)
JP (1) JP7245847B2 (ja)
KR (1) KR102614214B1 (ja)
CN (1) CN112840482B (ja)
WO (1) WO2020080262A1 (ja)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6222066A (ja) 1985-07-23 1987-01-30 Wako Pure Chem Ind Ltd ラテツクス凝集反応測定装置
JPH026856A (ja) 1988-06-27 1990-01-11 Motonobu Shibata 触媒担体およびその製造方法
JPH0345473A (ja) 1989-07-11 1991-02-27 Toyoda Mach Works Ltd 四輪操舵装置
JPH0590844A (ja) 1991-09-26 1993-04-09 Toshiba Corp 歪補償器
JPH064516A (ja) 1992-06-17 1994-01-14 Toshiba Corp 割当て決定支援方式
JP2010033876A (ja) * 2008-07-29 2010-02-12 Idemitsu Kosan Co Ltd ポリマー被覆固体電解質、及びそれを用いた全固体二次電池
JP5375975B2 (ja) 2010-01-15 2013-12-25 トヨタ自動車株式会社 電池用電極、当該電池用電極を備えた電池、及び、当該電池用電極の製造方法
JP2015088486A (ja) 2013-09-25 2015-05-07 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池
JP2015167126A (ja) 2014-02-17 2015-09-24 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびにそれらの製造方法
JP2016035911A (ja) 2014-07-31 2016-03-17 富士フイルム株式会社 全固体二次電池、固体電解質組成物、これを用いた電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法
WO2016136090A1 (ja) * 2015-02-27 2016-09-01 富士フイルム株式会社 固体電解質組成物、電極活物質及びその製造方法、電池用電極シート及びその製造方法、並びに全固体二次電池及びその製造方法
WO2017018456A1 (ja) * 2015-07-30 2017-02-02 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
WO2018020827A1 (ja) 2016-07-26 2018-02-01 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、固体電解質含有シートおよび全固体二次電池の製造方法、ならびに、セグメント化ポリマー、ポリマーおよびセグメント化ポリマーの非水溶媒分散物
JP2018044111A (ja) 2016-09-16 2018-03-22 富士フイルム株式会社 ポリマー、固体電解質、固体電解質組成物、無機固体電解質組成物、固体電解質含有シート、二次電池、全固体二次電池、固体電解質含有シートの製造方法、無機固体電解質含有シートの製造方法、二次電池の製造方法および全固体二次電池の製造方法
JP2018194510A (ja) 2017-05-22 2018-12-06 国立研究開発法人農業・食品産業技術総合研究機構 水田水位測定方法
JP2019021099A (ja) 2017-07-19 2019-02-07 株式会社ブロンズナイト 書類生成システム及び書類生成プログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755826Y2 (ja) 1976-11-26 1982-12-02
JP5652070B2 (ja) 2010-04-28 2015-01-14 日立化成株式会社 複合粒子、複合粒子の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP5668381B2 (ja) 2010-09-10 2015-02-12 日立化成株式会社 複合粒子、複合粒子の製造方法、リチウムイオン二次電池用負極、リチウムイオン二次電池用負極の製造方法、及びリチウムイオン二次電池
JP6318099B2 (ja) * 2015-01-27 2018-04-25 富士フイルム株式会社 固体電解質組成物およびこれを用いた電池用電極シートならびに電池用電極シートおよび全固体二次電池の製造方法
JP6442607B2 (ja) 2015-05-29 2018-12-19 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
KR102086274B1 (ko) 2015-12-11 2020-03-06 후지필름 가부시키가이샤 고체 전해질 조성물, 전고체 이차 전지용 시트, 전고체 이차 전지용 전극 시트 및 그 제조 방법과, 전고체 이차 전지 및 그 제조 방법
JP2018088306A (ja) * 2016-11-28 2018-06-07 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに、固体電解質含有シートおよび全固体二次電池の製造方法
WO2018151161A1 (ja) * 2017-02-17 2018-08-23 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及びその製造方法、全固体二次電池及びその製造方法、並びに、ポリマーとその非水溶媒分散物
WO2020075749A1 (ja) * 2018-10-11 2020-04-16 富士フイルム株式会社 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6222066A (ja) 1985-07-23 1987-01-30 Wako Pure Chem Ind Ltd ラテツクス凝集反応測定装置
JPH026856A (ja) 1988-06-27 1990-01-11 Motonobu Shibata 触媒担体およびその製造方法
JPH0345473A (ja) 1989-07-11 1991-02-27 Toyoda Mach Works Ltd 四輪操舵装置
JPH0590844A (ja) 1991-09-26 1993-04-09 Toshiba Corp 歪補償器
JPH064516A (ja) 1992-06-17 1994-01-14 Toshiba Corp 割当て決定支援方式
JP2010033876A (ja) * 2008-07-29 2010-02-12 Idemitsu Kosan Co Ltd ポリマー被覆固体電解質、及びそれを用いた全固体二次電池
JP5375975B2 (ja) 2010-01-15 2013-12-25 トヨタ自動車株式会社 電池用電極、当該電池用電極を備えた電池、及び、当該電池用電極の製造方法
JP2015088486A (ja) 2013-09-25 2015-05-07 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池
JP2015167126A (ja) 2014-02-17 2015-09-24 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびにそれらの製造方法
JP2016035911A (ja) 2014-07-31 2016-03-17 富士フイルム株式会社 全固体二次電池、固体電解質組成物、これを用いた電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法
WO2016136090A1 (ja) * 2015-02-27 2016-09-01 富士フイルム株式会社 固体電解質組成物、電極活物質及びその製造方法、電池用電極シート及びその製造方法、並びに全固体二次電池及びその製造方法
WO2017018456A1 (ja) * 2015-07-30 2017-02-02 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
WO2018020827A1 (ja) 2016-07-26 2018-02-01 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、固体電解質含有シートおよび全固体二次電池の製造方法、ならびに、セグメント化ポリマー、ポリマーおよびセグメント化ポリマーの非水溶媒分散物
JP2018044111A (ja) 2016-09-16 2018-03-22 富士フイルム株式会社 ポリマー、固体電解質、固体電解質組成物、無機固体電解質組成物、固体電解質含有シート、二次電池、全固体二次電池、固体電解質含有シートの製造方法、無機固体電解質含有シートの製造方法、二次電池の製造方法および全固体二次電池の製造方法
JP2018194510A (ja) 2017-05-22 2018-12-06 国立研究開発法人農業・食品産業技術総合研究機構 水田水位測定方法
JP2019021099A (ja) 2017-07-19 2019-02-07 株式会社ブロンズナイト 書類生成システム及び書類生成プログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. HAYASHIS. HAMAH. MORIMOTOM. TATSUMISAGOT. MINAMI, CHEM. LETT., 2001, pages 872,873
T. OHTOMOA. HAYASHIM. TATSUMISAGOY. TSUCHIDAS. HAMGAK. KAWAMOTO, JOURNAL OF POWER SOURCES, vol. 233, 2013, pages 231 - 235

Also Published As

Publication number Publication date
JP7245847B2 (ja) 2023-03-24
KR102614214B1 (ko) 2023-12-14
KR20210058956A (ko) 2021-05-24
CN112840482A (zh) 2021-05-25
EP3869588A4 (en) 2022-01-26
US20210234172A1 (en) 2021-07-29
CN112840482B (zh) 2024-07-19
EP3869588A1 (en) 2021-08-25
JPWO2020080262A1 (ja) 2021-09-02
US12051809B2 (en) 2024-07-30

Similar Documents

Publication Publication Date Title
JP6721669B2 (ja) 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP6684901B2 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
JP6969004B2 (ja) 固体電解質組成物、固体電解質含有シート、全固体二次電池用電極シート及び全固体二次電池
JP7165747B2 (ja) 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法
WO2021039948A1 (ja) 電極用組成物の製造方法、全固体二次電池用電極シートの製造方法及び全固体二次電池の製造方法
JP7008080B2 (ja) 固体電解質組成物、固体電解質含有シート及び全固体二次電池並びに固体電解質含有シート及び全固体二次電池の製造方法
JP7064613B2 (ja) 全固体二次電池用積層部材の製造方法及び全固体二次電池の製造方法
WO2020196041A1 (ja) 固体電解質組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2020075749A1 (ja) 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池
WO2020203545A1 (ja) 複合電極活物質、電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、複合電極活物質、全固体二次電池用電極シート及び全固体二次電池の製造方法
JP6982682B2 (ja) 固体電解質組成物、全固体二次電池用シート、及び全固体二次電池、並びに、全固体二次電池用シート若しくは全固体二次電池の製造方法
JP6670641B2 (ja) 電極用材料、これを用いた全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP6587555B2 (ja) 固体電解質組成物、これを用いた全固体二次電池用シートおよび全固体二次電池ならびにこれらの製造方法
JP6709134B2 (ja) ポリマー、固体電解質、固体電解質組成物、無機固体電解質組成物、固体電解質含有シート、二次電池、全固体二次電池、固体電解質含有シートの製造方法、無機固体電解質含有シートの製造方法、二次電池の製造方法および全固体二次電池の製造方法
JP6623083B2 (ja) 固体電解質組成物、これを用いた全固体二次電池用シートおよび全固体二次電池ならびにこれらの製造方法
WO2021020031A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2020067108A1 (ja) 全固体二次電池の負極用組成物、全固体二次電池用負極シート及び全固体二次電池、並びに、全固体二次電池用負極シート及び全固体二次電池の製造方法
WO2020080262A1 (ja) 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法
JP2018037230A (ja) 全固体二次電池用負極シートおよび全固体二次電池の製造方法
JPWO2019098299A1 (ja) 固体電解質組成物、固体電解質含有シート及び全固体二次電池並びに固体電解質含有シート及び全固体二次電池の製造方法
WO2022065477A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2024143389A1 (ja) 全固体二次電池用電極シート及び全固体二次電池
CN117716524A (zh) 电极用片材及全固态二次电池、以及电极用片材、电极片及全固态二次电池的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874024

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553135

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217011717

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019874024

Country of ref document: EP

Effective date: 20210517