WO2016084803A1 - ビークル - Google Patents

ビークル Download PDF

Info

Publication number
WO2016084803A1
WO2016084803A1 PCT/JP2015/082933 JP2015082933W WO2016084803A1 WO 2016084803 A1 WO2016084803 A1 WO 2016084803A1 JP 2015082933 W JP2015082933 W JP 2015082933W WO 2016084803 A1 WO2016084803 A1 WO 2016084803A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
current
inductance
stator core
engine
Prior art date
Application number
PCT/JP2015/082933
Other languages
English (en)
French (fr)
Inventor
真史 増田
日野 陽至
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014237372A external-priority patent/JP2018014771A/ja
Priority claimed from JP2015196670A external-priority patent/JP2018012349A/ja
Priority claimed from JP2015196668A external-priority patent/JP2018012347A/ja
Priority claimed from JP2015196667A external-priority patent/JP2018012346A/ja
Priority claimed from JP2015196669A external-priority patent/JP2018012348A/ja
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to EP15862664.8A priority Critical patent/EP3206294B1/en
Priority to BR112017010326A priority patent/BR112017010326A2/pt
Priority to CN201580063943.1A priority patent/CN107005184B/zh
Priority to TW104139338A priority patent/TWI611952B/zh
Publication of WO2016084803A1 publication Critical patent/WO2016084803A1/ja
Priority to US15/604,228 priority patent/US10358022B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/13Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines using AC generators and AC motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/14Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines using DC generators and AC motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/19Control strategies specially adapted for achieving a particular effect for achieving enhanced acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/006Indicating maintenance
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/008Registering or indicating the working of vehicles communicating information to a remotely located station
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0816Indicating performance data, e.g. occurrence of a malfunction
    • G07C5/0825Indicating performance data, e.g. occurrence of a malfunction using optical means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/021Means for mechanical adjustment of the excitation flux
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/021Means for mechanical adjustment of the excitation flux
    • H02K21/022Means for mechanical adjustment of the excitation flux by modifying the relative position between field and armature, e.g. between rotor and stator
    • H02K21/025Means for mechanical adjustment of the excitation flux by modifying the relative position between field and armature, e.g. between rotor and stator by varying the thickness of the air gap between field and armature
    • H02K21/026Axial air gap machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/021Means for mechanical adjustment of the excitation flux
    • H02K21/028Means for mechanical adjustment of the excitation flux by modifying the magnetic circuit within the field or the armature, e.g. by using shunts, by adjusting the magnets position, by vectorial combination of field or armature sections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/021Means for mechanical adjustment of the excitation flux
    • H02K21/028Means for mechanical adjustment of the excitation flux by modifying the magnetic circuit within the field or the armature, e.g. by using shunts, by adjusting the magnets position, by vectorial combination of field or armature sections
    • H02K21/029Vectorial combination of the fluxes generated by a plurality of field sections or of the voltages induced in a plurality of armature sections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1815Rotary generators structurally associated with reciprocating piston engines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/40Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of reluctance of magnetic circuit of generator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/34Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the absence of energy storing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/36Cycles; Motorcycles; Scooters
    • B60W2300/365Scooters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/25Special adaptation of control arrangements for generators for combustion engines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/45Special adaptation of control arrangements for generators for motor vehicles, e.g. car alternators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/905Combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/906Motor or generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a vehicle.
  • Patent Document 1 discloses a vehicle.
  • the vehicle shown in Patent Document 1 is a hybrid vehicle.
  • the vehicle includes an engine, an accelerator pedal, a first rotating electrical machine, a second rotating electrical machine, and drive wheels.
  • the first rotating electrical machine is connected to the output shaft of the engine.
  • the first rotating electrical machine mainly functions as a generator.
  • the second rotating electrical machine is electrically connected to the first rotating electrical machine via an inverter.
  • the second rotating electrical machine mainly functions as a motor. Power running is performed by current flowing through the first rotating electrical machine and the second rotating electrical machine.
  • the second rotating electrical machine is connected to the drive wheels of the vehicle.
  • the second rotating electrical machine generates vehicle driving force.
  • the depression of the accelerator pedal by the driver represents a request for acceleration of the vehicle.
  • the intake air amount of the engine can be arbitrarily adjusted. Therefore, for example, the vehicle is controlled as follows.
  • a target output of the second rotating electrical machine (motor) is determined based on the amount of depression of the accelerator pedal by the driver and the vehicle speed.
  • the target generated power of the first rotating electrical machine (generator) is determined according to the target output of the second rotating electrical machine.
  • the target output of the engine is determined according to the target generated power.
  • the intake air amount and fuel injection amount of the engine are controlled so as to obtain this target output.
  • the first rotating electrical machine controls the generated power
  • the second rotating electrical machine controls the output.
  • the generated power of the first rotating electrical machine and the second rotating electrical machine are matched to the actual output of the engine. Output is controlled.
  • the electric power (output) of a rotary electric machine is controlled and the application to the some vehicle type which has various characteristics is achieved.
  • the rotational speed of the engine does not increase only according to the rotational power of the engine.
  • the rotational speed of the engine changes according to the difference between the torque of the engine that drives the generator and the load torque of the generator. For example, when the engine torque is larger than the load torque of the generator, the rotational speed of the engine increases. On the contrary, when the engine torque is smaller than the load torque of the generator, the rotational speed of the engine decreases.
  • the load torque of the generator depends on the current output from the generator. For example, in a situation where acceleration of the vehicle is required, an increase in current output from the generator is required. At this time, when the current output from the generator is increased, the load torque of the generator is increased. Therefore, an increase in the rotational speed of the engine is easily suppressed.
  • An object of the present invention is to provide a vehicle capable of improving acceleration while stabilizing engine rotation.
  • the present invention adopts the following configuration in order to solve the above-described problems.
  • a generator connected to the engine and configured to output electric power according to rotational power transmitted from the engine, the rotor having a permanent magnet and rotating by rotational power transmitted from the engine;
  • a stator having a winding and a stator core around which the winding is wound and disposed opposite to the rotor, and the winding by changing a magnetic resistance of a magnetic circuit passing through the stator core as seen from the winding
  • a generator having an inductance adjustment unit that changes the inductance of A motor that receives supply of current from the generator without going through a battery;
  • a current adjusting device that is provided between the generator and the motor and adjusts a current output from the generator to the motor;
  • a drive member that drives the vehicle by being driven by the motor without receiving rotational power from the engine;
  • a control device that receives a request relating to a current supplied to the motor and controls the engine output adjustment unit, the in
  • the magnetic resistance of the magnetic circuit passing through the stator core is adjusted to be relatively small and the winding has a large inductance
  • the control device accepts a request for an increase in current supplied to the motor
  • the inductance of the magnetic circuit passing through the stator core as viewed from the winding is relative to the inductance adjusting unit.
  • adjusting the rotational power of the engine to a state in which the engine output adjustment unit has increased the rotational power of the engine more than when the request for increasing the current is received.
  • the output current of the generator is adjusted so as to increase the rotation speed of the engine and increase the output current of the generator.
  • the control device accepts a request regarding the current supplied to the motor.
  • the vehicle is driven by a drive member.
  • the drive member is driven by the motor without receiving rotational power from the engine.
  • the motor is supplied with current from the generator without going through the battery. Therefore, in the vehicle of (1), the demand for increasing the current reflects the demand for acceleration of the vehicle.
  • the engine output adjustment unit adjusts the rotational power of the engine. Thereby, the output torque of the engine is adjusted.
  • the rotational speed of the engine depends on the output torque of the engine and the load torque of the generator.
  • the current adjusting device adjusts the current flowing from the generator to the motor.
  • the load torque of the generator is adjusted by adjusting the current output from the generator. As a result, the rotational speed of the engine is adjusted.
  • the control device when receiving a request for an increase in current, causes the engine output adjustment unit to adjust the rotational power of the engine to a state in which it is increased compared to when the request for increase in current is received.
  • the control device causes the current adjusting device to adjust the current output from the generator so that the rotational speed of the engine increases and the current output from the generator increases.
  • the control device causes the inductance adjusting unit to adjust the generator so that the magnetic resistance of the magnetic circuit passing through the stator core is relatively large and the inductance is small as viewed from the winding. In this state, the control device causes the current adjusting device to adjust the current output from the generator.
  • the inductance of the winding is small, when the current adjusting device adjusts the current flowing from the generator to the motor, the response of the change in current is high. For this reason, when the current changes during adjustment by the current adjusting device, an excessive current change due to the transient characteristics due to the inductance can be suppressed. Therefore, the situation where the torque of the generator increases excessively can be suppressed. Therefore, the engine speed can be increased in a short time while stabilizing the engine speed. For this reason, the electric current output to a motor from a generator can be increased in a short time. Therefore, according to the vehicle of (1), it is possible to improve acceleration while stabilizing the rotation of the engine.
  • the control device after receiving the request for increasing the current, when the rotational speed of the engine is higher than the rotational speed of the engine when receiving the request for increasing the current, The generator is adjusted so that the magnetic resistance of the magnetic circuit passing through the stator core is relatively small and the inductance is large as viewed from the winding.
  • the torque characteristic of an engine has a peak at a certain rotational speed. That is, the output torque of the engine increases to a peak torque as the rotational speed increases from a low state. That is, when the engine speed is high, the engine output torque is large.
  • the configuration of (2) when the rotational speed of the engine is higher than the rotational speed of the engine when the demand for increasing the current is accepted, the magnetic resistance of the magnetic circuit passing through the stator core as seen from the winding is It is adjusted to be relatively small and large in inductance. Since the rotational speed of the engine is higher than the rotational speed when a request for increasing the current is received, the output torque of the engine is also large. Therefore, even if the load torque of the generator fluctuates greatly due to the large inductance, fluctuations in the engine speed can be suppressed. Therefore, the current supplied from the generator to the motor can be increased at a high rotational speed while stabilizing the rotation of the engine.
  • the current adjusting device includes a switching element, and adjusts a current flowing from the generator to the motor by an on / off operation of the switching element.
  • the current flowing from the generator to the motor is adjusted by the on / off operation of the switching element.
  • the current flowing through the winding also has a transient characteristic due to the inductance of the winding even with respect to the on / off operation of the switching element. If the delay of the current change increases due to the transient characteristics, the efficiency of the power supplied from the generator to the motor decreases.
  • the generator when a request for an increase in current is received, the generator is adjusted to a state in which the magnetic resistance of the magnetic circuit passing through the stator core is relatively large and the inductance is small as viewed from the winding. . Since the inductance is small, the transient characteristic due to the inductance of the winding is reduced. For this reason, when the request
  • a magnetic circuit through the stator core as seen from the winding includes at least one non-magnetic gap;
  • the inductance adjusting unit is configured to change an inductance of the winding by changing a magnetic resistance of a non-magnetic gap between the winding and the rotor among the at least one non-magnetic gap. ing.
  • the inductance adjusting unit changes the inductance of the winding by changing the magnetic resistance of the non-magnetic material gap between the winding and the rotor.
  • An alternating magnetic field is generated between the winding and the rotor by a permanent magnet that moves as the rotor rotates. For example, reducing the reluctance of the non-magnetic gap between the winding and the rotor reduces the loss for the alternating magnetic field. For this reason, a current can be supplied from the generator to the motor.
  • a magnetic circuit through the stator core as seen from the winding includes at least one non-magnetic gap;
  • the inductance adjusting unit has the largest magnetic resistance when the inductance of the winding is set to the largest value within a settable value range among the at least one nonmagnetic material gap. The inductance of the winding is changed by changing the magnetic resistance.
  • the inductance adjusting unit changes the magnetic resistance of the magnetic circuit passing through the stator core as viewed from the winding, so that the rate of change of the magnetic flux interlinked with the winding is smaller than the rate of change of the inductance of the winding. In this way, the inductance of the winding is changed.
  • the inductance adjusting unit changes the inductance of the winding so that the rate of change of the magnetic flux interlinking with the winding is smaller than the rate of change of the inductance of the winding.
  • the magnetic flux interlinking with the winding directly affects the generated voltage.
  • the inductance of the winding can be changed while suppressing a change in voltage.
  • the rotational speed of the engine can be increased in a short time while further stabilizing the rotation of the engine.
  • the inductance adjusting unit moves a relative position of at least a part of the stator core with respect to the winding according to control by the control device, and changes a magnetic resistance of a magnetic circuit passing through the stator core as viewed from the winding. Accordingly, the inductance of the winding is changed.
  • the inductance adjusting unit moves the relative position of at least a part of the stator core with respect to the winding to change the magnetic resistance of the magnetic circuit passing through the stator core as viewed from the winding. Therefore, the inductance of the winding is easy to change. Therefore, when the current adjusting device adjusts the current flowing from the generator to the motor, the responsiveness of the current change can be further increased.
  • the relative position of the stator core relative to the winding moves so as to maintain the relative position of the stator core relative to the rotor. Therefore, a change in magnetic flux flowing from the permanent magnet of the rotor to the stator core is suppressed. That is, a change in magnetic flux generated by the permanent magnet and interlinked with the winding is suppressed. For this reason, a change in voltage when the relative position of the stator core with respect to the winding moves is suppressed. Therefore, according to the configuration of (8), when the inductance decreases, the fluctuation of the output voltage can be suppressed. Therefore, a decrease in the output voltage of the generator can be suppressed when the responsiveness of a change in current increases due to a decrease in inductance.
  • the inductance adjusting unit is configured to change the inductance of the winding by moving the winding and changing the magnetic resistance of the magnetic circuit passing through the stator core as viewed from the winding.
  • the relative position of the winding relative to the stator core moves so as to maintain the relative position of the stator core relative to the rotor. Therefore, a change in magnetic flux flowing from the permanent magnet of the rotor to the stator core is suppressed. That is, a change in magnetic flux generated by the permanent magnet and interlinked with the winding is suppressed. For this reason, a change in voltage when the relative position of the stator core with respect to the winding moves is suppressed. Therefore, according to the configuration of (9), fluctuations in the output voltage can be suppressed when the inductance decreases. Therefore, a decrease in the output voltage of the generator can be suppressed when the responsiveness of a change in current increases due to a decrease in inductance.
  • the stator core includes a plurality of first stator core portions having facing portions facing the rotor via a non-magnetic gap, and a second stator core portion not including the facing portions,
  • the inductance adjusting unit moves one of the plurality of first stator core units and the second stator core unit with respect to the other to change the magnetic resistance of the magnetic circuit passing through the stator core as viewed from the winding. It is configured.
  • the inductance adjusting unit moves one of the plurality of first stator core units and the second stator core unit included in the stator core with respect to the other.
  • the magnetic resistance of the magnetic circuit passing through the stator core as viewed from the winding is greatly changed as compared with the case where one of the stator core and the member other than the stator core is moved with respect to the other. For this reason, the adjustment range of inductance becomes wide.
  • the inductance adjuster is The non-magnetic gap length between each of the plurality of first stator core portions and the second stator core portion is greater than the non-magnetic gap length between adjacent first stator core portions of the plurality of first stator core portions. From the short first state, The non-magnetic gap length between each of the plurality of first stator core portions and the second stator core portion is greater than the non-magnetic gap length between adjacent first stator core portions of the plurality of first stator core portions. Up to the second state, too long By moving one of the plurality of first stator core portions and the second stator core portion with respect to the other, the magnetic resistance of the magnetic circuit passing through the stator core as viewed from the winding is changed.
  • the non-magnetic gap length between each of the plurality of first stator core portions and the second stator core portion is adjacent to the first of the plurality of first stator core portions. It is shorter than the non-magnetic material gap length between the stator core portions.
  • the nonmagnetic material gap length between each of the plurality of first stator core portions and the second stator core portion is a nonmagnetic material gap between adjacent first stator core portions of the plurality of first stator core portions. Longer than long.
  • the magnetic flux passing through the non-magnetic gap between the adjacent first stator core portions out of the magnetic flux caused by the current of the winding is mainly the first stator core portion and the second stator core portion.
  • the magnetic flux resulting from the current of the winding mainly passes through both the first stator core portion and the second stator core portion.
  • the magnetic resistance of the magnetic circuit passing through the first stator core portion is large. Therefore, the reluctance of the magnetic circuit passing through the stator core as seen from the winding is greatly changed. For this reason, the adjustment range of inductance becomes wide.
  • the acceleration can be improved while stabilizing the rotation of the engine.
  • FIG. 1 is a block diagram showing a schematic configuration of a vehicle according to a first embodiment of the present invention. It is a system block diagram which shows the more detailed structure of the vehicle shown in FIG. It is a figure which shows the example of the waveform of the voltage in phase control.
  • (A) is a schematic diagram which shows the large inductance state for demonstrating adjustment of the inductance adjustment part in the generator shown in FIG.
  • (B) is a schematic diagram showing a small inductance state.
  • (A) is a circuit diagram which shows roughly the equivalent circuit of the coil
  • FIG. It is a flowchart which shows the electric current control shown in FIG. It is a graph which shows an example of transition of the state of each part of a vehicle.
  • A It is a schematic diagram which shows the large inductance state for demonstrating adjustment of the inductance adjustment part in the generator of the drive system of 2nd embodiment.
  • B is a schematic diagram showing a small inductance state. It is a schematic diagram which shows the generator in the drive system of 3rd embodiment.
  • A) is a schematic diagram which shows the 1st state of the stator shown in FIG.
  • (B) is a schematic diagram which shows the 2nd state of the stator shown in FIG.
  • the rotational power of the engine is converted into electric power by a generator.
  • the electric power generated by the generator is supplied to the motor via the current regulator.
  • the current adjusting device adjusts the current output from the generator.
  • the current adjusting device adjusts the load torque of the generator.
  • the current adjusting device has a function of distributing the rotational power of the engine to the power of the generator and the power for increasing the rotational speed of the engine by adjusting the current output from the generator. . For example, if the current adjusting device attempts to increase the current output from the generator without limitation in response to a request for increasing the current, an increase in the rotational speed of the engine is suppressed. On the other hand, the period required for increasing the current supplied to the motor becomes long.
  • the current adjustment device adjusts the current output from the generator so that the output current of the generator increases while the engine speed increases under the control of the control device. To do. As a result, the period for increasing the current supplied to the motor is shortened. That is, acceleration is improved.
  • the control device In controlling the output current of the generator, the control device obtains a target value of the output current based on, for example, the rotational speed of the engine and the output current of the generator. The control device controls the current adjusting device so that the output current becomes a target value.
  • the current controlled by the current regulator flows through an electrical circuit including the generator windings.
  • the electric circuit current has a transient characteristic due to the inductance of the winding. If the response of current during control is delayed due to the inductance of the winding, current overshoot is likely to occur. That is, a situation where the current exceeds the target value is likely to occur.
  • the load torque of the generator increases excessively. When the increased generator load torque approaches or exceeds the engine torque, an increase in engine speed is impeded. In particular, a request for an increase in current is normally accepted in a situation where the rotational speed of the engine is relatively low. When the engine speed is relatively low, the engine output torque is also relatively small.
  • the inventors paid attention to the inductance of the winding. Conventionally, when the inductance of the winding is reduced, the interlinkage magnetic flux is reduced, and as a result, it has been considered difficult to secure a sufficient current as a generator.
  • the magnetic circuit that affects the inductance is the magnetic circuit viewed from the winding. There is a difference between the magnetic circuit seen from the winding and the magnetic circuit coming out of the rotor magnet and passing through the winding.
  • the present inventor has made a distinction between a magnetic circuit viewed from the winding and a magnetic circuit that goes out of the rotor magnet and passes through the winding.
  • the present inventors have found that the inductance can be greatly changed by changing the magnetic resistance of the magnetic circuit as viewed from the winding.
  • the inventors have found that excessive fluctuations in current can be suppressed by reducing the inductance of the winding.
  • the magnetic resistance of the magnetic circuit passing through the stator core as seen from the winding increases.
  • the inductance of the winding becomes smaller than the state at the time when the request for increase is accepted.
  • the response of current during control is fast. For this reason, the situation in which the current fluctuates excessively beyond the target value can be suppressed. Therefore, in the control for increasing the output current of the generator, a situation in which the load torque of the generator approaches the torque of the engine, or a situation in which the load torque exceeds the torque of the engine can be suppressed.
  • Engine rotation stabilizes.
  • the time required for increasing the rotational speed of the engine is shortened.
  • FIG. 1 is a block diagram showing a schematic configuration of a vehicle according to the first embodiment of the present invention.
  • a vehicle V shown in FIG. 1 is an automobile.
  • the vehicle V includes a drive system P and a vehicle body D.
  • the vehicle body D of the vehicle V includes four wheels Wa, Wb, Wc, Wd, and a request instruction unit A. That is, the vehicle V includes wheels Wa, Wb, Wc, and Wd.
  • the vehicle V includes a request instruction unit A.
  • the drive system P is a drive source of the vehicle V.
  • the drive system P includes a generator 10, an engine 14, a control device 15, a converter 16, an inverter 17, and a motor 18. That is, the vehicle V includes the generator 10, the engine 14, the control device 15, the converter 16, the inverter 17, and the motor 18.
  • the converter 16 and the inverter 17 are included in a current adjusting device CC described later.
  • the drive system P is connected to the drive wheels Wc and Wd among the wheels Wa to Wd.
  • the drive wheels Wc and Wd are connected to the drive system P via the transmission mechanism G.
  • the drive system P causes the vehicle V to travel by rotationally driving the drive wheels Wc and Wd.
  • the drive wheels Wc and Wd correspond to an example of a drive member.
  • the drive system P outputs mechanical force to the drive wheels Wc and Wd.
  • the request instruction unit A outputs a current request.
  • the current request is a request related to the current supplied to the motor 18.
  • the request instruction unit A outputs a signal indicating a current request.
  • the request instruction unit A has an accelerator operator. Specifically, the request instruction unit A is operated by the driver of the vehicle V.
  • the request instruction unit A outputs a request for acceleration of the vehicle V based on the operation and the traveling state of the vehicle V.
  • the acceleration request for the vehicle V corresponds to the torque for driving the drive wheels Wc and Wd.
  • the acceleration request of the vehicle V is also an output request for the output of the vehicle V.
  • the output of the vehicle V corresponds to the output of the motor 18.
  • the acceleration request of the vehicle V corresponds to the output torque request of the motor 18.
  • the output torque of the motor 18 corresponds to the current supplied to the motor 18.
  • the request instructing unit A outputs a current request for the current supplied to the motor 18 as a torque request for the torque output from the motor 18.
  • the request instruction unit A is connected to the control device 15.
  • the request instruction unit A outputs a signal indicating a current request to the control device 15.
  • the current request includes a current increase request and a current decrease request.
  • the request for increasing the current corresponds to the request for increasing the output torque of the motor 18.
  • the request for reducing the current corresponds to the request for reducing the output torque of the motor 18.
  • the control device 15 is composed of, for example, a microcontroller.
  • the control device 15 includes a central processing unit CPU as a computer and a storage unit MEM.
  • the central processing unit CPU performs arithmetic processing based on the control program.
  • the storage unit MEM stores data related to programs and calculations.
  • FIG. 2 is a system configuration diagram showing a more detailed configuration of the vehicle shown in FIG.
  • the vehicle V includes a fuel tank 10A, an air cleaner 10B, and a muffler 10D.
  • the vehicle V includes a rotation angle sensor 191 and a current sensor 192.
  • the engine 14 is an internal combustion engine.
  • the engine 14 burns fuel. As a result, the engine 14 outputs mechanical power.
  • the engine 14 has an output shaft C.
  • the output shaft C is, for example, a crank shaft.
  • FIG. 2 the connection relationship between the engine 14 and the output shaft C is schematically shown.
  • the engine 14 includes a cylinder 142, a piston 143, a connecting rod 145, and a crankcase 146.
  • a combustion chamber is formed by the cylinder 142 and the piston 143.
  • the piston 143 and the crankshaft as the output shaft C are connected via a connecting rod 145.
  • the engine 14 is supplied with air via the air cleaner 10B.
  • the engine 14 is supplied with fuel from the fuel tank 10A.
  • the engine 14 reciprocates the piston 143 by burning the fuel supplied from the fuel tank 10A in the combustion chamber.
  • the reciprocating motion is converted into rotational power by the crankshaft which is the output shaft C.
  • the engine 14 outputs mechanical power from the output shaft C.
  • Exhaust gas generated by combustion in the engine 14 is discharged via the muffler 10D.
  • the rotational speed of the output shaft C represents the rotational speed of the engine 14.
  • the engine 14 and the drive wheels Wc and Wd are not connected by mechanical elements.
  • the drive wheels Wc and Wd are driven by the motor 18 without receiving rotational power from the engine 14.
  • the drive wheels Wc and Wd are driven by the motor 18 to drive the vehicle V.
  • All of the rotational power output from the engine 14 is once converted into power other than mechanical power in the drive system P.
  • the rotational power generated by the engine 14 is exclusively converted into electric power. Specifically, all of the mechanical power generated in the engine 14 excluding loss is converted into electric power by the generator 10.
  • the electric power converted by the generator 10 is converted into mechanical power by the motor 18.
  • the drive system P does not directly drive the external mechanism of the drive system P with the rotational power of the engine 14.
  • the engine 14 does not directly drive the drive wheels Wc and Wd with rotational power. For this reason, the control of the rotational power of the engine 14 is not easily restricted by the operating characteristics of the external mechanism. Therefore, the degree of freedom in controlling the rotational power of the engine 14 is high.
  • the engine 14 includes an engine output adjustment unit 141.
  • the engine output adjustment unit 141 adjusts the rotational power of the engine 14.
  • the engine output adjustment unit 141 includes a throttle valve adjustment mechanism 141a and a fuel injection device 141b.
  • the throttle valve adjustment mechanism 141 a adjusts the amount of air sucked into the engine 14.
  • the fuel injection device 141 b supplies fuel to the engine 14.
  • the engine output adjustment unit 141 controls the intake air amount and the fuel injection amount of the engine 14. As a result, the engine output adjustment unit 141 adjusts the rotational power output by the engine 14. For example, the engine output adjustment unit 141 increases the intake air amount and the fuel injection amount of the engine 14. As a result, the rotational power of the engine 14 increases.
  • the rotation angle sensor 191 detects the rotation angle of the output shaft C. That is, the rotation angle sensor 191 detects the rotation angle of the rotor 11 of the generator 10. By detecting the rotation angle of the output shaft C, the rotation speed of the output shaft C is detected.
  • the generator 10 is mechanically connected to the engine 14.
  • the generator 10 is connected to the output shaft C of the engine 14. In the present embodiment, the generator 10 is directly connected to the output shaft C.
  • the generator 10 receives rotational power from the engine 14 and supplies current to the motor 18.
  • the generator 10 is attached to the crankcase 146 of the engine 14, for example. In addition, the generator 10 may be arrange
  • the generator 10 includes a rotor 11, a stator 12, and an inductance adjusting unit 131.
  • the generator 10 is a three-phase brushless generator.
  • the rotor 11 and the stator 12 constitute a three-phase brushless generator.
  • the rotor 11 has a permanent magnet. More specifically, the rotor 11 has a plurality of magnetic pole portions 111 and a back yoke portion 112.
  • the magnetic pole part 111 is comprised with the permanent magnet.
  • the back yoke portion 112 is made of, for example, a ferromagnetic material.
  • the magnetic pole portion 111 is disposed between the back yoke portion 112 and the stator 12.
  • the magnetic pole portion 111 is attached to the back yoke portion 112.
  • the plurality of magnetic pole portions 111 are arranged in a line in the circumferential direction Z around the rotation axis of the rotor 11, that is, in the rotation direction of the rotor 11.
  • the plurality of magnetic pole portions 111 are arranged such that the N pole and the S pole are alternately arranged in the circumferential direction Z.
  • the generator 10 is a permanent magnet type three-phase brushless generator.
  • the rotor 11 is not provided with a winding to which current is supplied.
  • the rotor 11 is connected to the output shaft C of the engine 14.
  • the rotor 11 is rotated by the rotational power transmitted from the engine 14.
  • the rotation angle sensor 191 detects the rotation angle of the output shaft C. That is, the rotation angle sensor 191 detects the rotation angle of the rotor 11 of the generator 10.
  • the stator 12 is disposed to face the rotor 11.
  • the stator 12 has a plurality of windings 121 and a stator core 122.
  • the stator core 122 is made of, for example, a ferromagnetic material.
  • the stator core 122 constitutes a magnetic circuit of the stator 12.
  • the plurality of windings 121 are wound around the stator core 122.
  • the stator core 122 has a core body 122a (see FIG. 4) and a plurality of tooth portions 122b.
  • the core body 122a functions as a yoke.
  • the plurality of tooth portions 122 b extend from the core body 122 a toward the rotor 11.
  • the front end surface of the tooth portion 122b extending toward the rotor 11 and the magnetic pole portion 111 of the rotor 11 face each other through an air gap.
  • the tooth part 122b of the stator core 122 and the magnetic pole part 111 of the rotor 11 face each other directly.
  • the plurality of tooth portions 122b are arranged in a line in the circumferential direction Z with an interval in the circumferential direction Z.
  • the plurality of windings 121 are wound around the plurality of tooth portions 122b, respectively.
  • the winding 121 is wound so as to pass through a slot between the plurality of tooth portions 122b.
  • Each winding 121 corresponds to any one of the U phase, V phase, and W phase constituting the three phases.
  • the windings 121 corresponding to each of the U phase, the V phase, and the W phase are sequentially arranged in the circumferential direction Z.
  • the rotor 11 is connected to the output shaft C of the engine 14.
  • the rotor 11 rotates in conjunction with the rotation of the output shaft C.
  • the rotor 11 rotates the magnetic pole portion 111 in a posture facing the tooth portion 122b of the stator core 122.
  • the generator 10 generates power.
  • the generator 10 supplies the generated current to the motor 18.
  • the current output from the generator 10 is supplied to the motor 18.
  • the current output from the generator 10 is supplied to the motor 18.
  • the current output from the generator 10 is supplied to the motor 18.
  • the current output from the generator 10 is supplied to the motor 18 via the current adjusting device CC.
  • the current output from the generator 10 increases, the current supplied from the converter 16 to the inverter 17 increases and the current supplied to the motor 18 increases.
  • the voltage output from the generator 10 is supplied to the motor 18 via the converter 16 and the inverter 17.
  • the rotor 11 and the stator 12 have an axial gap type structure.
  • the rotor 11 and the stator 12 are opposed to each other in the rotation axis direction (axial direction) X of the rotor 11.
  • the plurality of tooth portions 122b included in the stator 12 protrude in the axial direction X from the core body 122a.
  • the axial direction X in the present embodiment is a direction in which the rotor 11 and the stator 12 face each other.
  • the magnetic circuit viewed from the winding 121 is, for example, a closed loop circuit.
  • the magnetic circuit viewed from the winding 121 passes through the internal path of the winding 121 and ends from one end of the internal path of the winding 121 (end close to the rotor) to one end of the internal path of the adjacent winding 121 ( End of the winding 121), through the internal path of the adjacent winding 121, and from the other end (end far from the rotor) of the internal path of the adjacent winding 121 to the internal path of the winding 121.
  • This is a circuit that reaches the other end (the end far from the rotor).
  • the internal path of the winding 121 is a path that passes through the inside of the winding 121 in the opposing direction of the rotor 11 and the stator 12.
  • a part of the magnetic circuit viewed from the winding 121 is a non-magnetic gap such as an air gap.
  • the magnetic circuit viewed from the winding includes, for example, a stator core 122 and a nonmagnetic gap.
  • the inductance adjusting unit 131 changes the inductance L of the winding 121.
  • the inductance adjusting unit 131 changes the magnetic resistance of the magnetic circuit passing through the stator core 122 as viewed from the winding 121. Thereby, the inductance adjusting unit 131 changes the inductance of the winding 121.
  • the inductance adjusting unit 131 is an inductance adjusting mechanism.
  • the inductance adjusting unit 131 can also adjust the current supplied from the generator 10 to the motor 18. Details of the inductance adjustment by the inductance adjustment unit 131 will be described later.
  • the current adjustment device CC is provided between the generator 10 and the motor 18.
  • the current adjusting device CC is provided in a power supply path between the generator 10 and the motor 18.
  • the current adjustment device CC is connected to the generator 10.
  • the current adjusting device CC is connected to the motor 18.
  • the current adjusting device CC adjusts the current output from the generator 10 to the motor 18.
  • the current adjusting device CC includes a converter 16 and an inverter 17.
  • the converter 16 is connected to the generator 10.
  • the inverter 17 is connected to the converter 16 and the motor 18.
  • the electric power output from the generator 10 is supplied to the motor 18 via the current adjusting device CC. That is, the electric power output from the generator 10 is supplied to the motor 18 via the converter 16 and the inverter 17.
  • the current sensor 192 detects a current supplied from the generator 10 to the motor 18.
  • the converter 16 rectifies the current output from the generator 10.
  • the converter 16 converts the three-phase alternating current output from the generator 10 into direct current.
  • Converter 16 outputs direct current.
  • the converter 16 has an inverter circuit, for example.
  • the converter 16 has, for example, a three-phase bridge inverter circuit.
  • the three-phase bridge inverter circuit includes switching elements Sa corresponding to the three phases.
  • the operation of the converter 16 is controlled by the control device 15.
  • the converter 16 changes the timing of the on / off operation of the switching element Sa with respect to a predetermined phase angle in a three-phase alternating current.
  • converter 16 can adjust the current supplied to motor 18.
  • the converter 16 can adjust the power supplied to the motor 18. Control of the converter 16 by the control device 15 will be described later.
  • the inverter 17 supplies a current for driving the motor 18 to the motor 18. Direct current is supplied to the inverter 17 from the converter 16.
  • the inverter 17 converts the direct current output from the converter 16 into a three-phase current whose phases are shifted from each other by 120 degrees.
  • the three-phase current corresponds to the three-phase brushless motor.
  • the inverter 17 has, for example, a three-phase bridge inverter circuit.
  • the three-phase bridge inverter circuit includes switching elements Sb corresponding to the three phases.
  • the switching element Sb is controlled based on a signal from a position sensor (not shown) that detects the rotational position of the rotor 181.
  • the inverter 17 controls the voltage supplied to the motor 18 by adjusting the on / off operation of the switching element Sb.
  • the inverter 17 turns on the switching element Sb with a pulse width modulated signal.
  • the control device 15 adjusts the ON / OFF duty ratio. Thereby, the control device 15 controls the voltage supplied to the motor 18 to an arbitrary value. Thereby, the inverter 17 can adjust the power supplied to the motor 18.
  • the motor 18 of this embodiment is a three-phase brushless motor.
  • the current adjustment device CC includes an inverter 17.
  • a DC motor may be employed as the motor 18.
  • the inverter 17 is omitted.
  • the current adjustment device CC includes only the converter 16.
  • the motor 18 is operated by electric power supplied from the generator 10.
  • the motor 18 rotationally drives the drive wheels Wc and Wd.
  • the motor 18 causes the vehicle V to travel.
  • the motor 18 is not mechanically connected to the generator 10.
  • the motor 18 is supplied with current from the generator 10 without going through a battery.
  • the motor 18 is, for example, a three-phase brushless motor.
  • the motor 18 includes a rotor 181 and a stator 182.
  • the structure of the rotor 181 and the stator 182 in the motor 18 of the present embodiment is the same as the rotor 11 and the stator 12 of the generator 10.
  • the rotor 181 of the motor 18 is connected to the drive wheels Wc and Wd via the transmission mechanism G.
  • the generator 10 and the motor 18 are electrically connected. For this reason, mechanical power transmission between the generator 10 and the motor 18 is unnecessary. Therefore, the freedom degree of arrangement
  • positioning of the generator 10 and the motor 18 is high.
  • the generator 14 may be provided in the engine 14 and the motor 18 may be disposed in the vicinity of the drive wheels Wc and Wd as drive members.
  • the motor 18 may have a rotor and a stator having a configuration different from that of the generator 10.
  • the motor 18 may have a different number of magnetic poles or a different number of teeth than the generator 10.
  • an induction motor or a stepping motor may be employed.
  • a DC motor provided with a brush may be employed.
  • the motor 18 is mechanically connected to the drive wheels Wc and Wd so that rotational power is transmitted to the drive wheels Wc and Wd.
  • the motor 18 is mechanically connected to the drive wheels Wc and Wd via the transmission mechanism G.
  • the rotor 181 of the motor 18 is connected to the transmission mechanism G.
  • the control device 15 controls the engine output adjustment unit 141, the inductance adjustment unit 131, and the current adjustment device CC.
  • the control device 15 controls the engine output adjustment unit 141, the inductance adjustment unit 131, and the current adjustment device CC according to the current request.
  • the current request is output from the request instruction unit A according to the operation amount of the request instruction unit A.
  • the control device 15 controls the current supplied to the motor 18 by controlling the engine output adjustment unit 141, the inductance adjustment unit 131, and the current adjustment device CC.
  • the output torque of the motor 18 is controlled. That is, the control device 15 controls the output torque of the motor 18.
  • the output torque of the drive wheels Wc and Wd as drive members is controlled. That is, the control device 15 controls the output torque of the drive wheels Wc and Wd.
  • the control device 15 is connected to the engine output adjustment unit 141 of the engine 14 and the inductance adjustment unit 131 of the generator 10.
  • the control device 15 is connected to the current adjustment device CC.
  • the control device 15 is connected to the converter 16 and the inverter 17.
  • the control device 15 is connected to the rotation angle sensor 191 and the current sensor 192. Based on the signal from the rotation angle sensor 191, the control device 15 obtains information on the rotational speed of the engine 14, that is, information on the rotational speed of the output shaft C of the engine 14.
  • the control device 15 obtains information on the rotational position of the rotor 181 based on a signal from the rotation angle sensor 191.
  • the control device 15 obtains information on the current supplied from the generator 10 to the motor 18 by a signal from the current sensor 192.
  • the control device 15 includes a current request receiving unit 151, an engine control unit 152, an inductance control unit 153, and a current control unit 154.
  • the current request receiving unit 151, the engine control unit 152, the inductance control unit 153, and the current control unit 154 are configured by the central processing unit CPU of the control device 15 executing a program.
  • the operations performed by the current request receiving unit 151, the engine control unit 152, the inductance control unit 153, and the current control unit 154, which will be described later, can be said to be operations of the control device 15.
  • the engine control unit 152 controls the engine output adjustment unit 141.
  • the engine control unit 152 causes the engine output adjustment unit 141 to adjust the rotational power of the engine 14.
  • the current control unit 154 controls the current adjusting device CC.
  • the current control unit 154 causes the current adjustment device CC to adjust the current output from the generator 10 to the motor 18.
  • the current control unit 154 in this embodiment controls both the converter 16 and the inverter 17.
  • Current controller 154 performs phase control on converter 16.
  • the phase control is control that advances or delays the energization timing of the switching element Sa of the converter 16. In the phase control, each of the plurality of switching elements Sa is turned on / off at a period equal to the period of the induced electromotive voltage of the winding 121.
  • FIG. 3 is a diagram illustrating an example of a voltage waveform in the phase control.
  • Vu represents an induced electromotive voltage of the U-phase stator winding W among the multiple-phase stator windings W of the generator 10.
  • Vsup represents a control signal of the switching element Sa connected to the U-phase stator winding W among the plurality of switching elements Sa included in the converter 16.
  • Vsup represents a control signal for the two switching elements Sa connected to the U-phase stator winding W.
  • the H level at Vsup represents the ON state of the switching element Sa.
  • the L level represents an off state.
  • the induced electromotive voltages and control signals of the U phase, V phase, and W phase are shifted from each other by 120 degrees.
  • the current control unit 154 turns on / off the switching element Sa connected to the U-phase stator winding W according to a signal Vsup having a cycle equal to the cycle of the induced electromotive voltage of the winding 121 of the generator 10. Control off.
  • the on / off duty ratio of the plurality of switching elements Sa is fixed.
  • the current control unit 154 generates a signal Vsup having a period equal to the period of the induced electromotive voltage of the winding 121 based on the output signal of the rotation angle sensor 191.
  • the current control unit 154 controls the current flowing from the stator winding W to the motor 18 by advancing or delaying the energization timing of the switching element Sa in the phase control.
  • the current control unit 154 reduces the current output from the generator 10 by advancing the on / off phase of the corresponding switching element Sa with respect to the induced electromotive voltage Vu.
  • the current control unit 154 increases the current output from the generator 10 by delaying the on / off phase of the corresponding switching element Sa with respect to the induced electromotive voltage Vu.
  • the current control unit 154 controls the phase of the on / off operation of each of the plurality of switching elements Sa with respect to the phase of the induced electromotive voltage of the winding 121.
  • the current output from the converter 16 increases or decreases as the phase of the on / off operation advances or delays. That is, the current output from the converter 16 is adjusted by the control of the converter 16 by the current control unit 154. That is, the current output from the generator 10 to the motor 18 is adjusted by the control of the converter 16 by the current control unit 154.
  • the current control unit 154 can perform control different from the phase control described above.
  • the current control unit 154 may perform vector control instead of phase control.
  • Vector control is a method of controlling the current of the generator 10 by separating it into a d-axis component corresponding to the magnetic flux direction of the magnetic pole and a q-axis component perpendicular to the magnetic flux direction in electrical angle.
  • the switching element Sa operates with a pulse width modulated (PWM) signal having a cycle shorter than the cycle of the induced electromotive voltage of the winding 121.
  • PWM pulse width modulated
  • energization is performed so that a sine wave current flows in each phase of the plurality of windings 121.
  • the current output from the converter 16 is increased or decreased by controlling the duty ratio of the signal.
  • the current control unit 154 causes the inverter 17 to adjust the current output to the motor 18.
  • the current control unit 154 turns on / off the plurality of switching elements Sa at the timing of the 120-degree energization method.
  • the current control unit 154 performs pulse width modulation (PWM) control on the plurality of switching elements Sa.
  • PWM pulse width modulation
  • the current control unit 154 adjusts the current output to the motor 18 by controlling the duty ratio of the signal to be turned on.
  • Current control unit 154 adjusts the current input from converter 16 to inverter 17 by controlling the duty ratio. That is, the current output from the generator 10 to the motor 18 is adjusted by the control of the converter 16 by the current control unit 154.
  • the current control unit 154 preferably performs pulse width modulation with a pulse having a frequency higher than the upper limit of the audible frequency.
  • the audible frequency is a frequency from 20 Hz to 20 kHz.
  • the current control unit 154 can also perform control different from the 120-degree energization method.
  • the current control unit 154 may perform vector control, for example.
  • the current control unit 154 controls the current output from the generator 10 to the motor 18 by controlling the current adjusting device CC.
  • the load torque of the generator 10 depends on the current output from the generator 10. Therefore, the current control unit 154 controls the load torque of the generator 10 by controlling the current adjusting device CC.
  • the inductance control unit 153 controls the inductance adjustment unit 131.
  • the inductance control unit 153 causes the inductance adjustment unit 131 to adjust the inductance of the winding 121.
  • the inductance control unit 153 causes the inductance adjustment unit 131 to change the magnetic resistance of the magnetic circuit passing through the stator core 122 as viewed from the winding 121. As a result, the inductance control unit 153 changes the inductance of the winding 121.
  • Control of the current output from the generator 10 can be performed using either the converter 16 or the inverter 17. Therefore, the current control unit 154 may control one of the converter 16 and the inverter 17 in order to control the current output from the generator 10. For example, the current control unit 154 performs phase control on the converter 16 and controls the inverter 17 using a 120-degree energization method. At this time, the current control unit 154 does not perform PWM control on the inverter 17 and adjusts the phase advance or delay of the converter 16. That is, only the converter 16 is used for controlling the current output from the generator 10. Conversely, current controller 154 may perform PWM control on inverter 17 without adjusting the phase advance or delay of converter 16. That is, only the inverter 17 is used for controlling the current output from the generator 10.
  • FIG. 4A and 4B are schematic diagrams for explaining adjustment of the inductance adjusting unit 131 in the generator 10 shown in FIG.
  • FIG. 4A shows a large inductance state of the generator 10.
  • FIG. 4B shows a small inductance state of the generator 10.
  • FIG. 4A shows a part of the rotor 11 and the stator 12 provided in the generator 10.
  • the generator 10 of this embodiment is comprised by the SPM (Surface Permanent Magnet) generator.
  • the rotor 11 and the stator 12 are opposed to each other. More specifically, the magnetic pole portion 111 of the rotor 11 and the tooth portion 122b of the stator core 122 of the stator 12 face each other with an air gap interposed therebetween. The magnetic pole portion 111 is exposed toward the stator 12.
  • the inductance adjusting unit 131 changes the magnetic resistance of the magnetic circuit F ⁇ b> 2 passing through the stator core 122 as viewed from the winding 121. Thereby, the inductance adjusting unit 131 changes the inductance of the winding 121 and adjusts the current supplied to the motor 18. Specifically, the inductance adjusting unit 131 moves the relative position of the stator core 122 with respect to the winding 121. Thereby, the inductance adjusting unit 131 changes the magnetic resistance of the magnetic circuit F ⁇ b> 2 passing through the stator core 122 as viewed from the winding 121. Winding 121 is fixed to a housing (not shown) of generator 10.
  • the stator core 122 is supported by the housing so as to be movable in the axial direction X with respect to the winding 121.
  • Winding 121 is not fixed to tooth part 122b.
  • a gap is provided between the cylindrical winding 121 and the tooth portion 122b.
  • the clearance is a clearance that allows the tooth portion 122b to move with respect to the winding 121.
  • the inductance adjusting unit 131 moves the stator core 122 so that the tooth portion 122b moves in a direction in and out of the winding 121 wound in a cylindrical shape.
  • the inductance adjusting unit 131 moves the stator core 122 in the axial direction X.
  • the control device 15 operates the inductance adjusting unit 131 in response to the current request.
  • the inductance adjusting unit 131 is schematically shown by a pinion rack mechanism and a motor.
  • a mechanism other than that shown in the figure can be employed as the inductance adjusting unit 131 that moves the stator core 122.
  • a mechanism having a cylindrical member arranged concentrically with the stator core and screw-engaged with the stator core can be employed.
  • the stator core moves in the axial direction X.
  • the inductance adjusting unit 131 moves the relative position of the stator core 122 with respect to the winding 121 so as to maintain the relative position of the stator core 122 with respect to the rotor 11.
  • a broken line Q in FIG. 4A indicates that the rotor 11 moves in conjunction with the stator core 122 in the axial direction X.
  • the structure for maintaining the relative position between the rotor 11 and the stator core 122 is formed by, for example, a bearing portion 113 that rotatably supports the rotor 11.
  • the position of the bearing portion 113 is fixed with respect to the stator core 122.
  • FIG. 4A and 4B show a main magnetic flux F1 generated by the magnetic pole portion 111.
  • FIG. A line of the magnetic flux F1 represents a main magnetic circuit through which the magnetic flux F1 generated in the magnetic pole portion 111 passes. Therefore, the magnetic circuit through which the magnetic flux F1 passes is referred to as a magnetic circuit F1.
  • the main magnetic flux F1 generated by the magnetic pole part 111 flows through the magnetic pole part 111, the air gap between the magnetic pole part 111 and the tooth part 122b, the tooth part 122b, the core body 122a, and the back yoke part 112.
  • the magnetic circuit F1 is configured by the magnetic pole part 111, the air gap between the magnetic pole part 111 and the tooth part 122b, the tooth part 122b, the core body 122a, and the back yoke part 112.
  • 2A and 2B show three tooth portions 122b among the plurality of tooth portions 122b arranged in the circumferential direction.
  • the figure shows a state in which the magnetic pole portion 111 faces the central tooth portion 122b of the three tooth portions 122b.
  • the amount of magnetic flux generated by the magnetic pole portion 111 and interlinked with the winding 121 changes.
  • an induced electromotive voltage is generated in the winding 121. That is, power generation is performed.
  • the induced electromotive voltage generated in the winding 121 depends on the amount of magnetic flux interlinking with the winding 121.
  • the amount of magnetic flux interlinking with the winding 121 is smaller as the magnetic resistance of the magnetic circuit F1 is larger.
  • the magnetic resistance of the magnetic circuit F1 mainly depends on the magnetic resistance of the air gap between the tooth part 122b and the magnetic pole part 111.
  • the magnetic resistance of the air gap between the tooth part 122b and the magnetic pole part 111 depends on the air gap length L1 between the tooth part 122b and the magnetic pole part 111. Therefore, the induced electromotive voltage generated in the winding 121 depends on the air gap length L1 between the tooth portion 122b and the magnetic pole portion 111.
  • FIG. 4A and 4B show the main magnetic flux F2 generated by the current flowing through the winding 121.
  • FIG. When power generation is performed, a current due to the induced electromotive voltage flows through the winding 121.
  • the magnetic flux F2 is generated by a current flowing through the winding 121 when power generation is performed.
  • the line of the magnetic flux F2 represents the main magnetic circuit through which the magnetic flux F2 generated by the current of the winding 121 passes. Therefore, the magnetic circuit through which the magnetic flux F2 passes is referred to as a magnetic circuit F2.
  • the magnetic circuit F ⁇ b> 2 is a magnetic circuit viewed from the winding 121.
  • the magnetic circuit F2 viewed from the winding 121 is configured by a path that passes through the inside of the winding 121 and minimizes the entire magnetic resistance of the magnetic circuit F2.
  • the magnetic circuit F2 passes through the stator core 122.
  • the magnetic circuit F2 passes through the adjacent tooth portions 122b.
  • three tooth portions 122b among the plurality of tooth portions 122b arranged in the circumferential direction are shown.
  • winding 121 wound around the center tooth part 122b among the three tooth parts 122b is shown as a representative.
  • a magnetic circuit F2 viewed from a certain winding 121 passes through a tooth portion 122b wound by the winding 121 and two tooth portions 122b adjacent to the tooth portion 122b.
  • the main magnetic flux F2 generated by the current in the winding 121 passes through the air gap between the tooth portion 122b, the core body 122a, and two adjacent tooth portions 122b. That is, the magnetic circuit F2 is configured by the air gap between the tooth portion 122b, the core main body 122a, and the adjacent tooth portion 122b.
  • the magnetic circuit F2 passing through the stator core 122 includes one air gap.
  • the part constituted by the air gap in the magnetic circuit F2 is indicated by a thick line.
  • a thick line portion constituted by an air gap is simply referred to as an air gap F2a.
  • the air gap F ⁇ b> 2 a is between the winding 121 and the rotor 11.
  • the air gap F2a constituting the magnetic circuit F2 is between the winding 121 and the rotor 11 and between the adjacent tooth portions 122b.
  • the air gap F2a is a nonmagnetic material gap.
  • the magnetic circuit F2 in the air gap F2a is provided so as to connect portions of the two adjacent tooth portions 122b facing the rotor 11 to each other.
  • the magnetic circuit F2 viewed from the winding 121 is configured by an air gap F2a between two adjacent tooth portions 122b.
  • the magnetic circuit F ⁇ b> 2 is not substantially constituted by the back yoke portion 112 of the rotor 11. Most of the magnetic flux F2 generated by the current of the winding 121 does not pass through the back yoke portion 112 of the rotor 11 and passes through the air gap between the two adjacent tooth portions 122b for the following reason.
  • the magnetic pole portion 111 is simply regarded as a magnetic flux path.
  • the magnetic pole part 111 is comprised with the permanent magnet whose magnetic permeability is as low as air. Therefore, the magnetic pole part 111 can be regarded as equivalent to air in the magnetic circuit F2. Since the magnetic pole part 111 is equivalent to air, the substantial air gap length between the stator 12 and the rotor 11 is the distance L11 from the tooth part 122b to the back yoke part 112. The distance L11 from the tooth part 122b to the back yoke part 112 includes the thickness of the magnetic pole part 111 in the axial direction X.
  • the magnetic pole part 111 is longer than the distance L1 from the tooth part 122b to the magnetic pole part 111.
  • the amount of magnetic flux F2 generated by the current of the winding 121 is smaller than the amount of magnetic flux generated by the permanent magnet of the magnetic pole portion 111.
  • Most of the magnetic flux F2 generated by the current of the winding 121 is difficult to reach the back yoke portion 112 across the air gap length L11. Accordingly, the magnetic flux passing through the back yoke portion 112 is small in the magnetic flux F2 generated by the current of the winding 121.
  • the inductance of the winding 121 is set to the largest value within a settable value range.
  • the air gap F2a constituting the magnetic circuit F2 has the largest magnetoresistance among the elements constituting the magnetic circuit F2.
  • the air gap F2a has a larger magnetic resistance than the remaining portion F2b of the air gap F2a in the magnetic circuit F2.
  • the inductance of the winding 121 depends on the magnetic resistance of the magnetic circuit F2 viewed from the winding 121.
  • the inductance of the winding 121 is inversely proportional to the magnetic resistance of the magnetic circuit F 2 viewed from the winding 121.
  • the magnetic resistance of the magnetic circuit F2 viewed from the winding 121 is the magnetic resistance of the magnetic circuit F2 through which the magnetic flux F2 generated by the current of the winding 121 flows.
  • the magnetic circuit F2 magnetic resistance passing through the stator core 122 as viewed from the winding 121 includes the magnetic resistance of the air gap between the two adjacent tooth portions 122b.
  • the magnetic flux F ⁇ b> 2 generated by the current in the winding 121 passes through both the stator 12 and the rotor 11.
  • most of the magnetic flux generated by the current in the winding 121 passes through the air gap between the two adjacent tooth portions 122b without passing through the back yoke portion 112 of the rotor 11. Therefore, the magnetic resistance viewed from the winding 121 is more dependent on the magnetic resistance of the magnetic circuit F2 passing through the stator 12 than the magnetic resistance of the magnetic circuit F1 passing through the rotor 11.
  • the inductance of the winding 121 is more strongly dependent on the magnetic resistance of the magnetic circuit F2 passing through the stator core 122 as viewed from the winding 121 than the magnetic resistance of the magnetic circuit F1 passing through the rotor 11 as viewed from the winding 121. To do. Therefore, the inductance of the winding 121 substantially depends on the magnetic resistance of the magnetic circuit F ⁇ b> 2 passing through the stator core 122 as viewed from the winding 121.
  • the inductance adjusting unit 131 moves the relative position of the stator core 122 with respect to the winding 121. Thereby, the inductance adjusting unit 131 changes the magnetic resistance of the magnetic circuit F ⁇ b> 2 passing through the stator core 122 as viewed from the winding 121. Thereby, the inductance adjusting unit 131 changes the inductance of the winding 121. For example, when the inductance adjusting unit 131 moves the stator core 122 in the direction of the arrow X1, the tooth portion 122b of the stator core 122 moves in a direction to come out of the winding 121 wound in a cylindrical shape.
  • FIG. 4B shows a state having a smaller inductance than the state of FIG.
  • the tooth portion 122b of the stator core 122 When the tooth portion 122b of the stator core 122 is removed from the winding 121, the amount of the stator core 122 existing in the winding 121 is reduced. As a result, the magnetic flux in the winding 121 is expanded. From the viewpoint of the magnetic circuit F2 viewed from the winding 121, the length of the air gap F2a constituting the magnetic circuit F2 is increased. Therefore, the magnetic resistance of the air gap F2a between the winding 121 and the rotor 11 increases. That is, the magnetic resistance of the air gap F2a having the largest magnetic resistance increases. As a result, the magnetic resistance of the magnetic circuit F2 passing through the stator core 122 as seen from the winding 121 increases. As a result, the inductance of the winding 121 is reduced.
  • FIG. 4B shows a state where the inductance adjusting unit 131 has moved the stator core 122 in the direction of the arrow X1.
  • the magnetic resistance of the magnetic circuit F2 passing through the stator core 122 as viewed from the winding 121 increases.
  • the inductance of the winding 121 is reduced.
  • the inductance adjusting unit 131 changes the magnetic resistance of the air gap F2a having the largest magnetic resistance.
  • the inductance adjusting unit 131 changes the magnetic resistance of the magnetic circuit F2 passing through the adjacent tooth portion 122b. Therefore, for example, the inductance of the winding 121 is likely to change greatly compared to the case where the magnetic resistance of the portion other than the air gap F2a is changed.
  • the inductance adjusting unit 131 changes the inductance of the winding 121 so that the rate of change of the inductance of the winding 121 is larger than the rate of change of the magnetic flux linked to the winding 121.
  • the inductance adjusting unit 131 of the generator 10 of the present embodiment moves the relative position of the stator core 122 with respect to the winding 121 so as to maintain the relative position of the stator core 122 with respect to the rotor 11.
  • the inductance adjusting unit 131 moves the stator core 122 in the direction of the arrow X1
  • the rotor 11 is also moved in the direction of the arrow X1 in conjunction with the stator core 122.
  • the inductance adjusting unit 131 switches the state of the generator 10 between a large inductance state shown in FIG. 4A and a small inductance state shown in FIG. 4B under the control of the inductance control unit 153.
  • the small inductance state is a state in which the magnetic resistance of the magnetic circuit F2 passing through the stator core 122 is relatively large and the inductance of the winding 121 is small as viewed from the winding 121.
  • the large inductance state is a state in which the magnetic resistance of the magnetic circuit F2 passing through the stator core 122 is relatively small and the inductance of the winding 121 is large as viewed from the winding 121.
  • the small inductance state corresponds to a certain inductance value range.
  • the large inductance state corresponds to a certain inductance value range.
  • the inductance corresponding to the small inductance state is smaller than the inductance corresponding to the large inductance state.
  • the inductance range corresponding to the small inductance state and the inductance range corresponding to the large inductance state do not overlap.
  • the inductance corresponding to the small inductance state and the inductance corresponding to the large inductance state are distinguished by, for example, boundary values.
  • the boundary value is, for example, the median value of the maximum value and the minimum value of inductance that can be taken by the control of the inductance control unit 153.
  • the inductance adjusting unit 131 changes the inductance of the winding 121 so that the change rate of the inductance of the winding 121 is larger than the change rate of the magnetic flux linked to the winding 121.
  • the inductance adjusting unit 131 of the generator 10 of the present embodiment moves the relative position of the stator core 122 with respect to the winding 121 so as to maintain the relative position of the stator core 122 with respect to the rotor 11.
  • the inductance adjusting unit 131 moves the stator core 122 in the direction of the arrow X1
  • the rotor 11 is also moved in the direction of the arrow X1 in conjunction with the stator core 122. For this reason, the relative position of the stator core 122 with respect to the rotor 11 is maintained.
  • FIG. 5A is a circuit diagram schematically showing the winding 121 of the generator 10 shown in FIGS. 4A and 4B.
  • a circuit for one phase is shown in a simplified manner for easy understanding of the operation of the winding 121.
  • the winding 121 electrically includes an AC voltage source 121A, an inductor 121B, and a resistor 121C.
  • the winding 121 is connected to the current adjusting device CC.
  • the current adjusting device CC is controlled by the current control unit 154.
  • Converter 16 of current regulator CC rectifies the alternating current generated in winding 121.
  • the inverter 17 of the current adjusting device CC generates a three-phase pulse current corresponding to the rotation of the motor from the rectified direct current.
  • a current supplied from the generator 10 to the motor 18 a current I flowing from the converter 16 to the inverter 17 is shown.
  • the current I is a direct current.
  • the current supplied from the generator 10 to the motor 18 can also be obtained by detecting the current supplied from the plurality of windings 121 of the generator 10 to the converter 16.
  • the current supplied from the generator 10 to the motor 18 can also be obtained by detecting the current flowing through the winding of the motor 18 from the inverter 17.
  • the current adjustment device CC adjusts the current I supplied from the generator 10 to the motor 18 by being controlled by the current control unit 154.
  • the current I is controlled by the converter 16 and / or the inverter 17.
  • the current control unit 154 controls the current I supplied from the generator 10 to the motor 18 based on the control amount.
  • the control amount includes the rotational speed of the engine 14 and the current I.
  • the rotation speed of the engine 14 is obtained based on the detection result of the rotation angle sensor 191.
  • the current I is obtained based on the detection result of the current sensor 192.
  • the current control unit 154 controls the current adjustment device CC according to the control amount. Accordingly, the current control unit 154 controls the current I supplied from the generator 10 to the motor 18.
  • the current control unit 154 adjusts the current output from the generator 10 so that the time taken to increase the current output from the generator 10 is reduced.
  • the current control unit 154 adjusts the current output from the generator 10 so that the time taken to increase the current output from the generator 10 is minimized.
  • the current control unit 154 performs feedback control according to the amount of change in the rotational speed of the engine 14 and the amount of change in the output current of the generator 10. Specifically, the current control unit 154 adjusts the current output from the generator 10 so that the rotational speed of the engine 14 increases and the output current of the generator 10 increases (current increase mode).
  • the current control unit 154 repeatedly stores the current value based on the detection result of the current sensor 192, and compares the previously stored values to obtain the amount of change in the output current of the generator 10.
  • the current control unit 154 repeatedly stores the value of the rotation speed based on the detection result of the rotation angle sensor 191, and compares the values stored in the past to obtain the amount of change in the rotation speed.
  • the current control unit 154 increases the current target output from the generator 10 when the rotation speed is increasing.
  • the current control unit 154 controls the increase amount of the current target output from the generator 10 according to the increase amount of the rotational speed of the engine 14. For example, the current control unit 154 increases the increase amount of the current target output from the generator 10 as the increase amount of the rotation speed of the engine 14 is larger.
  • the current control unit 154 decreases the increase amount of the current target when the increase amount of the rotational speed of the engine 14 is small.
  • the current control unit 154 causes the current adjustment device CC to adjust the current I to the current target.
  • the current control unit 154 controls the current output from the generator 10 by feedback control according to the amount of change in the rotational speed of the engine 14.
  • the current I varies by feedback control.
  • the current I flows through an electric circuit including the winding 121 of the generator 10. That is, the electric circuit through which the current I flows has the inductor 121B.
  • the current adjusting device CC changes the current I, the current I changes along with the response characteristic caused by the inductor 121B.
  • FIG. 5B is a graph showing an example of response characteristics caused by the inductor.
  • the horizontal axis of the graph in FIG. 5B indicates time.
  • the vertical axis represents current.
  • the graph schematically shows an example of a change in current over time when a circuit including an inductor is closed by control.
  • the solid line shows the change when the inductance is large.
  • a broken line shows a change when the inductance is small.
  • the current flowing through the circuit including the inductor is controlled, it takes time for the current to reach the control target. That is, the current response is delayed with respect to the control. If the response of the current flowing through the circuit including the winding 121 shown in FIG.
  • the inductance adjusting unit 131 moves the relative position of the stator core 122 with respect to the winding 121. Thereby, the inductance adjusting unit 131 changes the magnetic resistance of the magnetic circuit F ⁇ b> 2 passing through the stator core 122 as viewed from the winding 121. Thereby, the inductance adjusting unit 131 changes the inductance L of the winding 121.
  • the current response to current control can be adjusted. Therefore, current overshoot during current control can be suppressed.
  • the inductance adjusting unit 131 changes the inductance of the winding 121 by changing the magnetic resistance of the air gap F ⁇ b> 2 a between the winding 121 and the rotor 11.
  • An alternating magnetic field is generated between the winding 121 and the rotor 11 by the magnetic pole portion 111 that moves as the rotor 11 rotates.
  • the loss for the alternating magnetic field is reduced.
  • the iron loss in the magnetic circuit F2 passing through the air gap F2a is reduced. By reducing the loss, the load torque is small.
  • the movement of the relative position of the stator core 122 with respect to the winding 121 changes the magnetic resistance of the magnetic circuit F ⁇ b> 2 passing through the stator core 122 as viewed from the winding 121.
  • the inductance L of the winding 121 changes.
  • the inductance L since the inductance L is changed by changing the magnetic resistance of the magnetic circuit F2 passing through the stator core 122 as viewed from the winding 121, the inductance L can be gradually changed.
  • the winding is required to use a thick wire to cope with an excessive current change. Therefore, the efficiency is reduced in the method of changing the substantial number of windings.
  • the generator becomes larger.
  • the inductance L of the winding 121 changes as the magnetic resistance of the magnetic circuit F2 passing through the stator core 122 changes. For this reason, the inductance L of the winding 121 can be gradually changed. As a result, a rapid increase in voltage generated in the winding 121 is suppressed. Accordingly, it is possible to connect a low breakdown voltage component to the generator 10. For this reason, efficiency is high. Moreover, it is not necessary to provide a switching element for current switching. Moreover, a comparatively thin wire can be used for the winding. The increase in size of the generator 10 can be suppressed.
  • FIG. 6 is a flowchart for explaining the operation of the vehicle V.
  • the operation of the vehicle V is controlled by the control device 15 that executes control processing.
  • the control device 15 repeats the control process shown in FIG. The control will be described with reference to FIG.
  • the current request receiving unit 151 of the control device 15 receives a request for current (S10). Specifically, the current request receiving unit 151 receives a signal representing a request for current from the request instructing unit A. The current request receiving unit 151 obtains a current request based on the operation amount of the request instructing unit A. Specifically, the current request receiving unit 151 obtains a current request based on the operation amount of the request instructing unit A and the traveling state of the vehicle V.
  • control device 15 performs current control (S20).
  • the control device 15 controls the current output from the generator 10 to the motor 18 based on the current request received by the current request receiving unit 151.
  • the engine control unit 152, the inductance control unit 153, and the current control unit 154 control the current.
  • FIG. 7 is a flowchart showing the current control shown in FIG.
  • the control device 15 determines whether or not a current increase request has been received by the current request receiving unit 151 (S21).
  • the current request receiving unit 151 determines a request for increase in current by, for example, comparing a request for current with a request for current in the past.
  • the control device 15 executes the process of step S24.
  • the control device 15 decreases the inductance (S22).
  • the control device 15 decreases the inductance (S22).
  • the inductance control unit 153 causes the inductance adjustment unit 131 to reduce the inductance.
  • the inductance control unit 153 causes the inductance adjustment unit 131 to increase the magnetic resistance of the magnetic circuit F ⁇ b> 2 passing through the stator core 122 as viewed from the winding 121.
  • the inductance control unit 153 causes the inductance adjustment unit 131 to make the inductance of the winding 121 smaller than the state before accepting a request for an increase in current.
  • the control device 15 sets the control mode of the control device 15 to the current increase mode (S23).
  • the current increase mode is a mode for increasing the current supplied to the motor 18.
  • control device 15 determines whether or not the control mode of the control device 15 is the current increase mode (S24).
  • the control device 15 executes the engine power increase control and the current increase control (S25).
  • the engine control unit 152 causes the engine output adjustment unit to increase the rotational power of the engine 14.
  • the current control unit 154 causes the current adjusting device CC to adjust the current output from the generator 10.
  • the current control unit 154 adjusts the current output from the generator 10 so that the time taken to increase the current output from the generator 10 is reduced.
  • the speed at which the current output from the generator 10 increases is affected by the speed at which the rotational speed of the engine 14 increases, as described above.
  • the current control unit 154 causes the current adjustment device CC to adjust the current output from the generator 10 so that the rotational speed of the engine 14 increases and the output current of the generator 10 increases.
  • the current control unit 154 controls the current using the converter 16.
  • the current control unit 154 controls the current output from the generator 10 by performing phase control on the converter 16.
  • the current control unit 154 performs control on the inverter 17 by a 120-degree energization method without PWM control.
  • the engine control unit 152, the inductance control unit 153, and the current control unit 154 included in the control device 15 are as follows. Take control.
  • the inductance control unit 153 places the generator 10 in a small inductance state. That is, the inductance control unit 153 brings the generator 10 into a state where the magnetic resistance of the magnetic circuit passing through the stator core is relatively large and the inductance of the winding is small, as viewed from the winding.
  • the engine control unit 152 increases the rotational power of the engine 14 to the engine output adjustment unit 141 than when the request for increasing the current is received.
  • the current control unit 154 adjusts the current output from the generator 10 so that the rotational speed of the engine 14 increases and the output current of the generator 10 increases.
  • the control device 15 determines whether or not the rotational speed of the engine has increased (S26).
  • the control device 15 determines whether or not the engine rotation speed is higher than at least the engine rotation speed when a request for increasing the current is received. More specifically, in step S26, the control device 15 determines whether or not the rotational speed has increased by determining whether or not the rotational speed of the engine is greater than a predetermined value.
  • the predetermined value is set to a value higher than the rotational speed of the engine when a request for increasing the current is received.
  • the predetermined value is preferably set to a rotational speed value that reduces the influence of the load torque of the generator 10 on the rotational stability of the engine 14, for example.
  • the predetermined value may be a fixed value.
  • the predetermined value may be a value corresponding to a predetermined ratio with respect to a target value for increasing the rotational speed of the engine.
  • the control device 15 may determine whether or not the rotational speed has increased, for example, by determining whether or not the increase in the rotational speed of the engine has continued beyond a predetermined time.
  • the control device 15 changes the state of the generator 10 to a large inductance state.
  • the control device 15 increases the inductance (S27).
  • the inductance control unit 153 causes the inductance adjustment unit 131 to increase the inductance.
  • the inductance control unit 153 causes the inductance adjustment unit 131 to reduce the magnetic resistance of the magnetic circuit F ⁇ b> 2 passing through the stator core 122 as viewed from the winding 121. Accordingly, the inductance control unit 153 causes the inductance adjustment unit 131 to increase the inductance of the winding 121.
  • the control device 15 adjusts the output current to the current adjustment device CC so that the output current of the generator 10 increases, and the stator core 122 viewed from the winding 121 in the inductance adjustment unit 131.
  • the magnetic resistance of the magnetic circuit F2 passing through is reduced. Accordingly, the inductance control unit 153 causes the inductance adjustment unit 131 to increase the inductance of the winding 121.
  • step S27 the control device 15 makes the speed of increasing the inductance smaller than the speed of decreasing the inductance in step S22. Specifically, the inductance control unit 153 gradually increases the inductance with the passage of time in step S27.
  • the control device 15 determines whether or not a request to decrease the current has been received (S28). When the request for reducing the current is not received (No in S28), the control device 15 performs a process of step S31 described later. When a request for reducing the current is received (Yes in S28), the control device 15 cancels the setting of the current increasing mode (S29). Thereafter, the control device 15 performs the process of step S31.
  • the control device 15 executes engine power control and current control (S31).
  • the engine control unit 152 causes the engine output adjustment unit to adjust the rotational power of the engine in response to a request for current.
  • the current control unit 154 causes the current adjustment device to adjust the current output from the generator in response to a request for current. For example, when the current request becomes smaller than a predetermined level, the engine control unit 152 reduces the rotational power of the engine. Further, the current control unit 154 adjusts the current output from the generator 10.
  • FIG. 8 is a graph showing an example of the transition of the state of each part of the vehicle V.
  • the horizontal axis of the graph is time.
  • the graph shows the state of each part when the vehicle V accelerates.
  • the graph shows an example of a state where the vehicle V starts from a state where the engine 14 rotates and the vehicle V stops.
  • the vehicle V is stopped for a period before time t1.
  • a request to increase current is received from the request instruction unit A.
  • the request instruction unit A outputs a request for increasing the current. For example, when the request instruction unit A is operated, a request for an increase in current from the request instruction unit A is accepted.
  • the inductance control unit 153 of the control device 15 causes the inductance adjustment unit 131 to cause the generator 10 to be in a small inductance state.
  • the inductance adjusting unit 131 sets the generator 10 in a state where the magnetic resistance of the magnetic circuit F2 passing through the stator core 122 is relatively large and the inductance L of the winding 121 is small as viewed from the winding 121.
  • the control device 15 performs control so that the small inductance state of the generator 10 is maintained after the time t1.
  • the control device 15 causes the generator 10 to be in a small inductance state and causes the engine output adjustment unit to increase the rotational power of the engine 14. After time t1, the output torque Te of the engine 14 increases as the rotational power increases. The engine output torque Te gradually increases with time.
  • the control device 15 causes the generator 10 to be in a small inductance state and causes the current adjustment device CC to adjust the output current of the generator 10.
  • the output current of the generator 10 changes similarly to the load torque Tg of the generator 10 shown in the graph of FIG.
  • a change in the load torque Tg of the generator represents a change in the output current of the generator 10.
  • the control device 15 causes the current adjusting device CC to adjust the output current of the generator 10 so as to increase the rotational speed Ve of the engine 14 and increase the output current of the generator 10.
  • the rotational speed Ve of the engine 14 increases when the load torque Tg of the generator 10 is smaller than the output torque Te of the engine 14.
  • the control device 15 adjusts the output current of the generator 10 so that the load torque Tg of the generator 10 is smaller than the output torque Te of the engine 14.
  • the control device 15 increases the output current of the generator 10 over time.
  • the output current of the generator 10 is represented as a waveform of the load torque Tg of the generator 10 in the graph of FIG.
  • the control device 15 sets a control target for the output current of the generator 10 based on the change in the rotational speed Ve of the engine 14 and the change in the output current of the generator 10 (see the waveform of the load torque Tg).
  • the control device 15 controls the current adjusting device CC so that the output current of the generator 10 becomes the set control target.
  • the broken line of the load torque Tg of the generator shown in FIG. 8 shows the change of the load torque in an ideal case where the output current of the generator 10 increases along the control target.
  • the output current has an overshoot. For example, the output current shifts to oscillate.
  • the actual load torque Tg of the generator 10 is shifted so as to vibrate up and down with respect to the ideal load torque shown by the broken line in FIG.
  • the load torque Tg of the generator 10 is close to the output torque Te of the engine 14, or exceeds the output torque Te of the engine 14, the rotational speed Ve of the engine 14 Increase is suppressed.
  • the generator 10 when a request for an increase in current is received, the generator 10 enters a small inductance state. For this reason, the response of the current to the control of the current becomes faster. For this reason, the deviation of the output current due to the transient characteristics can be suppressed.
  • the load torque Tg of the generator 10 is likely to increase along the target indicated by the broken line. The rotation of the engine 14 is stabilized. Further, the situation where the load torque Tg of the generator 10 is close to the output torque Te of the engine 14 and the situation where it exceeds the output torque Te of the engine 14 are suppressed. Therefore, the time taken to increase the output current of the generator 10 is shortened. As a result, acceleration is improved.
  • the current flowing from the generator to the motor is adjusted by the on / off operation of the switching element Sa.
  • the current flowing through the winding 121 has a transient characteristic with respect to the on / off operation of the switching element Sa. That is, the current flowing through the winding 121 has a delay with respect to the on / off operation of the switching element Sa.
  • the current flowing through the switching element Sa gradually increases after the switching element Sa is turned on.
  • the current flowing through the switching element Sa gradually decreases after the switching element Sa is turned off.
  • a loss is caused by the component of the current that flows behind the switching element Sa.
  • power efficiency is reduced.
  • the loss due to the delay is larger particularly when the switching element Sa is PWM controlled than when the PWM control is not performed.
  • the frequency of the on / off operation is lowered, the loss due to the delay is reduced.
  • audible noise increases when the frequency is lowered.
  • the generator 10 when a request for increasing the current is received, the generator 10 is adjusted to a state where the inductance is small. Due to the small inductance, the transient characteristics due to the inductance of the winding 121 are improved. Therefore, the loss due to the current component flowing behind the switching element Sa can be suppressed. For this reason, when the request
  • the rotational speed Ve of the engine 14 is higher than the rotational speed Ve at the time (t1) when the request for increasing the current is accepted.
  • the control device 15 causes the inductance adjustment unit 131 to make the generator 10 in a large inductance state. That is, the inductance adjusting unit 131 sets the generator 10 in a state where the magnetic resistance of the magnetic circuit F2 passing through the stator core 122 is relatively small and the inductance of the winding 121 is large as viewed from the winding 121.
  • the rotational speed Ve of the engine 14 is higher than the rotational speed Ve when the request for increasing the current is received.
  • the output torque Te of the engine 14 is larger than the output torque Te when a request for increasing the current is accepted. Therefore, even when the load torque of the generator fluctuates due to the large inductance Le, fluctuations in the rotational speed of the engine 14 can be suppressed. Therefore, the current supplied from the generator 10 to the motor 18 can be increased at a high rotational speed while stabilizing the rotation of the engine 14.
  • the control device 15 makes the magnitude of the speed for increasing the inductance smaller than the magnitude of the speed for reducing the inductance at the time t1.
  • the control device 15 reduces the magnitude of the speed at which the magnetic resistance of the magnetic circuit F2 passing through the stator core 122 is decreased, as viewed from the winding 121, from the magnitude of the speed at which the magnetic resistance is increased at time t1.
  • the control device 15 gradually decreases the magnetic resistance of the magnetic circuit F2 passing through the stator core 122 as viewed from the winding 121 with the passage of time. Thereby, the control device 15 gradually increases the inductance.
  • the control device 15 gradually increases the inductance.
  • the current output from the generator 10 tends to increase.
  • the load torque of the generator 10 tends to increase.
  • the rotational speed Ve is higher than the rotational speed Ve at the time (t1) when the request for increasing the current is received, the magnetic resistance gradually decreases, thereby suppressing a rapid increase of the induced electromotive voltage. Further, the rotation of the engine 14 can be suppressed from becoming unstable.
  • control device 15 suppresses an increase in rotational power of engine 14. Therefore, an increase in the output torque Te of the engine 14 is suppressed. Further, the output current of the generator 10 is controlled so that the engine rotational speed Ve is maintained. That is, the output current of the generator 10 is controlled so that the load torque Tg of the generator 10 is balanced with the output torque Te of the engine 14. Further, when the current request becomes smaller than a predetermined level, the control device 15 decreases the rotational power of the engine 14 (t4). Accordingly, the output torque Te of the engine 14 is reduced. As a result, the rotational speed Ve of the engine 14 decreases.
  • the graph of FIG. 8 shows an example of the state of each part when the vehicle V starts from the state where the vehicle V is stopped.
  • the above-described operation is also applied when the vehicle V accelerates while traveling. That is, when a request for increasing the current is received by the control device 15 during traveling, the control device 15 decreases the inductance.
  • FIG. 9A and FIG. 9B are schematic views for explaining adjustment of the inductance adjusting unit in the generator 20 of the second embodiment.
  • FIG. 9A shows a state in which the inductance of the winding 121 is set to the largest value within a settable value range.
  • FIG. 9B shows a state when the inductance of the winding 121 is set to a value smaller than that in FIG.
  • the positional relationship among the winding 221, the stator core 222, and the rotor 21 in FIG. 9A is the same as the positional relationship in the first embodiment described with reference to FIG.
  • the magnetic circuit F21 is a magnetic circuit through which the magnetic flux generated by the magnetic pole portion 211 passes.
  • the magnetic circuit F22 is a magnetic circuit viewed from the winding 221.
  • the magnetic circuit F22 viewed from the winding 221 is configured by a path that passes through the inside of the winding 221 and minimizes the entire magnetic resistance of the magnetic circuit F22.
  • the magnetic circuit F22 passes through the stator core 222.
  • the magnetic circuit F22 passes through two adjacent tooth portions 222b.
  • the magnetic circuit F22 passing through the stator core 222 includes an air gap F22a.
  • the air gap F ⁇ b> 22 a is between the winding 221 and the rotor 21.
  • the air gap F22a constituting the magnetic circuit F22 is between the winding 221 and the rotor 21 and between two adjacent tooth portions 222b.
  • the air gap F22a is a nonmagnetic material gap.
  • the air gap F22a constituting the magnetic circuit F2 is provided so as to connect portions of the two adjacent tooth portions 222b facing the rotor 21.
  • the magnetic circuit F2 viewed from the winding 121 is configured by an air gap F22a between two adjacent tooth portions 122b without passing through the back yoke portion 112 of the rotor 11.
  • the magnetic resistance of the air gap F22a constituting the magnetic circuit F22 is the largest among the magnetic resistances of the elements constituting the magnetic circuit F22.
  • the air gap F22a has a larger magnetic resistance than the remaining portion F22b of the air gap F22a in the magnetic circuit F22.
  • the inductance adjusting unit 231 moves the winding 221 in response to a required current request. Thereby, the inductance adjusting unit 231 changes the magnetic resistance of the magnetic circuit F22 passing through the stator core 222 as viewed from the winding 221. Thus, the inductance adjusting unit 231 changes the inductance of the winding 221 and adjusts the current supplied to the motor 18 (see FIG. 1).
  • the inductance adjusting unit 231 moves the winding 221 without moving the stator core 222 of the stator 22. More specifically, the stator core 222 is fixed to a housing (not shown).
  • the rotor 21 is rotatably supported by the housing. The rotor 21 is fixed in the axial direction X.
  • the winding 221 is supported by the casing so as to be movable in the axial direction X with respect to the casing.
  • the inductance adjusting unit 231 moves the winding 221 so that the tooth portion 222 b moves in a direction in and out of the cylindrical winding 221.
  • the inductance adjusting unit 231 moves the winding 221 in the axial direction X.
  • the inductance adjusting unit 231 moves the winding 221 in the direction of the arrow X2.
  • the control device 15 operates the inductance adjusting unit 231 in response to the current request.
  • FIG. 9B shows a state having an inductance smaller than that in FIG. 9A.
  • the state shown in FIG. 9B is a state where the winding 221 has moved in the direction of the arrow X2.
  • the inductance adjusting unit 231 moves only the winding 221.
  • the plurality of windings 221 wound around the plurality of tooth portions 222b all move together.
  • the inductance adjusting unit 231 moves the relative position of the stator core 222 with respect to the winding 221.
  • the inductance adjusting unit 231 changes the magnetic resistance of the magnetic circuit F22 passing through the stator core 222 as viewed from the winding 221.
  • the tooth portion 222 b of the stator core 222 comes out of the winding 221.
  • the amount of the stator core 222 existing in the winding 221 decreases.
  • the length of the air gap F22a constituting the magnetic circuit F22 viewed from the winding 221 is increased.
  • the magnetic resistance of the air gap F22a between the winding 221 and the rotor 21 increases. That is, the magnetic resistance of the air gap F22a having the largest magnetic resistance increases.
  • the magnetic resistance of the magnetic circuit F2 as viewed from the winding 221 increases.
  • the inductance adjusting unit 231 changes the magnetic resistance of the air gap F22a having the largest magnetic resistance. Thereby, the inductance adjusting unit 231 changes the magnetic resistance of the magnetic circuit F2 passing through the adjacent tooth portion 222b. Therefore, for example, the inductance of the winding 221 is likely to change greatly compared to the case where the magnetic resistance of the portion F22b other than the air gap F22a is changed. In this way, the inductance adjusting unit 231 changes the magnetic resistance of the magnetic circuit F22 viewed from the winding 221. Thereby, the inductance adjusting unit 231 changes the inductance of the winding 221.
  • the inductance adjusting unit 231 increases the magnetic resistance of the magnetic circuit F22 passing through the stator core 222 as viewed from the winding 221 in response to a request for increasing the current. Thereby, the inductance adjusting unit 231 reduces the inductance of the winding 221.
  • the inductance adjusting unit 231 changes the inductance of the winding 221 by changing the magnetic resistance of the air gap F22a between the winding 221 and the rotor 21. As a result, the loss for the alternating magnetic field is reduced. Therefore, the adjustment amount of the current supplied to the motor 18 as the electric load device can be increased.
  • FIG. 10 is a schematic diagram showing the generator 30 in the drive system of the third embodiment.
  • the stator core 322 in the generator 30 shown in FIG. 10 includes a plurality of first stator core portions 323 and a second stator core portion 324.
  • Each of the plurality of first stator core portions 323 has a facing portion 323a that faces the rotor 31 via an air gap.
  • the plurality of first stator core portions 323 are arranged in an annular shape at intervals. That is, the plurality of first stator core portions 323 are arranged in a line in the circumferential direction Z.
  • the plurality of first stator core portions 323 function as main tooth portions in the stator 32. Therefore, the first stator core portion 323 is also referred to as a first tooth portion 323 in the present specification.
  • the length in the circumferential direction Z of the facing portion 323a of the first stator core portion 323 is longer than the length in the circumferential direction Z of the portion other than the facing portion 323a of the first stator core portion 323. Winding 321 is wound around first stator core portion 323.
  • the second stator core portion 324 is disposed at a position opposite to the rotor 31 with the first stator core portion 323 interposed therebetween.
  • the first stator core portion 323 is disposed between the second stator core portion 324 and the rotor 31.
  • the second stator core portion 324 does not have the facing portion 323 a that faces the rotor 31.
  • the second stator core portion 324 includes an annular stator yoke portion 324a and a plurality of second tooth portions 324b.
  • the second tooth portion 324b protrudes toward the first stator core portion 323 from the stator yoke portion 324a.
  • the number of the second tooth portions 324b is the same as the number of the first stator core portions 323.
  • the stator yoke part 324a and the second tooth part 324b may be configured so that almost all of the magnetic flux passing through the second tooth part 324b passes through the stator yoke part 324a. That is, the second tooth portion 324b may be integrally formed with the stator yoke portion 324a. The second tooth portion 324b may be formed separately from the stator yoke portion 324a and attached to the stator yoke portion 324a. The second tooth portions 324b are arranged in a line in the circumferential direction Z. The plurality of second tooth portions 324b are arranged in an annular shape at intervals. The interval between the plurality of second tooth portions 324b is equal to the interval between the plurality of first stator core portions 323.
  • the inductance adjusting unit 331 in the generator 30 moves a part of the stator core 322 relative to the winding 321.
  • the inductance adjusting unit 331 moves one of the plurality of first stator core units 323 and the second stator core unit 324 with respect to the other.
  • the inductance adjusting unit 331 changes the magnetic resistance viewed from the winding 321.
  • the inductance adjusting unit 331 adjusts the inductance.
  • the inductance adjusting unit 331 is controlled by the control device 15. More specifically, the first stator core portion 323 is fixed to a housing (not shown).
  • the second stator core portion 324 is supported to be rotatable in the circumferential direction Z.
  • the inductance adjusting unit 331 rotates the second stator core unit 324 in the circumferential direction Z around the rotation axis of the rotor 31. Thereby, the inductance adjusting unit 331 moves the second stator core unit 324 from the first state (see FIG. 11A) to the second state (see FIG. 11B).
  • FIG. 11A is a schematic diagram showing a first state of the stator 32 shown in FIG.
  • FIG. 11B is a schematic diagram showing a second state of the stator 32 shown in FIG.
  • the first state shown in FIG. 11A is a large inductance state.
  • FIG. 11A shows a state in which the inductance of the winding 321 is set to the largest value within a settable value range.
  • FIG. 11B shows a state when the inductance of the winding 321 is set to a value smaller than that in FIG.
  • each of the plurality of second tooth portions 324b faces each of the plurality of first stator core portions 323.
  • an air gap length L32 between each of the plurality of first stator core portions 323 and the second stator core portion 324 is an air gap between adjacent first stator core portions of the plurality of first stator core portions 323. It is shorter than the length L33. Specifically, the air gap length L33 is the air gap length between the portions of the first stator core portion 323 provided between the winding 321 and the rotor 31 in the direction in which the rotor 31 and the stator 32 face each other. is there.
  • the second state shown in FIG. 11B is a small inductance state. In the second state shown in FIG. 11B, in the circumferential direction Z, each of the plurality of second tooth portions 324b is located between the first stator core portions 323 adjacent to each other.
  • the air gap length L34 between each of the plurality of first stator core portions 323 and the second stator core portion 324 is the air between the adjacent first stator core portions 323 among the plurality of first stator core portions 323. It is longer than the gap length L33.
  • 11A and 11B show a magnetic circuit F31 through which a magnetic flux generated by the magnetic pole portion 311 passes, and a magnetic circuit F32 viewed from the winding 321.
  • FIG. The magnetic circuit F32 viewed from the winding 321 is configured by a path that passes through the inside of the winding 321 and minimizes the entire magnetic resistance of the magnetic circuit F32.
  • the magnetic circuit F32 passes through the stator core 322.
  • the magnetic circuit F32 passes through adjacent first stator core portions 323 (first tooth portions 323).
  • the magnetic circuit F32 includes three air gaps.
  • an air gap F32a a portion formed by an air gap between two adjacent first stator core portions 323 (first tooth portions 323) is referred to as an air gap F32a.
  • a portion formed by an air gap between each of the two adjacent first stator core portions 323 (first tooth portions 323) and the second stator core portion 324 is referred to as an air gap F32c.
  • An air gap F ⁇ b> 32 a between two adjacent first stator core portions 323 (first tooth portions 323) is between the winding 321 and the rotor 31.
  • the air gap F32a constituting the magnetic circuit F22 is between the winding 321 and the rotor 31, and between two adjacent first stator core portions 323 (first tooth portions 323).
  • the air gap F32a is provided so as to connect the end surfaces of the two adjacent first stator core portions 323 (first tooth portions 323) facing each other.
  • the air gap length L32 between each of the plurality of first stator core portions 323 (first tooth portions 323) and the second stator core portion 324 has a plurality of first stator core portions. Is shorter than the air gap length L33 between the adjacent first stator core portions 323 (first tooth portions 323).
  • the air gap length L33 is the longest air gap in the magnetic circuit F32. Therefore, in the first state, the magnetic resistance of the air gap F32a between the adjacent first stator core portions 323 in the magnetic circuit F32 viewed from the winding 321 is the magnetic resistance of the elements constituting the magnetic circuit F32. The biggest.
  • the air gap F32a has a magnetic resistance larger than any of the magnetic resistances of the remaining portions F32b, F32c, and F32d of the air gap F32a in the magnetic circuit F32.
  • the magnetic resistance of the air gap F32a is larger than the magnetic resistance of the air gap F32c between the first stator core portion 323 and the second stator core portion 324.
  • the magnetic flux F3 due to the current of the winding 321 flows through the first stator core portion 323 and the second stator core portion 324 that are adjacent to each other.
  • the magnetic resistance of the magnetic circuit F32 passing through the stator core 322 as viewed from the winding 321 depends on the air gap length L33 between the adjacent first stator core portions 323.
  • the magnetic flux F31 generated by the magnetic pole portion 311 passes through two adjacent first stator core portions 323.
  • the magnetic flux F31 is generated from one magnetic pole portion 311, a gap between the magnetic pole portion 311 and the first stator core portion 323, the first stator core portion 323, the second stator core portion 324, the adjacent first stator core portion 323, the magnetic pole. It flows through the gap between the part 311 and the first stator core part 323, the adjacent magnetic pole part 311, and the back yoke part 312. That is, in the first state shown in FIG. 11A, the magnetic circuit F31 of the magnetic pole portion 311 passes through the two adjacent first stator core portions 323 and the second stator core portion 324.
  • the air gap length L34 between each of the plurality of first stator core portions 323 and the second stator core portion 324 is adjacent to each other among the plurality of first stator core portions 323.
  • the air gap length L33 between the stator core portions 323 is longer.
  • the magnetic resistance of the magnetic circuit F32 passing through the stator core 322 as viewed from the winding 321 is strongly influenced by the air gap length L34 between the first stator core portion 323 and the second stator core portion 324.
  • the magnetic resistance of the magnetic circuit F32 passing through the stator core 322 as viewed from the winding 321 in the second state is larger than the magnetic resistance in the first state.
  • the magnetic flux F31 generated by the magnetic pole portion 311 passes through the gap between the magnetic pole portion 311 and the first stator core portion 323 from one magnetic pole portion 311 and passes through the first stator core portion 323.
  • the magnetic flux F31 passes from the first stator core part 323 directly to the adjacent first stator core part 323.
  • a magnetic flux F31 generated by the magnetic pole portion 311 passes through a gap between two adjacent first stator core portions 323.
  • the path of the magnetic flux F31 generated by the magnetic pole portion 311 is switched. Even when the path of the magnetic flux F31 is not switched in the second state, at least the magnetic flux F31 generated by the magnetic pole portion 311 increases the magnetic flux passing through the gap between the two adjacent first stator core portions 323.
  • the magnetic resistance of the air gap F32a substantially increases. This is magnetically equivalent to an increase in the air gap length L33 between two adjacent first stator core portions 323. For this reason, the magnetic resistance of the magnetic circuit F32 including the air gap F32a is larger.
  • the rate of change in inductance of the winding 321 is greater than the rate of change in magnetic flux generated at the magnetic pole portion 311 and interlinked with the winding 321.
  • the inductance of the winding 321 tends to be inversely proportional to the magnetic resistance viewed from the winding 321. Therefore, the inductance of the winding 321 in the second state is smaller than the inductance of the winding 321 in the first state.
  • the inductance adjusting unit 331 sets one of the plurality of first stator core portions 323 and the second stator core portion 324 to the other. To move. As a result, the inductance adjusting unit 331 changes the magnetic resistance viewed from the winding 321. Thereby, the inductance adjusting unit 331 changes the inductance of the winding 321.
  • the inductance adjusting unit 331 changes the magnetic resistance of the air gap F32a.
  • the inductance adjusting portion 331 changes the magnetic resistance of the air gap F32a without changing the air gap length L33 between the first stator core portions 323 as adjacent tooth portions.
  • the inductance adjusting part 331 changes the magnetic resistance of the magnetic circuit F32 passing through the first stator core part 323 as an adjacent tooth part.
  • the air gap F32a has the largest magnetic resistance among the elements constituting the magnetic circuit F32 in the first state. Therefore, for example, the inductance of the winding 321 is likely to change greatly compared to the case where the magnetic resistance of the portion other than the air gap F32a is changed.
  • the inductance adjusting unit 331 changes the inductance of the winding 321 by changing the magnetic resistance of the air gap F32a between the winding 321 and the rotor 31. As a result, the loss for the alternating magnetic field is reduced. Therefore, the adjustment amount of the current supplied to the motor 18 as the electric load device can be increased.
  • the supply voltage adjustment unit 344 of the generator 30 will be described with reference to FIG. 10 again.
  • the generator 30 includes a supply voltage adjustment unit 344 separately from the inductance adjustment unit 331.
  • the supply voltage adjustment unit 344 is controlled by the control device 15.
  • the supply voltage adjustment unit 344 changes the interlinkage magnetic flux that leaves the magnetic pole portion 311 of the rotor 31 and that interlinks with the winding 321.
  • the supply voltage adjustment unit 344 changes the induced electromotive voltage E of the winding 321.
  • the supply voltage adjustment unit 344 adjusts the voltage supplied to the motor 18. More specifically, the supply voltage adjustment unit 344 moves the rotor 31 in the axial direction X.
  • the supply voltage adjustment unit 344 changes the air gap length L311 between the rotor 31 and the stator 32.
  • Such movement of the rotor 31 in the axial direction X can be realized, for example, by the supply voltage adjusting unit 344 that moves the bearing portion 313 that rotatably supports the rotor 31 in the axial direction X.
  • the supply voltage adjusting unit 344 moves the bearing portion 313 that rotatably supports the rotor 31 in the axial direction X.
  • the magnetic resistance between the rotor 31 and the stator 32 changes.
  • the amount of magnetic flux generated at the magnetic pole portion 311 and interlinked with the winding 321 changes. Accordingly, the voltage generated by the generator 30 changes.
  • generator 30 demonstrated that both the inductance adjustment part 331 and the supply voltage adjustment part 344 were provided.
  • the drive system of the present invention may not include the supply voltage adjustment unit.
  • the example of the 1st stator core part 323 which has the protrusion part which protruded in the circumferential direction Z, ie, the direction in which a 1st stator core part is located in the edge part which opposes a rotor as a 1st stator core part. explained.
  • the 1st stator core part in this invention does not need to have a protrusion part.
  • the converter may be configured with a bridge circuit configured with a diode. That is, the converter may be composed of a rectifier.
  • the converter may include a regulator circuit that can control the output current.
  • the regulator circuit adjusts the current rectified by the rectifier according to the control of the control device. That is, the converter may be a rectifier regulator.
  • the converter may also have a rectifier without a regulator circuit. In this case, the converter performs only rectification without controlling the current.
  • the engine output adjusting unit in the present invention does not have to adjust the rotational power by both the throttle valve adjusting mechanism and the fuel injection device.
  • the engine output adjustment unit may adjust the rotational power by one of a throttle valve adjustment mechanism or a fuel injection device.
  • the engine output adjusting unit in the present invention may be a valve device that adjusts the flow rate of gaseous fuel, for example.
  • the engine in the present invention may use liquid fuel, or may use gaseous fuel.
  • the present invention is not limited to this, and can be applied to a vehicle having three or less wheels, a vehicle having five or more wheels, and a vehicle having no wheels.
  • the present invention can be applied to a vehicle having wheels, for example.
  • the transmission according to the present invention can be applied to, for example, motorcycles, motor tricycles, buses, trucks, golf cars, carts, ATVs (All-Terrain Vehicles), ROVs (Recreational Off-highway Vehicles), and track vehicles. it can.
  • the rotation drive unit is not limited to the wheel.
  • the rotation driving unit may be, for example, a propeller, an impeller, a caterpillar, or a track belt.
  • the present invention also includes, for example, industrial vehicles represented by forklifts, snowplows, agricultural vehicles, military vehicles, snowmobiles, construction machinery, small planing boats (water vehicles), ships, outboard motors, inboard motors, airplanes And can be applied to helicopters.
  • industrial vehicles represented by forklifts, snowplows, agricultural vehicles, military vehicles, snowmobiles, construction machinery, small planing boats (water vehicles), ships, outboard motors, inboard motors, airplanes And can be applied to helicopters.
  • the present invention can also be applied to a radial gap structure in which the rotor and the stator are opposed in the radial direction via the air gap.
  • the axial direction X (FIG. 4) in the axial gap type structure of the present embodiment is an example of the direction in which the rotor and the stator in the present invention face each other. In the radial gap structure, the rotor and the stator face each other in the radial direction.
  • the generator of the present invention may be constituted by an IPM (Interior Permanent Magnet) generator.
  • the air gap in the above-described embodiment is an example of a nonmagnetic material gap.
  • the nonmagnetic gap is a gap made of one or more kinds of nonmagnetic materials.
  • the nonmagnetic material is not particularly limited. Examples of the nonmagnetic material include air, aluminum, and resin.
  • the nonmagnetic gap preferably includes at least an air gap.
  • the example in which the rotor 11 is directly connected to the output shaft C of the engine 14 has been described as the details of the configuration in which the rotor 11 is connected to the engine 14.
  • the output shaft C of the engine 14 and the rotor 11 of the generator 10 may be connected via a transmission device represented by a belt, a gear, or a drive shaft, for example.
  • the example of the accelerator operator as the request instruction unit A has been described.
  • the current request in the present invention is not limited to the output of the accelerator operator.
  • indication part the following are mentioned, for example.
  • the motor of the present invention may be a motor having the same structure as the generator described in the present embodiment, including the structure of the inductance adjusting unit.
  • the motor may include a plurality of first stator core portions and second stator core portions, similar to the generator 30, and may have a structure in which one of the first stator core portions and the second stator core portions is moved with respect to the other. Good.
  • the vehicle of the present invention may include a battery that stores electric power generated by the generator.
  • the generator may be operated by electric power stored in a battery as an engine starter.
  • the vehicle motor may be operated by, for example, electric power stored in a battery.
  • the motor may operate by receiving power from both the generator and the battery at the same time, for example.
  • a configuration in which the motor is supplied with electric power from a generator without a battery that supplies electric power for driving the motor is preferable. In this case, it is not necessary to restrict engine rotation or control battery protection due to battery voltage restrictions.
  • control device 15 configured by a microcontroller has been described as an example of the control device.
  • the control device can also be configured by, for example, wired logic. All or part of the current request receiving unit, the engine control unit, the inductance control unit, and the current control unit may be provided as separate devices.
  • the inductance of the winding is changed by changing the magnetic resistance of the magnetic circuit passing through the stator core as seen from the winding.
  • the change of the magnetic resistance of the magnetic circuit passing through the stator core as viewed from the winding may be performed in a plurality of steps, steplessly, or continuously.
  • the output current characteristics of the generator may be changed in a plurality of steps, may be changed steplessly, or may be changed continuously.
  • the change of the magnetic resistance of the magnetic circuit passing through the stator core as viewed from the winding may be performed in two stages.
  • the control device is configured to determine an output from the control device in response to an input to the control device.
  • the program may include a map for determining an output from the control device in accordance with an input to the control device.
  • the map data relating to the input to the control device and data relating to the output from the control device are associated with each other.
  • the program is configured to operate the computer so as to refer to the map when the computer determines an output from the control device in response to an input to the control device.
  • the control device accepts a request for an increase in current, it is not always necessary to adjust the generator to a state in which the magnetic resistance of the magnetic circuit passing through the stator core is relatively large and the inductance is small as viewed from the winding.
  • the magnetic resistance of the magnetic circuit passing through the stator core as viewed from the winding may be kept relatively small.
  • the small inductance state is determined by the boundary value between the maximum value and the minimum value of the inductance that the winding inductance can take by the control of the inductance control unit 153 (for example, an intermediate value). ) The state is adjusted to a smaller value.
  • the large inductance state is a state in which the inductance of the winding is adjusted to a value larger than the boundary value by the inductance control unit.
  • the magnetic resistance of the magnetic circuit passing through the stator core as viewed from the winding in the small inductance state is larger than the magnetic resistance of the magnetic circuit passing through the stator core as viewed from the winding in the large inductance state.
  • the small inductance state and the large inductance state are not limited to this example.
  • the small inductance state may be a state in which the inductance of the winding is adjusted to a value smaller than the inductance of the winding at the time when a request for increasing the current is accepted by the inductance control unit.
  • the large inductance state may be a state in which the inductance of the winding is adjusted to a value larger than the inductance of the winding at the time when a request for increasing the current is received by the inductance control unit.
  • the boundary value may be a value of the inductance of the winding at the time when a request for increasing the current is accepted.
  • the inductance adjustment unit adjusts the generator to a small inductance state when receiving a request for increase in current under the control of the control device, and then the engine speed increases the increase in current.
  • the generator is adjusted to a large inductance state.
  • the inductance adjustment unit adjusts the generator to a small inductance state, and then when the engine rotation speed is higher than the engine rotation speed when the request for increasing the current is received,
  • the winding inductance may be adjusted to increase from the minimum value of the winding inductance in the small inductance state. In this case, the inductance of the winding may be adjusted until the generator is in a large inductance state. Further, the inductance of the winding may be adjusted under the situation where the generator is in a small inductance state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Eletrric Generators (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Ac Motors In General (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

本発明は、エンジンの回転を安定化しつつ加速性を向上することができるビークルを提供する。ビークルは、エンジン出力調整部を有するエンジンと、インダクタンス調整部とを有する発電機と、モータと、前記発電機から前記モータへ出力される電流を調整する電流調整装置と、駆動部材と、制御装置と、を備え、前記制御装置は、電流の増大の要求を受付けた場合、前記インダクタンス調整部に、前記発電機を、前記巻線から見た、ステータコアを通る磁気回路の磁気抵抗が相対的に大きく前記インダクタンスが小さい状態に調整させるとともに、前記エンジン出力調整部に前記エンジンの回転パワーを、前記電流の増大の要求を受付けた時よりも増大させた状態に調整させつつ、前記電流調整装置に、前記エンジンの回転速度を増大させ且つ前記発電機の出力電流を増大させるように、前記発電機の出力電流を調整させる。

Description

ビークル
 本発明は、ビークルに関する。
 例えば、特許文献1には車両が示されている。特許文献1に示す車両は、ハイブリッド車両である。前記車両は、エンジン、アクセルペダル、第1回転電機、第2回転電機、及び駆動輪を備えている。第1回転電機は、エンジンの出力軸に連結されている。第1回転電機は、主に発電機として機能する。第2回転電機は、インバータを介して第1回転電機と電気的に接続されている。第2回転電機は、主にモータとして機能する。第1回転電機及び第2回転電機に電流が流れることによって、力行が行われる。第2回転電機は、車両の駆動輪に連結されている。第2回転電機は、車両駆動力を発生する。
 特許文献1に示すような車両において、運転者によるアクセルペダルの踏込みは、車両の加速要求を表す。特許文献1に示すような車両が電子制御スロットル装置を備える場合、エンジンの吸入空気量が任意に調整可能である。従って、例えば、以下のように車両の制御が行われる。運転者によるアクセルペダルの踏込み量と車速とに基づいて第2回転電機(モータ)の目標出力が決定される。第2回転電機の目標出力に応じて第1回転電機(発電機)の目標発電電力が決定される。この目標発電電力に応じてエンジンの目標出力が決定される。この目標出力が得られるようにエンジンの吸入空気量及び燃料噴射量が制御される。この制御において、第1回転電機では発電電力が制御され、第2回転電機では出力が制御される。また、特許文献1に示すような車両において、アクセルペダルとエンジンのスロットルとが機械的に連結されている場合には、エンジンの実出力に合わせて第1回転電機の発電電力と第2回転電機の出力とが制御される。このように、特許文献1では、回転電機の電力(出力)が制御されており、様々な特性を有する複数の車種への適用が図られている。
特開2002-345109号公報
 特許文献1に示すような車両では、例えば、モータとしての第2回転電機に供給される電流を増大させる場合、エンジンの吸入空気量及び燃料噴射量を増大させる制御が行われる。エンジンの吸入空気量及び燃料噴射量が増大すると、エンジンの回転パワーが増大する。エンジンの回転パワーは、発電機によって電力に変換される。発電機で生じた電力は、インバータを介してモータに供給される。モータに供給される電力の増大によって、駆動輪の回転パワーが増大する。
 エンジンの回転速度は、エンジンの回転パワーのみに応じて増大しない。エンジンの回転速度は、発電機を駆動するエンジンのトルクと、発電機の負荷トルクの差に応じて変化する。例えば、エンジンのトルクが発電機の負荷トルクよりも大きい場合、エンジンの回転速度が増大する。この逆に、エンジンのトルクが発電機の負荷トルクよりも小さい場合、エンジンの回転速度が減少する。
 発電機の負荷トルクは、発電機から出力される電流に依存する。例えば、車両の加速が求められる状況で、発電機から出力される電流の増大が要求される。このとき、発電機から出力される電流を増大すると、発電機の負荷トルクが増大する。従って、エンジンの回転速度の増大が抑えられやすい。この結果、発電機からモータに向けて供給される電流の増大に要する時間が長くなる。つまり、車両の加速性が低下する。
 発電機から出力される電流を、インバータを用いて制御することが考えられる。電流の制御では、要求及び出力の状態に合せて電流が変化する。この電流は、発電機を含む回路を流れる。制御によって電流が時間とともに変化するとき、回路の応答特性に起因して、電流が制御の目標に対し過大に変化しやすい。過大な変化によって電流が増大するとき、発電機の負荷トルクが増大する。増大した発電機の負荷トルクに対しエンジンのトルクが十分に確保されないと、エンジンの回転速度の増大に要する時間が長くなる。この結果、発電機からモータに供給される電力の増大に要する時間が長くなる。つまり、加速性が劣化する。また、発電機の負荷トルクが過大に増大すると、エンジンの回転の安定性が損なわれやすい。
 エンジンの回転を安定化しつつ加速性を向上することができるビークルが求められている。
 本発明の目的は、エンジンの回転を安定化しつつ加速性を向上することができるビークルを提供することである。
 本発明は、上述した課題を解決するために、以下の構成を採用する。
 (1) ビークルであって、
 ビークルは、
回転パワーを出力するエンジンであって、前記回転パワーを調整するエンジン出力調整部を有するエンジンと、
前記エンジンに接続され、前記エンジンから伝達される回転パワーに応じた電力を出力するように構成された発電機であって、永久磁石を有し前記エンジンから伝達される回転パワーにより回転するロータと、巻線及び前記巻線が巻かれたステータコアを有し前記ロータと対向して配置されたステータと、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えることによって前記巻線のインダクタンスを変えるインダクタンス調整部とを有する発電機と、
前記発電機からバッテリを介すること無しに電流の供給を受けるモータと、
前記発電機と前記モータの間に設けられ、前記発電機から前記モータへ出力される電流を調整する電流調整装置と、
前記エンジンからの回転パワーを受けること無しに前記モータに駆動されることによって前記ビークルを駆動する駆動部材と、
前記モータに供給する電流に関する要求を受付けるとともに、受付けられた要求に応じて前記エンジン出力調整部、前記インダクタンス調整部、及び前記電流調整装置を制御する制御装置と、
を備え、
前記制御装置は、前記インダクタンス調整部に、前記発電機を、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗が相対的に大きく前記巻線のインダクタンスが小さい状態と、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗が相対的に小さく前記巻線のインダクタンスが大きい状態との間で調整させ、
前記制御装置は、前記モータに供給する電流の増大の要求を受付けた場合、前記インダクタンス調整部に、前記発電機を、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗が相対的に大きく前記インダクタンスが小さい状態に調整させるとともに、前記エンジン出力調整部に前記エンジンの回転パワーを、前記電流の増大の要求を受付けた時よりも増大させた状態に調整させつつ、前記電流調整装置に、前記エンジンの回転速度を増大させ且つ前記発電機の出力電流を増大させるように、前記発電機の出力電流を調整させる。
 (1)のビークルでは、制御装置が、モータに供給する電流に関する要求を受付ける。ビークルは、駆動部材によって駆動される。駆動部材は、エンジンからの回転パワーを受けること無しにモータに駆動される。モータは、発電機からバッテリを介すること無しに電流供給を受ける。従って、(1)のビークルでは、電流の増大の要求が、ビークルの加速の要求を反映する。
 エンジン出力調整部は、エンジンの回転パワーを調整する。これによって、エンジンの出力トルクが調整される。エンジンの回転速度は、エンジンの出力トルクと発電機の負荷トルクに依存する。電流調整装置は、発電機からモータへ流れる電流を調整する。発電機から出力される電流が調整されることによって、発電機の負荷トルクが調整される。この結果、エンジンの回転速度が調整される。具体的には、制御装置は、電流の増大の要求を受付けた場合、エンジン出力調整部にエンジンの回転パワーを、電流の増大の要求を受付けた時よりも増大させた状態に調整させる。また、制御装置は、電流調整装置に、エンジンの回転速度が増大し且つ発電機から出力される電流が増大するように、発電機から出力される電流を調整させる。
 (1)のビークルでは、制御装置が、インダクタンス調整部に、発電機を、巻線から見た、ステータコアを通る磁気回路の磁気抵抗が相対的に大きくインダクタンスが小さい状態に調整させる。この状態で、制御装置は、電流調整装置に、発電機から出力される電流を調整させる。巻線のインダクタンスが小さいため、電流調整装置が発電機からモータへ流れる電流を調整する場合に、電流の変化の応答性が高い。このため、電流調整装置による調整時において電流が変化する場合に、インダクタンスによる過渡特性に起因する過度の電流変化が抑えられる。従って、発電機のトルクが過度に増大する事態が抑えられる。従って、エンジンの回転を安定化しつつ、エンジンの回転速度を短時間で増大させることができる。このため、発電機からモータに出力される電流を短時間で増大させることができる。従って、(1)のビークルによれば、エンジンの回転を安定化しつつ加速性を向上することができる。
 (2) (1)のビークルであって、
 前記制御装置は、前記電流の増大の要求を受付けた後、前記エンジンの回転速度が、電流の増大の要求を受付けた時の前記エンジンの回転速度よりも高いとき、前記インダクタンス調整部に、前記発電機を、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗が相対的に小さく前記インダクタンスが大きい状態に調整させる。
 一般にエンジンのトルク特性は、ある回転速度においてピークを有する。即ち、エンジンの出力トルクは、回転速度が低い状態から増大するのに伴ってピークのトルクまで増大する。つまりエンジンの回転速度が高いと、エンジンの出力トルクが大きい。
 (2)の構成によれば、エンジンの回転速度が、電流の増大の要求を受付けた時のエンジンの回転速度よりも高いときに、巻線から見た、ステータコアを通る磁気回路の磁気抵抗が相対的に小さくインダクタンスが大きい状態に調整される。エンジンの回転速度が電流の増大の要求を受付けた時の回転速度よりも高いので、エンジンの出力トルクも大きい。従って、大きなインダクタンスにより発電機の負荷トルクが大きく変動しても、エンジンの回転速度の変動が抑えられる。従って、エンジンの回転を安定化しつつ、高い回転速度によって発電機からモータに供給される電流を増大することができる。
 (3) (1)又は(2)のビークルであって、
 前記電流調整装置が、スイッチング素子を備え、スイッチング素子のオン/オフ動作によって、発電機からモータへ流れる電流を調整する。
 発電機からモータへ流れる電流が、スイッチング素子のオン/オフ動作によって調整される。巻線に流れる電流は、スイッチング素子のオン/オフ動作に対しても、巻線のインダクタンスに起因する過渡特性を有する。過渡特性によって、電流の変化の遅延が大きくなると、発電機からモータへ供給される電力の効率が低下する。(3)のビークルによれば、電流の増大の要求を受付けた場合、発電機が、巻線から見た、ステータコアを通る磁気回路の磁気抵抗が相対的に大きくインダクタンスが小さい状態に調整される。インダクタンスが小さいことによって、巻線のインダクタンスに起因する過渡特性が低減する。このため、電流の増大の要求を受付けた場合、高い効率で、発電機からモータへ電流を供給することができる。
 (4) (1)から(3)のいずれか1のビークルであって、
 前記巻線から見た、前記ステータコアを通る磁気回路は、少なくとも1つの非磁性体ギャップを含み、
 前記インダクタンス調整部は、前記少なくとも1つの非磁性体ギャップのうち、前記巻線と前記ロータとの間にある非磁性体ギャップの磁気抵抗を変えることによって前記巻線のインダクタンスを変えように構成されている。
 (4)の構成によれば、インダクタンス調整部は、巻線とロータとの間にある非磁性体ギャップの磁気抵抗を変えることによって巻線のインダクタンスを変える。巻線とロータとの間には、ロータの回転に伴い移動する永久磁石によって交番磁界が生じる。例えば、巻線とロータとの間にある非磁性体ギャップの磁気抵抗を減少させると、交番磁界についての損失が減少する。このため、発電機からモータへ電流を供給することができる。
 (5) (1)から(4)のいずれか1のビークルであって、
 前記巻線から見た、前記ステータコアを通る磁気回路は、少なくとも1つの非磁性体ギャップを含み、
 前記インダクタンス調整部は、前記少なくとも1つの非磁性体ギャップのうち、前記巻線のインダクタンスが設定可能な値の範囲内で最も大きい値に設定されている時の磁気抵抗が最も大きい非磁性体ギャップの磁気抵抗を変えることによって前記巻線のインダクタンスを変えるように構成されている。
 (5)の構成によれば、巻線のインダクタンスが設定可能な値の範囲内で最も大きい値に設定されている時の磁気抵抗が最も大きい非磁性体ギャップの磁気抵抗が変わる。このため、巻線のインダクタンスの変化量を増大させやすい。
 (6) (1)から(5)いずれか1のビークルであって、
 前記インダクタンス調整部が、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えることによって、前記巻線と鎖交する磁束の変化率が前記巻線のインダクタンスの変化率よりも小さくなるように前記巻線のインダクタンスを変えるように構成されている。
 (6)の構成によれば、インダクタンス調整部は、巻線と鎖交する磁束の変化率が巻線のインダクタンスの変化率よりも小さくなるように巻線のインダクタンスを変える。巻線と鎖交する磁束は、発電される電圧に直接影響を与える。(6)の構成によれば、電圧の変化を抑えつつ巻線のインダクタンスを変えることができる。(6)の構成によれば、エンジンの回転をより安定化しつつ、エンジンの回転速度を短時間で増大させることができる。
 (7) (1)から(6)いずれか1のビークルであって、
 前記インダクタンス調整部が、前記制御装置による制御に応じて前記巻線に対する前記ステータコアの少なくとも一部の相対位置を移動させて、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えることによって前記巻線のインダクタンスを変えるように構成されている。
 (7)の構成によれば、インダクタンス調整部が、巻線に対するステータコアの少なくとも一部の相対位置を移動させて、巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変える。従って、巻線のインダクタンスが変更し易い。従って、電流調整装置が発電機からモータへ流れる電流を調整する場合に、電流の変化の応答性をより高くすることができる。
 (8) (7)のビークルであって、
 前記インダクタンス調整部が、前記制御装置による制御に応じて前記ロータに対する前記ステータコアの相対位置を維持するように前記巻線に対する前記ステータコアの相対位置を移動させて、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えることによって前記巻線のインダクタンスを変えるように構成されている。
 (8)の構成によれば、ロータに対するステータコアの相対位置を維持するように巻線に対するステータコアの相対位置が移動する。従って、ロータの永久磁石からステータコアに流れる磁束の変化が抑えられる。つまり、永久磁石で生じ巻線と鎖交する磁束の変化が抑えられる。このため、巻線に対するステータコアの相対位置が移動するときの、電圧の変化が抑えられる。従って、(8)の構成によれば、インダクタンスが低下する場合に、出力電圧の変動が抑えられる。従ってインダクタンスが小さくなることによって、電流の変化の応答性が高くなる場合に、発電機の出力電圧の減少が抑えられる。
 (9) (1)から(7)いずれか1のビークルであって、
 前記インダクタンス調整部が、前記巻線を移動させて前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えることによって前記巻線のインダクタンスを変えるように構成されている。
 (9)の構成によれば、ロータに対するステータコアの相対位置を維持するようにステータコアに対する巻線の相対位置が移動する。従って、ロータの永久磁石からステータコアに流れる磁束の変化が抑えられる。つまり、永久磁石で生じて巻線と鎖交する磁束の変化が抑えられる。このため、巻線に対するステータコアの相対位置が移動するときの、電圧の変化が抑えられる。従って、(9)の構成によれば、インダクタンスが低下する場合に、出力電圧の変動が抑えられる。従ってインダクタンスが小さくなることによって、電流の変化の応答性が高くなる場合に、発電機の出力電圧の減少が抑えられる。
 (10) (1)から(7)いずれか1のビークルであって、
 前記ステータコアは、前記ロータに非磁性体ギャップを介して対面する対面部を有する複数の第一ステータコア部と、前記対面部を含まない第二ステータコア部とを備え、
 前記インダクタンス調整部が、前記複数の第一ステータコア部及び前記第二ステータコア部の一方を他方に対して移動させることによって、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えるように構成されている。
 (10)の構成によれば、インダクタンス調整部は、ステータコアが備える複数の第一ステータコア部と、第二ステータコア部の一方を他方に対して移動させる。この場合、例えばステータコアとステータコア以外の部材とのうちの一方を他方に対して移動する場合と比べて、巻線から見た、ステータコアを通る磁気回路の磁気抵抗が大きく変わる。このため、インダクタンスの調整範囲が広くなる。
 (11) (10)のビークルであって、
 前記インダクタンス調整部が、
前記複数の第一ステータコア部のそれぞれと前記第二ステータコア部との間の非磁性体ギャップ長が、前記複数の第一ステータコア部のうち隣り合う第一ステータコア部の間の非磁性体ギャップ長よりも短い第一状態から、
前記複数の第一ステータコア部のそれぞれと前記第二ステータコア部との間の非磁性体ギャップ長が、前記複数の第一ステータコア部のうち隣り合う第一ステータコア部の間の非磁性体ギャップ長よりも長い第二状態まで、
前記複数の第一ステータコア部及び前記第二ステータコア部の一方を他方に対して移動させることによって、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えるように構成されている。
 (11)の構成によれば、第一状態では、複数の第一ステータコア部のそれぞれと第二ステータコア部との間の非磁性体ギャップ長が、複数の第一ステータコア部のうち隣り合う第一ステータコア部の間の非磁性体ギャップ長よりも短い。第二状態では、複数の第一ステータコア部のそれぞれと第二ステータコア部との間の非磁性体ギャップ長が、複数の第一ステータコア部のうち隣り合う第一ステータコア部の間の非磁性体ギャップ長よりも長い。
 このため、第一状態では、巻線の電流に起因する磁束のうち、隣り合う第一ステータコア部の間の非磁性体ギャップを通る磁束が、主に、第一ステータコア部と第二ステータコア部との間の非磁性体ギャップを通る。従って、巻線の電流に起因する磁束が、主に、第一ステータコア部と第二ステータコア部の双方を通る。第二状態では、第一ステータコア部を通る磁気回路の磁気抵抗が大きい。従って、巻線から見た、ステータコアを通る磁気回路の磁気抵抗がより大きく変わる。このため、インダクタンスの調整範囲が広くなる。
 本発明のビークルによれば、エンジンの回転を安定化しつつ加速性を向上することができる。
本発明の第一実施形態に係るビークルの概略構成を示すブロック図である。 図1に示すビークルのより詳細な構成を示すシステム構成図である。 位相制御における電圧の波形の例を示す図である。 (A)は、図2に示す発電機におけるインダクタンス調整部の調整を説明するための大インダクタンス状態を示す模式図である。(B)は、小インダクタンス状態を示す模式図である。 (A)は、図4に示す発電機の巻線の等価回路を概略的に示す回路図である。(B)は、インダクタに起因する応答特性の例を示すグラフである。 ビークルの動作を説明するフローチャートである。 図6に示す電流制御を示すフローチャートである。 ビークルの各部の状態の推移の一例を示すグラフである。 (A)第二実施形態の駆動システムの発電機におけるインダクタンス調整部の調整を説明するための大インダクタンス状態を示す模式図である。(B)は、小インダクタンス状態を示す模式図である。 第三実施形態の駆動システムにおける発電機を示す模式図である。 (A)は、図10に示すステータの第一状態を示す模式図である。(B)は、図10に示すステータの第二状態を示す模式図である。
 エンジンに接続された発電機と、発電機から電流の供給を受けるモータとを備えたビークルについて、本発明者が行った検討について説明する。
 エンジンの回転パワーが増大すると、モータに供給される電流が増大する。その結果、ビークルが加速する。本発明者は、エンジンの回転パワーが増大したときにモータに供給される電流の応答に着目した。特に、本発明者は、エンジンの回転パワーが増大したとき、時間の経過に伴いモータに供給される電流が増大していく過程に着目した。
 エンジンの回転パワーは、発電機によって電力に変換される。発電機で生じた電力は、電流調整装置を介してモータに供給される。電流調整装置は、発電機から出力される電流を調整する。これによって、電流調整装置は、発電機の負荷トルクを調整する。つまり、電流調整装置は、発電機から出力される電流を調整することによって、エンジンの回転パワーを、発電機の電力と、エンジンの回転速度増大のためのパワーとに振り分ける機能を有している。
 例えば、電流調整装置が、電流の増大の要求に応じて、発電機から出力される電流を無制限に大きくしようとすると、エンジンの回転速度の増大が抑えられてしまう。却って、モータに供給する電流の増大にかかる期間が長くなってしまう。この逆に、発電機から出力される電流を過剰に制限しようとすると、モータに供給される電流が制限される。つまり、モータに供給する電流の増大にかかる期間が長くなってしまう。
 モータに供給される電流を増大させる場合、電流調整装置は、制御装置の制御によって、エンジンの回転速度が増大しつつ発電機の出力電流が増大するように、発電機から出力される電流を調整する。この結果、モータに供給される電流の増大にかかる期間は短くなる。つまり、加速性が向上する。
 発電機の出力電流の制御において、制御装置は、例えば、エンジンの回転速度、及び発電機の出力電流に基づいて出力電流の目標値を得る。制御装置は、出力電流が目標値になるように電流調整装置を制御する。
 電流調整装置によって制御される電流は、発電機の巻線を含む電気回路を流れる。電気回路の電流は、巻線のインダクタンスに起因した過渡特性を有する。
 制御時における電流の応答が、巻線のインダクタンスに起因して遅くなると、電流のオーバーシュートが生じやすくなる。つまり、電流が、目標値を行きすぎる事態が生じやすくなる。電流を増大させる制御において、電流が目標値を行きすぎて増大すると、発電機の負荷トルクが過剰に増大する。増大した発電機の負荷トルクが、エンジンのトルクに近づくか、または、エンジンのトルクを超えると、エンジンの回転速度の増大が妨げられる。
 特に、電流の増大の要求は、通常、エンジンの回転速度が比較的低い状況で受け付けられる。エンジンの回転速度が比較的低い状況では、エンジンの出力トルクも比較的小さい。従って、発電機の負荷トルクの過度の変動がエンジンの回転速度に大きな影響を与える。即ち、エンジンの回転の安定性が損なわれる。また、エンジンの回転速度の増大にかかる時間が長くなる。この結果、モータに供給される電流の増大にかかる時間が長くなる。従って、ビークルの加速性が損なわれる。
 例えば、電流の応答の遅れに起因して電流が目標値を行きすぎる事態に対応するため、
発電機から出力される電流を予め制限することが考えられる。しかし、発電機から出力される電流を制限すると、モータに供給される電流が制限される。従ってビークルの加速性が損なわれる。
 ここで、本発明者らは、巻線のインダクタンスに着目した。
 従来、巻線のインダクタンスを減少させると鎖交磁束が減少する為、結果、発電機として十分な電流を確保する事が困難であると考えられていた。
 本発明者は、磁気回路に着目した。インダクタンスに影響する磁気回路は、巻線から見た磁気回路である。巻線から見た磁気回路と、ロータの磁石から出て巻線を通る磁気回路との間とは、互いに異なる。本発明者は、巻線から見た磁気回路と、ロータの磁石から出て巻線を通る磁気回路とを明確に区別して検討した。その結果、本発明者らは、巻線から見た磁気回路の磁気抵抗を変えることによって、インダクタンスを大きく変えることができることを見出した。
 そして、本発明者らは、巻線のインダクタンスを低下させることによって、電流の過度の変動を抑えることができることを見出した。
 本発明によれば、電流の増大の要求が受付けられる場合、巻線から見た、ステータコアを通る磁気回路の磁気抵抗が大きくなる。これによって、巻線のインダクタンスが、増大の要求を受け付けた時点の状態よりも小さくなる。巻線のインダクタンスが小さいと、制御時における電流の応答が速くなる。このため、電流が、目標値を行きすぎて変動する事態が抑えられる。従って、発電機の出力電流を増大させる制御において、発電機の負荷トルクとエンジンのトルクに近づく事態、又は、負荷トルクがエンジンのトルクを超える事態が抑えられる。エンジンの回転が安定化する。また、エンジンの回転速度の増大にかかる時間が短くなる。
 以下、本発明を、好ましい実施形態に基づいて図面を参照しつつ説明する。
 図1は、本発明の第一実施形態に係るビークルの概略構成を示すブロック図である。
 図1に示すビークルVは、自動四輪車である。ビークルVは、駆動システムPと車体Dとを備えている。ビークルVの車体Dは、4つの車輪Wa,Wb,Wc,Wd、及び要求指示部Aを備えている。つまり、ビークルVは、車輪Wa,Wb,Wc,Wdを備えている。ビークルVは、要求指示部Aを備えている。
 駆動システムPは、ビークルVの駆動源である。駆動システムPは、発電機10、エンジン14、制御装置15、コンバータ16、インバータ17、及びモータ18を備えている。つまり、ビークルVは、発電機10、エンジン14、制御装置15、コンバータ16、インバータ17、及びモータ18を備えている。コンバータ16及びインバータ17は、後述する電流調整装置CCに含まれる。
 駆動システムPは、車輪Wa~Wdのうち、駆動輪Wc,Wdに接続されている。駆動輪Wc,Wdは、伝達機構Gを介して駆動システムPと接続されている。駆動システムPは、駆動輪Wc,Wdを回転駆動することによってビークルVを走行させる。
 駆動輪Wc,Wdは、駆動部材の一例に相当する。駆動システムPは、駆動輪Wc,Wdに機械的な力を出力する。
 要求指示部Aは、電流要求を出力する。電流要求は、モータ18に供給される電流に関する要求である。要求指示部Aは、電流要求を表す信号を出力する。
 要求指示部Aは、アクセル操作子を有する。詳細には、要求指示部Aは、ビークルVの運転者に操作される。要求指示部Aは、操作及びビークルVの走行状況に基づいてビークルVの加速要求を出力する。ビークルVの加速要求は、駆動輪Wc,Wdを駆動するトルクに対応する。ビークルVの加速要求は、ビークルVの出力についての出力要求でもある。ビークルVの出力は、モータ18の出力に対応する。ビークルVの加速要求は、モータ18の出力トルクの要求に対応する。モータ18の出力トルクは、モータ18に供給される電流に対応する。要求指示部Aは、モータ18から出力されるトルクについてのトルク要求として、モータ18に供給する電流についての電流要求を出力する。
 要求指示部Aは、制御装置15に接続されている。要求指示部Aは、制御装置15に、電流要求を表す信号を出力する。電流要求には、電流増大の要求と電流減少の要求とが含まれる。電流増大の要求は、モータ18の出力トルクの増大の要求に対応する。電流減少の要求は、モータ18の出力トルクの減少の要求に対応する。
 制御装置15は、例えばマイクロコントローラで構成されている。制御装置15は、コンピュータとしての中央処理装置CPUと、記憶部MEMとを備えている。中央処理装置CPUは、制御プログラムに基づいて演算処理を行う。記憶部MEMは、プログラム及び演算に関するデータを記憶する。
 図2は、図1に示すビークルのより詳細な構成を示すシステム構成図である。
 ビークルVは、燃料タンク10A、エアクリーナ10B、及びマフラ10Dを備えている。また、ビークルVは、回転角センサ191及び電流センサ192を備えている。
 エンジン14は、内燃機関である。エンジン14は、燃料を燃焼させる。これによって、エンジン14は、機械的なパワーを出力する。エンジン14は、出力軸Cを有している。出力軸Cは、例えばクランク軸である。なお、図2では、エンジン14と出力軸Cの接続関係が模式的に示されている。また、エンジン14は、シリンダ142、ピストン143、コネクティングロッド145、及びクランクケース146を備えている。シリンダ142とピストン143によって、燃焼室が形成される。ピストン143と、出力軸Cとしてのクランク軸とは、コネクティングロッド145を介して接続されている。
 エンジン14は、エアクリーナ10Bを介して空気の供給を受ける。エンジン14は、燃料タンク10Aから燃料の供給を受ける。エンジン14は、燃料タンク10Aから供給される燃料を燃焼室で燃焼させることによって、ピストン143を往復動させる。出力軸Cであるクランク軸によって、往復動が回転パワーに変換される。エンジン14は、出力軸Cから機械的なパワーを出力する。エンジン14で燃焼によって生じた排気ガスは、マフラ10Dを経由して排出される。出力軸Cの回転速度は、エンジン14の回転速度を表す。
 エンジン14から駆動輪Wc,Wdまでの動力伝達に関し、エンジン14と駆動輪Wc,Wdとは、機械要素で接続されていない。駆動輪Wc,Wdは、エンジン14からの回転パワーを受けること無しにモータ18に駆動される。駆動輪Wc,Wdは、モータ18に駆動されることによって、ビークルVを駆動する。エンジン14から出力される回転パワーのすべては、駆動システムPにおいて、一旦、機械的なパワー以外のパワーに変換される。エンジン14で発生する回転パワーは、専ら電力に変換される。詳細には、エンジン14で発生する機械的なパワーのうち損失を除いたパワーのすべては、発電機10で電力に変換される。発電機10で変換された電力は、モータ18で機械的なパワーに変換される。
 駆動システムPは、駆動システムPの外部機構をエンジン14の回転パワーで直接駆動しない。具体的には、エンジン14は、駆動輪Wc,Wdを回転パワーで直接駆動されない。このため、エンジン14の回転パワーの制御が、外部機構の動作特性による制約を受けにくい。従って、エンジン14の回転パワーの制御の自由度が高い。
 エンジン14は、エンジン出力調整部141を有する。エンジン出力調整部141は、エンジン14の回転パワーを調整する。エンジン出力調整部141は、スロットルバルブ調整機構141a、及び燃料噴射装置141bを有する。スロットルバルブ調整機構141aは、エンジン14への空気吸入量を調整する。燃料噴射装置141bは、エンジン14に燃料を供給する。エンジン出力調整部141は、エンジン14の吸入空気量及び燃料噴射量を制御する。これによって、エンジン出力調整部141は、エンジン14が出力する回転パワーを調整する。例えば、エンジン出力調整部141が、エンジン14の吸入空気量及び燃料噴射量を増大させる。これによって、エンジン14の回転パワーが増大する。エンジン14の回転パワーが増大すると、エンジン14の回転速度、即ち出力軸Cの回転速度が増大する。
 回転角センサ191は、出力軸Cの回転角を検出する。即ち、回転角センサ191は、発電機10のロータ11の回転角を検出する。出力軸Cの回転角が検出されることによって、出力軸Cの回転速度が検出される。
 エンジン14から発電機10までの動力伝達に関し、発電機10は、エンジン14と機械的に接続されている。発電機10は、エンジン14の出力軸Cと接続されている。本実施形態において、発電機10は、出力軸Cと直接接続されている。発電機10は、エンジン14から回転パワーを受けるとともに、モータ18に電流を供給する。発電機10は、例えば、エンジン14のクランクケース146に取付けられている。なお、発電機10は、例えば、クランクケース146から離れた位置に配置されてもよい。
 発電機10は、ロータ11、ステータ12、及びインダクタンス調整部131を備えている。
 発電機10は、三相ブラシレス型発電機である。ロータ11及びステータ12は、三相ブラシレス型発電機を構成する。
 ロータ11は、永久磁石を有する。より詳細には、ロータ11は、複数の磁極部111とバックヨーク部112とを有する。磁極部111は永久磁石で構成されている。バックヨーク部112は、例えば強磁性材料からなる。磁極部111はバックヨーク部112とステータ12との間に配置されている。磁極部111はバックヨーク部112に取付けられている。複数の磁極部111は、ロータ11の回転軸線を中心とした周方向Zすなわちロータ11の回転方向に一列に並んで配置されている。複数の磁極部111は、N極及びS極が周方向Zで交互になるように配置されている。発電機10は、永久磁石式三相ブラシレス型発電機である。ロータ11には、電流が供給される巻線が設けられていない。
 ロータ11は、エンジン14の出力軸Cと接続されている。ロータ11は、エンジン14から伝達される回転パワーにより回転する。
 回転角センサ191は、出力軸Cの回転角を検出する。即ち、回転角センサ191は、発電機10のロータ11の回転角を検出する。
 ステータ12は、ロータ11と対向して配置されている。ステータ12は、複数の巻線121及びステータコア122を有する。ステータコア122は、例えば強磁性材料からなる。ステータコア122は、ステータ12の磁気回路を構成する。複数の巻線121はステータコア122に巻いている。ステータコア122は、コア本体122a(図4参照)と複数の歯部122bを有する。コア本体122aは、ヨークとして機能する。複数の歯部122bは、コア本体122aから、ロータ11に向かって延びている。ロータ11に向かって延びた歯部122bの先端面と、ロータ11の磁極部111とはエアギャップを介して互いに対向している。ステータコア122の歯部122bとロータ11の磁極部111とは、直接対面している。複数の歯部122bは、周方向Zに間隔を空けて周方向Zに一列に並んでいる。複数の巻線121は、複数の歯部122bにそれぞれ巻かれている。巻線121は、複数の歯部122bの間のスロットを通るように巻かれている。各巻線121は、三相を構成するU相、V相、及びW相のいずれかの相に対応している。U相、V相、及びW相のそれぞれに対応する巻線121は、周方向Zに順に配置されている。
 ロータ11は、エンジン14の出力軸Cに接続されている。ロータ11は、出力軸Cの回転と連動して回転する。ロータ11は、磁極部111を、ステータコア122の歯部122bと対向させた姿勢で回転させる。ロータ11が回転すると、巻線121と鎖交する磁束が変化する。これによって、巻線121に誘導起電圧が生じる。このようにして、発電機10では、発電が行われる。発電機10は、発電された電流をモータ18に供給する。発電機10が出力する電流は、モータ18に供給される。発電機10が出力する電流は、モータ18に供給される。詳細には、発電機10が出力する電流は、電流調整装置CCを介してモータ18に供給される。発電機10が出力する電流が増大すると、コンバータ16からインバータ17に供給される電流が増大し、モータ18に供給される電流が増大する。発電機10が出力する電圧は、コンバータ16及びインバータ17を介して、モータ18に供給される。
 本実施形態において、ロータ11及びステータ12は、アキシャルギャップ型構造を有する。ロータ11とステータ12とは、ロータ11の回転軸線方向(軸方向)Xで互いに対向している。ステータ12が有する複数の歯部122bは、コア本体122aから軸方向Xに突出している。本実施形態における軸方向Xは、ロータ11とステータ12とが対向する方向である。なお、巻線121から見た磁気回路は、例えば閉ループ回路である。巻線121から見た磁気回路は、巻線121の内部経路を通って、巻線121の内部経路の一端部(ロータに近い端部)から、隣り合う巻線121の内部経路の一端部(ロータに近い端部)に至り、前記隣り合う巻線121の内部経路を通って、隣り合う巻線121の内部経路の他端部(ロータから遠い端部)から、前記巻線121の内部経路の他端部(ロータから遠い端部)に至る回路である。巻線121の内部経路は、巻線121の内側をロータ11とステータ12との対向方向に通る経路である。巻線121から見た磁気回路の一部が、エアギャップ等の非磁性体ギャップである。巻線から見た磁気回路は、例えば、ステータコア122と非磁性体ギャップとからなる。
 インダクタンス調整部131は、巻線121のインダクタンスLを変える。インダクタンス調整部131は、巻線121から見た、ステータコア122を通る磁気回路の磁気抵抗を変える。これによって、インダクタンス調整部131は、巻線121のインダクタンスを変える。インダクタンス調整部131は、インダクタンス調整機構である。インダクタンス調整部131は、発電機10からモータ18に供給される電流を調整することもできる。
 インダクタンス調整部131によるインダクタンス調整の詳細については、後に説明する。
 電流調整装置CCは、発電機10とモータ18との間に設けられている。電流調整装置CCは、発電機10とモータ18との間の電力の供給経路に設けられている。電流調整装置CCは、発電機10に接続されている。電流調整装置CCは、モータ18に接続されている。
 電流調整装置CCは、発電機10からモータ18へ出力される電流を調整する。
 電流調整装置CCは、コンバータ16及びインバータ17を備えている。コンバータ16は、発電機10に接続されている。インバータ17は、コンバータ16及びモータ18に接続されている。発電機10から出力された電力は、電流調整装置CCを経由して、モータ18に供給される。即ち、発電機10から出力された電力は、コンバータ16及びインバータ17を経由して、モータ18に供給される。
 電流センサ192は、発電機10からモータ18に供給される電流を検出する。
 コンバータ16は、発電機10から出力された電流を整流する。コンバータ16は、発電機10から出力された三相交流を直流に変換する。コンバータ16は、直流を出力する。コンバータ16は、例えば、インバータ回路を有する。コンバータ16は、例えば、三相ブリッジインバータ回路を有する。前記三相ブリッジインバータ回路は、三相の各相に対応するスイッチング素子Saで構成されている。
 コンバータ16の動作は、制御装置15によって制御される。例えば、コンバータ16は、スイッチング素子Saのオン及びオフ動作のタイミングを三相交流における所定の位相角に対し変化させる。これにより、コンバータ16は、モータ18に供給する電流を調整することができる。これによって、コンバータ16は、モータ18に供給する電力を調整することができる。制御装置15によるコンバータ16の制御については、後述する。
 インバータ17は、モータ18を駆動するための電流をモータ18に供給する。インバータ17には、コンバータ16から直流が供給される。インバータ17は、コンバータ16から出力された直流を、位相が互いに120度ずれた三相の電流に変換する。前記三相の電流は、三相ブラシレスモータの三相に対応している。インバータ17は、例えば、三相ブリッジインバータ回路を有する。前記三相ブリッジインバータ回路は、三相の各相に対応するスイッチング素子Sbで構成されている。スイッチング素子Sbは、ロータ181の回転位置を検出する図示しない位置センサからの信号に基づいて制御される。
 インバータ17は、スイッチング素子Sbのオン及びオフ動作を調整することによって、モータ18に供給される電圧を制御する。例えば、インバータ17は、スイッチング素子Sbを、パルス幅変調された信号でオン動作させる。制御装置15は、オン及びオフのデューティ比を調整する。これによって、制御装置15は、モータ18に供給される電圧を任意の値に制御する。これによって、インバータ17は、モータ18に供給する電力を調整することができる。
 本実施形態のモータ18は三相ブラシレスモータである。また、電流調整装置CCがインバータ17を備えている。なお、モータ18として、例えば直流モータが採用され得る。モータ18として直流モータが採用される場合、インバータ17は省略される。この場合、電流調整装置CCは、コンバータ16のみを備える。
 モータ18は、発電機10から供給される電力によって動作する。モータ18は、駆動輪Wc,Wdを回転駆動する。これによって、モータ18は、ビークルVを走行させる。動力伝達に関し、モータ18は、発電機10と機械的に接続されていない。モータ18は、発電機10からバッテリを介すること無しに電流の供給を受ける。
 モータ18は、例えば、三相ブラシレスモータである。モータ18は、ロータ181及びステータ182を備えている。本実施形態のモータ18における、ロータ181及びステータ182の構造は、発電機10のロータ11及びステータ12と同じである。
 モータ18のロータ181は、伝達機構Gを介して駆動輪Wc,Wdと接続されている。
 本実施形態において、発電機10とモータ18とは電気的に接続されている。このため、発電機10とモータ18との間での機械的な動力伝達が不要である。従って、発電機10とモータ18の配置の自由度が高い。例えば、エンジン14に発電機10を設けて、モータ18を駆動部材としての駆動輪Wc,Wdの付近に配置することができる。
 なお、モータ18は、発電機10と異なる構成のロータ及びステータを有していてもよい。例えば、モータ18は、発電機10と異なる数の磁極又は異なる数の歯部を有していてもよい。また、モータ18として、例えば誘導モータ又はステッピングモータが採用されてもよい。また、モータ18として、例えばブラシを備えた直流モータが採用されてもよい。
 モータ18は、駆動輪Wc,Wdに回転パワーが伝達されるよう、駆動輪Wc,Wdと機械的に接続されている。モータ18は、伝達機構Gを介して、駆動輪Wc,Wdと機械的に接続されている。詳細には、モータ18のロータ181が、伝達機構Gと接続されている。
 制御装置15は、エンジン出力調整部141及びインダクタンス調整部131、及び電流調整装置CCを制御する。制御装置15は、電流要求に応じて、エンジン出力調整部141及びインダクタンス調整部131、及び電流調整装置CCを制御する。電流要求は、要求指示部Aの操作量に応じて要求指示部Aから出力される。
 制御装置15は、エンジン出力調整部141及びインダクタンス調整部131、及び電流調整装置CCを制御することによって、モータ18に供給される電流を制御する。モータ18に供給される電流が制御されることによって、モータ18の出力トルクが制御される。つまり、制御装置15は、モータ18の出力トルクを制御する。モータ18の出力トルクが制御されることによって、駆動部材としての駆動輪Wc,Wdの出力トルクが制御される。つまり、制御装置15は、駆動輪Wc,Wdの出力トルクを制御している。
 制御装置15は、エンジン14のエンジン出力調整部141、及び発電機10のインダクタンス調整部131と接続されている。また、制御装置15は、電流調整装置CCと接続されている。制御装置15は、コンバータ16及びインバータ17と接続されている。制御装置15は、回転角センサ191及び電流センサ192と接続されている。制御装置15は、回転角センサ191からの信号に基づいて、エンジン14の回転速度の情報、即ちエンジン14の出力軸Cの回転速度の情報を得る。制御装置15は、回転角センサ191からの信号に基づいて、ロータ181の回転位置の情報を得る。制御装置15は、電流センサ192からの信号によって、発電機10からモータ18に供給される電流の情報を得る。
 制御装置15は、電流要求受付部151、エンジン制御部152、インダクタンス制御部153、及び電流制御部154を備えている。
 電流要求受付部151、エンジン制御部152、インダクタンス制御部153、及び電流制御部154は、制御装置15の中央処理装置CPUがプログラムを実行することにより構成される。以降説明する、電流要求受付部151、エンジン制御部152、インダクタンス制御部153、及び電流制御部154のそれぞれによる動作は、制御装置15の動作と言うことができる。
 エンジン制御部152は、エンジン出力調整部141を制御する。エンジン制御部152は、エンジン出力調整部141に、エンジン14の回転パワーを調整させる。
 電流制御部154は、電流調整装置CCを制御する。電流制御部154は、電流調整装置CCに、発電機10からモータ18へ出力される電流を調整させる。本実施形態における電流制御部154は、コンバータ16及びインバータ17の両方を制御する。
 電流制御部154は、コンバータ16に対し、位相制御を行う。位相制御は、コンバータ16のスイッチング素子Saの通電タイミングを進み又は遅らせる制御である。位相制御では、複数のスイッチング素子Saのそれぞれが、巻線121の誘導起電圧の周期に等しい周期でオン・オフ動作する。
 図3は、位相制御における電圧の波形の例を示す図である。
 図3において、Vuは、発電機10の複数相のステータ巻線Wのうち、U相のステータ巻線Wの誘導起電圧を表している。
 Vsupは、コンバータ16が有する複数のスイッチング素子Saのうち、U相のステータ巻線Wに接続されるスイッチング素子Saの制御信号を表している。詳細には、Vsupは、U相のステータ巻線Wに接続される2つのスイッチング素子Saの制御信号を表している。VsupにおけるHレベルは、スイッチング素子Saのオン状態を表している。Lレベルは、オフ状態を表している。なお、U相、V相及びW相それぞれの誘導起電圧及び制御信号は、互いに120度ずれている。
 位相制御において、電流制御部154は、発電機10の巻線121の誘導起電圧の周期と等しい周期の信号Vsupに応じて、U相のステータ巻線Wに接続されるスイッチング素子Saのオン・オフを制御する。複数のスイッチング素子Saのオン・オフのデューティ比は固定されている。電流制御部154は、例えば、回転角センサ191の出力信号に基づいて巻線121の誘導起電圧の周期と等しい周期の信号Vsupを生成する。
 電流制御部154は、位相制御において、スイッチング素子Saの通電タイミングを進み又は遅らせることによって、ステータ巻線Wからモータ18に流れる電流を制御する。例えば、電流制御部154は、誘導起電圧Vuに対し、対応するスイッチング素子Saのオン・オフの位相を進めることによって、発電機10から出力される電流を減少させる。電流制御部154は、誘導起電圧Vuに対し、対応するスイッチング素子Saのオン・オフの位相を遅らせることによって、発電機10から出力される電流を増大させる。
 このように、電流制御部154は、巻線121の誘導起電圧の位相に対し、複数のスイッチング素子Saそれぞれのオン・オフ動作の位相を制御する。オン・オフ動作の位相が進み又は遅れることによって、コンバータ16から出力される電流が増大又は減少する。つまり、電流制御部154によるコンバータ16の制御によって、コンバータ16から出力される電流が調整される。即ち、電流制御部154によるコンバータ16の制御によって、発電機10からモータ18へ出力される電流が調整される。
 なお、電流制御部154は、上述した位相制御とは異なる制御を実施することも可能である。例えば、電流制御部154は、位相制御の代わりにベクトル制御を実施してもよい。ベクトル制御は、発電機10の電流を、磁極の磁束方向に対応するd軸成分と、電気角において磁束方向と垂直なq軸成分に分離して制御する方法である。ベクトル制御では、巻線121の誘導起電圧の周期より短い周期のパルス幅変調(PWM)された信号でスイッチング素子Saが動作する。ベクトル制御では、複数の巻線121の各相に正弦波の電流が流れるよう通電が行われる。信号のデューティ比の制御によってコンバータ16から出力される電流が増大又は減少する。
 電流制御部154は、インバータ17に、モータ18へ出力される電流を調整させる。電流制御部154は、120度通電方式によるタイミングで複数のスイッチング素子Saをオン・オフ動作させる。電流制御部154は、複数のスイッチング素子Saに対しパルス幅変調(PWM)制御を実施する。例えば、電流制御部154は、パルス幅変調された信号で、スイッチング素子Saをオン動作させる。電流制御部154は、オン動作させる信号のデューティ比を制御することによって、モータ18へ出力される電流を調整する。電流制御部154は、デューティ比の制御によって、コンバータ16からインバータ17に入力される電流を調整する。即ち、電流制御部154によるコンバータ16の制御によって、発電機10からモータ18へ出力される電流が調整される。電流制御部154は、可聴周波数の上限より大きい周波数のパルスで、パルス幅変調を実施することが好ましい。可聴周波数は、20Hzから20kHzまでの周波数である。
 なお、電流制御部154は、120度通電方式とは異なる制御を実施することも可能である。電流制御部154は、例えば、ベクトル制御を実施してもよい。
 このように、電流制御部154は電流調整装置CCを制御することによって、発電機10からモータ18へ出力される電流を制御する。発電機10の負荷トルクは、発電機10から出力される電流に依存する。従って、電流制御部154は電流調整装置CCを制御することによって、発電機10の負荷トルクを制御する。
 インダクタンス制御部153は、インダクタンス調整部131を制御する。インダクタンス制御部153は、インダクタンス調整部131に、巻線121のインダクタンスを調整させる。インダクタンス制御部153は、インダクタンス調整部131に、巻線121から見た、ステータコア122を通る磁気回路の磁気抵抗を変えさせる。これによって、インダクタンス制御部153は、巻線121のインダクタンスを変える。
 なお、発電機10から出力される電流の制御は、コンバータ16及びインバータ17のいずれを用いても実施できる。そこで、電流制御部154は、発電機10から出力される電流を制御するため、コンバータ16及びインバータ17のうち一方を制御してもよい。例えば、電流制御部154は、コンバータ16に対し位相制御を実施するとともに、インバータ17に対し120度通電方式による制御を実施する。このとき、電流制御部154は、インバータ17に対しPWM制御を実施せず、コンバータ16に対し位相の進み又は遅れの調整を行う。つまり、コンバータ16のみが、発電機10から出力される電流の制御に用いられる。
 逆に、電流制御部154は、コンバータ16に対し位相の進み又は遅れの調整を行なわず、インバータ17に対しPWM制御を実施してもよい。つまり、インバータ17のみが、発電機10から出力される電流の制御に用いられる。
 [インダクタンス調整部]
 図4(A)及び図4(B)は、図2に示す発電機10におけるインダクタンス調整部131の調整を説明するための模式図である。図4(A)は、発電機10の大インダクタンス状態を示す。図4(B)は、発電機10の小インダクタンス状態を示す。
 図4(A)には、発電機10に備えられたロータ11及びステータ12の一部が示されている。本実施形態の発電機10は、SPM(Surface Permanent Magnet)発電機によって構成されている。ロータ11とステータ12とは、互いに対向している。より詳細には、ロータ11の磁極部111と、ステータ12のステータコア122の歯部122bとがエアギャップを挟んで互いに対向している。磁極部111は、ステータ12に向かって露出している。
 インダクタンス調整部131は、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗を変える。これによってインダクタンス調整部131は、巻線121のインダクタンスを変え、モータ18に供給する電流を調整する。具体的には、インダクタンス調整部131は、巻線121に対するステータコア122の相対位置を移動する。これによって、インダクタンス調整部131は、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗を変える。
 巻線121は、発電機10の図示しない筐体に固定されている。ステータコア122は、巻線121に対し軸方向Xで移動自在なように筐体に支持されている。巻線121は、歯部122bに固定されていない。筒状の巻線121と歯部122bとの間には、隙間が設けられている。前記隙間は、歯部122bが巻線121に対して移動自在となる程度の隙間である。
 インダクタンス調整部131は、筒状に巻かれた巻線121の中に出入りする方向に歯部122bが移動するよう、ステータコア122を移動させる。本実施形態では、インダクタンス調整部131は、軸方向Xにステータコア122を移動させる。制御装置15は、電流要求に応じてインダクタンス調整部131を動作させる。
 なお、図4(A)には、ステータコア122の移動を分りやすく説明するため、インダクタンス調整部131がピニオンラック機構及びモータによって模式的に示されている。ただし、ステータコア122を移動させるインダクタンス調整部131として、図に示す以外の機構が採用可能である。例えば、ステータコアと同心に配置され、ステータコアとネジ係合する円筒部材を有する機構が採用可能である。このような機構では、例えば、円筒部材がステータコアに対し回転することによって、ステータコアが軸方向Xに移動する。
 インダクタンス調整部131は、ロータ11に対するステータコア122の相対位置を維持するように、巻線121に対するステータコア122の相対位置を移動させる。図4(A)の破線Qは、ロータ11が、軸方向Xにおいて、ステータコア122と連動して移動することを表している。ロータ11とステータコア122の相対位置を維持する構造は、例えば、ロータ11を回転可能に支持する軸受部113によって形成される。軸受部113の位置は、ステータコア122に対して固定されている。
 図4(A)及び図4(B)には、磁極部111によって生じる主な磁束F1が示されている。磁束F1の線は、磁極部111で生じる磁束F1が通る主な磁気回路を表している。そこで、磁束F1が通る磁気回路を、磁気回路F1と称する。
 磁極部111によって生じる主な磁束F1は、磁極部111、磁極部111と歯部122bとの間のエアギャップ、歯部122b、コア本体122a、及びバックヨーク部112を通って流れる。つまり、磁極部111、磁極部111と歯部122bとの間のエアギャップ、歯部122b、コア本体122a、及びバックヨーク部112によって、磁気回路F1が構成されている。
 なお、図2(A)及び図2(B)では、周方向に並んだ複数の歯部122bのうち3つの歯部122bが示されている。磁気回路F1を分かりやすく示すため、図には、3つの歯部122bのうち中央の歯部122bに磁極部111が対向した状態が示されている。
 ロータ11が回転すると、磁極部111によって生じ、巻線121と鎖交する磁束の量が変化する。巻線121と鎖交する磁束の量が変化することによって、巻線121に誘導起電圧が生じる。すなわち、発電が行われる。
 巻線121に生じる誘導起電圧は、巻線121と鎖交する磁束の量に依存している。巻線121と鎖交する磁束の量は、磁気回路F1の磁気抵抗が大きいほど、少ない。磁気回路F1の磁気抵抗は、主に、歯部122bと磁極部111との間のエアギャップの磁気抵抗に依存している。歯部122bと磁極部111との間のエアギャップの磁気抵抗は、歯部122bと磁極部111との間のエアギャップ長L1に依存している。
 従って、巻線121に生じる誘導起電圧は、歯部122bと磁極部111との間のエアギャップ長L1に依存している。
 図4(A)及び図4(B)には、巻線121に流れる電流によって生じる主な磁束F2が示されている。発電が行われるとき、巻線121には、誘導起電圧に起因した電流が流れる。磁束F2は、発電が行われるとき、巻線121に流れる電流によって生じる。磁束F2の線は、巻線121の電流によって生じる磁束F2が通る主な磁気回路を表している。そこで、磁束F2が通る磁気回路を、磁気回路F2と称する。磁気回路F2は、巻線121から見た磁気回路である。巻線121から見た磁気回路F2は、巻線121の内部を通り、且つ、磁気回路F2の全体の磁気抵抗が最小となる経路で構成される。
 磁気回路F2は、ステータコア122を通る。磁気回路F2は、隣り合う歯部122bを通る。図には、周方向に並んだ複数の歯部122bのうち3つの歯部122bが示されている。3つの歯部122bのうち中央の歯部122bに巻いた巻線121から見た磁気回路F2が代表として示されている。ある巻線121から見た磁気回路F2は、当該巻線121が巻いた歯部122b、及びこの歯部122bと隣り合う2つの歯部122bを通る。
 巻線121の電流によって生じる主な磁束F2は、歯部122b、コア本体122a、及び、隣り合う2つの歯部122bの間のエアギャップを通る。つまり、歯部122b、コア本体122a、及び、隣り合う歯部122bの間のエアギャップによって、磁気回路F2が構成されている。ステータコア122を通る磁気回路F2は、1つのエアギャップを含む。磁気回路F2のうちエアギャップによって構成された部分は、太線で示されている。磁気回路F2のうち、エアギャップによって構成された太線部分を、単にエアギャップF2aと称する。エアギャップF2aは、巻線121とロータ11との間にある。磁気回路F2を構成するエアギャップF2aは、巻線121とロータ11との間で、且つ、隣り合う歯部122bの間にある。エアギャップF2aは、非磁性体ギャップである。エアギャップF2aにおける磁気回路F2は、隣り合う2つの歯部122bのそれぞれの、ロータ11に対向する部分同士を繋ぐように設けられている。
 巻線121から見た磁気回路F2は、隣り合う2つの歯部122bの間のエアギャップF2aで構成される。磁気回路F2は、実質的にロータ11のバックヨーク部112で構成されない。巻線121の電流によって生じる磁束F2の多くは、次の理由で、ロータ11のバックヨーク部112を通らず、隣り合う2つの歯部122bの間のエアギャップを通る。
 電流によって巻線121に生じる磁束F2に関して、磁極部111は、単に磁束の経路と見なされる。本実施形態において、磁極部111は、透磁率が空気と同程度に低い永久磁石で構成されている。そのため、磁極部111は、磁気回路F2において空気と同等と見なせる。磁極部111が空気と同等であるため、ステータ12とロータ11との間の実質的なエアギャップ長は、歯部122bからバックヨーク部112までの距離L11になる。歯部122bからバックヨーク部112までの距離L11は、軸方向Xにおける磁極部111の厚みを含む。そのため、磁極部111は、歯部122bから磁極部111までの距離L1よりも長い。
 しかも、本実施形態では、巻線121の電流によって生じる磁束F2の量は、磁極部111の永久磁石によって生じる磁束の量よりも少ない。巻線121の電流によって生じる磁束F2の多くは、エアギャップ長L11を隔てたバックヨーク部112に到達し難い。従って、巻線121の電流によって生じる磁束F2のうち、バックヨーク部112を通る磁束は少ない。
 従って、巻線121の電流によって生じる磁束F2の多くは、ロータ11のバックヨーク部112よりも、歯部122bと歯部122bとの間のエアギャップF2aを通る。図4(A)に示す状態では、巻線121のインダクタンスが、設定可能な値の範囲内で最も大きい値に設定されている。図4(A)に示す状態で、磁気回路F2を構成するエアギャップF2aは、磁気回路F2を構成する要素の中で磁気抵抗が最も大きい。エアギャップF2aは、磁気回路F2のうち、エアギャップF2aの残りの部分F2bよりも大きい磁気抵抗を有する。
 巻線121のインダクタンスは、巻線121から見た磁気回路F2の磁気抵抗に依存する。巻線121のインダクタンスは、巻線121から見た磁気回路F2の磁気抵抗に反比例する。
 ここで、巻線121から見た磁気回路F2の磁気抵抗とは、巻線121の電流によって生じる磁束F2が流れる磁気回路F2の磁気抵抗である。巻線121から見た、ステータコア122を通る磁気回路F2磁気抵抗には、隣り合う2つの歯部122bの間のエアギャップの磁気抵抗が含まれる。巻線121に電流によって生じる磁束F2は、厳密には、ステータ12及びロータ11の双方を通る。しかし、上述したように、巻線121に電流によって生じる磁束の多くは、ロータ11のバックヨーク部112を介さず、隣り合う2つの歯部122bの間のエアギャップを通る。従って、巻線121から見た磁気抵抗は、ロータ11を通る磁気回路F1の磁気抵抗よりも、ステータ12を通る磁気回路F2の磁気抵抗に強く依存する。つまり、巻線121のインダクタンスは、巻線121から見たロータ11を通る磁気回路F1の磁気抵抗よりも、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗に、より強く依存する。従って、巻線121のインダクタンスは、実質的に、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗に依存する。
 インダクタンス調整部131は、巻線121に対するステータコア122の相対位置を移動させる。これによって、インダクタンス調整部131は、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗を変える。これによって、インダクタンス調整部131は、巻線121のインダクタンスを変える。例えば、インダクタンス調整部131が、ステータコア122を矢印X1の向きに移動させると、ステータコア122の歯部122bが、筒状に巻かれた巻線121の中から抜ける向きに移動する。
 図4(B)には、図4(A)の状態よりも小さいインダクタンスを有する状態が示されている。
 ステータコア122の歯部122bが、巻線121から抜けると、巻線121の中に存在するステータコア122の量が減少する。この結果、巻線121の中の磁束が拡がる。巻線121から見た磁気回路F2の観点では、磁気回路F2を構成するエアギャップF2aの長さが長くなる。従って、巻線121とロータ11との間にあるエアギャップF2aの磁気抵抗が、増大する。つまり、磁気抵抗が最も大きいエアギャップF2aの磁気抵抗が増大する。この結果、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗が増大する。これによって、巻線121のインダクタンスが減少する。
 図4(B)は、インダクタンス調整部131が、ステータコア122を矢印X1の向きに移動した状態を示している。ステータコア122を矢印X1の向きに移動した結果、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗が増大する。これによって、巻線121のインダクタンスが減少する。
 インダクタンス調整部131は、磁気抵抗が最も大きいエアギャップF2aの磁気抵抗を変える。これによって、インダクタンス調整部131は、隣り合う歯部122bを通る磁気回路F2の磁気抵抗を変える。従って、例えばエアギャップF2a以外の部分の磁気抵抗を変える場合と比べて、巻線121のインダクタンスが大きく変化しやすい。
 さらに、インダクタンス調整部131は、巻線121のインダクタンスの変化率が巻線121と鎖交する磁束の変化率よりも大きくなるように、巻線121のインダクタンスを変える。本実施形態の発電機10のインダクタンス調整部131は、ロータ11に対するステータコア122の相対位置を維持するように、巻線121に対するステータコア122の相対位置を移動する。
 インダクタンス調整部131が、ステータコア122を矢印X1の向きに移動させると、ロータ11も連動して矢印X1の向きに移動する。このため、ロータ11に対するステータコア122の相対位置が維持される。これによって、ステータコア122が移動する場合に、歯部122bと磁極部111との間のエアギャップ長L1の変化が抑えられる。従って、磁極部111からステータコア122に流れる磁束F1の変化が抑えられる。つまり、巻線121と鎖交する磁束F1の変化が抑えられる。
 インダクタンス調整部131は、インダクタンス制御部153の制御によって、発電機10の状態を、図4(A)に示す大インダクタンス状態と、図4(B)に示す小インダクタンス状態との間で切換える。小インダクタンス状態は、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗が相対的に大きく巻線121のインダクタンスが小さい状態である。大インダクタンス状態は、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗が相対的に小さく巻線121のインダクタンスが大きい状態である。
 小インダクタンス状態は、あるインダクタンスの値の範囲に対応する。大インダクタンス状態は、あるインダクタンスの値の範囲に対応する。小インダクタンス状態に対応するインダクタンスは、大インダクタンス状態に対応するインダクタンスよりも小さい。小インダクタンス状態に対応するインダクタンスの範囲と、大インダクタンス状態に対応するインダクタンスの範囲とは、重なりを有さない。
 小インダクタンス状態に対応するインダクタンスと、大インダクタンス状態に対応するインダクタンスとは、例えば境界値で区別されている。境界値は、例えば、インダクタンス制御部153の制御によって取り得るインダクタンスの最大値及び最小値の中央値である。
 インダクタンス調整部131は、巻線121のインダクタンスの変化率が巻線121と鎖交する磁束の変化率よりも大きくなるように、巻線121のインダクタンスを変える。本実施形態の発電機10のインダクタンス調整部131は、ロータ11に対するステータコア122の相対位置を維持するように、巻線121に対するステータコア122の相対位置を移動する。
 インダクタンス調整部131が、ステータコア122を矢印X1の向きに移動させると、ロータ11も連動して矢印X1の向きに移動する。このため、ロータ11に対するステータコア122の相対位置が維持される。これによって、ステータコア122が移動する場合に、歯部122bと磁極部111との間のエアギャップ長L1の変化が抑えられる。従って、磁極部111からステータコア122に流れる磁束F1の変化が抑えられる。つまり、巻線121と鎖交する磁束F1の変化が抑えられる。
 図5(A)は、図4(A)及び図4(B)に示す発電機10の巻線121を模式的に示す回路図である。
 図5(A)では、巻線121の作用を分かりやすくするため、一相分の回路が単純化されて示されている。
 図5(A)に示すように、巻線121は、電気的に、交流電圧源121A、インダクタ121B、及び抵抗121Cを含んでいる。巻線121は、電流調整装置CCと接続されている。電流調整装置CCは、電流制御部154に制御される。電流調整装置CCのコンバータ16は、巻線121で生じた交流を整流する。電流調整装置CCのインバータ17は、整流された直流から、モータの回転に応じた三相のパルス電流を生成する。発電機10からモータ18に供給される電流として、コンバータ16からインバータ17に流れる電流Iが示されている。電流Iは直流電流である。
 なお、発電機10からモータ18に供給される電流は、発電機10の複数の巻線121からコンバータ16に供給される電流を検出することによって求めることも可能である。また、発電機10からモータ18に供給される電流は、インバータ17から、モータ18の巻線に流れる電流を検出することによって求めることも可能である。
 電流調整装置CCは、電流制御部154に制御されることによって、発電機10からモータ18に供給される電流Iを調整する。電流Iは、コンバータ16及びインバータ17の双方、又は一方によって制御される。電流制御部154は、制御量に基づいて、発電機10からモータ18に供給される電流Iを制御する。制御量は、エンジン14の回転速度、及び電流Iを含む。エンジン14の回転速度は、回転角センサ191の検出結果に基づいて得られる。電流Iは、電流センサ192の検出結果に基づいて得られる。電流制御部154は、制御量に応じて電流調整装置CCを制御する。これによって電流制御部154は、発電機10からモータ18に供給される電流Iを制御する。
 電流制御部154は、電流の増大の要求が受付けられた場合、発電機10から出力される電流の増大にかかる時間が小さくなるように、発電機10から出力される電流を調整する。電流制御部154は、発電機10から出力される電流の増大にかかる時間が最小となるように、発電機10から出力される電流を調整する。電流制御部154は、エンジン14の回転速度の変化量、及び発電機10の出力電流の変化量に応じたフィードバック制御を行う。具体的には、電流制御部154は、エンジン14の回転速度が増大し且つ発電機10の出力電流が増大するように、発電機10から出力される電流を調整する(電流増大モード)。
 例えば、電流制御部154は、電流センサ192の検出結果に基づく電流の値を繰り返し記憶させ、過去に記憶された値を比較することにより、発電機10の出力電流の変化量を得る。電流制御部154は、回転角センサ191の検出結果に基づく回転速度の値を繰り返し記憶させ、過去に記憶された値を比較することにより、回転速度の変化量を得る。電流制御部154は、回転速度が増大している場合、発電機10から出力される電流目標を増大させる。電流制御部154は、発電機10から出力される電流目標の増大量を、エンジン14の回転速度の増大量に応じて制御する。例えば、電流制御部154は、エンジン14の回転速度の増大量が大きいほど、発電機10から出力される電流目標の増大量を大きくする。電流制御部154は、エンジン14の回転速度の増大量が小さい場合、電流目標の増大量を小さくする。電流制御部154は、電流調整装置CCに、電流Iを、電流目標に調整させる。このように、電流制御部154は、エンジン14の回転速度の変化量に応じたフィードバック制御により、発電機10から出力される電流を制御する。電流Iは、フィードバック制御によって変動する。
 電流Iは、発電機10の巻線121を含む電気回路を流れる。つまり、電流Iが流れる電気回路は、インダクタ121Bを有する。電流調整装置CCが電流Iを変化させるとき、電流Iは、インダクタ121Bに起因する応答特性に沿って変化する。
 図5(B)は、インダクタに起因する応答特性の例を示すグラフである。
 図5(B)のグラフの横軸は、時間を示す。縦軸は、電流を示す。グラフは、インダクタを含む回路が、制御によって閉じた場合における、時間の経過に伴う電流の変化の例を概略的に示している。実線は、インダクタンスが大きい場合の変化を示す。破線は、インダクタンスが小さい場合の変化を示す。
 グラフに示すように、インダクタを含む回路に流れる電流を制御する場合、電流が制御の目標に到達するのに時間がかかる。つまり、制御に対し電流の応答が遅れる。
 図5(A)に示す、巻線121を含む回路に流れる電流の応答が過渡特性によって遅れると、制御時における電流のオーバーシュートが生じやすくなる。つまり、電流が、一時的に目標値を超える事態が生じやすくなる。例えば、電流が目標値を超えて増大すると、それに応じて、発電機10の負荷トルクも増大する。発電機の負荷トルクが、エンジンのトルクに近づくか、または、エンジンのトルクを超えると、エンジンの回転速度の増大が妨げられる。また、発電機10の負荷トルクが過大になることによって、発電機10の回転が不安定となる。
 これに対し、インダクタンスが小さい場合、図5(B)のグラフの実線に示すように電流の応答が速い。即ち、電流の応答性が高い。この結果、制御時の電流のオーバーシュートが抑えられる。
 インダクタンス調整部131は、巻線121に対するステータコア122の相対位置を移動させる。インダクタンス調整部131は、これによって、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗を変える。これによって、インダクタンス調整部131は、巻線121のインダクタンスLを変える。
 本実施形態では、電流の制御に対する電流の応答性が調整可能となる。従って、電流の制御時における、電流のオーバーシュートが抑えられる。
 インダクタンス調整部131は、巻線121とロータ11との間にあるエアギャップF2aの磁気抵抗を変えることによって巻線121のインダクタンスを変える。巻線121とロータ11との間には、ロータ11の回転に伴い移動する磁極部111によって交番磁界が生じる。例えば、巻線121とロータ11との間にあるエアギャップF2aの磁気抵抗を減少させると、交番磁界についての損失が減少する。詳細には、エアギャップF2aを通る磁気回路F2における鉄損が減少する。損失が減少することによって、負荷トルクが小さい。
 本実施形態では、巻線121に対するステータコア122の相対位置の移動が、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗を変える。これによって、巻線121のインダクタンスLが変わる。本実施形態では、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗を変えることによってインダクタンスLを変えるので、インダクタンスLを徐々に変えることができる。
 インダクタンスを変える方法として、巻線から見た、ステータコアを通る磁気回路の磁気抵抗でなく、巻線の実質的な巻数を変えることが考えられる。例えば、電流出力端子として、巻線の端に設けた端子と巻線の途中に設けた端子とを切換えて用いることが考えられる。また、巻線の途中に設けた端子を他の端子と短絡することが考えられる。これによって、電流に関与する実質的な巻数が変わる。この結果、インダクタンスが変わる。
 しかし、巻線の実質的な巻数を変える場合、実質的な巻数が瞬時に大きく変わる。このため、巻線で過大な電圧が生じる。また、短時間で過大な電流が流れ易い。実質的な巻数を変える場合には、電流切換えのためのスイッチング素子の設置が求められる。さらに、スイッチング素子には、過大な電圧に対応するため、高耐圧であることが求められる。巻線には、過大な電流の変化に対応するため、太い線材の使用が求められる。従って、巻線の実質的な巻数を変える方法では、効率が低下する。また、発電機が大型化する。
 本実施形態では、ステータコア122を通る磁気回路F2の磁気抵抗が変わることによって、巻線121のインダクタンスLが変わる。このため、巻線121のインダクタンスLを徐々に変えることができる。この結果、巻線121に生じる電圧の急激な増大が抑えられる。従って、発電機10に低耐圧の部品を接続することが可能である。このため、効率が高い。また、電流切換えのためのスイッチング素子を備えなくてよい。また、巻線に比較的細い線材を用いることができる。発電機10の大型化が抑えられる。
 図6は、ビークルVの動作を説明するフローチャートである。
 ビークルVの動作は、制御処理を実行する制御装置15によって制御される。制御装置15は、図6に示す制御処理を繰り返す。図2も参照して制御について説明する。
 制御装置15の電流要求受付部151が、電流の要求を受け付ける(S10)。詳細には、電流要求受付部151が、要求指示部Aから、電流の要求を表す信号を受付ける。電流要求受付部151は、要求指示部Aの操作量に基づいて、電流の要求を得る。詳細には、電流要求受付部151は、要求指示部Aの操作量、及びビークルVの走行状態に基づいて、電流の要求を得る。
 次に、制御装置15は、電流制御を行う(S20)。制御装置15は、電流要求受付部151によって受付けられた電流の要求に基づいて、発電機10からモータ18へ出力される電流を制御する。詳細には、エンジン制御部152、インダクタンス制御部153、及び電流制御部154が、電流を制御する。
 図7は、図6に示す電流制御を示すフローチャートである。
 制御装置15は、電流要求受付部151によって電流増大の要求が受け付けられたか否か判別する(S21)。電流要求受付部151は、例えば、電流の要求を過去の電流の要求と比較することによって電流の増大の要求を判別する。電流増大の要求が受け付けられていない場合(S21でNo)、制御装置15は、ステップS24の処理を実行する。
 電流要求受付部151によって電流増大の要求が受け付けられた場合(S21でYes)、制御装置15は、インダクタンスを減少させる(S22)。制御装置15は、トルク増大の要求に対応する電流増大の要求が受け付けられた場合(S21でYes)、インダクタンスを減少させる(S22)。インダクタンス制御部153が、インダクタンス調整部131に、インダクタンスを減少させる。インダクタンス制御部153は、インダクタンス調整部131に、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗を大きくさせる。これによって、インダクタンス制御部153は、インダクタンス調整部131に、巻線121のインダクタンスを、電流の増大の要求を受け付ける前の状態よりも小さくさせる。
 次に、制御装置15は、制御装置15の制御モードを電流増大モードに設定する(S23)。電流増大モードは、モータ18に供給する電流を増大させるモードである。
 次に、制御装置15は、制御装置15の制御モードが電流増大モードであるか否かを判別する(S24)。
 制御モードが電流増大モードである場合(S24でYes)、制御装置15は、エンジンパワー増大制御及び、電流増大制御を実行する(S25)。詳細には、エンジン制御部152が、エンジン出力調整部に、エンジン14の回転パワーを増大させる。これによって、エンジン14の回転パワーが、電流の増大の要求を受付けた時よりも増大した状態となる。
 また、電流制御部154が、電流調整装置CCに、発電機10から出力される電流を調整させる。電流制御部154は、発電機10から出力される電流の増大にかかる時間が小さくなるように、発電機10から出力される電流を調整させる。発電機10から出力される電流が増大する速度は、上述したように、エンジン14の回転速度が増大する速度の影響を受ける。具体的には、電流制御部154は、電流調整装置CCに、エンジン14の回転速度が増大し且つ発電機10の出力電流が増大するように発電機10から出力される電流を調整させる。
 例えば、電流制御部154は、コンバータ16を用いて電流を制御する。電流制御部154は、コンバータ16に対し位相制御を実施することによって、発電機10から出力される電流を制御する。電流制御部154は、インバータ17に対しPWM制御無しの120度通電方式による制御を実施する。
 このようにして、ステップS21からS25の処理によって、電流の増大の要求を受付けた場合、制御装置15が有する、エンジン制御部152、インダクタンス制御部153、及び電流制御部154は、次のように制御を行う。インダクタンス制御部153は、発電機10を、小インダクタンス状態にする。即ち、インダクタンス制御部153は、発電機10を、巻線から見た、ステータコアを通る磁気回路の磁気抵抗が相対的に大きく巻線のインダクタンスが小さい状態にする。この状態で、エンジン制御部152が、エンジン出力調整部141にエンジン14の回転パワーを、電流の増大の要求を受付けた時よりも増大させる。また、電流制御部154は、エンジン14の回転速度が増大し且つ発電機10の出力電流が増大するように、発電機10から出力される電流を調整する。
 次に、制御装置15は、エンジンの回転速度が増大したか否かを判別する(S26)。
制御装置15は、エンジンの回転速度が、少なくとも電流の増大の要求を受付けた時のエンジンの回転速度よりも高いか否かを判別する。
 より詳細には、ステップS26において、制御装置15は、エンジンの回転速度が、所定の値よりも大きいか否かを判別することによって、回転速度が増大したか否かを判別する。前記所定の値は、電流の増大の要求を受付けた時のエンジンの回転速度よりも高い値に設定される。なお、前記所定の値は、例えば、エンジン14の回転の安定性に与える発電機10の負荷トルクの影響が小さくなるような回転速度の値に設定されることが好ましい。前記所定の値は、固定値とすることができる。また例えば、前記所定の値は、エンジンの回転速度を増大させる目標値に対し所定の割合に応じた値でもよい。また、制御装置15は、例えば、エンジンの回転速度の増大が、所定の時間を超えて継続したか否かを判別することによって、回転速度が増大したか否かを判別してもよい。
 エンジンの回転速度が増大したと判別された場合(S26でYes)、制御装置15は、発電機10の状態を、大インダクタンス状態にする。制御装置15は、インダクタンスを増大させる(S27)。詳細には、インダクタンス制御部153が、インダクタンス調整部131に、インダクタンスを増大させる。インダクタンス制御部153は、インダクタンス調整部131に、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗を小さくさせる。これによって、インダクタンス制御部153は、インダクタンス調整部131に、巻線121のインダクタンスを大きくさせる。
 本実施形態において、制御装置15は、電流調整装置CCに、発電機10の出力電流が増大するように出力電流を調整する途中で、インダクタンス調整部131に、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗を小さくさせる。これによって、インダクタンス制御部153は、インダクタンス調整部131に、巻線121のインダクタンスを大きくさせる。
 上記ステップS27において、制御装置15は、インダクタンスを増大させる速度の大きさを、上記ステップS22でインダクタンスを減少させる速度の大きさよりも小さくする。詳細には、インダクタンス制御部153は、上記ステップS27において、時間の経過と共にインダクタンスを徐々に増大させる。
 制御装置15は、制御モードが電流増大モードでない場合(S24でNo)、電流の減少の要求を受け付けたか否かを判別する(S28)。
 電流の減少の要求を受け付けていない場合(S28でNo)、制御装置15は、後述するステップS31の処理を実施する。電流の減少の要求を受け付けた場合(S28でYes)、制御装置15は、電流増大モードの設定を解除する(S29)。この後、制御装置15は、ステップS31の処理を実施する。
 次に、制御装置15は、エンジンパワーの制御、及び電流制御を実行する(S31)。エンジン制御部152が、電流の要求に応じてエンジン出力調整部に、エンジンの回転パワーを調整させる。また、電流制御部154が、電流の要求に応じて、電流調整装置に、発電機から出力される電流を調整させる。
 例えば、電流の要求が所定のレベルより小さくなると、エンジン制御部152がエンジンの回転パワーを減少させる。また、電流制御部154が、発電機10から出力される電流を調整させる。
 図8は、ビークルVの各部の状態の推移の一例を示すグラフである。
 グラフの横軸は時間である。グラフは、ビークルVが加速する場合における各部の状態を示している。詳細には、グラフは、エンジン14が回転し且つビークルVが停止した状態から、ビークルVが発進する場合の状態の例を示している。
 ビークルVは、時刻t1より前の期間、停止している。
 時刻t1で、要求指示部Aから電流の増大の要求が受け付けられる。要求指示部Aが電流の増大の要求を出力する。例えば、要求指示部Aが操作されることによって、要求指示部Aからの電流の増大の要求が受け付けられる。
 電流の増大の要求が受付けられると、制御装置15のインダクタンス制御部153は、インダクタンス調整部131に発電機10を、小インダクタンス状態にさせる。インダクタンス調整部131は、発電機10を、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗が相対的に大きく巻線121のインダクタンスLが小さい状態にする。
 なお、時刻t1より前の期間に発電機10の状態が小インダクタンス状態であった場合、制御装置15は、時刻t1の後、発電機10の小インダクタンス状態が維持されるよう制御する。
 制御装置15は、発電機10を小インダクタンス状態にさせるとともに、エンジン出力調整部にエンジン14の回転パワーを増大させる。時刻t1の後、回転パワーの増大に伴いエンジン14の出力トルクTeが増大する。エンジンの出力トルクTeは時間の経過に伴い徐々に増大する。
 制御装置15は、発電機10を小インダクタンス状態にさせるとともに、電流調整装置CCに、発電機10の出力電流を調整させる。
 発電機10の出力電流は、図8のグラフに示す発電機10の負荷トルクTgと同様に変化する。発電機の負荷トルクTgの変化は、発電機10の出力電流の変化を表している。
 制御装置15は、電流調整装置CCに、エンジン14の回転速度Veを増大させ且つ発電機10の出力電流を増大させるように、発電機10の出力電流を調整させる。エンジン14の回転速度Veは、発電機10の負荷トルクTgがエンジン14の出力トルクTeよりも小さい場合に増大する。従って、制御装置15は、発電機10の負荷トルクTgがエンジン14の出力トルクTeよりも小さくなるように、発電機10の出力電流を調整させる。ただし、制御装置15は、発電機10の出力電流を時間の経過とともに増大させる。
 この結果、時刻t1で電流の増大の要求が受付けられた後、エンジンの回転速度Veが増大しつつ、発電機10の出力電流が増大する。発電機10の出力電流は、図8のグラフにおいて、発電機10の負荷トルクTgの波形として表される。
 制御装置15は、エンジン14の回転速度Veの変化、及び、発電機10の出力電流(負荷トルクTgの波形を参照)の変化に基づいて、発電機10の出力電流の制御目標を設定する。制御装置15は、発電機10の出力電流が設定した制御目標となるように、電流調整装置CCを制御する。図8に示す発電機の負荷トルクTgの破線は、発電機10の出力電流が制御目標に沿って増大する理想的な場合の負荷トルクの変化を示す。
 発電機10の出力電流が制御によって変化するとき、実際の出力電流は、回路の過渡特性に起因して、目標からずれる。出力電流は、オーバーシュートを有する。例えば、出力電流は、振動するようにずれる。従って、実際の発電機10の負荷トルクTgは、図8の破線に示す理想的な負荷トルク対し、上下に振動するようにずれる。
 例えば、出力電流が制御目標からずれることよって、発電機10の負荷トルクTgが、エンジン14の出力トルクTeに近い場合、又は、エンジン14の出力トルクTeを超える場合、エンジン14の回転速度Veの増大が抑えられる。このため、エンジン14の回転速度Veの増大にかかる時間が長くなる。この結果、発電機10の出力電流の増大にかかる時間が長くなる。従って、ビークルの加速性が低下する。また、エンジン14の回転が不安定になる。
 そこで、例えば、発電機10の負荷トルクTgに対するエンジン14の出力トルクTeの余裕が大きくなるように、発電機10の出力電流の制御目標を低くすることが考えられる。この場合、発電機10の出力電流が低く抑えられる。この結果、発電機10の出力電流の増大にかかる時間が長くなる。従って、ビークルの加速性が損なわれる。
 本実施形態では、電流の増大の要求が受付けられると、発電機10が小インダクタンス状態となる。このため、電流の制御に対する電流の応答が速くなる。このため、過渡特性に起因する出力電流のずれが抑えられる。発電機10の負荷トルクTgは、破線に示す目標に沿って増大しやすい。エンジン14の回転が安定化する。また、発電機10の負荷トルクTgが、エンジン14の出力トルクTeに近い事態、及び、エンジン14の出力トルクTeを超える事態が抑えられる。従って、発電機10の出力電流の増大にかかる時間が短くなる。この結果、加速性が向上する。
 また、本実施形態では、図3を参照して説明したように、発電機からモータへ流れる電流が、スイッチング素子Saのオン/オフ動作によって調整される。
 巻線121に流れる電流は、スイッチング素子Saのオン/オフ動作に対しても過渡特性を有する。即ち巻線121に流れる電流は、スイッチング素子Saのオン/オフ動作に対して遅れを有する。例えば、スイッチング素子Saを流れる電流は、スイッチング素子Saがオンとなった後、徐々に増大する。また、スイッチング素子Saを流れる電流は、スイッチング素子Saがオフとなった後、徐々に減少する。スイッチング素子Saに遅れて流れる電流の成分によって損失が生じる。この結果、電力効率が低下する。遅れに起因する損失は、特にスイッチング素子SaがPWM制御される場合に、PWM制御されない場合よりも大きい。オン/オフ動作の周波数を下げると、遅れに起因する損失は減少する。しかし、周波数を下げると、可聴ノイズが増大してしまう。
 本実施形態では、電流の増大の要求を受付けられた場合、発電機10が、インダクタンスの小さい状態に調整される。インダクタンスが小さいことによって、巻線121のインダクタンスに起因する過渡特性が向上する。従って、スイッチング素子Saに遅れて流れる電流の成分による損失が抑えられる。このため、電流の増大の要求を受付けた場合、高い効率で、発電機10からモータへ電流を供給することができる。
 時刻t2において、エンジン14の回転速度Veは、電流の増大の要求を受付けた時刻(t1)の回転速度Veよりも高い。このとき、制御装置15は、インダクタンス調整部131に、発電機10を、大インダクタンス状態にさせる。即ち、インダクタンス調整部131は、発電機10を、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗が相対的に小さく巻線121のインダクタンスが大きい状態にする。
 時刻t2では、エンジン14の回転速度Veが、電流の増大の要求を受付けた時の回転速度Veよりも高い。このため、エンジン14の出力トルクTeが、電流の増大の要求を受付けた時の出力トルクTeよりも大きい。従って、大きなインダクタンスLeにより発電機の負荷トルクが変動する場合でも、エンジン14の回転速度の変動が抑えられる。従って、エンジン14の回転を安定化しつつ、高い回転速度によって発電機10からモータ18に供給される電流を増大することができる。
 時刻t2で、制御装置15は、インダクタンスを増大させる速度の大きさを、時刻t1でインダクタンスを減少させる速度の大きさよりも小さくする。制御装置15は、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗を減少させる速度の大きさを、時刻t1で磁気抵抗を増大させる速度の大きさよりも小さくする。制御装置15は、時間の経過と共に巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗を徐々に減少させる。これによって、制御装置15は、インダクタンスを徐々に増大させる。
 磁気抵抗F2が減少するとき、巻線121の誘導起電圧が増大しやすい。従って、発電機10から出力される電流が増大しやすい。発電機10の負荷トルクが増大しやすい。回転速度Veが、電流の増大の要求を受付けた時刻(t1)の回転速度Veよりも高い場合に、磁気抵抗が徐々に減少することによって、誘導起電圧の急激な増大が抑えられる。また、エンジン14の回転が不安定になることが抑えられる。
 時刻t3において、電流の減少の要求が受付けられると、制御装置15が、エンジン14の回転パワーの増大を抑える。従って、エンジン14の出力トルクTeの増大が抑えられる。また、エンジンの回転速度Veが維持されるよう、発電機10の出力電流が制御される。即ち、発電機10の負荷トルクTgがエンジン14の出力トルクTeと釣合うよう、発電機10の出力電流が制御される。
 また、電流の要求が所定のレベルより小さくなると、制御装置15が、エンジン14の回転パワーを減少させる(t4)。従って、エンジン14の出力トルクTeが低下する。この結果、エンジン14の回転速度Veが低下する。
 図8のグラフは、ビークルVが停止した状態から、ビークルVが発進する場合の各部の状態の例を示している。しかし、上述した動作は、ビークルVが走行中に加速する場合にも適用される。つまり、走行中に、制御装置15によって電流を増大する要求が受け付けられた場合、制御装置15は、インダクタンスを減少させる。
 [第二実施形態]
 続いて、本発明の第二実施形態について説明する。以下の第二実施形態の説明にあたっては、上述した第一実施形態との相違点を主に説明する。
 図9(A)及び図9(B)は、第二実施形態の発電機20におけるインダクタンス調整部の調整を説明するための模式図である。図9(A)は、巻線121のインダクタンスが、設定可能な値の範囲内で最も大きい値に設定されている時の状態を示している。図9(B)は、図9(A)よりも巻線121のインダクタンスが小さい値に設定されている時の状態を示している。
 図9(A)における、巻線221、ステータコア222、及びロータ21の位置関係は、図4(A)を参照して説明した第一実施形態の位置関係と同じである。
 磁気回路F21は、磁極部211によって生じる磁束が通る磁気回路である。磁気回路F22は、巻線221から見た磁気回路である。巻線221から見た磁気回路F22は、巻線221の内部を通り、且つ、磁気回路F22の全体の磁気抵抗が最小となる経路で構成される。磁気回路F22は、ステータコア222を通る。磁気回路F22は、隣り合う2つの歯部222bを通る。
 ステータコア222を通る磁気回路F22は、エアギャップF22aを含む。エアギャップF22aは、巻線221とロータ21との間にある。磁気回路F22を構成するエアギャップF22aは、巻線221とロータ21との間で、且つ、隣り合う2つの歯部222bの間にある。エアギャップF22aは、非磁性体ギャップである。磁気回路F2を構成するエアギャップF22aは、隣り合う2つの歯部222bのそれぞれの、ロータ21に対向する部分同士を繋ぐように設けられている。
 巻線121から見た磁気回路F2は、ロータ11のバックヨーク部112を通らず、隣り合う2つの歯部122bの間のエアギャップF22aで構成される。
 図9(A)に示す状態で、磁気回路F22を構成するエアギャップF22aの磁気抵抗は、磁気回路F22を構成する要素の磁気抵抗の中で最も大きい。エアギャップF22aは、磁気回路F22のうち、エアギャップF22aの残りの部分F22bよりも大きい磁気抵抗を有する。
図9(A)に示す発電機20において、インダクタンス調整部231は、要求される電流要求に応じて、巻線221を移動させる。これによって、インダクタンス調整部231は、巻線221から見た、ステータコア222を通る磁気回路F22の磁気抵抗を変える。これによって、インダクタンス調整部231は、巻線221のインダクタンスを変え、モータ18(図1参照)に供給する電流を調整する。
 インダクタンス調整部231は、ステータ22のステータコア222を移動させず、巻線221を移動させる。
 より詳細には、ステータコア222は、図示しない筐体に固定されている。ロータ21は、筐体に回転可能に支持されている。ロータ21は、軸方向Xについて固定されている。巻線221は、筐体に対し軸方向Xに移動自在なように筐体に支持されている。
 インダクタンス調整部231は、歯部222bが筒状の巻線221の中に出入りする方向に移動するよう、巻線221を移動させる。本実施形態では、インダクタンス調整部231は、巻線221を軸方向Xに移動させる。インダクタンス調整部231は、例えば、巻線221を矢印X2の向きに移動させる。制御装置15は、電流要求に応じてインダクタンス調整部231を動作させる。
 図9(B)には、図9(A)の状態よりも小さいインダクタンスを有する状態が示されている。図9(B)に示す状態は、巻線221が矢印X2の向きに移動した状態である。
 本実施形態において、インダクタンス調整部231は、巻線221のみを移動させる。複数の歯部222bに巻かれた複数の巻線221はすべて一体となって移動する。これによって、インダクタンス調整部231は、巻線221に対するステータコア222の相対位置を移動させる。これによって、インダクタンス調整部231は、巻線221から見た、ステータコア222を通る磁気回路F22の磁気抵抗を変える。
 例えば、巻線221が矢印X2の向き、すなわちロータ21に向かって移動すると、ステータコア222の歯部222bが、巻線221から抜ける。歯部222bが巻線221から抜けると、巻線221の中に存在するステータコア222の量が減少する。この結果、巻線221から見た磁気回路F22を構成するエアギャップF22aの長さが長くなる。従って、巻線221とロータ21との間にあるエアギャップF22aの磁気抵抗が、増大する。つまり、磁気抵抗が最も大きいエアギャップF22aの磁気抵抗が増大する。この結果、巻線221から見た磁気回路F2の磁気抵抗が増大する。これによって、巻線221のインダクタンスが減少する。
 インダクタンス調整部231は、磁気抵抗が最も大きいエアギャップF22aの磁気抵抗を変える。これによって、インダクタンス調整部231は、隣り合う歯部222bを通る磁気回路F2の磁気抵抗を変える。従って、例えばエアギャップF22a以外の部分F22bの磁気抵抗を変える場合と比べて、巻線221のインダクタンスが大きく変化しやすい。
 このようにして、インダクタンス調整部231は、巻線221から見た磁気回路F22の磁気抵抗を変える。これによって、インダクタンス調整部231は、巻線221のインダクタンスを変える。
 例えば、インダクタンス調整部231が、電流増大の要求に応じて、巻線221から見た、ステータコア222を通る磁気回路F22の磁気抵抗を増大させる。これによって、インダクタンス調整部231が、巻線221のインダクタンスを減少させる。
 インダクタンス調整部231は、巻線221とロータ21との間にあるエアギャップF22aの磁気抵抗を変えることによって巻線221のインダクタンスを変える。この結果、交番磁界についての損失が減少する。従って、電気負荷装置としてのモータ18に供給する電流の調整量を増大することができる。
 [第三実施形態]
 続いて、本発明の第三実施形態について説明する。以下の第三実施形態の説明にあたっては、上述した第一実施形態との相違点を主に説明する。
 図10は、第三実施形態の駆動システムにおける発電機30を示す模式図である。
 図10に示す発電機30におけるステータコア322は、複数の第一ステータコア部323と、第二ステータコア部324とを備えている。
 複数の第一ステータコア部323のそれぞれは、ロータ31にエアギャップを介して対面する対面部323aを有する。複数の第一ステータコア部323は、間隔を空けて円環状に配置されている。すなわち、複数の第一ステータコア部323は、周方向Zに一列に並んで配置されている。複数の第一ステータコア部323は、ステータ32において主たる歯部として機能する。そこで、第一ステータコア部323は、本明細書において、第一歯部323とも称される。第一ステータコア部323の対面部323aの周方向Zでの長さは、第一ステータコア部323の、対面部323a以外の部分の周方向Zでの長さよりも長い。巻線321は、第一ステータコア部323に巻かれている。
 第二ステータコア部324は、第一ステータコア部323を挟んで、ロータ31とは反対の位置に配置されている。第一ステータコア部323は、第二ステータコア部324とロータ31との間に配置されている。第二ステータコア部324は、ロータ31と対面する対面部323aを有さない。第二ステータコア部324は、円環状のステータヨーク部324a、及び複数の第二歯部324bを有する。第二歯部324bは、ステータヨーク部324aよりも第一ステータコア部323の方に向かって突出している。第二歯部324bの数は、第一ステータコア部323の数と同じである。ステータヨーク部324aと第二歯部324bは、第二歯部324bを通る磁束のほぼすべてがステータヨーク部324aを通るように構成されていればよい。即ち、第二歯部324bは、ステータヨーク部324aと一体成形されていてもよい。第二歯部324bは、ステータヨーク部324aと別体に形成されてステータヨーク部324aに取り付けられてもよい。第二歯部324bは、周方向Zに一列に並んで配置されている。複数の第二歯部324bは、互いに間隔を空けて円環状に配置されている。複数の第二歯部324bの間隔は、複数の第一ステータコア部323の間隔と等しい。
 本実施形態の発電機30におけるインダクタンス調整部331は、巻線321に対するステータコア322の一部の相対位置を移動させる。インダクタンス調整部331は、複数の第一ステータコア部323及び第二ステータコア部324の一方を他方に対して移動させる。これによって、インダクタンス調整部331は、巻線321から見た磁気抵抗を変える。これによって、インダクタンス調整部331は、インダクタンスを調整する。
 インダクタンス調整部331は、制御装置15に制御される。より詳細には、第一ステータコア部323は、図示しない筐体に対して固定されている。第二ステータコア部324は、周方向Zで回転可能に支持されている。インダクタンス調整部331は、第二ステータコア部324を、ロータ31の回転軸線を中心とした周方向Zに回転させる。これによって、インダクタンス調整部331は、第二ステータコア部324を第一状態(図11(A)参照)から第二状態(図11(B)参照)まで移動させる。
 図11(A)は、図10に示すステータ32の第一状態を示す模式図である。図11(B)は、図10に示すステータ32の第二状態を示す模式図である。
 図11(A)に示す第一状態は、大インダクタンス状態である。
 図11(A)は、巻線321のインダクタンスが、設定可能な値の範囲内で最も大きい値に設定されている時の状態を示している。図11(B)は、図11(A)よりも巻線321のインダクタンスが小さい値に設定されている時の状態を示している。
 図11(A)に示す第一状態では、周方向Zにおいて、複数の第二歯部324bのそれぞれが、複数の第一ステータコア部323のそれぞれと向かい合う。第一状態では、複数の第一ステータコア部323のそれぞれと第二ステータコア部324との間のエアギャップ長L32が、複数の第一ステータコア部323のうち隣り合う第一ステータコア部の間のエアギャップ長L33よりも短い。エアギャップ長L33は、詳細には、ロータ31とステータ32とが対向する方向において、第一ステータコア部323のそれぞれの、巻線321とロータ31の間に設けられた部分同士におけるエアギャップ長である。
 図11(B)に示す第二状態は、小インダクタンス状態である。
 図11(B)に示す第二状態では、周方向Zにおいて、複数の第二歯部324bのそれぞれが、互いに隣り合う第一ステータコア部323の間に位置する。第二状態では、複数の第一ステータコア部323のそれぞれと第二ステータコア部324との間のエアギャップ長L34が、複数の第一ステータコア部323のうち隣り合う第一ステータコア部323の間のエアギャップ長L33よりも長い。
 第三実施形態の発電機30におけるインダクタンス調整部331の調整を説明する。
 図11(A)及び図11(B)には、磁極部311によって生じる磁束が通る磁気回路F31、及び巻線321から見た磁気回路F32が示されている。巻線321から見た磁気回路F32は、巻線321の内部を通り、且つ、磁気回路F32の全体の磁気抵抗が最小となる経路で構成される。磁気回路F32は、ステータコア322を通る。磁気回路F32は、隣り合う第一ステータコア部323(第一歯部323)を通る。
 磁気回路F32は、3つのエアギャップを含む。磁気回路F32のうち、隣り合う2つの第一ステータコア部323(第一歯部323)の間のエアギャップによって構成された部分を、エアギャップF32aと称する。磁気回路F32のうち、隣り合う2つの第一ステータコア部323(第一歯部323)のそれぞれと、第二ステータコア部324との間のエアギャップによって構成された部分を、エアギャップF32cと称する。隣り合う2つの第一ステータコア部323(第一歯部323)の間のエアギャップF32aは、巻線321とロータ31との間にある。磁気回路F22を構成するエアギャップF32aは、巻線321とロータ31との間で、且つ、隣り合う2つの第一ステータコア部323(第一歯部323)の間にある。エアギャップF32aは、隣り合う2つの第一ステータコア部323(第一歯部323)のそれぞれの、互いに対向する端面どうしを繋ぐように設けられている。
 図11(A)に示す第一状態では、複数の第一ステータコア部323(第一歯部323)のそれぞれと第二ステータコア部324との間のエアギャップ長L32が、複数の第一ステータコア部のうち隣り合う第一ステータコア部323(第一歯部323)の間のエアギャップ長L33よりも短い。エアギャップ長L33は、磁気回路F32において最も長いエアギャップである。従って、第一状態で、巻線321から見た磁気回路F32のうち、隣り合う第一ステータコア部323の間のエアギャップF32aの磁気抵抗は、磁気回路F32を構成する要素の磁気抵抗の中で最も大きい。エアギャップF32aは、磁気回路F32のうち、エアギャップF32aの残りの部分F32b,F32c,F32dのいずれの磁気抵抗よりも大きい磁気抵抗を有する。エアギャップF32aの磁気抵抗は、第一ステータコア部323と第二ステータコア部324との間のエアギャップF32cの磁気抵抗よりも大きい。
 巻線321の電流による磁束F3は、図11(A)に示すように、隣り合う第一ステータコア部323と、第二ステータコア部324とを通じて流れる。巻線321から見た、ステータコア322を通る磁気回路F32の磁気抵抗は、隣り合う第一ステータコア部323の間のエアギャップ長L33に依存する。
 また、磁極部311によって生じる磁束F31は、隣り合う2つの第一ステータコア部323を通る。詳細には、磁束F31は、1つの磁極部311から、磁極部311と第一ステータコア部323の間のギャップ、第一ステータコア部323、第二ステータコア部324、隣の第一ステータコア部323、磁極部311と第一ステータコア部323の間のギャップ、隣りの磁極部311、そしてバックヨーク部312を通って流れる。つまり、図11(A)に示す第一状態では、磁極部311の磁気回路F31は、隣り合う2つの第一ステータコア部323と、第二ステータコア部324を通る。
 図11(B)に示す第二状態では、複数の第一ステータコア部323のそれぞれと第二ステータコア部324との間のエアギャップ長L34が、複数の第一ステータコア部323のうち隣り合う第一ステータコア部323の間のエアギャップ長L33よりも長い。このため、巻線321から見た、ステータコア322を通る磁気回路F32の磁気抵抗は、第一ステータコア部323と第二ステータコア部324との間のエアギャップ長L34の影響を強く受ける。この結果、第二状態における巻線321から見た、ステータコア322を通る磁気回路F32の磁気抵抗は、第一状態における磁気抵抗よりも大きい。
 また、磁極部311によって生じる磁束F31は、1つの磁極部311から、磁極部311と第一ステータコア部323の間のギャップを通り、第一ステータコア部323を通る。磁束F31は、第一ステータコア部323から、直接隣の第一ステータコア部323を通る。磁極部311によって生じる磁束F31は、隣り合う2つの第一ステータコア部323の間のギャップを通る。このように、第二状態では、磁極部311によって生じる磁束F31の経路が切り替わる。また、第二状態で磁束F31の経路が切り替わらない場合でも、少なくとも磁極部311によって生じる磁束F31のうち、隣り合う2つの第一ステータコア部323の間のギャップを通る磁束が増大する。隣り合う2つの第一ステータコア部323の間のギャップを通る磁束F31が増大すると、エアギャップF32aの磁気抵抗が実質的に増大する。これは、隣り合う2つの第一ステータコア部323の間のエアギャップ長L33が増大したことと磁気的に等価である。このため、エアギャップF32aを含む磁気回路F32の磁気抵抗が、さらに大きい。巻線321のインダクタンスの変化率が、磁極部311で生じ巻線321と鎖交する磁束の変化率よりも大きい。
 先に説明したように、巻線321のインダクタンスは、巻線321から見た磁気抵抗に反比例する傾向を有する。従って、第二状態における巻線321のインダクタンスは、第一状態における巻線321のインダクタンスよりも小さい。
 インダクタンス調整部331は、第一状態(図11(A)参照)から第二状態(図11(B)参照)まで、複数の第一ステータコア部323及び第二ステータコア部324の一方を他方に対して移動させる。これによって、インダクタンス調整部331は、巻線321から見た磁気抵抗を変える。これによって、インダクタンス調整部331は、巻線321のインダクタンスを変える。
 インダクタンス調整部331は、エアギャップF32aの磁気抵抗を変える。インダクタンス調整部331は、隣り合う歯部としての第一ステータコア部323の間のエアギャップ長L33を変えることなくエアギャップF32aの磁気抵抗を変える。これによって、インダクタンス調整部331は、隣り合う歯部としての第一ステータコア部323を通る磁気回路F32の磁気抵抗を変える。エアギャップF32aは、第一状態において、磁気回路F32を構成する要素の中で磁気抵抗が最も大きい。従って、例えばエアギャップF32a以外の部分の磁気抵抗を変える場合と比べて、巻線321のインダクタンスが大きく変化しやすい。
 インダクタンス調整部331は、巻線321とロータ31との間にあるエアギャップF32aの磁気抵抗を変えることによって巻線321のインダクタンスを変える。この結果、交番磁界についての損失が減少する。従って、電気負荷装置としてのモータ18に供給する電流の調整量を増大することができる。
 再び図10を参照して発電機30の供給電圧調整部344について説明する。
 発電機30は、インダクタンス調整部331とは別に、供給電圧調整部344を備えている。供給電圧調整部344は、制御装置15に制御されている。
 供給電圧調整部344は、ロータ31の磁極部311から出て巻線321と鎖交する鎖交磁束を変える。これによって、供給電圧調整部344は、巻線321の誘導起電圧Eを変える。これによって、供給電圧調整部344は、モータ18に供給する電圧を調整する。より詳細には、供給電圧調整部344は、ロータ31を軸方向Xに移動させる。これによって、供給電圧調整部344は、ロータ31と、ステータ32との間のエアギャップ長L311を変える。このようなロータ31の軸方向Xへの移動は、例えばロータ31を回転可能に支持する軸受部313を、軸方向Xに移動させる供給電圧調整部344によって実現されることができる。ロータ31とステータ32との間のエアギャップ長L31が変わることによって、ロータ31と、ステータ32との間の磁気抵抗が変わる。これによって、磁極部311で生じて巻線321と鎖交する磁束の量が変わる。従って、発電機30が発生する電圧が変わる。
 なお、上述した第三実施形態では、発電機30が、インダクタンス調整部331及び供給電圧調整部344の双方を備えることを説明した。ただし、本発明の駆動システムは、供給電圧調整部を備えていなくともよい。
 また、上述した第三実施形態では、第一ステータコア部として、ロータに対向する端部に、周方向Zすなわち第一ステータコア部が並ぶ方向に突出した突出部を有する第一ステータコア部323の例を説明した。ただし、本発明における第一ステータコア部は、突出部を有していなくてもよい。
 また、コンバータは、ダイオードで構成されたブリッジ回路で構成されてもよい。すなわち、コンバータは、レクチファイアで構成されてもよい。この場合、コンバータは、出力電流を制御可能なレギュレータ回路を有してもよい。レギュレータ回路は、レクチファイアで整流された電流を、制御装置の制御に応じて調整する。つまり、コンバータは、レクチファイアレギュレータであってもよい。
 また、コンバータは、レギュレータ回路無しでレクチファイアを有してもよい。この場合、コンバータは、電流の制御を行わず、整流のみ行う。
 本発明におけるエンジン出力調整部は、スロットルバルブ調整機構、及び燃料噴射装置の双方によって回転パワーを調整しなくともよい。例えば、エンジン出力調整部は、スロットルバルブ調整機構又は燃料噴射装置の一方によって回転パワーを調整してもよい。本発明におけるエンジン出力調整部は、例えば気体燃料の流量を調整するバルブ装置であってもよい。本発明におけるエンジンは、液体燃料を利用するものであってもよく、また、気体燃料を利用するものであってもよい。
 上述した実施形態では、4つの車輪を有するビークルVの例を説明した。ただし、本発明はこれに限られず、3つ以下の車輪を有するビークル、5つ以上の車輪を有するビークル、及び車輪を有さないビークルに適用することができる。
 本発明は、例えば、車輪を備えたビークルに適用することができる。本発明における変速装置は、例えば、自動二輪車、自動三輪車、バス、トラック、ゴルフカー、カート、ATV(All-Terrain Vehicle)、ROV(Recreational Off-highway Vehicle)、及び軌道式車両に適用することができる。
 また、回転駆動部は、車輪に限られない。回転駆動部は、例えば、プロペラ、インペラ、キャタピラ、又はトラックベルトであってもよい。
 また、本発明は、例えば、フォークリフトに代表される産業車両、除雪機、農業用車両、軍用車両、スノーモービル、建機、小型滑走艇(ウォータービークル)、船舶、船外機、船内機、飛行機、及びヘリコプタに適用することができる。
 上述した実施形態では、アキシャルギャップ型構造を有するロータ及びステータの例を説明した。ただし、本発明は、ロータとステータとが、エアギャップを介して径方向で対向するラジアルギャップ構造にも適用できる。本実施形態のアキシャルギャップ型構造における軸方向X(図4)は、本発明におけるロータとステータとが対向する方向の一例である。ラジアルギャップ構造においては、ロータとステータとが径方向に対向する。
 また、上述した実施形態では、SPM発電機によって構成されている発電機の例を説明した。本発明の発電機は、IPM(Interior Permanent Magnet)発電機によって構成されてもよい。
 また、上述した実施形態におけるエアギャップは、非磁性体ギャップの一例である。非磁性体ギャップは、1種又は複数種の非磁性体からなるギャップである。非磁性体は、特に限定されない。非磁性体としては、例えば、空気、アルミニウム、樹脂が挙げられる。非磁性体ギャップは、少なくともエアギャップを含むことが好ましい。
 上述した実施形態では、ロータ11がエンジン14に接続される構成の詳細として、ロータ11は、エンジン14の出力軸Cと直接接続されている例を説明した。ただし、エンジン14の出力軸Cと発電機10のロータ11とは、例えばベルト、歯車、又はドライブシャフトに代表される伝達装置を介して接続されていてもよい。
 また、上述した実施形態では、要求指示部Aとしてアクセル操作子の例を説明した。ただし、本発明における電流要求は、アクセル操作子の出力に限られない。要求指示部、及び要求指示部から出力される電流要求として、例えば次のものが挙げられる。
・ビークルの自動速度制御装置(クルーズコントロール)から出力される加速要求の信号
・運転者が操作する、アクセル操作子とは別のスイッチ、ボリュームの出力
 上述した実施形態では、モータの例として、三相ブラシレスモータを説明した。本発明のモータは、インダクタンス調整部の構造を含め本実施形態で説明した発電機と同様の構造を有したモータであってもよい。例えば、モータは、発電機30と同様に複数の第一ステータコア部及び第二ステータコア部を備え、第一ステータコア部及び第二ステータコア部の一方を他方に対して移動させる構造を有していてもよい。
 本発明のビークルは、発電機で発電された電力を蓄えるバッテリを備えていてもよい。発電機は、エンジンのスタータとして、バッテリに蓄えられた電力によって動作してもよい。
 更に、ビークルのモータは、例えば、バッテリに蓄えられた電力によって動作してもよい。更に、モータは、例えば、発電機とバッテリの双方から同時に電力の供給を受けて動作してもよい。ただし、モータを駆動する電力を供給するバッテリなしで、モータが発電機から電力の供給を受ける構成は好ましい。この場合、バッテリ電圧の制約に起因する、エンジンの回転の制約又はバッテリ保護の制御が不要である。
 上述した実施形態では、制御装置の例として、マイクロコントローラで構成された制御装置15を説明した。ただし、本発明はこれに限られない。制御装置は、例えば、ワイヤードロジックで構成することも可能である。
 また、電流要求受付部、エンジン制御部、インダクタンス制御部、及び電流制御部のすべて又は一部は、互いに別のデバイスとして提供されてもよい。
 巻線から見た、ステータコアを通る磁気回路の磁気抵抗の変更により、巻線のインダクタンスの変更が行われる。巻線から見た、ステータコアを通る磁気回路の磁気抵抗の変更は、複数段階的に行われてもよく、無段階的に行われてもよく、連続的に行われてもよい。言い換えると、発電機の出力電流特性は、複数段階的に変更されてもよく、無段階的に変更されてもよく、連続的に変更されてもよい。本発明において、巻線から見た、ステータコアを通る磁気回路の磁気抵抗の変更は、2段階で行われてもよい。
 前記制御装置は、前記制御装置への入力に応じて前記制御装置からの出力を決定するように構成されている。前記中央処理装置が上述した動作を行うように前記プログラムを実行することにより、前記制御装置は、エンジン出力調整部及びインダクタンス調整部の両方に対する制御を行うことができる。なお、前記プログラムは、前記制御装置への入力に応じて前記制御装置からの出力を決定するためのマップを含んでいてもよい。前記マップでは、前記制御装置への入力に関するデータと、前記制御装置からの出力に関するデータとが対応付けられている。この場合、前記プログラムは、前記コンピュータが前記制御装置への入力に応じて前記制御装置からの出力を決定する時に前記マップを参照するように前記コンピュータを動作させるように構成されている。
 制御装置は、電流の増大の要求を受付けた場合、常に、発電機を、巻線から見た、ステータコアを通る磁気回路の磁気抵抗が相対的に大きくインダクタンスが小さい状態に調整させなくともよい。例えば、緩加速の時のように、電流の増大が緩やかな場合は、巻線から見た、ステータコアを通る磁気回路の磁気抵抗が相対的に小さい状態に維持されてもよい。
 上述した各実施形態において、小インダクタンス状態は、インダクタンス制御部により、巻線のインダクタンスが、インダクタンス制御部153の制御によって取り得るインダクタンスの最大値と最小値との間の境界値(例えば、中間値)より小さい値に調整されている状態である。大インダクタンス状態は、インダクタンス制御部により、巻線のインダクタンスが前記境界値より大きい値に調整されている状態である。小インダクタンス状態における巻線から見た、ステータコアを通る磁気回路の磁気抵抗は、大インダクタンス状態における巻線から見た、ステータコアを通る磁気回路の磁気抵抗より大きい。
 但し、本発明において、小インダクタンス状態と大インダクタンス状態とは、この例に限定されない。
 例えば、小インダクタンス状態は、インダクタンス制御部により、巻線のインダクタンスが、電流の増大の要求が受け付けられた時点の巻線のインダクタンスよりも小さい値に調整された状態であってもよい。大インダクタンス状態は、インダクタンス制御部により、巻線のインダクタンスが、電流の増大の要求が受け付けられた時点の巻線のインダクタンスよりも大きい値に調整された状態であってもよい。言い換えれば、前記境界値は、電流の増大の要求が受け付けられた時点の巻線のインダクタンスの値であってもよい。
 上述した各実施形態では、制御装置の制御により、インダクタンス調整部は、電流の増大の要求を受付けた時に、発電機を小インダクタンス状態に調整し、その後、エンジンの回転速度が前記電流の増大の要求を受付けた時のエンジン回転速度よりも高い時に、発電機を大インダクタンス状態に調整する。
 なお、本発明において、インダクタンス調整部は、発電機を小インダクタンス状態に調整した後、エンジンの回転速度が前記電流の増大の要求を受付けた時のエンジンの回転速度よりも高い時に、発電機の巻線のインダクタンスを、前記小インダクタンス状態における巻線のインダクタンスの最小値から上昇させるように調整してもよい。この場合、発電機が大インダクタンス状態となるまで、巻線のインダクタンスが調整されてもよい。また、発電機が小インダクタンス状態である状況下で、巻線のインダクタンスが調整されてもよい。
 上記実施形態に用いられた用語及び表現は、説明のために用いられたものであって限定的に解釈するために用いられたものではない。ここに示されかつ述べられた特徴事項の如何なる均等物をも排除するものではなく、本発明のクレームされた範囲内における各種変形をも許容するものであると認識されなければならない。本発明は、多くの異なった形態で具現化され得るものである。この開示は本発明の原理の実施形態を提供するものと見なされるべきである。それらの実施形態は、本発明をここに記載しかつ/又は図示した好ましい実施形態に限定することを意図するものではないという了解のもとで、実施形態がここに記載されている。ここに記載した実施形態に限定されるものではない。本発明は、この開示に基づいて当業者によって認識され得る、均等な要素、修正、削除、組み合わせ、改良及び/又は変更を含むあらゆる実施形態をも包含する。クレームの限定事項はそのクレームで用いられた用語に基づいて広く解釈されるべきであり、本明細書あるいは本願のプロセキューション中に記載された実施形態に限定されるべきではない。本発明は、クレームで用いられた用語に基づいて広く解釈されるべきである。
 V  ビークル
 Wc,Wd  駆動輪
 10,20,30  発電機
 11,21,31  ロータ
 12,22,32  ステータ
 14  エンジン
 15  制御装置
 CC  電流調整装置
 16  コンバータ
 17  インバータ
 18  モータ
 131,231,331  インダクタンス調整部
 141  エンジン出力調整部
 323  第一ステータコア部
 324  第二ステータコア部
 344  供給電圧調整部

Claims (11)

  1.  ビークルであって、
     ビークルは、
    回転パワーを出力するエンジンであって、前記回転パワーを調整するエンジン出力調整部を有するエンジンと、
    前記エンジンに接続され、前記エンジンから伝達される回転パワーに応じた電力を出力するように構成された発電機であって、永久磁石を有し前記エンジンから伝達される回転パワーにより回転するロータと、巻線及び前記巻線が巻かれたステータコアを有し前記ロータと対向して配置されたステータと、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えることによって前記巻線のインダクタンスを変えるインダクタンス調整部とを有する発電機と、
    前記発電機からバッテリを介すること無しに電流の供給を受けるモータと、
    前記発電機と前記モータの間に設けられ、前記発電機から前記モータへ出力される電流を調整する電流調整装置と、
    前記エンジンからの回転パワーを受けること無しに前記モータに駆動されることによって前記ビークルを駆動する駆動部材と、
    前記モータに供給する電流に関する要求を受付けるとともに、受付けられた要求に応じて前記エンジン出力調整部、前記インダクタンス調整部、及び前記電流調整装置を制御する制御装置と、
    を備え、
    前記制御装置は、前記インダクタンス調整部に、前記発電機を、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗が相対的に大きく前記巻線のインダクタンスが小さい状態と、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗が相対的に小さく前記巻線のインダクタンスが大きい状態との間で調整させ、
    前記制御装置は、前記モータに供給する電流の増大の要求を受付けた場合、前記インダクタンス調整部に、前記発電機を、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗が相対的に大きく前記インダクタンスが小さい状態に調整させるとともに、前記エンジン出力調整部に前記エンジンの回転パワーを、前記電流の増大の要求を受付けた時よりも増大させた状態に調整させつつ、前記電流調整装置に、前記エンジンの回転速度を増大させ且つ前記発電機の出力電流を増大させるように、前記発電機の出力電流を調整させる。
  2.  請求項1に記載のビークルであって、
     前記制御装置は、前記電流の増大の要求を受付けた後、前記エンジンの回転速度が、電流の増大の要求を受付けた時の前記エンジンの回転速度よりも高いとき、前記インダクタンス調整部に、前記発電機を、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗が相対的に小さく前記インダクタンスが大きい状態に調整させる。
  3.  請求項1又は2に記載のビークルであって、
     前記電流調整装置が、スイッチング素子を備え、スイッチング素子のオン/オフ動作によって、発電機からモータへ流れる電流を調整する。
  4.  請求項1から3いずれか1項に記載のビークルであって、
     前記巻線から見た、前記ステータコアを通る磁気回路は、少なくとも1つの非磁性体ギャップを含み、
     前記インダクタンス調整部は、前記少なくとも1つの非磁性体ギャップのうち、前記巻線と前記ロータとの間にある非磁性体ギャップの磁気抵抗を変えることによって前記巻線のインダクタンスを変えように構成されている。
  5.  請求項1から4いずれか1項に記載のビークルであって、
     前記巻線から見た、前記ステータコアを通る磁気回路は、少なくとも1つの非磁性体ギャップを含み、
     前記インダクタンス調整部は、前記少なくとも1つの非磁性体ギャップのうち、前記巻線のインダクタンスが設定可能な値の範囲内で最も大きい値に設定されている時の磁気抵抗が最も大きい非磁性体ギャップの磁気抵抗を変えることによって前記巻線のインダクタンスを変えるように構成されている。
  6.  請求項1から5いずれか1項に記載のビークルであって、
     前記インダクタンス調整部が、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えることによって、前記巻線と鎖交する磁束の変化率が前記巻線のインダクタンスの変化率よりも小さくなるように前記巻線のインダクタンスを変えるように構成されている。
  7.  請求項1から6いずれか1項に記載のビークルであって、
     前記インダクタンス調整部が、前記制御装置による制御に応じて前記巻線に対する前記ステータコアの少なくとも一部の相対位置を移動させて、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えることによって前記巻線のインダクタンスを変えるように構成されている。
  8.  請求項7に記載のビークルであって、
     前記インダクタンス調整部が、前記制御装置による制御に応じて前記ロータに対する前記ステータコアの相対位置を維持するように前記巻線に対する前記ステータコアの相対位置を移動させて、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えることによって前記巻線のインダクタンスを変えるように構成されている。
  9.  請求項1から7いずれか1項に記載のビークルであって、
     前記インダクタンス調整部が、前記巻線を移動させて前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えることによって前記巻線のインダクタンスを変えるように構成されている。
  10.  請求項1から7いずれか1項に記載のビークルであって、
     前記ステータコアは、前記ロータに非磁性体ギャップを介して対面する対面部を有する複数の第一ステータコア部と、前記対面部を含まない第二ステータコア部とを備え、
     前記インダクタンス調整部が、前記複数の第一ステータコア部及び前記第二ステータコア部の一方を他方に対して移動させることによって、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えるように構成されている。
  11.  請求項10に記載のビークルであって、
     前記インダクタンス調整部が、
    前記複数の第一ステータコア部のそれぞれと前記第二ステータコア部との間の非磁性体ギャップ長が、前記複数の第一ステータコア部のうち隣り合う第一ステータコア部の間の非磁性体ギャップ長よりも短い第一状態から、
    前記複数の第一ステータコア部のそれぞれと前記第二ステータコア部との間の非磁性体ギャップ長が、前記複数の第一ステータコア部のうち隣り合う第一ステータコア部の間の非磁性体ギャップ長よりも長い第二状態まで、
    前記複数の第一ステータコア部及び前記第二ステータコア部の一方を他方に対して移動させることによって、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えるように構成されている。
PCT/JP2015/082933 2014-11-25 2015-11-24 ビークル WO2016084803A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15862664.8A EP3206294B1 (en) 2014-11-25 2015-11-24 Vehicle
BR112017010326A BR112017010326A2 (pt) 2014-11-25 2015-11-24 veículo
CN201580063943.1A CN107005184B (zh) 2014-11-25 2015-11-24 车辆
TW104139338A TWI611952B (zh) 2014-11-25 2015-11-25 車輛
US15/604,228 US10358022B2 (en) 2014-11-25 2017-05-24 Vehicle having a generator with inductance-adjustable windings

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2014237372A JP2018014771A (ja) 2014-11-25 2014-11-25 電流供給システム及び電力供給システム
JP2014-237372 2014-11-25
JP2015196670A JP2018012349A (ja) 2015-10-02 2015-10-02 電力供給システム、制御装置、ビークル、及びビークル駆動用エンジン発電機ユニット
JP2015196668A JP2018012347A (ja) 2015-10-02 2015-10-02 駆動システム、制御装置、及びビークル
JP2015196667A JP2018012346A (ja) 2015-10-02 2015-10-02 ビークル、及びビークル駆動用エンジン発電ユニット
JP2015196669A JP2018012348A (ja) 2015-10-02 2015-10-02 変速装置、制御装置、及びビークル
JP2015-196670 2015-10-02
JP2015-196668 2015-10-02
JP2015-196667 2015-10-02
JP2015-196669 2015-10-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/604,228 Continuation-In-Part US10358022B2 (en) 2014-11-25 2017-05-24 Vehicle having a generator with inductance-adjustable windings

Publications (1)

Publication Number Publication Date
WO2016084803A1 true WO2016084803A1 (ja) 2016-06-02

Family

ID=56074358

Family Applications (6)

Application Number Title Priority Date Filing Date
PCT/JP2015/082931 WO2016084801A1 (ja) 2014-11-25 2015-11-24 駆動システム、及びビークル
PCT/JP2015/082929 WO2016084799A1 (ja) 2014-11-25 2015-11-24 電力供給システム、制御装置、ビークル、及びビークル駆動用エンジン発電機ユニット
PCT/JP2015/082932 WO2016084802A1 (ja) 2014-11-25 2015-11-24 ビークル、及びビークル駆動用エンジン発電ユニット
PCT/JP2015/082928 WO2016084798A1 (ja) 2014-11-25 2015-11-24 電流供給システム、電力供給システム、及び制御装置
PCT/JP2015/082933 WO2016084803A1 (ja) 2014-11-25 2015-11-24 ビークル
PCT/JP2015/082930 WO2016084800A1 (ja) 2014-11-25 2015-11-24 変速装置、制御装置、及びビークル

Family Applications Before (4)

Application Number Title Priority Date Filing Date
PCT/JP2015/082931 WO2016084801A1 (ja) 2014-11-25 2015-11-24 駆動システム、及びビークル
PCT/JP2015/082929 WO2016084799A1 (ja) 2014-11-25 2015-11-24 電力供給システム、制御装置、ビークル、及びビークル駆動用エンジン発電機ユニット
PCT/JP2015/082932 WO2016084802A1 (ja) 2014-11-25 2015-11-24 ビークル、及びビークル駆動用エンジン発電ユニット
PCT/JP2015/082928 WO2016084798A1 (ja) 2014-11-25 2015-11-24 電流供給システム、電力供給システム、及び制御装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082930 WO2016084800A1 (ja) 2014-11-25 2015-11-24 変速装置、制御装置、及びビークル

Country Status (8)

Country Link
US (6) US10434858B2 (ja)
EP (6) EP3206294B1 (ja)
CN (6) CN107005186B (ja)
BR (6) BR112017010326A2 (ja)
ES (1) ES2890658T3 (ja)
RU (4) RU2017122164A (ja)
TW (6) TWI641528B (ja)
WO (6) WO2016084801A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10889284B2 (en) 2018-02-22 2021-01-12 Honda Motor Co., Ltd. Electric vehicle and control apparatus for the same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013014457A1 (de) * 2013-08-30 2015-03-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Antrieb eines Kraftfahrzeuges sowie Antriebssystem für ein Kraftfahrzeug
WO2017065056A1 (ja) * 2015-10-13 2017-04-20 株式会社デンソー 鞍乗型車両用カム角センサ異常診断装置、エンジンシステム、及び鞍乗型車両
JP6410000B2 (ja) * 2016-09-21 2018-10-24 日本精工株式会社 電動車両駆動装置
US20190389467A1 (en) * 2016-09-21 2019-12-26 Nsk Ltd. Electric vehicle drive apparatus
JP6745202B2 (ja) * 2016-11-25 2020-08-26 株式会社Soken 回転電機
DE102017101145A1 (de) * 2017-01-20 2018-07-26 Torqeedo Gmbh Vorrichtung zum Bereitstellen elektrischer Energie für einen elektrischen Verbraucher und/oder zum Laden einer Batterie in einem Boot
US10944302B2 (en) 2018-04-09 2021-03-09 Williams International Co., L.L.C. Permanent-magnet generator incorporating a variable-reluctance stator system
JP6741191B1 (ja) * 2018-12-14 2020-08-19 日本精工株式会社 制振装置
US20210081863A1 (en) * 2019-07-25 2021-03-18 Airwire Technologies Vehicle intelligent assistant
JP7129956B2 (ja) * 2019-07-25 2022-09-02 日立建機株式会社 電動車両
US12090955B2 (en) 2019-07-29 2024-09-17 Airwire Technologies Vehicle intelligent assistant using contextual data
RU201828U1 (ru) * 2020-10-05 2021-01-14 Общество с ограниченной ответственностью "Инжиниринговый центр "Русэлпром" (ООО "Инжиниринговый центр "Русэлпром") Транспортное средство с автоматической без перерыва мощности электромеханической трансмиссией (эмт) с центральным приводом
US11124054B1 (en) * 2020-10-06 2021-09-21 Arvinmeritor Technology, Llc Axle assembly having a sensor for detecting a shift collar
US20230242117A1 (en) * 2022-01-31 2023-08-03 Gregory Clarence Ettel Transmission-driven generator on an electric vehicle
WO2023175992A1 (ja) * 2022-03-18 2023-09-21 日産自動車株式会社 発電機制御方法及び発電機制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008048519A (ja) * 2006-08-14 2008-02-28 Nissan Motor Co Ltd 回転電機
JP2011092008A (ja) * 2004-12-09 2011-05-06 Yamaha Motor Co Ltd 回転電機
JP2012044792A (ja) * 2010-08-20 2012-03-01 Hitachi Ltd 車両制御システム及び車両の駆動制御方法,列車制御装置

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3229138A (en) * 1962-12-04 1966-01-11 L R Power Corp Dynamoelectric machine
US3497027A (en) * 1967-08-23 1970-02-24 Albert F Wild Electric automobile
DE4025557A1 (de) * 1990-08-11 1992-02-13 Kugelfischer G Schaefer & Co Stromgenerator
US5763977A (en) * 1995-07-21 1998-06-09 Honda Giken Kogyo Kabushiki Kaisha Motor vehicle alternator and system for controlling the same
US6057622A (en) * 1999-01-21 2000-05-02 Lockhead Martin Energy Research Corporation Direct control of air gap flux in permanent magnet machines
US6072258A (en) 1999-08-04 2000-06-06 Magna Force, Inc. Permanent magnet coupler with adjustable air gaps
WO2001015929A1 (en) * 1999-08-27 2001-03-08 Yamaha Hatsudoki Kabushiki Kaisha Hybrid drive system
JP2002345109A (ja) * 2001-05-16 2002-11-29 Nissan Motor Co Ltd ハイブリッド車両
JP2002370630A (ja) * 2001-06-15 2002-12-24 Hitachi Ltd 自動車の予防保全サービスシステム
DE10202060A1 (de) * 2002-01-18 2003-08-14 Lutz Baur Fahrzeug mit einem Antriebsmotor
JP4079213B2 (ja) 2002-04-22 2008-04-23 ヤマハモーターパワープロダクツ株式会社 エンジン発電機
US6943531B2 (en) 2002-03-20 2005-09-13 Yamaha Hatsudoki Kabushiki Kaisha Portable power supply incorporating a generator driven by an engine
JP4088865B2 (ja) * 2002-04-16 2008-05-21 スズキ株式会社 スクータ型自動二輪車
US7204011B2 (en) 2003-02-06 2007-04-17 Matra Manufacturing & Services Sas Method for manufacturing adaptive machines
CN100530907C (zh) * 2003-03-31 2009-08-19 雅马哈发动机株式会社 旋转电机及电动车
WO2004088826A1 (ja) * 2003-03-31 2004-10-14 Yamaha Hatsudoki Kabushiki Kaisha 回転電機及び電動車両
TWI237231B (en) * 2004-07-15 2005-08-01 Tatung Co Method for adjusting display parameters of display equipment
JP4668721B2 (ja) * 2004-11-30 2011-04-13 日立オートモティブシステムズ株式会社 永久磁石式回転電機
JP2006191782A (ja) 2004-12-09 2006-07-20 Yamaha Motor Co Ltd 回転電機
JP2006271040A (ja) * 2005-03-22 2006-10-05 Yamaha Motor Co Ltd 鞍乗型ハイブリッド車両
MX2008005224A (es) * 2005-10-19 2008-11-18 Lawrence P Zepp Motor/generador de iman permanente sin escobillas con desacoplamiento axial del rotor para eliminar las perdidas por momento de torcion inducidas por el iman.
JP4845515B2 (ja) * 2006-01-19 2011-12-28 株式会社日立製作所 鉄道車両の駆動装置
BRPI0708574A2 (pt) * 2006-03-06 2011-05-31 Honda Motor Co Ltd motor
JP4462224B2 (ja) * 2006-03-31 2010-05-12 マツダ株式会社 車両のハイブリッドシステム
US20110246010A1 (en) 2006-06-09 2011-10-06 De La Torre Bueno Jose Technique for Optimizing the Use of the Motor in Hybrid Vehicles
JP2008285011A (ja) * 2007-05-17 2008-11-27 Toyota Motor Corp ハイブリッド車両の制御装置
US7540466B2 (en) * 2007-07-17 2009-06-02 Inventec Multimedia & Telecom (Tianjin) Co., Ltd. Adjustable stand for electronic devices
JP2009071910A (ja) * 2007-09-11 2009-04-02 Hitachi Ltd 回転電機およびそれを搭載した自動車
US7948141B2 (en) * 2007-11-22 2011-05-24 Seiko Epson Corporation Electric motor device
JP5277655B2 (ja) * 2008-02-15 2013-08-28 セイコーエプソン株式会社 流体を受けて発電する発電装置
EP2093098B1 (en) * 2008-02-21 2010-05-12 Yamaha Hatsudoki Kabushiki Kaisha Wheel driving apparatus and electric vehicle including the same
TW201016541A (en) * 2008-10-16 2010-05-01 Zhong-Tai Chen Power system of electric vehicle
JP2010125868A (ja) 2008-11-25 2010-06-10 Denso Corp 充放電計画装置
TWM358746U (en) * 2009-02-24 2009-06-11 Chun-Wen Lay Electric vehicle having power generating auxiliary module
TWI401858B (zh) * 2009-10-05 2013-07-11 Chin Lien Hong Electric vehicle and its energy saving module power plant
US8222789B2 (en) * 2009-11-25 2012-07-17 Silicon Valley Micro M Corporation Vehicle disk motor with movable magnet poles
JP5482280B2 (ja) 2010-02-18 2014-05-07 ソニー株式会社 情報処理装置、電動移動体、及び放電管理方法
RU2478618C2 (ru) * 2010-03-15 2013-04-10 Закрытое Акционерное Общество "Инфарма" Новое биологически активное соединение n-[3-(4-нитрофениламино)-индол-2-илметилен] аминогуанидина гидрохлорид с противовоспалительной активностью
JP5744427B2 (ja) * 2010-07-13 2015-07-08 愛三工業株式会社 造粒蓄熱材および蒸発燃料処理装置
US20120012674A1 (en) * 2010-07-14 2012-01-19 Naandan Jain Irrigation C.S. Ltd. Sprinkler base
US8288982B2 (en) * 2010-12-10 2012-10-16 Current Motor Company, Inc. Permanent magnet motor with field weakening
US9028362B2 (en) 2011-02-01 2015-05-12 Jing He Powertrain and method for a kinetic hybrid vehicle
TWM421388U (en) * 2011-04-06 2012-01-21 Ho-Yo Liao The structure of generate electric power of the motor of an electric vehicle
TWM421259U (en) * 2011-05-17 2012-01-21 rong-feng Lin Power device for electric racing car
JP5665232B2 (ja) * 2011-08-06 2015-02-04 本田技研工業株式会社 車両の位置発信装置
US8761981B2 (en) * 2011-10-18 2014-06-24 Fuel Motion Inc. Method and apparatus for a vehicle control unit (VCU), using current and historical instantaneous power usage data, to determine optimum power settings for a hybrid electric drive system
JP5895472B2 (ja) 2011-11-22 2016-03-30 三菱自動車工業株式会社 電力供給車両
JP5900022B2 (ja) * 2012-03-01 2016-04-06 トヨタ自動車株式会社 報知装置、車両および報知装置の制御方法
CN104661854B (zh) * 2012-10-03 2016-10-26 川崎重工业株式会社 电动车辆以及电池组
JP6033637B2 (ja) * 2012-10-25 2016-11-30 株式会社クボタ 着脱式ハイブリッドシステム及び着脱式発電機
JP5584750B2 (ja) * 2012-11-30 2014-09-03 ツネイシクラフト&ファシリティーズ株式会社 電気推進船制御システムおよび電気推進船

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011092008A (ja) * 2004-12-09 2011-05-06 Yamaha Motor Co Ltd 回転電機
JP2008048519A (ja) * 2006-08-14 2008-02-28 Nissan Motor Co Ltd 回転電機
JP2012044792A (ja) * 2010-08-20 2012-03-01 Hitachi Ltd 車両制御システム及び車両の駆動制御方法,列車制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10889284B2 (en) 2018-02-22 2021-01-12 Honda Motor Co., Ltd. Electric vehicle and control apparatus for the same

Also Published As

Publication number Publication date
WO2016084799A1 (ja) 2016-06-02
RU2017122165A3 (ja) 2018-12-26
TW201637345A (zh) 2016-10-16
US20170253113A1 (en) 2017-09-07
TWI595742B (zh) 2017-08-11
CN107005186B (zh) 2019-10-25
CN107005185A (zh) 2017-08-01
TW201623083A (zh) 2016-07-01
EP3206294B1 (en) 2019-10-30
CN107005184A (zh) 2017-08-01
EP3206292B1 (en) 2019-10-16
RU2017122168A3 (ja) 2018-12-26
EP3206296A4 (en) 2017-11-08
WO2016084800A1 (ja) 2016-06-02
CN107005188A (zh) 2017-08-01
RU2017122166A (ru) 2018-12-26
US20170244349A1 (en) 2017-08-24
TW201623041A (zh) 2016-07-01
US20170244348A1 (en) 2017-08-24
US10449846B2 (en) 2019-10-22
US20170253233A1 (en) 2017-09-07
US20170240053A1 (en) 2017-08-24
CN107000568A (zh) 2017-08-01
EP3206295A4 (en) 2017-11-08
BR112017010338A2 (pt) 2017-12-26
US10493833B2 (en) 2019-12-03
BR112017010337A2 (pt) 2017-12-26
CN107005188B (zh) 2020-04-07
EP3205524B1 (en) 2021-07-21
CN107005187B (zh) 2019-10-25
EP3206292A1 (en) 2017-08-16
CN107005187A (zh) 2017-08-01
RU2017122168A (ru) 2018-12-26
TW201637346A (zh) 2016-10-16
WO2016084798A1 (ja) 2016-06-02
EP3206294A4 (en) 2017-11-08
CN107005186A (zh) 2017-08-01
US10081238B2 (en) 2018-09-25
CN107005184B (zh) 2019-10-25
EP3206294A1 (en) 2017-08-16
CN107005185B (zh) 2019-10-25
ES2890658T3 (es) 2022-01-21
TW201628880A (zh) 2016-08-16
CN107000568B (zh) 2019-10-22
RU2017122165A (ru) 2018-12-26
US20170256106A1 (en) 2017-09-07
TWI641528B (zh) 2018-11-21
RU2017122166A3 (ja) 2018-12-26
WO2016084802A1 (ja) 2016-06-02
EP3206295B1 (en) 2020-01-01
EP3206296A1 (en) 2017-08-16
EP3205524A4 (en) 2018-04-11
US10358022B2 (en) 2019-07-23
EP3206293A1 (en) 2017-08-16
BR112017010361A2 (pt) 2017-12-26
EP3206292A4 (en) 2017-11-08
EP3206293A4 (en) 2017-11-08
BR112017010326A2 (pt) 2017-12-26
BR112017010345A2 (pt) 2017-12-26
RU2017122164A3 (ja) 2018-12-26
WO2016084801A1 (ja) 2016-06-02
RU2017122164A (ru) 2018-12-26
EP3205524A1 (en) 2017-08-16
TWI574861B (zh) 2017-03-21
TWI596888B (zh) 2017-08-21
TW201636262A (zh) 2016-10-16
EP3206293B1 (en) 2020-01-15
EP3206292B8 (en) 2020-02-26
EP3206295A1 (en) 2017-08-16
TWI577597B (zh) 2017-04-11
TWI611952B (zh) 2018-01-21
US10434858B2 (en) 2019-10-08
BR112017010343A2 (pt) 2017-12-26
US10434859B2 (en) 2019-10-08
EP3206296B1 (en) 2020-01-01

Similar Documents

Publication Publication Date Title
WO2016084803A1 (ja) ビークル
CN105874189B (zh) 发动机单元及车辆
WO2015093576A1 (ja) エンジンユニット、及び車両
JP4493639B2 (ja) 回転電機の制御装置
JP6468266B2 (ja) スイッチトリラクタンスモータの制御装置
CN108111089B (zh) 开关磁阻马达用的控制装置
JP2018019528A (ja) スイッチトリラクタンスモータの制御装置
KR102199891B1 (ko) 스위치드 릴럭턴스 모터의 제어 장치
JP2017129065A (ja) ビークル
JP2018053774A (ja) ビークル
JP2018012347A (ja) 駆動システム、制御装置、及びビークル
OA18285A (en) Vehicle
JP6883524B2 (ja) 回転電機の制御装置、作業機械及び回転電機の制御方法
JP2018012348A (ja) 変速装置、制御装置、及びビークル
JP2017131041A (ja) ビークル
JP2018012349A (ja) 電力供給システム、制御装置、ビークル、及びビークル駆動用エンジン発電機ユニット
OA18282A (en) Transmission device, control device, and vehicle.
OA18283A (en) Drive system and vehicle.
OA18281A (en) Electric power supply system, control device, vehicle, and engine/generator unit for vehicle drive.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862664

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015862664

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017010326

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017122169

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017010326

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170517

NENP Non-entry into the national phase

Ref country code: JP