WO2016133182A1 - 車両 - Google Patents

車両 Download PDF

Info

Publication number
WO2016133182A1
WO2016133182A1 PCT/JP2016/054783 JP2016054783W WO2016133182A1 WO 2016133182 A1 WO2016133182 A1 WO 2016133182A1 JP 2016054783 W JP2016054783 W JP 2016054783W WO 2016133182 A1 WO2016133182 A1 WO 2016133182A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
vehicle
torque
deviation
force
Prior art date
Application number
PCT/JP2016/054783
Other languages
English (en)
French (fr)
Inventor
本多智一
佐々木仁
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CA2976968A priority Critical patent/CA2976968A1/en
Priority to CN201680011054.5A priority patent/CN107249948B/zh
Priority to EP16752568.2A priority patent/EP3260343A4/en
Priority to KR1020177026281A priority patent/KR20170118194A/ko
Priority to JP2017500743A priority patent/JP6612840B2/ja
Priority to US15/119,853 priority patent/US10220836B2/en
Publication of WO2016133182A1 publication Critical patent/WO2016133182A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/02Control of vehicle driving stability
    • B60W30/045Improving turning performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/04Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for differential gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/12Conjoint control of vehicle sub-units of different type or different function including control of differentials
    • B60W10/16Axle differentials, e.g. for dividing torque between left and right wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/02Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides
    • B62D11/04Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of separate power sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K2005/003Arrangement or mounting of internal-combustion or jet-propulsion units the internal combustion or jet propulsion unit is arranged between the front and the rear axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/04Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for differential gearing
    • B60K2023/043Control means for varying left-right torque distribution, e.g. torque vectoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • B60K2023/0816Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch for varying front-rear torque distribution with a central differential
    • B60K2023/0833Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch for varying front-rear torque distribution with a central differential for adding torque to the rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/04Arrangement or mounting of internal-combustion or jet-propulsion units with the engine main axis, e.g. crankshaft axis, transversely to the longitudinal centre line of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • B60L2240/18Acceleration lateral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/22Yaw angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/24Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/406Torque distribution between left and right wheel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle capable of adjusting the driving force of left and right driving wheels.
  • JP ⁇ ⁇ ⁇ 10-016599 A a steering wheel angular velocity d ⁇ h (or steering angular velocity d ⁇ h) is calculated based on a steering wheel angle (or steering angle) detected by a steering wheel angle sensor 48B.
  • the steering transient response control is performed based on the steering wheel angular velocity d ⁇ h (FIG. 6, [0149] to [0154]).
  • torque movement control [0117]
  • JP 10-016599 A controls power transmission between the left and right wheels based on the steering angular velocity d ⁇ h (see [0001]).
  • JP 2013-056636 A when the vehicle departs from or is predicted to deviate from the travel lane, a lateral vibration torque is applied to the steering wheel 2 (summary). .
  • the vibration torque is generated by operating a torque actuator of the electric power steering mechanism ([0013]).
  • JP-10-016599A the power transmission between the left and right wheels is controlled based on the steering angular velocity d ⁇ h.
  • JP 10-016599 A there is room for improvement with respect to the control of power transmission control between the left and right wheels (or the difference between the driving forces of the left and right wheels).
  • the steering transient response control of JP10-016599A is used in the state where the vibration torque is generated in JP2013-056636A, the steering angular velocity d ⁇ h changes suddenly with the vibration torque. In this case, the driver may feel uncomfortable with respect to the power transmission control between the left and right wheels (or the difference in driving force between the left and right wheels).
  • the present invention has been made in consideration of the above-described problems, and is a vehicle capable of improving the attitude control or operation performance of a vehicle by suitably controlling the driving force difference between the left and right wheels during turning.
  • the purpose is to provide.
  • the vehicle according to the present invention is A left and right driving force that is a difference between the left driving force and the right driving force by controlling a left driving force that is a driving force of the left wheel of the vehicle and a right driving force that is a driving force of the right wheel of the vehicle.
  • a drive control device for controlling the drive device;
  • a rotating electrical machine that is mechanically connected to a steering wheel and applies a steering force or a steering additional force to a steering system including the steering wheel;
  • a driving support device for supporting avoidance of deviation of the vehicle from the driving path,
  • the travel support device includes: Traveling path recognition means for recognizing the traveling path; Deviation acquisition means for acquiring a risk of deviation or deviation of the vehicle with respect to the travel path; When the deviation acquisition means acquires the deviation or the risk of the deviation, the rotating electric machine is driven to generate a notification operation for the steering input device of the steering system, or departure avoidance assist steering for the steering system And avoidance support means for applying a steering or additional force for avoidance support for deviation avoidance,
  • the vehicle further includes rotation speed acquisition means for acquiring the rotation speed of the rotating electrical machine,
  • the drive control device controls the left / right driving force difference by the drive device based on the rotation speed, Further, the drive control device may be configured such that when the departure acquisition
  • driving force is used to include driving wheel driving force [N] that can be calculated from driving wheel torque in addition to driving wheel torque [N ⁇ m].
  • difference between the left driving force and the right driving force includes both the meaning of the difference between the left driving force and the right driving force and the meaning of the ratio of the left driving force and the right driving force.
  • acquisition of “acquire rotation speed” includes any of detection, calculation, estimation, and prediction.
  • the yaw moment of the vehicle is controlled using the left and right driving force difference.
  • the left / right driving force difference is controlled based on the rotational speed of the rotating electrical machine that applies a steering force or a steering additional force to the steering system of the vehicle. For this reason, the yaw moment of the vehicle can be appropriately controlled by making it possible to set the left / right driving force difference in conjunction with the rotational speed of the rotating electrical machine.
  • the left / right driving force difference is controlled using the rotational speed of the rotating electrical machine as the steering state.
  • the rotational speed acquisition means (particularly the detection element) for acquiring the rotational speed of the rotating electrical machine is closer to the steered wheels than the steering angle acquisition means.
  • the rudder angle acquisition means performs detection at a position away from the steered wheels as compared to the rotation speed acquisition means.
  • the steering angle acquisition means is farther away from the steering wheel than the rotational speed acquisition means in the steering torque transmission path (steering force transmission path) connecting the steering wheel and the steering wheel.
  • the steering angle acquisition means (especially its detection element) installed in the vicinity of the steering wheel is required to be as accurate as the rotation speed acquisition means, which is strictly required to control the rotating electrical machine. Absent.
  • the steering angle acquisition unit may include an error more easily than the rotation speed acquisition unit.
  • the rudder angle acquisition means has a phase lag and is more likely to contain errors than the rotational speed acquisition means.
  • the rotational speed acquisition unit is less likely to include phase delay and error than the steering angle acquisition unit. Accordingly, it is possible to control the left / right driving force difference with higher responsiveness and higher accuracy than in the case of using the rudder angular velocity. Therefore, it becomes possible to improve the attitude control or operation performance of the vehicle.
  • the control of the left / right driving force difference based on the rotational speed is prohibited or suppressed. This prevents the notification operation or the departure avoidance assist steering force or the departure avoidance assist steering additional force from interfering with the control of the left / right driving force difference based on the rotational speed, and the control of the left / right driving force difference based on the rotational speed and the notification operation or
  • the departure avoidance assist steering force or the departure avoidance assist steering additional force can coexist.
  • the steering system may include a steering amount acquisition unit that acquires a steering amount of a steering subject of the vehicle.
  • the rotating electrical machine may be disposed closer to the steering wheel than the steering amount acquisition unit on a steering force transmission path, and the steering force or the steering additional force may be obtained based on the steering amount.
  • the left / right driving force difference is controlled based on the rotational speed of the rotating electrical machine closer to the steered wheels than the steering amount acquisition means. Therefore, it is possible to control the left / right driving force difference with higher responsiveness and higher accuracy than when the left / right driving force difference is controlled based on the steering speed.
  • the driving device may include a left rotating electric machine mechanically connected to the left wheel and a right rotating electric machine mechanically connected to the right wheel.
  • the drive control device may execute a steering amount proportional control for controlling the left / right driving force difference based on the steering amount and the lateral acceleration of the vehicle.
  • the drive control device may control the left / right driving force difference by combining the left / right driving force difference control based on the rotation speed and the steering amount proportional control.
  • the drive control device may be configured such that when the departure acquisition unit acquires the departure or the risk of departure, or when the avoidance support unit causes the notification operation, or the departure avoidance support steering force or the departure avoidance support steering.
  • the control of the left / right driving force difference based on the rotation speed may be prohibited or suppressed, and the control of the left / right driving force difference by the steering amount proportional control may be continued.
  • the avoidance support means drives the rotating electrical machine to cause a notification input operation to the steering input device of the steering system when the deviation acquisition means acquires the deviation or the risk of the deviation, and then performs the steering operation.
  • the departure avoidance assistance steering force or the departure avoidance assistance steering additional force may be applied to the system.
  • the drive control device may be configured such that when the departure acquisition unit acquires the departure or the risk of departure, or when the avoidance support unit causes the notification operation, the left-right driving force difference based on the rotation speed. This control may be prohibited or suppressed. Thereby, before the departure avoidance assist steering force or the departure avoidance assist steering additional force is applied to the steering system, the control of the left / right driving force difference based on the rotational speed can be surely prohibited or suppressed.
  • the vehicle according to the present invention is Controlling a left torque, which is a torque of a left rotating electrical machine mechanically connected to the left wheel of the vehicle, and a right torque, a torque of a right rotating electrical machine mechanically connected to the right wheel of the vehicle
  • a drive control device for controlling the drive device
  • a rotating electrical machine that is mechanically connected to a steering wheel and applies a steering force or a steering additional force to a steering system including the steering wheel
  • a driving support device for supporting avoidance of deviation of the vehicle from the driving path, The driving support device drives the rotating electric machine to generate a notification operation for the steering input device of the steering system when the vehicle deviates from the driving path or there is a risk of the deviation.
  • avoidance support means for providing departure avoidance support steering force or departure avoidance support steering additional force
  • the vehicle further includes rotation speed acquisition means for acquiring the rotation speed of the rotating electrical machine,
  • the drive control device controls the left torque and the right torque based on the rotation speed; Further, the drive control device applies the departure avoidance assist steering force or the departure avoidance assist steering additional force when the departure or the risk of departure occurs, or when the avoidance support means causes the notification operation.
  • the control of the left torque and the right torque based on the rotation speed is prohibited or suppressed.
  • the yaw moment of the vehicle is controlled using the left torque and the right torque in addition to the steering of the steered wheels. Further, the left torque and the right torque are controlled based on the rotation speed of the rotating electrical machine that applies a steering force or a steering additional force to the vehicle steering system. For this reason, by making it possible to set the left torque and the right torque in conjunction with the rotational speed of the rotating electrical machine, it becomes possible to appropriately control the yaw moment of the vehicle.
  • the control of the left / right driving force difference based on the rotational speed is prohibited or suppressed. Accordingly, it is possible to prevent the notification operation from interfering with the control of the left / right driving force difference based on the rotation speed, and to allow the control of the left / right driving force difference based on the rotation speed and the notification operation to coexist.
  • FIG. 1 is a schematic configuration diagram of a part of a vehicle according to an embodiment of the present invention. It is a block diagram which shows a part of drive system of the said vehicle of the said embodiment. It is a figure which shows an example of the torque for feedforward control about an outer wheel among right-and-left rear wheels. It is a flowchart of EPS motor speed feedforward (FF) control in the embodiment. It is a figure which shows the output example of the EPS motor speed based on the steering angular velocity as a time differential value of the steering angle which the steering angle sensor detected, and the electrical angle which the resolver detected. It is a flowchart of road deviation reduction (RDM) control in the embodiment.
  • FF EPS motor speed feedforward
  • RDM road deviation reduction
  • FIG. 6 is a schematic configuration diagram of a part of a vehicle according to a third modification of the present invention.
  • FIG. 1 is a schematic configuration diagram of a part of a vehicle 10 according to an embodiment of the present invention.
  • the vehicle 10 includes a drive system 12, an electric power steering device 14 (hereinafter referred to as “EPS device 14”), and a road deviation reduction device 16 (hereinafter also referred to as “RDM device 16”).
  • EPS device 14 electric power steering device 14
  • RDM device 16 road deviation reduction device 16
  • FIG. 2 is a block diagram showing a part of the drive system 12 of the vehicle 10 of the present embodiment.
  • the drive system 12 includes an engine 20 and a first travel motor 22 arranged in series on the front side of the vehicle 10, and a second travel motor 24 and a first travel motor 24 arranged on the rear side of the vehicle 10.
  • 3 traveling motor 26 high voltage battery 28 (hereinafter also referred to as “battery 28"), first to third inverters 30, 32, 34, drive system sensor group 36 (FIG. 2), and drive electronic control unit 38 (hereinafter referred to as “drive ECU 38”).
  • first traveling motor 22 is also referred to as a “first motor 22” or a “front motor 22”.
  • second traveling motor 24 is also referred to as a “second motor 24” or a “left motor 24”.
  • third traveling motor 26 is also referred to as a “third motor 26” or a “right motor 26”.
  • the engine 20 and the first motor 22 transmit driving force (hereinafter referred to as “front wheel driving force Ff”) to the left front wheel 42 a and the right front wheel 42 b (hereinafter collectively referred to as “front wheel 42”) via the transmission 40.
  • the engine 20 and the first motor 22 constitute a front wheel drive device 44.
  • the vehicle 10 is driven only by the first motor 22 when the load is low, the vehicle 20 is driven only by the middle load, and the engine 20 and the first motor 22 are driven when the load is high.
  • the output shaft of the second motor 24 is connected to the rotation shaft of the left rear wheel 46a, and transmits the driving force to the left rear wheel 46a.
  • the output shaft of the third motor 26 is connected to the rotation shaft of the right rear wheel 46b, and transmits the driving force to the right rear wheel 46b.
  • the second motor 24 and the third motor 26 constitute a rear wheel drive device 48.
  • the front wheel drive device 44 and the rear wheel drive device 48 are mechanically disconnected and are provided separately.
  • the left rear wheel 46a and the right rear wheel 46b are collectively referred to as a rear wheel 46.
  • the driving force transmitted from the rear wheel driving device 48 to the rear wheel 46 is referred to as a rear wheel driving force Fr.
  • the engine 20 is, for example, a 6-cylinder engine, but may be another engine such as a 2-cylinder, 4-cylinder, or 8-cylinder type.
  • the engine 20 is not limited to a gasoline engine, and may be an engine such as a diesel engine or an air engine.
  • the first to third motors 22, 24, and 26 are, for example, a three-phase AC brushless type, but may be other motors such as a three-phase AC brush type, a single-phase AC type, and a DC type.
  • the specifications of the first to third motors 22, 24, 26 may be the same or different.
  • the first to third motors 22, 24, and 26 of the present embodiment can generate torque in the forward rotation (rotation for moving the vehicle 10 forward) direction and torque generation in the reverse rotation (rotation for moving the vehicle 10 backward) direction. is there.
  • the high voltage battery 28 supplies power to the first to third motors 22, 24, 26 via the first to third inverters 30, 32, 34 and from the first to third motors 22, 24, 26.
  • the regenerative power Preg is charged.
  • the battery 28 is a power storage device (energy storage) including a plurality of battery cells, and for example, a lithium ion secondary battery, a nickel hydride secondary battery, or the like can be used. In this embodiment, a lithium ion secondary battery is used. In addition to the battery 28 or instead of the battery 28, another power storage device (capacitor or the like) can be used.
  • a DC / DC converter (not shown) is provided between the battery 28 and the first to third inverters 30, 32, 34, and the output voltage of the battery 28 or the output voltages of the first to third motors 22, 24, 26 are supplied. It may be increased or decreased.
  • the first to third inverters 30, 32, and 34 have a three-phase full bridge configuration and perform DC / AC conversion. That is, the first to third inverters 30, 32, and 34 convert direct current into three-phase alternating current and supply it to the first to third motors 22, 24, and 26. Further, the first to third inverters 30, 32, 34 supply the direct current after the AC / DC conversion accompanying the regenerative operation of the first to third motors 22, 24, 26 to the battery 28.
  • the drive system sensor group 36 includes a vehicle speed sensor 50, a steering angle sensor 52, a lateral acceleration sensor 54 (hereinafter referred to as “lateral G sensor 54”), a wheel speed sensor 56, and a yaw rate. Sensor 58.
  • the vehicle speed sensor 50 detects the vehicle speed V [km / h] of the vehicle 10.
  • the steering angle sensor 52 detects the steering angle ⁇ st [degree] of the steering wheel 60 (steering input device).
  • the lateral G sensor 54 detects a lateral acceleration Glat [m / s 2 ] applied to the vehicle 10 (vehicle body).
  • the wheel speed sensor 56 detects the rotational speed of each of the wheels 42a, 42b, 46a, 46b (hereinafter referred to as “wheel speed Vwfl, Vwfr, Vwrl, Vwrr”, collectively referred to as “wheel speed Vw”).
  • the yaw rate sensor 58 detects the yaw rate Yr applied to the vehicle 10 (vehicle body).
  • the drive ECU 38 controls the output of the engine 20 and the first to third motors 22, 24, 26 by controlling the engine 20 and the first to third inverters 30, 32, 34.
  • the drive ECU 38 includes an input / output unit, a calculation unit, and a storage unit (all not shown). Further, the drive ECU 38 may be a combination of a plurality of ECUs. For example, a plurality of ECUs provided corresponding to the engine 20 and the first to third motors 22, 24, and 26, and an ECU that manages the driving states of the engine 20 and the first to third motors 22, 24, and 26, respectively.
  • the drive ECU 38 may be configured as described above. Details of the drive ECU 38 will be described later.
  • the EPS device 14 performs steering assist control that assists the operation of the steering wheel 60 by the driver.
  • the EPS device 14 includes an electric power steering motor 70 (hereinafter also referred to as “EPS motor 70”), a resolver 72, a steering torque sensor 74, and an electric power steering electronic control device 76 (hereinafter “EPS ECU 76 ").
  • EPS motor 70 electric power steering motor 70
  • EPS ECU 76 electric power steering electronic control device 76
  • US 2013/0190986 A1 for example, FIG. 2 of the same publication
  • the EPS motor 70 is a three-phase AC brushless type, and is connected to the steering shaft 62 via a worm gear and a worm wheel gear (both not shown).
  • the EPS motor 70 applies a driving force (steering additional force Fad) to the steering shaft 62 in accordance with a command from the EPS ECU 76.
  • the steering additional force Fad here is the same assisting force as the direction of rotation of the steering wheel 60 by the driver.
  • the steering additional force Fad may be a reaction force opposite to the rotation direction of the steering wheel 60 by the driver.
  • the EPS motor 70 of the present embodiment is disposed on the front wheels 42a, 42b side with respect to the steering angle sensor 52. For example, this is the same as the positional relationship between the steering angle sensor 92 and the EPS motor 60 in FIG. 2 of US 2013/0190986 A1.
  • the resolver 72 (a part of the rotational speed acquisition means) detects an electrical angle ⁇ e [deg] that is a rotational angle of an output shaft (not shown) of the EPS motor 70 or an outer rotor.
  • the steering torque sensor 74 detects torque Tst (hereinafter referred to as “steering torque Tst”) [N ⁇ m] input to the steering wheel 60 from the driver.
  • the EPS ECU 76 (a part of the rotational speed acquisition means) controls the steering additional force Fad in the steering shaft 62 by controlling the EPS motor 70 based on the steering torque Tst, the yaw rate Yr, and the like.
  • the EPS ECU 76 includes an input / output unit, a calculation unit, and a storage unit (all not shown).
  • the EPS ECU 76 of this embodiment calculates an EPS motor speed ⁇ [rad / sec], which is a time differential value of the electrical angle ⁇ e from the resolver 72.
  • the EPS ECU 76 outputs the calculated EPS motor speed ⁇ to the drive ECU 38 via the communication line 78.
  • the RDM device 16 is a travel support device that supports avoidance of deviation of the vehicle 10 from the travel path 200 (FIG. 7). As shown in FIG. 1, the RDM device 16 includes a front camera 80 (hereinafter also referred to as “camera 80”), an RDM switch 82, a monitor 84, a speaker 86, a brake mechanism 88, and road deviation reduction electronic control. And a device 90 (hereinafter referred to as “RDM ECU 90”).
  • Camera 80 (traveling path recognition means) is attached inside the front windshield in front of the rearview mirror.
  • the RDM switch 82 When the RDM switch 82 is in the ON state, the camera 80 captures white lines 202l and 202r (road boundary lines) (FIG. 7) on both sides of the traveling road 200 ahead as images.
  • the brake mechanism 88 includes a hydraulic braking device (not shown), and reduces the vehicle speed V by applying a braking force to the front wheels 42a and 42b and the rear wheels 46a and 46b.
  • the RDM ECU 90 (deviation acquisition means, avoidance support means) includes an input / output unit, a calculation unit, and a storage unit (all not shown), and road deviation reduction control that reduces deviation of the vehicle 10 from the traveling road 200 ( Hereinafter, it is also referred to as “RDM control”.
  • the road deviation reduction control of the present embodiment is executed when the vehicle speed V is in the range of 60 to 100 [km / h], for example.
  • the RDM ECU 90 detects white lines 202l and 202r (FIG. 7) on both sides of the vehicle 10 from an image (camera image) acquired by the camera 80.
  • the EPS motor 70 is controlled so as to reduce the deviation.
  • FIG. 7 an example in which the vehicle 10 is on the left side is shown.
  • the RDM ECU 90 operates the EPS motor 70 to cause slight vibration (warning vibration) in order to notify the driver of the future or actual deviation of the vehicle 10 with respect to the travel path 200. ) Is generated.
  • the RDM ECU 90 transmits a warning vibration signal Sx for notifying the occurrence of the warning vibration to the drive ECU 38.
  • FIG. 2 is a block diagram showing a part of the drive system 12 of the vehicle 10 of the present embodiment, and shows functional blocks of the drive ECU 38.
  • FIG. 3 is a diagram illustrating an example of feedforward control torque for the outer wheel of the left and right rear wheels 46a and 46b.
  • the function of each block shown in FIG. may be replaced with an analog circuit or a digital circuit.
  • the drive ECU 38 includes a steering angle proportional feedforward control unit 100 (hereinafter referred to as “steering angle proportional FF control unit 100” or “FF control unit 100”) and an EPS motor speed feedforward control unit 102. (Hereinafter referred to as “EPS motor speed FF control unit 102” or “FF control unit 102”), first adder 104, second adder 106, low-pass filter 108, and feedback control unit 110 (hereinafter referred to as “FB”). Control unit 110 ”), a first subtractor 112, and a second subtractor 114.
  • the steering angle proportional FF control unit 100 executes steering angle proportional feedforward control (hereinafter referred to as “steering angle proportional FF control”).
  • steering angle proportional FF control the torque (driving force) of the driving wheels (here, the rear wheels 46a and 46b) is controlled corresponding to the steering angle ⁇ st and the lateral acceleration Glat.
  • the FF control unit 100 calculates the steering angle proportional torque Tff1l for the left rear wheel 46a and outputs it to the first adder 104, and calculates the steering angle proportional torque Tff1r for the right rear wheel 46b. Output to the second adder 106.
  • the steering angle proportional torques Tff1l and Tff1r are collectively referred to as “steering angle proportional torque Tff1” or “torque Tff1”.
  • FIG. 3 shows an example of torque Tff1 for the outer wheel among the left and right rear wheels 46a, 46b.
  • the FF control unit 100 has the same configuration and configuration as the feedforward control unit (84 in FIG. 5 of US 2005/0217921 A1) in US Patent Application Publication No. 2005/0217921 (hereinafter referred to as “US 2005/0217921 A1”). Torque Tff1 is calculated by the processing.
  • the FF control unit 100 performs the following based on the torque of the engine 20 (engine torque Teng) and the torques of the first to third motors 22, 24, and 26 (first to third motor torques Tmot1, Tmot2, and Tmot3).
  • a wheel driving force F for the wheels 46a and 46b is calculated.
  • the FF control unit 100 calculates an estimated value of the lateral acceleration Glat (estimated lateral acceleration Glat_e) based on the vehicle speed V from the vehicle speed sensor 50 and the steering angle ⁇ st from the steering angle sensor 52.
  • the FF control unit 100 calculates a correction value (corrected lateral acceleration Glat_c) of the lateral acceleration Glat obtained by adding the lateral acceleration Glat (actually measured value) from the lateral G sensor 54 and the estimated lateral acceleration Glat_e.
  • the FF control unit 100 determines which of the left and right rear wheels 46a and 46b is the outer wheel based on the corrected lateral acceleration Glat_c. Further, the FF control unit 100 calculates the front-rear distribution ratio and the left-right distribution ratio based on the corrected lateral acceleration Glat_c. The FF control unit 100 calculates an outer wheel / inner wheel torque distribution ratio for the rear wheels 46a and 46b based on the determined outer wheel and the calculated front / rear distribution ratio and right / left distribution ratio.
  • the FF control unit 100 calculates the steering angle proportional torques Tff1l and Tff1r by multiplying the wheel driving force F for the rear wheels 46a and 46b by a ratio based on the outer wheel / inner wheel torque distribution ratio.
  • EPS motor speed FF control unit 102 executes EPS motor speed feedforward control (hereinafter referred to as “EPS motor speed FF control” or “motor speed FF control”).
  • EPS motor speed FF control EPS motor speed feedforward control
  • the torque (driving force) of the driving wheels here, the rear wheels 46a and 46b
  • the EPS motor speed ⁇ from the EPS ECU 76.
  • the FF control unit 102 calculates the EPS motor speed torque Tff2l for the left rear wheel 46a and outputs it to the first adder 104, and calculates the EPS motor speed torque Tff2r for the right rear wheel 46b. Output to the second adder 106.
  • the EPS motor speed torques Tff2l and Tff2r are collectively referred to as “EPS motor speed torque Tff2” or “torque Tff2”.
  • FIG. 3 shows an example of the torque Tff2 for the outer wheel among the left and right rear wheels 46a, 46b.
  • the FF control unit 102 calculates the torque Tff2 mainly based on the EPS motor speed ⁇ .
  • the torque Tff2 is a torque for setting the torque difference ⁇ T [N ⁇ m] between the left and right rear wheels 46a and 46b according to the EPS motor speed ⁇ .
  • the torque difference ⁇ T (hereinafter also referred to as “left-right torque difference ⁇ T”) is a difference in torque (here, a target value) between the left and right rear wheels 46a, 46b. Details of the EPS motor speed FF control will be described later with reference to the flowchart of FIG.
  • the first adder 104 calculates the sum of the torque Tff1l from the FF control unit 100 and the torque Tff2l from the FF control unit 102 (hereinafter referred to as “feedforward total torque Tff_total_l” or “FF total torque Tff_total_l”).
  • the second adder 106 calculates the sum of the torque Tff1r from the FF control unit 100 and the torque Tff2r from the FF control unit 102 (hereinafter referred to as “feedforward total torque Tff_total_r” or “FF total torque Tff_total_r”).
  • FIG. 3 shows an example of torque Tff_total for the outer wheel among the left and right rear wheels 46a, 46b.
  • the low-pass filter 108 passes only the low frequency component of the FF total torque Tff_total_l for the left rear wheel 46a and outputs it to the first subtractor 112. Further, the low pass filter 108 passes only the low frequency component of the FF total torque Tff_total_r for the right rear wheel 46 b and outputs it to the second subtractor 114. This makes it possible to avoid a sudden change in the FF total torque Tff_total. As a result, it is possible to avoid a driver's uncomfortable feeling with respect to a sudden increase in the FF total torque Tff_total.
  • the FB control unit 110 performs feedback control (hereinafter referred to as “FB control”).
  • FB control feedback control
  • the torque (driving force) of the driving wheels is controlled so that the slip angle of the vehicle 10 does not become excessive when the vehicle 10 turns.
  • the FB control unit 110 calculates a feedback torque Tfbl for the left rear wheel 46a (hereinafter referred to as “FB torque Tfbl”) and outputs it to the first subtractor 112 to provide feedback for the right rear wheel 46b.
  • Torque Tfbr (hereinafter referred to as “FB torque Tfbr”) is calculated and output to second subtractor 114.
  • FB torque Tfb the FB torques Tfbl and Tfbr are collectively referred to as “FB torque Tfb” or “torque Tfb”.
  • the FB control unit 110 calculates the torque Tfb by the same configuration and processing as the feedback control unit of US 2005/0217921 A1 (86 of US 2005/0217921 A1 in FIG. 5).
  • the FB control unit 110 is based on the vehicle speed V detected by the vehicle speed sensor 50, the steering angle ⁇ st detected by the steering angle sensor 52, the lateral acceleration Glat detected by the lateral G sensor 54, and the yaw rate Yr detected by the yaw rate sensor 58. Then, the slip angle of the vehicle 10 is calculated. Further, the FB control unit 110 calculates a slip angle threshold based on the vehicle speed V detected by the vehicle speed sensor 50 and the lateral acceleration Glat detected by the lateral G sensor 54.
  • the FB control unit 110 calculates at least one of a rear wheel torque reduction amount, an outer wheel torque reduction amount, and an inner wheel torque increase amount. Tfbl and Tfbr are calculated. That is, the FB control unit 110 determines that the vehicle 10 is in an unstable state when the slip angle of the vehicle 10 is larger than a predetermined value. In order to eliminate this unstable state, the FB control unit 110 sets the FB torques Tfbl and Tfbr so as to realize at least one of the reduction of the rear wheel distribution torque, the reduction of the outer wheel distribution torque, and the increase of the inner ring distribution torque. calculate.
  • the first subtractor 112 calculates a difference between the FF total torque Tff_total_l from the low-pass filter 108 and the FB torque Tfbl from the FB control unit 110 (hereinafter referred to as “total torque Ttotal_l” or “torque Ttotal_l”).
  • the second subtractor 114 calculates a difference between the FF total torque Tff_total_r from the low-pass filter 108 and the FB torque Tfbr from the FB control unit 110 (hereinafter referred to as “total torque Ttotal_r” or “torque Ttotal_r”).
  • the total torques Ttotal_l and Ttotal_r are collectively referred to as “total torque Ttotal” or “torque Ttotal”.
  • FIG. 3 shows an example of the steering angle proportional torque Tff1, the EPS motor speed torque Tff2, and the FF total torque Tff_total for the outer wheels of the left and right rear wheels 46a and 46b.
  • FIG. 4 is a flowchart of EPS motor speed FF control in this embodiment.
  • the EPS motor speed FF control unit 102 of the drive ECU 38 determines whether warning vibration has occurred in the RDM device 16. This determination is made based on the warning vibration signal Sx from the RDM device 16.
  • the warning vibration is vibration that is applied to the steering wheel 60 when it is determined that a future or actual deviation of the vehicle 10 (the host vehicle) from the traveling path 200 is determined. Further details of the warning vibration will be described later with reference to FIG.
  • the FF control unit 102 ends the current process without performing the steps after step S2. As a result, it is possible to avoid the malfunction of the EPS motor speed FF control accompanying the warning vibration (details will be described later with reference to FIG. 8).
  • the process proceeds to step S2.
  • step S2 the FF control unit 102 acquires the EPS motor speed ⁇ from the EPS ECU 76, the steering angle ⁇ st from the steering angle sensor 52, the wheel speed Vw from the wheel speed sensor 56, and the lateral acceleration Glat from the lateral G sensor 54. .
  • the FF control unit 102 selects a map based on the combination of the steering angle ⁇ st and the wheel speed Vw.
  • the map here is a map that defines the relationship between the EPS motor speed ⁇ and the EPS motor speed torque Tff2.
  • a plurality of maps for each combination of the steering angle ⁇ st and the wheel speed Vw are stored in a storage unit (not shown) of the drive ECU 38.
  • the wheel speed Vw here is for a wheel (here, the rear wheels 46a and 46b) whose right and left driving force distribution ratios can be changed.
  • an average value of the wheel speeds Vwrl and Vwrr is used. Can do.
  • the larger or smaller value of the wheel speeds Vwrl and Vwrr may be used. Also, as will be described later, it is possible to use a method other than the use of a map.
  • the EPS motor speed torque Tff2 when the wheel speed Vw is high is smaller than when the wheel speed Vw of the left and right rear wheels 46a and 46b is low.
  • the relationship between the motor speed ⁇ and the EPS motor speed torque Tff2 is defined.
  • the EPS motor speed ⁇ and the EPS are such that the EPS motor speed torque Tff2 when the steering angle ⁇ st is small is smaller than when the steering angle ⁇ st is large.
  • a relationship with the motor speed torque Tff2 is defined.
  • step S4 the FF control unit 102 selects the EPS motor speed torque Tff2 corresponding to the EPS motor speed ⁇ acquired in step S2 in the map selected in step S3.
  • step S5 the FF control unit 102 specifies the turning direction of the vehicle 10 based on the lateral acceleration Glat acquired in step S2.
  • the FF control unit 102 applies the EPS motor speed torque Tff2 to the outer wheel of the left and right rear wheels 46a, 46b, and applies a value ⁇ Tff2 obtained by multiplying the EPS motor speed torque Tff2 to the inner wheel by minus. Apply. That is, the FF control unit 102 outputs the EPS motor speed torque Tff2 to the first adder 104 or the second adder 106 for the outer ring, and to the first adder 104 or the second adder 106 for the inner ring. The value -Tff2 obtained by multiplying the EPS motor speed torque Tff2 by minus is output.
  • FIG. 5 is a diagram illustrating an output example of the EPS motor speed ⁇ based on the steering angular speed V ⁇ st as a time differential value of the steering angle ⁇ st detected by the steering angle sensor 52 and the electrical angle ⁇ e detected by the resolver 72.
  • waveforms are shown in which a low-pass filter is applied to each of the steering angular speed V ⁇ st and the EPS motor speed ⁇ .
  • the EPS motor speed ⁇ is more responsive than the rudder angular speed V ⁇ st and has little fluctuation (or noise). This is due to, for example, the following.
  • the resolver 72 for the EPS motor 70 is on the front wheels 42a, 42b (drive wheels) side with respect to the rudder angle sensor 52.
  • the rudder angle sensor 52 performs detection at a position away from the front wheels 42a and 42b.
  • the steering angle sensor 52 is farther away from the resolver 72 in the transmission route (steering force transmission route) of the steering torque Tst connecting the steering wheel 60 and the front wheels 42a, 42b than the resolver 72.
  • the steering angle sensor 52 causes a phase delay and is more likely to include an error than the resolver 72.
  • the resolver 72 is less likely to include a phase delay and an error than the steering angle sensor 52 in relation to the actual steering angle in the front wheels 42a and 42b.
  • the phase delay mentioned here is caused by, for example, torsion of a shaft (steering shaft 62 or the like) in a steering force transmission path, play in a coupling mechanism (rack and pinion mechanism or the like), or the like.
  • the steering angle sensor 52 installed in the vicinity of the steering wheel 60 is not required to be as accurate as the resolver 72 that is strictly controlled to control the EPS motor 70. Also in this respect, the rudder angle sensor 52 may be more likely to include an error (small vibration in FIG. 5) than the resolver 72.
  • the EPS motor speed ⁇ is more responsive than the rudder angular speed V ⁇ st and has little fluctuation (or noise). For this reason, compared with the steering angle differential feedback control (hereinafter referred to as “steering angle differential FF control”) as a comparative example, the EPS motor speed FF control of the present embodiment can calculate the torque Tff2 with higher responsiveness. And it becomes possible to carry out with high precision.
  • the steering angle differential FF control here is for calculating the torque Tff2 using the steering angular velocity V ⁇ st, which is the time differential value of the steering angle ⁇ st, instead of the EPS motor speed ⁇ in the flowchart of FIG.
  • the steering assist control is performed by the EPS device 14 (EPS ECU 76), and controls the steering additional force Fad for assisting the driver's steering.
  • the steering additional force Fad is shown as torque and has the same direction as the driver's steering torque Tst.
  • the EPS ECU 76 calculates the target reference current Iref of the EPS motor 70 based on the steering torque Tst, the yaw rate Yr, and the like.
  • the target reference current Iref is a reference value of the motor current Im for assisting the driver's steering. Basically, the absolute value increases as the absolute value of the steering torque Tst increases. In calculating the target reference current Iref, so-called inertia control, damper control, or the like may be used.
  • the EPS ECU 76 sets the target reference current Iref as the target motor current Imtar as it is (Imtar ⁇ Iref).
  • the EPS ECU 76 adds the correction current Icor from the RDM ECU 90 to the target reference current Iref to obtain the target motor current Imtar (Imtar ⁇ Iref + Icor). Then, the EPS ECU 76 changes the output of the EPS motor 70 so that the motor current Im matches the target motor current Imtar.
  • the correction current Icor is an addition for RDM control. A part of the calculation of the correction current Icor may be performed by the EPS ECU 76.
  • FIG. 6 is a flowchart of RDM control in this embodiment. The flowchart of FIG. 6 is executed when the RDM switch 82 is turned on.
  • FIG. 7 is a time chart showing an example when the RDM control of this embodiment is executed.
  • the RDM control reduces that the vehicle 10 deviates from the travel path 200 (ie, protrudes from one of the white lines 202l and 202r).
  • the steering assist amount Dst shown in FIG. 7 is an amount [m / s 2 ] for assisting the driver's steering by RDM control.
  • the deceleration support amount Dbr means the support amount [m / s 2 ] for automatic braking in RDM control.
  • step S11 of FIG. 6 the RDM ECU 90 determines whether or not a road departure reduction start condition is satisfied.
  • a road departure reduction start condition for example, the vehicle speed V is within the first predetermined value, the driver does not intend to operate, and the distance to any one of the white lines 202l and 202r is equal to or less than the first predetermined value and the deviation angle That is greater than or equal to the first predetermined value.
  • step S11 If the start condition for road deviation reduction is not satisfied (S11: NO), the current process is terminated and restarted from step S11 after a predetermined time has elapsed.
  • S11: YES When the road departure reduction start condition is satisfied (S11: YES), the process proceeds to steps S12 and S13.
  • step S12 the RDM ECU 90 executes a warning vibration generation process for generating a warning vibration in the steering wheel 60 (time points t1 to t2 in FIG. 7). As described above, when the warning vibration is generated, the RDM ECU 90 transmits the warning vibration signal Sx to the drive ECU 38. In parallel with step S12, in step S13, the RDM ECU 90 executes warning display processing for displaying a warning display on the monitor 84 (time points t1 to t6 in FIG. 7).
  • step S14 the RDM ECU 90 executes a steering assist process (time points t2 to t5 in FIG. 7).
  • a steering assist amount Dst device avoidance assist steering additional force
  • the RDM ECU 90 determines whether or not to start the automatic brake process. For example, the RDM ECU 90, for example, indicates that the vehicle speed V is within the second predetermined value, the driver does not intend to operate, and the distance to any one of the white lines 202l and 202r is equal to or less than the second predetermined value and the deviation angle. That is greater than or equal to the second predetermined value.
  • step S16 the RDM ECU 90 determines whether or not to end the steering support process. For example, it is determined whether or not the vehicle 10 returns to the travel path 200 and travels along the travel path 200 with a predetermined distance from the white line 202l (between the white lines 202l and 202r). Alternatively, a maximum time threshold (for example, several seconds to several tens of seconds) for continuing the steering support process is set, and when the start time of the steering support process reaches the maximum time threshold, it is determined that the steering support process is finished. Also good.
  • a maximum time threshold for example, several seconds to several tens of seconds
  • step S17 the RDM ECU 90 executes the automatic brake process (time points t3 to t4 in FIG. 7).
  • step S18 the RDM ECU 90 performs a warning sound generation process (time points t3 to t4 in FIG. 7).
  • the brake mechanism 88 is operated to apply a braking force to the vehicle 10.
  • the deceleration support amount Dbr in FIG. 7 indicates the application of the braking force by the automatic braking process.
  • a warning sound for the driver is output via the speaker 86.
  • the generation of the warning sound by the warning sound generation process is performed during the automatic brake process (time t3 to t4). However, it is not necessary to completely match the generation of the warning sound with the execution time of the automatic brake process.
  • FIG. 8 is a diagram for explaining the relationship between warning vibration and EPS motor speed FF control in this embodiment.
  • a warning vibration time t1 to t2 in FIG. 7, time t21 to t22 in FIG. 8
  • Various signals and values are shown.
  • the EPS motor speed torque Tff2 at time points t21 to t22 the case where step S1 in FIG. 4 is performed is indicated by a solid line, and the case where step S1 is not performed (when only S2 to S6 are performed) is indicated by a broken line.
  • the alarm vibration is generated using the EPS motor 70. For this reason, the change of the EPS motor speed ⁇ becomes severe with the occurrence of the warning vibration.
  • the EPS motor speed torque Tff2 is generated using the EPS motor speed ⁇ at the time of the warning vibration, the torque Tff2 accompanying the warning vibration is generated separately from the operation of the steering wheel 60 by the driver (time points t21 to t22). (Refer torque Tff2 shown with a broken line in FIG. 2) In that case, the driver or the passenger may feel uncomfortable.
  • the torque Tff2 is set to zero while the warning vibration is generated (FIG. 4), so that it is possible to prevent the driver or the passenger from feeling uncomfortable as described above. It becomes.
  • the yaw moment of the vehicle 10 using the torque Tff2 related to the torque difference ⁇ T (left-right driving force difference). Is controlled (FIGS. 2 and 4).
  • the torque difference ⁇ T is controlled based on the EPS motor speed ⁇ (rotational speed of the rotating electric machine) of the EPS motor 70 that applies the steering additional force Fad to the steering shaft 62 of the vehicle 10 (FIGS. 2 and 4). For this reason, by making it possible to set the torque difference ⁇ T in conjunction with the EPS motor speed ⁇ , the yaw moment of the vehicle 10 can be appropriately controlled.
  • the torque Tff2 related to the torque difference ⁇ T (left-right driving force difference) is controlled using the EPS motor speed ⁇ (rotational speed of the rotating electrical machine) as the steering state (FIGS. 2 and 4). .
  • the resolver 72 (detection element of the rotational speed acquisition means) is located closer to the front wheels 42a and 42b (steering wheels) than the steering angle sensor 52 (steering angle acquisition means).
  • the rudder angle sensor 52 performs detection at a position away from the front wheels 42a and 42b.
  • the steering angle sensor 52 is farther away from the resolver 72 in the transmission route (steering force transmission route) of the steering torque Tst connecting the steering wheel 60 and the front wheels 42a, 42b than the resolver 72.
  • the steering angle sensor 52 installed in the vicinity of the steering wheel 60 is not required to be as accurate as the resolver 72 that is strictly controlled to control the EPS motor 70. Also in this respect, the rudder angle sensor 52 may be more likely to include an error (small vibration in FIG. 5) than the resolver 72.
  • the steering angle sensor 52 causes a phase delay and is more likely to include an error than the resolver 72.
  • the resolver 72 is less likely to include a phase delay and an error than the steering angle sensor 52 in relation to the actual steering angle in the front wheels 42a and 42b. Therefore, it is possible to control the torque difference ⁇ T with high responsiveness compared to the case where the steering angular velocity V ⁇ st is used (see FIG. 5). Therefore, it becomes possible to improve the attitude control or operation performance of the vehicle 10.
  • the EPS motor speed FF control can be executed also in the vehicle 10 having the RDM device 16.
  • the steering system in this embodiment includes a steering angle sensor 52 (steering amount acquisition means) that acquires the steering angle ⁇ st of the vehicle 10 (the steering amount of the driver (steering subject)) (FIG. 2).
  • the EPS motor 70 is disposed closer to the front wheels 42a and 42b (steering wheels) than the steering angle sensor 52 on the steering torque Tst transmission path (steering force transmission path).
  • the steering additional force Fad is obtained based on the steering angle ⁇ st (steering amount).
  • the torque difference ⁇ T (right and left driving force difference) is related.
  • the torque Tff2 is controlled. Accordingly, the torque difference ⁇ T can be controlled with higher responsiveness and higher accuracy than when the torque Tff2 is controlled based on the steering angular velocity V ⁇ st calculated from the steering angle ⁇ st detected by the steering angle sensor 52.
  • the rear wheel drive device 48 (drive device) includes the left motor 24 (left rotating electric machine) mechanically connected to the left rear wheel 46a and the right mechanically connected to the right rear wheel 46b. And a motor 26 (right-rotating electric machine) (FIG. 1).
  • the left-right torque difference ⁇ T left-right driving force difference
  • the yaw moment of the vehicle 10 associated therewith can be quickly compared with a second modification (FIG. 10) and a third modification (FIG. 11) described later.
  • the drive ECU 38 controls the steering angle proportional FF control (steering amount) that controls the left-right torque difference ⁇ T (left-right driving force difference) corresponding to the steering angle ⁇ st (steering amount) and the lateral acceleration Glat. Proportional control) is executed (FIG. 2). Further, the drive ECU 38 controls the torque difference ⁇ T by combining EPS motor speed FF control (control of the left / right driving force difference based on the rotational speed) and steering angle proportional FF control (FIG. 2).
  • the drive ECU 38 prohibits the EPS motor speed FF control and continues the steering angle proportional FF control when the RDM ECU 90 (deviation acquisition means) acquires the risk of the departure or departure of the vehicle 10 from the travel path 200. (FIGS. 2 and 4).
  • the RDM ECU 90 (avoidance support means) drives the EPS motor 70 (rotating electric machine) to drive the steering wheel 60 (steering system steering wheel 60 (A warning vibration (notification operation) is generated in the steering input device (S12 in FIG. 6, time points t1 to t2 in FIG. 7). Thereafter, the RDM ECU 90 gives a steering assistance amount Dst (deviation avoidance assistance steering additional force) to the steering system (S14 in FIG. 6, time points t2 to t5 in FIG. 7).
  • Dst device avoidance assistance steering additional force
  • the drive ECU 38 (drive control device) receives the warning vibration signal Sx from the RDM ECU 90 (in other words, when the RDM ECU 90 (deviation acquisition means) acquires a deviation or a risk of deviation, or the RDM ECU 90 (evasion support)).
  • the means generates the warning vibration
  • the control of the torque difference ⁇ T based on the EPS motor speed ⁇ (rotational speed) is prohibited when S1: NO in FIG.
  • the vehicle 10 that is an automobile is described (FIG. 1).
  • the torque difference ⁇ T left-right driving force difference
  • the left rear wheel 46a left driving wheel
  • the right rear wheel 46b right driving wheel
  • the torque difference between the left rear wheel 46a (left driving wheel) and the right rear wheel 46b (right driving wheel) based on the EPS motor speed ⁇
  • any of an automatic tricycle and an automatic hexacycle may be used.
  • the vehicle 10 has one engine 20 and three traveling motors 22, 24, and 26 as driving sources (prime movers) (FIG. 1), but the driving sources are not limited to this combination.
  • the vehicle 10 may have one or more traveling motors for the front wheels 42 and one or more traveling motors for the rear wheels 46 as drive sources.
  • only one traveling motor can be used for the front wheel 42 or the rear wheel 46.
  • the driving force may be distributed to the left and right wheels using a differential device.
  • the structure which allocates an individual driving motor (a so-called in-wheel motor is included) to each of all the wheels is also possible.
  • the front wheels 42 are driven by the front wheel drive device 44 having the engine 20 and the first motor 22, and the rear wheels 46 are driven by the rear wheel drive device 48 having the second and third motors 24 and 26.
  • the present invention is not limited to this.
  • the target for adjusting the torque difference ⁇ T (power difference) is the left and right rear wheels 46a and 46b.
  • the torque difference ⁇ T between the front wheels 42a and 42b may be adjusted. Is possible.
  • FIG. 9 is a schematic configuration diagram of a part of a vehicle 10A according to a first modification of the present invention.
  • the configurations of the front wheel drive device 44 and the rear wheel drive device 48 of the vehicle 10 according to the above embodiment are reversed. That is, the front wheel drive device 44a of the vehicle 10A includes second and third travel motors 24a and 26a disposed on the front side of the vehicle 10A.
  • the rear wheel drive device 48a of the vehicle 10A includes an engine 20a and a first travel motor 22a arranged in series on the rear side of the vehicle 10A. 9, illustration of the EPS device 14 and the RDM device 16 is omitted (the same applies to FIGS. 10 and 11 described later).
  • FIG. 10 is a schematic configuration diagram of a part of a vehicle 10B according to a second modification of the present invention.
  • driving force Feng the driving force from the engine 20
  • the front wheels 42a and 42b the rear wheels 46a and 46b.
  • the rear wheels 46a and 46b sub drive wheels
  • a motor 22 may be connected to the engine 20 as in the above-described embodiment (FIG. 1).
  • the vehicle 10B includes a transfer clutch 150, a propeller shaft 152, a differential gear 154, a differential gear output shaft 156a and 156b (hereinafter also referred to as “output shafts 156a and 156b”), a first clutch 158, and a left output shaft. 160, a second clutch 162, and a right output shaft 164.
  • the transfer clutch 150 adjusts the driving force Feng from the engine 20 distributed to the rear wheels 46a and 46b via the propeller shaft 152 based on a command from the drive ECU 38.
  • the differential gear 154 equally distributes the driving force Feng transmitted to the rear wheels 46a and 46b via the propeller shaft 152 to the left and right output shafts 156a and 156b.
  • the first clutch 158 adjusts the degree of engagement based on a command from the drive ECU 38 and transmits the driving force from the output shaft 156a to the left output shaft 160 connected and fixed to the left rear wheel 46a.
  • the second clutch 162 adjusts the degree of engagement based on a command from the drive ECU 38 and transmits the driving force from the output shaft 156b to the right output shaft 164 connected and fixed to the right rear wheel 46b.
  • the driving force (torque) of the rear wheels 46a and 46b can be individually adjusted.
  • the engine 20 (prime mover) and the left rear wheel 46a (left drive wheel) are connected via a first clutch 158 (first power transmission mechanism).
  • the engine 20 and the right rear wheel 46b (right drive wheel) are connected via a second clutch 162 (second power transmission mechanism).
  • the first clutch 158 and the second clutch 162 can not only be simply switched between a connected state and a disconnected state, but also can be switched between a connected state and a disconnected state in a plurality of stages by adjusting the degree of slip.
  • the drive ECU 38 controls the first clutch 158 and the second clutch 162 based on the EPS motor speed ⁇ of the EPS motor 70 to obtain the torque difference ⁇ T between the left rear wheel 46a and the right rear wheel 46b. adjust.
  • the first clutch 158 can switch between a connected state in which power is transmitted between the engine 20 and the left rear wheel 46a and a disconnected state in which power is cut off between the engine 20 and the left rear wheel 46a.
  • the second clutch 162 can switch between a connected state in which power is transmitted between the engine 20 and the right rear wheel 46b and a disconnected state in which power is cut off between the engine 20 and the right rear wheel 46b. is there.
  • the drive ECU 38 changes the torque difference ⁇ T between the left rear wheel 46a and the right rear wheel 46b by switching between the connected state and the disconnected state of the first clutch 158 and the second clutch 162 based on the EPS motor speed ⁇ . adjust.
  • the drive ECU 38 adjusts the torque difference ⁇ T between the left and right rear wheels 46a, 46b by connecting / disconnecting the first clutch 158 and the second clutch 162.
  • the torque difference ⁇ T between the left and right rear wheels 46a and 46b can be adjusted by connecting and disconnecting the first clutch 158 and the second clutch 162. For this reason, it is possible to generate the torque difference ⁇ T with high responsiveness.
  • FIG. 11 is a schematic configuration diagram of a part of a vehicle 10C according to a third modification of the present invention. Similar to the driving system 12b of the vehicle 10B according to the second modification, the driving system 12c of the vehicle 10C transmits the driving force (driving force Feng) from the engine 20 to the front wheels 42a and 42b and the rear wheels 46a and 46b. Thereby, in addition to the front wheels 42a and 42b (main drive wheels), the rear wheels 46a and 46b (sub drive wheels) are used as drive wheels.
  • the same components as those of the vehicle 10B are denoted by the same reference numerals and description thereof is omitted.
  • a motor 22 may be connected to the engine 20 as in the above-described embodiment (FIG. 1).
  • the vehicle 10C includes a first redistribution mechanism 170, a transfer clutch 150, a propeller shaft 152, a differential gear 154, a differential gear output shafts 156a and 156b (output shafts 156a and 156b), a left output shaft 160 and a right output shaft 164.
  • a second redistribution mechanism 172 is included.
  • the first redistribution mechanism 170 transmits a part or all of the driving force distributed or branched from the differential gear 154 for the left rear wheel 46a to the right rear wheel 46b when the vehicle 10C makes a left turn.
  • the first redistribution mechanism 170 includes a left turning clutch, a sun gear for the left rear wheel 46a, a triple pinion gear, and a sun gear for the right rear wheel 46b (all not shown).
  • the second redistribution mechanism 172 transmits a part or all of the driving force distributed or branched from the differential gear 154 for the right rear wheel 46b to the left rear wheel 46a when the vehicle 10C turns right.
  • the second redistribution mechanism 172 includes a right turning clutch, a right rear wheel 46b sun gear, a triple pinion gear, and a left rear wheel 46a sun gear (all not shown).
  • the left turn clutch of the first redistribution mechanism 170 and the right turn clutch of the second redistribution mechanism 172 are not only simply switched between the connected state and the disconnected state, but also adjusted in the degree of slipping to be in the connected state or the disconnected state. It is possible to switch to multiple stages.
  • the driving force of the rear wheels 46a and 46b can be individually adjusted in the vehicle 10C.
  • first to third traveling motors 22, 24, and 26 are three-phase AC brushless types, but are not limited thereto.
  • the first to third travel motors 22, 24, 26 may be a three-phase AC brush type, a single-phase AC type, or a DC type.
  • the first to third traveling motors 22, 24 and 26 are supplied with electric power from the high voltage battery 28, but in addition to this, electric power may be supplied from the fuel cell.
  • the EPS device 14 of the above embodiment has a configuration (a so-called column assist type EPS device) in which the EPS motor 70 transmits the steering additional force Fad to the steering shaft 62 (FIG. 1).
  • the configuration of the EPS device 14 is not limited to this as long as it generates the steering additional force Fad.
  • any of a pinion assist type EPS device, a dual pinion assist type EPS device, a rack assist type EPS device, and an electrohydraulic power steering device may be used.
  • hydraulic pressure is generated by an electric pump, and a steering additional force Fad is generated by the hydraulic pressure.
  • the steering torque Tst by the driver is directly transmitted to the front wheels 42a and 42b (hereinafter also referred to as “direct transmission method”), but the present invention can also be applied to a steer-by-wire type EPS device.
  • the driver's steering torque Tst is not transmitted to the steered wheels (front wheels 42a, 42b), and the EPS device generates the steering force itself.
  • a steering force (steering torque Tst) itself is applied to the steering system of the vehicle 10 instead of the steering additional force Fad.
  • the EPS motor 70 was made into the three-phase alternating current brushless type, it is not restricted to this.
  • the motor 70 may be a three-phase AC brush type, a single-phase AC type, or a DC type.
  • the present invention is not limited to this.
  • the present invention can be applied to a configuration in which the torque of the front wheel drive device 44 and the rear wheel drive device 48 in the vehicle 10 is automatically controlled (a configuration in which so-called automatic driving is performed).
  • the automatic driving is not limited to the torque of the front wheel driving device 44 and the rear wheel driving device 48, and may be automatically performed for steering.
  • the present invention can also be applied to a configuration in which the driver remotely operates from the outside of the vehicle 10.
  • the drive ECU 38 performs control for calculating the torques of the front wheel drive device 44 and the rear wheel drive device 48 (FIG. 2).
  • the present invention is not limited to this.
  • the drive ECU 38 can perform control with an output or driving force that can be converted into torque as a calculation target.
  • the map based on the steering angle ⁇ st and the wheel speed Vw and the EPS motor speed ⁇ are used for calculation (selection) of the EPS motor speed torque Tff2 (S3 and S4 in FIG. 4).
  • the present invention is not limited to this.
  • a single map that defines the relationship between the EPS motor speed ⁇ and the torque Tff2 may be provided, and the torque Tff2 may be selected or calculated using the single map.
  • step S3 can be omitted and step S4 can be left.
  • the torque Tff2 is applied to the outer wheel of the left and right rear wheels 46a, 46b, and the torque Tff2 is subtracted from the inner wheel (in other words, -Tff2 is added).
  • ⁇ T power difference
  • the torque difference ⁇ T power difference
  • the left rear wheel 46a left drive wheel
  • the right rear wheel 46b right drive wheel
  • a configuration in which only the torque Tff2 is applied to the outer ring or a configuration in which only the torque Tff2 is subtracted from the inner ring may be employed.
  • warning vibration when the road departure reduction start condition is satisfied (S11 of FIG. 6: YES), in other words, when there is a possibility of deviation or departure of the vehicle 10 from the travel path 200, warning vibration as repetitive vibration is generated. (S12 in FIG. 6, FIG. 7).
  • a notification operation other than warning vibration may be used. For example, it is possible to use a notification operation in which the amplitude changes only once.
  • the EPS motor 70 is used as a component that generates a warning vibration (S12 in FIG. 6).
  • a vibration generating device may be provided in the steering wheel 60, and a warning vibration may be generated by the vibration generating device.
  • the warning vibration signal Sx is output while the warning vibration is generated (time t21 to t22 in FIG. 8).
  • the present invention is not limited to this.
  • the drive ECU 38 determines that the warning vibration is generated for the predetermined time after receiving the warning vibration signal Sx. May be.
  • the torque Tff2 is set to zero while the alarm vibration is generated (FIGS. 4 and 8).
  • the torque Tff2 does not have to be zero immediately.
  • the torque Tff2 may be decreased with a predetermined decrease degree. In other words, the EPS motor speed FF control can be suppressed when a warning vibration is generated.
  • the EPS motor speed ⁇ [rad / sec] is calculated directly from the electrical angle ⁇ e detected by the resolver 72.
  • the mechanical angle of the EPS motor 70 may be obtained from the electrical angle ⁇ e, and the EPS motor speed ⁇ may be calculated from the mechanical angle.
  • the EPS motor speed FF control for changing the torque Tff2 according to the EPS motor speed ⁇ is used as it is (FIG. 4).
  • the present invention is not limited to this.
  • the torque Tff2 calculated based on the EPS motor speed ⁇ can be corrected according to the time differential value (motor acceleration) of the EPS motor speed ⁇ .
  • the torque difference ⁇ T between the left and right rear wheels 46a and 46b is changed according to the EPS motor speed ⁇ (S4 in FIG. 4).
  • the present invention is not limited to this.
  • the FF total torque Tff_total eg, torque Tff2
  • the FF total torque Tff_total can be increased or decreased according to the EPS motor speed ⁇ .
  • the FF total torque Tff_total can be increased.
  • the rear wheel drive device 48 (drive device) of the above embodiment can control the left-right torque difference ⁇ T as the left-right drive force difference, which is the difference between the left drive force and the right drive force, but is not limited thereto.
  • the rear wheel drive device 48 can control the left and right driving force sum that is the sum of the left driving force and the right driving force in addition to the left and right driving force difference.
  • Resolver (part of rotation speed acquisition means) 76 ... EPS ECU (part of rotation speed acquisition means) 80 ... Front camera (traveling path recognition means) 90 ... RDM ECU (deviation acquisition means, avoidance support means) 200 ... Runway Glat ... Lateral acceleration Fad ... Steering additional force Sx: Warning vibration signal Tst: Steering torque (steering force) ⁇ T: Left-right torque difference (left-right driving force difference) ⁇ st ... rudder angle (steering amount) ⁇ : EPS motor speed (rotational speed)

Abstract

 旋回時における車両の姿勢制御又は操作性能を改善することが可能な車両を提供する。車両(10)の駆動制御装置(38)は、操舵系に操舵力又は操舵付加力を付与する回転電気機械(70)の回転速度に基づいて駆動装置(48)による左右駆動力差を制御する。さらに、駆動制御装置(38)は、走行路(200)に対する車両(10)の逸脱又は逸脱のおそれがあるとき、又は回避支援手段(90)が報知動作を生じさせるとき若しくは逸脱回避支援操舵力若しくは逸脱回避支援操舵付加力を付与するとき、前記回転速度に基づいた前記左右駆動力差の制御を禁止又は抑制する。

Description

車両
 本発明は、左右の駆動輪の駆動力を調整可能な車両に関する。
 特開平10-016599号公報(以下「JP 10-016599 A」という。)では、ハンドル角センサ48Bで検出したハンドル角度(又は操舵角)に基づいてハンドル角速度dθh(又は操舵角速度dθh)を算出し、ハンドル角速度dθhに基づいて操舵過渡応答制御が行われる(図6、[0149]~[0154])。操舵過渡応答制御では、旋回時に車両に加わる横加速度に基づいたトルク移動制御([0117])を、操舵角速度dθhに応じて可能とする([0150])。換言すると、JP 10-016599 Aでは、操舵角速度dθhに基づいて左右輪間の動力伝達を制御する([0001]参照)。
 特開2013-056636号公報(以下「JP 2013-056636 A」)では、車両が走行車線から逸脱したとき又は逸脱が予測されるとき、ステアリングホイール2に左右方向の振動トルクを付与する(要約)。当該振動トルクは、電動パワーステアリング機構のトルクアクチュエータを作動させることで発生させる([0013])。
 上記のように、JP 10-016599 Aでは、操舵角速度dθhに基づいて左右輪間の動力伝達を制御する。しかしながら、JP 10-016599 Aの技術では、左右輪間の動力伝達制御(又は左右綸の駆動力差)の制御に関し、改善の余地がある。
 仮に、JP 2013-056636 Aにおける振動トルクが発生している状態で、JP 10-016599 Aの操舵過渡応答制御を用いた場合、振動トルクに伴って操舵角速度dθhが急変することになる。その場合、左右輪間の動力伝達制御(又は左右綸の駆動力差)に関し、運転者に違和感を与えるおそれがある。
 本発明は、上記のような課題を考慮してなされたものであり、旋回時における左右輪の駆動力差を好適に制御して車両の姿勢制御又は操作性能を改善することが可能な車両を提供することを目的とする。
 本発明に係る車両は、
 車両の左車輪の駆動力である左駆動力と、前記車両の右車輪の駆動力である右駆動力とを制御することによって前記左駆動力と前記右駆動力との差異である左右駆動力差を制御可能な駆動装置と、
 前記駆動装置を制御する駆動制御装置と、
 操舵輪に機械的に接続されると共に前記操舵輪を含む操舵系に操舵力又は操舵付加力を付与する回転電気機械と、
 走行路に対する前記車両の逸脱の回避を支援する走行支援装置と
 を備えるものであって、
 前記走行支援装置は、
 前記走行路を認識する走行路認識手段と、
 前記走行路に対する前記車両の逸脱又は逸脱のおそれを取得する逸脱取得手段と、
 前記逸脱取得手段が前記逸脱又は前記逸脱のおそれを取得したとき、前記回転電気機械を駆動させて前記操舵系の操舵入力装置に対し報知動作を生じさせる又は前記操舵系に対して逸脱回避支援操舵力若しくは逸脱回避支援操舵付加力を付与する回避支援手段と
 を備え、
 前記車両は、前記回転電気機械の回転速度を取得する回転速度取得手段をさらに備え、
 前記駆動制御装置は、前記回転速度に基づいて前記駆動装置による前記左右駆動力差を制御し、
 さらに、前記駆動制御装置は、前記逸脱取得手段が前記逸脱若しくは前記逸脱のおそれを取得したとき、又は前記回避支援手段が前記報知動作を生じさせるとき若しくは前記逸脱回避支援操舵力若しくは前記逸脱回避支援操舵付加力を付与するとき、前記回転速度に基づく前記左右駆動力差の制御を禁止又は抑制する
 ことを特徴とする。
 ここにいう「駆動力」は、駆動輪のトルク[N・m]の他に、駆動輪のトルクから算出可能な駆動輪の駆動力[N]をも含む意味で用いている。また、「左駆動力と右駆動力との差異」は、左駆動力と右駆動力との差の意味及び左駆動力と右駆動力との比の意味の両方を含む。さらに、「回転速度を取得」の「取得」は、検出、算出、推定及び予測のいずれも含む。
 本発明によれば、操舵輪の操舵に加え、左右駆動力差を用いて車両のヨーモーメントを制御する。また、左右駆動力差は、車両の操舵系に操舵力又は操舵付加力を付与する回転電気機械の回転速度に基づいて制御する。このため、左右駆動力差を回転電気機械の回転速度に連動させて設定可能とすることで、車両のヨーモーメントを適切に制御することが可能となる。
 さらに、本発明によれば、操舵状態として回転電気機械の回転速度を用いて左右駆動力差を制御する。一般に、回転電気機械の回転速度を取得する回転速度取得手段(特にその検出素子)は、舵角取得手段よりも操舵輪側にある。換言すると、舵角取得手段は、回転速度取得手段と比較して、操舵輪から離れた位置で検出を行う。さらに換言すると、舵角取得手段は、ステアリングホイールと操舵輪を結ぶ操舵トルクの伝達経路(操舵力伝達経路)において操舵輪からの距離が、回転速度取得手段よりも遠い。
 加えて、一般に、ステアリングホイール近傍に設置される舵角取得手段(特にその検出素子)の取付けは、回転電気機械を制御するために厳格とされる回転速度取得手段の取付け程の精度が求められない。この点でも、舵角取得手段は、回転速度取得手段よりも誤差を含み易くなる可能性がある。
 以上より、操舵輪における実舵角との関係では、舵角取得手段は、位相遅れが生じ、回転速度取得手段よりも誤差を含み易くなる。反対に、操舵輪における実舵角との関係では、回転速度取得手段は、舵角取得手段よりも位相遅れ及び誤差を含み難くなる。従って、舵角速度を用いる場合と比較して、高い応答性及び高い精度で左右駆動力差を制御することが可能となる。従って、車両の姿勢制御又は操作性能を改善することが可能となる。
 さらにまた、本発明によれば、走行路に対する車両の逸脱又は逸脱のおそれがあるとき(又は回避支援手段が報知動作を生じさせるとき若しくは前記逸脱回避支援操舵力若しくは前記逸脱回避支援操舵付加力を付与するとき)、回転速度に基づく左右駆動力差の制御を禁止又は抑制する。これにより、回転速度に基づく左右駆動力差の制御に対する報知動作又は逸脱回避支援操舵力若しくは逸脱回避支援操舵付加力の干渉を防止させ、回転速度に基づく左右駆動力差の制御と、報知動作又は逸脱回避支援操舵力若しくは逸脱回避支援操舵付加力とを共存させることが可能となる。
 前記操舵系は、前記車両の操舵主体の操舵量を取得する操舵量取得手段を有してもよい。前記回転電気機械は、操舵力伝達経路上で、前記操舵量取得手段よりも前記操舵輪寄りに配置され、前記操舵力又は前記操舵付加力は、前記操舵量に基づいて求められてもよい。上記によれば、操舵量取得手段よりも操舵輪に近い回転電気機械の回転速度に基づいて左右駆動力差を制御することになる。従って、操舵速度に基づいて左右駆動力差を制御する場合と比較して、高応答性且つ高精度で左右駆動力差を制御可能となる。
 前記駆動装置は、前記左車輪に機械的に接続される左回転電気機械と、前記右車輪に機械的に接続される右回転電気機械とを含んでもよい。これにより、左右駆動力差及びこれに伴う車両のヨーモーメントを迅速に且つ緻密に制御することが可能となる。
 前記駆動制御装置は、前記操舵量及び前記車両の横加速度に基づいて前記左右駆動力差を制御する操舵量比例制御を実行してもよい。また、前記駆動制御装置は、前記回転速度に基づいた前記左右駆動力差の制御と前記操舵量比例制御とを組み合わせて前記左右駆動力差を制御してもよい。さらに、前記駆動制御装置は、前記逸脱取得手段が前記逸脱若しくは逸脱のおそれを取得したとき、又は前記回避支援手段が前記報知動作を生じさせるとき若しくは前記逸脱回避支援操舵力若しくは前記逸脱回避支援操舵付加力を付与するとき、前記回転速度に基づいた前記左右駆動力差の制御を禁止又は抑制すると共に、前記操舵量比例制御による前記左右駆動力差の制御を継続してもよい。これにより、走行路に対する車両の逸脱又は逸脱のおそれが存在するときであっても、報知動作の影響を受けない範囲で左右駆動力差の制御を継続することが可能となる。
 前記回避支援手段は、前記逸脱取得手段が前記逸脱又は前記逸脱のおそれを取得したとき、前記回転電気機械を駆動させて前記操舵系の操舵入力装置に対し報知動作を生じさせ、その後、前記操舵系に対して前記逸脱回避支援操舵力又は前記逸脱回避支援操舵付加力を付与してもよい。さらに、前記駆動制御装置は、前記逸脱取得手段が前記逸脱若しくは前記逸脱のおそれを取得したとき、又は前記回避支援手段が前記報知動作を生じさせるとき、前記回転速度に基づいた前記左右駆動力差の制御を禁止又は抑制してもよい。これにより、操舵系に対する逸脱回避支援操舵力又は逸脱回避支援操舵付加力の付与前に、回転速度に基づいた前記左右駆動力差の制御を確実に禁止又は抑制することが可能となる。
 本発明に係る車両は、
 車両の左車輪に機械的に接続される左回転電気機械のトルクである左トルクと、前記車両の右車輪に機械的に接続される右回転電気機械のトルクである右トルクとを制御することによって、前記左車輪のトルクと前記右車輪のトルクとを制御可能な駆動装置と、
 前記駆動装置を制御する駆動制御装置と、
 操舵輪に機械的に接続されると共に前記操舵輪を含む操舵系に操舵力又は操舵付加力を付与する回転電気機械と、
 走行路に対する前記車両の逸脱の回避を支援する走行支援装置と
 を備えるものであって、
 前記走行支援装置は、前記走行路に対する前記車両の逸脱又は前記逸脱のおそれがあるとき、前記回転電気機械を駆動させて前記操舵系の操舵入力装置に対し報知動作を生じさせる又は前記操舵系に対して逸脱回避支援操舵力若しくは逸脱回避支援操舵付加力を付与する回避支援手段を備え、
 前記車両は、前記回転電気機械の回転速度を取得する回転速度取得手段をさらに備え、
 前記駆動制御装置は、前記回転速度に基づいて前記左トルク及び前記右トルクを制御し、
 さらに、前記駆動制御装置は、前記逸脱若しくは前記逸脱のおそれがあるとき、又は前記回避支援手段が前記報知動作を生じさせるとき若しくは前記逸脱回避支援操舵力若しくは前記逸脱回避支援操舵付加力を付与するとき、前記回転速度に基づく前記左トルク及び前記右トルクの制御を禁止又は抑制する
 ことを特徴とする。
 本発明によれば、操舵輪の操舵に加え、左トルク及び右トルクを用いて車両のヨーモーメントを制御する。また、左トルク及び右トルクは、車両の操舵系に操舵力又は操舵付加力を付与する回転電気機械の回転速度に基づいて制御する。このため、左トルク及び右トルクを回転電気機械の回転速度に連動させて設定可能とすることで、車両のヨーモーメントを適切に制御することが可能となる。
 さらに、本発明によれば、走行路に対する車両の逸脱又は逸脱のおそれがあるとき(又は回避支援手段が報知動作を生じさせるとき若しくは前記逸脱回避支援操舵力若しくは前記逸脱回避支援操舵付加力を付与するとき)、回転速度に基づく左右駆動力差の制御を禁止又は抑制する。これにより、回転速度に基づく左右駆動力差の制御に対する報知動作の干渉を防止させ、回転速度に基づく左右駆動力差の制御と報知動作を共存させることが可能となる。
 本発明によれば、旋回時における車両の姿勢制御又は操作性能を改善することが可能となる。
本発明の一実施形態に係る車両の一部の概略構成図である。 前記実施形態の前記車両の駆動系の一部を示すブロック図である。 左右後輪のうち外輪についてのフィードフォワード制御用トルクの一例を示す図である。 前記実施形態におけるEPSモータ速度フィードフォワード(FF)制御のフローチャートである。 舵角センサが検出した舵角の時間微分値としての舵角速度と、レゾルバが検出した電気角に基づくEPSモータ速度の出力例を示す図である。 前記実施形態における道路逸脱軽減(RDM)制御のフローチャートである。 前記実施形態の前記RDM制御を実行した場合の一例を示すタイムチャートである。 前記実施形態における警告振動とEPSモータ速度FF制御との関係を説明するための図である。 本発明の第1変形例に係る車両の一部の概略構成図である。 本発明の第2変形例に係る車両の一部の概略構成図である。 本発明の第3変形例に係る車両の一部の概略構成図である。
I.一実施形態
A.構成
[A-1.車両10の全体構成]
 図1は、本発明の一実施形態に係る車両10の一部の概略構成図である。図1に示すように、車両10は、駆動系12と、電動パワーステアリング装置14(以下「EPS装置14」という。)と、道路逸脱軽減装置16(以下「RDM装置16」ともいう。)とを有する。
[A-2.駆動系12]
(A-2-1.駆動系12の全体構成)
 図2は、本実施形態の車両10の駆動系12の一部を示すブロック図である。図1及び図2に示すように、駆動系12は、車両10の前側に直列配置されたエンジン20及び第1走行モータ22と、車両10の後ろ側に配置された第2走行モータ24及び第3走行モータ26と、高電圧バッテリ28(以下「バッテリ28」ともいう。)と、第1~第3インバータ30、32、34と、駆動系センサ群36(図2)と、駆動電子制御装置38(以下「駆動ECU38」という。)とを含む。
 以下では、第1走行モータ22を「第1モータ22」又は「前側モータ22」ともいう。また、以下では、第2走行モータ24を「第2モータ24」又は「左モータ24」ともいう。さらに、以下では、第3走行モータ26を「第3モータ26」又は「右モータ26」ともいう。
(A-2-2.エンジン20及び第1~第3モータ22、24、26)
 エンジン20及び第1モータ22は、トランスミッション40を介して左前輪42a及び右前輪42b(以下「前輪42」と総称する。)に駆動力(以下「前輪駆動力Ff」という。)を伝達する。エンジン20及び第1モータ22は、前輪駆動装置44を構成する。例えば、車両10が低負荷のときに第1モータ22のみによる駆動を行い、中負荷のときにエンジン20のみによる駆動を行い、高負荷のときにエンジン20及び第1モータ22による駆動を行う。
 第2モータ24は、その出力軸が左後輪46aの回転軸に接続されており、左後輪46aに駆動力を伝達する。第3モータ26は、その出力軸が右後輪46bの回転軸に接続されており、右後輪46bに駆動力を伝達する。第2モータ24及び第3モータ26は、後輪駆動装置48を構成する。前輪駆動装置44と後輪駆動装置48とは、機械的に非接続とされ、別個独立に設けられる。以下では、左後輪46a及び右後輪46bを合わせて後輪46と総称する。また、後輪駆動装置48から後輪46に伝達される駆動力を後輪駆動力Frという。
 エンジン20は、例えば、6気筒型エンジンであるが、2気筒、4気筒又は8気筒型等のその他のエンジンであってもよい。また、エンジン20は、ガソリンエンジンに限らず、ディーゼルエンジン、空気エンジン等のエンジンとすることができる。
 第1~第3モータ22、24、26は、例えば、3相交流ブラシレス式であるが、3相交流ブラシ式、単相交流式、直流式等のその他のモータであってもよい。第1~第3モータ22、24、26の仕様は等しくても異なるものであってもよい。本実施形態の第1~第3モータ22、24、26は、いずれも正転(車両10を前進させる回転)方向のトルク発生及び逆転(車両10を後進させる回転)方向のトルク発生が可能である。
(A-2-3.高電圧バッテリ28及び第1~第3インバータ30、32、34)
 高電圧バッテリ28は、第1~第3インバータ30、32、34を介して第1~第3モータ22、24、26に電力を供給すると共に、第1~第3モータ22、24、26からの回生電力Pregを充電する。
 バッテリ28は、複数のバッテリセルを含む蓄電装置(エネルギストレージ)であり、例えば、リチウムイオン2次電池、ニッケル水素2次電池等を利用することができる。本実施形態ではリチウムイオン2次電池を利用している。バッテリ28に加えて又はバッテリ28の代わりに、別の蓄電装置(キャパシタ等)を用いることも可能である。なお、バッテリ28と第1~第3インバータ30、32、34との間に図示しないDC/DCコンバータを設け、バッテリ28の出力電圧又は第1~第3モータ22、24、26の出力電圧を昇圧又は降圧してもよい。
 第1~第3インバータ30、32、34は、3相フルブリッジ型の構成とされて、直流/交流変換を行う。すなわち、第1~第3インバータ30、32、34は、直流を3相の交流に変換して第1~第3モータ22、24、26に供給する。また、第1~第3インバータ30、32、34は、第1~第3モータ22、24、26の回生動作に伴う交流/直流変換後の直流をバッテリ28に供給する。
(A-2-4.駆動系センサ群36)
 図2に示すように、駆動系センサ群36には、車速センサ50と、舵角センサ52と、横加速度センサ54(以下「横Gセンサ54」という。)と、車輪速センサ56と、ヨーレートセンサ58とが含まれる。
 車速センサ50は、車両10の車速V[km/h]を検出する。舵角センサ52は、ステアリングホイール60(操舵入力装置)の舵角θst[度]を検出する。横Gセンサ54は、車両10(車体)に掛かる横加速度Glat[m/s2]を検出する。車輪速センサ56は、各車輪42a、42b、46a、46bの回転速度(以下「車輪速Vwfl、Vwfr、Vwrl、Vwrr」といい、「車輪速Vw」と総称する。)を検出する。ヨーレートセンサ58は、車両10(車体)にかかるヨーレートYrを検出する。
(A-2-5.駆動ECU38)
 駆動ECU38は、エンジン20及び第1~第3インバータ30、32、34を制御することにより、エンジン20及び第1~第3モータ22、24、26の出力を制御する。駆動ECU38は、入出力部、演算部及び記憶部(いずれも図示せず)を有する。また、駆動ECU38は、複数のECUを組み合わせたものであってもよい。例えば、エンジン20及び第1~第3モータ22、24、26それぞれに対応して設けた複数のECUと、エンジン20及び第1~第3モータ22、24、26の駆動状態を管理するECUとにより駆動ECU38を構成してもよい。駆動ECU38の詳細については後述する。
[A-3.EPS装置14]
 EPS装置14は、運転者によるステアリングホイール60の操作を補助する操舵アシスト制御を行う。図1に示すように、EPS装置14は、電動パワーステアリングモータ70(以下「EPSモータ70」ともいう。)と、レゾルバ72と、操舵トルクセンサ74と、電動パワーステアリング電子制御装置76(以下「EPS ECU76」という。)とを有する。EPS装置14の構成としては、例えば、米国特許出願公開第2013/0190986号公報(以下「US 2013/0190986 A1」という。)(例えば同公報の図2)に記載のものを用いることができる。
 EPSモータ70は、3相交流ブラシレス式であり、ウォームギア及びウォームホイールギア(いずれも図示せず)を介してステアリング軸62に連結されている。操舵アシスト制御において、EPSモータ70は、EPS ECU76からの指令に応じてステアリング軸62に駆動力(操舵付加力Fad)を付与する。ここでの操舵付加力Fadは、運転者によるステアリングホイール60の回転方向と同じアシスト力である。或いは、操舵付加力Fadは、運転者によるステアリングホイール60の回転方向と反対の反力としてもよい。
 本実施形態のEPSモータ70は、舵角センサ52よりも前輪42a、42b側に配置されている。例えば、US 2013/0190986 A1の図2における舵角センサ92とEPSモータ60との位置関係と同様である。
 レゾルバ72(回転速度取得手段の一部)は、EPSモータ70の図示しない出力軸又は外ロータの回転角度である電気角θe[deg]を検出する。操舵トルクセンサ74は、運転者からステアリングホイール60に入力されるトルクTst(以下「操舵トルクTst」)[N・m]を検出する。
 EPS ECU76(回転速度取得手段の一部)は、操舵トルクTst、ヨーレートYr等に基づいてEPSモータ70を制御することにより、ステアリング軸62における操舵付加力Fadを制御する。EPS ECU76は、入出力部、演算部及び記憶部(いずれも図示せず)を有する。本実施形態のEPS ECU76は、レゾルバ72からの電気角θeの時間微分値であるEPSモータ速度ω[rad/sec]を算出する。EPS ECU76は、算出したEPSモータ速度ωを、通信線78を介して駆動ECU38に出力する。
[A-4.RDM装置16]
 RDM装置16は、走行路200(図7)に対する車両10の逸脱の回避を支援する走行支援装置である。図1に示すように、RDM装置16は、前方カメラ80(以下「カメラ80」ともいう。)と、RDMスイッチ82と、モニタ84と、スピーカ86と、ブレーキ機構88と、道路逸脱軽減電子制御装置90(以下「RDM ECU90」という。)とを有する。
 カメラ80(走行路認識手段)は、バックミラーの前のフロントウィンドシールドの内側に取り付けられる。カメラ80は、RDMスイッチ82がオン状態とされているとき、前方の走行路200の両側の白線202l、202r(道路境界線)(図7)を画像として捉える。
 モニタ84及びスピーカ86は、他の車載装置(例えば、図示しないナビゲーション装置)のものを利用することができる。ブレーキ機構88は、図示しない油圧制動装置を有し、前輪42a、42b及び後輪46a、46bに制動力を加えることで車速Vを減少させる。
 RDM ECU90(逸脱取得手段、回避支援手段)は、入出力部、演算部及び記憶部(いずれも図示せず)を有し、走行路200からの車両10の逸脱を軽減する道路逸脱軽減制御(以下「RDM制御」ともいう。)を実行する。本実施形態の道路逸脱軽減制御は、車速Vが、例えば60~100[km/h]の範囲で実行される。RDM ECU90は、カメラ80が取得した画像(カメラ画像)から車両10の両側の白線202l、202r(図7)を検出する。そして、車両10が、走行路200に対する車両10の将来的な又は実際の逸脱が存在すると判定したとき、当該逸脱を軽減するようにEPSモータ70を制御する。なお、図7の例では、車両10が左側通行の事例が示されている。
 また、本実施形態のRDM制御では、走行路200に対する車両10の将来的な又は実際の逸脱の存在を運転者に報知するため、RDM ECU90は、EPSモータ70を作動させて微少振動(警告振動)を生成させる。警告振動を発生させる際、RDM ECU90は、警告振動の発生を通知する警告振動信号Sxを駆動ECU38に送信する。
[A-5.駆動ECU38]
(A-5-1.駆動ECU38の全体構成(機能ブロック))
 上記の通り、図2は、本実施形態の車両10の駆動系12の一部を示すブロック図であり、駆動ECU38の機能ブロックが示されている。図3は、左右後輪46a、46bのうち外輪についてのフィードフォワード制御用トルクの一例を示す図である。駆動ECU38では、図2に示す各ブロックの機能をプログラム処理する。但し、必要に応じて、駆動ECU38の一部をアナログ回路又はデジタル回路に置換してもよい。
 図2に示すように、駆動ECU38は、舵角比例フィードフォワード制御部100(以下「舵角比例FF制御部100」又は「FF制御部100」という。)と、EPSモータ速度フィードフォワード制御部102(以下「EPSモータ速度FF制御部102」又は「FF制御部102」という。)と、第1加算器104と、第2加算器106と、ローパスフィルタ108と、フィードバック制御部110(以下「FB制御部110」という。)と、第1減算器112と、第2減算器114とを有する。
(A-5-2.舵角比例FF制御部100)
 舵角比例FF制御部100は、舵角比例フィードフォワード制御(以下「舵角比例FF制御」という。)を実行する。舵角比例FF制御では、舵角θst及び横加速度Glatに対応して駆動輪(ここでは、後輪46a、46b)のトルク(駆動力)を制御する。
 具体的には、FF制御部100は、左後輪46a用の舵角比例トルクTff1lを算出して第1加算器104に出力し、右後輪46b用の舵角比例トルクTff1rを算出して第2加算器106に出力する。以下では、舵角比例トルクTff1l、Tff1rを「舵角比例トルクTff1」又は「トルクTff1」と総称する。図3には、左右後輪46a、46bのうち外輪に対するトルクTff1の一例が示されている。
 FF制御部100では、米国特許出願公開第2005/0217921号公報(以下「US 2005/0217921 A1」という。)のフィードフォワード制御部(US 2005/0217921 A1の図5の84)と同様の構成及び処理によりトルクTff1を算出する。
 すなわち、FF制御部100は、エンジン20のトルク(エンジントルクTeng)と、第1~第3モータ22、24、26のトルク(第1~第3モータトルクTmot1、Tmot2、Tmot3)に基づいて後輪46a、46b用の車輪駆動力Fを算出する。
 また、FF制御部100は、車速センサ50からの車速Vと舵角センサ52からの舵角θstに基づいて横加速度Glatの推定値(推定横加速度Glat_e)を算出する。FF制御部100は、横Gセンサ54からの横加速度Glat(実測値)と推定横加速度Glat_eを加算した横加速度Glatの補正値(補正横加速度Glat_c)を算出する。
 そして、FF制御部100は、補正横加速度Glat_cに基づいて、左右後輪46a、46bのどちらが外輪であるかを判断する。また、FF制御部100は、補正横加速度Glat_cに基づいて前後配分比及び左右配分比を算出する。FF制御部100は、判断した外輪並びに算出された前後配分比及び左右配分比に基づいて後輪46a、46bに関する外輪/内輪トルク配分比を算出する。
 次いで、FF制御部100は、後輪46a、46b用の車輪駆動力Fに対して外輪/内輪トルク配分比に基づく割合を乗算して舵角比例トルクTff1l、Tff1rを算出する。
(A-5-3.EPSモータ速度FF制御部102)
 EPSモータ速度FF制御部102は、EPSモータ速度フィードフォワード制御(以下「EPSモータ速度FF制御」又は「モータ速度FF制御」という。)を実行する。モータ速度FF制御では、EPS ECU76からのEPSモータ速度ωに対応して駆動輪(ここでは、後輪46a、46b)のトルク(駆動力)を制御する。
 具体的には、FF制御部102は、左後輪46a用のEPSモータ速度トルクTff2lを算出して第1加算器104に出力し、右後輪46b用のEPSモータ速度トルクTff2rを算出して第2加算器106に出力する。以下では、EPSモータ速度トルクTff2l、Tff2rを「EPSモータ速度トルクTff2」又は「トルクTff2」と総称する。図3には、左右後輪46a、46bのうち外輪に対するトルクTff2の一例が示されている。
 FF制御部102は、主として、EPSモータ速度ωに基づいてトルクTff2を算出する。トルクTff2は、EPSモータ速度ωに応じた左右後輪46a、46bのトルク差ΔT[N・m]を設定するためのトルクである。トルク差ΔT(以下「左右トルク差ΔT」ともいう。)は、左右後輪46a、46bそれぞれのトルク(ここでは、目標値)の差である。EPSモータ速度FF制御の詳細は、図4のフローチャートを参照して後述する。
(A-5-4.第1加算器104及び第2加算器106)
 第1加算器104は、FF制御部100からのトルクTff1lとFF制御部102からのトルクTff2lとの和(以下「フィードフォワード合計トルクTff_total_l」又は「FF合計トルクTff_total_l」という。)を算出する。
 第2加算器106は、FF制御部100からのトルクTff1rとFF制御部102からのトルクTff2rとの和(以下「フィードフォワード合計トルクTff_total_r」又は「FF合計トルクTff_total_r」という。)を算出する。
 以下では、FF合計トルクTff_total_l、Tff_total_rを「FF合計トルクTff_total」又は「トルクTff_total」と総称する。図3には、左右後輪46a、46bのうち外輪に対するトルクTff_totalの一例が示されている。
(A-5-5.ローパスフィルタ108)
 ローパスフィルタ108は、左後輪46a用のFF合計トルクTff_total_lのうち低周波数成分のみを通過させて第1減算器112に出力する。また、ローパスフィルタ108は、右後輪46b用のFF合計トルクTff_total_rのうち低周波数成分のみを通過させて第2減算器114に出力する。これにより、FF合計トルクTff_totalの急激な変化を避けることが可能となる。その結果、FF合計トルクTff_totalの急激な増加に対する運転者の違和感を避けることが可能となる。
(A-5-6.FB制御部110)
 FB制御部110は、フィードバック制御(以下「FB制御」という。)を実行する。FB制御では、車両10の旋回時に車両10のスリップ角が過大となることを避けるように駆動輪のトルク(駆動力)を制御する。
 具体的には、FB制御部110は、左後輪46a用のフィードバックトルクTfbl(以下「FBトルクTfbl」という。)を算出して第1減算器112に出力し、右後輪46b用のフィードバックトルクTfbr(以下「FBトルクTfbr」という。)を算出して第2減算器114に出力する。以下では、FBトルクTfbl、Tfbrを「FBトルクTfb」又は「トルクTfb」と総称する。
 FB制御部110では、US 2005/0217921 A1のフィードバック制御部(US 2005/0217921 A1の図5の86)と同様の構成及び処理によりトルクTfbを算出する。
 すなわち、FB制御部110は、車速センサ50で検出した車速V、舵角センサ52で検出した舵角θst、横Gセンサ54で検出した横加速度Glat及びヨーレートセンサ58で検出したヨーレートYrに基づいて、車両10のスリップ角を算出する。また、FB制御部110は、車速センサ50で検出した車速V及び横Gセンサ54で検出した横加速度Glatに基づいてスリップ角閾値を算出する。
 FB制御部110は、前記スリップ角と前記スリップ角閾値との差に基づいて、後輪トルクの低減量並びに外輪トルクの低減量及び内輪トルクの増加量の少なくとも1つを算出するようにFBトルクTfbl、Tfbrを算出する。すなわち、FB制御部110は、車両10のスリップ角が所定値よりも大きいときには車両10が不安定状態にあると判断する。そして、FB制御部110は、この不安定状態を解消するため、後輪配分トルクの低減、外輪配分トルクの低減及び内輪配分トルクの増加の少なくとも1つを実現するようにFBトルクTfbl、Tfbrを算出する。
(A-5-7.第1減算器112及び第2減算器114)
 第1減算器112は、ローパスフィルタ108からのFF合計トルクTff_total_lとFB制御部110からのFBトルクTfblとの差(以下「合計トルクTtotal_l」又は「トルクTtotal_l」という。)を算出する。第2減算器114は、ローパスフィルタ108からのFF合計トルクTff_total_rとFB制御部110からのFBトルクTfbrとの差(以下「合計トルクTtotal_r」又は「トルクTtotal_r」という。)を算出する。以下では、合計トルクTtotal_l、Ttotal_rを「合計トルクTtotal」又は「トルクTtotal」と総称する。
[A-6.駆動ECU38の出力(トルクTff1、Tff2、Tff_total)]
 図3には、左右後輪46a、46bのうち外輪についての舵角比例トルクTff1、EPSモータ速度トルクTff2及びFF合計トルクTff_totalの一例が示されている。図3からわかるように、ステアリングホイール60が操作されると、舵角比例トルクTff1及びEPSモータ速度トルクTff2が増加する。この際、舵角比例トルクTff1は、比較的立ち上がりが遅い。このため、舵角比例トルクTff1よりも立ち上がりが速いEPSモータ速度トルクTff2を加えることで、FF合計トルクTff_total全体としての立ち上がりを速めることが可能となる。
B.EPSモータ速度FF制御
[B-1.EPSモータ速度FF制御の流れ]
 図4は、本実施形態におけるEPSモータ速度FF制御のフローチャートである。ステップS1において、駆動ECU38のEPSモータ速度FF制御部102は、RDM装置16において警告振動が発生していないか否かを判定する。当該判定は、RDM装置16からの警告振動信号Sxに基づいて行う。上記のように、警告振動は、走行路200に対する車両10(自車)の将来的な又は実際の逸脱の発生が判定されたときにステアリングホイール60に付与される振動である。警告振動の更なる詳細は、図7を参照して後述する。
 警告振動が発生している場合(S1:NO)、FF制御部102は、ステップS2以降のステップを行わずに今回の処理を終える。これにより、警告振動に伴うEPSモータ速度FF制御の不具合を回避することが可能となる(詳細は、図8を参照して後述する。)。警告振動が発生していない場合(S1:YES)、ステップS2に進む。
 ステップS2において、FF制御部102は、EPS ECU76からEPSモータ速度ωを、舵角センサ52から舵角θstを、車輪速センサ56から車輪速Vwを、横Gセンサ54から横加速度Glatを取得する。
 ステップS3において、FF制御部102は、舵角θstと車輪速Vwの組合せに基づいてマップを選択する。ここでのマップは、EPSモータ速度ωとEPSモータ速度トルクTff2との関係を規定したマップである。本実施形態では、舵角θstと車輪速Vwの組合せ毎の複数の上記マップを駆動ECU38の記憶部(図示せず)に記憶しておく。なお、ここでの車輪速Vwは、左右の駆動力配分比を変更可能な車輪(ここでは、後輪46a、46b)についてのものであり、例えば、車輪速Vwrl、Vwrrの平均値を用いることができる。或いは、車輪速Vwrl、Vwrrのうち大きい方又は小さい方の値を用いてもよい。また、後述するように、マップの利用以外の方法を用いることも可能である。
 各マップでは、EPSモータ速度ωが等しい値であるとき、左右後輪46a、46bの車輪速Vwが低い場合よりも、車輪速Vwが高い場合のEPSモータ速度トルクTff2が小さくなるように、EPSモータ速度ωとEPSモータ速度トルクTff2との関係が規定される。また、各マップでは、EPSモータ速度ωが等しい値であるとき、舵角θstが大きい場合よりも、舵角θstが小さい場合のEPSモータ速度トルクTff2が小さくなるように、EPSモータ速度ωとEPSモータ速度トルクTff2との関係が規定される。
 ステップS4において、FF制御部102は、ステップS3で選択したマップにおいて、ステップS2で取得したEPSモータ速度ωに対応するEPSモータ速度トルクTff2を選択する。
 ステップS5において、FF制御部102は、ステップS2で取得した横加速度Glatに基づいて車両10の旋回方向を特定する。
 続くステップS6において、FF制御部102は、左右後輪46a、46bのうち外輪に対してEPSモータ速度トルクTff2を適用し、内輪に対してEPSモータ速度トルクTff2にマイナスを掛けた値-Tff2を適用する。すなわち、FF制御部102は、外輪については第1加算器104又は第2加算器106に対してEPSモータ速度トルクTff2を出力し、内輪については第1加算器104又は第2加算器106に対してEPSモータ速度トルクTff2にマイナスを掛けた値-Tff2を出力する。
[B-2.EPSモータ速度FF制御の有無による比較]
 図5は、舵角センサ52が検出した舵角θstの時間微分値としての舵角速度Vθstと、レゾルバ72が検出した電気角θeに基づくEPSモータ速度ωの出力例を示す図である。図5の例では、舵角速度Vθst及びEPSモータ速度ωそれぞれに、ローパスフィルタを適用した波形が示されている。
 図5からわかるように、EPSモータ速度ωの方が、舵角速度Vθstよりも応答性が高く且つ小刻みな変動(又はノイズ)が少ない。これは、例えば、次のことが要因である。
 すなわち、上記のように、本実施形態では、EPSモータ70用のレゾルバ72は、舵角センサ52よりも前輪42a、42b(駆動輪)側にある。換言すると、舵角センサ52は、レゾルバ72と比較して、前輪42a、42bから離れた位置で検出を行う。さらに換言すると、舵角センサ52は、ステアリングホイール60と前輪42a、42bを結ぶ操舵トルクTstの伝達経路(操舵力伝達経路)において前輪42a、42bからの距離が、レゾルバ72よりも遠い。
 このため、前輪42a、42bにおける実舵角との関係では、舵角センサ52は、位相遅れが生じ、レゾルバ72よりも誤差を含み易くなる。反対に、前輪42a、42bにおける実舵角との関係では、レゾルバ72は、舵角センサ52よりも位相遅れ及び誤差を含み難くなる。なお、ここにいう位相遅れは、例えば、操舵力伝達経路における軸(ステアリング軸62等)のねじれ、連結機構(ラック・アンド・ピニオン機構等)における遊び等に起因して発生する。
 加えて、一般に、ステアリングホイール60近傍に設置される舵角センサ52の取付けは、EPSモータ70を制御するために厳格とされるレゾルバ72の取付け程の精度が求められない。この点でも、舵角センサ52は、レゾルバ72よりも誤差(図5における小刻みな振動)を含み易くなる可能性がある。
 以上のように、EPSモータ速度ωの方が、舵角速度Vθstよりも応答性が高く且つ小刻みな変動(又はノイズ)が少ない。このため、比較例としての舵角微分フィードバック制御(以下「舵角微分FF制御」という。)と比較すると、本実施形態のEPSモータ速度FF制御の方が、トルクTff2の算出を高応答性で且つ高精度に行うことが可能となる。ここでの舵角微分FF制御は、図4のフローチャートにおいて、舵角θstの時間微分値である舵角速度Vθstを、EPSモータ速度ωの代わりに用いてトルクTff2を算出するものである。
C.操舵アシスト制御
 上記の通り、操舵アシスト制御は、EPS装置14(EPS ECU76)により行われるものであり、運転者の操舵をアシストするための操舵付加力Fadを制御する。操舵付加力Fadは、トルクとして示され、運転者の操舵トルクTstと同じ方向である。
 EPS ECU76は、操舵トルクTst、ヨーレートYr等に基づいてEPSモータ70の目標基準電流Irefを算出する。目標基準電流Irefは、運転者の操舵をアシストするためのモータ電流Imの基準値であり、基本的には、操舵トルクTstの絶対値が大きくなるに連れて絶対値が増加する。なお、目標基準電流Irefの算出に際しては、いわゆるイナーシャ制御、ダンパ制御等を利用してもよい。
 RDM ECU90においてRDM制御を実行中でない場合、EPS ECU76は、目標基準電流Irefをそのまま目標モータ電流Imtarとして設定する(Imtar←Iref)。RDM ECU90においてRDM制御を実行中である場合、EPS ECU76は、目標基準電流IrefにRDM ECU90からの補正電流Icorを加算して目標モータ電流Imtarとする(Imtar←Iref+Icor)。そして、EPS ECU76は、モータ電流Imを目標モータ電流Imtarに一致させるようにEPSモータ70の出力を変化させる。
 なお、補正電流Icorは、RDM制御のための加算分である。補正電流Icorの算出の一部をEPS ECU76で行うように構成することも可能である。
D.RDM制御
 図6は、本実施形態におけるRDM制御のフローチャートである。図6のフローチャートは、RDMスイッチ82がオンにされている場合に実行される。図7は、本実施形態のRDM制御を実行した場合の一例を示すタイムチャートである。上記の通り、RDM制御は、車両10が走行路200から逸脱すること(白線202l、202rのいずれかからはみ出ること)を軽減する。なお、図7で示す操舵支援量Dstは、RDM制御により運転者の操舵を支援する量[m/s2]である。減速支援量Dbrは、RDM制御における自動ブレーキでの支援量[m/s2]を意味する。
 図6のステップS11において、RDM ECU90は、道路逸脱軽減の開始条件が成立したか否かを判定する。当該開始条件としては、例えば、車速Vが第1所定値内であること、運転者の操作意図がないこと及び白線202l、202rのいずれかまでの距離が第1所定値以下であり且つ逸脱角度が第1所定値以上であることを用いることができる。
 道路逸脱軽減の開始条件が不成立の場合(S11:NO)、今回の処理を終了し、所定時間の経過後にステップS11から再開する。道路逸脱軽減の開始条件が成立した場合(S11:YES)、ステップS12、S13に進む。
 ステップS12において、RDM ECU90は、ステアリングホイール60に警告振動を発生させる警告振動発生処理を実行する(図7の時点t1~t2)。上記の通り、警告振動を発生させる際、RDM ECU90は、警告振動信号Sxを駆動ECU38に送信する。また、ステップS12と並行して、ステップS13において、RDM ECU90は、モニタ84に警告表示を表示させる警告表示処理を実行する(図7の時点t1~t6)。
 ステップS12に続くステップS14において、RDM ECU90は、操舵支援処理を実行する(図7の時点t2~t5)。操舵支援処理では、操舵支援量Dst(逸脱回避支援操舵付加力)を発生させる。操舵支援処理の最中において、RDM ECU90は、自動ブレーキ処理を開始するか否かを判定する。例えば、RDM ECU90は、例えば、車速Vが第2所定値内であること、運転者の操作意図がないこと及び白線202l、202rのいずれかまでの距離が第2所定値以下であり且つ逸脱角度が第2所定値以上であることを用いることができる。
 自動ブレーキ処理を開始しない場合(S15:NO)、ステップS16において、RDM ECU90は、操舵支援処理を終了するか否かを判定する。例えば、車両10が走行路200に戻り、白線202lから所定距離離れた状態で(白線202l、202rの間において)走行路200に沿って走行しているか否かを判定する。或いは、操舵支援処理を継続する最大時間閾値(例えば、数秒~十数秒)を設定しておき、操舵支援処理の開始の時間が最大時間閾値に到達したとき、操舵支援処理を終了すると判定してもよい。操舵支援処理を終了する場合(S16:YES)、今回の処理を終了し、所定時間の経過後にステップS11から再開する。操舵支援処理を終了しない場合(S16:NO)、ステップS14に戻り、操舵支援処理を継続する。
 図6のステップS15に戻り、自動ブレーキ処理を開始する場合(S15:YES)、ステップS17において、RDM ECU90は、自動ブレーキ処理を実行する(図7の時点t3~t4)。また、ステップS17と並行して、ステップS18において、RDM ECU90は、警告音発生処理を行う(図7の時点t3~t4)。
 自動ブレーキ処理では、ブレーキ機構88を作動させて車両10に制動力を付与する。図7の減速支援量Dbrは、自動ブレーキ処理による制動力の付与を示している。
 警告音発生処理では、スピーカ86を介して、運転者に対する警告音を出力する。警告音発生処理による警告音の発生は、自動ブレーキ処理が行われている間(時点t3~t4)に行われる。但し、警告音の発生を、自動ブレーキ処理の実行時間と完全に一致させる必要はない。
E.RDM制御における警告振動とEPSモータ速度FF制御との関係
 図8は、本実施形態における警告振動とEPSモータ速度FF制御との関係を説明するための図である。図8では、車両10が定速走行(車速Vが一定)をしているときに、RDM制御により警告振動(図7の時点t1~t2、図8の時点t21~t22)を行った場合の各種の信号及び値が示されている。なお、時点t21~t22におけるEPSモータ速度トルクTff2については、図4のステップS1を行う場合が実線で示されており、ステップS1を行わない場合(S2~S6のみを行う場合)が破線で示されている。
 上記のように、警告振動は、EPSモータ70を用いて発生させる。このため、警告振動の発生に伴ってEPSモータ速度ωの変化が激しくなる。仮に、警告振動時のEPSモータ速度ωを用いてEPSモータ速度トルクTff2を発生させた場合、運転者によるステアリングホイール60の操作とは別に、警告振動に伴うトルクTff2が発生する(時点t21~t22において破線で示されるトルクTff2参照)。その場合、運転者又は搭乗者に違和感を与えるおそれがある。
 これに対し、本実施形態では、警告振動を発生させている間、トルクTff2をゼロとするため(図4)、上記のような違和感を運転者又は搭乗者に与えることを防止することが可能となる。
F.本実施形態の効果
 以上のように、本実施形態によれば、前輪42a、42b(操舵輪)の操舵に加え、トルク差ΔT(左右駆動力差)に関するトルクTff2を用いて車両10のヨーモーメントを制御する(図2及び図4)。また、トルク差ΔTは、車両10のステアリング軸62に操舵付加力Fadを付与するEPSモータ70のEPSモータ速度ω(回転電気機械の回転速度)に基づいて制御する(図2、図4)。このため、トルク差ΔTをEPSモータ速度ωに連動させて設定可能とすることで、車両10のヨーモーメントを適切に制御することが可能となる。
 さらに、本実施形態によれば、操舵状態としてEPSモータ速度ω(回転電気機械の回転速度)を用いて、トルク差ΔT(左右駆動力差)に関するトルクTff2を制御する(図2、図4)。
 レゾルバ72(回転速度取得手段の検出素子)は、舵角センサ52(舵角取得手段)よりも前輪42a、42b(操舵輪)側にある。換言すると、舵角センサ52は、レゾルバ72と比較して、前輪42a、42bから離れた位置で検出を行う。さらに換言すると、舵角センサ52は、ステアリングホイール60と前輪42a、42bを結ぶ操舵トルクTstの伝達経路(操舵力伝達経路)において前輪42a、42bからの距離が、レゾルバ72よりも遠い。
 加えて、一般に、ステアリングホイール60近傍に設置される舵角センサ52の取付けは、EPSモータ70を制御するために厳格とされるレゾルバ72の取付け程の精度が求められない。この点でも、舵角センサ52は、レゾルバ72よりも誤差(図5における小刻みな振動)を含み易くなる可能性がある。
 以上より、前輪42a、42bにおける実舵角との関係では、舵角センサ52は、位相遅れが生じ、レゾルバ72よりも誤差を含み易くなる。反対に、前輪42a、42bにおける実舵角との関係では、レゾルバ72は、舵角センサ52よりも位相遅れ及び誤差を含み難くなる。従って、舵角速度Vθstを用いる場合と比較して、高い応答性でトルク差ΔTを制御することが可能となる(図5参照)。従って、車両10の姿勢制御又は操作性能を改善することが可能となる。
 さらにまた、本実施形態によれば、走行路200に対する車両10の逸脱又は逸脱のおそれがあるとき(又はRDM ECU90(回避支援手段)が警告振動(報知動作)を生じさせるとき若しくは操舵支援量Dst(逸脱回避支援操舵付加力)を付与するとき)、EPSモータ速度ω(回転速度)に基づく左右トルク差ΔT(左右駆動力差)の制御を禁止する(図4及び図8)。これにより、EPSモータ速度ωに基づくトルク差ΔTの制御(EPSモータ速度FF制御)に対する警告振動の干渉を防止させ、EPSモータ速度ωに基づくトルク差ΔTの制御と警告振動を共存させることが可能となる。換言すると、RDM装置16を有する車両10においても、EPSモータ速度FF制御を実行することが可能となる。
 本実施形態における操舵系は、車両10の舵角θst(運転者(操舵主体)の操舵量)を取得する舵角センサ52(操舵量取得手段)を有する(図2)。また、EPSモータ70は、操舵トルクTstの伝達経路(操舵力伝達経路)上で、舵角センサ52よりも前輪42a、42b(操舵輪)寄りに配置される。EPS ECU76による操舵アシスト制御では、操舵付加力Fadは、舵角θst(操舵量)に基づいて求められる。
 上記によれば、舵角センサ52よりも前輪42a、42bに近いレゾルバ72が検出した電気角θeから算出したEPSモータ速度ω(回転速度)に基づいて、トルク差ΔT(左右駆動力差)に関するトルクTff2を制御することになる。従って、舵角センサ52が検出した舵角θstから算出した舵角速度Vθstに基づいてトルクTff2を制御する場合と比較して、高応答性且つ高精度でトルク差ΔTを制御可能となる。
 本実施形態において、後輪駆動装置48(駆動装置)は、左後輪46aに機械的に接続される左モータ24(左回転電気機械)と、右後輪46bに機械的に接続される右モータ26(右回転電気機械)とを含む(図1)。これにより、例えば、後述する第2変形例(図10)及び第3変形例(図11)と比較して、左右トルク差ΔT(左右駆動力差)及びこれに伴う車両10のヨーモーメントを迅速に且つ緻密に制御することが可能となる。
 本実施形態において、駆動ECU38(駆動制御装置)は、舵角θst(操舵量)及び横加速度Glatに対応して左右トルク差ΔT(左右駆動力差)を制御する舵角比例FF制御(操舵量比例制御)を実行する(図2)。また、駆動ECU38は、EPSモータ速度FF制御(回転速度に基づいた左右駆動力差の制御)と舵角比例FF制御とを組み合わせてトルク差ΔTを制御する(図2)。さらに、駆動ECU38は、RDM ECU90(逸脱取得手段)が、走行路200に対する車両10の逸脱又は逸脱のおそれを取得したとき、EPSモータ速度FF制御を禁止すると共に、舵角比例FF制御を継続する(図2、図4)。
 これにより、走行路200に対する車両10の逸脱又は逸脱のおそれが存在するときであっても、警告振動(報知動作)の影響を受けない範囲で左右トルク差ΔTの制御を継続することが可能となる。
 本実施形態において、RDM ECU90(回避支援手段)は、走行路200に対する車両10の逸脱又は逸脱のおそれが存在するとき、EPSモータ70(回転電気機械)を駆動させて操舵系のステアリングホイール60(操舵入力装置)に対し警告振動(報知動作)を生じさせる(図6のS12、図7の時点t1~t2)。その後、RDM ECU90は、操舵系に対して操舵支援量Dst(逸脱回避支援操舵付加力)を付与する(図6のS14、図7の時点t2~t5)。さらに、駆動ECU38(駆動制御装置)は、RDM ECU90から警告振動信号Sxを受信したとき(換言すると、RDM ECU90(逸脱取得手段)が逸脱又は逸脱のおそれを取得したとき、又はRDM ECU90(回避支援手段)が警告振動を生じさせるとき、図4のS1:NO)、EPSモータ速度ω(回転速度)に基づいたトルク差ΔTの制御を禁止する。
 これにより、操舵系に対する操舵支援量Dstの付与前に、EPSモータ速度ωに基づいたトルク差ΔT(左右駆動力差)の制御を確実に禁止することが可能となる。
II.変形例
 なお、本発明は、上記実施形態に限らず、本明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下の構成を採用することができる。
A.車両10(適用対象)
 上記実施形態では、自動四輪車である車両10について説明した(図1)。しかしながら、例えば、EPSモータ速度ωに基づいて左後輪46a(左駆動輪)及び右後輪46b(右駆動輪)のトルク差ΔT(左右駆動力差)を調整する観点からすれば、これに限らない。例えば、自動三輪車及び自動六輪車のいずれであってもよい。
 上記実施形態では、車両10は、1つのエンジン20及び3つの走行モータ22、24、26を駆動源(原動機)として有したが(図1)、駆動源はこの組合せに限らない。例えば、車両10は、前輪42用の1つ又は複数の走行モータと、後輪46用の1つ又は複数の走行モータを駆動源として有してもよい。例えば、前輪42用又は後輪46用に1つの走行モータのみを用いることができる。この場合、差動装置を用いて左右輪に駆動力を分配すればよい。また、全ての車輪それぞれに個別の走行モータ(いわゆるインホイールモータを含む。)を割り当てる構成も可能である。
 上記実施形態では、エンジン20及び第1モータ22を有する前輪駆動装置44により前輪42を駆動し、第2及び第3モータ24、26を有する後輪駆動装置48により後輪46を駆動した。しかしながら、例えば、EPSモータ速度ωに基づいて左車輪及び右車輪のトルク差ΔT(動力差)を調整する観点からすれば、これに限らない。例えば、上記実施形態では、トルク差ΔT(動力差)を調整する対象が左右後輪46a、46bであったが、車両10の構成によっては、前輪42a、42bのトルク差ΔTを調整することも可能である。
[A-1.第1変形例]
 図9は、本発明の第1変形例に係る車両10Aの一部の概略構成図である。車両10Aの駆動系12aでは、上記実施形態に係る車両10の前輪駆動装置44及び後輪駆動装置48の構成が反対になっている。すなわち、車両10Aの前輪駆動装置44aは、車両10Aの前側に配置された第2及び第3走行モータ24a、26aを備える。また、車両10Aの後輪駆動装置48aは、車両10Aの後ろ側に直列配置されたエンジン20a及び第1走行モータ22aを備える。なお、図9では、EPS装置14及びRDM装置16の図示を省略している(後述する図10及び図11も同様である。)。
[A-2.第2変形例]
 図10は、本発明の第2変形例に係る車両10Bの一部の概略構成図である。車両10Bの駆動系12bでは、エンジン20からの駆動力(以下「駆動力Feng」という。)を前輪42a、42b及び後輪46a、46bに伝達する。これにより、前輪42a、42b(主駆動輪)に加え、後輪46a、46b(副駆動輪)を駆動輪とする。なお、前記実施形態(図1)と同様、エンジン20にモータ22が接続されてもよい。
 車両10Bは、トランスファクラッチ150と、プロペラシャフト152と、デファレンシャルギア154と、デファレンシャルギア出力軸156a、156b(以下「出力軸156a、156b」ともいう。)と、第1クラッチ158と、左出力軸160と、第2クラッチ162と、右出力軸164とを有する。
 トランスファクラッチ150は、プロペラシャフト152を介して後輪46a、46bに配分されるエンジン20からの駆動力Fengを、駆動ECU38からの指令に基づいて調整する。デファレンシャルギア154は、プロペラシャフト152を介して伝達された後輪46a、46bへの駆動力Fengを左右の出力軸156a、156bに均等配分する。
 第1クラッチ158は、駆動ECU38からの指令に基づいて締結度合いを調整して出力軸156aからの駆動力を、左後輪46aに連結固定された左出力軸160に伝達する。第2クラッチ162は、駆動ECU38からの指令に基づいて締結度合いを調整して出力軸156bからの駆動力を、右後輪46bに連結固定された右出力軸164に伝達する。
 上記のような構成により、車両10Bでは、後輪46a、46bの駆動力(トルク)を個別に調整することができる。
 第2変形例に係る車両10Bでは、エンジン20(原動機)と左後輪46a(左駆動輪)とは第1クラッチ158(第1動力伝達機構)を介して接続される。また、エンジン20と右後輪46b(右駆動輪)とは第2クラッチ162(第2動力伝達機構)を介して接続される。第1クラッチ158及び第2クラッチ162は、接続状態と遮断状態の単なる切替えのみならず、滑り度合いを調整して接続状態又は遮断状態を複数段階に切り替えることが可能である。
 また、駆動ECU38(制御部)は、EPSモータ70のEPSモータ速度ωに基づいて、第1クラッチ158及び第2クラッチ162を制御して、左後輪46a及び右後輪46bのトルク差ΔTを調整する。
 さらに、第1クラッチ158は、エンジン20と左後輪46aとの間で動力伝達を行う接続状態と、エンジン20と左後輪46aとの間で動力遮断を行う遮断状態とを切替可能である。同様に、第2クラッチ162は、エンジン20と右後輪46bとの間で動力伝達を行う接続状態と、エンジン20と右後輪46bとの間で動力遮断を行う遮断状態とを切替可能である。さらにまた、駆動ECU38は、EPSモータ速度ωに基づいて、第1クラッチ158及び第2クラッチ162の接続状態と遮断状態とを切り替えることにより、左後輪46aと右後輪46bのトルク差ΔTを調整する。
 上記によれば、駆動ECU38は、第1クラッチ158及び第2クラッチ162の断接によって左右後輪46a、46bのトルク差ΔTを調整する。これにより、第1クラッチ158及び第2クラッチ162の接続及び遮断によって左右後輪46a、46bのトルク差ΔTを調整することが可能となる。このため、トルク差ΔTを高い応答性で発生させることが可能となる。
[A-3.第3変形例]
 図11は、本発明の第3変形例に係る車両10Cの一部の概略構成図である。第2変形例に係る車両10Bの駆動系12bと同様、車両10Cの駆動系12cでは、エンジン20からの駆動力(駆動力Feng)を前輪42a、42b及び後輪46a、46bに伝達する。これにより、前輪42a、42b(主駆動輪)に加え、後輪46a、46b(副駆動輪)を駆動輪とする。車両10Bと同一の構成要素については、同一の参照符号を付して説明を省略する。なお、前記実施形態(図1)と同様、エンジン20にモータ22が接続されてもよい。
 車両10Cは、トランスファクラッチ150、プロペラシャフト152、デファレンシャルギア154、デファレンシャルギア出力軸156a、156b(出力軸156a、156b)、左出力軸160及び右出力軸164に加え、第1再配分機構170及び第2再配分機構172を有する。
 第1再配分機構170は、車両10Cの左折時において、デファレンシャルギア154から左後輪46a用に配分又は分岐された駆動力の一部又は全部を右後輪46bに伝達する。第1再配分機構170は、左旋回クラッチ、左後輪46a用サンギア、3連ピニオンギア及び右後輪46b用サンギア(いずれも図示せず)を備える。
 第2再配分機構172は、車両10Cの右折時において、デファレンシャルギア154から右後輪46b用に配分又は分岐された駆動力の一部又は全部を左後輪46aに伝達する。第2再配分機構172は、右旋回クラッチ、右後輪46b用サンギア、3連ピニオンギア及び左後輪46a用サンギア(いずれも図示せず)を備える。
 なお、第1再配分機構170の左旋回クラッチ及び第2再配分機構172の右旋回クラッチは、接続状態と遮断状態の単なる切替えのみならず、滑り度合いを調整して接続状態又は遮断状態を複数段階に切り替えることが可能である。
 上記のような構成により、車両10Cでは、後輪46a、46bの駆動力を個別に調整することができる。
B.第1~第3走行モータ22、24、26
 上記実施形態では、第1~第3走行モータ22、24、26を3相交流ブラシレス式としたが、これに限らない。例えば、第1~第3走行モータ22、24、26を3相交流ブラシ式、単相交流式又は直流式としてもよい。
 上記実施形態では、第1~第3走行モータ22、24、26は、高電圧バッテリ28から電力が供給されたが、これに加え、燃料電池から電力を供給されてもよい。
C.EPS装置14
[C-1.EPS装置14の全体構成]
 上記実施形態のEPS装置14は、EPSモータ70がステアリング軸62に操舵付加力Fadを伝達する構成(いわゆるコラムアシスト式EPS装置)であった(図1)。しかしながら、操舵付加力Fadを発生するものであれば、EPS装置14の構成はこれに限らない。例えば、ピニオンアシスト式EPS装置、デュアルピニオンアシスト式EPS装置、ラックアシスト式EPS装置及び電動油圧パワーステアリング装置のいずれかであってもよい。なお、電動油圧パワーステアリング装置では、電動ポンプで油圧をつくり、その油圧で操舵付加力Fadを生成する。
 上記実施形態では、運転者による操舵トルクTstをそのまま前輪42a、42bに伝達する構成(以下、「直接伝達方式」ともいう。)であったが、ステアバイワイヤ式のEPS装置にも適用可能である。ステアバイワイヤ式のEPS装置の場合、運転者の操舵トルクTstは、操舵輪(前輪42a、42b)に伝達されず、EPS装置が操舵力自体を生成する。換言すると、ステアバイワイヤ式のEPS装置では、操舵付加力Fadの代わりに、操舵力(操舵トルクTst)自体を車両10の操舵系に付与する。
[C-2.EPSモータ70]
 上記実施形態では、EPSモータ70を3相交流ブラシレス式としたが、これに限らない。例えば、モータ70を3相交流ブラシ式、単相交流式又は直流式としてもよい。
D.トルク制御
[D-1.全体]
 上記実施形態では、舵角比例FF制御、EPSモータ速度FF制御及びFB制御のそれぞれを行った(図2参照)。しかしながら、例えば、EPSモータ速度FF制御に着目すれば、舵角比例FF制御及びFB制御の一方又は両方を省略することも可能である。
 上記実施形態では、車両10に搭乗した運転者(操舵主体)によるアクセルペダルの操作に基づき前輪駆動装置44及び後輪駆動装置48のトルクを制御することを想定していた。しかしながら、例えば、前輪駆動装置44及び後輪駆動装置48のトルクを制御する観点からすれば、これに限らない。例えば、車両10において前輪駆動装置44及び後輪駆動装置48のトルクを自動的に制御する構成(いわゆる自動運転を行う構成)にも、本発明を適用可能である。なお、ここにいう自動運転は、前輪駆動装置44及び後輪駆動装置48のトルクに限らず、操舵についても自動で行うものであってもよい。また、運転者が車両10の外部から遠隔操作する構成にも本発明を適用可能である。
 上記実施形態において、駆動ECU38は、前輪駆動装置44及び後輪駆動装置48のトルク自体を演算対象とする制御を行った(図2)。しかしながら、例えば、前輪駆動装置44及び後輪駆動装置48のトルク(駆動動力量)を制御する観点からすれば、これに限らない。例えば、駆動ECU38は、トルクに代えて、トルクと換算可能な出力又は駆動力を演算対象とする制御を行うことも可能である。
[D-2.EPSモータ速度FF制御]
 上記実施形態では、舵角θst及び車輪速Vwに基づくマップとEPSモータ速度ωとをEPSモータ速度トルクTff2の算出(選択)に用いた(図4のS3、S4)。しかしながら、例えば、トルクTff2の利用に着目すれば、これに限らない。例えば、EPSモータ速度ωとトルクTff2との関係を規定した単一のマップを設けておき、当該単一のマップを用いてトルクTff2を選択又は算出してもよい。換言すると、図4において、ステップS3を省略して、ステップS4を残すことも可能である。
 上記実施形態では、左右後輪46a、46bのうち外輪に対してトルクTff2を加え、内輪からトルクTff2を引いた(換言すると、-Tff2を加えた)。しかしながら、例えば、舵角θstに加えて、EPSモータ速度ωに基づいて左後輪46a(左駆動輪)及び右後輪46b(右駆動輪)のトルク差ΔT(動力差)を調整する観点からすれば、これに限らない。例えば、外輪に対してトルクTff2を加えるのみの構成又は内輪からトルクTff2を引くのみの構成とすることも可能である。
 上記実施形態では、EPSモータ速度ωが速い場合、トルク差ΔTを大きくした(図4のS4)。しかしながら、反対に、EPSモータ速度ωが速い場合、トルク差ΔTを小さくすることも可能である。これにより、例えば、雪道等において急転舵した場合の車両10のスリップを防止し易くなる。
 上記実施形態では、道路逸脱軽減の開始条件が成立した場合(図6のS11:YES)、換言すると、走行路200に対する車両10の逸脱又は逸脱のおそれがある場合、反復振動としての警告振動を発生させた(図6のS12、図7)。しかしながら、例えば、走行路200に対する車両10の逸脱又は逸脱のおそれを報知する観点からすれば、警告振動以外の報知動作であってもよい。例えば、振幅の変化が1回のみの報知動作を用いることも可能である。
 上記実施形態では、道路逸脱軽減の開始条件が成立した場合(図6のS11:YES)、換言すると、走行路200に対する車両10の逸脱又は逸脱のおそれがあり、警告振動を発生させる場合、トルクTff2の利用を禁止した(図4及び図8)。しかしながら、例えば、トルクTff2の利用を禁止又は制限する観点からすれば、これに限らない。例えば、RDM制御における警告振動の出力(図6のS12)を行わない場合、操舵支援処理(又は操舵支援量Dstの発生)時において、トルクTff2の利用を禁止又は制限することも可能である。
 上記実施形態では、警告振動を生じさせる構成要素としてEPSモータ70を用いた(図6のS12)。しかしながら、例えば、ステアリングホイール60に警告振動を生じさせる観点からすれば、これに限らない。例えば、ステアリングホイール60内に振動生成装置を設け、当該振動生成装置により警告振動を生じさせることも可能である。
 上記実施形態では、警告振動が生成されている間、警告振動信号Sxが出力されていた(図8の時点t21~t22)。しかしながら、例えば、警告振動が生成される期間を判定する観点からすれば、これに限らない。例えば、警告振動信号Sxが生成されてから所定時間、警告振動が生成される構成では、駆動ECU38は、警告振動信号Sxを受信してから前記所定時間、警告振動が生成されるものと判定してもよい。
 上記実施形態では、警告振動が生成されている間、トルクTff2をゼロとした(図4及び図8)。しかしながら、例えば、警告振動に伴う合計トルクTtotalの変化を抑制する観点からすれば、トルクTff2を直ぐにゼロにしなくてもよい。例えば、警告振動が生成されている間、トルクTff2を所定の減少度合いで減少させてもよい。換言すると、警告振動が生成されるとき、EPSモータ速度FF制御を抑制することも可能である。
[D-3.EPSモータ速度ω]
 上記実施形態では、レゾルバ72が検出した電気角θeから直接的にEPSモータ速度ω[rad/sec]を算出した。しかしながら、例えば、EPSモータ70の回転速度を用いる観点からすれば、これに限らない。例えば、電気角θeからEPSモータ70の機械角を求め、機械角からEPSモータ速度ωを算出してもよい。
[D-4.その他]
 上記実施形態では、EPSモータ速度ωに応じてトルクTff2を変化させるEPSモータ速度FF制御をそのまま用いた(図4)。しかしながら、例えば、EPSモータ速度ωに基づいてトルクTff2(左右トルク差ΔTを規定するトルク)を設定する観点からすれば、これに限らない。例えば、EPSモータ速度ωに基づいて算出したトルクTff2を、EPSモータ速度ωの時間微分値(モータ加速度)に応じて補正させることも可能である。
 上記実施形態では、EPSモータ速度FF制御において、EPSモータ速度ωに応じて左右後輪46a、46bのトルク差ΔTを変化させた(図4のS4)。しかしながら、例えば、EPSモータ速度ωに応じて左右後輪46a、46bのトルクを変化させる観点からすれば、これに限らない。例えば、トルク差ΔTの調整に加えて又はこれに代えて、EPSモータ速度ωに応じてFF合計トルクTff_total(例えば、トルクTff2)を増加又は減少させることも可能である。例えば、EPSモータ速度ωが増加した場合、FF合計トルクTff_totalを増加させることができる。
 上記実施形態の後輪駆動装置48(駆動装置)は、左駆動力と右駆動力の差異である左右駆動力差としての左右トルク差ΔTを制御可能であったが、これに限らない。例えば、後輪駆動装置48は、左右駆動力差に加えて、左駆動力と右駆動力の和である左右駆動力和を制御可能なものとすることも可能である。
III.符号の説明
10、10A、10B、10C…車両   
16…RDM装置(走行支援装置)
24、24a…左モータ(左回転電気機械)
26、26a…右モータ(右回転電気機械)
38…駆動ECU(駆動制御装置)    
42a…左前輪(操舵輪)
42b…右前輪(操舵輪)        
44a…前輪駆動装置(駆動装置)
46a…左後輪             
46b…右後輪
48…後輪駆動装置(駆動装置)
52…舵角センサ(操舵量取得手段)
60…ステアリングホイール(操舵入力装置)
70…EPSモータ(回転電気機械)
72…レゾルバ(回転速度取得手段の一部)
76…EPS ECU(回転速度取得手段の一部)
80…前方カメラ(走行路認識手段)
90…RDM ECU(逸脱取得手段、回避支援手段)
200…走行路             
Glat…横加速度
Fad…操舵付加力           
Sx…警告振動信号
Tst…操舵トルク(操舵力)
ΔT…左右トルク差(左右駆動力差)   
θst…舵角(操舵量)
ω…EPSモータ速度(回転速度)

Claims (6)

  1.  車両(10、10A、10B、10C)の左車輪(42a、46a)の駆動力である左駆動力と、前記車両(10、10A、10B、10C)の右車輪(42b、46b)の駆動力である右駆動力とを制御することによって前記左駆動力と前記右駆動力との差異である左右駆動力差を制御可能な駆動装置(48)と、
     前記駆動装置(48)を制御する駆動制御装置(38)と、
     操舵輪(42a、42b)に機械的に接続されると共に前記操舵輪(42a、42b)を含む操舵系に操舵力又は操舵付加力を付与する回転電気機械(70)と、
     走行路(200)に対する前記車両(10、10A、10B、10C)の逸脱の回避を支援する走行支援装置(16)と
     を備える車両(10、10A、10B、10C)であって、
     前記走行支援装置(16)は、
      前記走行路(200)を認識する走行路認識手段(80)と、
      前記走行路(200)に対する前記車両(10、10A、10B、10C)の逸脱又は逸脱のおそれを取得する逸脱取得手段(90)と、
      前記逸脱取得手段(90)が前記逸脱又は前記逸脱のおそれを取得したとき、前記回転電気機械(70)を駆動させて前記操舵系の操舵入力装置(60)に対し報知動作を生じさせる又は前記操舵系に対して逸脱回避支援操舵力若しくは逸脱回避支援操舵付加力を付与する回避支援手段(90)と
     を備え、
     前記車両(10、10A、10B、10C)は、前記回転電気機械(70)の回転速度を取得する回転速度取得手段(72、76)をさらに備え、
     前記駆動制御装置(38)は、前記回転速度に基づいて前記駆動装置(48)による前記左右駆動力差を制御し、
     さらに、前記駆動制御装置(38)は、前記逸脱取得手段(90)が前記逸脱若しくは前記逸脱のおそれを取得したとき、又は前記回避支援手段(90)が前記報知動作を生じさせるとき若しくは前記逸脱回避支援操舵力若しくは前記逸脱回避支援操舵付加力を付与するとき、前記回転速度に基づく前記左右駆動力差の制御を禁止又は抑制する
     ことを特徴とする車両(10、10A、10B、10C)。
  2.  請求項1に記載の車両(10、10A、10B、10C)において、
     前記操舵系は、前記車両(10、10A、10B、10C)の操舵主体の操舵量を取得する操舵量取得手段(52)を有し、
     前記回転電気機械(70)は、操舵力伝達経路上で、前記操舵量取得手段(52)よりも前記操舵輪(42a、42b)寄りに配置され、
     前記操舵力又は前記操舵付加力は、前記操舵量に基づいて求められる
     ことを特徴とする車両(10、10A、10B、10C)。
  3.  請求項1又は2に記載の車両(10、10A、10B、10C)において、
     前記駆動装置(48)は、前記左車輪(42a、46a)に機械的に接続される左回転電気機械(24、24a)と、前記右車輪(42b、46b)に機械的に接続される右回転電気機械(26、26a)とを含む
     ことを特徴とする車両(10、10A、10B、10C)。
  4.  請求項2又は請求項2に従属する請求項3に記載の車両(10、10A、10B、10C)において、
     前記駆動制御装置(38)は、
      前記操舵量及び前記車両(10、10A、10B、10C)の横加速度に基づいて前記左右駆動力差を制御する操舵量比例制御を実行し、
      前記回転速度に基づいた前記左右駆動力差の制御と前記操舵量比例制御とを組み合わせて前記左右駆動力差を制御し、
      前記逸脱取得手段(90)が前記逸脱若しくは前記逸脱のおそれを取得したとき、又は前記回避支援手段(90)が前記報知動作を生じさせるとき若しくは前記逸脱回避支援操舵力若しくは前記逸脱回避支援操舵付加力を付与するとき、前記回転速度に基づいた前記左右駆動力差の制御を禁止又は抑制すると共に、前記操舵量比例制御による前記左右駆動力差の制御を継続する
     ことを特徴とする車両(10、10A、10B、10C)。
  5.  請求項1~4のいずれか1項に記載の車両(10、10A、10B、10C)において、
     前記回避支援手段(90)は、前記逸脱取得手段(90)が前記逸脱又は前記逸脱のおそれを取得したとき、前記回転電気機械(70)を駆動させて前記操舵系の操舵入力装置(60)に対し前記報知動作を生じさせ、その後、前記操舵系に対して前記逸脱回避支援操舵力又は前記逸脱回避支援操舵付加力を付与し、
     さらに、前記駆動制御装置(38)は、前記逸脱取得手段(90)が前記逸脱若しくは前記逸脱のおそれを取得したとき、又は前記回避支援手段(90)が前記報知動作を生じさせるとき、前記回転速度に基づいた前記左右駆動力差の制御を禁止又は抑制する
     ことを特徴とする車両(10、10A、10B、10C)。
  6.  車両(10、10A、10B、10C)の左車輪(42a、46a)に機械的に接続される左回転電気機械(24、24a)のトルクである左トルクと、前記車両(10、10A、10B、10C)の右車輪(42b、46b)に機械的に接続される右回転電気機械(26、26a)のトルクである右トルクとを制御することによって、前記左車輪(42a、46a)のトルクと前記右車輪(42b、46b)のトルクとを制御可能な駆動装置(48)と、
     前記駆動装置(48)を制御する駆動制御装置(38)と、
     操舵輪(42a、42b)に機械的に接続されると共に前記操舵輪(42a、42b)を含む操舵系に操舵力又は操舵付加力を付与する回転電気機械(70)と、
     走行路(200)に対する前記車両(10、10A、10B、10C)の逸脱の回避を支援する走行支援装置(16)と
     を備える車両(10、10A、10B、10C)であって、
     前記走行支援装置(16)は、前記走行路(200)に対する前記車両(10、10A、10B、10C)の逸脱又は逸脱のおそれがあるとき、前記回転電気機械(70)を駆動させて前記操舵系の操舵入力装置(60)に対し報知動作を生じさせる又は前記操舵系に対して逸脱回避支援操舵力若しくは逸脱回避支援操舵付加力を付与する回避支援手段(90)を備え、
     前記車両(10、10A、10B、10C)は、前記回転電気機械(70)の回転速度を取得する回転速度取得手段(72、76)をさらに備え、
     前記駆動制御装置(38)は、前記回転速度に基づいて前記左トルク及び前記右トルクを制御し、
     さらに、前記駆動制御装置(38)は、前記逸脱若しくは前記逸脱のおそれがあるとき、又は前記回避支援手段(90)が前記報知動作を生じさせるとき若しくは前記逸脱回避支援操舵力若しくは前記逸脱回避支援操舵付加力を付与するとき、前記回転速度に基づく前記左トルク及び前記右トルクの制御を禁止又は抑制する
     ことを特徴とする車両(10、10A、10B、10C)。
PCT/JP2016/054783 2015-02-19 2016-02-19 車両 WO2016133182A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2976968A CA2976968A1 (en) 2015-02-19 2016-02-19 Vehicle
CN201680011054.5A CN107249948B (zh) 2015-02-19 2016-02-19 车辆
EP16752568.2A EP3260343A4 (en) 2015-02-19 2016-02-19 VEHICLE
KR1020177026281A KR20170118194A (ko) 2015-02-19 2016-02-19 차량
JP2017500743A JP6612840B2 (ja) 2015-02-19 2016-02-19 車両
US15/119,853 US10220836B2 (en) 2015-02-19 2016-02-19 Vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015031114 2015-02-19
JP2015-031114 2015-02-19

Publications (1)

Publication Number Publication Date
WO2016133182A1 true WO2016133182A1 (ja) 2016-08-25

Family

ID=56689369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054783 WO2016133182A1 (ja) 2015-02-19 2016-02-19 車両

Country Status (8)

Country Link
US (1) US10220836B2 (ja)
EP (1) EP3260343A4 (ja)
JP (1) JP6612840B2 (ja)
KR (1) KR20170118194A (ja)
CN (1) CN107249948B (ja)
CA (1) CA2976968A1 (ja)
MY (1) MY177665A (ja)
WO (1) WO2016133182A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262427A1 (ja) * 2019-06-28 2020-12-30 株式会社クボタ 作業機
JP2021008189A (ja) * 2019-06-28 2021-01-28 株式会社クボタ 作業機
JP2021008191A (ja) * 2019-06-28 2021-01-28 株式会社クボタ 作業機
JP2021008190A (ja) * 2019-06-28 2021-01-28 株式会社クボタ 作業機
JP7230990B1 (ja) 2021-11-04 2023-03-01 いすゞ自動車株式会社 操舵アシスト装置、操舵アシスト方法、及び、車両

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6355167B2 (ja) * 2015-09-28 2018-07-11 トヨタ自動車株式会社 車両の運転支援制御装置
KR102322500B1 (ko) * 2015-12-10 2021-11-09 주식회사 만도 보조 조향 제어 장치
JP6379148B2 (ja) * 2016-09-21 2018-08-22 株式会社Subaru 車両の駆動力制御装置
WO2018074629A1 (ko) * 2016-10-20 2018-04-26 볼보 컨스트럭션 이큅먼트 에이비 건설기계용 주행 제어 시스템
US10421492B2 (en) * 2016-12-29 2019-09-24 Automotive Research & Testing Center Assisted steering system with vibrational function for vehicles and method for controlling the same
US11214301B2 (en) * 2017-01-20 2022-01-04 Mitsubishi Electric Corporation Automatic steering control apparatus and automatic steering control method
EP3360757B1 (en) 2017-02-10 2019-10-02 Volvo Car Corporation Steer torque manager for an advanced driver assistance system of a road vehicle
EP3375696B1 (en) * 2017-03-17 2019-11-20 Volvo Car Corporation Steer torque manager for an advanced driver assistance system of a road vehicle
EP3378733B1 (en) * 2017-03-20 2020-01-15 Volvo Car Corporation Apparatus and method for situation dependent wheel angle control (had or adas)
EP3378731B1 (en) 2017-03-20 2020-01-15 Volvo Car Corporation Apparatus and method for driver activity dependent (adas) wheel angle controller
US10787192B1 (en) 2017-04-11 2020-09-29 Apple Inc. Steer-by-wire system with multiple steering actuators
JP7217859B2 (ja) * 2018-03-20 2023-02-06 マツダ株式会社 車両駆動装置
DE102018212031A1 (de) * 2018-07-19 2020-01-23 Robert Bosch Gmbh Verfahren zum Betreiben eines Kraftfahrzeugs, Steuergerät und Kraftfahrzeug
FR3084619B1 (fr) * 2018-08-02 2022-03-18 Valeo Equip Electr Moteur Architecture de traction pour vehicule automobile a repartition vectorielle de couple
CN108860296B (zh) * 2018-08-24 2023-07-28 厦门理工学院 基于转向角闭环的电动汽车电子差速控制系统及电动汽车
WO2020240736A1 (ja) * 2019-05-29 2020-12-03 日産自動車株式会社 ハイブリッド電気自動車
CA3099415A1 (en) * 2019-12-20 2021-02-05 Bombardier Transportation Gmbh Steering system for an autonomous vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1016599A (ja) * 1996-07-05 1998-01-20 Mitsubishi Motors Corp 車両用左右輪間動力伝達制御装置
JP2006044293A (ja) * 2004-07-30 2006-02-16 Toyota Motor Corp 車輌の運動制御装置
JP2008222055A (ja) * 2007-03-13 2008-09-25 Toyota Motor Corp 運転補助制御装置
JP2010058691A (ja) * 2008-09-04 2010-03-18 Fuji Heavy Ind Ltd 操向支援装置
JP2013056636A (ja) * 2011-09-09 2013-03-28 Mazda Motor Corp 車線逸脱防止装置
JP2014101086A (ja) * 2012-11-22 2014-06-05 Showa Corp 電動パワーステアリング装置
WO2014115234A1 (ja) * 2013-01-24 2014-07-31 日産自動車株式会社 操舵制御装置

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129837A (ja) 1990-09-19 1992-04-30 Mitsubishi Motors Corp 駆動力制御装置
JPH0937407A (ja) 1995-07-18 1997-02-07 Toyota Motor Corp 回生制動制御装置
JPH0984208A (ja) 1995-09-14 1997-03-28 Denso Corp 電気自動車用制御装置
JP3423125B2 (ja) 1995-09-28 2003-07-07 三菱自動車工業株式会社 車両の旋回挙動制御装置
JP3564696B2 (ja) 1998-12-25 2004-09-15 トヨタ自動車株式会社 車両の操舵制御装置
FR2799417B1 (fr) * 1999-10-08 2009-01-23 Toyota Motor Co Ltd Dispositif de controle de vehicule, notamment pour la repartition des forces de traction avant-arriere
JP3539358B2 (ja) 2000-06-09 2004-07-07 日産自動車株式会社 車両の駆動力制御装置
JP2002029400A (ja) 2000-07-18 2002-01-29 Mazda Motor Corp 車両の姿勢制御装置
JP3617502B2 (ja) * 2002-04-11 2005-02-09 日産自動車株式会社 車線逸脱防止装置
JP3870911B2 (ja) * 2003-02-10 2007-01-24 日産自動車株式会社 車線逸脱防止装置
JP4369198B2 (ja) 2003-10-10 2009-11-18 株式会社ジェイテクト 車両用操舵制御装置
JP2005137063A (ja) 2003-10-28 2005-05-26 Toyota Motor Corp 車両用駆動制御装置
JP4831929B2 (ja) 2003-11-28 2011-12-07 トヨタ自動車株式会社 車輌の駆動力制御装置
JP2005219580A (ja) 2004-02-04 2005-08-18 Toyota Motor Corp 車両の挙動制御装置
JP2005253175A (ja) 2004-03-03 2005-09-15 Toyota Motor Corp 車両駆動装置
JP4267495B2 (ja) 2004-03-31 2009-05-27 本田技研工業株式会社 4輪駆動車両の駆動力制御方法
JP4042980B2 (ja) * 2004-05-14 2008-02-06 本田技研工業株式会社 車両操作支援装置
JP4114657B2 (ja) 2004-10-25 2008-07-09 三菱自動車工業株式会社 車両の旋回挙動制御装置
JP4069921B2 (ja) 2004-10-25 2008-04-02 三菱自動車工業株式会社 車両の旋回挙動制御装置
JP4556643B2 (ja) 2004-12-01 2010-10-06 トヨタ自動車株式会社 車両の制駆動力制御装置
JP4379406B2 (ja) 2005-03-04 2009-12-09 日産自動車株式会社 車両の駆動力配分制御装置
JP4577089B2 (ja) * 2005-05-25 2010-11-10 日産自動車株式会社 車両の走行制御装置
CN101321655B (zh) 2005-12-01 2011-05-11 丰田自动车株式会社 驾驶辅助系统以及驾驶辅助方法
JP2007269095A (ja) 2006-03-30 2007-10-18 Toyota Motor Corp 車両の制動力制御装置
JP4844320B2 (ja) 2006-09-25 2011-12-28 日産自動車株式会社 ハイブリッド車両の駆動力制御装置
JP4936851B2 (ja) 2006-10-18 2012-05-23 日立オートモティブシステムズ株式会社 車両および車両制御装置
JP2008222070A (ja) 2007-03-13 2008-09-25 Nissan Motor Co Ltd 車両の駆動力配分制御装置
JP4471132B2 (ja) * 2007-07-24 2010-06-02 三菱自動車工業株式会社 旋回挙動表示装置
JP4924378B2 (ja) * 2007-11-19 2012-04-25 トヨタ自動車株式会社 車輌の走行制御装置
JP5124875B2 (ja) * 2008-03-12 2013-01-23 本田技研工業株式会社 車両走行支援装置、車両、車両走行支援プログラム
JP5315798B2 (ja) * 2008-06-05 2013-10-16 日産自動車株式会社 車両用運転支援装置及び車両用運転支援方法
JP2010052523A (ja) 2008-08-27 2010-03-11 Honda Motor Co Ltd 駆動力配分制御装置
JP2010052525A (ja) 2008-08-27 2010-03-11 Honda Motor Co Ltd 車両用電動パワーステアリング装置
JP2010101333A (ja) 2008-10-21 2010-05-06 Honda Motor Co Ltd 車両用駆動力配分装置
JP2010208366A (ja) 2009-03-06 2010-09-24 Honda Motor Co Ltd 車両運動制御システム
EP3431813B1 (en) 2009-03-31 2019-10-09 Honda Motor Co., Ltd. Drive device and vehicle with same
DE112009004644T5 (de) 2009-04-10 2012-10-11 Aisin Aw Co., Ltd. Steuervorrichtung für eine fahrzeugantriebsvorrichtung
JP5468378B2 (ja) 2009-12-22 2014-04-09 本田技研工業株式会社 四輪駆動車両の制御装置
DE112010005216B4 (de) 2010-02-02 2017-02-02 Toyota Jidosha Kabushiki Kaisha Fahrzeugverhaltenssteuervorrichtung
JP5479937B2 (ja) 2010-02-15 2014-04-23 本田技研工業株式会社 車両のヨーモーメント制御装置
CN102753409B (zh) * 2010-03-04 2015-05-06 本田技研工业株式会社 车辆的转弯控制装置
WO2012043683A1 (ja) 2010-09-28 2012-04-05 日立オートモティブシステムズ株式会社 車両の運動制御装置
JP2012166715A (ja) 2011-02-15 2012-09-06 Toyota Motor Corp 車両の走行制御装置
JP5527259B2 (ja) 2011-03-07 2014-06-18 三菱自動車工業株式会社 出力トルク制御装置
DE102011017464A1 (de) 2011-04-07 2012-10-11 Klaus Ebert Verfahren zum Betreiben eines Fahrzeugs
JP5827059B2 (ja) * 2011-08-01 2015-12-02 株式会社ジェイテクト 路面摩擦係数推定装置、駆動力配分制御装置、及び四輪駆動車
JP5591837B2 (ja) 2012-01-25 2014-09-17 本田技研工業株式会社 車両及び操舵装置
WO2014109037A1 (ja) * 2013-01-10 2014-07-17 トヨタ自動車株式会社 車両制御装置
JP2014139039A (ja) 2013-01-21 2014-07-31 Jtekt Corp 電動パワーステアリング装置
JP6304785B2 (ja) 2014-05-23 2018-04-04 本田技研工業株式会社 走行支援装置及び走行支援装置の制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1016599A (ja) * 1996-07-05 1998-01-20 Mitsubishi Motors Corp 車両用左右輪間動力伝達制御装置
JP2006044293A (ja) * 2004-07-30 2006-02-16 Toyota Motor Corp 車輌の運動制御装置
JP2008222055A (ja) * 2007-03-13 2008-09-25 Toyota Motor Corp 運転補助制御装置
JP2010058691A (ja) * 2008-09-04 2010-03-18 Fuji Heavy Ind Ltd 操向支援装置
JP2013056636A (ja) * 2011-09-09 2013-03-28 Mazda Motor Corp 車線逸脱防止装置
JP2014101086A (ja) * 2012-11-22 2014-06-05 Showa Corp 電動パワーステアリング装置
WO2014115234A1 (ja) * 2013-01-24 2014-07-31 日産自動車株式会社 操舵制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3260343A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262427A1 (ja) * 2019-06-28 2020-12-30 株式会社クボタ 作業機
JP2021008189A (ja) * 2019-06-28 2021-01-28 株式会社クボタ 作業機
JP2021008191A (ja) * 2019-06-28 2021-01-28 株式会社クボタ 作業機
JP2021008190A (ja) * 2019-06-28 2021-01-28 株式会社クボタ 作業機
JP7146703B2 (ja) 2019-06-28 2022-10-04 株式会社クボタ 作業機
JP7214581B2 (ja) 2019-06-28 2023-01-30 株式会社クボタ 作業機
JP7301632B2 (ja) 2019-06-28 2023-07-03 株式会社クボタ 作業機
JP7230990B1 (ja) 2021-11-04 2023-03-01 いすゞ自動車株式会社 操舵アシスト装置、操舵アシスト方法、及び、車両
WO2023080155A1 (ja) * 2021-11-04 2023-05-11 いすゞ自動車株式会社 操舵アシスト装置、操舵アシスト方法、及び、車両
JP2023068857A (ja) * 2021-11-04 2023-05-18 いすゞ自動車株式会社 操舵アシスト装置、操舵アシスト方法、及び、車両

Also Published As

Publication number Publication date
CA2976968A1 (en) 2016-08-25
MY177665A (en) 2020-09-23
US20160362102A1 (en) 2016-12-15
US10220836B2 (en) 2019-03-05
JPWO2016133182A1 (ja) 2017-11-30
JP6612840B2 (ja) 2019-11-27
EP3260343A1 (en) 2017-12-27
CN107249948A (zh) 2017-10-13
KR20170118194A (ko) 2017-10-24
CN107249948B (zh) 2020-09-25
EP3260343A4 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
JP6612840B2 (ja) 車両
JP5981584B2 (ja) 車両
JP6352956B2 (ja) 車両の制御装置及び車両の制御方法
US10173676B2 (en) Travel assist device and method of controlling travel assist device
US10099689B2 (en) Vehicle travel support system and vehicle travel support method
JP6457939B2 (ja) 車両
JP6682355B2 (ja) 車両の旋回制御装置
JP2016147542A (ja) 操舵装置及び操舵支援方法
CN108583364B (zh) 车辆和车辆的控制方法
US20200361525A1 (en) Steering apparatus
JP6459370B2 (ja) 駆動ユニット及び駆動モジュール
JP5552744B2 (ja) 電動パワーステアリング装置
WO2014049939A1 (ja) 転舵制御装置
JP4935022B2 (ja) 車両の左右トルク配分制御装置
JP6421533B2 (ja) 車両用制御装置
JP5664754B2 (ja) 電動パワーステアリング装置
JP2018154158A (ja) 車両用操舵装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15119853

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752568

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2976968

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017500743

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177026281

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016752568

Country of ref document: EP