WO2021227330A1 - 耐溶剂聚合物纳滤膜及其制备方法和应用 - Google Patents

耐溶剂聚合物纳滤膜及其制备方法和应用 Download PDF

Info

Publication number
WO2021227330A1
WO2021227330A1 PCT/CN2020/116667 CN2020116667W WO2021227330A1 WO 2021227330 A1 WO2021227330 A1 WO 2021227330A1 CN 2020116667 W CN2020116667 W CN 2020116667W WO 2021227330 A1 WO2021227330 A1 WO 2021227330A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
solvent
monomer
polyimide
salt
Prior art date
Application number
PCT/CN2020/116667
Other languages
English (en)
French (fr)
Inventor
靳健
王正宫
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US17/794,224 priority Critical patent/US20230100275A1/en
Publication of WO2021227330A1 publication Critical patent/WO2021227330A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2181Inorganic additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2181Inorganic additives
    • B01D2323/21817Salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/06Flat membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the invention relates to the technical field of membrane separation, in particular to a solvent-resistant polymer nanofiltration membrane and a preparation method and application thereof.
  • Organic solvent nanofiltration is a new type of nanofiltration membrane separation technology that has developed rapidly in recent years. Driven by the transmembrane pressure of 5-30bar, OSN can separate and purify the 200-1000Da molecular weight solute molecules in organic solvents through the sieving effect of the nanofiltration membrane pores. OSN technology has important and extensive applications in homologous separation, drug purification, dye separation, solvent recovery, etc., and has special significance in petrochemical, pharmaceutical, food, textile and other fields. However, commonly used nanofiltration membranes are mainly used in aqueous systems, and the membrane materials used in them have poor resistance to organic solvents, and are not suitable for organic solvent systems, especially strong polar solvent systems. Therefore, the development of solvent-resistant nanofiltration (SRNF) membranes is the key and core of the development of OSN technology.
  • SRNF solvent-resistant nanofiltration
  • Nanofiltration membranes suitable for organic solvent systems need to have the characteristics of swelling resistance, corrosion resistance and high flux. Therefore, there are special requirements for the selection of solvent-resistant nanofiltration membrane materials and preparation methods.
  • polyimide as a kind of polymer material with good film-forming properties, high thermal stability, oxidation resistance and good mechanical properties, is widely used and is also used in the preparation of solvent-resistant nanofiltration membranes. It has good application prospects.
  • polyimide has poor swelling resistance and general chlorine resistance.
  • CN 110801736 A discloses a method for preparing a nanofiltration membrane containing a metal framework compound intermediate layer.
  • the HKUST-1 intermediate layer is prepared on the surface of a polyimide porous base film containing a large amount of amino groups by in-situ growth method, and passed
  • the interfacial polymerization method prepares a separation layer on the intermediate layer, thereby obtaining a nanofiltration membrane that has excellent separation performance and good solvent resistance and is not easy to peel off.
  • CN 106459590A discloses a porous membrane containing a metal organic framework material, which contains at least one porous metal organic framework material, at least one at least bidentate organic compound coordinated with at least one metal ion, and at least one fibrillation containing Fluoropolymers and additives.
  • CN104689727A discloses a semipermeable membrane, forward osmosis and reverse osmosis water treatment equipment and preparation methods thereof, wherein the semipermeable membrane includes a first surface, a carrier layer, and an active layer, wherein the carrier layer includes a porous structure with a polymer and a Among them, at least one metal oxide or metalloid oxide.
  • the purpose of the present invention is to provide a solvent-resistant polymer nanofiltration membrane and its preparation method and application.
  • Polar organic solvents have good solvent resistance, swelling resistance and high membrane flux.
  • the present invention discloses a method for preparing a solvent-resistant polymer nanofiltration membrane, which includes the following steps:
  • the diamine monomer and the dianhydride monomer are cyclized in the first polar organic solvent at 160-230°C to form a polyimide after the reaction is completed;
  • the diamine monomer includes at least one diamine monomer containing a carboxyl group and at least one diamine monomer without a carboxyl group;
  • the structural formula of the polyimide includes a first repeating unit and a second repeating unit, the first repeating unit Comprising at least one polymerized segment of a dianhydride monomer and a carboxyl-containing diamine monomer, and the second repeating unit includes at least one polymerized segment of a dianhydride monomer and a diamine monomer that does not contain a carboxyl group;
  • the boiling point of the first polarity organic solvent is higher than 160°C;
  • the intermediate membrane with an organic solution of a metal salt, so that the metal ion and the carboxyl group in the polyimide are coordinately cross-linked, and after the cross-linking is completed, a solvent-resistant polymer nanofiltration membrane is obtained; wherein, the metal salt is selected from One or more divalent metal salts and/or multivalent metal salts.
  • the carboxyl-containing diamine monomer is selected from at least one monomer having the structural formula NH 2 -R"-NH 2 and R" in each monomer is selected from one of the following structural formulas kind:
  • connection point of "—" on the group represents the connection point of the amine group in the diamine monomer.
  • the carboxyl group in the carboxyl-containing diamine monomer forms a metal coordination bond with the subsequent metal ion to realize the non-covalent crosslinking of multiple polyimide segments, thereby improving the resistance of the polymer nanofiltration membrane. Solvent and compaction resistance.
  • the diamine monomer without a carboxyl group is selected from at least one monomer having the structural formula NH 2 -R'-NH 2 , and R'in each monomer is selected from the following structural formula: A sort of:
  • connection point of "—" on the group represents the connection point of the amine group in the diamine monomer.
  • the diamine monomer without carboxyl groups can adjust the content of carboxyl groups in the polyimide and increase the molecular weight of the polymer to a certain extent, so as to ensure that the polymer nanofiltration membrane has better film-forming properties and mechanical properties.
  • the dianhydride monomer is selected from at least one structural formula:
  • the R in each monomer is selected from one of the following structural formulas:
  • connection point on the group represents the connection point of the carbonyl group in the dianhydride monomer.
  • the dianhydride monomer is an aromatic acid dianhydride monomer
  • R in the dianhydride monomer is preferably one of the following structural formulas:
  • the molar ratio of the dianhydride monomer, the carboxyl-containing diamine monomer and the carboxyl-free diamine monomer is 10:0.1-9.9:0.1-9.9, preferably 10:0.1 :9.9, 10:1:9, 10:2:8, 10:3:7, 10:4:6, 10:5:5, 10:6:4, 10:7:3, 10:8:2 , 10:9:1, 10:9.9:0.1.
  • the present invention by controlling the molar ratio of the carboxyl group-containing diamine monomer to the carboxyl group-free diamine monomer, it can ensure that the film-forming solution has good film-forming properties and mechanical properties, while ensuring that the polyimide is coordinated
  • the density of the cross-linking points is within a suitable range to prevent the flux of the final prepared nanofiltration membrane from decreasing due to too many coordination cross-linking points.
  • the catalyst includes triethylamine, quinoline, pyrazine and the like.
  • the first polar organic solvent includes one or more of m-cresol and/or N-methylpyrrolidone.
  • step (1) the diamine monomer is dissolved in the first polar organic solvent and then the dianhydride monomer is added in batches, and after mixing, a reaction system with a total solid content of 100-500 g/L is formed. Then react at 160-230°C for 5-10h.
  • step (1) during the reaction process, the water generated by the reaction is removed by toluene azeotropically removing water, so as to promote the progress of the reaction.
  • the second polar organic solvent includes m-cresol, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone and 1,4 -One or more of dioxane. Since the polyimide of the present invention contains a large number of carboxyl groups, it is difficult to dissolve in common solvents. The choice of the second polarity organic solvent mentioned above can ensure that the polyimide synthesized in step (1) is fully dissolved.
  • step (2) a method of preparing a flat membrane or a method of preparing a hollow fiber membrane is used to form the membrane-forming solution into a membrane.
  • the method for preparing a flat membrane includes the following steps:
  • the film-forming solution is coated on the surface of the substrate to form a uniform and bubble-free film, and then the substrate with the film is transferred to a phase inversion bath for phase inversion, and an intermediate film is obtained after the phase inversion is completed.
  • the coating is performed by a knife coating method, and the thickness of the film on the surface of the substrate is 50-500 ⁇ m.
  • the coating is performed under the condition of a humidity of 10-80%.
  • the method for preparing a hollow fiber membrane includes the following steps:
  • the solution spinning process refers to extruding the core fluid through the central hole of the concentric hole spinneret, and the degassed filtrate passes through the annular gap of the concentric hole spinneret Squeeze out.
  • the core fluid fluid includes one or more of water, ethanol, N,N-dimethylformamide, N,N-dimethylacetamide, and N-methylpyrrolidone.
  • phase inversion bath used in the film formation process includes water and/or ethanol.
  • the divalent metal salt includes one or more of copper salt, nickel salt, zinc salt, cobalt salt, magnesium salt, and calcium salt
  • the multivalent metal salt includes iron salt and lanthanum salt.
  • the metal salt includes a copper salt or a lanthanum salt.
  • the metal salt includes copper sulfate, copper nitrate, copper chloride, iron nitrate, iron chloride, nickel nitrate, nickel chloride, zinc nitrate, zinc chloride, cobalt chloride, cobalt nitrate, magnesium chloride, magnesium nitrate, One or more of aluminum chloride, aluminum nitrate, calcium nitrate, lanthanum chloride and calcium chloride.
  • step (3) the concentration of the organic solution of the metal salt is 0.01-1 mol/L.
  • the organic solvent used in the organic solution of the metal salt includes an alcohol solvent, preferably methanol, ethanol, isopropanol, acetone, and the like.
  • the organic solvent used in the organic solution of the metal salt will affect the degree of crosslinking of the final nanofiltration membrane and the integrity of the membrane structure.
  • the use of alcoholic organic solvents can ensure that the degree of crosslinking of the nanofiltration membrane is in the appropriate range. Inside, and to ensure the integrity of the membrane structure.
  • step (3) the treatment time is 12-72h, and the treatment temperature is 20-50°C.
  • the present invention also discloses a solvent-resistant polymer nanofiltration membrane prepared by the above-mentioned preparation method.
  • the polymerization degree ratio of the unit and the second repeating unit, the first repeating unit and the second repeating unit is 1-100:1-100; the carboxyl groups in different polyimide polymer segments are coordinated and cross-linked with metal ions.
  • the number of the first repeating unit is 10-1000; the number of the second repeating unit is 10-1000.
  • the polyimide polymer chain segment includes the following structural formula:
  • R is derived from dianhydride
  • R" is derived from diamines containing carboxyl group
  • R is selected from one of the following structural formulas:
  • R’ is selected from one of the following structural formulae:
  • R" is selected from one of the following structural formulae:
  • the solvent-resistant polymer nanofiltration membrane of the present invention has a molecular weight cut-off of 850 Da, and at an operating pressure of 1 MPa, the flux is 10-50 Lm -2 h -1 bar -1 .
  • the solvent-resistant polymer nanofiltration membrane of the present invention is used in methanol, ethanol, acetone, chloroform, N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone and 1,4-dioxane It has good swelling resistance and compaction resistance in polar organic solvents such as rings, as well as high flux.
  • the present invention also discloses the application of the above-mentioned solvent-resistant polymer nanofiltration membrane to separate and/or purify compounds in organic solutions.
  • the solvent in the organic solution includes methanol, ethanol, acetone, chloroform, N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone and 1,4-dioxane. One or more of them.
  • the separated compounds include dye molecules, drug molecules and natural biomolecules.
  • the invention provides a preparation method that can improve the swelling resistance and physical and chemical stability of a solvent-resistant polymer nanofiltration membrane without affecting the membrane flux.
  • the invention prepares the target membrane material through the steps of polyimide carboxylation, phase inversion and ion crosslinking.
  • the carboxyl group-containing diamine monomer, the carboxyl group-free diamine monomer and the aromatic acid dianhydride monomer undergo a cyclization imide reaction under selected conditions to form a polyimide material.
  • the polyimide material includes A polyimide copolymer containing carboxyl groups; after phase inversion, the carboxyl groups in multiple polyimide copolymer chains are immersed in a divalent or multivalent metal salt solution to coordinate and crosslink the metal ions with the carboxyl groups ; Thereby improving the swelling resistance, physical and chemical stability, organic solvent resistance and mechanical properties of the membrane material, and improving the problem of reduced membrane flux of the polyimide membrane due to the cross-linking treatment.
  • the present invention has the following advantages and effects:
  • the present invention adopts the strong coordination cross-linking technology of divalent or multivalent metal ion and carboxyl group to keep the polyimide main chain structure intact.
  • the obtained membrane material has good physical and chemical stability, and the mechanical strength is significantly improved (see Figure 5).
  • the obtained membrane material is resistant to methanol, ethanol, acetone, chloroform, N-dimethylformamide, and N,N-dimethyl ethyl.
  • organic solvents such as amide, N-methylpyrrolidone, 1,4-dioxane, etc. have good swelling resistance.
  • a cross-linking agent is usually used to form a covalent bond with polyimide, and the membrane flux of the obtained membrane material is greatly reduced compared with that before cross-linking.
  • the chemical bond energy of the coordination bond is significantly weaker than the chemical bond energy of the covalent bond. Therefore, the present invention uses a crosslinking agent to form a coordination bond with polyimide, and the membrane flux of the obtained membrane material is no greater than that before crosslinking. The decrease in amplitude can still maintain a high membrane flux.
  • the membrane material prepared by the present invention has a stable structure, good compaction resistance, and can maintain a relatively stable membrane flux and high Retention rate (see Figure 7).
  • the preparation process of the solvent-resistant polymer nanofiltration membrane provided by the present invention is simple and controllable, has good repeatability, is suitable for large-scale industrial production, and has good application prospects in the field of organic solution system separation.
  • Figure 1 is a schematic diagram of the ion crosslinking effect of a solvent-resistant polymer nanofiltration membrane in a specific embodiment of the present invention
  • FIG. 2 is a schematic diagram of the synthetic route of the polyimide copolymer containing carboxyl groups in an embodiment of the present invention
  • Figure 3 is a schematic diagram of the ion cross-linking effect of a solvent-resistant polymer nanofiltration membrane in an embodiment of the present invention
  • Example 4 is a photo of the solvent-resistant polymer nanofiltration membrane in Example 4 of the present invention stably existing in a variety of organic solvents;
  • Example 5 is a comparison of the mechanical strength of the solvent-resistant polymer nanofiltration membrane and the uncrosslinked polyimide membrane in Example 4 of the present invention.
  • Example 6 is a scanning electron micrograph of a cross-section of a solvent-resistant polymer nanofiltration membrane in Example 4 of the present invention.
  • Figure 7 is a comparison of the compaction resistance performance of the solvent-resistant polymer nanofiltration membrane and the uncrosslinked polyimide membrane in Example 4 of the present invention.
  • Fig. 8 is a graph showing changes in the flux of the solvent-resistant polymer nanofiltration membrane membrane with time in Example 4 of the present invention.
  • M n+ in Figure 1 represents a divalent or multivalent metal ion.
  • DURENE is 2,3,5,6-tetramethyl-1,4-phenylenediamine
  • DABA is 3,5-diaminobenzoic acid
  • 6FDA It is 4,4'-(hexafluoroisopropylene) diphthalic anhydride
  • Toluene is toluene
  • Ethanol is ethanol
  • DMF is N,N'-dimethylformamide
  • Acetone is acetone
  • Methanol is methanol
  • Acetonitrile is acetonitrile.
  • Preparation of flat film material adjust the height of the scraper to 100-500 ⁇ m, control the humidity at 30-40%, pour the film-forming solution on the glass plate for scraping; let stand in the air for 10-100s, transfer the glass plate to the water bath, Carry out phase inversion treatment for 0.5-2 hours; transfer the membrane formed after phase inversion treatment to a fresh water bath for 24 hours, wash off the residual solvent to ensure the completion of phase inversion; store the intermediate membrane in methanol.
  • Preparation of hollow fiber membrane material filter the membrane-forming solution through a screen, transfer the filtrate to a membrane tank, and degas the filtrate at a temperature of 15-50°C; pass the degassed filtrate through a central hole
  • the spinneret with concentric holes is used for spinning, in which the core fluid is extruded through the central hole of the spinneret, and the degassed filtrate is extruded through the annular gap to form a hollow fiber membrane.
  • the molecular weight cut-off of the solvent-resistant polymer nanofiltration membrane is 850Da; at an operating pressure of 1MPa, the membrane flux is 10-50Lm -2 h -1 bar -1 . It can be applied in the fields of separation and purification of dye molecules, drug molecules, natural products, and organic solvent recovery.
  • Preparation of flat film material adjust the height of the scraper to 300 ⁇ m, control the humidity at 30-40%, pour the film-forming solution on the glass plate for scraping; let it stand in the air for 10s, and transfer the glass plate to a water bath. After 1 hour, the membrane formed after the phase inversion treatment was transferred to a fresh water bath for 24 hours, and the residual solvent was washed away to ensure the completion of the phase inversion; the intermediate membrane was stored in methanol.
  • Preparation of hollow fiber membrane material filter the membrane-forming solution through a screen, transfer the filtrate to a membrane tank, and degas the filtrate at a temperature of 35°C; pass the degassed filtrate through a concentric hole with a central hole
  • the orifice spinneret performs spinning processing, in which the core fluid is extruded through the central hole of the spinneret, and the degassed filtrate is extruded through the annular gap to form a hollow fiber membrane.
  • control the humidity at 30-40% and the temperature at 20-25°C.
  • a 0.1 mol/L copper nitrate methanol solution was prepared, and the intermediate membrane was immersed in the copper nitrate methanol solution for cross-linking for 24 hours at a temperature of 40°C.
  • the formed membrane was taken out, washed with methanol, and stored in methanol.
  • the synthesis method of the polyimide material is the same as in Example 1, except that the dosage of DURENE is 0.08 mol (13.1 g) and the dosage of DABA is 0.02 mol (3.0 g) to obtain the polyimide material PI-COOH 20 .
  • the preparation method of the solvent-resistant polymer nanofiltration membrane is the same as in Example 1.
  • the synthesis method of the polyimide material is the same as in Example 1, except that the dosage of DURENE is 0.07mol (1.5g) and the dosage of DABA is 0.03mol (4.6g) to obtain the polyimide material PI-COOH 30 ,
  • the preparation method of the solvent-resistant polymer membrane is the same as in Example 1.
  • the synthesis method of the polyimide material is the same as that of Example 1, except that the dosage of DURENE is 0.06mol (9.8g) and the dosage of DABA is 0.04mol (6.1g) to obtain the polyimide material PI-COOH 40 ,
  • the solvent-resistant polymer nanofiltration membrane is a flat membrane, and its preparation method is the same as in Example 1.
  • the prepared solvent-resistant polymer nanofiltration membrane stably exists in a variety of organic solvents.
  • the polymer nanofiltration membrane of the present invention in a variety of polar organic solvents, has stable morphology and no significant swelling occurs. And morphological changes indicate that its solvent resistance is better.
  • the organic solvents from left to right are Toluene, Ethanol, DMF, Acetone, Methanol, and Acetonitrile.
  • the polyimide material PI-COOH 40 was prepared according to the above-mentioned method of this embodiment, and finished as a flat membrane, that is, it was not cross-linked in a methanol solution of copper nitrate.
  • Figure 5 is a comparison of the tensile strength of the solvent-resistant polymer nanofiltration membrane (PI-COOH 40 -Cu 2+ ) prepared in this embodiment and the polyimide membrane (PI-COOH 40 ) not cross-linked in a methanol solution of copper nitrate.
  • the breaking strength of the solvent-resistant polymer nanofiltration membrane prepared in this example is higher, the breaking strength is about 28 MPa, and its tensile modulus is 595.04 MPa.
  • the uncrosslinked polyimide membrane The breaking strength is about 12MPa, and the tensile modulus is 278.37MPa.
  • Figure 6 is a scanning electron microscope image of the polymer nanofiltration membrane prepared in this example. It can be seen from the figure that the surface of the membrane has a complete dense layer, and the membrane retains a good supporting layer of finger holes. The overall structure of the membrane No deformation occurred.
  • Figure 7 is the comparison of the compaction resistance performance of the solvent-resistant polymer nanofiltration membrane (PI-COOH 40 -Cu 2+ ) and the polyimide membrane (PI-COOH 40 ) not cross-linked in the methanol solution of copper nitrate in this embodiment It can be seen from the figure that the flux of the uncrosslinked membrane decreases sharply with time, while the crosslinked solvent-resistant polymer nanofiltration membrane maintains a stable flux level, and it still maintains the original flux after eight hours of operation. The amount is more than 80%, indicating that the film has good compaction resistance.
  • Figure 8 shows the change of the flux of the polymer nanofiltration membrane prepared in this example over time. It can be seen from the figure that the membrane flux has not changed significantly during the continuous operation for up to a week, which is different from the initial The flux ratio fluctuates between 99-110%, and the retention rate of target molecules remains above 99%.
  • nanofiltration membranes of Examples 2-4 are used to separate Coomassie Brilliant Blue in methanol, and the specific steps are as follows:
  • the synthesis method of the polyimide material is the same as in Example 1, except that the dosage of DURENE is 0.05 mol (8.2 g) and the dosage of DABA is 0.05 mol (7.6 g) to obtain the polyimide material PI-COOH 50 .
  • the preparation method of the solvent-resistant polymer nanofiltration membrane is the same as in Example 1.
  • This example serves as a comparative example.
  • the synthesis method of the polyimide material is the same as that of Example 1, except that in this example, only the carboxyl group-containing diamine monomer DABA (15.2g) is added to obtain the polyimide material PI-COOH 100 .
  • the preparation method of the solvent-resistant polymer nanofiltration membrane is the same as in Example 1.
  • the synthesis method of the polyimide material is exactly the same as in Example 4.
  • the preparation method of the solvent-resistant polymer nanofiltration membrane is the same as in Example 1, except that the salt solution used is replaced with 0.1 mol/L copper sulfate.
  • the synthesis method of the polyimide material is exactly the same as in Example 4.
  • the preparation method of the solvent-resistant polymer nanofiltration membrane is the same as in Example 1, except that the salt solution used is replaced with 0.1 mol/L lanthanum chloride.
  • Preparation Example of the present embodiment the polymeric nanofiltration membrane Coomassie methanol solution was filtered under 1MPa conditions, the results show that the retention rate Coomassie blue 95-99%, flux 15-25Lm -2 h - 1 bar -1 .
  • the synthesis method of the polyimide material is the same as that of Example 1, except that DURENE is replaced with 4,4'-diaminobenzophenone, the dosage is 0.06mol (12.7g), and the dosage of DABA is 0.04mol (6.1 g), the polyimide material PI'-COOH 40 is obtained , and its structural formula is as follows:
  • the preparation method of the solvent-resistant polymer nanofiltration membrane is the same as in Example 1.
  • the synthesis method of the polyimide material is the same as in Example 1, except that DURENE is replaced with 5(6)-amino-1-(4-aminophenyl)-1,3,3-trimethylindan.
  • the dosage is 0.06mol (16.9g)
  • the dosage of DABA is 0.04mol (6.1g)
  • 6FDA is replaced with 3,3'4,4'-benzophenone tetracarboxylic dianhydride
  • the dosage is 32.2g to obtain poly
  • the structure of imide material PI"-COOH 40 is as follows:
  • the preparation method of the solvent-resistant polymer nanofiltration membrane is the same as in Example 1.
  • the synthesis method of the polyimide material is the same as in Example 1, except that DURENE is replaced with 4,4'-diaminodiphenylmethane, the amount is 0.06mol (11.9g), and the amount of DABA is 0.04mol (6.1g). ), 6FDA is replaced with 3,3'4,4'-benzophenone tetracarboxylic dianhydride, and the amount is 32.2g to obtain the polyimide material PI"'-COOH 40 , the structural formula is as follows:
  • the preparation method of the solvent-resistant polymer nanofiltration membrane is the same as in Example 1.
  • reaction temperature and humidity conditions, reaction time, and specific parameters used in the above embodiments can all be adjusted according to actual needs. This embodiment does not limit this.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

一种耐溶剂聚合物纳滤膜及其制备方法和应用,其制备方法包括以下步骤:将二胺单体与二酐单体在催化剂的作用下,在第一极性有机溶剂中于160~230℃条件下发生环化酰亚胺,反应完全后形成聚酰亚胺;二胺单体包括含羧基的二胺单体与不含羧基的二胺单体;将聚酰亚胺溶于第二极性有机溶剂,形成浓度为10wt%~40wt%的成膜溶液;然后将成膜溶液成膜后进行相转化,得到中间体膜;采用金属盐的有机溶液处理中间体膜,以使得金属离子与聚酰亚胺中的羧基配位交联,交联完毕后得到耐溶剂聚合物纳滤膜;其中,金属盐选自金属盐和/或多价金属盐;耐溶剂聚合物纳滤膜用于分离和/或纯化有机溶液中化合物。

Description

耐溶剂聚合物纳滤膜及其制备方法和应用 技术领域
本发明涉及膜分离技术领域,尤其涉及一种耐溶剂聚合物纳滤膜及其制备方法和应用。
背景技术
有机溶剂纳滤(organic solvent nanofiltration,OSN)是近年来快速发展起来的一项新型纳滤膜分离技术。OSN在5-30bar的跨膜压力的驱动下,通过纳滤膜孔的筛分作用,能够实现对有机溶剂中200-1000Da分子量的溶质分子的分离和提纯。OSN技术在同系物分离、药品提纯、染料分离、溶剂回收等方面有着重要且广泛的应用,对石油化工、医药、食品、纺织等领域具有特殊意义。然而,常用的纳滤膜主要应用于水溶液体系,其使用的膜材料对有机溶剂的耐受性较差,不适用于有机溶剂体系特别是强极性溶剂体系。因此,耐溶剂纳滤(solvent-resistant nanofiltration,SRNF)膜的开发是OSN技术发展的关键与核心。
适用于有机溶剂体系的纳滤膜需具备耐溶胀、耐腐蚀及高通量的特点,因此,对于耐溶剂纳滤膜的膜材料以及制备方法的选择有特殊的要求。其中,聚酰亚胺作为一类具有较好的成膜性、较高的热稳定性、耐氧化性以及较好的机械性能的聚合物材料,应用广泛,在耐溶剂纳滤膜制备方面也具有很好的应用前景。但是,在高极性的有机溶剂中,聚酰亚胺的耐溶胀性较差,且耐氯性也一般。
为了解决上述问题,现有技术采用了多种方法对聚酰亚胺膜进行交联,提高了耐溶剂纳滤膜的耐溶胀性及物化稳定性。如CN 110801736 A公开了一种含金属骨架化合物中间层的纳滤膜的制备方法,通过原位生长的方法在含有大量氨基的聚酰亚胺多孔基膜表面制备HKUST-1中间层,并通过界面聚合方法在中间层上制备分离层,进而得到了既具有优异的分离性能又具有良好的耐溶剂性能且不易剥离的纳滤膜。CN 106459590A公开了一种包含金属有机骨架材料的多孔膜,其包含至少一种多孔金属有机骨架材料,至少一种与至少一个金属离子配位的至少双齿有机化合物,至少一种原纤化含氟聚合物和添加剂。CN104689727A公开了一种半透膜、正渗透和反渗透水处理设备及其制备方法,其中半透膜包括第一表面和载体层、活性层,其中载体层包括具有聚合物的多孔结构体和在其中的至少一种金属氧化物或准金属氧化物。
然而,目前采用的交联方法往往使聚酰亚胺分子链致密,从而导致膜通量大大降低,严重影响纳滤膜的分离效率。因此,亟需一种既能提高耐溶剂聚合物纳滤膜的耐溶胀性及物化 稳定性,同时又不影响膜通量的制备方法。
发明内容
为解决现有纳滤膜交联后膜通量降低的问题,本发明的目的是提供一种耐溶剂聚合物纳滤膜及其制备方法和应用,本发明的聚合物纳滤膜在多种极性有机溶剂中具有良好的耐溶剂性、耐溶胀性且膜通量较高。
为达到上述目的,本发明采用如下技术方案:
一方面,本发明公开了一种耐溶剂聚合物纳滤膜的制备方法,包括以下步骤:
(1)将二胺单体与二酐单体在催化剂的作用下,在第一极性有机溶剂中于160~230℃条件下发生环化酰亚胺,反应完全后形成聚酰亚胺;
二胺单体包括至少一种含羧基的二胺单体与至少一种不含羧基的二胺单体;聚酰亚胺的结构式中包括第一重复单元和第二重复单元,第一重复单元包括至少一种二酐单体与含羧基的二胺单体的聚合链段,第二重复单元包括至少一种二酐单体与不含羧基的二胺单体的聚合链段;
第一极性有机溶剂的沸点高于160℃;
(2)将聚酰亚胺溶于第二极性有机溶剂,形成浓度为10wt%~40wt%的成膜溶液;然后将成膜溶液成膜后进行相转化,得到中间体膜;
(3)采用金属盐的有机溶液处理中间体膜,以使得金属离子与聚酰亚胺中的羧基配位交联,交联完毕后得到耐溶剂聚合物纳滤膜;其中,金属盐选自一种或几种二价金属盐和/或多价金属盐。
进一步地,在步骤(1)中,含羧基的二胺单体选自至少一种结构式为NH 2-R”-NH 2的单体,各单体中的R”选自如下结构式中的一种:
Figure PCTCN2020116667-appb-000001
以上结构式中,基团上“—”的连接处代表二胺单体中胺基的连接位点。
本发明中,含羧基的二胺单体中的羧基与后续的金属离子形成金属配位键,实现多个聚酰亚胺链段的非共价交联,从而提高聚合物纳滤膜的耐溶剂性和耐压实性。
进一步地,在步骤(1)中,不含羧基的二胺单体选自至少一种结构式为NH 2-R’-NH 2的单体,各单体中的R’选自如下结构式中的一种:
Figure PCTCN2020116667-appb-000002
以上结构式中,基团上“—”的连接处代表二胺单体中胺基的连接位点。
本发明中,不含羧基的二胺单体起到了调节聚酰亚胺中羧基含量并在一定程度上提高聚合物分子量,保证聚合物纳滤膜具有较好的成膜性和机械性能。
进一步地,在步骤(1)中,二酐单体选自至少一种结构式为
Figure PCTCN2020116667-appb-000003
的单体,各单体中的R选自如下结构式中的一种:
Figure PCTCN2020116667-appb-000004
以上结构式中,基团上“—”的连接处代表二酐单体中羰基的连接位点。
优选地,二酐单体为芳香酸二酐单体,二酐单体中的R优选如下结构式中的一种:
Figure PCTCN2020116667-appb-000005
进一步地,在步骤(1)中,二酐单体、含羧基的二胺单体与不含羧基的二胺单体的摩尔比为10:0.1-9.9:0.1-9.9,优选为10:0.1:9.9,10:1:9,10:2:8,10:3:7,10:4:6,10:5:5,10:6:4,10:7:3,10:8:2,10:9:1,10:9.9:0.1。
本发明中,通过控制含羧基的二胺单体与不含羧基的二胺单体的摩尔比,可保证成膜溶液具有良好的成膜性和机械性能,同时保证聚酰亚胺中配位交联点的密度在合适范围内,防止因配位交联点过多而导致最终制备的纳滤膜的通量下降。
进一步地,在步骤(1)中,催化剂包括三乙胺、喹啉、吡嗪等。
进一步地,在步骤(1)中,第一极性有机溶剂包括间甲酚和/或N-甲基吡咯烷酮中的一种或几种。
优选地,在步骤(1)中,将二胺单体溶于第一极性有机溶剂后再分批加入二酐单体,混匀后形成总固含量为100-500g/L的反应体系,然后在160~230℃下反应5~10h。
优选地,在步骤(1)中,反应过程中,通过甲苯共沸去水的方式将反应产生的水分去除,从而促进反应进行。
进一步地,在步骤(2)中,第二极性有机溶剂包括间甲酚、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮和1,4-二氧六环中的一种或几种。由于本发明的聚酰亚胺中含有大量羧基,普通溶剂难以溶解,上述第二极性有机溶剂的选择,可以保证充分溶解步骤(1)合成的聚酰亚胺。
进一步地,在步骤(2)中,采用制备平板膜的方法或者制备中空纤维膜的方法将成膜溶液成膜。
进一步地,制备平板膜的方法包括以下步骤:
将成膜溶液涂覆于基底表面,形成均匀且无气泡的膜,然后将带有膜的基底转移至相转化浴中,进行相转化,相转化完全后得到中间体膜。优选地,采用刮涂法进行涂覆,基底表面的膜的厚度为50-500μm。优选地,在湿度为10-80%条件下进行涂覆。
进一步地,制备中空纤维膜的方法包括以下步骤:
(S1)将成膜溶液过滤通过筛网,并转移至膜液罐中后于15-50℃下进行脱气;
(S2)将脱气后的溶液进行溶液纺丝处理,形成中空纤维膜。
优选地,在步骤(S2)中,溶液纺丝处理是指将芯液流体通过同心孔喷丝头的中心孔挤出,而脱气后的滤液通过所述同心孔喷丝头的环状间隙挤出。
优选地,芯液流体包括水、乙醇、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺和N-甲基吡咯烷酮中的一种或几种。
进一步地,成膜过程中使用的相转化浴包括水和/或乙醇。
进一步地,在步骤(3)中,二价金属盐包括铜盐、镍盐、锌盐、钴盐、镁盐、钙盐中的一种或几种,多价金属盐包括铁盐、镧盐和/或铝盐。优选地,金属盐包括铜盐或镧盐。
更优选地,金属盐包括硫酸铜、硝酸铜、氯化铜、硝酸铁、氯化铁、硝酸镍、氯化镍、硝酸锌、氯化锌、氯化钴、硝酸钴、氯化镁、硝酸镁、氯化铝、硝酸铝、硝酸钙、氯化镧和氯化钙中的一种或几种。
进一步地,在步骤(3)中,金属盐的有机溶液的浓度为0.01-1mol/L。
优选地,在步骤(3)中,金属盐的有机溶液中使用的有机溶剂包括醇类溶剂,优选为甲醇、乙醇、异丙醇、丙酮等。金属盐的有机溶液中使用的有机溶剂会对最终形成的纳滤膜的交联度、膜结构的完整性等方面形成影响,使用醇类有机溶剂可保证纳滤膜的交联度在合适范围内,且保证膜结构的完整。
进一步地,在步骤(3)中,处理时间为12-72h,处理温度为20-50℃。
另一方面,本发明还公开了一种采用上述制备方法所制备的耐溶剂聚合物纳滤膜,包括若干聚酰亚胺聚合物链段,聚酰亚胺聚合物链段中包括第一重复单元和第二重复单元,第一重复单元和第二重复单元的聚合度比为1-100:1-100;不同聚酰亚胺聚合物链段中的羧基配位交联有金属离子。
进一步地,各聚酰亚胺聚合物链段中,第一重复单元的个数为10-1000;第二重复单元的的个数为10-1000。
本发明中,聚酰亚胺聚合物链段中包括以下结构式:
Figure PCTCN2020116667-appb-000006
其中,m=10-1000;n=10-1000;m:n=1-100:1-100;如无特殊说明,下文中的m和n的含义同此处;R来源于二酐,R’来源于不含羧基的二胺,R”来源于含羧基的二胺;具体 地:
R选自如下结构式中的一种:
Figure PCTCN2020116667-appb-000007
R’选自如下结构式中的一种:
Figure PCTCN2020116667-appb-000008
R”选自如下结构式中的一种:
Figure PCTCN2020116667-appb-000009
以R”为
Figure PCTCN2020116667-appb-000010
为例,聚酰亚胺聚合物链段的结构式及其与金属离子配位后的结构依次如下:
Figure PCTCN2020116667-appb-000011
进一步地,本发明的耐溶剂聚合物纳滤膜的截留分子量850Da,在1MPa的操作压力下,通量为10-50Lm -2h -1bar -1
在本发明一具体实施例中,在1MPa的操作压力下,耐溶剂聚合物纳滤膜在甲醇溶剂中对考马斯亮蓝截留率最高达99%,膜通量达到30Lm -2h -1bar -1
本发明的耐溶剂聚合物纳滤膜在甲醇、乙醇、丙酮、氯仿、N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮和1,4-二氧六环等极性有机溶剂中具有良好的耐溶胀性和耐压实性,同时具有较高的通量。
在又一方面,本发明还公开了上述耐溶剂聚合物纳滤膜在分离和/或纯化有机溶液中化合物的应用。
进一步地,有机溶液中的溶剂包括甲醇、乙醇、丙酮、氯仿、N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮和1,4-二氧六环中的一种或几种。
进一步地,所分离的化合物包括染料分子、药物分子和天然生物分子。
本发明提供了一种既能提高耐溶剂聚合物纳滤膜的耐溶胀性及物化稳定性,同时又不影响膜通量的制备方法。本发明通过聚酰亚胺羧基化、相转化、离子交联步骤制备目标膜材料。 将含羧基的二胺单体、不含羧基的二胺单体与芳香酸二酐单体于选定条件下发生环化酰亚胺反应,形成聚酰亚胺材料,聚酰亚胺材料包括含羧基基团的聚酰亚胺共聚物;相转化后,利用多个聚酰亚胺共聚链中的羧基与二价或多价金属盐溶液浸泡处理,使金属离子与羧基进行配位交联;从而提高膜材料的耐溶胀性、物化稳定性、耐有机溶剂性能和机械性能,改善了由于交联处理导致的聚酰亚胺膜的膜通量降低的问题。
本发明与现有技术相比具有以下优点和效果:
1、本发明采用二价或多价金属离子与羧基的强配位交联技术,使得聚酰亚胺主链结构保持完整。所获得的膜材料具有较好的物理化学稳定性,机械强度得到显著提高(见图5)。
2、由于二价或多价金属离子与羧基的强配位交联作用,所获得的膜材料对甲醇、乙醇、丙酮、氯仿、N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、1,4-二氧六环等多种有机溶剂具有较好的耐溶胀性。
3、现有技术通常利用交联剂与聚酰亚胺形成共价键,所获得的膜材料的膜通量较交联前有大幅度下降。而配位键的化学键能显著弱于共价键的化学键能,因此,本发明利用交联剂与聚酰亚胺形成配位键,所获得的膜材料的膜通量较交联前没有大幅度的下降,仍可保持较高的膜通量。
4、由于采用多重配位作用交联的方式,本发明所制备的膜材料结构稳定,具有很好的耐压实性,在较长测试时间内,能够保持相对稳定的膜通量和高的截留率(见图7)。
5、本发明提供的耐溶剂聚合物纳滤膜的制备工艺简单可控,重复性好,适于规模化工业生产,在有机溶液体系分离领域具有很好的应用前景。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合详细附图说明如后。
附图说明
图1是本发明一具体实施例中耐溶剂聚合物纳滤膜离子交联作用的示意图;
图2是本发明实施方案中含羧基基团的聚酰亚胺共聚物的合成路线示意图;
图3是本发明实施方案中耐溶剂聚合物纳滤膜离子交联作用的原理图;
图4是本发明实施例4中耐溶剂聚合物纳滤膜在多种有机溶剂中稳定存在的照片;
图5是本发明实施例4中耐溶剂聚合物纳滤膜与未交联聚酰亚胺膜机械强度对比;
图6是本发明实施例4中耐溶剂聚合物纳滤膜横截面的扫描电镜图;
图7是本发明实施例4中耐溶剂聚合物纳滤膜与未交联聚酰亚胺膜耐压实性能对比;
图8是本发明实施例4中耐溶剂聚合物纳滤膜膜通量随时间变化图。
附图中符号的含义:
其中,图1中的M n+代表二价或多价金属离子。
具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例中所涉及的材料的英文代号的中文含义分别为:DURENE为2,3,5,6-四甲基-1,4-苯二胺;DABA为3,5-二氨基苯甲酸;6FDA为4,4'-(六氟异丙烯)二酞酸酐;Toluene为甲苯;Ethanol为乙醇;DMF为N,N’-二甲基甲酰胺;Acetone为丙酮;Methanol为甲醇;Acetonitrile为乙腈。
以下阐述一个优选的实施方案,本发明不仅限于此。
实施方案
在室温下将DURENE和DABA(总摩尔数为1mol)加入300mL间甲酚溶液中,分批加入44.4g的6FDA,搅拌24小时至形成均一的溶液,然后加入50mL的无水甲苯。将体系逐渐升温至200℃,保温6小时。降温,将产物溶液倾入甲醇中,不断搅拌。将得到的产物在120℃下真空干燥12小时,得到聚酰亚胺材料。
形成的聚酰亚胺材料中含羧基基团的聚酰亚胺共聚物(PI-COOH)的化学式及合成路线如图2所示,其中,m为大于或等于1的整数,n为大于等于1的整数,且n/m=10~1000:1000~10。
取聚酰亚胺材料溶于N,N-二甲基甲酰胺和1,4-二氧六环的混合溶剂中(10:1-1:1),搅拌过夜,放置24h脱气泡后得到10-40wt%的成膜溶液。
平板膜材料制备:调整刮刀高度为100-500μm,控制湿度在30-40%,将成膜溶液倒在玻璃板上进行刮涂;空气中静置10-100s,将玻璃板转移至水浴中,进行相转化处理0.5-2小时;将经过相转化处理后形成的膜转移到新鲜的水浴中维持24h,洗去残余溶剂,以确保相转化的完成;将中间体膜置于甲醇中保存。
中空纤维膜材料制备:将成膜溶液通过筛网过滤,将滤液转移至膜液罐中,将所述滤液在15-50℃的温度下进行脱气;将脱气后的滤液通过具有中心孔的同心孔喷丝头进行纺丝处理,其中芯液流体通过喷丝头的中心孔挤出,脱气后的滤液通过环状间隙挤出,形成中空纤维膜。
配制0.05-0.5mol/L的硝酸铜甲醇溶液,在20-50℃温度条件下,将中间体膜浸泡于硝酸铜甲醇溶液中交联24h。将形成的膜取出,用甲醇清洗后,置于甲醇中保存。
耐溶剂聚合物纳滤膜的截留分子量为850Da;在1MPa的操作压力下,膜通量为10-50Lm -2h -1bar -1。可以在染料分子、药物分子、天然产物的分离纯化及有机溶剂回收领域中进行应用。
以下结合若干实施例对本发明的技术方案作更进一步的解释说明。
实施例1
在室温下将DURENE(0.09mol,14.8g)和DABA(0.01mol,1.5g)加入300mL间甲酚溶液中,分批加入44.4g(0.1mol)的6FDA,搅拌24小时至形成均一的溶液,然后向混合物中加入50mL的无水甲苯和催化剂喹啉。将体系逐渐升温至200℃,保温6小时。降温,将产物溶液倾入甲醇中,不断搅拌。将得到的产物在120℃下真空干燥12小时,得到聚酰亚胺材料PI-COOH 10,聚合度(m+n)在300以上,m:n=9:1。
取聚酰亚胺材料溶于N,N-二甲基甲酰胺和1,4-二氧六环的混合溶剂中(3:1),搅拌过夜,放置24h脱气泡后得到22wt%的成膜溶液。
平板膜材料制备:调整刮刀高度为300μm,控制湿度在30-40%,将成膜溶液倒在玻璃板上进行刮涂;空气中静置10s,将玻璃板转移至水浴中。1h后,将经过相转化处理后形成的膜转移到新鲜的水浴中维持24h,洗去残余溶剂,以确保相转化的完成;将中间体膜置于甲醇中保存。
中空纤维膜材料制备:将成膜溶液通过筛网过滤,将滤液转移至膜液罐中,将所述滤液在35℃的温度下进行脱气;将脱气后的滤液通过具有中心孔的同心孔喷丝头进行纺丝处理,其中芯液流体通过喷丝头的中心孔挤出,脱气后的滤液通过环状间隙挤出,形成中空纤维膜。制备过程中,控制湿度在30-40%,温度在20-25℃。
配制0.1mol/L的硝酸铜甲醇溶液,在40℃温度条件下,将中间体膜浸泡于硝酸铜的甲醇溶液中交联24h。将形成的膜取出,用甲醇清洗后,置于甲醇中保存。
实施例2
聚酰亚胺材料的合成方式与实施例1相同,不同的是DURENE的用量为0.08mol(13.1g),DABA的用量为0.02mol(3.0g),得到聚酰亚胺材料PI-COOH 20,聚合度(m+n)在300以上,m:n=4:1。
耐溶剂聚合物纳滤膜制备方法与实施例1相同。
实施例3
聚酰亚胺材料的合成方式与实施例1相同,不同的是DURENE的用量为0.07mol(1.5g),DABA的用量为0.03mol(4.6g),得到聚酰亚胺材料PI-COOH 30,聚合度(m+n)在300以上,m:n=7:3。
耐溶剂聚合物滤膜制备方法与实施例1相同。
实施例4
聚酰亚胺材料的合成方式与实施例1相同,不同的是DURENE的用量为0.06mol(9.8g),DABA的用量为0.04mol(6.1g),得到聚酰亚胺材料PI-COOH 40,聚合度(m+n)在300以上,m:n=3:2。
耐溶剂聚合物纳滤膜为平板膜,其制备方法与实施例1相同。
制备的耐溶剂聚合物纳滤膜在多种有机溶剂稳定存在,如图4所示,在多种极性有机溶剂中,本发明的聚合物纳滤膜的形态稳定,没有发生较明显的溶胀及形态变化,说明其耐溶剂性较好,图4中有机溶剂从左至右依次为Toluene、Ethanol、DMF、Acetone、Methanol、Acetonitrile。
为了作为对照,按照本实施例上述方法制备聚酰亚胺材料PI-COOH 40,将其制备成平板膜后结束,即其未在硝酸铜甲醇溶液中交联。图5是本实施例制备的耐溶剂聚合物纳滤膜(PI-COOH 40-Cu 2+)与未在硝酸铜甲醇溶液中交联聚酰亚胺膜(PI-COOH 40)拉伸强度对比结果,从图中可看出,本实施例制备的耐溶剂聚合物纳滤膜的断裂强度更高,断裂强度为28MPa左右,其拉伸模量为595.04MPa,未交联聚酰亚胺膜的断裂强度为12MPa左右,拉伸模量为278.37MPa。
图6为本实施例制备的聚合物纳滤膜的扫描电镜图,从图中可以看出,膜表面具有完整的致密层结果,膜内部保留了较好的指状孔支撑层,膜整体结构未发生变形。
图7是本实施例耐溶剂聚合物纳滤膜(PI-COOH 40-Cu 2+)与未在硝酸铜甲醇溶液中交联的聚酰亚胺膜(PI-COOH 40)耐压实性能对比,从图中可以看出,未交联的膜通量随时间变化急剧下降,而交联后的耐溶剂聚合物纳滤膜保持了稳定的通量水平,经过八小时运行后仍保持原始通量的80%以上,说明该膜具有较好的耐压实性能。
图8为本实施例制备的聚合物纳滤膜的通量随时间的变化情况,从图中可看出,在长达一周的连续运行过程中,膜通量未发生明显变化,其与初始通量比值在99-110%浮动,对目标分子截留率保持在99%以上。
此外,将实施例2-4的纳滤膜用于分离甲醇中的考马斯亮蓝,具体步骤如下:
将考马斯亮蓝的甲醇溶液在1MPa条件下进行过滤,结果表明,实施例2-4的纳滤膜对 考马斯亮蓝的截留率为95-99%,通量为15-30Lm -2h -1bar -1
实施例5
聚酰亚胺材料的合成方式与实施例1相同,不同的是DURENE的用量为0.05mol(8.2g),DABA的用量为0.05mol(7.6g),得到聚酰亚胺材料PI-COOH 50,聚合度(m+n)在300以上,m:n=1:1。
耐溶剂聚合物纳滤膜制备方法同实施例1相同。
实施例6
本实施例作为对比例,聚酰亚胺材料的合成方式与实施例1相同,不同的是此实施例中只添加含羧基基团二胺单体DABA(15.2g),得到聚酰亚胺材料PI-COOH 100
耐溶剂聚合物纳滤膜制备方法同实施例1相同。
采用本实施例制备的聚合物纳滤膜将考马斯亮蓝的甲醇溶液在1MPa条件下进行过滤,结果表明,考马斯亮蓝的截留率为98-99%,通量为2-5Lm -2h -1bar -1
实施例7
聚酰亚胺材料的合成方式与实施例4完全相同。
耐溶剂聚合物纳滤膜制备方法同实施例1相同,不同的是所用盐溶液更换为0.1mol/L的硫酸铜。
实施例8
聚酰亚胺材料的合成方式与实施例4完全相同。
耐溶剂聚合物纳滤膜制备方法同实施例1相同,不同的是所用盐溶液更换为0.1mol/L的氯化镧。采用本实施例制备的聚合物纳滤膜将考马斯亮蓝的甲醇溶液在1MPa条件下进行过滤,结果表明,考马斯亮蓝的截留率为95-99%,通量为15-25Lm -2h -1bar -1
实施例9
聚酰亚胺材料的合成方式与实施例1相同,不同的是DURENE换为4,4'-二氨基二苯甲酮,其用量为0.06mol(12.7g),DABA的用量为0.04mol(6.1g),得到聚酰亚胺材料PI’-COOH 40,其结构式如下:
Figure PCTCN2020116667-appb-000012
其中m:n=3:2。
耐溶剂聚合物纳滤膜制备方法与实施例1相同。
采用本实施例制备的聚合物纳滤膜将考马斯亮蓝的甲醇溶液在1MPa条件下进行过滤,结果表明,考马斯亮蓝的截留率为95-99%,通量为15-20Lm -2h -1bar -1
实施例10
聚酰亚胺材料的合成方式与实施例1相同,不同的是DURENE换为5(6)-氨基-1-(4-氨基苯基)-1,3,3-三甲基茚满,其用量为0.06mol(16.9g),DABA的用量为0.04mol(6.1g),6FDA更换为3,3'4,4'-二苯甲酮四羧酸二酐,其用量为32.2g,得到聚酰亚胺材料PI”-COOH 40,其结构式如下:
Figure PCTCN2020116667-appb-000013
其中m:n=3:2。
耐溶剂聚合物纳滤膜制备方法与实施例1相同。
采用本实施例制备的聚合物纳滤膜将考马斯亮蓝的甲醇溶液在1MPa条件下进行过滤,结果表明,考马斯亮蓝的截留率为97-99%,通量为15-20Lm -2h -1bar -1
实施例11
聚酰亚胺材料的合成方式与实施例1相同,不同的是DURENE换为4,4'-二氨基二苯甲烷,其用量为0.06mol(11.9g),DABA的用量为0.04mol(6.1g),6FDA更换为3,3'4,4'-二苯甲酮四羧酸二酐,其用量为32.2g,得到聚酰亚胺材料PI”’-COOH 40,其结构式如下:
Figure PCTCN2020116667-appb-000014
其中m:n=3:2。
耐溶剂聚合物纳滤膜制备方法与实施例1相同。
采用本实施例制备的聚合物纳滤膜将考马斯亮蓝的甲醇溶液在1MPa条件下进行过滤,结果表明,考马斯亮蓝的截留率为98-99%,通量为10-15Lm -2h -1bar -1
下面针对本发明的其他实施情况以及变化作如下说明:
1、以上实施例采用的是DURENE或4,4'-二氨基二苯甲酮或5(6)-氨基-1-(4-氨基苯基)-1,3,3-三甲基茚满或4,4'-二氨基二苯甲烷作为普通二胺单体,DABA作为含羧基基团二胺 单体,间甲酚作为高沸点强极性溶剂,6FDA或3,3'4,4'-二苯甲酮四羧酸二酐作为芳香酸二酐单体,N,N-二甲基甲酰胺和1,4-二氧六环的混合溶剂作为有机溶剂,水作为相转化浴的成分,硝酸铜、硫酸铜、氯化镧作为金属盐。本发明不仅限于此,还可采用其他多种材料进行组合来制备不同种类的聚酰亚胺材料,使用不同种类的金属盐,形成不同种类的耐溶剂聚合物纳滤膜。
2、以上实施例中使用的反应温湿度条件、反应时间、具体参数等都可根据实际需要进行调整。本实施方案并不对此进行限定。
以上仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (10)

  1. 一种耐溶剂聚合物纳滤膜的制备方法,其特征在于,包括以下步骤:
    (1)将二胺单体与二酐单体在催化剂的作用下,在第一极性有机溶剂中于160~230℃条件下反应,形成聚酰亚胺;
    所述二胺单体包括至少一种含羧基的二胺单体与至少一种不含羧基的二胺单体;所述聚酰亚胺的结构式中包括第一重复单元和第二重复单元,所述第一重复单元包括至少一种二酐单体与含羧基的二胺单体的聚合链段,所述第二重复单元包括至少一种二酐单体与不含羧基的二胺单体的聚合链段;
    所述第一极性有机溶剂的沸点高于160℃;
    (2)将所述聚酰亚胺溶于第二极性有机溶剂,形成浓度为10wt%~40wt%的成膜溶液;然后将所述成膜溶液成膜后进行相转化,得到中间体膜;
    (3)采用金属盐的有机溶液处理所述中间体膜,以使得金属离子与聚酰亚胺中的羧基配位交联,交联完毕后得到所述耐溶剂聚合物纳滤膜;其中,所述金属盐选自一种或几种二价金属盐和/或多价金属盐。
  2. 根据权利要求1所述的制备方法,其特征在于:在步骤(1)中,所述含羧基的二胺单体选自至少一种结构式为NH 2-R”-NH 2的单体,各单体中的R”选自如下结构式中的一种:
    Figure PCTCN2020116667-appb-100001
  3. 根据权利要求1所述的制备方法,其特征在于:在步骤(1)中,所述不含羧基的二胺单体选自至少一种结构式为NH 2-R’-NH 2的单体,各单体中的R’选自如下结构式中的一种:
    Figure PCTCN2020116667-appb-100002
  4. 根据权利要求1所述的制备方法,其特征在于:在步骤(1)中,所述二酐单体选自至少一种结构式为
    Figure PCTCN2020116667-appb-100003
    的单体,各单体中的R选自如下结构式中的一种:
    Figure PCTCN2020116667-appb-100004
  5. 根据权利要求1所述的制备方法,其特征在于:在步骤(1)中,所述二酐单体、含羧基的二胺单体与不含羧基的二胺单体的摩尔比为10:0.1-9.9:0.1-9.9。
  6. 根据权利要求1所述的制备方法,其特征在于:在步骤(2)中,采用制备平板膜的方法或者制备中空纤维膜的方法将所述成膜溶液成膜。
  7. 根据权利要求1所述的制备方法,其特征在于:在步骤(3)中,所述二价金属盐包括铜盐、镍盐、锌盐、钴盐、镁盐和钙盐中的一种或几种,所述多价金属盐包括铁盐、镧盐和铝盐中的一种或几种。
  8. 一种权利要求1-7中任一项所述的制备方法所制备的耐溶剂聚合物纳滤膜,其特征在于:包括若干聚酰亚胺聚合物链段,所述聚酰亚胺聚合物链段中包括所述第一重复单元和所述第二重复单元,所述第一重复单元和所述第二重复单元的聚合度比为1-100:1-100;不同聚酰亚胺聚合物链段中的羧基配位交联有金属离子。
  9. 根据权利要求8所述的耐溶剂聚合物纳滤膜,其特征在于:各聚酰亚胺聚合物链段中,所述第一重复单元的个数为10-1000;所述第二重复单元的的个数为10-1000。
  10. 权利要求8所述的耐溶剂聚合物纳滤膜在分离和/或纯化有机溶液中化合物的应用。
PCT/CN2020/116667 2020-05-11 2020-09-22 耐溶剂聚合物纳滤膜及其制备方法和应用 WO2021227330A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/794,224 US20230100275A1 (en) 2020-05-11 2020-09-22 Solvent-resistant polymeric nanofiltration membrane, preparation method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010392887.9 2020-05-11
CN202010392887.9A CN111514768B (zh) 2020-05-11 2020-05-11 耐溶剂聚合物纳滤膜及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021227330A1 true WO2021227330A1 (zh) 2021-11-18

Family

ID=71908805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116667 WO2021227330A1 (zh) 2020-05-11 2020-09-22 耐溶剂聚合物纳滤膜及其制备方法和应用

Country Status (3)

Country Link
US (1) US20230100275A1 (zh)
CN (1) CN111514768B (zh)
WO (1) WO2021227330A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114191991A (zh) * 2021-12-22 2022-03-18 中国科学院苏州纳米技术与纳米仿生研究所 金属离子配位交联的聚酰亚胺耐溶剂纳滤膜、制法及应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111514768B (zh) * 2020-05-11 2021-07-13 苏州大学 耐溶剂聚合物纳滤膜及其制备方法和应用
CN112387134B (zh) * 2020-10-29 2021-11-23 吉林大学 一种耐溶剂纳滤膜及其制备方法与应用
CN112755822B (zh) * 2020-12-24 2022-03-18 华中科技大学 一种金属离子配位交联的聚酰亚胺多孔膜的应用
CN113731376B (zh) * 2021-09-01 2023-07-25 大同共聚(西安)科技有限公司 一种聚酰亚胺与铝离子络合物的制备方法
CN113731510A (zh) * 2021-09-01 2021-12-03 大同共聚(西安)科技有限公司 一种二氧化钛/聚酰亚胺复合材料的制备方法
CN117358066B (zh) * 2023-12-07 2024-03-19 湖南沁森高科新材料有限公司 一种纳滤膜及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003053548A1 (en) * 2001-12-20 2003-07-03 Chevron U.S.A. Inc. Crosslinked and crosslinkable hollow fiber mixed matrix membrane and method of making same
CN103025796A (zh) * 2010-04-12 2013-04-03 新加坡国立大学 聚酰亚胺膜及其制备
WO2014123091A1 (ja) * 2013-02-08 2014-08-14 国立大学法人京都大学 多孔性金属錯体、及び該金属錯体を用いたポリマーの製造方法、並びに、ビニルエステル系コポリマー
JP2019018178A (ja) * 2017-07-20 2019-02-07 旭化成株式会社 分離膜
CN109880126A (zh) * 2019-02-22 2019-06-14 黑龙江省科学院石油化学研究院 可制备高强度和耐热性聚酰亚胺轻质复杂结构的聚酰亚胺前驱体凝胶及其制备方法和应用
CN110801736A (zh) * 2019-11-07 2020-02-18 哈尔滨学院 一种耐有机溶剂不易剥离的纳滤膜的制备方法
CN111514768A (zh) * 2020-05-11 2020-08-11 苏州大学 耐溶剂聚合物纳滤膜及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201012080D0 (en) * 2010-07-19 2010-09-01 Imp Innovations Ltd Asymmetric membranes for use in nanofiltration
TWI629095B (zh) * 2016-04-08 2018-07-11 財團法人紡織產業綜合研究所 聚醯亞胺組成物以及分離膜的製備方法
KR101925504B1 (ko) * 2016-06-20 2018-12-05 한양대학교 산학협력단 유기용매 나노여과막 및 그 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003053548A1 (en) * 2001-12-20 2003-07-03 Chevron U.S.A. Inc. Crosslinked and crosslinkable hollow fiber mixed matrix membrane and method of making same
CN103025796A (zh) * 2010-04-12 2013-04-03 新加坡国立大学 聚酰亚胺膜及其制备
WO2014123091A1 (ja) * 2013-02-08 2014-08-14 国立大学法人京都大学 多孔性金属錯体、及び該金属錯体を用いたポリマーの製造方法、並びに、ビニルエステル系コポリマー
JP2019018178A (ja) * 2017-07-20 2019-02-07 旭化成株式会社 分離膜
CN109880126A (zh) * 2019-02-22 2019-06-14 黑龙江省科学院石油化学研究院 可制备高强度和耐热性聚酰亚胺轻质复杂结构的聚酰亚胺前驱体凝胶及其制备方法和应用
CN110801736A (zh) * 2019-11-07 2020-02-18 哈尔滨学院 一种耐有机溶剂不易剥离的纳滤膜的制备方法
CN111514768A (zh) * 2020-05-11 2020-08-11 苏州大学 耐溶剂聚合物纳滤膜及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LINA NIE, KUNLI GOH, YU WANG, JAEWOO LEE , YINJUAN HUANG , H. ENIS KARAHAN , KUN ZHOU , MICHAEL D. GUIVER, TAE-HYUN BAE: "Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration", SCIENCE ADVANCES, vol. 6, no. 17, 24 April 2020 (2020-04-24), pages 1 - 12, XP055867535, ISSN: 2375-2548 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114191991A (zh) * 2021-12-22 2022-03-18 中国科学院苏州纳米技术与纳米仿生研究所 金属离子配位交联的聚酰亚胺耐溶剂纳滤膜、制法及应用

Also Published As

Publication number Publication date
CN111514768A (zh) 2020-08-11
US20230100275A1 (en) 2023-03-30
CN111514768B (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
WO2021227330A1 (zh) 耐溶剂聚合物纳滤膜及其制备方法和应用
US20200164318A1 (en) Graphene-Based Membrane and Method of Producing the Same
CN109351190A (zh) 一种交联含氟聚酰胺复合耐溶剂纳滤膜、制备方法及其应用
CN105148750B (zh) 一种聚酰胺复合膜表面改性的方法
CN108203510B (zh) 一种用于超微滤膜改性的甜菜碱型聚酰亚胺添加剂的制备方法
DE112015006647T5 (de) Isatincopolymere mit intrinsicher Mikroporosität
CN112675716A (zh) 一种uio-66-nh2基衍生物制备高通量、无缺陷聚酰胺膜的方法
JP4057217B2 (ja) 耐溶剤性微孔質ポリベンゾイミダゾール薄膜の製造方法
EP0525113A1 (en) Porous polybenzoxazole and polybenzothiazole membranes
CN112516814A (zh) 一种高脱盐耐溶剂聚酰胺复合纳滤膜的制备方法
JP3024216B2 (ja) インダン部分を含むポリベンゾアゾールポリマー
CN113694740B (zh) 一种离子化单体制备的荷正电纳滤膜及其制备方法
CN101721926A (zh) 磺化含二氮杂萘酮结构共聚芳醚砜复合纳滤膜及其制备方法
JP6674383B2 (ja) ポリアニリン系耐塩素性親水性濾過膜
CN111282455B (zh) 外压式中空纤维工业纳滤膜及制备方法
JP2022505389A (ja) ポリ(2,5-ベンズイミダゾール)、コポリマー、及び置換ポリベンズイミダゾールに基づくポリマー層状中空糸膜
JP3992345B2 (ja) 分離膜およびこれを用いたオレフィンの分離方法
JP2984716B2 (ja) 芳香族系分離膜
JPH04317733A (ja) 耐薬品性・耐熱性の多孔質半透過性膜
CN113856500A (zh) 一种制备中空纤维反渗透膜的方法
US4851127A (en) Novel amine-based presursor compounds and composite membranes thereof
JP2794785B2 (ja) 中空糸膜
WO2015063792A1 (en) Asymmetric membranes based on bupbi
CN115260494B (zh) 一种聚酰亚胺及其薄层复合膜、制备方法
CN114515520B (zh) 一种高通量高选择性的基于特勒格碱基耐酸纳滤膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935415

Country of ref document: EP

Kind code of ref document: A1