WO2018006635A1 - 一种三蝶烯基聚合物分离膜的制备方法 - Google Patents

一种三蝶烯基聚合物分离膜的制备方法 Download PDF

Info

Publication number
WO2018006635A1
WO2018006635A1 PCT/CN2017/081790 CN2017081790W WO2018006635A1 WO 2018006635 A1 WO2018006635 A1 WO 2018006635A1 CN 2017081790 W CN2017081790 W CN 2017081790W WO 2018006635 A1 WO2018006635 A1 WO 2018006635A1
Authority
WO
WIPO (PCT)
Prior art keywords
chloride
bis
compound
polymer
triptycene
Prior art date
Application number
PCT/CN2017/081790
Other languages
English (en)
French (fr)
Inventor
周浩力
陶飞
金万勤
Original Assignee
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工业大学 filed Critical 南京工业大学
Priority to US15/579,205 priority Critical patent/US10799836B2/en
Priority to JP2017566708A priority patent/JP6549737B2/ja
Priority to EP17803762.8A priority patent/EP3323500B1/en
Publication of WO2018006635A1 publication Critical patent/WO2018006635A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/00091Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching by evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0095Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/003Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/46Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/40Polyamides containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/42Polyamides containing atoms other than carbon, hydrogen, oxygen, and nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/28Degradation or stability over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/755Membranes, diaphragms

Definitions

  • the invention relates to a preparation method of a polymer separation membrane, and belongs to the field of polymer polymer membranes.
  • VOCs volatile organic compounds
  • various mature VOCs treatment processes such as absorption method, adsorption method, condensation method, biological method and membrane separation method have been developed in the industry.
  • the membrane separation method Compared with several other separation methods, the membrane separation method has the advantages of low energy consumption, simple operation, no secondary pollution, high safety performance, etc., and is called the gas separation technology with the most development application prospect.
  • the reticulated polymer material can be prepared by using the reaction sites and derivatization sites rich in triptycene, and the network-like microporous polymer has the characteristics of amorphous structure, high stability and organic micropores. Therefore, it has a wide range of applications in the fields of gas adsorption, hydrogen storage, gas separation and the like.
  • the microporous polymer of the network structure is difficult to dissolve in common solvents and is prone to aging, thus greatly limiting the popularization and application of materials.
  • the object of the present invention is to provide a method for preparing a tripentyl polymer separation membrane.
  • the method solves the problem that the network structure polymer material is insoluble, and breaks the network structure polymer because it is difficult to dissolve and is difficult to be aged. Limitations of application in separation membranes.
  • the object of the invention can be achieved by the following measures:
  • a method for preparing a triptyl polymer separation membrane comprising the steps of:
  • triptycene containing a reactive group is used as a first monomer
  • a diacid chloride compound is used as a second monomer
  • a diamino compound containing an ether bond is used as a third monomer, in the presence of an acid binding agent.
  • the polymerization was carried out underneath. After the reaction, the polymer was separated and further washed with methanol, followed by dissolution in an aprotic solvent to prepare a separation membrane.
  • the polyamide polymer of the network structure prepared by the method can be dissolved not only in the aprotic solvent, but also the separation membrane thus obtained has higher uniformity and better separation performance.
  • the step of cleaning the polymer is specifically: the polymer solution is poured into deionized water for precipitation, and then the precipitate is filtered, and the precipitate is washed with methanol several times, followed by filtration, and the filtrate is filtered. After drying, the triptycene polymer is obtained; under a preferred condition, the filtrate is dried by oven drying, and the drying temperature is 40 ° C to 120 ° C.
  • the reactive group-containing triptycene compound of the present invention is selected from a hexaamino-substituted tri-disc compound or a derivative thereof, a tetraamino-substituted tri-disc compound or a derivative thereof, a triamino-substituted tri-disc compound or Any one of a derivative, a diamino-substituted tri-disc compound or a derivative thereof.
  • the triptycene compound containing a reactive group is selected from the group consisting of 2,3,6,7,12,13-hexaaminotrimonene, 2,3,6,7-tetraaminotrimonene, 2,6,14-triaminotriptyrene, 2,7,14-triaminotripadene, 9,10-dimethyl-2,6,14-triaminotripreene, 9,10-dimethyl Any one of benzyl-2,7,14-triaminotriptyrene, 2,6-diaminotriptyrene, 2,7-diaminotriptylene, and the like.
  • the triptycene compound containing a reactive group is selected from the group consisting of 2,6,14-triaminotriptyrene, 2,7,14-triaminotripadene, 9,10-dimethyl Base-2,6,14-triaminotriptyr, 9,10-dimethyl-2,7,14-triaminotriptyrene, 2,6-diaminotriptyrene, 2,7-diamino One of triptycene.
  • the diacid chloride compound in the present invention may be selected from the group consisting of oxalyl chloride, malonyl chloride, succinyl chloride, glutaryl chloride, adipyl chloride, 1,7-peptanedioyl chloride, sebacic acid chloride, hexafluoroglutaryl chloride, and sebacic acid chloride.
  • 1,8-dioctanoyl chloride 1,8-dioctanoyl chloride, terephthaloyl chloride, isophthaloyl chloride, phthaloyl chloride, 1,4-cyclohexanedioyl chloride, trimesic acid chloride, fumarate, tetrafluoro Phthalic acid chloride, hexafluoroglutaryl chloride, dodecanedioyl dichloride, 1,8-dioctanoyl chloride, 2,6-chloroformylpyridine, 1,4-phenylene diacryloyl chloride, trans- 3,6-bridge-methylene-1,2,3,6-tetrahydrophthaloyl chloride, 5-amino-2,4,6-triiodo-1,3-benzenedicarboxylic acid chloride, couple Nitrobenzene-4,4'-dicarbonyl chloride, 4,4'-biphenyldiacetyl
  • the diacid chloride compound of the present invention may be selected from the group consisting of oxalyl chloride, malonyl chloride, succinyl chloride, glutaryl chloride, adipyl chloride, 1,7-peptanedioyl chloride, sebacic acid chloride, and para-benzene.
  • oxalyl chloride malonyl chloride
  • succinyl chloride glutaryl chloride
  • adipyl chloride 1,7-peptanedioyl chloride
  • sebacic acid chloride and para-benzene.
  • Diformyl chloride isophthaloyl chloride,
  • the diamino compound containing an ether bond in the present invention may be a diamino compound having an ether bond with or without a fluorine group, such as bis(3-aminopropyl)ether or 3,4-diaminodiamine.
  • the diamino compound containing an ether bond in the present invention is selected from the group consisting of 3,4-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 2,2-bis[(4- Aminophenoxy)phenyl]hexafluoropropane, 2,2-bis(trifluoromethyl)-4,4-diaminophenyl ether, 1,3-bis(2-trifluoromethyl-4-amino In phenoxy)benzene, 1,4-bis(2-trifluoromethyl-4-aminophenoxy)benzene, 2,2-bis[4-(4-aminophenoxy)phenyl]propane One.
  • the molar ratio of the triptycene compound containing the reactive group, the diacid chloride compound and the diamino compound containing the ether bond is 1:1.0 to 20.0:0.2 to 10; preferably: 1:2.0 to 10.0: 0.5 to 5; the molar amount of the acid binding agent is 1 to 10 times, preferably 1.5 to 5 times the molar amount of the diacid chloride compound.
  • the acid binding agent in the present invention is an organic base or an inorganic base, and is preferably selected from the group consisting of pyridine, triethylamine, N,N-diisopropylethylamine, 4-dimethylaminopyridine, triethanolamine, potassium carbonate, sodium carbonate, Any of sodium hydrogencarbonate, potassium hydroxide, and sodium hydroxide.
  • the aprotic organic solvent is selected from any one of methylpyrrolidone, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, and hexamethylphosphoramide.
  • the polymerization temperature is -5 to 15 ° C
  • the reaction time is 1 to 18 hours
  • the polymerization is carried out under the protection of an inert gas.
  • a specific film forming method is: dissolving the triptycene polymer in an aprotic organic solvent, vacuum degassing and standing to obtain a casting solution, and coating the casting solution on the support.
  • the oven is dried to obtain a tripentyl polymer separation membrane; under a preferred condition, the drying temperature is from 40 ° C to 150 ° C and the drying time is from 2 hours to 96 hours.
  • the aprotic organic solvent is selected from the group consisting of methylpyrrolidone, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, acetonitrile, dioxane, and hexamethylphosphoramide. Any of them.
  • the concentration of the casting solution is from 0.5 to 25% by weight, preferably from 1 to 20% by weight, further preferably from 5 to 15% by weight.
  • the support in the present invention is selected from an organic material base film or an inorganic material base film, and is preferably any one of polytetrafluoroethylene, cellulose acetate, and ceramic.
  • the three-dimensional network-like microporous polymer material is favored by researchers because of its special microporous structure, excellent mechanical properties and thermal stability, and is currently the most promising gas separation membrane material.
  • due to the presence of the network structure it is difficult to dissolve in common solvents, and its application in the separation membrane is limited.
  • the invention overcomes the defects that the VOCs separation membrane prepared by the reticulated polyamide material is insoluble in common solvent, has poor film forming property, easy aging and low separation efficiency.
  • the VOCs separation performance of the polyamide membrane can be effectively adjusted to achieve different separation requirements.
  • Figure 1 is a SEM electron micrograph of a cross section of the separation membrane obtained by the present invention.
  • Figure 3 is a SEM digital image of the surface of the separation membrane obtained by the present invention.
  • Figure 4 is a hydrogen spectrum diagram of the product prepared in Example 1 of the present invention.
  • Figure 5 is a hydrogen spectrum diagram of the product prepared in Example 5 of the present invention.
  • Figure 6 is a carbon spectrum of the product prepared in Example 5 of the present invention.
  • Figure 7 is a hydrogen spectrum diagram of the product prepared in Example 6 of the present invention.
  • the left picture shows a three-disc alkenyl polymer separation composite film; the right picture shows a polytetrafluoroethylene base film.
  • Pp is the VOCs concentration (ppm) on the permeate side
  • Pb is the VOCs concentration (ppm) on the raw material side
  • R is the rejection rate.
  • the dried precipitate was tested for solubility.
  • the solvents were chloroform, water, methylpyrrolidone, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoramide, and diethyl ether. , cyclohexane, n-heptane.
  • the test results showed that the precipitate was soluble in dimethylformamide, dimethylacetamide, dimethyl sulfoxide, methylpyrrolidone, hexamethylphosphoramide aprotic polar solvent at room temperature.
  • the separation performance of the composite membrane obtained in this example was tested for the N 2 /C 6 H 6 system.
  • the permeation flow rate was 0.24 L/m 2 min.
  • the concentration of cyclohexane was measured. It was reduced from 30,000 ppm on the raw material side to 90 ppm on the permeate side, and the rejection was 99.7%.
  • the separation performance of the composite membrane obtained in this example was tested for N 2 /C 6 H 6 system.
  • the permeation flow rate was 0.10 L/m 2 min.
  • the concentration of cyclohexane was measured. It was reduced from 30,000 ppm on the raw material side to 12 ppm on the permeate side, and the rejection was 99.96%.
  • Example 4 The target product prepared in Example 1 was subjected to nuclear magnetic resonance analysis, wherein the hydrogen spectrum is shown in Fig. 4.
  • the specific carbon spectrum and hydrogen spectrum analysis data are as follows:
  • 8.12 ppm is the absorption peak of the benzene ring hydrogen atom in 2,2'-bis(trifluoromethyl)-4,4'-diaminophenyl ether
  • 10.15 is a characteristic peak of a hydrogen atom of two amide groups.
  • 115-136 ppm is the carbon absorption peak on the benzene ring of 2,6,14-triaminotripyceine and 2,2'-bis(trifluoromethyl)-4,4'-diaminophenyl ether
  • Example 1 The product obtained in Example 1 was 2.62 g, and the yield was calculated to be 90.34%.
  • the dried precipitate was tested for solubility.
  • the solvents were chloroform, water, methylpyrrolidone, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoramide, and diethyl ether. , cyclohexane, n-heptane.
  • the test results showed that the precipitate was soluble in dimethylformamide, dimethylacetamide, dimethyl sulfoxide, methylpyrrolidone, hexamethylphosphoramide aprotic polar solvent at room temperature.
  • the separation performance of the composite membrane obtained in this example was tested for N 2 /C 6 H 6 system.
  • the permeation flow rate was 0.25 L/m 2 min.
  • the concentration of cyclohexane was measured. From 30000 ppm on the raw material side to 120 ppm on the permeate side, the rejection was 99.6%.
  • the target product prepared in Example 2 was subjected to nuclear magnetic resonance analysis, and the specific carbon spectrum and hydrogen spectrum analysis data were as follows:
  • 2.0-2.1, 2.2-2.3ppm is the characteristic absorption peak of hydrogen atom of glutaryl chloride
  • 10.2 is a characteristic absorption peak of hydrogen atoms of two amide groups.
  • 46ppm and 54ppm are characteristic absorption peaks at the carbon of 2,7,14-triaminotriptyrene bridgehead
  • Example 2 The product obtained in Example 2 was 1.08 g, and the yield was calculated to be 84.77%.
  • the precipitate was filtered and washed with methanol for 3 to 4 times, the precipitate was dried under vacuum at 70 °C.
  • the prepared polymer is purified and dried, and then the composite film is prepared by dissolving in the aprotic solution, and the composite film has higher uniformity and better separation performance.
  • the dried precipitate was tested for solubility.
  • the solvents were chloroform, water, methylpyrrolidone, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoramide, and diethyl ether. , cyclohexane, n-heptane.
  • the test results showed that the precipitate was soluble in dimethylformamide, dimethylacetamide, dimethyl sulfoxide, methylpyrrolidone, hexamethylphosphoramide aprotic polar solvent at room temperature.
  • the separation performance of the composite membrane obtained in this example was tested for the N 2 /C 6 H 6 system.
  • the permeation flow rate was 0.32 L/m 2 min.
  • the cyclohexane concentration was measured. From 30000 ppm on the raw material side to 240 ppm on the permeate side, the rejection was 99.2%.
  • the target product prepared in Example 3 was subjected to nuclear magnetic resonance analysis, and the specific carbon spectrum and hydrogen spectrum analysis data were as follows:
  • 1.6-1.7ppm
  • 2.3-2.4ppm is the characteristic absorption peak of hydrogen atom on adipyl chloride
  • 14.5 ppm is the characteristic absorption peak of two methyl carbons on the 9,10-dimethyl-2,6,14-triaminotriptyrene bridge carbon
  • 25-26, 36-38ppm is the characteristic absorption peak of carbon atom on adipyl chloride
  • Example 3 The product obtained in Example 3 was 1.63 g, and the yield was 85.79%.
  • the precipitate was filtered and washed with methanol for 3 to 4 times, the precipitate was dried under vacuum at 70 °C.
  • the prepared polymer is purified and dried, and then the composite film is prepared by dissolving in the aprotic solution, and the composite film has higher uniformity and better separation performance.
  • the dried precipitate was tested for solubility.
  • the solvents were chloroform, water, methylpyrrolidone, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoramide, and diethyl ether. , cyclohexane, n-heptane.
  • the test results showed that the precipitate was soluble in dimethylformamide, dimethylacetamide, dimethyl sulfoxide, methylpyrene at room temperature.
  • a pyrrolidone, hexamethylphosphoramide aprotic polar solvent were chloroform, water, methylpyrrolidone, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoramide, and diethyl ether. , cyclohexane, n-heptane.
  • the test results showed that the precipitate was soluble in di
  • the separation performance of the composite membrane obtained in this example was tested for the N 2 /C 6 H 6 system.
  • the permeation flow rate was 0.31 L/m 2 min.
  • the cyclohexane concentration was measured. From 30,000 ppm on the raw material side to 273 ppm on the permeate side, the rejection was 99.09%.
  • the target product prepared in Example 4 was subjected to nuclear magnetic resonance analysis, and the specific carbon spectrum and hydrogen spectrum analysis data were as follows:
  • 13.5 ppm is the absorption peak of 9,10-dimethyl-2,6,14-triaminotriptyr 9, methyl carbon at the 10 position
  • Example 4 The product obtained in Example 4 was 1.27 g, and the yield was calculated to be 84.33%.
  • the dried precipitate was tested for solubility.
  • the solvents were chloroform, water, methylpyrrolidone, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoramide, and diethyl ether. , cyclohexane, n-heptane.
  • the test results showed that the precipitate was soluble in dimethylformamide, dimethylacetamide, dimethyl sulfoxide, methylpyrrolidone, hexamethylphosphoramide aprotic polar solvent at room temperature.
  • the separation performance of the composite membrane obtained in this example was tested for N 2 /C 6 H 6 system.
  • the permeation flow rate was 0.36 L/m 2 min.
  • the concentration of cyclohexane was measured. From 30,000 ppm on the raw material side to 276 ppm on the permeate side, the rejection was 99.08%.
  • Example 5 The target product prepared in Example 5 was subjected to nuclear magnetic resonance analysis.
  • the specific hydrogen spectrum (Fig. 5) and carbon spectrum (Fig. 6) were analyzed as follows:
  • Example 5 The product obtained in Example 5 was 1.12 g, and the yield was calculated to be 88.47%.
  • the dried precipitate was tested for solubility.
  • the solvents were chloroform, water, methylpyrrolidone, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoramide, and diethyl ether. , cyclohexane, n-heptane.
  • the test results showed that the precipitate was soluble in dimethylformamide, dimethylacetamide, dimethyl sulfoxide, methylpyrrolidone, hexamethylphosphoramide aprotic polar solvent at room temperature.
  • the separation performance of the composite membrane obtained in this example was tested for the N 2 /C 6 H 6 system.
  • the permeation flow rate was 0.32 L/m 2 min.
  • the cyclohexane concentration was measured. It was reduced from 30,000 ppm on the raw material side to 150 ppm on the permeate side, and the rejection was 99.5%.
  • Example 6 The target product prepared in Example 6 was subjected to nuclear magnetic resonance analysis, and the specific hydrogen spectrum (Fig. 7) and carbon spectrum analysis data were as follows:
  • Example 6 The product obtained in Example 6 was 1.42 g, and the yield was 86.58%.
  • Example 3 Repeat the method of Example 3 in the patent CN201510883253.2, using 2,6,1 4-triaminotripycenes, sebacic acid chloride as the main monomer for synthesis, pyridine as the acid binding agent, and methylpyrrolidone as the solvent for the synthesis reaction.
  • the specific steps are as follows: 1 mol of 2,6,1 4-triaminotripyceine, 3 mol of pyridine, 2 mol of sebacic acid chloride is added to the solution of methylpyrrolidone and stirred to dissolve at a temperature of 2 ° C (nitrogen protection) Under the conditions, the reaction was carried out for 3.5 hours, and after the completion of the reaction, the temperature was raised to room temperature and then deionized water was added for precipitation. After the precipitate was filtered and washed with methanol, the precipitate was dried under vacuum at 80 °C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Polyamides (AREA)

Abstract

一种三蝶烯基聚合物分离膜的制备方法,包括:以含有活性基团的三蝶烯化合物、二酰氯化合物和含有醚键的二氨基化合物为单体,在缚酸剂存在下于非质子有机溶剂中进行聚合反应;反应后将得到的聚合物溶液倒入去离子水中进行沉析,过滤出沉析物并用甲醇洗涤,干燥,得到三蝶烯基聚合物;将三蝶烯基聚合物溶于非质子有机溶剂中制成铸膜液,涂覆于支撑体上并干燥,得到三蝶烯基聚合物分离膜。

Description

一种三蝶烯基聚合物分离膜的制备方法 技术领域
本发明涉及聚合物分离膜的制备方法,属于高分子聚合物膜领域。
背景技术
挥发性有机物(VOCs)的无组织排放不仅会造成资源的大量浪费,还会引发环境污染,严重危害人体健康。因此国家已经制定了多条法律来限制VOCs的无组织排放。为了达到法律所规定的排放浓度,工业上已经开发出多种比较成熟的VOCs处理工艺如:吸收法、吸附法、冷凝法、生物法、膜分离法等。与其它几种分离方法相比膜分离法具有能耗小、操作简单、无二次污染、安全性能高等优点,被称为最具发展应用前景的气体分离技术。
由于三蝶烯独特的三维立体刚性结构和较大的内部自由空腔,是制备自具微孔聚合物的极佳材料。利用三蝶烯丰富的反应位点和衍生位点可以制备出网状的高分子材料,而网状的自具微孔聚合物因其具有的无定形结构、高稳定性及有机微孔等特性因而在气体吸附、氢气储存、气体分离等领域具有广泛的应用。但网状结构的自具微孔聚合物难溶于普通溶剂且易发生老化,因而大大限制了材料的推广应用。
发明内容
本发明的目的在于提供一种三蝶烯基聚合物分离膜的制备方法,本方法解决了网状结构高分子材料难溶的特点,打破了网状结构聚合物因难溶易老化而难以在分离膜中应用的限制。
本发明的目的可以通过以下措施达到:
一种三蝶烯基聚合物分离膜的制备方法,其包括如下步骤:
(1)以含有活性基团的三蝶烯化合物、二酰氯化合物和含有醚键的二氨基化合物为单体,在缚酸剂存在下于非质子有机溶剂中进行聚合反应;反应后将得到的聚合物溶液倒入去离子水中进行沉析,过滤出沉析物并用甲醇洗涤,干燥,得到三蝶烯基聚合物;所述含有活性基团的三蝶烯化合物为多氨基取代的三蝶烯化合物或其衍生物;
(2)将三蝶烯基聚合物溶于非质子有机溶剂中制成铸膜液,涂覆于支撑体上并干燥, 得到三蝶烯基聚合物分离膜。
本方法中,以含有活性基团的三蝶烯为第一单体,以二酰氯化合物为第二单体,以含有醚键的二氨基化合物为第三单体,在缚酸剂存在的条件下进行聚合反应。反应后将聚合物分离出后进一步采用甲醇进行洗涤干燥,随后再在非质子溶剂中溶解制备分离膜。本方法所制备的网络状结构的聚酰胺聚合物不仅能溶解于非质子溶剂,而且由此制得的分离膜均一性更高,分离性能更佳。
在步骤(1)中,对聚合物的清洗步骤具体为:聚合物溶液倒入去离子水中进行沉析,然后过滤出沉析物,用甲醇多次洗涤沉析物后过滤,将滤出物烘干后得到三蝶烯基聚合物;在一种优选条件下,滤出物采用烘箱干燥的方式烘干,烘干温度:40℃~120℃。
本发明的含有活性基团的三蝶烯化合物选自六氨基取代的三碟烯化合物或其衍生物、四氨基取代的三碟烯化合物或其衍生物、三氨基取代的三碟烯化合物或其衍生物、二氨基取代的三碟烯化合物或其衍生物中的任意一种。
在一种优选方案中,含有活性基团的三蝶烯化合物选自2,3,6,7,12,13-六氨基三碟烯、2,3,6,7-四氨基三碟烯、2,6,14-三氨基三蝶烯、2,7,14-三氨基三蝶烯、9,10-二甲基-2,6,14-三氨基三蝶烯、9,10-二甲基-2,7,14-三氨基三蝶烯、2,6-二氨基三蝶烯、2,7–二氨基三蝶烯等中的任意一种。
在一种更优选的方案中,含有活性基团的三蝶烯化合物选自2,6,14-三氨基三蝶烯、2,7,14-三氨基三蝶烯、9,10-二甲基-2,6,14-三氨基三蝶烯、9,10-二甲基-2,7,14-三氨基三蝶烯、2,6-二氨基三蝶烯、2,7–二氨基三蝶烯中的一种。
本发明中的二酰氯化合物可选自草酰氯、丙二酰氯、丁二酰氯、戊二酰氯、己二酰氯、1,7-庚二酰氯、壬二酰氯、六氟戊二酰氯、癸二酰氯、1,8-二辛酰氯、对苯二甲酰氯、间苯二甲酰氯、邻苯二甲酰氯、1,4-环己二酰氯、均苯三甲酰氯、反丁烯二酰氯、四氟对苯二甲酰氯、六氟戊二酰氯、十二烷二酰二氯、1,8-二辛酰氯、2,6-氯甲酰吡啶、1,4-亚苯基二丙烯酰氯、反式-3,6-桥-亚甲基-1,2,3,6-四氢邻苯二甲酰氯、5-氨基-2,4,6-三碘-1,3-苯二羧酸酰氯、偶氮苯-4,4’-二羰酰氯、4,4'-联苯二乙酰氯、反式-环丁烷-1,2-二羰酰氯、1,4-亚苯基二丙烯酰氯、双酚A双氯甲酸酯中的任意一种。
在一种优选方案中,本发明中的二酰氯化合物可选自草酰氯、丙二酰氯、丁二酰氯、戊二酰氯、己二酰氯、1,7-庚二酰氯、癸二酰氯、对苯二甲酰氯、间苯二甲酰氯、邻苯二甲酰氯、1,4-环己二酰氯、均苯三甲酰氯、反丁烯二酰氯、四氟对苯二甲酰氯、六氟戊二酰氯中的一种。
本发明中的含有醚键的二氨基化合物可采用带氟基团或不带氟基团的含有醚键的二氨基化合物,例如双(3-氨丙基)醚、3,4-二氨基二苯醚、间苯二酚二缩水甘油醚、4,4'-二氨基二苯醚、新戊基乙二醇双(4-氨基苯基)醚、1,3-二(4-氨苯氧基)苯、N-甲基-N-(4-氨基苯氧乙基)-4-氨基苯乙胺、2,2-双[4-(4-氨基苯氧基)苯基]-1,1,1,3,3,3-六氟丙烷、2,2’-二氨基乙二醇二苯醚、1,8-二氨基-3,6-二氧杂辛烷、双[4-(3-氨基苯氧基)苯基]砜、1,4-丁二醇双(3-氨基丁烯酸酯)、4,4”-二氨基对三联苯、2,2-双[(4-氨基苯氧基)苯基]六氟丙烷、2,2-双(三氟甲基)-4,4-二氨基苯基醚、1,3-双(2-三氟甲基-4-氨基苯氧基)苯、1,4-双(2-三氟甲基-4-氨基苯氧基)苯、2,2-双[4-(4-氨基苯氧基)苯基]丙烷中的任意一种。
在一种优选方案中,本发明中的含有醚键的二氨基化合物选自3,4-二氨基二苯醚、4,4'-二氨基二苯醚、2,2-双[(4-氨基苯氧基)苯基]六氟丙烷、2,2-双(三氟甲基)-4,4-二氨基苯基醚、1,3-双(2-三氟甲基-4-氨基苯氧基)苯、1,4-双(2-三氟甲基-4-氨基苯氧基)苯、2,2-双[4-(4-氨基苯氧基)苯基]丙烷中的一种。
三种单体含有活性基团的三蝶烯化合物、二酰氯化合物和含有醚键的二氨基化合物之间的摩尔用量比为1:1.0~20.0:0.2~10;优选:1:2.0~10.0:0.5~5;缚酸剂的摩尔用量为二酰氯化合物摩尔量的1~10倍,优选:1.5-5倍。
本发明中的缚酸剂为有机碱或无机碱,优选选自吡啶、三乙胺、N,N-二异丙基乙胺、4-二甲氨基吡啶、三乙醇胺、碳酸钾、碳酸钠、碳酸氢钠、氢氧化钾、氢氧化钠中的任意一种。
在步骤(1)中,所述非质子有机溶剂选自甲基吡咯烷酮、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、六甲基磷酰酰胺中的任意一种。
在步骤(1)中,聚合反应的温度为-5~15℃,反应时间为1~18小时,聚合反应在惰性气体保护下进行。
在步骤(2)中,一种具体的制膜方法为:将三蝶烯基聚合物溶于非质子有机溶剂后真空脱泡静置得到铸膜液,将铸膜液涂覆于支撑体上后烘箱干燥,得到三蝶烯基聚合物分离膜;在一种优选条件下,干燥温度为40℃~150℃,干燥时间为2小时~96小时。
在步骤(2)中,所述非质子有机溶剂选自甲基吡咯烷酮、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、乙腈、二恶烷、六甲基磷酰酰胺中的任意一种。
在步骤(2)中,铸膜液的浓度为0.5~25wt%,优选1~20wt%,进一步优选5~15wt%。
本发明中的支撑体选自有机材料底膜或无机材料底膜,优选聚四氟乙烯、醋酸纤维素、陶瓷中任意一种。
目前三维立体网状自具微孔高分子材料因其特殊的微孔结构、优良的机械性能及热稳定性备受研究者的青睐,是目前最具应用前景的气体分离膜材料。但是因网状结构的存在而难溶于普通溶剂,在分离膜中的应用受到限制。本发明克服了因网状聚酰胺材料不溶于普通溶剂而使得制备的VOCs分离膜成膜性差、易老化、分离效率低的缺点。同时,通过调节制膜过程的一系列参数可以有效调控聚酰胺膜的VOCs分离性能以达到不同的分离要求。
附图说明
图1是本发明所得分离膜的断面SEM电镜图;
图2是本发明所得分离膜的表面SEM电镜图;
图3是本发明所得分离膜的表面SEM数码图;
图4是本发明实施例1制备得到的产物的氢谱图;
图5是本发明实施例5制备得到的产物的氢谱图;
图6是本发明实施例5制备得到的产物的碳谱图;
图7是本发明实施例6制备得到的产物的氢谱图;
图中,左图为三碟烯基聚合物分离复合膜;右图为聚四氟乙烯底膜。
具体实施方式
下面结合实施例对本发明做进一步说明,但本发明的保护范围不限于此:
三碟烯基聚合物分离膜的截留率计算公式如下:
Figure PCTCN2017081790-appb-000001
其中:Pp为透过侧的VOCs浓度(ppm),Pb为原料侧VOCs浓度(ppm),R为截留率。
实施例1
取2,6,14-三氨基三蝶烯0.6g,2,2’-双(三氟甲基)-4,4’-二氨基苯基醚0.7g,癸二酰氯1.6g,放入250ml烧瓶中,在常温下加入50ml二甲基甲酰胺进行搅拌溶解,然后加入吡啶1ml。然后将温度降至-5℃反应5小时(氮气保护)。反应结束后就反应升温至室温然后加入150ml去离子水进行沉析。将沉析物过滤并用甲醇清洗3~4次后,将沉淀物在真空50℃的条件下烘干。本方法与专利CN201510883253.2的区别之一是将制备的聚合物洗涤纯化干燥后,再在非质子溶液中溶解制备复合膜,复合膜均一性更高,分离性能更好。 溶解性测试:
取干燥后的沉淀物进行溶解性测试,溶剂分别为氯仿、水、甲基吡咯烷酮、四氢呋喃、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、六甲基磷酰酰胺、乙醚、环己烷、正庚烷。测试结果发现沉淀物在室温下可溶于二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、甲基吡咯烷酮、六甲基磷酰酰胺非质子极性溶剂。
取共聚物0.8g,溶于10ml二甲基甲酰胺,完全溶解后真空脱泡静置2小时,将所得铸膜液涂在聚四氟乙烯支撑体上,在80℃烘箱中烘24小时,得到三蝶烯基含氟聚酰胺膜。
测试本例得到的复合膜对于N2/C6H6体系的分离性能,当温度为25℃,压力为10kpa时,渗透流速为0.24L/m2min,经过膜分离后,环己烷浓度由原料侧的30000ppm降低至渗透侧的90ppm,截留率为99.7%。
测试本例得到的复合膜对于N2/C6H6体系的分离性能,当温度为25℃,压力为2kpa时,渗透流速为0.10L/m2min,经过膜分离后,环己烷浓度由原料侧的30000ppm降低至渗透侧的12ppm,截留率为99.96%。
将实施例1制备得到的目标产物进行核磁共振分析,其中氢谱如图4,具体的碳谱和氢谱的分析数据如下:
氢谱
δ=1.0-2.5ppm处为癸二酰氯的氢原子特征吸收峰,
δ=5.5-5.6ppm处是2,6,14-三氨基三蝶烯桥头氢原子特征吸收峰
δ=6.97-7.78ppm处是苯环上的特征吸收峰
δ=8.12ppm处是2,2’-双(三氟甲基)-4,4’-二氨基苯基醚中苯环氢原子吸收峰
δ=10.15处是两个酰胺基团的氢原子特征峰。
碳谱
δ=24-38ppm处是癸二酰氯中碳原子的特征吸收峰
δ=53ppm处是2,6,14-三氨基三蝶烯桥头碳的特征吸收峰
δ=115-136ppm处是2,6,14-三氨基三蝶烯和2,2’-双(三氟甲基)-4,4’-二氨基苯基醚中苯环上的碳吸收峰
δ=174ppm处是酰胺键的碳特征吸收峰
产率
实施例1得产物2.62g,经计算可得产率为90.34%。
实施例2
取2,7,14-三氨基三蝶烯0.3g,1,3-双(2-三氟甲基-4-氨基苯氧基)苯0.428g,戊二酰氯0.546g,放入250ml烧瓶中,在常温下加入40ml二甲基甲酰胺进行搅拌溶解,然后加入三乙胺1.5ml,然后将温度降至0℃反应10小时(氮气保护)。反应结束后升温至室温然后加入100ml去离子水进行沉析。将沉析物过滤并用甲醇清洗3~4次后,将沉淀物在真空60℃的条件下烘干。本方法与专利CN201510883253.2的区别之一是将制备的聚合物洗涤纯化干燥后,再在非质子溶液中溶解制备复合膜,复合膜均一性更高,分离性能更好。溶解性测试:
取干燥后的沉淀物进行溶解性测试,溶剂分别为氯仿、水、甲基吡咯烷酮、四氢呋喃、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、六甲基磷酰酰胺、乙醚、环己烷、正庚烷。测试结果发现沉淀物在室温下可溶于二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、甲基吡咯烷酮、六甲基磷酰酰胺非质子极性溶剂。
取共聚物0.5g,溶于10ml二甲基甲酰胺,完全溶解后真空脱泡静止2小时,将所得铸膜液涂在聚醚酰亚胺支撑体上,在90℃真空烘箱中烘36小时,得到三蝶烯基含氟聚酰胺膜。
测试本例得到的复合膜对于N2/C6H6体系的分离性能,当温度为25℃,压力为10kpa时,渗透流速为0.25L/m2min,经过膜分离后,环己烷浓度由原料侧的30000ppm降低至渗透侧的120ppm,截留率为99.6%。
将实施例2制备得到的目标产物进行核磁共振分析,具体的碳谱和氢谱的分析数据如下:
氢谱
δ=2.0-2.1,2.2-2.3ppm处是戊二酰氯的氢原子特征吸收峰
δ=5.2-5.3ppm处是2,7,14-三氨基三蝶烯桥头氢原子特征吸收峰
δ=6.3-7.8ppm处是2,7,14-三氨基三蝶烯和1,3-双(2-三氟甲基-4-氨基苯氧基)苯中苯环氢原子的吸收峰
δ=7.9-8.0ppm处是1,3-双(2-三氟甲基-4-氨基苯氧基)苯环的氢原子吸收峰
δ=10.2处是两个酰胺基团的氢原子特征吸收峰。
碳谱
δ=21-22ppm,34-37ppm处是戊二酰氯上的碳原子特征吸收峰
δ=46ppm和54ppm处是2,7,14-三氨基三蝶烯桥头碳处的特征吸收峰
δ=107-148ppm处是2,7,14-三氨基三蝶烯和1,3-双(2-三氟甲基-4-氨基苯氧基)苯中苯环上碳吸收峰
δ=158ppm处是1,3-双(2-三氟甲基-4-氨基苯氧基)苯中苯环上碳吸收峰
δ=183ppm处是酰胺键上的碳特征吸收峰
产率
实施例2得产物1.08g,经计算可得产率为84.77%。
实施例3
取9,10-二甲基-2,6,14-三氨基三蝶烯0.45g,1,3-双(2-三氟甲基-4-氨基苯氧基)苯0.6g,己二酰氯0.85g,放入250ml烧瓶中,在常温下加入45ml二甲基甲酰胺进行搅拌溶解,然后加入N,N-二异丙基乙胺0.5ml。然后将温度降至5℃反应12小时(氮气保护)。反应结束后升温至室温然后加入120ml去离子水进行沉析。将沉析物过滤并用甲醇清洗3~4次后,将沉淀物在真空70℃的条件下烘干。本方法与专利CN201510883253.2的区别之一是将制备的聚合物洗涤纯化干燥后,再在非质子溶液中溶解制备复合膜,复合膜均一性更高,分离性能更好。
溶解性测试:
取干燥后的沉淀物进行溶解性测试,溶剂分别为氯仿、水、甲基吡咯烷酮、四氢呋喃、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、六甲基磷酰酰胺、乙醚、环己烷、正庚烷。测试结果发现沉淀物在室温下可溶于二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、甲基吡咯烷酮、六甲基磷酰酰胺非质子极性溶剂。
取共聚物0.6g,溶于10ml二甲基甲酰胺,完全溶解后真空脱泡静止2小时,将所得铸膜液涂在聚偏氟乙烯支撑体上,在100℃烘箱中烘48小时,得到三蝶烯基含氟聚酰胺膜。
测试本例得到的复合膜对于N2/C6H6体系的分离性能,当温度为25℃,压力为10kpa时,渗透流速为0.32L/m2min,经过膜分离后,环己烷浓度由原料侧的30000ppm降低至渗透侧的240ppm,截留率为99.2%。
将实施例3制备得到的目标产物进行核磁共振分析,具体的碳谱和氢谱的分析数据如下:
氢谱
δ=1.6-1.7ppm,2.3-2.4ppm处是己二酰氯上的氢原子特征吸收峰
δ=2.0-2.1ppm处是9,10-二甲基-2,6,14-三氨基三蝶烯9,10位上的两个甲基氢的特征吸收峰
δ=6.2-7.8ppm处是9,10-二甲基-2,6,14-三氨基三蝶烯和1,3-双(2-三氟甲基-4-氨基苯氧基)苯中苯环中的氢原子吸收峰
δ=8.0-8.1ppm处是1,3-双(2-三氟甲基-4-氨基苯氧基)苯中苯环中的氢原子吸收峰
δ=10.1ppm处是酰胺键上的氢原子特征峰
碳谱
δ=14.5ppm处是9,10-二甲基-2,6,14-三氨基三蝶烯桥头碳上两个甲基碳的特征吸收峰
δ=25-26,36-38ppm处是己二酰氯上的碳原子特征吸收峰
δ=49.3ppm处是9,10-二甲基-2,6,14-三氨基三蝶烯桥头碳处的碳原子特征吸收峰
δ=106-148ppm处是9,10-二甲基-2,6,14-三氨基三蝶烯和1,3-双(2-三氟甲基-4-氨基苯氧基)苯中苯环上碳原子吸收峰
δ=158ppm处是1,3-双(2-三氟甲基-4-氨基苯氧基)苯中苯环上碳原子吸收峰
δ=180ppm处是酰胺键上的碳原子特征吸收峰
产率
实施例3得产物1.63g,经计算可得产率为85.79%
实施例4
取9,10-二甲基-2,6,14-三氨基三蝶烯0.45g,1,4-双(2-三氟甲基-4-氨基苯氧基)苯0.336g,对苯二甲酰氯0.72g,放入250ml烧瓶中,在常温下加入40ml二甲基甲酰胺进行搅拌溶解,然后加入三乙醇胺1ml。然后将温度降至10℃反应15小时(氮气保护)。反应结束后升温至室温然后加入110ml去离子水进行沉析。将沉析物过滤并用甲醇清洗3~4次后,将沉淀物在真空70℃的条件下烘干。本方法与专利CN201510883253.2的区别之一是将制备的聚合物洗涤纯化干燥后,再在非质子溶液中溶解制备复合膜,复合膜均一性更高,分离性能更好。
溶解性测试:
取干燥后的沉淀物进行溶解性测试,溶剂分别为氯仿、水、甲基吡咯烷酮、四氢呋喃、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、六甲基磷酰酰胺、乙醚、环己烷、正庚烷。测试结果发现沉淀物在室温下可溶于二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、甲基吡 咯烷酮、六甲基磷酰酰胺非质子极性溶剂。
取共聚物0.7g,溶于10毫升二甲基甲酰胺,完全溶解后真空脱泡静止2小时,将所得铸膜液涂在聚砜支撑体上,在110℃真空烘箱中烘60小时,得到三蝶烯基含氟聚酰胺膜。
测试本例得到的复合膜对于N2/C6H6体系的分离性能,当温度为25℃,压力为10kpa时,渗透流速为0.31L/m2min,经过膜分离后,环己烷浓度由原料侧的30000ppm降低至渗透侧的273ppm,截留率为99.09%。
将实施例4制备得到的目标产物进行核磁共振分析,具体的碳谱和氢谱的分析数据如下:
氢谱
δ=2.3ppm处是9,10-二甲基-2,6,14-三氨基三蝶烯9,10位上的两个甲基氢特征吸收峰
δ=6.2-7.5ppm处是9,10-二甲基-2,6,14-三氨基三蝶烯和1,4-双(2-三氟甲基-4-氨基苯氧基)苯中苯环上的氢原子吸收峰
δ=8.0ppm处是1,4-双(2-三氟甲基-4-氨基苯氧基)苯中苯环上的氢原子吸收峰
δ=8.1-8.2ppm处是对苯二甲酰氯上的氢原子特征吸收峰
δ=10.4ppm处是酰胺键上的氢原子特征吸收峰
碳谱
δ=13.5ppm处是9,10-二甲基-2,6,14-三氨基三蝶烯9,10位上甲基碳的吸收峰
δ=48.4ppm处是9,10-二甲基-2,6,14-三氨基三蝶烯桥头碳处的特征吸收峰
δ=109-149ppm处是9,10-二甲基-2,6,14-三氨基三蝶烯、对苯二甲酰氯和1,4-双(2-三氟甲基-4-氨基苯氧基)苯中苯环上的碳吸收峰
δ=166ppm处是酰胺键的碳特征吸收峰
产率
实施例4得产物1.27g,经计算可得产率为84.33%
实施例5
取2,7,14-三氨基三蝶烯0.3g,2,2-双[4-(4-氨基苯氧基)苯基]丙烷0.428g,均苯三甲酰氯0.538g,放入250ml烧瓶中,在常温下加入45ml二甲基甲酰胺进行搅拌溶解,然后加入4-二甲氨基吡啶2.5ml。然后将温度降至15℃反应18小时(氮气保护)。反应结束后升温至室温然后加入100ml去离子水进行沉析。将沉析物过滤并用甲醇清洗3~4次后,将沉淀物在真空80℃的条件下烘干。本方法与专利CN201510883253.2的区别之一是将制备的聚合物洗涤纯化干燥后,再在非质子溶液中溶解制备复合膜,复合膜均一性更高,分离性 能更好。
溶解性测试:
取干燥后的沉淀物进行溶解性测试,溶剂分别为氯仿、水、甲基吡咯烷酮、四氢呋喃、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、六甲基磷酰酰胺、乙醚、环己烷、正庚烷。测试结果发现沉淀物在室温下可溶于二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、甲基吡咯烷酮、六甲基磷酰酰胺非质子极性溶剂。
取共聚物0.7g,溶于7ml二甲基甲酰胺,完全溶解后真空脱泡静止两小时,将所得铸膜液涂在醋酸纤维素支撑体上,在120℃烘箱中烘72小时,得到三蝶烯基含氟聚酰胺膜。
测试本例得到的复合膜对于N2/C6H6体系的分离性能,当温度为25℃,压力为10kpa时,渗透流速为0.36L/m2min,经过膜分离后,环己烷浓度由原料侧的30000ppm降低至渗透侧的276ppm,截留率为99.08%。
将实施例5制备得到的目标产物进行核磁共振分析,具体的氢谱(图5)和碳谱(图6)的分析数据如下:
氢谱
δ=1.58-1.62ppm是2,2-双[4-(4-氨基苯氧基)苯基]丙烷上甲基氢吸收峰,
δ=5.35处是2,7,14-三氨基三蝶烯桥头碳处氢原子的特征吸收峰
δ=6.6-8.0ppm处是1,3,5-苯三甲酰氯、2,7,14-三氨基三蝶烯和2,2-双[4-(4-氨基苯氧基)苯基]丙烷中苯环上的氢原子吸收峰
δ=8.6-8.7ppm处是1,3,5-苯三甲酰氯中苯环上的氢原子吸收峰
δ=10.5ppm处是酰胺键上的氢原子特征吸收峰
碳谱
δ=30.5ppm处是2,2-双[4-(4-氨基苯氧基)苯基]丙烷上两个甲基碳特征吸收峰
δ=38-40ppm处是2,7,14-三氨基三蝶烯桥头碳和2,2-双[4-(4-氨基苯氧基)苯基]丙烷上两个苯环连接碳吸收峰
δ=117-145ppm处是2,7,14-三氨基三蝶烯、1,3,5-苯三甲酰氯、2,2-双[4-(4-氨基苯氧基)苯基]丙烷上苯环上的碳吸收峰
δ=152-155ppm处是2,2-双[4-(4-氨基苯氧基)苯基]丙烷中苯环上碳原子吸收峰
δ=164ppm处是1,3,5-苯三甲酰氯中酰氯碳的吸收峰
产率
实施例5得产物1.12g,经计算可得产率为88.47%
实施例6
取2,6,14-三氨基三蝶烯0.455g,3,4-二氨基二苯基醚0.363g,戊二酰氯0.823g,放入250ml烧瓶中,在常温下加入30ml二甲基甲酰胺进行搅拌溶解,然后加入三乙醇胺1.5ml。然后将温度降至0℃反应10小时(氮气保护)。反应结束后升温至室温然后加入110ml去离子水进行沉析。将沉析物过滤并用甲醇清洗3~4次后,将沉淀物在80℃的条件下烘干。本方法与专利CN201510883253.2的区别之一是将制备的聚合物洗涤纯化干燥后,再在非质子溶液中溶解制备复合膜,复合膜均一性更高,分离性能更好。
溶解性测试:
取干燥后的沉淀物进行溶解性测试,溶剂分别为氯仿、水、甲基吡咯烷酮、四氢呋喃、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、六甲基磷酰酰胺、乙醚、环己烷、正庚烷。测试结果发现沉淀物在室温下可溶于二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、甲基吡咯烷酮、六甲基磷酰酰胺非质子极性溶剂。
取共聚物0.6g,溶于10毫升二甲基甲酰胺,完全溶解后真空脱泡静止2小时,将所得铸膜液涂在聚砜支撑体上,在100℃真空烘箱中烘60小时,得到三蝶烯基聚酰胺膜。
测试本例得到的复合膜对于N2/C6H6体系的分离性能,当温度为25℃,压力为10kpa时,渗透流速为0.32L/m2min,经过膜分离后,环己烷浓度由原料侧的30000ppm降低至渗透侧的150ppm,截留率为99.5%。
以上实施例仅为说明发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之类:本发明未涉及的技术均可通过现有技术加以实现。
将实施例6制备得到的目标产物进行核磁共振分析,具体的氢谱(图7)和碳谱的分析数据如下:
氢谱
δ=2.3-2.5ppm处是戊二酰氯上的氢原子特征吸收峰
δ=5.4ppm处是2,6,14-三氨基三蝶烯桥头碳上氢原子的特征吸收峰
δ=6.6-7.8处是2,6,14-三氨基三蝶烯和3,4-二氨基二苯基醚中苯环上的氢原子吸收峰
δ=9.8-9.9处是酰胺键上的氢原子特征吸收峰
碳谱
δ=23.1和38.4ppm处是戊二酰氯上的碳原子特征吸收峰
δ=54.1ppm处是2,6,14-三氨基三蝶烯桥头碳的特征吸收峰
δ=110-147ppm处是2,6,14-三氨基三蝶烯和3,4-二氨基二苯基醚上苯环中的碳原子吸收峰
δ=157.2ppm处是3,4-二氨基二苯基醚上苯环中的碳原子吸收峰
δ=180.2ppm处是酰胺键上的碳原子特征吸收峰
产率
实施例6得产物1.42g,经计算可得产率为86.58%
对比例1
重复专利CN201510883253.2中实施例3的方法,采用2,6,1 4-三氨基三蝶烯、癸二酰氯作为合成的主要单体,吡啶作为缚酸剂,甲基吡咯烷酮作为溶剂进行合成反应,其具体步骤如下:将1mol的2,6,1 4-三氨基三蝶烯,3mol的吡啶,2mol的癸二酰氯加入到甲基吡咯烷酮溶液中搅拌溶解,在温度为2℃(氮气保护)条件下,反应3.5h,反应结束后升温至室温然后加入去离子水进行沉析。将沉析物过滤并用甲醇清洗后,将沉淀物在真空80℃的条件下烘干。
取烘干后的聚合物0.7g,溶于7ml二甲基甲酰胺溶液中,聚合物不能完全溶解,得不到均一的铸膜液。

Claims (10)

  1. 一种三蝶烯基聚合物分离膜的制备方法,其特征在于包括如下步骤:
    (1)以含有活性基团的三蝶烯化合物、二酰氯化合物和含有醚键的二氨基化合物为单体,在缚酸剂存在下于非质子有机溶剂中进行聚合反应;反应后将得到的聚合物溶液倒入去离子水中进行沉析,过滤出沉析物并用甲醇洗涤,干燥,得到三蝶烯基聚合物;所述含有活性基团的三蝶烯化合物为多氨基取代的三蝶烯化合物或其衍生物;
    (2)将三蝶烯基聚合物溶于非质子有机溶剂中制成铸膜液,涂覆于支撑体上并干燥,得到三蝶烯基聚合物分离膜。
  2. 根据权利要求1所述的方法,其特征在于在步骤(1)中,聚合物溶液倒入去离子水中进行沉析,然后过滤出沉析物,用甲醇多次洗涤沉析物后过滤,将滤出物烘干后得到三蝶烯基聚合物;其中所述滤出物采用烘箱干燥的方式烘干,干燥温度:40℃~120℃。
  3. 根据权利要求1所述的方法,其特征在于所述含有活性基团的三蝶烯化合物选自六氨基取代的三碟烯化合物或其衍生物、四氨基取代的三碟烯化合物或其衍生物、三氨基取代的三碟烯化合物或其衍生物、二氨基取代的三碟烯化合物或其衍生物中的任意一种;优选选自2,3,6,7,12,13-六氨基三碟烯、2,3,6,7-四氨基三碟烯、2,6,14-三氨基三蝶烯、2,7,14-三氨基三蝶烯、9,10-二甲基-2,6,14-三氨基三蝶烯、9,10-二甲基-2,7,14-三氨基三蝶烯、2,6-二氨基三蝶烯、2,7–二氨基三蝶烯中的任意一种。
  4. 根据权利要求1所述的方法,其特征在于所述二酰氯化合物选自草酰氯、丙二酰氯、丁二酰氯、戊二酰氯、己二酰氯、1,7-庚二酰氯、壬二酰氯、六氟戊二酰氯、癸二酰氯、1,8-二辛酰氯、对苯二甲酰氯、间苯二甲酰氯、邻苯二甲酰氯、1,4-环己二酰氯、均苯三甲酰氯、反丁烯二酰氯、四氟对苯二甲酰氯、六氟戊二酰氯、十二烷二酰二氯、1,8-二辛酰氯、2,6-氯甲酰吡啶、1,4-亚苯基二丙烯酰氯、反式-3,6-桥-亚甲基-1,2,3,6-四氢邻苯二甲酰氯、5-氨基-2,4,6-三碘-1,3-苯二羧酸酰氯、偶氮苯-4,4’-二羰酰氯、4,4'-联苯二乙酰氯、反式-环丁烷-1,2-二羰酰氯、1,4-亚苯基二丙烯酰氯、双酚A双氯甲酸酯中的任意一种。
  5. 根据权利要求1所述的方法,其特征在于所述含有醚键的二氨基化合物选自双(3-氨丙基)醚、3,4-二氨基二苯醚、间苯二酚二缩水甘油醚、4,4'-二氨基二苯醚、新戊基乙二 醇双(4-氨基苯基)醚、1,3-二(4-氨苯氧基)苯、N-甲基-N-(4-氨基苯氧乙基)-4-氨基苯乙胺、2,2-双[4-(4-氨基苯氧基)苯基]-1,1,1,3,3,3-六氟丙烷、2,2’-二氨基乙二醇二苯醚、1,8-二氨基-3,6-二氧杂辛烷、双[4-(3-氨基苯氧基)苯基]砜、1,4-丁二醇双(3-氨基丁烯酸酯)、4,4″-二氨基对三联苯、2,2-双[(4-氨基苯氧基)苯基]六氟丙烷、2,2-双(三氟甲基)-4,4-二氨基苯基醚、1,3-双(2-三氟甲基-4-氨基苯氧基)苯、1,4-双(2-三氟甲基-4-氨基苯氧基)苯、2,2-双[4-(4-氨基苯氧基)苯基]丙烷中的任意一种。
  6. 根据权利要求1所述的方法,其特征在于在步骤(1)中,所述非质子有机溶剂选自甲基吡咯烷酮、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、六甲基磷酰三胺中的任意一种;所述的缚酸剂为有机碱或无机碱,优选选自吡啶、三乙胺、N,N-二异丙基乙胺、4-二甲氨基吡啶、三乙醇胺、碳酸钾、碳酸钠、碳酸氢钠、氢氧化钾、氢氧化钠中的任意一种;所述聚合反应的温度为-5~15℃,反应时间为1~18小时,聚合反应在惰性气体保护下进行。
  7. 根据权利要求1所述的方法,其特征在于在步骤(1)中,三种单体含有活性基团的三蝶烯化合物、二酰氯化合物和含有醚键的二氨基化合物之间的摩尔用量比为1:1.0~20.0:0.2~10;优选:1:2.0~10.0:0.5~5;缚酸剂的摩尔用量为二酰氯化合物摩尔量的1~10倍,优选:1.5-5倍。
  8. 根据权利要求1所述的方法,其特征在于在步骤(2)中,所述非质子有机溶剂选自甲基吡咯烷酮、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、六甲基磷酰酰胺、乙腈、二恶烷中的任意一种;所述铸膜液的浓度为0.5~25wt%。
  9. 根据权利要求1所述的方法,其特征在于在步骤(2)中,所述支撑体选自有机材料底膜或无机材料底膜,优选聚四氟乙烯、醋酸纤维素、陶瓷中任意一种。
  10. 根据权利要求1所述的方法,其特征在于在步骤(2)中,将三蝶烯基聚合物溶于非质子有机溶剂后真空脱泡静置得到铸膜液,将铸膜液涂覆于支撑体上后烘箱干燥,得到三蝶烯基聚合物分离膜;其中干燥温度为40℃~150℃,干燥时间为2小时~96小时。
PCT/CN2017/081790 2016-07-07 2017-04-25 一种三蝶烯基聚合物分离膜的制备方法 WO2018006635A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/579,205 US10799836B2 (en) 2016-07-07 2017-04-25 Preparation method for triptyl polymer separation membrane
JP2017566708A JP6549737B2 (ja) 2016-07-07 2017-04-25 トリプチルポリマー分離膜の製造方法
EP17803762.8A EP3323500B1 (en) 2016-07-07 2017-04-25 Manufacturing method for triptycene polymer carrier film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610534477.7 2016-07-07
CN201610534477.7A CN106139934B (zh) 2016-07-07 2016-07-07 一种三蝶烯基聚合物分离膜的制备方法

Publications (1)

Publication Number Publication Date
WO2018006635A1 true WO2018006635A1 (zh) 2018-01-11

Family

ID=58061587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081790 WO2018006635A1 (zh) 2016-07-07 2017-04-25 一种三蝶烯基聚合物分离膜的制备方法

Country Status (5)

Country Link
US (1) US10799836B2 (zh)
EP (1) EP3323500B1 (zh)
JP (1) JP6549737B2 (zh)
CN (1) CN106139934B (zh)
WO (1) WO2018006635A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106139934B (zh) * 2016-07-07 2017-09-12 南京工业大学 一种三蝶烯基聚合物分离膜的制备方法
CN110548419B (zh) * 2017-05-17 2021-06-01 南京工业大学 一种聚酰胺VOCs截留型聚合物分离膜在氮气/VOCs分离方面的应用
CN108619924B (zh) * 2018-05-03 2021-04-27 南京工业大学 一种三蝶烯基聚酰亚胺分离膜
CN109929117B (zh) * 2019-01-15 2021-04-30 浙江大学宁波理工学院 一种磷氮型刚性骨架多孔阻燃剂及其制备方法和应用
CN110756059B (zh) * 2019-11-04 2021-12-03 华东理工大学 一种以多孔离子聚合物为分散相的混合基质膜的制备方法及其气体分离的应用
CN111111475B (zh) * 2020-01-15 2022-03-22 南京工业大学 一种氧化石墨烯改性三蝶烯基聚酰胺分离膜的制备方法
CN111282459A (zh) * 2020-04-02 2020-06-16 贵州省材料产业技术研究院 铸膜液及其制备方法、对bpa具有选择性分离的膜及其制备方法与应用
CN111499859B (zh) * 2020-04-29 2023-03-10 镇江利德尔复合材料有限公司 一种低介电特性的含氟聚醚及其制备方法
CN111821861B (zh) * 2020-08-21 2022-01-07 烟台大学 一种星型分子化合物制备高通量有机溶剂纳滤膜的方法
CN112516810B (zh) * 2020-11-11 2022-08-16 南京工业大学 一种纳滤膜的制造方法及装置
CN112390943B (zh) * 2020-11-17 2022-03-04 北京理工大学 一种五蝶烯类功能材料、制备方法及其应用
CN112708341A (zh) * 2020-12-18 2021-04-27 合众(佛山)化工有限公司 一种三碟烯衍生物改性聚氨酯树脂水性涂料
CN112646114A (zh) * 2020-12-18 2021-04-13 合众(佛山)化工有限公司 三碟烯衍生物改性聚氨酯水性树脂及其制备方法
CN112957928B (zh) * 2021-02-23 2022-02-22 北京工商大学 一种微孔聚合物复合膜及其制备方法
CN113444242B (zh) * 2021-07-16 2022-05-31 黑龙江大学 以三蝶烯为中心含甲氧基三苯胺类聚酰胺及其制备方法和应用
CN115869788B (zh) * 2021-09-27 2023-07-14 中国石油化工股份有限公司 具有三蝶烯基结构的聚酰亚胺无规共聚物及其制备方法和应用
CN114163616B (zh) * 2021-12-21 2023-07-14 郑州大学 一种三聚氰胺功能化多孔有机聚合物及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192559A (ja) * 1992-07-08 1994-07-12 Hoechst Ag ポリアリーレン−エーテルより成るフィルム
CN104371112A (zh) * 2014-10-17 2015-02-25 中国科学院上海有机化学研究所 一类基于三蝶烯骨架的有机多孔聚合物及其制备和应用
WO2016010061A1 (ja) * 2014-07-15 2016-01-21 国立研究開発法人科学技術振興機構 自己組織化膜形成材料として有用なトリプチセン誘導体、その製造方法、それを用いた膜、当該膜の製造方法、及びそれを用いた電子デバイス
CN105498557A (zh) * 2015-12-03 2016-04-20 南京工业大学 一种三碟烯基VOCs截留型聚合物分离膜及其制备方法
CN106139934A (zh) * 2016-07-07 2016-11-23 南京工业大学 一种三蝶烯基聚合物分离膜的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006001968A (ja) * 2004-06-15 2006-01-05 Hitachi Chem Co Ltd トリプチセン骨格を有するポリアミド酸、ポリイミド樹脂及びこれを用いた光学部品
JP2016530343A (ja) * 2013-06-06 2016-09-29 キング アブドゥラー ユニバーシティ オブ サイエンス アンド テクノロジー トリプチセン系酸二無水物、ポリイミド、それぞれを製造する方法、及び使用方法
CN104829853B (zh) * 2015-05-15 2017-12-12 中国科学院化学研究所 一种聚酰亚胺气体分离膜及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192559A (ja) * 1992-07-08 1994-07-12 Hoechst Ag ポリアリーレン−エーテルより成るフィルム
WO2016010061A1 (ja) * 2014-07-15 2016-01-21 国立研究開発法人科学技術振興機構 自己組織化膜形成材料として有用なトリプチセン誘導体、その製造方法、それを用いた膜、当該膜の製造方法、及びそれを用いた電子デバイス
CN104371112A (zh) * 2014-10-17 2015-02-25 中国科学院上海有机化学研究所 一类基于三蝶烯骨架的有机多孔聚合物及其制备和应用
CN105498557A (zh) * 2015-12-03 2016-04-20 南京工业大学 一种三碟烯基VOCs截留型聚合物分离膜及其制备方法
CN106139934A (zh) * 2016-07-07 2016-11-23 南京工业大学 一种三蝶烯基聚合物分离膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3323500A4

Also Published As

Publication number Publication date
EP3323500B1 (en) 2021-01-27
US10799836B2 (en) 2020-10-13
EP3323500A4 (en) 2019-08-14
CN106139934A (zh) 2016-11-23
EP3323500A1 (en) 2018-05-23
CN106139934B (zh) 2017-09-12
US20180236408A1 (en) 2018-08-23
JP6549737B2 (ja) 2019-07-24
JP2018523562A (ja) 2018-08-23

Similar Documents

Publication Publication Date Title
WO2018006635A1 (zh) 一种三蝶烯基聚合物分离膜的制备方法
JP6742315B2 (ja) 高屈折率を有する耐溶媒性の透明な芳香族ポリアミドフィルム
WO2021227330A1 (zh) 耐溶剂聚合物纳滤膜及其制备方法和应用
JPH0910567A (ja) 新規なスルホン化ポリイミド気体分離膜
KR20160059097A (ko) 폴리아믹산 용액, 폴리이미드 필름, 및 그 제조방법
JP5712811B2 (ja) 可溶性ポリイミドおよびその製造方法、ワニス並びにポリイミドフィルム
CN109843997B (zh) 包含聚合物和添加剂的多孔制品,其制备方法以及其用途
JP2947352B2 (ja) 位置特異的ポリアミド−イミドから作製した半透膜及びこれを使用するガス分離法
DE112015006647T5 (de) Isatincopolymere mit intrinsicher Mikroporosität
JP2016145300A (ja) 多孔質ポリアミドイミドフィルムおよびその製造方法
JP4752993B2 (ja) ポリイミド多孔質膜およびその製造法
JP2019127503A (ja) 熱架橋性ポリイミド、その熱硬化物および層間絶縁フィルム
US10610834B2 (en) Asymmetric membrane
KR101979683B1 (ko) 유기용매 나노여과용 초박형 복합막 및 그 제조방법
JPH04227829A (ja) 半透過性膜と、ガス混合物の成分分離法
KR101979685B1 (ko) 유기용매 나노여과용 박막 복합막 및 그 제조방법
CN112399980B (zh) 电极用粘合剂树脂组合物、电极合剂糊剂及电极
KR101925504B1 (ko) 유기용매 나노여과막 및 그 제조방법
KR100398059B1 (ko) 기체분리용 불소계 폴리이미드 복합막 제조방법
CN115463561B (zh) 一种共混基质气体分离膜及其制备方法
US20150353686A1 (en) Highly permeable and highly selective polyimide copolymer and method for synthesizing same
JPS5936939B2 (ja) 多孔性フイルムの製造方法
KR101929992B1 (ko) 압력지연삼투공정용 다공성 지지체, 이를 포함하는 초박형 복합막 및 그 제조방법
CN107573359B (zh) 一种含1,4:3,6-二脱水己糖醇侧基的苯二胺单体及其制备与应用
CN118184603A (zh) 含有哌嗪单元的二胺单体、聚酰亚胺酸盐分离膜及其制备方法和用途

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15579205

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017566708

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017803762

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE