WO2016084800A1 - 変速装置、制御装置、及びビークル - Google Patents

変速装置、制御装置、及びビークル Download PDF

Info

Publication number
WO2016084800A1
WO2016084800A1 PCT/JP2015/082930 JP2015082930W WO2016084800A1 WO 2016084800 A1 WO2016084800 A1 WO 2016084800A1 JP 2015082930 W JP2015082930 W JP 2015082930W WO 2016084800 A1 WO2016084800 A1 WO 2016084800A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
stator core
generator
output
magnetic
Prior art date
Application number
PCT/JP2015/082930
Other languages
English (en)
French (fr)
Inventor
日野 陽至
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014237372A external-priority patent/JP2018014771A/ja
Priority claimed from JP2015196668A external-priority patent/JP2018012347A/ja
Priority claimed from JP2015196670A external-priority patent/JP2018012349A/ja
Priority claimed from JP2015196669A external-priority patent/JP2018012348A/ja
Priority claimed from JP2015196667A external-priority patent/JP2018012346A/ja
Priority to RU2017122164A priority Critical patent/RU2017122164A/ru
Priority to EP15863113.5A priority patent/EP3206295B1/en
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to CN201580063944.6A priority patent/CN107005185B/zh
Priority to BR112017010343A priority patent/BR112017010343A2/pt
Priority to TW104139296A priority patent/TWI577597B/zh
Priority to TW104139338A priority patent/TWI611952B/zh
Publication of WO2016084800A1 publication Critical patent/WO2016084800A1/ja
Priority to US15/587,569 priority patent/US10449846B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/13Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines using AC generators and AC motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/14Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines using DC generators and AC motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/19Control strategies specially adapted for achieving a particular effect for achieving enhanced acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/006Indicating maintenance
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/008Registering or indicating the working of vehicles communicating information to a remotely located station
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0816Indicating performance data, e.g. occurrence of a malfunction
    • G07C5/0825Indicating performance data, e.g. occurrence of a malfunction using optical means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/021Means for mechanical adjustment of the excitation flux
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/021Means for mechanical adjustment of the excitation flux
    • H02K21/022Means for mechanical adjustment of the excitation flux by modifying the relative position between field and armature, e.g. between rotor and stator
    • H02K21/025Means for mechanical adjustment of the excitation flux by modifying the relative position between field and armature, e.g. between rotor and stator by varying the thickness of the air gap between field and armature
    • H02K21/026Axial air gap machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/021Means for mechanical adjustment of the excitation flux
    • H02K21/028Means for mechanical adjustment of the excitation flux by modifying the magnetic circuit within the field or the armature, e.g. by using shunts, by adjusting the magnets position, by vectorial combination of field or armature sections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/021Means for mechanical adjustment of the excitation flux
    • H02K21/028Means for mechanical adjustment of the excitation flux by modifying the magnetic circuit within the field or the armature, e.g. by using shunts, by adjusting the magnets position, by vectorial combination of field or armature sections
    • H02K21/029Vectorial combination of the fluxes generated by a plurality of field sections or of the voltages induced in a plurality of armature sections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1815Rotary generators structurally associated with reciprocating piston engines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/40Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of reluctance of magnetic circuit of generator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/34Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the absence of energy storing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/36Cycles; Motorcycles; Scooters
    • B60W2300/365Scooters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/25Special adaptation of control arrangements for generators for combustion engines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/45Special adaptation of control arrangements for generators for motor vehicles, e.g. car alternators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/905Combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/906Motor or generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a transmission, a control device, and a vehicle.
  • Patent Document 1 discloses a vehicle.
  • the vehicle disclosed in Patent Document 1 is a hybrid vehicle.
  • the vehicle includes an engine, an accelerator pedal, a first rotating electrical machine, a second rotating electrical machine, and drive wheels.
  • the first rotating electrical machine is connected to the output shaft of the engine.
  • the first rotating electrical machine mainly functions as a generator.
  • the second rotating electrical machine is electrically connected to the first rotating electrical machine.
  • the second rotating electrical machine mainly functions as a motor.
  • a set of the first rotating electrical machine and the second rotating electrical machine is used as a transmission. Power running is performed by current flowing through the first rotating electrical machine and the second rotating electrical machine.
  • the second rotating electrical machine is connected to the drive wheels of the vehicle.
  • the depression of the accelerator pedal by the driver represents a request for acceleration of the vehicle.
  • the intake air amount of the engine can be arbitrarily adjusted. Therefore, for example, the vehicle is controlled as follows.
  • a target output of the second rotating electrical machine (motor) is determined based on the amount of depression of the accelerator pedal by the driver and the vehicle speed.
  • the target generated power of the first rotating electrical machine (generator) is determined according to the target output of the second rotating electrical machine.
  • the target output of the engine is determined according to the target generated power.
  • the intake air amount and fuel injection amount of the engine are controlled so as to obtain this target output.
  • the first rotating electrical machine controls the generated power
  • the second rotating electrical machine controls the output.
  • the generated power of the first rotating electrical machine and the second rotating electrical machine are matched to the actual output of the engine. Output is controlled.
  • the electric power (output) of a rotary electric machine is controlled and the application to the some vehicle type which has various characteristics is achieved.
  • the intake air amount and the fuel injection amount of the engine are controlled in order to control the torque of the drive wheels.
  • the intake air amount and the fuel injection amount of the engine are increased.
  • the torque of the driving wheel is increased, for example, the vehicle is accelerated.
  • the rotational speed of the engine is increased. That is, the rotational power output from the engine increases.
  • the current output from the first rotating electrical machine that functions as a generator increases, and the current supplied to the second rotating electrical machine increases.
  • the torque output from the second rotating electrical machine to the drive wheels increases.
  • the current output from the generator has a problem that it is difficult to increase compared to an increase in the rotational speed of the generator.
  • An object of the present invention is to provide a transmission, a control device, and a vehicle capable of expanding a torque adjustment range while suppressing a decrease in fuel efficiency of an engine.
  • the present invention adopts the following configuration in order to solve the above-described problems.
  • a transmission that changes rotation torque and rotation speed output from an engine and supplies the rotation mechanism to the rotation mechanism The transmission is A generator configured to output electric power according to rotational power transmitted from the engine, the rotor having a permanent magnet and rotating by rotational power transmitted from the engine, the winding and the winding
  • a stator having a stator core wound with a wire and disposed opposite to the rotor, and changing the inductance of the winding by changing the magnetic resistance of the magnetic circuit passing through the stator core, as seen from the winding
  • a generator having a supply current adjustment unit configured to adjust a current output from the generator;
  • the supply current adjustment unit is controlled in accordance with a torque request required for the transmission as a torque output from the transmission to the rotation mechanism, and the supply current adjustment unit changes the inductance of the winding.
  • a control device configured to adjust a current output from the generator.
  • the rotor of the generator is rotated by rotational power transmitted from the engine.
  • the magnetic flux of the permanent magnet provided in the rotor acts on the winding.
  • an induced electromotive voltage is generated.
  • Electric power is output due to the induced electromotive voltage.
  • the generator outputs power corresponding to the rotational power transmitted from the engine.
  • the motor is driven by the electric power output from the generator and outputs rotational power.
  • the control device controls the supply current adjusting unit in response to a torque request required for the transmission as torque output to the rotation mechanism.
  • the supply current adjusting unit adjusts the current output from the generator by changing the inductance of the winding. Thereby, the rotational torque output from the motor to the rotating mechanism is adjusted.
  • the inductance is changed by changing the reluctance of the magnetic circuit through the stator core as seen from the winding.
  • the degree of current change with respect to voltage change when changing the magnetic resistance of the magnetic circuit passing through the stator core as seen from the winding is different from that when changing the output of the engine.
  • the control device controls the current of the generator by controlling the supply current adjusting unit. For this reason, the engine can suppress an excessive increase in rotational power. Further, the control device can adjust the torque output to the rotating mechanism while ensuring a balance between the power and voltage generated by the generator. For this reason, according to the transmission of (1), the torque adjustment range can be expanded while suppressing a decrease in the fuel efficiency of the engine.
  • the transmission of (1) is further provided with a motor power control unit provided in a power supply path between the generator and the motor, and configured to control power supplied to the motor,
  • the control device is configured to control both the motor power control unit and the supply current adjustment unit.
  • the control device can control the power supplied to the motor independently of the control of the output of the generator. For example, even when the engine and the generator are operating, the motor power control unit can stop the motor by stopping the power supply to the motor.
  • the freedom degree of control about the rotation output from a motor can be raised.
  • the engine has an output adjustment unit configured to adjust the rotational power output from the engine
  • the control device is configured to cause the supply current adjustment unit to adjust the current output from the generator by changing the inductance of the winding in cooperation with the output adjustment unit.
  • a control apparatus adjusts the electric current output from a generator in cooperation with an output adjustment part. For this reason, the current supplied from the generator to the motor can be adjusted while suppressing an excessive increase in the rotational power of the engine. Therefore, according to the configuration of (3), it is possible to adjust the torque while suppressing a decrease in the fuel efficiency of the engine.
  • a magnetic circuit through the stator core as seen from the winding includes at least one non-magnetic gap;
  • the supply current adjusting unit changes an inductance of the winding by changing a magnetic resistance of a nonmagnetic gap between the winding and the rotor among the at least one nonmagnetic gap. It is comprised so that the electric current output from a machine may be adjusted.
  • the supply current adjusting unit changes the inductance of the winding by changing the magnetic resistance of the non-magnetic gap between the winding and the rotor.
  • An alternating magnetic field is generated between the winding and the rotor by a permanent magnet that moves as the rotor rotates. For example, reducing the reluctance of the non-magnetic gap between the winding and the rotor reduces the loss for the alternating magnetic field. For this reason, an electric current can be increased with respect to the rotational power supplied to a rotor. Therefore, the adjustment amount of the current output from the generator can be increased.
  • a magnetic circuit through the stator core as seen from the winding includes at least one non-magnetic gap;
  • the supply current adjusting unit is a nonmagnetic material having the largest magnetic resistance when the inductance of the winding is set to the largest value within a settable value range of the at least one nonmagnetic material gap.
  • the magnetoresistance of the non-magnetic gap having the largest magnetoresistance when the inductance of the winding is set to the largest value within the range of values that can be set changes. For this reason, it is easy to increase the amount of change in the inductance of the winding. Therefore, the amount of current adjustment can be further increased.
  • the supply current adjusting unit changes the magnetic resistance of the magnetic circuit passing through the stator core as viewed from the winding, so that the change rate of the magnetic flux interlinked with the winding is higher than the change rate of the inductance of the winding.
  • the inductance of the winding is changed so as to decrease, and the current output from the generator is adjusted.
  • the supply current adjusting unit changes the inductance of the winding so that the rate of change of the magnetic flux interlinking with the winding is smaller than the rate of change of the inductance of the winding.
  • the magnetic flux interlinking with the winding affects the voltage and current.
  • the inductance of the winding mainly affects the current. Therefore, the supply current adjusting unit can adjust the supplied current while suppressing the voltage change rate to be smaller than the current change rate. For this reason, the supply current adjusting unit can adjust the current while suppressing the influence of the restriction due to the voltage. Therefore, according to the configuration of (6), it is possible to expand the torque adjustment range while further suppressing a decrease in engine fuel efficiency.
  • the supply current adjustment unit moves the relative position of at least a part of the stator core with respect to the winding to change the inductance of the winding by changing the magnetic resistance of the magnetic circuit passing through the stator core as seen from the winding. And the current output from the generator is adjusted.
  • the supply current adjusting unit moves the relative position of at least a part of the stator core with respect to the winding, and changes the magnetic resistance of the magnetic circuit passing through the stator core as viewed from the winding. Therefore, the inductance of the winding is easily changed. For this reason, the current supplied to the motor is easily adjusted. Therefore, it is easy to adjust the torque output from the motor.
  • the supply current adjustment unit moves the relative position of the stator core with respect to the winding so as to maintain the relative position of the stator core with respect to the rotor, and the magnetic resistance of the magnetic circuit passing through the stator core as viewed from the winding. By changing the inductance of the winding, the current output from the generator is adjusted.
  • the relative position of the stator core relative to the winding moves so as to maintain the relative position of the stator core relative to the rotor. Therefore, a change in magnetic flux flowing from the permanent magnet of the rotor to the stator core is suppressed. That is, a change in magnetic flux generated by the permanent magnet and interlinked with the winding is suppressed. For this reason, a change in voltage when the relative position of the stator core with respect to the winding moves is suppressed. Therefore, according to the configuration of (8), it is possible to expand the torque adjustment range while further suppressing a decrease in engine fuel efficiency.
  • the supply current adjustment unit changes the inductance of the winding by changing the magnetic resistance of the magnetic circuit passing through the stator core as seen from the winding by moving the winding, and the current output from the generator Configured to adjust.
  • the relative position of the winding relative to the stator core moves so as to maintain the relative position of the stator core relative to the rotor. Therefore, a change in magnetic flux flowing from the permanent magnet of the rotor to the stator core is suppressed. That is, a change in magnetic flux generated by the permanent magnet and interlinked with the winding is suppressed. For this reason, a change in voltage when the relative position of the stator core with respect to the winding moves is suppressed. Therefore, according to the configuration of (9), it is possible to expand the torque adjustment range while further suppressing a decrease in fuel efficiency of the engine.
  • the transmission device changes the induced electromotive force of the winding by changing the linkage magnetic flux coming out from the permanent magnet of the rotor and interlinking with the winding, and adjusts the voltage output from the generator A configured supply voltage adjustment unit is provided.
  • the voltage output is changed to adjust the voltage output from the generator.
  • the stator core includes a plurality of first stator core portions having facing portions facing the rotor via a non-magnetic gap, and a second stator core portion not including the facing portions,
  • the supply current adjusting unit changes a magnetic resistance of a magnetic circuit passing through the stator core, as viewed from the winding, by moving one of the plurality of first stator core units and the second stator core unit with respect to the other. It is configured as follows.
  • the supply current adjusting unit moves one of the plurality of first stator core units and the second stator core unit included in the stator core with respect to the other.
  • the magnetic resistance of the magnetic circuit passing through the stator core as viewed from the winding is greatly changed as compared with the case where one of the stator core and the member other than the stator core is moved with respect to the other.
  • the range which can adjust the electric current supplied to a motor according to a torque request becomes wide. Therefore, according to the configuration of (9), it is possible to further expand the torque adjustment range while further suppressing a decrease in engine fuel efficiency.
  • the transmission of (12), The supply current adjusting unit is The non-magnetic gap length between each of the plurality of first stator core portions and the second stator core portion is greater than the non-magnetic gap length between adjacent first stator core portions of the plurality of first stator core portions. From the short first state, The non-magnetic gap length between each of the plurality of first stator core portions and the second stator core portion is greater than the non-magnetic gap length between adjacent first stator core portions of the plurality of first stator core portions. Up to the second state, too long By moving one of the plurality of first stator core portions and the second stator core portion with respect to the other, the magnetic resistance of the magnetic circuit passing through the stator core as viewed from the winding is changed.
  • the nonmagnetic body gap length between each of the plurality of first stator core portions and the second stator core portion is adjacent to the first of the plurality of first stator portions. It is shorter than the non-magnetic material gap length between the stator portions.
  • the nonmagnetic material gap length between each of the plurality of first stator portions and the second stator core portion is a nonmagnetic material gap between the adjacent first stator portions of the plurality of first stator portions. Longer than long.
  • the magnetic flux passing through the non-magnetic gap between the adjacent first stator portions out of the magnetic flux caused by the current of the winding is mainly the first stator portion and the second stator core portion.
  • the magnetic flux resulting from the winding current mainly passes through both the first stator portion and the second stator core portion.
  • the magnetic resistance of the magnetic circuit passing through the first stator core portion is large. As seen from the winding, the magnetic resistance of the magnetic circuit passing through the stator core changes more greatly. Therefore, according to the configuration of (13), it is possible to further expand the torque adjustment range while further suppressing a decrease in fuel efficiency.
  • control device (14) it is possible to expand the torque adjustment range in the transmission while suppressing a decrease in the fuel efficiency of the engine.
  • a vehicle The vehicle is Any one of the transmissions of (1) to (13); An engine configured to supply rotational power to the transmission; A rotation drive mechanism as the rotation mechanism configured to drive the vehicle in response to the supply of rotation power converted in torque and rotation speed by the transmission.
  • the request for torque output from the transmission varies depending on the progress of the vehicle.
  • the transmission can respond to a request for an increase in torque while suppressing a decrease in engine fuel efficiency. Therefore, according to the vehicle of (15), it is possible to expand the torque adjustment range while suppressing a decrease in engine fuel efficiency.
  • FIG. 2 is a system configuration diagram illustrating a schematic configuration of the transmission illustrated in FIG. 1.
  • (A) is a schematic diagram for demonstrating adjustment of the supply current adjustment part in the generator shown in FIG.
  • (B) is a schematic diagram showing a state when the inductance of the winding is set to a value smaller than that of (A). It is a circuit diagram which shows roughly the equivalent circuit of the coil
  • (A) is a schematic diagram for demonstrating adjustment of the supply current adjustment part in the generator of the transmission of 2nd embodiment.
  • (B) is a schematic diagram showing a state when the inductance of the winding is set to a value smaller than that of (A). It is a schematic diagram which shows the generator in the transmission of 3rd embodiment.
  • (A) is a schematic diagram which shows the 1st state of the stator shown in FIG.
  • (B) is a schematic diagram which shows the 2nd state of the stator shown in FIG. It is a graph which shows the output current characteristic with respect to the rotational speed of the rotor in the generator shown in FIG.
  • the vehicle increases the voltage output from the generator. Due to the increase in the generated voltage, the generated current of the generator increases. The generated current flows through the winding. The generated current is disturbed by the winding impedance.
  • the impedance can be expressed by the product ⁇ L of the inductance of the generator winding and the angular velocity of rotation. As the engine speed increases, the winding impedance that hinders the generated current increases. Therefore, in a vehicle such as that disclosed in Patent Document 1, if the power generation current of the generator is increased due to an increase in the output torque of the motor, the rotational power of the engine is greatly increased compared to the increase in the power generation current. Therefore, loss tends to increase.
  • the increase in the current output from the generator is not limited to the vehicle as shown in Patent Document 1, and it was thought that the increase was mainly due to the increase in voltage.
  • the voltage increases, for example, by increasing the rotational speed, increasing the magnetic force, or increasing the number of turns of the winding.
  • the current saturates with increasing rotational speed due to the armature reaction.
  • an increase in magnetic force or an increase in the number of turns of the winding causes an increase in size.
  • the magnetic circuit that affects the inductance is the magnetic circuit viewed from the winding. There is a difference between the magnetic circuit seen from the winding and the magnetic circuit that exits the rotor magnet and passes through the winding.
  • the present inventor has made a distinction between a magnetic circuit viewed from the winding and a magnetic circuit that goes out of the rotor magnet and passes through the winding. As a result, the present inventors have found that the inductance can be greatly changed by changing the magnetic resistance of the magnetic circuit as viewed from the winding.
  • the present inventor has obtained the knowledge that, in the transmission, if the current is adjusted by changing the inductance of the generator winding, the linkage between the current and voltage output from the generator can be suppressed. .
  • the transmission of the present invention is an invention completed based on the above-described knowledge. That is, in the transmission of the present invention, the control device controls the supply current adjusting unit.
  • the supply current adjusting unit changes the magnetic resistance of the magnetic circuit passing through the stator core, as viewed from the winding, in accordance with the torque request for the torque output to the rotating mechanism.
  • the supply current adjusting unit changes the inductance of the winding and adjusts the current supplied to the electric load device.
  • the degree of current change with respect to voltage change when changing the magnetic resistance of the magnetic circuit passing through the stator core as seen from the winding is greater than when changing the engine speed.
  • the speed change device of the present invention can adjust the current supplied to the motor while suppressing the linkage between the voltage change and the current change, for example, as compared with the case where the inductance is not changed. That is, the transmission can adjust the output torque of the transmission while suppressing the linkage between the voltage change and the current change. For this reason, the transmission can increase the output torque without excessively increasing the rotational power of the engine. Further, the transmission can increase the output torque of the transmission without excessively increasing the generated voltage. Therefore, the fuel efficiency of the engine is improved. Further, an excessive increase in voltage can be suppressed. Accordingly, a low breakdown voltage switching element can be employed. The on-resistance of the low breakdown voltage switching element is low. Since heat loss is suppressed, high efficiency can be obtained. As a result, engine fuel efficiency is improved.
  • the transmission of the present invention it is possible to expand the torque adjustment range while suppressing a decrease in engine fuel efficiency. Further, the transmission of the present invention can be applied to both an engine having a wide rotational speed range and an engine having a narrow rotational speed range.
  • FIG. 1 is a block diagram showing a schematic configuration of a device on which a transmission device T according to a first embodiment of the present invention is mounted.
  • FIG. 1 shows a vehicle V as an example of a device on which the transmission device T is mounted.
  • the vehicle V includes a transmission device T and a vehicle body D.
  • the vehicle body D of the vehicle V includes an engine 14, wheels Wa, Wb, Wc, and Wd, a request instruction unit A, and an engine control unit EC.
  • the transmission T is connected to drive wheels Wc and Wd among the wheels Wa to Wd.
  • the drive wheels Wc and Wd are connected to the transmission device T via the transmission mechanism G.
  • the engine 14 and the transmission T drive the vehicle V by driving the drive wheels Wc and Wd to rotate.
  • the drive wheels Wc and Wd correspond to an example of a rotational drive mechanism in the vehicle according to the present invention.
  • the rotation drive mechanism corresponds to an example of a rotation mechanism according to the present invention.
  • the engine 14 is an internal combustion engine.
  • the engine 14 burns fuel.
  • the engine 14 outputs mechanical power.
  • the engine 14 has an output shaft C.
  • the output shaft C is, for example, a crank shaft.
  • the engine 14 and the drive wheels Wc and Wd are not connected by mechanical elements.
  • the engine 14 does not directly drive the drive wheels Wc and Wd with the rotational power of the engine 14.
  • the control of the rotational power of the engine 14 is not easily restricted by the operating characteristics of the drive wheels Wc and Wd. Therefore, the degree of freedom in controlling the rotational power of the engine 14 is high.
  • the engine 14 has an engine output adjustment unit 141.
  • the engine output adjustment unit 141 adjusts the rotational power of the engine 14.
  • the engine output adjustment unit 141 includes a throttle valve adjustment mechanism and a fuel injection device (not shown).
  • the throttle valve adjustment mechanism adjusts the amount of air sucked into the engine 14.
  • the fuel injection device supplies fuel to the engine 14.
  • the engine output adjustment unit 141 controls the intake air amount and the fuel injection amount of the engine 14.
  • the engine output adjustment unit 141 adjusts the rotational power output by the engine 14.
  • the engine output adjustment unit 141 increases the intake air amount and the fuel injection amount of the engine 14.
  • the rotational power of the engine 14 increases.
  • the rotational speed of the output shaft C increases.
  • the rotational speed of the output shaft C represents the rotational speed of the engine 14.
  • the engine control unit EC controls the engine output adjustment unit 141.
  • the engine output adjustment unit 141 adjusts the rotational power of the engine 14 according to the control of the engine control unit EC.
  • the transmission device T is a device that transmits the rotational power output from the engine 14 to the drive wheels Wc and Wd as the rotation mechanism.
  • the transmission device T receives supply of rotational power and outputs rotational power.
  • the transmission T is mechanically connected to the engine 14 via the output shaft C of the engine 14 so that rotational power is transmitted from the engine 14.
  • the transmission T is mechanically connected to the drive wheels Wc and Wd via the transmission mechanism G so that the rotational power is transmitted to the drive wheels Wc and Wd.
  • the transmission device T includes a generator 10, a control device 15, a converter 16, an inverter 17, and a motor 18.
  • the transmission T changes the rotational torque and rotational speed output from the engine 14 and supplies them to the drive wheels Wc and Wd. Details of the transmission T will be described later.
  • the request instruction unit A outputs a torque request.
  • the request instruction unit A has an accelerator operator. Specifically, the request instruction unit A is operated by the driver of the vehicle V.
  • the request instruction unit A outputs a request for acceleration of the vehicle V based on the operation and the traveling state of the vehicle V.
  • the acceleration request of the vehicle V corresponds to the torque request output from the transmission T.
  • the output of the vehicle V corresponds to the output of the motor 18.
  • the acceleration request of the vehicle V corresponds to the output torque request of the motor 18.
  • the output torque of the motor 18 corresponds to the current supplied to the motor 18. Therefore, the output torque of the motor 18 corresponds to the current output from the generator 1.
  • the request instructing unit A outputs a torque request for the torque output from the transmission device T as an acceleration request.
  • the torque request for the torque output from the transmission device T corresponds to the current request for the current supplied from the generator 10 to the motor 18.
  • the request instruction unit A outputs a torque request and a speed request. For example, in a situation where acceleration of the vehicle is mainly required, an increase in torque output to the drive wheels Wc and Wd is required. For example, in a situation where an increase in the traveling speed of the vehicle is mainly required, an increase in the rotational speed output to the drive wheels Wc and Wd is required.
  • the request instruction unit A is connected to the engine control unit EC and the transmission device T. Specifically, the request instructing unit A outputs a signal indicating a request to the engine control unit EC and the transmission device T.
  • the engine control unit EC and the transmission device T operate in cooperation.
  • the request instruction unit A may be connected to the transmission device T via the engine control unit EC. In this case, the transmission device T receives a torque request via the engine control unit EC.
  • FIG. 2 is a system configuration diagram illustrating a schematic configuration of the transmission device T illustrated in FIG. 1.
  • the transmission device T includes a generator 10, a control device 15, a converter 16, an inverter 17, and a motor 18.
  • the generator 10 receives rotational power from the engine 14 and supplies current to the motor 18. Regarding power transmission from the engine 14 to the generator 10, the generator 10 is mechanically connected to the engine 14. The generator 10 is connected to the output shaft C of the engine 14. The generator 10 is directly connected to the output shaft C. For example, the generator 10 may be attached to a crankcase (not shown) of the engine 14. Moreover, the generator 10 may be arrange
  • the generator 10 includes a rotor 11, a stator 12, and a supply current adjustment unit 131. The generator 10 is a three-phase brushless generator. The rotor 11 and the stator 12 constitute a three-phase brushless generator.
  • the rotor 11 has a permanent magnet. More specifically, the rotor 11 has a plurality of magnetic pole portions 111 and a back yoke portion 112.
  • the magnetic pole part 111 is comprised with the permanent magnet.
  • the back yoke portion 112 is made of, for example, a ferromagnetic material.
  • the magnetic pole portion 111 is disposed between the back yoke portion 112 and the stator 12.
  • the magnetic pole portion 111 is attached to the back yoke portion 112.
  • the plurality of magnetic pole portions 111 are arranged in a line in the circumferential direction Z around the rotation axis of the rotor 11, that is, in the rotation direction of the rotor 11.
  • the plurality of magnetic pole portions 111 are arranged such that the N pole and the S pole are alternately arranged in the circumferential direction Z.
  • the generator 10 is a permanent magnet type three-phase brushless generator.
  • the rotor 11 is not provided with a winding to which current is supplied.
  • the stator 12 is disposed to face the rotor 11.
  • the stator 12 has a plurality of windings 121 and a stator core 122.
  • the stator core 122 is made of, for example, a ferromagnetic material.
  • the stator core 122 constitutes a magnetic circuit of the stator 12.
  • the plurality of windings 121 are wound around the stator core 122.
  • the stator core 122 has a core body 122a (see FIG. 3) and a plurality of tooth portions 122b.
  • the core body 122a functions as a yoke.
  • the plurality of tooth portions 122 b extend from the core body 122 a toward the rotor 11.
  • the plurality of tooth portions 122 b protrude from the core body 122 a toward the rotor 11.
  • the front end surface of the tooth portion 122b extending toward the rotor 11 and the magnetic pole portion 111 of the rotor 11 face each other through an air gap.
  • the tooth part 122b of the stator core 122 and the magnetic pole part 111 of the rotor 11 face each other directly.
  • the plurality of tooth portions 122b are arranged in a line in the circumferential direction Z with an interval in the circumferential direction Z.
  • the plurality of windings 121 are wound around the plurality of tooth portions 122b, respectively.
  • the winding 121 is wound so as to pass through a slot between the plurality of tooth portions 122b.
  • Each winding 121 corresponds to any one of the U phase, V phase, and W phase constituting the three phases.
  • the windings 121 corresponding to each of the U phase, the V phase, and the W phase are sequentially arranged in the circum
  • the rotor 11 is connected to the output shaft C of the engine 14.
  • the rotor 11 rotates in conjunction with the rotation of the output shaft C.
  • the rotor 11 rotates the magnetic pole portion 111 in a posture facing the tooth portion 122b of the stator core 122.
  • the generator 10 generates power.
  • the generator 10 supplies the generated current to the motor 18.
  • the current output from the generator 10 is supplied to the motor 18.
  • the current output from the generator 10 is supplied to the motor 18 via the converter 16 and the inverter 17.
  • the current output from the generator 10 increases, the current supplied from the converter 16 to the inverter 17 increases and the current supplied to the motor 18 increases.
  • the voltage output from the generator 10 is supplied to the motor 18 via the converter 16 and the inverter 17.
  • the rotor 11 and the stator 12 have an axial gap type structure.
  • the rotor 11 and the stator 12 are opposed to each other in the rotation axis direction (axial direction) X of the rotor 11.
  • the plurality of tooth portions 122b included in the stator 12 protrude in the axial direction X from the core body 122a.
  • the axial direction X in the present embodiment is a direction in which the rotor 11 and the stator 12 face each other.
  • the supply current adjustment unit 131 adjusts the current supplied from the generator 10 to the motor 18.
  • the supply current adjustment unit 131 adjusts the current supplied to the motor 18 by changing the inductance of the winding 121.
  • the supply current adjustment unit 131 changes the magnetic resistance of the magnetic circuit viewed from the winding 121.
  • the magnetic circuit viewed from the winding 121 is a magnetic circuit passing through the stator core 122. As a result, the supply current adjusting unit 131 changes the inductance of the winding 121.
  • the supply current adjustment unit 131 is a current adjustment mechanism.
  • the magnetic circuit viewed from the winding 121 is, for example, a closed loop circuit.
  • the magnetic circuit viewed from the winding 121 passes through the internal path of the winding 121 and ends from one end of the internal path of the winding 121 (end close to the rotor) to one end of the internal path of the adjacent winding 121 ( End of the winding 121), through the internal path of the adjacent winding 121, and from the other end (end far from the rotor) of the internal path of the adjacent winding 121 to the internal path of the winding 121.
  • This is a circuit that reaches the other end (the end far from the rotor).
  • the internal path of the winding 121 is a path that passes through the inside of the winding 121 in the opposing direction of the rotor 11 and the stator 12.
  • a part of the magnetic circuit viewed from the winding 121 is a non-magnetic gap such as an air gap.
  • the magnetic circuit viewed from the winding includes, for example, a stator core 122 and a nonmagnetic gap. Details of the inductance adjustment by the supply current adjustment unit 131 will be described later.
  • a converter 16 and an inverter 17 are provided in the power supply path between the generator 10 and the motor 18.
  • the converter 16 is connected to the generator 10.
  • the inverter 17 is connected to the converter 16 and the motor 18.
  • the electric power output from the generator 10 is supplied to the motor 18 via the converter 16 and the inverter 17.
  • the converter 16 rectifies the current output from the generator 10.
  • the converter 16 converts the three-phase alternating current output from the generator 10 into direct current.
  • Converter 16 outputs direct current.
  • the converter 16 has an inverter circuit, for example.
  • the converter 16 has, for example, a three-phase bridge inverter circuit.
  • the three-phase bridge inverter circuit includes switching elements Sa corresponding to the three phases.
  • the on / off operation of the switching element Sa is controlled based on a signal from a position sensor (not shown) that detects the rotational position of the rotor 11.
  • the operation of the converter 16 is controlled by the control device 15.
  • the converter 16 changes the timing of the on / off operation of the switching element Sa with respect to a predetermined phase angle in a three-phase alternating current.
  • converter 16 can adjust the current supplied to motor 18.
  • the converter 16 can adjust the power supplied to the motor 18.
  • the adjustment by the converter 16 is mainly to limit the current generated in the generator 10.
  • the adjustment by the converter 16 is different from the current control by changing the inductance of the generator 10. In the following description, the description is continued on the assumption that the current limitation by the converter 16 is minimized.
  • the converter 16 may be formed of a bridge circuit formed of a diode. That is, the converter 16 may be configured by a rectifier. In this case, the converter 16 performs only rectification without controlling the current.
  • the motor 18 is operated by electric power supplied from the generator 10.
  • the motor 18 rotationally drives the drive wheels Wc and Wd.
  • the motor 18 causes the vehicle V to travel.
  • the motor 18 is not mechanically connected to the generator 10.
  • the motor 18 is, for example, a three-phase brushless motor.
  • the motor 18 includes a rotor 181 and a stator 182.
  • the structure of the rotor 181 and the stator 182 in the motor 18 of the present embodiment is the same as that of the rotor 11 and the stator 12 of the generator 10.
  • the generator 10 and the motor 18 are electrically connected. For this reason, mechanical power transmission between the generator 10 and the motor 18 is unnecessary. Therefore, the freedom degree of arrangement
  • positioning of the generator 10 and the motor 18 is high.
  • the generator 14 may be provided in the engine 14 and the motor 18 may be disposed in the vicinity of the drive wheels Wc and Wd as the rotation mechanism.
  • the motor 18 may have a rotor and a stator having a configuration different from that of the generator 10.
  • the motor 18 may have a different number of magnetic poles or a different number of teeth than the generator 10.
  • an induction motor or a stepping motor may be employed.
  • a DC motor provided with a brush may be employed.
  • the motor 18 is mechanically connected to the drive wheels Wc and Wd so that rotational power is transmitted to the drive wheels Wc and Wd.
  • the motor 18 is mechanically connected to the drive wheels Wc and Wd via the transmission mechanism G.
  • the rotor 181 of the motor 18 is connected to the transmission mechanism G.
  • a portion of the rotor 181 connected to the transmission mechanism G functions as a rotation output unit of the transmission device T.
  • the output of the motor 18 is the output of the transmission T.
  • the request for the output of the transmission T that is, the request for the output of the motor 18 varies depending on the situation in which the vehicle V travels. For example, when the vehicle V is traveling on a flat ground at a constant speed, the traveling speed may be required to be gradually increased.
  • the increase amount of the output torque required for the motor 18 is relatively small.
  • the motor 18 is rotating at a constant speed, an induced electromotive voltage corresponding to the rotation speed is generated in the motor 18.
  • the induced electromotive voltage is generated so as to prevent a current supplied to the motor 18 to drive the motor 18. Therefore, the current supplied to the motor 18 is relatively small.
  • the traveling speed is required to be increased gradually, an increase in the voltage supplied to the motor 18 is required.
  • the vehicle V needs to be accelerated rapidly or run uphill.
  • the amount of increase in output torque required for the motor 18 is relatively large. In this case, the increase amount of the current supplied to the motor 18 is large.
  • the inverter 17 supplies a current for driving the motor 18 to the motor 18. Direct current is supplied to the inverter 17 from the converter 16.
  • the inverter 17 converts the direct current output from the converter 16 into a three-phase current whose phases are shifted from each other by 120 degrees.
  • the three-phase current corresponds to the three-phase brushless motor.
  • the inverter 17 has an inverter circuit, for example.
  • the inverter 17 has, for example, a three-phase bridge inverter circuit.
  • the three-phase bridge inverter circuit includes switching elements Sb corresponding to the three phases. The switching element Sb is controlled based on a signal from a position sensor (not shown) that detects the rotational position of the rotor 181.
  • the inverter 17 controls the voltage supplied to the motor 18 by adjusting the on / off operation of the switching element Sb. For example, the inverter 17 turns on the switching element Sb with a pulse width modulated signal.
  • the control device 15 adjusts the ON / OFF duty ratio. Thereby, the control device 15 controls the voltage supplied to the motor 18 to an arbitrary value. Thereby, the inverter 17 can adjust the power supplied to the motor 18.
  • Each of the inverter 17 and the converter 16 corresponds to an example of a motor power control unit referred to in the present invention.
  • Control device 15 controls inverter 17. Thereby, the control device 15 can control the voltage supplied to the motor 18 independently of the control of the output of the generator 10. For example, even when the engine 14 and the generator 10 are operating, the control device 15 can stop the motor 18 by stopping the voltage supply to the motor 18. The degree of freedom in controlling the output of the transmission device T is increased.
  • the adjustment by the inverter 17 is different from the current control by changing the inductance of the generator 10.
  • the adjustment by the inverter 17 is performed so as to limit the voltage supplied from the generator 10. In the following description, the description will be continued on the assumption that the current limit by the inverter 17 is fixed to a minimum.
  • the inverter 17 can also be included in the motor 18. Further, when a DC motor is employed as the motor 18, the inverter 17 is omitted.
  • the control device 15 controls the torque output from the transmission device T in response to a torque request for the torque output to the drive wheels Wc and Wd.
  • both the control device 15 and the engine control unit EC receive a torque request.
  • the control device 15 operates in cooperation with the engine control unit EC. Specifically, both the control device 15 and the engine control unit EC receive a signal indicating a torque request from the request instruction unit A.
  • the control device 15 and the engine control unit EC communicate with each other.
  • the control device 15 controls the torque output from the motor 18. Specifically, the control device 15 controls the current supplied from the generator 10 to the motor 18.
  • the control device 15 performs control so as to increase the current supplied to the motor 18 when an increase in torque is required.
  • the control device 15 is connected to the supply current adjustment unit 131 of the generator 10.
  • the control device 15 controls the supply current adjusting unit 131 in accordance with the torque request output from the request instructing unit A. Further, the control device 15 controls the converter 16 and the inverter 17.
  • the control device 15 includes a torque request receiving unit 151 and an adjustment control unit 152.
  • the control device 15 is composed of a microcontroller.
  • the control device 15 includes a central processing unit (not shown) and a storage device (not shown).
  • the central processing unit performs arithmetic processing based on a control program.
  • the storage device stores data relating to programs and operations.
  • the torque request receiving unit 151 and the adjustment control unit 152 are configured by the central processing unit executing a program.
  • the torque request receiving unit 151 receives a torque request. Torque request accepting portion 151 receives a torque request from request instructing portion A.
  • the adjustment control unit 152 controls the supply current adjustment unit 131. Accordingly, the supply current adjustment unit 131 controls the current supplied to the motor 18.
  • the adjustment control unit 152 increases the current supplied to the motor 18 when the torque request received by the torque request receiving unit 151 is a request to increase the torque output from the transmission T to the drive wheels Wc and Wd. Control as follows. That is, the adjustment control unit 152 performs control so that the current supplied to the motor 18 is increased when the output power of the motor 18 is increased.
  • FIGS. 3A and 3B are schematic diagrams for explaining adjustment of the supply current adjusting unit 131 in the generator 10 shown in FIG. 2.
  • FIG. 3A shows a state in which the inductance of the winding 121 is set to the largest value within a settable value range.
  • FIG. 3B shows a state when the inductance of the winding 121 is set to a value smaller than that in FIG.
  • FIG. 3A shows a part of the rotor 11 and the stator 12 provided in the generator 10.
  • the generator 10 of this embodiment is comprised by the SPM (Surface Permanent Magnet) generator.
  • the rotor 11 and the stator 12 are opposed to each other. More specifically, the magnetic pole portion 111 of the rotor 11 and the tooth portion 122b of the stator core 122 of the stator 12 face each other with an air gap interposed therebetween. The magnetic pole portion 111 is exposed toward the stator 12.
  • the supply current adjustment unit 131 changes the magnetic resistance of the magnetic circuit F ⁇ b> 2 passing through the stator core 122 as viewed from the winding 121. As a result, the supply current adjustment unit 131 changes the inductance of the winding 121 and adjusts the current supplied to the motor 18. Specifically, the supply current adjustment unit 131 moves the relative position of the stator core 122 with respect to the winding 121. As a result, the supply current adjusting unit 131 changes the magnetic resistance of the magnetic circuit passing through the stator core 122 as viewed from the winding 121.
  • Winding 121 is fixed to a housing (not shown) of generator 10.
  • the stator core 122 is supported by the housing so as to be movable in the axial direction X with respect to the winding 121.
  • Winding 121 is not fixed to tooth part 122b.
  • a gap is provided between the cylindrical winding 121 and the tooth portion 122b.
  • the clearance is a clearance that allows the tooth portion 122b to move with respect to
  • the supply current adjusting unit 131 moves the stator core 122 so that the tooth portion 122b moves in the direction of entering and exiting the winding 121 wound in a cylindrical shape.
  • the supply current adjustment unit 131 moves the stator core 122 in the axial direction X.
  • the control device 15 operates the supply current adjusting unit 131 in response to the torque request.
  • the supply current adjusting unit 131 is schematically shown by a pinion rack mechanism and a motor in order to easily understand the movement of the stator core 122.
  • a mechanism other than that shown in the figure can be employed as the supply current adjusting unit 131 that moves the stator core 122.
  • a mechanism having a cylindrical member arranged concentrically with the stator core and screw-engaged with the stator core can be employed.
  • the stator core moves in the axial direction X.
  • the supply current adjusting unit 131 moves the relative position of the stator core 122 with respect to the winding 121 so as to maintain the relative position of the stator core 122 with respect to the rotor 11.
  • a broken line Q in FIG. 3 represents that the rotor 11 moves in conjunction with the stator core 122 in the axial direction X.
  • the structure for maintaining the relative position between the rotor 11 and the stator core 122 is formed by, for example, a bearing portion 113 that rotatably supports the rotor 11.
  • the position of the bearing portion 113 is fixed with respect to the stator core 122.
  • FIG. 3A and 3B show a main magnetic flux F1 generated by the magnetic pole portion 111.
  • FIG. A line of the magnetic flux F1 represents a main magnetic circuit through which the magnetic flux F1 generated in the magnetic pole portion 111 passes. Therefore, the magnetic circuit through which the magnetic flux F1 passes is referred to as a magnetic circuit F1.
  • the main magnetic flux F1 generated by the magnetic pole part 111 flows through the magnetic pole part 111, the air gap between the magnetic pole part 111 and the tooth part 122b, the tooth part 122b, the core body 122a, and the back yoke part 112.
  • the magnetic circuit F1 is configured by the magnetic pole part 111, the air gap between the magnetic pole part 111 and the tooth part 122b, the tooth part 122b, the core body 122a, and the back yoke part 112.
  • 2A and 2B show three tooth portions 122b among the plurality of tooth portions 122b arranged in the circumferential direction.
  • the figure shows a state in which the magnetic pole portion 111 faces the central tooth portion 122b of the three tooth portions 122b.
  • the amount of magnetic flux generated by the magnetic pole portion 111 and interlinked with the winding 121 changes.
  • an induced electromotive voltage is generated in the winding 121. That is, power generation is performed.
  • the induced electromotive voltage generated in the winding 121 depends on the amount of magnetic flux interlinking with the winding 121.
  • the amount of magnetic flux interlinking with the winding 121 is smaller as the magnetic resistance of the magnetic circuit F1 is larger.
  • the magnetic resistance of the magnetic circuit F1 mainly depends on the magnetic resistance of the air gap between the tooth part 122b and the magnetic pole part 111.
  • the magnetic resistance of the air gap between the tooth part 122b and the magnetic pole part 111 depends on the air gap length L1 between the tooth part 122b and the magnetic pole part 111. Therefore, the induced electromotive voltage generated in the winding 121 depends on the air gap length L1 between the tooth portion 122b and the magnetic pole portion 111.
  • FIG. 3A and 3B show a main magnetic flux F2 generated by a current flowing through the winding 121.
  • FIG. When power generation is performed, a current due to the induced electromotive voltage flows through the winding 121.
  • the magnetic flux F2 is generated by a current flowing through the winding 121 when power generation is performed.
  • the line of the magnetic flux F2 represents the main magnetic circuit through which the magnetic flux F2 generated by the current of the winding 121 passes. Therefore, the magnetic circuit through which the magnetic flux F2 passes is referred to as a magnetic circuit F2.
  • the magnetic circuit F ⁇ b> 2 is a magnetic circuit viewed from the winding 121.
  • the magnetic circuit F2 viewed from the winding 121 is configured by a path that passes through the inside of the winding 121 and minimizes the entire magnetic resistance of the magnetic circuit F2.
  • the magnetic circuit F2 passes through the stator core 122.
  • the magnetic circuit F2 passes through the adjacent tooth portions 122b.
  • three tooth portions 122b among the plurality of tooth portions 122b arranged in the circumferential direction are shown.
  • winding 121 wound around the center tooth part 122b among the three tooth parts 122b is shown as a representative.
  • a magnetic circuit F2 viewed from a certain winding 121 passes through a tooth portion 122b wound by the winding 121 and two tooth portions 122b adjacent to the tooth portion 122b.
  • the main magnetic flux F2 generated by the current in the winding 121 passes through the air gap between the tooth portion 122b, the core body 122a, and two adjacent tooth portions 122b. That is, the magnetic circuit F2 is configured by the air gap between the tooth portion 122b, the core main body 122a, and the adjacent tooth portion 122b.
  • the magnetic circuit F2 passing through the stator core 122 includes one air gap.
  • the part constituted by the air gap in the magnetic circuit F2 is indicated by a thick line.
  • a thick line portion constituted by an air gap is simply referred to as an air gap F2a.
  • the air gap F ⁇ b> 2 a is between the winding 121 and the rotor 11.
  • the air gap F2a constituting the magnetic circuit F2 is between the winding 121 and the rotor 11 and between the adjacent tooth portions 122b.
  • the air gap F2a is a nonmagnetic material gap.
  • the magnetic circuit F2 in the air gap F2a is provided so as to connect portions of the two adjacent tooth portions 122b facing the rotor 11 to each other.
  • the magnetic circuit F2 viewed from the winding 121 is configured by an air gap F2a between two adjacent tooth portions 122b.
  • the magnetic circuit F ⁇ b> 2 is not substantially constituted by the back yoke portion 112 of the rotor 11. Most of the magnetic flux F2 generated by the current of the winding 121 does not pass through the back yoke portion 112 of the rotor 11 and passes through the air gap between the two adjacent tooth portions 122b for the following reason.
  • the magnetic pole portion 111 is simply regarded as a magnetic flux path.
  • the magnetic pole part 111 is comprised with the permanent magnet whose magnetic permeability is as low as air. Therefore, the magnetic pole part 111 can be regarded as equivalent to air in the magnetic circuit F2. Since the magnetic pole part 111 is equivalent to air, the substantial air gap length between the stator 12 and the rotor 11 is the distance L11 from the tooth part 122b to the back yoke part 112. The distance L11 from the tooth part 122b to the back yoke part 112 includes the thickness of the magnetic pole part 111 in the axial direction X.
  • the distance L11 is longer than the distance L1 from the tooth part 122b to the magnetic pole part 111.
  • the amount of magnetic flux F2 generated by the current of the winding 121 is smaller than the amount of magnetic flux generated by the permanent magnet of the magnetic pole portion 111.
  • Most of the magnetic flux F2 generated by the current of the winding 121 is difficult to reach the back yoke portion 112 across the air gap length L11. Accordingly, the magnetic flux passing through the back yoke portion 112 is small in the magnetic flux F2 generated by the current of the winding 121.
  • the inductance of the winding 121 is set to the largest value within a settable value range.
  • the air gap F2a constituting the magnetic circuit F2 has the largest magnetoresistance among the elements constituting the magnetic circuit F2.
  • the air gap F2a has a larger magnetic resistance than the remaining portion F2b of the air gap F2a in the magnetic circuit F2.
  • the ratio of the magnetic flux component passing through the air gap between the tooth portion 122b and the tooth portion 122b to the magnetic flux component passing through the back yoke portion 112 of the rotor 11 is the magnetic flux F1 generated by the magnetic pole portion 111. Larger than the proportion.
  • the inductance of the winding 121 depends on the magnetic resistance viewed from the winding 121.
  • the inductance of the winding 121 is inversely proportional to the magnetic resistance viewed from the winding 121.
  • the magnetic resistance viewed from the winding 121 is the magnetic resistance of the magnetic circuit F2 through which the magnetic flux F2 generated by the current of the winding 121 flows.
  • the magnetic resistance of the stator core 122 viewed from the winding 121 includes the magnetic resistance of the air gap F2a between the two adjacent tooth portions 122b. Strictly speaking, the magnetic flux F ⁇ b> 2 generated by the current in the winding 121 passes through both the stator 12 and the rotor 11.
  • the magnetic resistance viewed from the winding 121 is more dependent on the magnetic resistance of the magnetic circuit F2 passing through the stator 12 than the magnetic resistance of the magnetic circuit F1 passing through the rotor 11. That is, the inductance of the winding 121 is more strongly dependent on the magnetic resistance of the magnetic circuit F2 passing through the stator core 122 as viewed from the winding 121 than the magnetic resistance of the magnetic circuit F1 passing through the rotor 11 as viewed from the winding 121. To do. Therefore, the inductance of the winding 121 substantially depends on the magnetic resistance of the magnetic circuit F ⁇ b> 2 passing through the stator core 122 as viewed from the winding 121.
  • the supply current adjustment unit 131 moves the relative position of the stator core 122 with respect to the winding 121. As a result, the supply current adjustment unit 131 changes the magnetic resistance of the magnetic circuit F ⁇ b> 2 passing through the stator core 122 as viewed from the winding 121. As a result, the supply current adjusting unit 131 changes the inductance of the winding 121. For example, when the supply current adjusting unit 131 moves the stator core 122 in the direction of the arrow X1, the tooth portion 122b of the stator core 122 moves in a direction to come out of the winding 121 wound in a cylindrical shape. FIG. 2B shows a state having a smaller inductance than the state of FIG.
  • the tooth portion 122b of the stator core 122 When the tooth portion 122b of the stator core 122 is removed from the winding 121, the amount of the stator core 122 existing in the winding 121 is reduced. As a result, the magnetic flux in the winding 121 is expanded. From the viewpoint of the magnetic circuit F2 viewed from the winding 121, the length of the air gap F2a constituting the magnetic circuit F2 is increased. Therefore, the magnetic resistance of the air gap F2a between the winding 121 and the rotor 11 increases. That is, the magnetic resistance of the air gap F2a having the largest magnetic resistance increases. As a result, the magnetic resistance of the magnetic circuit F2 passing through the stator core 122 as seen from the winding 121 increases. As a result, the inductance of the winding 121 is reduced.
  • the supply current adjusting unit 131 changes the magnetic resistance of the air gap F2a having the largest magnetic resistance. As a result, the supply current adjusting unit 131 changes the magnetic resistance of the magnetic circuit F2 passing through the adjacent tooth portion 122b. Therefore, for example, the inductance of the winding 121 is likely to change greatly compared to the case where the magnetic resistance of the portion other than the air gap F2a is changed.
  • the supply current adjusting unit 131 changes the inductance of the winding 121 so that the rate of change of the inductance of the winding 121 is larger than the rate of change of the magnetic flux interlinking with the winding 121. As a result, the supply current adjustment unit 131 adjusts the current.
  • the supply current adjustment unit 131 of the generator 10 of the present embodiment moves the relative position of the stator core 122 with respect to the winding 121 so as to maintain the relative position of the stator core 122 with respect to the rotor 11.
  • the supply current adjusting unit 131 moves the stator core 122 in the direction of the arrow X1
  • the rotor 11 also moves in the direction of the arrow X1 in conjunction with it.
  • FIG. 4 is a circuit diagram schematically showing an equivalent circuit of the winding 121 of the generator 10 shown in FIG.
  • the circuit is simplified in order to explain the outline of changes in voltage and current generated by the generator 10. Further, the converter 16 and the inverter 17 are also omitted, assuming that the state is fixed.
  • the winding 121 electrically includes an AC voltage source 121A, an inductor 121B, and a resistor 121C.
  • the induced electromotive voltage E output from the AC voltage source 121 ⁇ / b> A mainly depends on the magnetic flux ⁇ interlinked with the winding 121. That is, the induced electromotive voltage E depends on the product of the magnetic flux F1 and the rotational speed ⁇ of the rotor 11.
  • the inductance L of the inductor 121B mainly depends on the magnetic resistance of the stator core 122 as viewed from the winding 121.
  • the resistance value R of the resistor 121C is a winding resistance.
  • the impedance Zg of the winding 121 is roughly as follows: (( ⁇ L) 2 + R 2 ) 1/2 It is represented by
  • the supply current adjustment unit 131 moves the relative position of the stator core 122 with respect to the winding 121 in response to a current request.
  • the supply current adjusting unit 131 changes the magnetic resistance of the magnetic circuit F ⁇ b> 2 passing through the stator core 122 as viewed from the winding 121.
  • the supply current adjusting unit 131 changes the inductance L of the winding 121.
  • the impedance Zg is changed by changing the inductance L.
  • the current I supplied from the generator 10 is adjusted.
  • the supply current adjustment unit 131 changes the inductance of the winding 121 so that the change rate of the magnetic flux ⁇ interlinking with the winding 121 is smaller than the change rate of the inductance L of the winding 121. Accordingly, the supply current adjustment unit 131 adjusts the current I. Therefore, the current is adjusted so that the amount of change in the induced electromotive voltage E is suppressed.
  • the engine output adjustment unit 141 changes the rotation speed ⁇ of the rotor 11 by changing the rotation speed of the engine 14 and adjusts the voltage supplied to the motor 18.
  • the output (rotational power) of the engine 14 mainly changes the rotational speed of the output shaft C, that is, the rotational speed ⁇ of the rotor 11.
  • the rotational speed ⁇ of the rotor 11 affects both the induced electromotive voltage E of the winding 121 and the impedance (( ⁇ L) 2 + R 2 ) 1/2 .
  • the linkage between the supply voltage and the supply current is high.
  • the relative position of the stator core 122 with respect to the winding 121 is moved according to the torque request corresponding to the current request, and the magnetic resistance of the magnetic circuit F ⁇ b> 2 passing through the stator core 122 as viewed from the winding 121. change.
  • the inductance of the winding 121 changes.
  • the degree of the current change with respect to the voltage change when changing the magnetic resistance of the magnetic circuit F2 viewed from the winding 121 is different from the case of changing the rotation speed ⁇ of the rotor 11.
  • the generator 10 of the present embodiment suppresses the interlocking between the voltage change and the current change while suppressing the interlocking between the voltage change and the current change, compared with the case where the engine output adjusting unit 141 only changes the rotation speed of the output shaft C of the engine 14, for example.
  • the current supplied to 18 can be adjusted.
  • the movement of the relative position of the stator core 122 with respect to the winding 121 changes the magnetic resistance of the magnetic circuit F ⁇ b> 2 passing through the stator core 122 as viewed from the winding 121.
  • the inductance L of the winding 121 changes and the current is adjusted.
  • the inductance L since the inductance L is changed by changing the magnetic resistance of the stator core 122 as viewed from the winding 121, the inductance L can be gradually changed.
  • the winding is required to use a thick wire to cope with an excessive current change. Therefore, the efficiency is reduced in the method of changing the substantial number of windings.
  • the generator becomes larger.
  • the inductance L of the winding 121 changes as the magnetic resistance of the stator core 122 changes. For this reason, the inductance L of the winding 121 can be gradually changed. As a result, a rapid increase in voltage generated in the winding 121 is suppressed. Accordingly, it is possible to connect a low breakdown voltage component to the generator 10. For this reason, efficiency is high. Moreover, it is not necessary to provide a switching element for current switching. Moreover, a comparatively thin wire can be used for the winding. The increase in size of the generator 10 can be suppressed.
  • FIG. 5 is a flowchart for explaining the operation of the transmission T.
  • the rotational power output from the transmission T to the drive wheels Wc and Wd is controlled by both the engine 14 and the transmission T.
  • the rotational power is controlled by the control device 15 and the engine control unit EC.
  • the control device 15 and the engine control unit EC cooperate. Therefore, in the following, the operation of the transmission T will be described together with the operation of the engine 14.
  • the control device 15 of the transmission T controls the current and voltage supplied to the motor 18.
  • the control device 15 repeats the control process shown in FIG.
  • the torque request receiving unit 151 and the engine control unit EC of the control device 15 receive a request for rotational power (S11).
  • the torque request receiving unit 151 receives a torque request.
  • the torque request represents a request for torque output from the transmission T.
  • the torque request receiving unit 151 receives the operation amount of the request instructing unit A.
  • the torque request reception unit 151 obtains a torque request based on the operation amount of the request instruction unit A. Specifically, the torque request receiving unit 151 obtains a torque request based on the operation amount of the request instructing unit A, the traveling state of the vehicle V, the setting of the fuel consumption target, and the setting of the followability to the operation.
  • the torque request receiving unit 151 obtains requests for both the torque request and the rotation speed request.
  • the adjustment control unit 152 and the engine control unit EC of the control device 15 control the rotational power based on the received request (S12).
  • the adjustment control unit 152 and the engine control unit EC control the supply current adjustment unit 131 and the engine output adjustment unit 141, respectively, according to the accepted request (S12).
  • the adjustment control unit 152 controls the torque output from the transmission device T based on the request received by the torque request receiving unit 151.
  • the adjustment control unit 152 controls the torque output from the transmission device T when an increase in torque is required.
  • the adjustment control unit 152 performs control to increase the torque output from the transmission device T when an increase in torque is required.
  • the adjustment control unit 152 controls the torque and rotational speed output from the transmission device T.
  • the adjustment control unit 152 controls the torque and rotation speed output from the transmission device T in cooperation with the engine control unit EC.
  • the adjustment control unit 152 and the engine control unit EC control the adjustment amount by the supply current adjustment unit 131 and the adjustment amount by the engine output adjustment unit 141.
  • the adjustment control unit 152 and the engine control unit EC control the distribution of the adjustment amount by the supply current adjustment unit 131 and the adjustment amount by the engine output adjustment unit 141.
  • the adjustment control unit 152 controls the distribution of the torque increase amount and the rotation speed increase amount output from the transmission T.
  • a typical example of control with a large torque increase amount and a typical example of control with a large rotation speed increase amount will be described.
  • a typical example of control with a large torque increase amount is referred to as torque control.
  • a typical example of control with a large increase in rotational speed is referred to as speed control.
  • the adjustment control unit 152 and the engine control unit EC perform any one of torque control, speed control, and control in which torque control and speed control are mixed according to the received request.
  • the engine control unit EC increases the rotational power of the engine 14. Specifically, the engine control unit EC causes the engine output adjustment unit 141 to increase the intake air amount and the fuel injection amount of the engine 14. As the power of the engine 14 increases, the rotational speed of the engine 14, that is, the rotational speed ⁇ of the rotor 11 of the generator 10 increases. In the speed control, the control device 15 does not cause the supply current adjustment unit 131 to perform adjustment to reduce the inductance L of the winding 121. As shown in FIG. 3, the supply current adjusting unit 131 maintains a state in which the teeth 122 b of the stator core 122 are completely contained in the cylindrical winding 121.
  • the induced electromotive voltage E of the AC voltage source 121A shown in FIG. 4 increases.
  • the induced electromotive voltage E is substantially proportional to the rotational speed ⁇ .
  • the control device 15 causes the supply current adjustment unit 131 to adjust the position of the stator core 122 so that the inductance L of the winding 121 decreases.
  • the supply current adjusting unit 131 adjusts the position of the stator core 122 so that the magnetic resistance of the stator core 122 as viewed from the winding 121 is increased.
  • the supply current adjusting unit 131 moves the stator core 122 in the direction in which the tooth portion 122b of the stator core 122 is removed from the cylindrical winding 121 shown in FIG. As a result, the inductance L of the winding 121 decreases.
  • the control device 15 causes the supply current adjustment unit 131 to adjust the magnetic resistance of the magnetic circuit F2 viewed from the winding 121 in response to the torque request.
  • the control device 15 causes the supply current adjusting unit 131 to adjust the magnetic resistance of the magnetic circuit F2 as viewed from the winding 121 in response to a current request corresponding to the torque request.
  • the supply current adjustment unit 131 changes the inductance of the winding 121.
  • the electric current supplied to the motor 18 as an electric load device can be controlled.
  • the control device 15 causes the supply current adjusting unit 131 to increase the magnetic resistance of the magnetic circuit F2 as viewed from the winding 121 in response to a request for torque increase.
  • the control device 15 causes the supply current adjusting unit 131 to increase the magnetic resistance of the magnetic circuit F2 as viewed from the winding 121 in response to a request for increasing the current corresponding to the request for increasing the torque.
  • the supply current adjustment unit 131 decreases the inductance of the winding 121. Thereby, the electric current supplied to the motor 18 as an electric load device can be increased.
  • the supply current adjusting unit 131 changes the inductance of the winding 121 by changing the magnetic resistance of the air gap F2a between the winding 121 and the rotor 11.
  • An alternating magnetic field is generated between the winding 121 and the rotor 11 by the magnetic pole portion 111 that moves as the rotor 11 rotates.
  • the loss for the alternating magnetic field is reduced.
  • the iron loss in the magnetic circuit F2 passing through the air gap F2a is reduced. Since the loss is reduced, a larger current can be output. Therefore, the adjustment amount of the current supplied to the motor 18 as the electric load device can be increased.
  • the engine control unit EC causes the engine output adjustment unit 141 (FIG. 2) to increase the rotational power of the engine 14. Specifically, the engine control unit EC causes the engine output adjustment unit 141 to increase the intake air amount and the fuel injection amount of the engine 14.
  • the rotational speed of the engine 14 increases.
  • the rotational speed ⁇ increases.
  • the induced electromotive voltage E of the AC voltage source 121A increases.
  • the induced electromotive voltage E is substantially proportional to the rotational speed ⁇ .
  • the current output from the generator 10 increases. That is, the current supplied to the motor 18 increases. As a result, the torque of the motor 18 increases.
  • the control device 15 and the engine control unit EC perform control using, for example, a map in which the inductance, the rotation speed of the rotor 11 and the output current are stored in association with each other.
  • the map is obtained based on the following relationships (i) and (ii), for example.
  • the relationship (i) is a relationship between the rotational speed of the engine 14 and the input current of the motor 18.
  • the relationship (ii) is a relationship between the torque of the motor 18 and the rotation speed.
  • the relationship (i) is specified or set based on, for example, measurement or simulation of a generator performed in advance for a plurality of inductance L conditions.
  • the relationship (i) includes, for example, the relationship between the rotational speed of the generator 10 and the output current as shown in FIG.
  • the relationship (i) includes the influence of the operations of the converter 16 and the inverter 17.
  • the relationship (ii) is specified or set based on, for example, a result of motor measurement or simulation performed in advance.
  • the control device 15 determines the input current of the motor 18 corresponding to the torque required for the transmission T as a target.
  • the control device 15 controls the supply current adjusting unit 131 so as to obtain an inductance L that can supply a target current at the lowest rotation speed of the generator 10.
  • the engine control unit EC operates the engine 14 at a rotation speed at which a target current can be supplied under the condition of the inductance L obtained by the control device 15.
  • the control device 15 and the engine control unit EC may be configured to control the supply current adjustment unit 131 without using a map.
  • the control device 15 and the engine control unit EC may perform control based on the result of calculating an expression.
  • the control device 15 and the engine control unit EC are configured to control the supply current adjustment unit 131 and the engine output adjustment unit 141 in cooperation with each other.
  • the control device 15 transmits information on the rotational speed necessary for the engine control unit EC.
  • the entire period in which the inductance of the winding 121 is decreased by the supply current adjusting unit 131 and the entire period in which the rotational power of the engine 14 is increased by the engine output adjusting unit 141 may have overlapping portions. preferable.
  • the period during which the inductance of the winding 121 is reduced by the supply current adjusting unit 131 and the period during which the rotational power of the engine 14 is increased by the engine output adjusting unit 141 may have an overlapping portion. preferable.
  • the rotational power of the output shaft C of the engine 14 increases due to the adjustment by the engine output adjustment unit 141. Accordingly, the rotational speed ⁇ of the rotor 11 of the generator 10 increases.
  • the inductance L of the winding 121 is reduced by the adjustment of the supply current adjustment unit 131. Therefore, an increase in impedance Zg of winding 121 depending on the product of rotational speed ⁇ and inductance L is suppressed. As a result, the amount of increase in the current output from the generator 10 is larger than when there is no decrease in the inductance L of the winding 121, for example.
  • the increase amount of the torque output from the transmission T is larger than that in the case where the inductance L of the winding 121 is not reduced, for example. In this way, even if the rotational power of the engine 14 is the same, the torque output from the transmission device T changes according to the adjustment in the transmission device T. Further, in the transmission device T, an adjustment range of torque output from the transmission device T is expanded by performing torque control.
  • the rotational power of the engine 14 is increased without increasing the inductance L of the winding 121 in order to increase the current, the rotational power of the engine 14 will increase excessively as compared with an increase in the generated current. If the rotational power increases excessively, the fuel efficiency of the engine 14 deteriorates. Further, when the rotational power increases excessively, the induced electromotive voltage E also increases excessively. For example, in a situation where the rotational speed of the motor 18 increases and then reaches a substantially constant speed, the current supplied to the motor 18 decreases. Therefore, the influence of the impedance Zg of the winding 121 is reduced. For this reason, a voltage corresponding to the excessively induced induced electromotive voltage E is output from the generator 10.
  • a converter 16 is provided between the generator 10 and the motor 18.
  • a high voltage corresponding to the induced electromotive voltage E is applied to the switching element of the converter 16.
  • a high breakdown voltage switching element corresponding to a high voltage generally has a large on-resistance. For this reason, the loss by a switching element is large.
  • the supply current adjustment unit 131 decreases the inductance L of the winding 121 when an increase in torque is required. For this reason, an increase in the impedance Zg of the winding 121 is suppressed. For this reason, for example, compared with the case where there is no decrease in the inductance L, the amount of increase in the output torque of the transmission T accompanying the increase in the rotational power of the engine 14 is large. As a result, an excessive increase in the rotational power of the engine 14 with respect to a request for an increase in torque can be suppressed. Therefore, the fuel efficiency of the engine is improved. Further, an excessive increase in output voltage can be suppressed. Therefore, a low breakdown voltage switching element having a small on-resistance can be employed. Therefore, high efficiency can be obtained.
  • the transmission device T of the present embodiment independence in adjusting the output torque and the rotational speed compared to, for example, the case where the output of the engine 14 is supplied to the drive wheels Wc and Wd without passing through the transmission device T. Can be increased. Therefore, the transmission T can perform adjustment more suitable for each of the torque request and the speed request.
  • the transmission device T of the present embodiment controls the converter 16 and the inverter 17 by the control device 15.
  • the transmission T can control the current and voltage supplied to the motor 18 independently of the adjustment in the generator 10.
  • the transmission T can control the torque and the rotational speed output from the motor 18 of the transmission T independently of the adjustment in the generator 10.
  • This increases the degree of freedom in controlling the output of the transmission T.
  • the transmission T causes the converter 16 or the inverter 17 to stop supplying power to the motor 18. Thereby, the transmission T can stop the motor 18 even when the engine 14 and the generator 10 are operating.
  • FIGS. 6A and 6B are schematic views for explaining adjustment of the supply current adjustment unit in the generator 20 of the transmission of the second embodiment.
  • FIG. 6A shows a state when the inductance of the winding 121 is set to the largest value within the range of values that can be set.
  • FIG. 6B shows a state when the inductance of the winding 121 is set to a value smaller than that in FIG.
  • the positional relationship among the winding 221, the stator core 222, and the rotor 21 in FIG. 6A is the same as the positional relationship in the first embodiment described with reference to FIG.
  • the magnetic circuit F21 is a magnetic circuit through which the magnetic flux generated by the magnetic pole portion 211 passes.
  • the magnetic circuit F22 is a magnetic circuit viewed from the winding 221.
  • the magnetic circuit F22 viewed from the winding 221 is configured by a path that passes through the inside of the winding 221 and minimizes the entire magnetic resistance of the magnetic circuit F22.
  • the magnetic circuit F ⁇ b> 2 passes through the stator core 222.
  • the magnetic circuit F2 passes through two adjacent tooth portions 222b.
  • the magnetic circuit F22 passing through the stator core 222 includes an air gap F22a.
  • the air gap F ⁇ b> 22 a is between the winding 221 and the rotor 21.
  • the air gap F22a constituting the magnetic circuit F22 is between the winding 221 and the rotor 21 and between two adjacent tooth portions 222b.
  • the air gap F22a constituting the magnetic circuit F2 is provided so as to connect portions of the two adjacent tooth portions 222b facing the rotor 21.
  • the magnetic circuit F22 viewed from the winding 221 does not pass through the back yoke portion 212 of the rotor 21.
  • the magnetic circuit F22 viewed from the winding 221 has an air gap F22a between two adjacent tooth portions 122b.
  • the magnetic resistance of the air gap F22a constituting the magnetic circuit F22 is the largest among the magnetic resistances of the elements constituting the magnetic circuit F22.
  • the air gap F22a has a larger magnetic resistance than the remaining portion F22b of the air gap F22a in the magnetic circuit F22.
  • the supply current adjustment unit 231 moves the winding 221.
  • the supply current adjusting unit 231 changes the magnetic resistance of the magnetic circuit F ⁇ b> 22 passing through the stator core 222 as viewed from the winding 221.
  • the supply current adjusting unit 231 changes the inductance of the winding 221 and adjusts the current supplied to the motor 18 (see FIG. 1).
  • the supply current adjusting unit 231 moves the winding 221 without moving the stator core 222 of the stator 22. More specifically, the stator core 222 is fixed to a housing (not shown).
  • the rotor 21 is rotatably supported by the housing.
  • the rotor 21 is fixed in the axial direction X.
  • the winding 221 is supported by the casing so as to be movable in the axial direction X with respect to the casing.
  • the supply current adjustment unit 231 moves the winding 221 so that the tooth portion 222 b moves in a direction in and out of the cylindrical winding 221.
  • the supply current adjustment unit 231 moves the winding 221 in the axial direction X.
  • the supply current adjustment unit 231 moves the winding 221 in the direction of the arrow X2, for example. All the windings 221 provided on the generator 20 and wound around the tooth portion 222b move together.
  • the control device 15 operates the supply current adjusting unit 231 in response to the torque request.
  • FIG. 6B shows a state having a smaller inductance than the state of FIG.
  • the state shown in FIG. 6B is a state where the winding 221 has moved in the direction of the arrow X2.
  • the supply current adjustment unit 231 moves only the winding 221 in response to a torque request.
  • the supply current adjustment unit 231 moves the relative position of the stator core 222 with respect to the winding 221.
  • the supply current adjusting unit 231 changes the magnetic resistance of the magnetic circuit F ⁇ b> 22 passing through the stator core 222 as viewed from the winding 221.
  • the tooth portion 222 b of the stator core 222 comes out of the winding 221.
  • the amount of the stator core 222 existing in the winding 221 decreases.
  • the length of the air gap F22a constituting the magnetic circuit F22 viewed from the winding 221 is increased.
  • the magnetic resistance of the air gap F22a between the winding 221 and the rotor 21 increases. That is, the magnetic resistance of the air gap F22a having the largest magnetic resistance increases.
  • the magnetic resistance of the magnetic circuit F2 as viewed from the winding 221 increases.
  • the supply current adjusting unit 231 changes the magnetic resistance of the air gap F22a having the largest magnetic resistance. Thereby, the supply current adjusting unit 231 changes the magnetic resistance of the magnetic circuit F2 passing through the adjacent tooth portion 222b. Therefore, for example, the inductance of the winding 221 is likely to change greatly compared to the case where the magnetic resistance of the portion F22b other than the air gap F22a is changed. In this way, the supply current adjustment unit 231 changes the magnetic resistance of the magnetic circuit F22 passing through the stator core 222 as viewed from the winding 221. As a result, the supply current adjustment unit 231 changes the inductance of the winding 221.
  • the supply current adjusting unit 231 increases the magnetic resistance of the magnetic circuit F22 viewed from the winding 221 in response to a request for increasing torque. That is, the supply current adjustment unit 231 increases the magnetic resistance of the magnetic circuit F22 viewed from the winding 221 in response to a request for increasing the current. As a result, the supply current adjusting unit 231 decreases the inductance of the winding 221. As a result, the current supplied to the motor 18 (see FIG. 1) can be increased.
  • the supply current adjusting unit 231 changes the inductance of the winding 221 by changing the magnetic resistance of the air gap F22a between the winding 221 and the rotor 21. As a result, the loss for the alternating magnetic field is reduced. Therefore, the adjustment amount of the current supplied to the motor 18 can be increased.
  • FIG. 7 is a schematic diagram showing the generator 30 in the transmission of the third embodiment.
  • the stator core 322 in the generator 30 shown in FIG. 7 includes a plurality of first stator core portions 323 and a second stator core portion 324.
  • Each of the plurality of first stator core portions 323 has a facing portion 323a that faces the rotor 31 via an air gap.
  • the plurality of first stator core portions 323 are arranged in an annular shape at intervals. That is, the plurality of first stator core portions 323 are arranged in a line in the circumferential direction Z.
  • the plurality of first stator core portions 323 function as main tooth portions in the stator 32. Therefore, the first stator core portion 323 is also referred to as a first tooth portion 323 in the present specification.
  • the length in the circumferential direction Z of the facing portion 323a of the first stator core portion 323 is longer than the length in the circumferential direction Z of the portion other than the facing portion 323a of the first stator core portion 323. Winding 321 is wound around first stator core portion 323.
  • the second stator core portion 324 is disposed at a position opposite to the rotor 31 with the first stator core portion 323 interposed therebetween.
  • the second stator core portion 324 does not have the facing portion 323 a that faces the rotor 31.
  • the second stator core portion 324 includes an annular stator yoke portion 324a and a plurality of second tooth portions 324b.
  • the second tooth portion 324b protrudes toward the first stator core portion 323 from the stator yoke portion 324a.
  • the number of the second tooth portions 324b is the same as the number of the first stator core portions 323.
  • the stator yoke part 324a and the second tooth part 324b may be configured so that almost all of the magnetic flux passing through the second tooth part 324b passes through the stator yoke part 324a. That is, the second tooth portion 324b may be integrally formed with the stator yoke portion 324a. The second tooth portion 324b may be formed separately from the stator yoke portion 324a and attached to the stator yoke portion 324a. The second tooth portions 324b are arranged in a line in the circumferential direction Z. The plurality of second tooth portions 324b are arranged in an annular shape at intervals. The interval between the plurality of second tooth portions 324b is equal to the interval between the plurality of first stator core portions 323.
  • the supply current adjustment unit 331 in the generator 30 of the present embodiment moves a part of the relative position of the stator core 322 with respect to the winding 321.
  • the supply current adjusting unit 331 moves one of the plurality of first stator core units 323 and the second stator core unit 324 with respect to the other.
  • the supply current adjusting unit 331 changes the magnetic resistance of the magnetic circuit F32 viewed from the winding 321.
  • the supply current adjustment unit 331 adjusts the current supplied to the motor 18. More specifically, the first stator core portion 323 is fixed to a housing (not shown).
  • the second stator core portion 324 is supported to be rotatable in the circumferential direction Z.
  • the supply current adjustment unit 331 rotates the second stator core unit 324 in the circumferential direction Z around the rotation axis of the rotor 31. Accordingly, the supply current adjusting unit 331 moves the second stator core unit 324 from the first state (see FIG. 8A) to the second state (see FIG. 8B).
  • FIG. 8A is a schematic diagram showing a first state of the stator 32 shown in FIG.
  • FIG. 8B is a schematic diagram showing a second state of the stator 32 shown in FIG.
  • FIG. 6A shows a state when the inductance of the winding 321 is set to the largest value within the range of values that can be set.
  • FIG. 6B shows a state when the inductance of the winding 321 is set to a value smaller than that in FIG.
  • each of the plurality of second tooth portions 324b faces each of the plurality of first stator core portions 323.
  • an air gap length L32 between each of the plurality of first stator core portions 323 and the second stator core portion 324 is an air gap between adjacent first stator core portions of the plurality of first stator core portions 323. It is shorter than the length L33.
  • the air gap length L33 is the air gap length between the portions of the first stator core portion 323 provided between the winding 321 and the rotor 31 in the direction in which the rotor 31 and the stator 32 face each other. is there.
  • each of the plurality of second tooth portions 324b is located between the first stator core portions 323 adjacent to each other.
  • the air gap length L34 between each of the plurality of first stator core portions 323 and the second stator core portion 324 is the air between the adjacent first stator core portions 323 among the plurality of first stator core portions 323. It is longer than the gap length L33.
  • 8A and 8B show a magnetic circuit F31 through which the magnetic flux generated by the magnetic pole portion 311 passes, and a main magnetic flux F32 generated by the current in the winding 321.
  • FIG. The magnetic circuit F32 viewed from the winding 321 is configured by a path that passes through the inside of the winding 321 and minimizes the entire magnetic resistance of the magnetic circuit F32.
  • the magnetic circuit F32 passes through the stator core 322.
  • the magnetic circuit F32 passes through adjacent first stator core portions 323 (first tooth portions 323).
  • the magnetic circuit F32 includes three air gaps.
  • an air gap F32a a portion formed by an air gap between two adjacent first stator core portions 323 (first tooth portions 323) is referred to as an air gap F32a.
  • a portion formed by an air gap between each of the two adjacent first stator core portions 323 (first tooth portions 323) and the second stator core portion 324 is referred to as an air gap F32c.
  • An air gap F ⁇ b> 32 a between two adjacent first stator core portions 323 (first tooth portions 323) is between the winding 321 and the rotor 31.
  • the air gap F32a constituting the magnetic circuit F32 is between the winding 321 and the rotor 31, and between two adjacent first stator core portions 323 (first tooth portions 323).
  • the air gap F32a is provided so as to connect the end surfaces of the two adjacent first stator core portions 323 (first tooth portions 323) facing each other.
  • the air gap length L32 between each of the plurality of first stator core portions 323 (first tooth portions 323) and the second stator core portion 324 has a plurality of first stator core portions. Is shorter than the air gap length L33 between the adjacent first stator core portions 323 (first tooth portions 323).
  • the air gap length L33 is the longest air gap in the magnetic circuit F32. Therefore, in the first state, the magnetic resistance of the air gap F32a between the adjacent first stator core portions 323 in the magnetic circuit F32 viewed from the winding 321 is the magnetic resistance of the elements constituting the magnetic circuit F32. The biggest.
  • the air gap F32a has a magnetic resistance larger than any of the magnetic resistances of the remaining portions F32b, F32c, and F32d of the air gap F32a in the magnetic circuit F32.
  • the magnetic resistance of the air gap F32a is larger than the magnetic resistance of the air gap F32c between the first stator core portion 323 and the second stator core portion 324.
  • the magnetic flux F32 due to the current of the winding 321 flows through the adjacent first stator core portion 323 and second stator core portion 324.
  • the magnetic resistance of the magnetic circuit F32 passing through the stator core 322 as viewed from the winding 321 depends on the air gap length L33 between the adjacent first stator core portions 323.
  • the magnetic flux F31 generated by the magnetic pole portion 311 passes through two adjacent first stator core portions 323.
  • the magnetic flux F31 is generated from one magnetic pole portion 311, a gap between the magnetic pole portion 311 and the first stator core portion 323, the first stator core portion 323, the second stator core portion 324, the adjacent first stator core portion 323, the magnetic pole. It flows through the gap between the part 311 and the first stator core part 323, the adjacent magnetic pole part 311, and the back yoke part 312. That is, in the first state shown in FIG. 6A, the magnetic circuit F31 of the magnetic pole portion 311 passes through the two adjacent first stator core portions 323 and the second stator core portion 324.
  • the air gap length L34 between each of the plurality of first stator core portions 323 and the second stator core portion 324 is adjacent to each other among the plurality of first stator core portions 323.
  • the air gap length L33 between the stator core portions 323 is longer.
  • the magnetic resistance of the magnetic circuit F32 passing through the stator core 322 as viewed from the winding 321 is strongly influenced by the air gap length L34 between the first stator core portion 323 and the second stator core portion 324.
  • the magnetic resistance of the magnetic circuit F32 passing through the stator core 322 as viewed from the winding 321 in the second state is larger than the magnetic resistance in the first state.
  • the magnetic flux F31 generated by the magnetic pole portion 311 passes through the gap between the magnetic pole portion 311 and the first stator core portion 323 from one magnetic pole portion 311 and passes through the first stator core portion 323.
  • the magnetic flux F31 passes from the first stator core part 323 directly to the adjacent first stator core part 323.
  • a magnetic flux F31 generated by the magnetic pole portion 311 passes through a gap between two adjacent first stator core portions 323.
  • the path of the magnetic flux F31 generated by the magnetic pole portion 311 is switched. Even when the path of the magnetic flux F31 is not switched in the second state, at least the magnetic flux F31 generated by the magnetic pole portion 311 increases the magnetic flux passing through the gap between the two adjacent first stator core portions 323.
  • the magnetic resistance of the air gap F32a substantially increases. This is magnetically equivalent to an increase in the air gap length L33 between two adjacent first stator core portions 323. For this reason, the magnetic resistance of the magnetic circuit F32 including the air gap F32a is larger.
  • the rate of change in inductance of the winding 321 is greater than the rate of change in magnetic flux generated at the magnetic pole portion 311 and interlinked with the winding 321.
  • the inductance of the winding 321 tends to be inversely proportional to the magnetic resistance viewed from the winding 321. Therefore, the inductance of the winding 321 in the second state is smaller than the inductance of the winding 321 in the first state.
  • the supply current adjusting unit 331 uses one of the plurality of first stator core portions 323 and the second stator core portion 324 as the other. Move against. As a result, the supply current adjusting unit 331 changes the magnetic resistance of the magnetic circuit F32 viewed from the winding 321. As a result, the supply current adjustment unit 331 changes the inductance of the winding 321.
  • the supply current adjustment unit 331 adjusts the current supplied to the motor 18 (see FIG. 1).
  • the supply current adjusting unit 331 changes the magnetic resistance of the air gap F32a.
  • the supply current adjustment part 331 changes the magnetic resistance of the air gap F32a without changing the air gap length L33 between the first stator core parts 323 as adjacent tooth parts. Accordingly, the supply current adjusting unit 331 changes the magnetic resistance of the magnetic circuit F32 that passes through the first stator core portion 323 serving as an adjacent tooth portion.
  • the air gap F32a has the largest magnetic resistance among the elements constituting the magnetic circuit F32 in the first state.
  • the inductance of the winding 321 is likely to change greatly compared to the case where the magnetic resistance of the portion other than the air gap F32a is changed.
  • the supply current adjustment unit 331 changes the inductance of the winding 321 by changing the magnetic resistance of the air gap F ⁇ b> 32 a between the winding 321 and the rotor 31. As a result, the loss for the alternating magnetic field is reduced. Therefore, the adjustment amount of the current supplied to the motor 18 as the electric load device can be increased.
  • FIG. 9 is a graph showing output current characteristics with respect to the rotational speed of the rotor 31 in the generator 30 shown in FIG.
  • the broken line H1 represents the output current characteristic in the first state shown in FIG.
  • the generator 30 When the generator 30 has the output current characteristic indicated by the broken line H1, the generator 30 operates so that the combination of the output current and the rotation speed is located in a region below the broken line H1 in the graph of FIG.
  • a solid line H2 represents the output current characteristic in the second state shown in FIG.
  • the generator 30 has the output current characteristic indicated by the solid line H2
  • the generator 30 operates so that the combination of the output current and the rotation speed is located in a region below the solid line H2.
  • the graph of FIG. 9 shows characteristics when the supply voltage adjustment unit 344 (see FIG. 7) is not operated in order to make the current control easy to understand. With reference to the graph of FIG. 9, the adjustment in the generator 30 is demonstrated.
  • the output current in the first state shown by the broken line H1 When attention is paid to the output current in the first state shown by the broken line H1, the output current increases as the rotational speed increases. Therefore, the output current of the generator 30 can be adjusted by the rotational speed of the rotor 31.
  • the rotational speed of the rotor 31 corresponds to the rotational speed of the output shaft C (see FIG. 2) of the engine 14.
  • the output current in the first state increases sharply as the rotational speed increases in a region where the rotational speed of the rotor 31 is relatively low.
  • the output current in the first state gradually increases in response to the increase in the rotation speed in a region where the rotation speed is relatively high. That is, in the region where the rotational speed is relatively high, the rate of change of the output current with respect to the change of the rotational speed is small.
  • the rotation speed of the rotor 31 should be significantly increased. Is required. For example, when the vehicle V (see FIG. 1) starts climbing when traveling or overtakes another vehicle during traveling, it is necessary to further increase the torque output from the transmission T during high-speed traveling. In this case, the torque demand increases. In the state where the state of the supply current adjusting unit 331 is fixed, when the torque demand increases in response to further acceleration, it is required to further increase the rotational speed of the rotor 31, that is, the rotational speed of the engine 14.
  • the current may be increased to I2 in response to an increase in torque demand.
  • the generator 30 is fixed in the first state corresponding to H1 in the graph, the rotational speed of the rotor 31 increases excessively. In other words, the rotational speed of the engine 14 increases excessively. This reduces the fuel efficiency of the engine 14 itself.
  • the induced electromotive voltage of the winding 321 is substantially proportional to the rotational speed of the rotor 31. Therefore, when the rotational speed is greatly increased, the induced electromotive voltage is greatly increased. In order to cope with a large increase in voltage, it is necessary to increase the withstand voltage of electrical components. For this reason, the efficiency is lowered due to the high breakdown voltage of the electrical component.
  • the control device 15 controls the supply current adjusting unit 331 according to the torque request.
  • the torque request corresponds to the current request.
  • the control device 15 changes the magnetic resistance of the magnetic circuit F32 passing through the stator core 322 as viewed from the winding 321 according to the torque request.
  • the control device 15 changes the inductance of the winding 321.
  • the current supplied to the motor 18 is adjusted.
  • the supply current adjusting unit 331 moves the second stator core unit 324 from the first state (see FIG. 8A) to the second state (see FIG. 8B).
  • the output current characteristic changes from the broken line H1 shown in FIG. 9 to the solid line H2.
  • control device 15 causes the supply current adjusting unit 331 (see FIG. 7) to move the second stator core unit 324 to the second state (see FIG. 8B). Thereby, the control device 15 reduces the inductance. Then, the engine control unit EC increases the rotational speed of the engine 14 to N2. This increases the output current to I2. As the output current increases, the torque output from the transmission T increases. In this way, the control device 15 performs control. Thereby, for example, compared with the case where only the rotation speed of the engine 14 is increased, the torque adjustment range is expanded.
  • the engine control unit EC and the control device 15 cooperate.
  • the control device 15 adjusts the winding inductance by the supply current adjusting unit 331 when the engine control unit EC causes the engine output adjusting unit 141 to adjust the rotational power of the engine.
  • the control device 15 starts the process of causing the supply current adjusting unit 331 to reduce the inductance of the winding 121 before the process of increasing the rotational power of the engine 14 ends. That is, in the control device 15, the period during which the inductance of the winding 121 is decreased by the supply current adjusting unit 331 and the period during which the rotational power of the engine 14 is increased by the engine output adjusting unit 141 have an overlapping portion. Control as follows.
  • the engine control unit EC causes the engine output adjustment unit 141 (see FIG. 2) to increase the rotational power of the engine 14. That is, in the present embodiment, the control device 15 maintains the supply current adjustment unit 331 (see FIG. 7) in the first state (see FIG. 8A) corresponding to the broken line H1 in the graph of FIG.
  • the engine output adjusting unit 141 increases the rotational power of the engine 14.
  • the induced electromotive force E (see FIG. 4) generated in the generator 30 is substantially proportional to the rotational speed ⁇ .
  • the impedance Zm of the motor 18 itself is generally large.
  • the transmission device T can meet the demand for an increase in speed without reducing the inductance L of the winding 321 in the supply current adjusting unit 331.
  • the winding diameter is increased or the magnet amount is increased. Increase is required. If the diameter of the winding is increased or the amount of magnets is increased, the transmission itself is increased in size. As a result, the mountability and portability of the transmission T on the vehicle are reduced.
  • a general generator whose inductance cannot be changed is configured to have an output current characteristic as shown by a solid line H2
  • the generator has an output current characteristic as shown by a broken line H1. Can not.
  • a method for adjusting the current supplied to the motor 18 for example, use of a DC-DC converter can be considered.
  • the control device 15 controls the supply current adjusting unit 331 to change the magnetic resistance of the magnetic circuit F32 passing through the stator core 322 as viewed from the winding 321 according to the current request.
  • the control device 15 changes the inductance of the winding 321.
  • the transmission T can adjust an electric current according to a torque request
  • the generator 30 includes a supply voltage adjustment unit 344 separately from the supply current adjustment unit 331.
  • the supply voltage adjustment unit 344 is controlled by the control device 15.
  • the supply voltage adjustment unit 344 changes the interlinkage magnetic flux that leaves the magnetic pole portion 311 of the rotor 31 and that interlinks with the winding 321.
  • the supply voltage adjusting unit 344 changes the induced electromotive voltage of the winding 321.
  • the supply voltage adjustment unit 344 adjusts the voltage supplied to the motor 18. More specifically, the supply voltage adjustment unit 344 moves the rotor 31 in the axial direction X.
  • the supply voltage adjustment unit 344 changes the air gap length L311 between the rotor 31 and the stator 32.
  • Such movement of the rotor 31 in the axial direction X can be realized, for example, by the supply voltage adjusting unit 344 that moves the bearing portion 313 that rotatably supports the rotor 31 in the axial direction X.
  • the supply voltage adjusting unit 344 moves the bearing portion 313 that rotatably supports the rotor 31 in the axial direction X.
  • the magnetic resistance between the rotor 31 and the stator 32 changes.
  • the amount of magnetic flux generated at the magnetic pole portion 311 and interlinked with the winding 321 changes.
  • the voltage generated by the generator 30 changes.
  • the degree of freedom in controlling the rotational power output from the transmission T is increased.
  • the transmission T according to the present embodiment can adjust the voltage supplied to the motor 18 other than the adjustment of the rotational power of the engine 14 by the engine output adjustment unit 141. Therefore, it is possible to increase the degree of freedom of control while suppressing a decrease in fuel efficiency.
  • the supply voltage adjusting unit 344 can further suppress fluctuations in the interlinkage magnetic flux interlinking with the winding 321 due to the operation of the supply current adjusting unit 331 as follows.
  • the interlinkage magnetic flux that goes out of the magnetic pole portion 311 of the rotor 31 and interlinks with the winding 321 flows through the stator core 322. That is, the interlinkage magnetic flux that goes out of the magnetic pole portion 311 and interlinks with the winding 321 flows through the first stator core portion 323 and the second stator core portion 324.
  • the supply current adjustment unit 331 moves the second stator core unit 324 from the first state (see FIG. 8A) to the second state (see FIG.
  • the supply voltage adjustment unit 344 changes the air gap length L31 between the rotor 31 and the stator 32 so as to compensate for the fluctuation of the linkage magnetic flux linked to the winding 321 due to the operation of the supply current adjustment unit 331. As a result, fluctuations in the interlinkage magnetic flux interlinking with the winding 321 due to the operation of the supply current adjusting unit 331 can be suppressed.
  • the supply current adjustment unit 331 can adjust the current while further suppressing the influence of the restriction due to the voltage by the compensation operation of the supply voltage adjustment unit 344.
  • the generator 30 includes both the supply current adjustment unit 331 and the supply voltage adjustment unit 344.
  • the transmission of the present invention may not include the supply voltage adjusting unit.
  • the example of the 1st stator core part 323 which has the protrusion part which protruded in the circumferential direction Z, ie, the direction in which a 1st stator core part is located in the edge part which opposes a rotor as a 1st stator core part. explained.
  • the 1st stator core part in this invention does not need to have a protrusion part.
  • the example of the rotor and the stator having the axial gap type structure has been described.
  • the transmission of the present invention can also be applied to a radial gap structure in which the rotor and the stator are opposed in the radial direction via the air gap.
  • the axial direction X (FIG. 3) in the axial gap type structure of the present embodiment is an example of the direction in which the rotor and the stator in the present invention face each other.
  • the rotor and the stator face each other in the radial direction.
  • the generator of the present invention may be constituted by an IPM (Interior Permanent Magnet) generator.
  • the air gap in the above-described embodiment is an example of a nonmagnetic material gap.
  • the nonmagnetic gap is a gap made of one or more kinds of nonmagnetic materials.
  • the nonmagnetic material is not particularly limited. Examples of the nonmagnetic material include air, aluminum, and resin.
  • the nonmagnetic gap preferably includes at least an air gap.
  • the example in which the rotor 11 is directly connected to the output shaft C of the engine 14 has been described as the details of the configuration in which the rotor 11 is connected to the engine 14.
  • the output shaft C of the engine 14 and the rotor 11 of the generator 10 may be connected via a transmission device represented by a belt, a gear, or a drive shaft, for example.
  • control device 15 and the engine control unit EC that receive the torque request and the speed request from the request instruction unit A are shown as examples of the control device.
  • the present invention is not limited to this.
  • a torque request may be received from a device that outputs a torque request
  • a speed request may be received from another device that outputs a speed request.
  • the control device of the present invention may not communicate with the engine control unit.
  • the control device and the engine control unit have a common control map, and receive torque requests having the same contents from the common request instruction unit.
  • the control device performs control in cooperation with the engine control unit.
  • the control device may be integrated with the engine control unit.
  • the control device may be constructed on a common board or electronic device with the engine control unit.
  • control device 15 and the engine control unit EC perform any one of torque control, speed control, and control in which torque control and speed control are mixed.
  • control device and the engine control unit may perform only speed control and torque control.
  • the control device may perform only torque control.
  • the example of the accelerator operator as the request instruction unit A has been described.
  • the torque request required for the transmission of the present invention is not limited to the output of the request instruction unit.
  • indication part and a transmission the following are mentioned, for example.
  • control device that receives a signal is provided.
  • the torque request required for the transmission is not limited to an electrical signal.
  • the control device of the present invention may be a mechanism that operates by, for example, a wire connected to an operation lever.
  • the supply current adjusting unit may move the stator core by the force transmitted by the wire or the like.
  • a three-phase brushless motor has been described as an example of the motor 18.
  • the motor of the present invention may be a motor having the same structure as the generator described in the present embodiment, including the structure of the supply current adjusting unit.
  • the motor 18 includes a plurality of first stator core portions and second stator core portions, similar to the generator 30, and has a structure that moves one of the first stator core portions and the second stator core portions relative to the other. Also good.
  • the example of the vehicle V having four wheels has been described as the device to which the transmission is applied.
  • the transmission in the present invention is not limited to this, and can be applied to a vehicle having three or less wheels, a vehicle having five or more wheels, and a vehicle having no wheels.
  • the transmission in the present invention can be applied to a vehicle having wheels, for example.
  • the transmission according to the present invention can be applied to, for example, motorcycles, motor tricycles, buses, trucks, golf cars, carts, ATVs (All-Terrain Vehicles), ROVs (Recreational Off-highway Vehicles), and track vehicles. it can.
  • the transmission according to the present invention can be applied to, for example, a vehicle that drives a drive mechanism other than wheels.
  • the transmission in the present invention is, for example, an industrial vehicle represented by a forklift, a snowplow, an agricultural vehicle, a military vehicle, a snowmobile, a construction machine, a small planing boat (water vehicle), a ship, an outboard motor, an inboard motor, It can be applied to airplanes and helicopters.
  • the rotation drive mechanism includes a drive member.
  • the rotation drive mechanism may be, for example, a propeller, an impeller, a caterpillar, or a track belt. Further, the rotation mechanism is not limited to a mechanism that drives the vehicle.
  • the rotation mechanism may be a mechanism that drives part of the functions of the vehicle.
  • the transmission in the present invention can be applied to, for example, an engine blower, a snowplow, a lawn mower, an agricultural tool, a gas engine heat pump, and a general-purpose machine.
  • control device 15 configured by a microcontroller has been described as an example of the control device.
  • the control device can also be configured by, for example, wired logic.
  • the generator according to the present invention may not be attached to the crankcase of the engine.
  • the transmission of the present invention may be disposed at a position away from the engine.
  • the transmission may constitute a vehicle drive transmission unit that can be attached to and detached from the vehicle body.
  • a vehicle drive transmission unit is a device that is physically attached to and detached from the vehicle body as one body.
  • the vehicle drive transmission unit is configured such that all the components (eg, a generator, a motor, etc.) included in the vehicle drive transmission unit can be attached to and detached from the vehicle body as one body.
  • the torque request is a request to increase, decrease or maintain the torque output from the transmission to the rotating mechanism. Therefore, the request for increasing the torque output from the transmission to the rotating mechanism from zero corresponds to the torque request. Further, the request for zeroing the torque output from the transmission to the rotation mechanism corresponds to the torque request. However, the request to maintain the torque output from the transmission to the rotation mechanism at zero is substantially a request not to output the torque from the transmission to the rotation mechanism. Therefore, the request for maintaining the torque output from the transmission to the rotation mechanism at zero does not correspond to the torque request. In other words, when the torque output from the transmission to the rotating mechanism is maintained at zero, no torque request is input.
  • the control device causes the supply current adjusting unit to change the magnetic resistance of the magnetic circuit passing through the stator core as seen from the winding when a torque request is input to the transmission.
  • the control device supplies a change in the magnetic resistance of the magnetic circuit passing through the stator core, as viewed from the winding, in response to the torque request input to the transmission. Let the adjuster do it.
  • the inductance of the winding is changed by changing the magnetic resistance of the magnetic circuit passing through the stator core as seen from the winding.
  • the change of the magnetic resistance of the magnetic circuit passing through the stator core as viewed from the winding may be performed in a plurality of steps, steplessly, or continuously.
  • the output current characteristics of the generator may be changed in a plurality of steps, may be changed steplessly, or may be changed continuously.
  • the broken line H1 shown in FIG. 9 shows an example of the output current characteristic when the magnetic resistance of the magnetic circuit passing through the stator core is small as viewed from the winding.
  • a solid line H2 shown in FIG. 9 shows an example of the output current characteristic when the magnetic resistance of the magnetic circuit passing through the stator core is large as viewed from the winding.
  • the output current characteristic of the generator shown in FIG. 9 does not mean that the change in the magnetic resistance of the magnetic circuit passing through the stator core as seen from the winding in this embodiment is performed in two stages.
  • the output current characteristics of the generator may be changed in a plurality of steps, may be changed steplessly, or may be changed continuously.
  • the change of the magnetic resistance of the magnetic circuit passing through the stator core as viewed from the winding may be performed in two stages.
  • the magnetic resistance of the magnetic circuit passing through the stator core as viewed from the winding in the low resistance state is smaller than the magnetic resistance of the magnetic circuit passing through the stator core as viewed from the winding in the high resistance state.
  • the state of the generator is changed so that the magnetic resistance of the magnetic circuit passing through the stator core as seen from the winding increases, the state of the generator before the change is a low resistance state, and the power generation after the change The machine is in a high resistance state.
  • the state of the generator before the change is a high resistance state
  • the state of the generator after the change is changed.
  • the state is a low resistance state. That is, the absolute magnetic resistance of the magnetic circuit passing through the stator core as seen from the windings in the high resistance state and the low resistance state is not particularly limited.
  • the high resistance state and the low resistance state are relatively determined.
  • the inductance of the winding in the high resistance state is smaller than the inductance of the winding in the low resistance state.
  • an example of the output current characteristic of the generator in the high resistance state is a broken line H1 shown in FIG.
  • an example of the output current characteristic of the generator in the low resistance state is a solid line H2 shown in FIG. .
  • the generator in the high resistance state and the generator in the low resistance state have the same current at the same rotational speed (M).
  • Can output When the magnetic resistance of the magnetic circuit passing through the stator core as viewed from the winding is changed, the output current characteristic curve (H1) between the generator before the change and the generator after the change is changed in this way. , H2), a rotation speed (M) corresponding to the intersection point is generated.
  • the output current characteristic curve is a curve indicating the output current of the generator with respect to the rotational speed of the rotor.
  • the generator in the high resistance state when rotating at a rotational speed (M + ) greater than the rotational speed (M), a current (the maximum current that can be output when the generator (see H1) in the low resistance state rotates at the rotational speed (M + ) ( I2) can be output.
  • the state of the generator is changed so that the magnetic resistance of the magnetic circuit passing through the stator core is high as viewed from the winding, so that the rotation speed is relatively high and the state before the change is changed. A current of a magnitude that the generator could not output can be output. As shown in FIG.
  • the generator of the present invention is changed from the rotational speed (M).
  • M rotational speed
  • M ⁇ or M + it is possible to output a current larger than the maximum current that can be output when the generator before change rotates at the rotational speed (M ⁇ or M + ).
  • a rotational torque different from the rotational torque output from the engine and a rotational speed different from the rotational speed output from the engine are supplied to the rotational mechanism (for example, a rotational drive mechanism). Can do.
  • the control device 15 controls both the supply current adjusting unit 131 and the converter 16 and / or the inverter 17 as the motor power control unit in response to the torque request.
  • the control device changes the operation mode of the motor power control unit in accordance with the torque request at the same timing as the timing at which the control for changing the inductance is performed by the supply current adjustment unit according to the torque request or at a different timing. Control may be performed.
  • the control for changing the operation mode of the motor power control unit is a control for changing the on / off pattern of the converter and / or the inverter from one predetermined pattern to another predetermined pattern. .
  • the pattern here may be a pattern in which the on / off cycle is constant, or a pattern in which the on / off cycle changes over time.
  • the control for changing the operation mode of the motor power control unit is different from the control of the operation itself of the motor power control unit.
  • the control of the operation of the motor power control unit is control for operating the motor power control unit based on a predetermined on

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Eletrric Generators (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Ac Motors In General (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

エンジンの燃料効率の低下を抑えつつ、トルクの調整レンジを拡大することができる変速装置等を提供する。変速装置は、エンジンから伝達される回転パワーに応じた電力を出力する発電機であって、ロータと、ステータと、巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えることによって前記巻線のインダクタンスを変え、前記発電機から出力される電流を調整する供給電流調整部とを有する発電機と、前記発電機から出力された電力で駆動され、前記回転機構に回転パワーを出力するモータと、前記変速装置から前記回転機構に出力するトルクとして前記変速装置に要求されるトルク要求に応じて、前記供給電流調整部を制御し、前記供給電流調整部に前記巻線のインダクタンスを変えさせることによって電流を調整させる制御装置とを備える。

Description

変速装置、制御装置、及びビークル
 本発明は、変速装置、制御装置、及びビークルに関する。
 従来、次のような変速装置が知られている。この変速装置では、エンジンの回転出力(回転パワー)が発電機によって電力に変換される。変換された電力が、モータによって回転パワーに変換される。変換された回転パワーが、回転機構に供給される。
 例えば、特許文献1には車両が示されている。特許文献1に示される車両は、ハイブリッド車両である。前記車両は、エンジン、アクセルペダル、第1回転電機、第2回転電機、及び駆動輪を備えている。第1回転電機は、エンジンの出力軸に連結されている。第1回転電機は、主に発電機として機能する。第2回転電機は、第1回転電機と電気的に接続されている。第2回転電機は、主にモータとして機能する。第1回転電機及び第2回転電機のセットは、変速機として使用される。第1回転電機及び第2回転電機に電流が流れることによって、力行が行われる。第2回転電機は、車両の駆動輪に連結されている。
 特許文献1に示すような車両において、運転者によるアクセルペダルの踏込みは、車両の加速要求を表す。特許文献1に示すような車両が電子制御スロットル装置を備える場合、エンジンの吸入空気量が任意に調整可能である。従って、例えば、以下のように車両の制御が行われる。運転者によるアクセルペダルの踏込み量と車速とに基づいて第2回転電機(モータ)の目標出力が決定される。第2回転電機の目標出力に応じて第1回転電機(発電機)の目標発電電力が決定される。この目標発電電力に応じてエンジンの目標出力が決定される。この目標出力が得られるようにエンジンの吸入空気量及び燃料噴射量が制御される。この制御において、第1回転電機では発電電力が制御され、第2回転電機では出力が制御される。また、特許文献1に示すような車両において、アクセルペダルとエンジンのスロットルとが機械的に連結されている場合には、エンジンの実出力に合わせて第1回転電機の発電電力と第2回転電機の出力とが制御される。このように、特許文献1では、回転電機の電力(出力)が制御されており、様々な特性を有する複数の車種への適用が図られている。
特開2002-345109号公報
 特許文献1に示すような車両では、駆動輪のトルクを制御するために、エンジンの吸入空気量及び燃料噴射量が制御される。特許文献1に示すような車両では、駆動輪のトルクを増大させる場合、エンジンの吸入空気量及び燃料噴射量を増大させる。駆動輪のトルクを増大させる場合は、例えば、車両の加速を行う状況である。エンジンの吸入空気量及び燃料噴射量を増大させることによって、エンジンの回転速度が増大する。即ち、エンジンが出力する回転パワーが増大する。この結果、発電機として機能する第1回転電機から出力される電流が増大し、第2回転電機に供給される電流が増大する。第2回転電機に供給される電流の増大によって、第2回転電機から駆動輪に出力されるトルクが増大する。しかしながら、発電機から出力される電流は、発電機の回転速度の増大に比べて増大し難いという問題があった。
 このため、特許文献1に示すような車両では、第2回転電機から出力されるトルクを増大するために、発電される電流を増大しようとすると、エンジンの出力パワーを過剰に増大することが求められる。そのため、燃料効率が低下する場合があった。また、エンジンの出力パワーに応じて増大する電圧への対応のため、燃料効率が低下する場合があった。
 本発明の目的は、エンジンの燃料効率の低下を抑えつつ、トルクの調整レンジを拡大することができる変速装置、制御装置、及びビークルを提供することである。
 本発明は、上述した課題を解決するために、以下の構成を採用する。
 (1) エンジンから出力された回転のトルク及び回転速度を変えて回転機構に供給する変速装置であって、
 前記変速装置は、
前記エンジンから伝達される回転パワーに応じた電力を出力するように構成された発電機であって、永久磁石を有し前記エンジンから伝達される回転パワーにより回転するロータと、巻線及び前記巻線が巻かれたステータコアを有し前記ロータと対向して配置されたステータと、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えることによって前記巻線のインダクタンスを変え、前記発電機から出力される電流を調整するように構成された供給電流調整部とを有する発電機と、
前記発電機から出力された電力で駆動され、前記回転機構に回転パワーを出力するように構成されたモータと、
前記変速装置から前記回転機構に出力するトルクとして前記変速装置に要求されるトルク要求に応じて前記供給電流調整部を制御し、前記供給電流調整部に前記巻線のインダクタンスを変えさせることによって前記発電機から出力される電流を調整させるように構成された制御装置と
を備える。
 (1)の変速装置では、発電機のロータが、エンジンから伝達される回転パワーにより回転する。この時、ロータに備えられた永久磁石の磁束が巻線に作用する。これによって、誘導起電圧が生じる。誘導起電圧に起因して電力が出力される。発電機は、エンジンから伝達される回転パワーに応じた電力を出力する。モータは、発電機から出力された電力で駆動され回転パワーを出力する。
 (1)の変速装置では、制御装置が、回転機構に出力するトルクとして変速装置に要求されるトルク要求に応じて供給電流調整部を制御する。供給電流調整部は、巻線のインダクタンスを変えることによって発電機から出力される電流を調整する。これによって、モータから回転機構に出力される回転のトルクが調整される。
 発電機において、巻線から見た、ステータコアを通る磁気回路の磁気抵抗を変えることによって、インダクタンスが変化する。巻線から見た、ステータコアを通る磁気回路の磁気抵抗を変える場合の電圧変化に対する電流変化の度合いは、エンジンの出力を変える場合と異なる。
 回転機構に出力するトルクの要求に応じて、制御装置が、供給電流調整部を制御することによって発電機の電流を制御する。このため、エンジンは、回転パワーの過剰な増大を抑えることが可能である。また、制御装置は、発電機で発電される電力及び電圧のバランスを確保しつつ、回転機構に出力するトルクを調整することができる。このため、(1)の変速装置によれば、エンジンの燃料効率の低下を抑えつつ、トルクの調整レンジを拡大することができる。
 (2) (1)の変速装置であって、
 前記変速装置は、前記発電機と前記モータとの間の電力の供給経路に設けられ、前記モータに供給する電力を制御するように構成されたモータ電力制御部をさらに備え、
 前記制御装置は、前記モータ電力制御部及び前記供給電流調整部の両方を制御するように構成されている。
 (2)の構成によれば、制御装置は、発電機の出力の制御とは独立に、モータに供給する電力を制御することができる。例えば、エンジン及び発電機が稼働している状況でも、モータ電力制御部が、モータへの電力供給を停止することによってモータを停止状態にすることができる。このように、(2)の構成によれば、モータから出力される回転についての制御の自由度を高めることができる。
 (3) (1)の変速装置であって、
 前記エンジンは、前記エンジンから出力される回転パワーを調整するように構成された出力調整部を有し、
 前記制御装置は、前記出力調整部と連携して、前記供給電流調整部に、前記巻線のインダクタンスを変えることによって前記発電機から出力される電流を調整させるように構成されている。
 (3)の構成によれば、制御装置は、出力調整部と連携して、発電機から出力される電流を調整する。このため、エンジンの回転パワーの過剰な増大を抑えつつ、発電機からモータに供給される電流を調整することができる。従って、(3)の構成によれば、エンジンの燃料効率の低下を抑えつつ、トルクを調整することができる。
 (4) (1)から(3)のいずれか1の変速装置であって、
 前記巻線から見た、前記ステータコアを通る磁気回路は、少なくとも1つの非磁性体ギャップを含み、
 前記供給電流調整部は、前記少なくとも1つの非磁性体ギャップのうち、前記巻線と前記ロータとの間にある非磁性体ギャップの磁気抵抗を変えることによって前記巻線のインダクタンスを変え、前記発電機から出力される電流を調整するように構成されている。
 (4)の構成によれば、供給電流調整部は、巻線とロータとの間にある非磁性体ギャップの磁気抵抗を変えることによって巻線のインダクタンスを変える。巻線とロータとの間には、ロータの回転に伴い移動する永久磁石によって交番磁界が生じる。例えば、巻線とロータとの間にある非磁性体ギャップの磁気抵抗を減少させると、交番磁界についての損失が減少する。このため、ロータに供給される回転パワーに対し電流を増大することができる。従って、発電機から出力される電流の調整量を増大することができる。
 (5) (1)から(4)のいずれか1の変速装置であって、
 前記巻線から見た、前記ステータコアを通る磁気回路は、少なくとも1つの非磁性体ギャップを含み、
 前記供給電流調整部は、前記少なくとも1つの非磁性体ギャップのうち、前記巻線のインダクタンスが設定可能な値の範囲内で最も大きい値に設定されている時の磁気抵抗が最も大きい非磁性体ギャップの磁気抵抗を変えることによって前記巻線のインダクタンスを変え、前記発電機から出力される電流を調整するように構成されている。
 (5)の構成によれば、巻線のインダクタンスが設定可能な値の範囲内で最も大きい値に設定されている時の磁気抵抗が最も大きい非磁性体ギャップの磁気抵抗が変わる。このため、巻線のインダクタンスの変化量を増大させやすい。従って、電流の調整量をより増大することができる。
 (6) (1)から(5)のいずれか1の変速装置であって、
 前記供給電流調整部が、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えることによって、前記巻線と鎖交する磁束の変化率が前記巻線のインダクタンスの変化率よりも小さくなるように前記巻線のインダクタンスを変え、前記発電機から出力される電流を調整するように構成されている。
 (6)の構成によれば、供給電流調整部は、巻線と鎖交する磁束の変化率が巻線のインダクタンスの変化率よりも小さくなるように巻線のインダクタンスを変える。巻線と鎖交する磁束は、電圧及び電流に影響を与える。巻線のインダクタンスは、主として電流に影響を与える。従って、供給電流調整部は、電圧の変化率を電流の変化率よりも小さく抑えつつ、供給する電流を調整することができる。このため、供給電流調整部は、電圧による制約の影響を抑えつつ電流を調整することができる。従って、(6)の構成によれば、エンジンの燃料効率の低下を更に抑えつつ、トルクの調整レンジを拡大することができる。
 (7) (1)から(6)のいずれか1の変速装置であって、
 前記供給電流調整部が、前記巻線に対する前記ステータコアの少なくとも一部の相対位置を移動させて、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えることによって前記巻線のインダクタンスを変え、前記発電機から出力される電流を調整するように構成されている。
 (7)の構成によれば、供給電流調整部が、巻線に対するステータコアの少なくとも一部の相対位置を移動させて、巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変える。従って、巻線のインダクタンスが変更され易い。このため、モータに供給される電流が調整され易い。従って、モータから出力されるトルクの調整が行われ易い。
 (8) (7)の変速装置であって、
 前記供給電流調整部が、前記ロータに対する前記ステータコアの相対位置を維持するように前記巻線に対する前記ステータコアの相対位置を移動させて、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えることによって前記巻線のインダクタンスを変え、前記発電機から出力される電流を調整するように構成されている。
 (8)の構成によれば、ロータに対するステータコアの相対位置を維持するように巻線に対するステータコアの相対位置が移動する。従って、ロータの永久磁石からステータコアに流れる磁束の変化が抑えられる。つまり、永久磁石で生じ巻線と鎖交する磁束の変化が抑えられる。このため、巻線に対するステータコアの相対位置が移動するときの、電圧の変化が抑えられる。従って、(8)の構成によれば、エンジンの燃料効率の低下を更に抑えつつ、トルクの調整レンジを拡大することができる。
 (9) (1)から(7)のいずれか1の変速装置であって、
 前記供給電流調整部が、前記巻線を移動させて前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えることによって前記巻線のインダクタンスを変え、前記発電機から出力される電流を調整するように構成されている。
 (9)の構成によれば、ロータに対するステータコアの相対位置を維持するようにステータコアに対する巻線の相対位置が移動する。従って、ロータの永久磁石からステータコアに流れる磁束の変化が抑えられる。つまり、永久磁石で生じて巻線と鎖交する磁束の変化が抑えられる。このため、巻線に対するステータコアの相対位置が移動するときの、電圧の変化が抑えられる。従って、(9)の構成によれば、エンジンの燃料効率の低下を更に抑えつつ、トルクの調整レンジを拡大することができる。
 (10) (1)から(4)いずれか1の変速装置であって、
 前記発電機は、前記ロータの永久磁石から出て前記巻線と鎖交する鎖交磁束を変えることによって前記巻線の誘導起電圧を変え、前記発電機から出力される電圧を調整するように構成された供給電圧調整部を備える。
 (10)の構成によれば、エンジン出力調整部による回転パワーの調整以外によっても、発電機から出力される電圧を調整することができる。このため、エンジンの燃料効率の低下が抑えられつつ、回転の制御の自由度が高められることができる。
 (11) (10)の変速装置であって、
 前記供給電圧調整部が、前記巻線に対する前記永久磁石の相対位置を移動させて前記ロータの永久磁石から生じて前記巻線と鎖交する前記鎖交磁束を変えることによって前記巻線の誘導起電圧を変え、前記発電機から出力される電圧を調整するように構成されている。
 (11)の構成によれば、発電機から出力される電圧が調整され易い。従って、回転の制御の自由度が高められ易い。
 (12) (1)から(4)のいずれか1の変速装置であって、
 前記ステータコアは、前記ロータに非磁性体ギャップを介して対面する対面部を有する複数の第一ステータコア部と、前記対面部を含まない第二ステータコア部とを備え、
 前記供給電流調整部が、前記複数の第一ステータコア部及び前記第二ステータコア部の一方を他方に対して移動させることによって、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えるように構成されている。
 (12)の構成によれば、供給電流調整部は、ステータコアが備える複数の第一ステータコア部と、第二ステータコア部の一方を他方に対して移動させる。この場合、例えばステータコアとステータコア以外の部材とのうちの一方を他方に対して移動する場合と比べて、巻線から見た、ステータコアを通る磁気回路の磁気抵抗が大きく変わる。このため、トルク要求に応じて、モータに供給する電流を調整できる範囲が広くなる。従って、(9)の構成によれば、エンジンの燃料効率の低下を更に抑えつつ、トルクの調整レンジをより拡大することができる。
 (13) (12)の変速装置であって、
 前記供給電流調整部が、
前記複数の第一ステータコア部のそれぞれと前記第二ステータコア部との間の非磁性体ギャップ長が、前記複数の第一ステータコア部のうち隣り合う第一ステータコア部の間の非磁性体ギャップ長よりも短い第一状態から、
前記複数の第一ステータコア部のそれぞれと前記第二ステータコア部との間の非磁性体ギャップ長が、前記複数の第一ステータコア部のうち隣り合う第一ステータコア部の間の非磁性体ギャップ長よりも長い第二状態まで、
前記複数の第一ステータコア部及び前記第二ステータコア部の一方を他方に対して移動させることによって、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えるように構成されている。
 (13)の構成によれば、第一状態では、複数の第一ステータコア部のそれぞれと第二ステータコア部との間の非磁性体ギャップ長が、複数の第一ステータ部のうち隣り合う第一ステータ部の間の非磁性体ギャップ長よりも短い。第二状態では、複数の第一ステータ部のそれぞれと第二ステータコア部との間の非磁性体ギャップ長が、複数の第一ステータ部のうち隣り合う第一ステータ部の間の非磁性体ギャップ長よりも長い。
 このため、第一状態では、巻線の電流に起因する磁束のうち、隣り合う第一ステータ部の間の非磁性体ギャップを通る磁束が、主に、第一ステータ部と第二ステータコア部との間の非磁性体ギャップを通る。従って、巻線の電流に起因する磁束が、主に、第一ステータ部と第二ステータコア部の双方を通る。第二状態では、第一ステータコア部を通る磁気回路の磁気抵抗が大きい。巻線から見た、ステータコアを通る磁気回路の磁気抵抗がより大きく変わる。従って、(13)の構成によれば、燃料効率の低下を更に抑えつつ、トルクの調整レンジをより拡大することができる。
 (14) (1)から(13)のいずれか1の変速装置に用いられる制御装置であって、
 前記制御装置は、前記変速装置から前記回転機構に出力するトルクとして前記変速装置に要求されるトルクに関するトルク要求を受け付けるように構成されたトルク要求受付部と、
前記トルク要求受付部によって受付けられたトルク要求に応じて、前記巻線のインダクタンスを変えることによって電流を調整する前記供給電流調整部を制御するように構成された調整制御部とを備える。
 (14)の制御装置によれば、エンジンの燃料効率の低下を抑えつつ、変速装置におけるトルクの調整レンジを拡大することができる。
 (15)ビークルであって、
 前記ビークルは、
(1)から(13)のいずれか1の変速装置と、
前記変速装置に回転パワーを供給するように構成されたエンジンと、
前記変速装置でトルク及び回転速度が変換された回転パワーの供給を受けて前記ビークルを駆動するように構成された、前記回転機構としての回転駆動機構と
を備える。
 (15)のビークルでは、ビークルの進行状況に応じて変速装置から出力されるトルクの要求が変動する。トルクの増大が要求される場合、変速装置は、エンジンの燃料効率の低下を抑えつつ、トルクの増大の要求に対応することができる。従って、(15)のビークルによれば、エンジンの燃料効率の低下を抑えつつ、トルクの調整レンジを拡大することができる。
 本発明によれば、エンジンの燃料効率の低下を抑えつつ、トルクの調整レンジを拡大することができる。
本発明の第一実施形態に係る変速装置が搭載された装置の概略構成を示すブロック図である。 図1に示す変速装置の概略構成を示すシステム構成図である。 (A)は、図2に示す発電機における供給電流調整部の調整を説明するための模式図である。(B)は、(A)よりも巻線のインダクタンスが小さい値に設定されている時の状態を示す模式図である。 図3に示す発電機の巻線の等価回路を概略的に示す回路図である。 変速装置の動作を説明するフローチャートである。 (A)は、第二実施形態の変速装置の発電機における供給電流調整部の調整を説明するための模式図である。(B)は、(A)よりも巻線のインダクタンスが小さい値に設定されている時の状態を示す模式図である。 第三実施形態の変速装置における発電機を示す模式図である。 (A)は、図7に示すステータの第一状態を示す模式図である。(B)は、図7に示すステータの第二状態を示す模式図である。 図7に示す発電機におけるロータの回転速度に対する出力電流特性を示すグラフである。
 エンジンからの回転のトルク及び回転速度を変換して回転機構に供給する変速装置について、本発明者が行った検討について説明する。
 特許文献1に示すような車両が例えば高速で走行する場合、モータとしての第2回転電機には、高速で回転することが求められる。このため、第2回転電機に高い電圧を供給することが求められる。そこで、前記車両は、エンジンの吸入空気量及び燃料噴射量を増大させる。これによって、前記車両は、発電機としての第1回転電機から第2回転電機に供給する電圧を増大させる。
 特許文献1に示すような車両が例えば登り坂で走行する場合、モータとしての第2回転電機には、大きなトルクを出力することが求められる。このため、第2回転電機に大きな電流を供給することが求められる。そこで、前記車両は、エンジンの吸入空気量及び燃料噴射量を増大させる。これによって、前記車両は、発電機から出力される電圧を増大させる。発電電圧の増大に起因して、発電機の発電電流が増大する。
 発電電流は、巻線を流れる。発電電流は、巻線のインピーダンスによって妨げられる。インピーダンスは、発電機の巻線のインダクタンスと回転の角速度との積ωLによって表されることができる。エンジンの回転速度が増大すると、発電電流を妨げる巻線のインピーダンスが増大する。
 従って、特許文献1に示すような車両では、モータの出力トルク増大のため、発電機の発電電流を増加させようとすると、発電電流の増大に比べてエンジンの回転パワーが大きく増加してしまう。従って、損失が増大しやすい。
 また、特許文献1に示すような車両では、モータの出力トルク増大のため、発電機の発電電流を増加させようとすると、発電電流の増大に比べて、発電機の電圧が増大してしまう。そのため、接続される電気部品の高耐圧化が必要となる。例えば、発電機の出力電流は、発電機とモータの間に配置されるスイッチング素子のオン・オフ動作によって詳細に制御される。増大する電圧に対応する高耐圧のスイッチング素子は、大きなオン抵抗を有する。そのため、スイッチング素子の熱損失により効率が低下する。
 これらの結果、特許文献1に示す車両では、燃料効率が低下する。
 本発明者は、上述した課題について更に検討を行った。その結果、本発明者は、特許文献1に示すような車両では、電流及び電圧の区別が考慮されずに発電機の出力が制御されており、電流及び電圧の連動性が高いため、上述した課題が生じることを見出した。
 さらに、本発明者は、上述した課題を解決するために鋭意検討を行った。
 特許文献1に示すような車両に限られず、発電機から出力される電流の増大は、主に電圧の増大によると考えられていた。電圧は、例えば、回転速度の増大、磁力の増大、又は巻線の巻数の増大によって、増大する。しかし、電流は、電機子反作用によって、回転速度の増大に対し飽和する。また、磁力の増大又は巻線の巻数の増大は、大型化を招く。
 発電機から出力される電流を増大させる為には、インダクタンスに起因する電機子反作用を低減させる事が考えられる。しかし、巻線のインダクタンスを減少させると鎖交磁束が減少する為、結果、電流を増大する事が困難であると考えられていた。
 本発明者は、磁気回路に着目した。インダクタンスに影響する磁気回路は、巻線から見た磁気回路である。巻線から見た磁気回路と、ロータの磁石から出て巻線を通る磁気回路との間には、違いがある。本発明者は、巻線から見た磁気回路と、ロータの磁石から出て巻線を通る磁気回路とを明確に区別して検討した。その結果、本発明者らは、巻線から見た磁気回路の磁気抵抗を変えることによって、インダクタンスを大きく変えることができることを見出した。
 その結果、本発明者は、変速装置において、発電機の巻線のインダクタンスを変え電流を調整すれば、発電機から出力される電流及び電圧の連動性を抑えることができる、という知見を得た。
 本発明の変速装置は、上述した知見に基づいて完成した発明である。即ち、本発明の変速装置では、制御装置が供給電流調整部を制御する。供給電流調整部は、回転機構に出力するトルクのトルク要求に応じて巻線から見た、ステータコアを通る磁気回路の磁気抵抗を変える。これによって、前記供給電流調整部は、巻線のインダクタンスを変え、電気負荷装置に供給する電流を調整する。巻線から見た、ステータコアを通る磁気回路の磁気抵抗を変える場合の電圧変化に対する電流変化の度合いは、エンジンの回転速度を変える場合より大きい。従って、本発明の変速装置は、例えばインダクタンスを変えない場合と比べて、電圧変化と電流変化との連動性を抑えつつ、モータに供給する電流を調整することができる。即ち、前記変速装置は、電圧変化と電流変化との連動性を抑えつつ、変速装置の出力トルクを調整することができる。このため、前記変速装置は、エンジンに回転パワーを過剰に増大させることなく出力トルクを増大することができる。また、前記変速装置は、発電電圧を過剰に増大させることなく変速装置の出力トルクを増大することができる。従って、エンジンの燃料効率が向上する。また、電圧の過剰な増大が抑えられる。従って、低耐圧のスイッチング素子が採用可能になる。低耐圧のスイッチング素子におけるオン時の抵抗は低い。熱損失が抑えられるので、高い効率が得られる。この結果、エンジンの燃料効率が向上する。
 このように、本発明の変速装置によれば、エンジンの燃料効率の低下を抑えつつ、トルクの調整レンジを拡大することができる。また、本発明の変速装置は、回転速度の範囲が広いエンジン及び回転速度の範囲が狭いエンジンの双方に適用できる。
 以下、本発明を、好ましい実施形態に基づいて図面を参照しつつ説明する。
 [第一実施形態]
 図1は、本発明の第一実施形態に係る変速装置Tが搭載された装置の概略構成を示すブロック図である。
 図1には、変速装置Tが搭載された装置の例としてビークルVが示されている。ビークルVは、変速装置Tと車体Dとを備えている。ビークルVの車体Dは、エンジン14、車輪Wa,Wb,Wc,Wd、要求指示部A、及びエンジン制御部ECを備えている。
 変速装置Tは、車輪Wa~Wdのうち、駆動輪Wc,Wdに接続されている。駆動輪Wc,Wdは、伝達機構Gを介して変速装置Tと接続されている。エンジン14及び変速装置Tは、駆動輪Wc,Wdを回転駆動することによってビークルVを走行させる。
 駆動輪Wc,Wdは、本発明に係るビークルにおける回転駆動機構の一例に相当する。前記回転駆動機構は、本発明にいう回転機構の一例に相当する。
 エンジン14は、内燃機関である。エンジン14は、燃料を燃焼させる。これによって、エンジン14は、機械的なパワーを出力する。エンジン14は、出力軸Cを有している。出力軸Cは、例えばクランク軸である。
 エンジン14から駆動輪Wc,Wdまでの動力伝達に関し、エンジン14と駆動輪Wc,Wdとは、機械要素で接続されていない。
 エンジン14は、駆動輪Wc,Wdをエンジン14の回転パワーで直接駆動しない。このため、エンジン14の回転パワーの制御が、駆動輪Wc,Wdの動作特性による制約を受けにくい。従って、エンジン14の回転パワーの制御の自由度が高い。
 エンジン14は、エンジン出力調整部141を有する。エンジン出力調整部141は、エンジン14の回転パワーを調整する。エンジン出力調整部141は、図示しないスロットルバルブ調整機構、及び燃料噴射装置を有する。スロットルバルブ調整機構は、エンジン14への空気吸入量を調整する。燃料噴射装置は、エンジン14に燃料を供給する。エンジン出力調整部141は、エンジン14の吸入空気量及び燃料噴射量を制御する。これによって、エンジン出力調整部141は、エンジン14が出力する回転パワーを調整する。例えば、エンジン出力調整部141が、エンジン14の吸入空気量及び燃料噴射量を増大させる。これによって、エンジン14の回転パワーが増大する。エンジン14の回転パワーが増大すると、出力軸Cの回転速度が増大する。出力軸Cの回転速度は、エンジン14の回転速度を表している。
 エンジン制御部ECは、エンジン出力調整部141を制御する。エンジン出力調整部141は、エンジン制御部ECの制御に応じて、エンジン14の回転パワーを調整する。
 変速装置Tは、エンジン14から出力された回転パワーを、回転機構としての駆動輪Wc,Wdに伝達する装置である。変速装置Tは、回転パワーの供給を受けるとともに、回転パワーを出力する。
 変速装置Tは、エンジン14から回転パワーが伝達されるよう、エンジン14の出力軸Cを介してエンジン14と機械的に接続されている。変速装置Tは、駆動輪Wc,Wdに回転パワーが伝達されるよう、伝達機構Gを介して、駆動輪Wc,Wdと機械的に接続されている。変速装置Tは、発電機10、制御装置15、コンバータ16、インバータ17、及びモータ18を備えている。変速装置Tは、エンジン14から出力された回転のトルク及び回転速度を変えて駆動輪Wc,Wdに供給する。変速装置Tの詳細については後述する。
 要求指示部Aは、トルク要求を出力する。要求指示部Aは、アクセル操作子を有する。
 詳細には、要求指示部Aは、ビークルVの運転者に操作される。要求指示部Aは、操作及びビークルVの走行状況に基づいてビークルVの加速要求を出力する。ビークルVの加速要求は、変速装置Tから出力されるトルク要求に対応する。ビークルVの出力は、モータ18の出力に対応する。ビークルVの加速要求は、モータ18の出力トルクの要求に対応する。モータ18の出力トルクは、モータ18に供給される電流に対応する。従って、モータ18の出力トルクは、発電機1から出力される電流に対応する。
 要求指示部Aは、加速要求として、変速装置Tから出力されるトルクについてのトルク要求を出力する。
 変速装置Tから出力されるトルクについてのトルク要求は、発電機10からモータ18に供給される電流についての電流要求に対応する。
 本実施形態において、要求指示部Aは、トルク要求及び速度要求を出力する。例えば、主にビークルの加速が要求される状況では、駆動輪Wc,Wdに出力されるトルクの増大が要求される。例えば、主にビークルの走行速度の増大が要求される状況では、駆動輪Wc,Wdに出力される回転速度の増大が要求される。
 要求指示部Aは、エンジン制御部EC及び変速装置Tに接続されている。詳細には、要求指示部Aは、エンジン制御部EC及び変速装置Tに、要求を表す信号を出力する。エンジン制御部EC及び変速装置Tは、連携して動作する。
 なお、要求指示部Aは、エンジン制御部ECを介して変速装置Tと接続されてもよい。この場合、変速装置Tは、エンジン制御部ECを介してトルク要求を受ける。
 [変速装置]
 図2は、図1に示す変速装置Tの概略構成を示すシステム構成図である。
 変速装置Tは、発電機10、制御装置15、コンバータ16、インバータ17、及びモータ18を備えている。
 発電機10は、エンジン14から回転パワーを受けるとともに、モータ18に電流を供給する。
 エンジン14から発電機10までの動力伝達に関し、発電機10は、エンジン14と機械的に接続されている。発電機10は、エンジン14の出力軸Cと接続されている。発電機10は、出力軸Cと直接接続されている。発電機10は、例えば、エンジン14のクランクケース(図示せず)に取付けられていてもよい。また、発電機10は、例えば、クランクケース(図示せず)から離れた位置に配置されてもよい。
 発電機10は、ロータ11、ステータ12、及び供給電流調整部131を備えている。
 発電機10は、三相ブラシレス型発電機である。ロータ11及びステータ12は、三相ブラシレス型発電機を構成する。
 ロータ11は、永久磁石を有する。より詳細には、ロータ11は、複数の磁極部111とバックヨーク部112とを有する。磁極部111は永久磁石で構成されている。バックヨーク部112は、例えば強磁性材料からなる。磁極部111はバックヨーク部112とステータ12との間に配置されている。磁極部111はバックヨーク部112に取付けられている。複数の磁極部111は、ロータ11の回転軸線を中心とした周方向Zすなわちロータ11の回転方向に一列に並んで配置されている。複数の磁極部111は、N極及びS極が周方向Zで交互になるように配置されている。発電機10は、永久磁石式三相ブラシレス型発電機である。ロータ11には、電流が供給される巻線が設けられていない。
 ステータ12は、ロータ11と対向して配置されている。ステータ12は、複数の巻線121及びステータコア122を有する。ステータコア122は、例えば強磁性材料からなる。ステータコア122は、ステータ12の磁気回路を構成する。複数の巻線121はステータコア122に巻かれている。ステータコア122は、コア本体122a(図3参照)と複数の歯部122bを有する。コア本体122aは、ヨークとして機能する。複数の歯部122bは、コア本体122aから、ロータ11に向かって延びている。複数の歯部122bは、コア本体122aから、ロータ11に向かって突出している。ロータ11に向かって延びた歯部122bの先端面と、ロータ11の磁極部111とはエアギャップを介して互いに対向している。ステータコア122の歯部122bとロータ11の磁極部111とは、直接対面している。複数の歯部122bは、周方向Zに間隔を空けて周方向Zに一列に並んでいる。複数の巻線121は、複数の歯部122bにそれぞれ巻かれている。巻線121は、複数の歯部122bの間のスロットを通るように巻かれている。各巻線121は、三相を構成するU相、V相、及びW相のいずれかの相に対応している。U相、V相、及びW相のそれぞれに対応する巻線121は、周方向Zに順に配置されている。
 ロータ11は、エンジン14の出力軸Cに接続されている。ロータ11は、出力軸Cの回転と連動して回転する。ロータ11は、磁極部111を、ステータコア122の歯部122bと対向させた姿勢で回転させる。ロータ11が回転すると、巻線121と鎖交する磁束が変化する。これによって、巻線121に誘導起電圧が生じる。このようにして、発電機10では、発電が行われる。発電機10は、発電された電流をモータ18に供給する。発電機10が出力する電流は、モータ18に供給される。詳細には、発電機10が出力する電流は、コンバータ16及びインバータ17を介して、モータ18に供給される。発電機10が出力する電流が増大すると、コンバータ16からインバータ17に供給される電流が増大し、モータ18に供給される電流が増大する。発電機10が出力する電圧は、コンバータ16及びインバータ17を介して、モータ18に供給される。
 本実施形態において、ロータ11及びステータ12は、アキシャルギャップ型構造を有する。ロータ11とステータ12とは、ロータ11の回転軸線方向(軸方向)Xで互いに対向している。ステータ12が有する複数の歯部122bは、コア本体122aから軸方向Xに突出している。本実施形態における軸方向Xは、ロータ11とステータ12とが対向する方向である。
 供給電流調整部131は、発電機10からモータ18に供給される電流を調整する。供給電流調整部131は、巻線121のインダクタンスを変えることによってモータ18に供給する電流を調整する。供給電流調整部131は、巻線121から見た磁気回路の磁気抵抗を変える。巻線121から見た磁気回路は、ステータコア122を通る磁気回路である。これによって、供給電流調整部131は、巻線121のインダクタンスを変える。供給電流調整部131は、電流調整機構である。なお、巻線121から見た磁気回路は、例えば閉ループ回路である。巻線121から見た磁気回路は、巻線121の内部経路を通って、巻線121の内部経路の一端部(ロータに近い端部)から、隣り合う巻線121の内部経路の一端部(ロータに近い端部)に至り、前記隣り合う巻線121の内部経路を通って、隣り合う巻線121の内部経路の他端部(ロータから遠い端部)から、前記巻線121の内部経路の他端部(ロータから遠い端部)に至る回路である。巻線121の内部経路は、巻線121の内側をロータ11とステータ12との対向方向に通る経路である。巻線121から見た磁気回路の一部が、エアギャップ等の非磁性体ギャップである。巻線から見た磁気回路は、例えば、ステータコア122と非磁性体ギャップとからなる。
 供給電流調整部131によるインダクタンス調整の詳細については、後に説明する。
 発電機10とモータ18との間の電力の供給経路には、コンバータ16及びインバータ17が設けられている。コンバータ16は、発電機10に接続されている。インバータ17は、コンバータ16及びモータ18に接続されている。発電機10から出力された電力は、コンバータ16及びインバータ17を経由して、モータ18に供給される。
 コンバータ16は、発電機10から出力された電流を整流する。コンバータ16は、発電機10から出力された三相交流を直流に変換する。コンバータ16は、直流を出力する。コンバータ16は、例えば、インバータ回路を有する。コンバータ16は、例えば、三相ブリッジインバータ回路を有する。前記三相ブリッジインバータ回路は、三相の各相に対応するスイッチング素子Saで構成されている。スイッチング素子Saのオン及びオフ動作は、ロータ11の回転位置を検出する図示しない位置センサからの信号に基づいて制御される。
 コンバータ16の動作は、制御装置15によって制御される。例えば、コンバータ16は、スイッチング素子Saのオン及びオフ動作のタイミングを三相交流における所定の位相角に対し変化させる。これにより、コンバータ16は、モータ18に供給する電流を調整することができる。これによって、コンバータ16は、モータ18に供給する電力を調整することができる。
 コンバータ16による調整は、主に、発電機10で発生した電流を制限することである。コンバータ16による調整は、発電機10のインダクタンスを変更することによる電流の制御とは異なる。以降の説明では、コンバータ16による電流の制限を最小限にすることを前提として説明を続ける。
 なお、コンバータ16は、ダイオードで構成されたブリッジ回路で構成されてもよい。すなわち、コンバータ16は、レクチファイアで構成されてもよい。この場合、コンバータ16は、電流の制御を行わず、整流のみ行う。
 モータ18は、発電機10から供給される電力によって動作する。モータ18は、駆動輪Wc,Wdを回転駆動する。これによって、モータ18は、ビークルVを走行させる。動力伝達に関し、モータ18は、発電機10と機械的に接続されていない。
 モータ18は、例えば、三相ブラシレスモータである。モータ18は、ロータ181及びステータ182を備えている。本実施形態のモータ18における、ロータ181及びステータ182の構造は、発電機10のロータ11及びステータ12と同様である。
 本実施形態の変速装置Tにおいて、発電機10とモータ18とは電気的に接続されている。このため、発電機10とモータ18との間での機械的な動力伝達が不要である。従って、発電機10とモータ18の配置の自由度が高い。例えば、エンジン14に発電機10を設けて、モータ18を回転機構としての駆動輪Wc,Wdの付近に配置することができる。
 なお、モータ18は、発電機10と異なる構成のロータ及びステータを有していてもよい。例えば、モータ18は、発電機10と異なる数の磁極又は異なる数の歯部を有していてもよい。また、モータ18として、例えば誘導モータ又はステッピングモータが採用さされてもよい。また、モータ18として、例えばブラシを備えた直流モータが採用されてもよい。
 モータ18は、駆動輪Wc,Wdに回転パワーが伝達されるよう、駆動輪Wc,Wdと機械的に接続されている。モータ18は、伝達機構Gを介して、駆動輪Wc,Wdと機械的に接続されている。詳細には、モータ18のロータ181が、伝達機構Gと接続されている。ロータ181において、伝達機構Gと接続される部分は、変速装置Tの回転出力部として機能する。
 モータ18の出力は、変速装置Tの出力である。変速装置Tの出力に対する要求、即ちモータ18の出力に対する要求は、ビークルVが走行する状況によって変化する。例えば、ビークルVが平坦地を一定の速度で走行している時に、走行速度が緩やかに高められるよう要求される場合がある。この場合、加速度は小さいので、モータ18に求められる出力トルクの増大量は比較的小さい。モータ18が一定の速度で回転している場合、モータ18では、回転速度に応じた誘導起電圧が生じている。誘導起電圧は、モータ18を駆動するためモータ18に供給される電流を妨げるように生じる。そのため、モータ18に供給される電流は比較的小さい。走行速度が緩やかに高められるよう要求される場合、モータ18に供給される電圧の増大が求められる。
 これに対し、ビークルVの急加速又は登坂走行が要求される場合がある。モータ18に求められる出力トルクの増大量は比較的大きい。この場合、モータ18へ供給される電流の増大量が大きい。
 インバータ17は、モータ18を駆動するための電流をモータ18に供給する。インバータ17には、コンバータ16から直流が供給される。インバータ17は、コンバータ16から出力された直流を、位相が互いに120度ずれた三相の電流に変換する。前記三相の電流は、三相ブラシレスモータの三相に対応している。インバータ17は、例えば、インバータ回路を有する。インバータ17は、例えば、三相ブリッジインバータ回路を有する。前記三相ブリッジインバータ回路は、三相の各相に対応するスイッチング素子Sbで構成されている。スイッチング素子Sbは、ロータ181の回転位置を検出する図示しない位置センサからの信号に基づいて制御される。
 インバータ17は、スイッチング素子Sbのオン及びオフ動作を調整することによって、モータ18に供給される電圧を制御する。例えば、インバータ17は、スイッチング素子Sbを、パルス幅変調された信号でオン動作させる。制御装置15は、オン及びオフのデューティ比を調整する。これによって、制御装置15は、モータ18に供給される電圧を任意の値に制御する。これによって、インバータ17は、モータ18に供給する電力を調整することができる。
 インバータ17及びコンバータ16のそれぞれは、本発明にいうモータ電力制御部の一例に相当する。
 制御装置15はインバータ17を制御する。これによって、制御装置15は、発電機10の出力の制御とは独立に、モータ18に供給する電圧を制御することができる。例えば、エンジン14及び発電機10が稼働している状況でも、制御装置15は、モータ18への電圧供給を停止することによってモータ18を停止状態にすることができる。変速装置Tの出力の制御の自由度が高められる。
 インバータ17による調整は、発電機10のインダクタンスを変更することによる電流の制御とは異なる。インバータ17による調整は、発電機10から供給される電圧を制限するように実施される。以降の説明では、インバータ17による電流の制限を最小限に固定することを前提として説明を続ける。
 なお、インバータ17は、モータ18に含めることも可能である。また、モータ18として直流モータが採用される場合、インバータ17は省略される。
 制御装置15は、駆動輪Wc,Wdに出力されるトルクについてのトルク要求に応じて、変速装置Tから出力されるトルクを制御する。本実施形態では、制御装置15及びエンジン制御部EC(図1参照)の双方が、トルク要求を受ける。制御装置15は、エンジン制御部ECと連携して動作する。詳細には、制御装置15及びエンジン制御部ECの双方が、要求指示部Aから、トルク要求を表す信号を受ける。また、制御装置15及びエンジン制御部ECは互いに通信する。
 制御装置15は、モータ18から出力されるトルクを制御する。具体的には、制御装置15は、発電機10からモータ18に供給される電流を制御する。制御装置15は、トルクの増大が要求される場合に、モータ18に供給する電流を増大するように制御を行う。
 制御装置15は、発電機10の供給電流調整部131に接続されている。制御装置15は、要求指示部Aから出力されるトルク要求に応じて、供給電流調整部131を制御する。
 また、制御装置15は、コンバータ16及びインバータ17を制御する。
 制御装置15は、トルク要求受付部151及び調整制御部152を備えている。
 制御装置15は、マイクロコントローラで構成されている。制御装置15は、図示しない中央処理装置と、図示しない記憶装置とを備えている。前記中央処理装置は、制御プログラムに基づいて演算処理を行う。前記記憶装置は、プログラム及び演算に関するデータを記憶する。トルク要求受付部151及び調整制御部152は、中央処理装置がプログラムを実行することにより構成される。
 トルク要求受付部151は、トルク要求を受け付ける。トルク要求受付部151は、要求指示部Aからトルク要求を受ける。
 調整制御部152は、供給電流調整部131を制御する。これによって、供給電流調整部131は、モータ18に供給する電流を制御する。
 調整制御部152は、トルク要求受付部151によって受付けられたトルク要求が、変速装置Tから駆動輪Wc,Wdに出力するトルクの増大の要求である場合に、モータ18に供給する電流を増大するように制御を行う。つまり、調整制御部152は、モータ18の出力パワーを高める場合に、モータ18に供給する電流を増大するように制御する。
 [供給電流調整部]
 図3(A)及び図3(B)は、図2に示す発電機10における供給電流調整部131の調整を説明するための模式図である。図3(A)は、巻線121のインダクタンスが設定可能な値の範囲内で最も大きい値に設定されている時の状態を示している。図3(B)は、図3(A)よりも巻線121のインダクタンスが小さい値に設定されている時の状態を示している。
 図3(A)には、発電機10に備えられたロータ11及びステータ12の一部が示されている。本実施形態の発電機10は、SPM(Surface Permanent Magnet)発電機によって構成されている。ロータ11とステータ12とは、互いに対向している。より詳細には、ロータ11の磁極部111と、ステータ12のステータコア122の歯部122bとがエアギャップを挟んで互いに対向している。磁極部111は、ステータ12に向かって露出している。
 供給電流調整部131は、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗を変える。これによって、供給電流調整部131は、巻線121のインダクタンスを変え、モータ18に供給する電流を調整する。具体的には、供給電流調整部131は、巻線121に対するステータコア122の相対位置を移動する。これによって、供給電流調整部131は、巻線121から見た、ステータコア122を通る磁気回路の磁気抵抗を変える。
 巻線121は、発電機10の図示しない筐体に固定されている。ステータコア122は、巻線121に対し軸方向Xで移動自在なように筐体に支持されている。巻線121は、歯部122bに固定されていない。筒状の巻線121と歯部122bとの間には、隙間が設けられている。前記隙間は、歯部122bが巻線121に対して移動自在となる程度の隙間である。
 供給電流調整部131は、筒状に巻かれた巻線121の中に出入りする方向に歯部122bが移動するよう、ステータコア122を移動させる。本実施形態では、供給電流調整部131は、軸方向Xにステータコア122を移動させる。制御装置15は、トルク要求に応じて供給電流調整部131を動作させる。
 なお、図3には、ステータコア122の移動を分りやすく説明するため、供給電流調整部131がピニオンラック機構及びモータによって模式的に示されている。ただし、ステータコア122を移動させる供給電流調整部131として、図に示す以外の機構が採用可能である。例えば、ステータコアと同心に配置され、ステータコアとネジ係合する円筒部材を有する機構が採用可能である。このような機構では、例えば、円筒部材がステータコアに対し回転することによって、ステータコアが軸方向Xに移動する。
 供給電流調整部131は、ロータ11に対するステータコア122の相対位置を維持するように、巻線121に対するステータコア122の相対位置を移動させる。図3の破線Qは、ロータ11が、軸方向Xにおいて、ステータコア122と連動して移動することを表している。ロータ11とステータコア122の相対位置を維持する構造は、例えば、ロータ11を回転可能に支持する軸受部113によって形成される。軸受部113の位置は、ステータコア122に対して固定されている。
 図3(A)及び図3(B)には、磁極部111によって生じる主な磁束F1が示されている。磁束F1の線は、磁極部111で生じる磁束F1が通る主な磁気回路を表している。そこで、磁束F1が通る磁気回路を、磁気回路F1と称する。
 磁極部111によって生じる主な磁束F1は、磁極部111、磁極部111と歯部122bとの間のエアギャップ、歯部122b、コア本体122a、及びバックヨーク部112を通って流れる。つまり、磁極部111、磁極部111と歯部122bとの間のエアギャップ、歯部122b、コア本体122a、及びバックヨーク部112によって、磁気回路F1が構成されている。
 なお、図2(A)及び図2(B)では、周方向に並んだ複数の歯部122bのうち3つの歯部122bが示されている。磁気回路F1を分かりやすく示すため、図には、3つの歯部122bのうち中央の歯部122bに磁極部111が対向した状態が示されている。
 ロータ11が回転すると、磁極部111によって生じ、巻線121と鎖交する磁束の量が変化する。巻線121と鎖交する磁束の量が変化することによって、巻線121に誘導起電圧が生じる。すなわち、発電が行われる。
 巻線121に生じる誘導起電圧は、巻線121と鎖交する磁束の量に依存している。巻線121と鎖交する磁束の量は、磁気回路F1の磁気抵抗が大きいほど、少ない。磁気回路F1の磁気抵抗は、主に、歯部122bと磁極部111との間のエアギャップの磁気抵抗に依存している。歯部122bと磁極部111との間のエアギャップの磁気抵抗は、歯部122bと磁極部111との間のエアギャップ長L1に依存している。
 従って、巻線121に生じる誘導起電圧は、歯部122bと磁極部111との間のエアギャップ長L1に依存している。
 図3(A)及び図3(B)には、巻線121に流れる電流によって生じる主な磁束F2が示されている。発電が行われるとき、巻線121には、誘導起電圧に起因した電流が流れる。磁束F2は、発電が行われるとき、巻線121に流れる電流によって生じる。磁束F2の線は、巻線121の電流によって生じる磁束F2が通る主な磁気回路を表している。そこで、磁束F2が通る磁気回路を、磁気回路F2と称する。磁気回路F2は、巻線121から見た磁気回路である。巻線121から見た磁気回路F2は、巻線121の内部を通り、且つ、磁気回路F2の全体の磁気抵抗が最小となる経路で構成される。
 磁気回路F2は、ステータコア122を通る。磁気回路F2は、隣り合う歯部122bを通る。図には、周方向に並んだ複数の歯部122bのうち3つの歯部122bが示されている。3つの歯部122bのうち中央の歯部122bに巻いた巻線121から見た磁気回路F2が代表として示されている。ある巻線121から見た磁気回路F2は、当該巻線121が巻いた歯部122b、及びこの歯部122bと隣り合う2つの歯部122bを通る。
 巻線121の電流によって生じる主な磁束F2は、歯部122b、コア本体122a、及び、隣り合う2つの歯部122bの間のエアギャップを通る。つまり、歯部122b、コア本体122a、及び、隣り合う歯部122bの間のエアギャップによって、磁気回路F2が構成されている。ステータコア122を通る磁気回路F2は、1つのエアギャップを含む。磁気回路F2のうちエアギャップによって構成された部分は、太線で示されている。磁気回路F2のうち、エアギャップによって構成された太線部分を、単にエアギャップF2aと称する。エアギャップF2aは、巻線121とロータ11との間にある。磁気回路F2を構成するエアギャップF2aは、巻線121とロータ11との間で、且つ、隣り合う歯部122bの間にある。エアギャップF2aは、非磁性体ギャップである。エアギャップF2aにおける磁気回路F2は、隣り合う2つの歯部122bのそれぞれの、ロータ11に対向する部分同士を繋ぐように設けられている。
 巻線121から見た磁気回路F2は、隣り合う2つの歯部122bの間のエアギャップF2aで構成される。磁気回路F2は、実質的にロータ11のバックヨーク部112で構成されない。巻線121の電流によって生じる磁束F2の多くは、次の理由で、ロータ11のバックヨーク部112を通らず、隣り合う2つの歯部122bの間のエアギャップを通る。
 電流によって巻線121に生じる磁束F2に関して、磁極部111は、単に磁束の経路と見なされる。本実施形態において、磁極部111は、透磁率が空気と同程度に低い永久磁石で構成されている。そのため、磁極部111は、磁気回路F2において空気と同等と見なせる。磁極部111が空気と同等であるため、ステータ12とロータ11との間の実質的なエアギャップ長は、歯部122bからバックヨーク部112までの距離L11になる。歯部122bからバックヨーク部112までの距離L11は、軸方向Xにおける磁極部111の厚みを含む。そのため、距離L11は、歯部122bから磁極部111までの距離L1よりも長い。
 しかも、本実施形態では、巻線121の電流によって生じる磁束F2の量は、磁極部111の永久磁石によって生じる磁束の量よりも少ない。巻線121の電流によって生じる磁束F2の多くは、エアギャップ長L11を隔てたバックヨーク部112に到達し難い。従って、巻線121の電流によって生じる磁束F2のうち、バックヨーク部112を通る磁束は少ない。
 従って、巻線121の電流によって生じる磁束F2の多くは、ロータ11のバックヨーク部112よりも、歯部122bと歯部122bとの間のエアギャップF2aを通る。図3(A)に示す状態では、巻線121のインダクタンスが、設定可能な値の範囲内で最も大きい値に設定されている。図3(A)に示す状態で、磁気回路F2を構成するエアギャップF2aは、磁気回路F2を構成する要素の中で磁気抵抗が最も大きい。エアギャップF2aは、磁気回路F2のうち、エアギャップF2aの残りの部分F2bよりも大きい磁気抵抗を有する。
 従って、磁束F2のうち、ロータ11のバックヨーク部112を通る磁束成分に対し、歯部122bと歯部122bとの間のエアギャップを通る磁束成分の割合は、磁極部111によって生じる磁束F1における割合と比べて大きい。
 巻線121のインダクタンスは、巻線121から見た磁気抵抗に依存する。巻線121のインダクタンスは、巻線121から見た磁気抵抗に反比例する。
 ここで、巻線121から見た磁気抵抗とは、巻線121の電流によって生じる磁束F2が流れる磁気回路F2の磁気抵抗である。巻線121から見た、ステータコア122の磁気抵抗には、隣り合う2つの歯部122bの間のエアギャップF2aの磁気抵抗が含まれる。巻線121に電流によって生じる磁束F2は、厳密には、ステータ12及びロータ11の双方を通る。しかし、上述したように、巻線121に電流によって生じる磁束の多くは、ロータ11のバックヨーク部112を介さず、隣り合う2つの歯部122bの間のエアギャップを通る。従って、巻線121から見た磁気抵抗は、ロータ11を通る磁気回路F1の磁気抵抗よりも、ステータ12を通る磁気回路F2の磁気抵抗に強く依存する。つまり、巻線121のインダクタンスは、巻線121から見たロータ11を通る磁気回路F1の磁気抵抗よりも、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗に、より強く依存する。従って、巻線121のインダクタンスは、実質的に、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗に依存する。
 供給電流調整部131は、巻線121に対するステータコア122の相対位置を移動させる。これによって、供給電流調整部131は、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗を変える。これによって、供給電流調整部131は、巻線121のインダクタンスを変える。例えば、供給電流調整部131が、ステータコア122を矢印X1の向きに移動させると、ステータコア122の歯部122bが、筒状に巻かれた巻線121の中から抜ける向きに移動する。
 図2(B)には、図2(A)の状態よりも小さいインダクタンスを有する状態が示されている。
 ステータコア122の歯部122bが、巻線121から抜けると、巻線121の中に存在するステータコア122の量が減少する。この結果、巻線121の中の磁束が拡がる。巻線121から見た磁気回路F2の観点では、磁気回路F2を構成するエアギャップF2aの長さが長くなる。従って、巻線121とロータ11との間にあるエアギャップF2aの磁気抵抗が、増大する。つまり、磁気抵抗が最も大きいエアギャップF2aの磁気抵抗が増大する。この結果、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗が増大する。これによって、巻線121のインダクタンスが減少する。
 供給電流調整部131は、磁気抵抗が最も大きいエアギャップF2aの磁気抵抗を変える。これによって、供給電流調整部131は、隣り合う歯部122bを通る磁気回路F2の磁気抵抗を変える。従って、例えばエアギャップF2a以外の部分の磁気抵抗を変える場合と比べて、巻線121のインダクタンスが大きく変化しやすい。
 さらに、供給電流調整部131は、巻線121のインダクタンスの変化率が巻線121と鎖交する磁束の変化率よりも大きくなるように、巻線121のインダクタンスを変える。これによって、供給電流調整部131は、電流を調整する。本実施形態の発電機10の供給電流調整部131は、ロータ11に対するステータコア122の相対位置を維持するように、巻線121に対するステータコア122の相対位置を移動する。
 供給電流調整部131が、ステータコア122を矢印X1の向きに移動させると、ロータ11も連動して矢印X1の向きに移動する。このため、ロータ11に対するステータコア122の相対位置が維持される。これによって、ステータコア122が移動する場合に、歯部122bと磁極部111との間のエアギャップ長L1の変化が抑えられる。従って、磁極部111からステータコア122に流れる磁束F1の変化が抑えられる。つまり、巻線121と鎖交する磁束F1の変化が抑えられる。
 図4は、図3(A)に示す発電機10の巻線121の等価回路を概略的に示す回路図である。
 図4では、発電機10が発生する電圧及び電流の変化の概略を説明するため、回路が単純化されている。また、コンバータ16及びインバータ17についても、状態が固定されていると仮定し、省略されている。
 図4に示すように、巻線121は、電気的に、交流電圧源121A、インダクタ121B、及び抵抗121Cを含んでいる。
 交流電圧源121Aが出力する誘導起電圧Eは、主に巻線121と鎖交する磁束Φに依存する。つまり、誘導起電圧Eは、磁束F1とロータ11の回転速度ωの積に依存する。インダクタ121BのインダクタンスLは、主に巻線121から見た、ステータコア122の磁気抵抗に依存する。抵抗121Cの抵抗値Rは、巻線抵抗である。巻線121のインピーダンスZgは、概略的には、
((ωL)+R1/2
で表される。
 供給電流調整部131は、電流要求に応じて巻線121に対するステータコア122の相対位置を移動させる。供給電流調整部131は、これによって、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗を変える。これによって、供給電流調整部131は、巻線121のインダクタンスLを変える。インダクタンスLが変えられることによってインピーダンスZgが変わる。その結果、発電機10から供給される電流Iが調整される。
 また、供給電流調整部131は、巻線121と鎖交する磁束Φの変化率が、巻線121のインダクタンスLの変化率よりも小さくなるように巻線121のインダクタンスを変える。これによって、供給電流調整部131は、電流Iを調整する。従って、誘導起電圧Eの変化量が抑えられるように電流が調整される。
 発電機10から出力される電流を調整する方法として、供給電流調整部131による調整の他に、エンジン14の出力(回転パワー)を変える方法が考えられる。つまり、エンジン出力調整部141が、エンジン14の回転速度を変えることによってロータ11の回転速度ωを変え、モータ18に供給する電圧を調整する。
 エンジン14の出力(回転パワー)は、主に出力軸Cの回転速度、すなわち、ロータ11の回転速度ωを変える。ロータ11の回転速度ωは、巻線121の誘導起電圧E、及びインピーダンス((ωL)+R1/2の双方に影響する。このため、エンジン14の出力軸Cの回転速度を変える方法のみによると、供給電圧と供給電流の連動性が高い。
 これに対し、発電機10では、電流要求に対応するトルク要求に応じて巻線121に対するステータコア122の相対位置を移動させて、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗を変える。これによって、巻線121のインダクタンスが変わる。このため、巻線121から見た磁気回路F2の磁気抵抗を変える場合の電圧変化に対する電流変化の度合いは、ロータ11の回転速度ωを変える場合と異なる。従って、本実施形態の発電機10は、例えばエンジン出力調整部141によってエンジン14の出力軸Cの回転速度を変えるのみの場合と比べて、電圧変化と電流変化との連動性を抑えつつ、モータ18に供給する電流を調整することができる。
 本実施形態では、巻線121に対するステータコア122の相対位置の移動が、巻線121から見た、ステータコア122を通る磁気回路F2の磁気抵抗を変える。これによって、巻線121のインダクタンスLが変わり、電流が調整される。本実施形態では、巻線121から見た、ステータコア122の磁気抵抗を変えることによってインダクタンスLを変えるので、インダクタンスLを徐々に変えることができる。
 インダクタンスを変える方法として、巻線から見た、ステータコアを通る磁気回路の磁気抵抗でなく、巻線の実質的な巻数を変えることが考えられる。例えば、電流出力端子として、巻線の端に設けた端子と巻線の途中に設けた端子とを切換えて用いることが考えられる。また、巻線の途中に設けた端子を他の端子と短絡することが考えられる。これによって、電流に関与する実質的な巻数が変わる。この結果、インダクタンスが変わる。
 しかし、巻線の実質的な巻数を変える場合、実質的な巻数が瞬時に大きく変わる。このため、巻線で過大な電圧が生じる。また、短時間で過大な電流が流れ易い。実質的な巻数を変える場合には、電流切換えのためのスイッチング素子の設置が求められる。さらに、スイッチング素子には、過大な電圧に対応するため、高耐圧であることが求められる。巻線には、過大な電流の変化に対応するため、太い線材の使用が求められる。従って、巻線の実質的な巻数を変える方法では、効率が低下する。また、発電機が大型化する。
 本実施形態では、ステータコア122の磁気抵抗が変わることによって、巻線121のインダクタンスLが変わる。このため、巻線121のインダクタンスLを徐々に変えることができる。この結果、巻線121に生じる電圧の急激な上昇が抑えられる。従って、発電機10に低耐圧の部品を接続することが可能である。このため、効率が高い。また、電流切換えのためのスイッチング素子を備えなくてよい。また、巻線に比較的細い線材を用いることができる。発電機10の大型化が抑えられる。
 [トルク・速度の制御]
 図5は、変速装置Tの動作を説明するフローチャートである。
 変速装置Tから駆動輪Wc,Wdに出力される回転パワーは、エンジン14及び変速装置Tの双方によって制御されている。回転パワーは、制御装置15及びエンジン制御部ECによって制御されている。本実施形態では、制御装置15及びエンジン制御部ECが連携する。そこで、以下においては、エンジン14の動作と併せて、変速装置Tの動作を説明する。
 変速装置Tの制御装置15は、モータ18に供給する電流及び電圧を制御している。制御装置15は、図5に示す制御処理を繰り返す。
 制御装置15のトルク要求受付部151及びエンジン制御部ECが、回転パワーの要求を受け付ける(S11)。トルク要求受付部151は、トルク要求を受け付ける。前記トルク要求は、変速装置Tから出力されるトルクの要求を表す。トルク要求受付部151は、要求指示部Aの操作量を受付ける。トルク要求受付部151は、要求指示部Aの操作量に基づいて、トルク要求を得る。詳細には、トルク要求受付部151は、要求指示部Aの操作量、ビークルVの走行状態、燃費目標の設定、及び操作への追従性の設定に基づいて、トルク要求を得る。トルク要求受付部151は、トルクの要求及び回転速度の要求の双方についての要求を得る。
 次に、制御装置15の調整制御部152、及びエンジン制御部ECは、受付けられた要求に基づいて、回転パワーを制御する(S12)。調整制御部152、及びエンジン制御部ECは、受け付けられた要求に応じて、供給電流調整部131及びエンジン出力調整部141をそれぞれ制御する(S12)。調整制御部152は、トルク要求受付部151によって受付けられた要求に基づいて、変速装置Tから出力されるトルクを制御する。調整制御部152は、トルクの増大が要求される場合に、変速装置Tから出力されるトルクを制御する。詳細には、調整制御部152は、トルクの増大が要求される場合に、変速装置Tから出力されるトルクを増大するように制御する。調整制御部152は、変速装置Tから出力されるトルク及び回転速度を制御する。
 調整制御部152は、エンジン制御部ECと連携して、変速装置Tから出力されるトルク及び回転速度を制御する。調整制御部152及びエンジン制御部ECは、供給電流調整部131による調整量とエンジン出力調整部141による調整量を制御する。調整制御部152及びエンジン制御部ECは、供給電流調整部131による調整量とエンジン出力調整部141による調整量との配分を制御する。
 調整制御部152は、変速装置Tから出力されるトルクの増大量と回転速度の増大量の配分を制御する。調整制御部152及びエンジン制御部ECによる制御として、トルクの増大量が大きい制御の典型例と、回転速度の増大量が大きい制御の典型例とを説明する。トルクの増大量が大きい制御の典型例をトルク制御と称する。また、回転速度の増大量が大きい制御の典型例を速度制御と称する。調整制御部152及びエンジン制御部ECは、受け付けた要求に応じて、トルク制御、速度制御、及びトルク制御と速度制御を混在させた制御のいずれかの制御を行う。
 (速度制御)
 速度制御において、エンジン制御部ECは、エンジン14の回転パワーを増大させる。詳細には、エンジン制御部ECは、エンジン出力調整部141に、エンジン14の吸入空気量及び燃料噴射量を増大させる。エンジン14のパワーが増大することによって、エンジン14の回転速度、即ち発電機10のロータ11の回転速度ωが上昇する。
 速度制御において、制御装置15は、供給電流調整部131に、巻線121のインダクタンスLを減少させる調整を行わせない。供給電流調整部131は、図3に示すように、筒状の巻線121の中にステータコア122の歯部122bが完全に入った状態を維持する。
 回転速度ωの上昇に伴い、図4に示す交流電圧源121Aの誘導起電圧Eが増大する。誘導起電圧Eは、実質的に回転速度ωに比例する。この結果、変速装置Tから出力される電圧が増大する。つまり、モータ18に供給される電圧が増大する。この結果、モータ18の回転速度が増大する。
 (トルク制御)
 トルク制御において、制御装置15は、供給電流調整部131に、巻線121のインダクタンスLが減少するようステータコア122の位置を調整させる。供給電流調整部131は、巻線121から見た、ステータコア122の磁気抵抗が増大するようにステータコア122の位置を調整する。本実施形態では、供給電流調整部131は、図3に示す筒状の巻線121の中からステータコア122の歯部122bが抜ける向きに、ステータコア122を移動させる。これによって、巻線121のインダクタンスLが減少する。
 変速装置Tでは、制御装置15が、トルク要求に応じて、供給電流調整部131に、巻線121から見た磁気回路F2の磁気抵抗を調整させる。制御装置15が、トルク要求に対応する電流要求に応じて、供給電流調整部131に、巻線121から見た磁気回路F2の磁気抵抗を調整させる。これによって、供給電流調整部131が、巻線121のインダクタンスを変える。これによって、電気負荷装置としてのモータ18に供給する電流を制御することができる。
 例えば、変速装置Tでは、制御装置15が、トルク増大の要求に応じて、供給電流調整部131に、巻線121から見た磁気回路F2の磁気抵抗を増大させる。つまり、変速装置Tでは、制御装置15が、トルク増大の要求に対応する電流増大の要求に応じて、供給電流調整部131に、巻線121から見た磁気回路F2の磁気抵抗を増大させる。これによって、供給電流調整部131が、巻線121のインダクタンスを減少させる。これによって、電気負荷装置としてのモータ18に供給する電流を増大することができる。
 供給電流調整部131は、巻線121とロータ11との間にあるエアギャップF2aの磁気抵抗を変えることによって巻線121のインダクタンスを変える。巻線121とロータ11との間には、ロータ11の回転に伴い移動する磁極部111によって交番磁界が生じる。例えば、巻線121とロータ11との間にあるエアギャップF2aの磁気抵抗を減少させると、交番磁界についての損失が減少する。詳細には、エアギャップF2aを通る磁気回路F2における鉄損が減少する。損失が減少するため、より大きな電流を出力することができる。従って、電気負荷装置としてのモータ18に供給する電流の調整量を増大することができる。
 また、トルク制御において、エンジン制御部ECは、エンジン出力調整部141(図2)に、エンジン14の回転パワーを増大させる。詳細には、エンジン制御部ECは、エンジン出力調整部141に、エンジン14の吸入空気量及び燃料噴射量を増大させる。エンジン14の回転パワーが増大することによって、エンジン14の回転速度、即ち発電機10のロータ11の回転速度ωが上昇する。
 回転速度ωの上昇に伴い、交流電圧源121Aの誘導起電圧Eが増大する。誘導起電圧Eは、実質的に回転速度ωに比例する。誘導起電圧Eが増大する結果、発電機10から出力される電流が増大する。つまり、モータ18に供給される電流が増大する。この結果、モータ18のトルクが増大する。
 制御装置15及びエンジン制御部ECは、例えば、インダクタンス、ロータ11の回転速度、及び出力電流が対応付けて記憶されたマップを用いて、制御を行う。マップは、例えば、次の関係(i)及び(ii)に基づいて得られる。前記関係(i)は、エンジン14の回転速度とモータ18の入力電流との関係である。前記関係(ii)は、モータ18のトルクと回転速度の関係である。前記関係(i)は、例えば、複数のインダクタンスLの条件について、予め行われた発電機の測定又はシミュレーションに基づいて特定又は設定される。前記関係(i)は、例えば、図9に示すような発電機10の回転速度と出力電流との関係を含む。また、前記関係(i)は、コンバータ16とインバータ17の動作の影響を含む。前記関係(ii)は、例えば、予め行われたモータの測定又はシミュレーションの結果に基づいて特定又は設定される。
 制御装置15は、例えば、変速装置Tに要求されるトルクに対応するモータ18の入力電流を目標として決定する。制御装置15は、例えば、発電機10における最も低い回転速度で目標の電流が供給可能なインダクタンスLを得るように、供給電流調整部131を制御する。
 エンジン制御部ECは、制御装置15で得られたインダクタンスLの条件の下、目標の電流が供給可能な回転速度でエンジン14を動作させる。コンバータ16とインバータ17によって電流及び電圧が制限される場合には、制限の影響に基づいて回転速度が調整される。
 ただし、制御装置15及びエンジン制御部ECは、マップを用いることなく、供給電流調整部131を制御するように構成されていてもよい。制御装置15及びエンジン制御部ECは、例えば、式を演算した結果にもとづいて制御を行ってもよい。
 制御装置15及びエンジン制御部ECは互いに連携しながら、供給電流調整部131及びエンジン出力調整部141をそれぞれ制御するように構成されている。例えば、制御装置15が、エンジン制御部ECに必要な回転速度の情報を送信する。
 供給電流調整部131によって巻線121のインダクタンスが減少している期間全体と、エンジン出力調整部141によってエンジン14の回転パワーが増大している期間全体とは、重複部分を有していることが好ましい。さらに、供給電流調整部131によって巻線121のインダクタンスが減少する途中の期間と、エンジン出力調整部141によってエンジン14の回転パワーが増大する途中の期間とは、重複部分を有していることが好ましい。
 本実施形態において、トルクの増大が要求される場合、エンジン14では、エンジン出力調整部141による調整によって、エンジン14の出力軸Cの回転パワーが増大する。従って、発電機10のロータ11の回転速度ωが上昇する。一方、変速装置Tでは、供給電流調整部131の調整によって、巻線121のインダクタンスLが減少する。そのため、回転速度ωとインダクタンスLの積に依存する巻線121のインピーダンスZgの増大が抑えられる。この結果、発電機10から出力される電流の増大量が、例えば巻線121のインダクタンスLの減少がない場合と比べて、大きい。従って、変速装置Tが出力するトルクの増大量が、例えば巻線121のインダクタンスLの減少がない場合と比べて、大きい。
 このように、エンジン14の回転パワーが同じ条件であっても、変速装置Tでの調整に応じて、変速装置Tから出力されるトルクが変化する。また、変速装置Tでは、トルク制御を実施することによって、変速装置Tから出力されるトルクの調整レンジが拡大する。
 例えば、トルクの増大が要求される場合に、例えば、巻線121のインダクタンスLを減少させずにエンジン14の回転パワーを増大させることが考えられる。
 この場合、回転パワーの増大に伴いロータの回転速度ωが上昇する。これによって、誘導起電圧が増大する。しかし、回転速度ωの上昇によって巻線のインピーダンスZgも増大する。この結果、回転パワーの増大量に比べて、モータに供給される電流の増大量が小さい。従って、トルクの増大量が小さい。
 電流を増大させるため、巻線121のインダクタンスLを減少させずに、エンジン14の回転パワーを増大させると、発電電流の増大に比べて、エンジン14の回転パワーが過剰に増加することとなる。回転パワーが過剰に増加すると、エンジン14の燃料効率が悪化する。
 また、回転パワーが過剰に増加すると、誘導起電圧Eも過剰に増大する。例えば、モータ18の回転速度が増大した後、実質的に一定の速度になった状況では、モータ18に供給される電流が減少する。従って、巻線121のインピーダンスZgの影響が低下する。このため、過剰に増大した誘導起電圧Eに応じた電圧が、発電機10から出力される。また、発電機10とモータ18の間には、コンバータ16が設けられている。コンバータ16のスイッチング素子には、誘導起電圧Eに応じた高い電圧が印加される。高い電圧に対応した高耐圧のスイッチング素子は、一般的に大きなオン抵抗を有する。このため、スイッチング素子による損失が大きい。
 これに対し、本実施形態の発電機10では、トルクの増大が要求される場合に、供給電流調整部131が、巻線121のインダクタンスLを減少させる。このため、巻線121のインピーダンスZgの増大が抑えられる。このため、例えばインダクタンスLの減少がない場合と比べ、エンジン14の回転パワーの増大に伴う変速装置Tの出力トルクの増大量が大きい。この結果、トルクの増大の要求に対する、エンジン14の回転パワーの過剰な増大が抑えられる。そのため、エンジンの燃料効率が向上する。また、出力電圧の過剰な増大が抑えられる。そのため、小さいオン抵抗を有する低耐圧のスイッチング素子が採用可能になる。従って、高い効率が得られる。
 また、本実施形態の変速装置Tによれば、例えば変速装置Tを介さずにエンジン14の出力を駆動輪Wc,Wdに供給する場合と比べて、出力するトルクと回転速度の調整の独立性を高めることができる。従って、変速装置Tは、トルク要求と速度要求のそれぞれに、より適した調整を行うことができる。
 また、本実施形態の変速装置Tは、制御装置15によってコンバータ16及びインバータ17を制御する。これによって、変速装置Tは、発電機10における調整とは独立に、モータ18に供給する電流及び電圧を制御することができる。これによって、変速装置Tは、発電機10における調整とは独立に、変速装置Tのモータ18から出力されるトルク及び回転速度を制御することができる。これによって、変速装置Tの出力の制御の自由度が高められる。
 例えば、変速装置Tは、コンバータ16又はインバータ17にモータ18への電力供給を停止させる。これによって、変速装置Tは、エンジン14及び発電機10が稼働した状況でも、モータ18を停止状態にすることができる。
 [第二実施形態]
 続いて、本発明の第二実施形態について説明する。以下の第二実施形態の説明にあたっては、上述した第一実施形態との相違点を主に説明する。
 図6(A)及び図6(B)は、第二実施形態の変速装置の発電機20における供給電流調整部の調整を説明するための模式図である。図6(A)は、巻線121のインダクタンスが、設定可能な値の範囲内で最も大きい値に設定されている時の状態を示している。図6(B)は、図6(A)よりも巻線121のインダクタンスが小さい値に設定されている時の状態を示している。
 図6(A)における、巻線221、ステータコア222、及びロータ21の位置関係は、図3(A)を参照して説明した第一実施形態の位置関係と同じである。
 磁気回路F21は、磁極部211によって生じる磁束が通る磁気回路である。磁気回路F22は、巻線221から見た磁気回路である。巻線221から見た磁気回路F22は、巻線221の内部を通り、且つ、磁気回路F22の全体の磁気抵抗が最小となる経路で構成される。磁気回路F2は、ステータコア222を通る。磁気回路F2は、隣り合う2つの歯部222bを通る。
 ステータコア222を通る磁気回路F22は、エアギャップF22aを含む。エアギャップF22aは、巻線221とロータ21との間にある。磁気回路F22を構成するエアギャップF22aは、巻線221とロータ21との間で、且つ、隣り合う2つの歯部222bの間にある。磁気回路F2を構成するエアギャップF22aは、隣り合う2つの歯部222bのそれぞれの、ロータ21に対向する部分同士を繋ぐように設けられている。
 巻線221から見た磁気回路F22は、ロータ21のバックヨーク部212を通らない。巻線221から見た磁気回路F22は、隣り合う2つの歯部122bの間のエアギャップF22aを有する。
 図6(A)に示す状態で、磁気回路F22を構成するエアギャップF22aの磁気抵抗は、磁気回路F22を構成する要素の磁気抵抗の中で最も大きい。エアギャップF22aは、磁気回路F22のうち、エアギャップF22aの残りの部分F22bよりも大きい磁気抵抗を有する。
 図6に示す発電機20において、供給電流調整部231は、巻線221を移動させる。これによって、供給電流調整部231は、巻線221から見た、ステータコア222を通る磁気回路F22の磁気抵抗を変える。これによって、供給電流調整部231は、巻線221のインダクタンスを変え、モータ18(図1参照)に供給する電流を調整する。
 供給電流調整部231は、ステータ22のステータコア222を移動させず、巻線221を移動させる。
 より詳細には、ステータコア222は、図示しない筐体に固定されている。ロータ21は、筐体に回転可能に支持されている。ロータ21は、軸方向Xについて固定されている。巻線221は、筐体に対し軸方向Xに移動自在なように筐体に支持されている。
 供給電流調整部231は、歯部222bが筒状の巻線221の中に出入りする方向に移動するよう、巻線221を移動させる。本実施形態では、供給電流調整部231は、巻線221を軸方向Xに移動させる。供給電流調整部231は、例えば、巻線221を矢印X2の向きに移動させる。発電機20に備えられて歯部222bに巻かれた巻線221はすべて一体となって移動する。制御装置15は、トルク要求に応じて供給電流調整部231を動作させる。
 図6(B)には、図6(A)の状態よりも小さいインダクタンスを有する状態が示されている。図6(B)に示す状態は、巻線221が矢印X2の向きに移動した状態である。
 本実施形態において、供給電流調整部231は、トルク要求に応じて巻線221のみを移動させる。これによって、供給電流調整部231は、巻線221に対するステータコア222の相対位置を移動させる。これによって、供給電流調整部231は、巻線221から見た、ステータコア222を通る磁気回路F22の磁気抵抗を変える。
 例えば、巻線221が矢印X2の向き、すなわちロータ21に向かって移動すると、ステータコア222の歯部222bが、巻線221から抜ける。歯部222bが巻線221から抜けると、巻線221の中に存在するステータコア222の量が減少する。この結果、巻線221から見た磁気回路F22を構成するエアギャップF22aの長さが長くなる。従って、巻線221とロータ21との間にあるエアギャップF22aの磁気抵抗が、増大する。つまり、磁気抵抗が最も大きいエアギャップF22aの磁気抵抗が増大する。この結果、巻線221から見た磁気回路F2の磁気抵抗が増大する。これによって、巻線221のインダクタンスが減少する。
 供給電流調整部231は、磁気抵抗が最も大きいエアギャップF22aの磁気抵抗を変える。これによって、供給電流調整部231は、隣り合う歯部222bを通る磁気回路F2の磁気抵抗を変える。従って、例えばエアギャップF22a以外の部分F22bの磁気抵抗を変える場合と比べて、巻線221のインダクタンスが大きく変化しやすい。
 このようにして、供給電流調整部231は、巻線221から見た、ステータコア222を通る磁気回路F22の磁気抵抗を変える。これによって、供給電流調整部231は、巻線221のインダクタンスを変える。
 例えば、供給電流調整部231が、トルク増大の要求に応じて、巻線221から見た磁気回路F22の磁気抵抗を増大させる。つまり、供給電流調整部231が、電流増大の要求に応じて、巻線221から見た磁気回路F22の磁気抵抗を増大させる。これによって、供給電流調整部231が、巻線221のインダクタンスを減少させる。これによって、モータ18(図1参照)に供給する電流を増大することができる。
 供給電流調整部231は、巻線221とロータ21との間にあるエアギャップF22aの磁気抵抗を変えることによって巻線221のインダクタンスを変える。この結果、交番磁界についての損失が減少する。従って、モータ18に供給する電流の調整量を増大することができる。
 [第三実施形態]
 続いて、本発明の第三実施形態について説明する。以下の第三実施形態の説明にあたっては、上述した第一実施形態との相違点を主に説明する。
 図7は、第三実施形態の変速装置における発電機30を示す模式図である。
 図7に示す発電機30におけるステータコア322は、複数の第一ステータコア部323と、第二ステータコア部324とを備えている。
 複数の第一ステータコア部323のそれぞれは、ロータ31にエアギャップを介して対面する対面部323aを有する。複数の第一ステータコア部323は、間隔を空けて円環状に配置されている。すなわち、複数の第一ステータコア部323は、周方向Zに一列に並んで配置されている。複数の第一ステータコア部323は、ステータ32において主たる歯部として機能する。そこで、第一ステータコア部323は、本明細書において、第一歯部323とも称される。第一ステータコア部323の対面部323aの周方向Zでの長さは、第一ステータコア部323の、対面部323a以外の部分の周方向Zでの長さよりも長い。巻線321は、第一ステータコア部323に巻かれている。
 第二ステータコア部324は、第一ステータコア部323を挟んで、ロータ31とは反対の位置に配置されている。第二ステータコア部324は、ロータ31と対面する対面部323aを有さない。第二ステータコア部324は、円環状のステータヨーク部324a、及び複数の第二歯部324bを有する。第二歯部324bは、ステータヨーク部324aよりも第一ステータコア部323の方に向かって突出している。第二歯部324bの数は、第一ステータコア部323の数と同じである。ステータヨーク部324aと第二歯部324bは、第二歯部324bを通る磁束のほぼすべてがステータヨーク部324aを通るように構成されていればよい。即ち、第二歯部324bは、ステータヨーク部324aと一体成形されていてもよい。第二歯部324bは、ステータヨーク部324aと別体に形成されてステータヨーク部324aに取り付けられてもよい。第二歯部324bは、周方向Zに一列に並んで配置されている。複数の第二歯部324bは、互いに間隔を空けて円環状に配置されている。複数の第二歯部324bの間隔は、複数の第一ステータコア部323の間隔と等しい。
 本実施形態の発電機30における供給電流調整部331は、巻線321に対するステータコア322の一部の相対位置を移動させる。供給電流調整部331は、複数の第一ステータコア部323及び第二ステータコア部324の一方を他方に対して移動させる。これによって、供給電流調整部331は、巻線321から見た磁気回路F32の磁気抵抗を変える。これによって、供給電流調整部331は、モータ18に供給する電流を調整する。
 より詳細には、第一ステータコア部323は、図示しない筐体に対して固定されている。第二ステータコア部324は、周方向Zで回転可能に支持されている。供給電流調整部331は、第二ステータコア部324を、ロータ31の回転軸線を中心とした周方向Zに回転させる。これによって、供給電流調整部331は、第二ステータコア部324を第一状態(図8(A)参照)から第二状態(図8(B)参照)まで移動させる。
 図8(A)は、図7に示すステータ32の第一状態を示す模式図である。図8(B)は、図7に示すステータ32の第二状態を示す模式図である。
 図6(A)は、巻線321のインダクタンスが、設定可能な値の範囲内で最も大きい値に設定されている時の状態を示している。図6(B)は、図6(A)よりも巻線321のインダクタンスが小さい値に設定されている時の状態を示している。
 図8(A)に示す第一状態では、周方向Zにおいて、複数の第二歯部324bのそれぞれが、複数の第一ステータコア部323のそれぞれと向かい合う。第一状態では、複数の第一ステータコア部323のそれぞれと第二ステータコア部324との間のエアギャップ長L32が、複数の第一ステータコア部323のうち隣り合う第一ステータコア部の間のエアギャップ長L33よりも短い。エアギャップ長L33は、詳細には、ロータ31とステータ32とが対向する方向において、第一ステータコア部323のそれぞれの、巻線321とロータ31の間に設けられた部分同士におけるエアギャップ長である。
 図8(B)に示す第二状態では、周方向Zにおいて、複数の第二歯部324bのそれぞれが、互いに隣り合う第一ステータコア部323の間に位置する。第二状態では、複数の第一ステータコア部323のそれぞれと第二ステータコア部324との間のエアギャップ長L34が、複数の第一ステータコア部323のうち隣り合う第一ステータコア部323の間のエアギャップ長L33よりも長い。
 第三実施形態の発電機30における供給電流調整部331の調整を説明する。
 図8(A)及び図8(B)には、磁極部311によって生じる磁束が通る磁気回路F31、及び巻線321の電流によって生じる主な磁束F32が示されている。巻線321から見た磁気回路F32は、巻線321の内部を通り、且つ、磁気回路F32の全体の磁気抵抗が最小となる経路で構成される。磁気回路F32は、ステータコア322を通る。磁気回路F32は、隣り合う第一ステータコア部323(第一歯部323)を通る。
 磁気回路F32は、3つのエアギャップを含む。磁気回路F32のうち、隣り合う2つの第一ステータコア部323(第一歯部323)の間のエアギャップによって構成された部分を、エアギャップF32aと称する。磁気回路F32のうち、隣り合う2つの第一ステータコア部323(第一歯部323)のそれぞれと、第二ステータコア部324との間のエアギャップによって構成された部分を、エアギャップF32cと称する。隣り合う2つの第一ステータコア部323(第一歯部323)の間のエアギャップF32aは、巻線321とロータ31との間にある。磁気回路F32を構成するエアギャップF32aは、巻線321とロータ31との間で、且つ、隣り合う2つの第一ステータコア部323(第一歯部323)の間にある。エアギャップF32aは、隣り合う2つの第一ステータコア部323(第一歯部323)のそれぞれの、互いに対向する端面どうしを繋ぐように設けられている。
 図8(A)に示す第一状態では、複数の第一ステータコア部323(第一歯部323)のそれぞれと第二ステータコア部324との間のエアギャップ長L32が、複数の第一ステータコア部のうち隣り合う第一ステータコア部323(第一歯部323)の間のエアギャップ長L33よりも短い。エアギャップ長L33は、磁気回路F32において最も長いエアギャップである。従って、第一状態で、巻線321から見た磁気回路F32のうち、隣り合う第一ステータコア部323の間のエアギャップF32aの磁気抵抗は、磁気回路F32を構成する要素の磁気抵抗の中で最も大きい。エアギャップF32aは、磁気回路F32のうち、エアギャップF32aの残りの部分F32b,F32c,F32dのいずれの磁気抵抗よりも大きい磁気抵抗を有する。エアギャップF32aの磁気抵抗は、第一ステータコア部323と第二ステータコア部324との間のエアギャップF32cの磁気抵抗よりも大きい。
 巻線321の電流による磁束F32は、図8(A)に示すように、隣り合う第一ステータコア部323と、第二ステータコア部324とを通じて流れる。巻線321から見た、ステータコア322を通る磁気回路F32の磁気抵抗は、隣り合う第一ステータコア部323の間のエアギャップ長L33に依存する。
 また、磁極部311によって生じる磁束F31は、隣り合う2つの第一ステータコア部323を通る。詳細には、磁束F31は、1つの磁極部311から、磁極部311と第一ステータコア部323の間のギャップ、第一ステータコア部323、第二ステータコア部324、隣の第一ステータコア部323、磁極部311と第一ステータコア部323の間のギャップ、隣りの磁極部311、そしてバックヨーク部312を通って流れる。つまり、図6(A)に示す第一状態では、磁極部311の磁気回路F31は、隣り合う2つの第一ステータコア部323と、第二ステータコア部324を通る。
 図8(B)に示す第二状態では、複数の第一ステータコア部323のそれぞれと第二ステータコア部324との間のエアギャップ長L34が、複数の第一ステータコア部323のうち隣り合う第一ステータコア部323の間のエアギャップ長L33よりも長い。このため、巻線321から見た、ステータコア322を通る磁気回路F32の磁気抵抗は、第一ステータコア部323と第二ステータコア部324との間のエアギャップ長L34の影響を強く受ける。この結果、第二状態における巻線321から見た、ステータコア322を通る磁気回路F32の磁気抵抗は、第一状態における磁気抵抗よりも大きい。
 また、磁極部311によって生じる磁束F31は、1つの磁極部311から、磁極部311と第一ステータコア部323の間のギャップを通り、第一ステータコア部323を通る。磁束F31は、第一ステータコア部323から、直接隣の第一ステータコア部323を通る。磁極部311によって生じる磁束F31は、隣り合う2つの第一ステータコア部323の間のギャップを通る。このように、第二状態では、磁極部311によって生じる磁束F31の経路が切り替わる。また、第二状態で磁束F31の経路が切り替わらない場合でも、少なくとも磁極部311によって生じる磁束F31のうち、隣り合う2つの第一ステータコア部323の間のギャップを通る磁束が増大する。隣り合う2つの第一ステータコア部323の間のギャップを通る磁束F31が増大すると、エアギャップF32aの磁気抵抗が実質的に増大する。これは、隣り合う2つの第一ステータコア部323の間のエアギャップ長L33が増大したことと磁気的に等価である。このため、エアギャップF32aを含む磁気回路F32の磁気抵抗が、さらに大きい。巻線321のインダクタンスの変化率が、磁極部311で生じ巻線321と鎖交する磁束の変化率よりも大きい。
 先に説明したように、巻線321のインダクタンスは、巻線321から見た磁気抵抗に反比例する傾向を有する。従って、第二状態における巻線321のインダクタンスは、第一状態における巻線321のインダクタンスよりも小さい。
 供給電流調整部331は、第一状態(図8(A)参照)から第二状態(図8(B)参照)まで、複数の第一ステータコア部323及び第二ステータコア部324の一方を他方に対して移動させる。これによって、供給電流調整部331は、巻線321から見た磁気回路F32の磁気抵抗を変える。これによって、供給電流調整部331は、巻線321のインダクタンスを変える。これによって、供給電流調整部331は、モータ18(図1参照)に供給する電流を調整する。
 供給電流調整部331は、エアギャップF32aの磁気抵抗を変える。供給電流調整部331は、隣り合う歯部としての第一ステータコア部323の間のエアギャップ長L33を変えることなくエアギャップF32aの磁気抵抗を変える。これによって、供給電流調整部331は、隣り合う歯部としての第一ステータコア部323を通る磁気回路F32の磁気抵抗を変える。エアギャップF32aは、第一状態において、磁気回路F32を構成する要素の中で磁気抵抗が最も大きい。従って、例えばエアギャップF32a以外の部分の磁気抵抗を変える場合と比べて、巻線321のインダクタンスが大きく変化しやすい。
 供給電流調整部331は、巻線321とロータ31との間にあるエアギャップF32aの磁気抵抗を変えることによって巻線321のインダクタンスを変える。この結果、交番磁界についての損失が減少する。従って、電気負荷装置としてのモータ18に供給する電流の調整量を増大することができる。
 図9は、図7に示す発電機30におけるロータ31の回転速度に対する出力電流特性を示すグラフである。
 図9のグラフにおいて、破線H1は、図8(A)に示す第一状態における出力電流特性を表している。発電機30が破線H1に示される出力電流特性を有する場合、発電機30は、図9のグラフにおいて出力電流と回転速度との組合せが破線H1以下の領域に位置するように動作する。実線H2は、図8(B)に示す第二状態における出力電流特性を表している。発電機30が実線H2に示される出力電流特性を有する場合、発電機30は、出力電流と回転速度との組合せが実線H2以下の領域に位置するように動作する。なお、図9のグラフでは、電流の制御を分かりやすくするため、供給電圧調整部344(図7参照)を動作させない場合の特性を示している。
 図9のグラフを参照して、発電機30における調整について説明する。
 破線H1に示す、第一状態における出力電流に着目すると、出力電流は、回転速度の増大に応じて増大する。従って、発電機30の出力電流は、ロータ31の回転速度によって調整することも可能である。ロータ31の回転速度は、エンジン14の出力軸C(図2参照)の回転速度に相当する。
 しかし、第一状態における出力電流は、ロータ31の回転速度が比較的小さい領域で、回転速度の増大に応じて急峻に増大する。その一方で、第一状態における出力電流は、回転速度が比較的高い領域では、回転速度の増大に応じた出力電流の増大が緩やかである。すなわち、回転速度が比較的高い領域では、回転速度の変化に対する出力電流の変化率が小さい。
 例えば、発電機30が第一状態に固定される場合、回転速度の変化に対する出力電流の変化率が小さい領域において、出力電流を増大するためには、ロータ31の回転速度を大幅に増大することが求められる。
 例えば、ビークルV(図1参照)が走行時に登坂を開始する場合、又は、走行時に他の車両を追い抜く場合、高速走行時に変速装置Tから出力されるトルクの更なる増大が必要となる。この場合、トルク要求が増大する。
 供給電流調整部331の状態が固定した状態において、更なる加速に対応してトルク要求が増大する場合、ロータ31の回転速度、即ちエンジン14の回転速度を更に増大することが求められる。つまり、出力トルクを増大するために、エンジン14の回転パワーを過剰に増大する必要がある。
 例えば、回転速度がN1であり、出力電流がI1である状況で、トルク要求の増大を受け、電流をI2まで増大させる場合がある。この場合、発電機30が、グラフのH1に対応する第一状態に固定されていると、ロータ31の回転速度が過剰に増大することとなる。言い換えると、エンジン14の回転速度が過剰に増大する。これによって、エンジン14自体の燃料効率が低下する。
 巻線321の誘導起電圧は、ロータ31の回転速度にほぼ比例する。そのため、回転速度を大幅に増大すると、誘導起電圧が大幅に増大する。電圧の大幅な増大に対応するためには、電気部品の高耐圧化が必要となる。そのため、電気部品の高耐圧化に伴う効率の低下を招来する。
 トルク制御において、制御装置15は、トルク要求に応じて供給電流調整部331を制御する。トルク要求は、電流要求に対応する。制御装置15は、トルク要求に応じて巻線321から見た、ステータコア322を通る磁気回路F32の磁気抵抗を変える。これによって、制御装置15は、巻線321のインダクタンスを変える。これによって、モータ18に供給する電流が調整される。具体的には、供給電流調整部331が、第二ステータコア部324を第一状態(図8(A)参照)から第二状態(図8(B)参照)まで移動させる。これによって、出力電流特性が、図9に示す破線H1から、実線H2に示すように変わる。
 制御装置15は、例えば、供給電流調整部331(図7参照)に、第二ステータコア部324を第二状態(図8(B)参照)まで移動させる。これによって、制御装置15は、インダクタンスを低減させる。そして、エンジン制御部ECがエンジン14の回転数をN2まで増加させる。これによって、出力電流がI2まで増大する。出力電流の増大に応じて、変速装置Tから出力されるトルクが増大する。
 このようにして、制御装置15が制御を行う。これにより、例えば、エンジン14の回転数のみを増加させた場合と比べて、トルクの調整レンジが拡大される。
 トルク制御において、エンジン制御部EC及び制御装置15は連携する。制御装置15は、エンジン制御部ECがエンジン出力調整部141にエンジンの回転パワーを調整させる時に、供給電流調整部331による巻線のインダクタンスの調整を実施する。制御装置15は、エンジン14の回転パワー増大の過程が終了する前に、供給電流調整部331に巻線121のインダクタンスを減少させる過程を開始する。つまり、制御装置15は、供給電流調整部331によって巻線121のインダクタンスが減少する途中の期間と、エンジン出力調整部141によってエンジン14の回転パワーが増大する途中の期間とが、重複部分を有するように制御を行う。
 これによって、発電機からモータ18に供給される電流が滑らかに増大する。従って、トルクが滑らかに増大する。また、エンジン14の回転パワーの調整を行う過程で、発電機30から出力される電流が、要求されたトルクの電流値に到達する前に、エンジンの回転パワーが過剰に増大するといった事態が抑えられる。
 続いて、回転速度制御について説明する。回転速度の増大が要求される場合、制御装置15は、インダクタンスLを減少させない。エンジン制御部ECは、エンジン出力調整部141(図2参照)にエンジン14の回転パワーを増大させる。
 つまり、本実施形態において、制御装置15は、供給電流調整部331(図7参照)を、図9のグラフの破線H1に対応する第一状態(図8(A)参照)に維持したまま、エンジン出力調整部141にエンジン14の回転パワーを増大させる。
 発電機30で生じる誘導起電圧E(図4参照)は、実質的に回転速度ωに比例する。特に、電圧の増大が要求される場合は、一般的に、モータ18自体のインピーダンスZmは大きい状態である。この場合、巻線321のインピーダンスZgが発電機の出力電圧に与える影響は小さい。このため、発電機からは、誘導起電圧Eに応じた電圧が出力される。
 変速装置Tは、供給電流調整部331に巻線321のインダクタンスLを減少させず、速度の増大の要求に対応できる。
 本実施形態の変速装置Tに対し、インダクタンスを変更できない一般的な発電機によって、図9の実線H2に示すような出力電流の特性を得るためには、巻線の太径化又は磁石量の増大が求められる。巻線の太径化又は磁石量の増大を行うと、変速装置自体が大型化してしまう。この結果、変速装置Tの車両への搭載性や可搬性が低下する。また、インダクタンスを変更できない一般的な発電機が、実線H2に示すような出力電流特性を有するように構成されている場合、その発電機は、破線H1に示すような出力電流特性を有することはできない。
 また、モータ18に供給する電流を調整する方法としては、例えば、DC-DCコンバータの利用が考えられる。しかし、ビークルVを駆動するような電力を入出力可能なDC-DCコンバータは、内蔵されるトランス等の部品が電力に対応して大型化してしまう。
 本実施形態の変速装置Tでは、制御装置15が、供給電流調整部331を制御し、電流要求に応じて巻線321から見た、ステータコア322を通る磁気回路F32の磁気抵抗を変える。制御装置15は、これによって、巻線321のインダクタンスを変える。このため、変速装置Tは、巻線の太径化又は磁石量の増大を行わずに、トルク要求に応じて電流を調整することができる。
 再び図7を参照して発電機30の供給電圧調整部344について説明する。
 発電機30は、供給電流調整部331とは別に、供給電圧調整部344を備えている。供給電圧調整部344は、制御装置15に制御されている。
 供給電圧調整部344は、ロータ31の磁極部311から出て巻線321と鎖交する鎖交磁束を変える。これによって、供給電圧調整部344は、巻線321の誘導起電圧を変える。これによって、供給電圧調整部344は、モータ18に供給する電圧を調整する。より詳細には、供給電圧調整部344は、ロータ31を軸方向Xに移動させる。これによって、供給電圧調整部344は、ロータ31と、ステータ32との間のエアギャップ長L311を変える。このようなロータ31の軸方向Xへの移動は、例えばロータ31を回転可能に支持する軸受部313を、軸方向Xに移動させる供給電圧調整部344によって実現されることができる。ロータ31とステータ32との間のエアギャップ長L31が変わることによって、ロータ31と、ステータ32との間の磁気抵抗が変わる。これによって、磁極部311で生じて巻線321と鎖交する磁束の量が変わる。従って、発電機30が発生する電圧が変わる。変速装置Tにおいて発電機30が発生する電圧を制御することによって、変速装置Tから出力される回転パワーの制御の自由度が高められる。
 このように、本実施形態の変速装置Tは、エンジン出力調整部141によるエンジン14の回転パワーの調整以外によっても、モータ18に供給する電圧を調整することができる。このため燃料効率の低下を抑えつつ、制御の自由度を高めることができる。
 また、供給電圧調整部344は、次のようにして、供給電流調整部331の動作に起因する、巻線321と鎖交する鎖交磁束の変動をさらに抑えることができる。
 ロータ31の磁極部311から出て巻線321と鎖交する鎖交磁束は、ステータコア322を通って流れる。つまり、磁極部311から出て巻線321と鎖交する鎖交磁束は、第一ステータコア部323及び第二ステータコア部324を通って流れる。
 供給電流調整部331が、第二ステータコア部324を第一状態(図8(A)参照)から第二状態(図8(B)参照)まで移動させると、第一ステータコア部323と第二ステータコア部324との間のエアギャップ長L32,L34が変わる。このため、ロータ31の磁極部311から出て巻線321と鎖交する鎖交磁束の量も変わる。
 供給電圧調整部344は、供給電流調整部331の動作による巻線321と鎖交する鎖交磁束の変動を補償するように、ロータ31と、ステータ32との間のエアギャップ長L31を変える。この結果、供給電流調整部331の動作に起因する、巻線321と鎖交する鎖交磁束の変動を抑えられる。
 このようにして、供給電流調整部331は、供給電圧調整部344の補償動作によって、電圧による制約の影響をより抑えつつ、電流を調整することができる。
 なお、上述した第三実施形態では、発電機30が、供給電流調整部331及び供給電圧調整部344の双方を備えることを説明した。ただし、本発明の変速装置は、供給電圧調整部を備えていなくともよい。
 上述した第三実施形態では、図9の電流特性のグラフを参照して、インダクタンスを制御しつつ、モータ18に供給する電流を調整することができることを説明した。しかし、インダクタンスを制御しつつ、モータ18に供給する電流の調整ができることは、第一実施形態及び第二実施形態においても同様である。
 また、上述した第三実施形態では、第一ステータコア部として、ロータに対向する端部に、周方向Zすなわち第一ステータコア部が並ぶ方向に突出した突出部を有する第一ステータコア部323の例を説明した。ただし、本発明における第一ステータコア部は、突出部を有していなくてもよい。
 上述した実施形態では、アキシャルギャップ型構造を有するロータ及びステータの例を説明した。ただし、本発明の変速装置は、ロータとステータとが、エアギャップを介して径方向で対向するラジアルギャップ構造にも適用できる。本実施形態のアキシャルギャップ型構造における軸方向X(図3)は、本発明におけるロータとステータとが対向する方向の一例である。ラジアルギャップ構造においては、ロータとステータとが径方向に対向する。
 また、上述した実施形態では、SPM発電機によって構成されている発電機の例を説明した。本発明の発電機は、IPM(Interior Permanent Magnet)発電機によって構成されてもよい。
 また、上述した実施形態におけるエアギャップは、非磁性体ギャップの一例である。非磁性体ギャップは、1種又は複数種の非磁性体からなるギャップである。非磁性体は、特に限定されない。非磁性体としては、例えば、空気、アルミニウム、樹脂が挙げられる。非磁性体ギャップは、少なくともエアギャップを含むことが好ましい。
 上述した実施形態では、ロータ11がエンジン14に接続される構成の詳細として、ロータ11は、エンジン14の出力軸Cと直接接続されている例を説明した。ただし、エンジン14の出力軸Cと発電機10のロータ11とは、例えばベルト、歯車、又はドライブシャフトに代表される伝達装置を介して接続されていてもよい。
 上述した実施形態では、制御装置の例として、要求指示部Aから、トルク要求及び速度要求を受ける制御装置15及びエンジン制御部ECを示した。ただし、本発明はこれに限られない。例えば、トルク要求を出力する装置からトルク要求を受け、速度要求を出力する別の装置から速度要求を受けるよう構成されていてもよい。
 本発明の制御装置は、エンジン制御部と互いに通信していなくともよい。例えば、制御装置とエンジン制御部は、共通の制御用のマップを有し、共通の要求指示部から同じ内容のトルク要求を受ける。同じ内容のトルク要求に基づいて制御を行う結果、制御装置が、エンジン制御部と連携して制御を行う。
 また、制御装置は、エンジン制御部と一体化されていてもよい。例えば、制御装置は、エンジン制御部と共通の基板又は電子デバイスに構築されていてもよい。
 制御装置15及びエンジン制御部ECが、トルク制御、速度制御、及びトルク制御と速度制御を混在させた制御のいずれかの制御を行うことを説明した。ただし、制御装置及びエンジン制御部は、速度制御及びトルク制御のみを行ってもよい。制御装置はトルク制御のみを行ってもよい。
 また、上述した実施形態では、要求指示部Aとしてアクセル操作子の例を説明した。ただし、本発明の変速装置に要求されるトルク要求は、要求指示部の出力に限られない。要求指示部、及び変速装置に要求されるトルク要求として、例えば次のものが挙げられる。
・ビークルの自動速度制御装置(クルーズコントロール)から出力される加速要求の信号
・運転者が操作する、アクセル操作子とは別のスイッチ、ボリュームの出力
 上述した実施形態では、信号の供給を受ける制御装置を備える例を説明した。ただし、変速装置に要求されるトルク要求は、電気信号に限られない。本発明の制御装置は、例えば、操作レバーに接続されたワイヤ等によって動作する機構であってもよい。この場合、供給電流調整部は、ワイヤ等が伝達する力によってステータコアを移動させてもよい。
 上述した実施形態では、モータ18の例として、三相ブラシレスモータを説明した。本発明のモータは、供給電流調整部の構造を含め本実施形態で説明した発電機と同様の構造を有したモータであってもよい。例えば、モータ18は、発電機30と同様に複数の第一ステータコア部及び第二ステータコア部を備え、第一ステータコア部及び第二ステータコア部の一方を他方に対して移動させる構造を有していてもよい。
 上述した実施形態では、変速装置が適用される装置として、4つの車輪を有するビークルVの例を説明した。ただし、本発明における変速装置はこれに限られず、3つ以下の車輪を有するビークル、5つ以上の車輪を有するビークル、及び車輪を有さないビークルに適用することができる。
 本発明における変速装置は、例えば、車輪を備えたビークルに適用することができる。本発明における変速装置は、例えば、自動二輪車、自動三輪車、バス、トラック、ゴルフカー、カート、ATV(All-Terrain Vehicle)、ROV(Recreational Off-highway Vehicle)、及び軌道式車両に適用することができる。
 また、本発明における変速装置は、例えば、車輪以外の駆動機構を駆動するビークルに適用することができる。本発明における変速装置は、例えば、フォークリフトに代表される産業車両、除雪機、農業用車両、軍用車両、スノーモービル、建機、小型滑走艇(ウォータービークル)、船舶、船外機、船内機、飛行機、及びヘリコプタに適用することができる。
 また、回転駆動機構は、駆動部材を含む。回転駆動機構は、例えば、プロペラ、インペラ、キャタピラ、又はトラックベルトであってもよい。また、回転機構は、ビークルを駆動する機構に限られない。回転機構は、ビークルが有する機能の一部を駆動する機構であってもよい。
 また、本発明における変速装置は、例えば、エンジンブロワー、除雪機、芝刈り機、農機具、ガスエンジンヒートポンプ、及び汎用機械に適用することができる。
 上述した実施形態では、制御装置の例として、マイクロコントローラで構成された制御装置15を説明した。ただし、本発明はこれに限られない。制御装置は、例えば、ワイヤードロジックで構成することも可能である。
 本発明に係る発電機は、エンジンのクランクケースに取付けられていていなくともよい。本発明の変速装置は、エンジンから離れた位置に配置されていてもよい。例えば、変速装置は、ビークルの車体に着脱可能なビークル駆動用変速ユニットを構成していてもよい。このようなビークル駆動用変速ユニットは、物理的に一つのボディとして、車体に着脱される装置である。ビークル駆動用変速ユニットは、ビークル駆動用変速ユニットに含まれる全構成(例えば、発電機、モータ等)が一つのボディとして車体に対して着脱可能であるように構成されている。
 トルク要求は、変速装置から回転機構に出力されるトルクを増加、減少又は維持させる要求である。従って、変速装置から回転機構に出力されるトルクをゼロから増加させる要求は、トルク要求に該当する。また、変速装置から回転機構に出力されるトルクをゼロにする要求は、トルク要求に該当する。但し、変速装置から回転機構に出力されるトルクをゼロに維持する要求は、実質的に、変速装置から回転機構にトルクを出力させない要求である。従って、変速装置から回転機構に出力されるトルクをゼロに維持する要求は、トルク要求に該当しない。言い換えると、変速装置から回転機構に出力されるトルクがゼロで維持されている時、トルク要求は入力されていない。本発明において、制御装置は、変速装置にトルク要求が入力されている時に、巻線から見た、ステータコアを通る磁気回路の磁気抵抗の変更を供給電流調整部に行わせる。制御装置は、変速装置から回転機構にトルクが出力されている時に、変速装置に入力されているトルク要求に応じて、巻線から見た、ステータコアを通る磁気回路の磁気抵抗の変更を供給電流調整部に行わせる。
 巻線から見た、ステータコアを通る磁気回路の磁気抵抗の変更により、巻線のインダクタンスの変更が行われる。巻線から見た、ステータコアを通る磁気回路の磁気抵抗の変更は、複数段階的に行われてもよく、無段階的に行われてもよく、連続的に行われてもよい。言い換えると、発電機の出力電流特性は、複数段階的に変更されてもよく、無段階的に変更されてもよく、連続的に変更されてもよい。
 図9に示す破線H1は、巻線から見た、ステータコアを通る磁気回路の磁気抵抗が小さい時の出力電流特性の一例を示す。図9に示す実線H2は、巻線から見た、ステータコアを通る磁気回路の磁気抵抗が大きい時の出力電流特性の一例を示す。即ち、図9に示す発電機の出力電流特性は、本実施形態における巻線から見た、ステータコアを通る磁気回路の磁気抵抗の変更が2段階で行われることを意味していない。発電機の出力電流特性は、複数段階的に変更されてもよく、無段階的に変更されてもよく、連続的に変更されてもよい。複数段階的、無段階的又は連続的に変化する出力電流特性の中に、図9に示す破線H1及び実線H2の出力電流特性が含まれる。本発明において、巻線から見た、ステータコアを通る磁気回路の磁気抵抗の変更は、2段階で行われてもよい。
 供給電流調整部が、発電機の状態を、高抵抗状態及び低抵抗状態のいずれか一方の状態から他方の状態に変更する場合について説明する。低抵抗状態における巻線から見た、ステータコアを通る磁気回路の磁気抵抗は、高抵抗状態における巻線から見た、ステータコアを通る磁気回路の磁気抵抗よりも小さい。例えば、巻線から見た、ステータコアを通る磁気回路の磁気抵抗が増加するように発電機の状態が変更された場合、変更前の発電機の状態が、低抵抗状態であり、変更後の発電機の状態が、高抵抗状態である。巻線から見た、ステータコアを通る磁気回路の磁気抵抗が減少するように発電機の状態が変更された場合、変更前の発電機の状態が、高抵抗状態であり、変更後の発電機の状態が、低抵抗状態である。即ち、高抵抗状態及び低抵抗状態における巻線から見た、ステータコアを通る磁気回路絶対的な磁気抵抗は、特に限定されない。高抵抗状態と低抵抗状態とは、相対的に定められる。高抵抗状態における巻線のインダクタンスは、低抵抗状態における巻線のインダクタンスよりも小さい。
 なお、以下の例では、高抵抗状態における発電機の出力電流特性の一例が図9に示す破線H1であり、低抵抗状態における発電機の出力電流特性の一例が図9に示す実線H2である。破線H1と実線H2との交点Mに相当する回転速度(M)では、高抵抗状態における発電機と、低抵抗状態における発電機とが、同じ回転速度(M)において、同じ大きさの電流を出力できる。巻線から見た、ステータコアを通る磁気回路の磁気抵抗が変更された時、変更前の発電機と、変更後の発電機との間には、このように、互いの出力電流特性曲線(H1、H2)の交点に相当する回転速度(M)が生じる。なお、出力電流特性曲線は、ロータの回転速度に対する発電機の出力電流を示す曲線である。
 本発明の発電機は、図9に示すように、供給電流調整部により発電機の状態が低抵抗状態から高抵抗状態に変更された場合に、高抵抗状態における発電機(H2参照)が、回転速度(M)よりも大きい回転速度(M)で回転する時に、低抵抗状態における発電機(H1参照)が回転速度(M)で回転する時に出力可能な最大電流よりも大きな電流(I2)を出力できるように構成されている。本発明の発電機は、巻線から見た、ステータコアを通る磁気回路の磁気抵抗が高くなるように発電機の状態が変更されることにより、回転速度が比較的高い状況下で、変更前の発電機が出力することができなかった大きさの電流を出力できる。
 本発明の発電機は、図9に示すように、供給電流調整部により発電機の状態が高抵抗状態から低抵抗状態に変更された場合に、低抵抗状態における発電機(H1参照)が、回転速度(M)よりも小さい回転速度(M)で回転する時に、高抵抗状態における発電機(H2参照)が回転速度(M)で回転する時に出力可能な最大電流よりも大きな電流を出力できるように構成されている。本発明の発電機は、巻線から見た、ステータコアを通る磁気回路の磁気抵抗が低くなるように発電機の状態が変更されることにより、回転速度が比較的低い状況下で、変更前の発電機が出力することができなかった大きさの電流を出力できる。
 このように、本発明の発電機は、供給電流調整部により巻線から見た、ステータコアを通る磁気回路の磁気抵抗が変更された時に、変更後の発電機が、回転速度(M)よりも大きい又は小さい回転速度(M又はM)で回転する時に、変更前の発電機が前記回転速度(M又はM)で回転する時に出力可能な最大電流よりも大きな電流を出力できるように構成されている。
 本発明の変速装置によれば、エンジンから出力された回転のトルクと異なる回転のトルクと、エンジンから出力された回転速度と異なる回転速度とを、回転機構(例えば回転駆動機構)に供給することができる。
 制御装置15は、トルク要求に応じて、供給電流調整部131と、モータ電力制御部としてのコンバータ16及び/又はインバータ17との両方を制御する。この場合、制御装置は、前記トルク要求に応じて供給電流調整部によりインダクタンスを変化させる制御を行うタイミングと同じタイミング又は異なるタイミングで、前記トルク要求に応じてモータ電力制御部の動作態様を変化させる制御を行ってもよい。なお、モータ電力制御部の動作態様を変化させる制御は、コンバータ及び/又はインバータのオン/オフのパターンを、予め定められた一のパターンから、予め定められた別のパターンに変化させる制御である。ここでいうパターンは、オン/オフの周期が一定であるパターンであってもよく、オン/オフの周期が経時的に変化するパターンであってもよい。モータ電力制御部の動作態様を変化させる制御は、モータ電力制御部の動作自体の制御と異なる。モータ電力制御部の動作自体の制御とは、予め定められたオン/オフのパターンに基づいてモータ電力制御部を動作させるための制御である。
 上記実施形態に用いられた用語及び表現は、説明のために用いられたものであって限定的に解釈するために用いられたものではない。ここに示されかつ述べられた特徴事項の如何なる均等物をも排除するものではなく、本発明のクレームされた範囲内における各種変形をも許容するものであると認識されなければならない。本発明は、多くの異なった形態で具現化され得るものである。この開示は本発明の原理の実施形態を提供するものと見なされるべきである。それらの実施形態は、本発明をここに記載しかつ/又は図示した好ましい実施形態に限定することを意図するものではないという了解のもとで、実施形態がここに記載されている。ここに記載した実施形態に限定されるものではない。本発明は、この開示に基づいて当業者によって認識され得る、均等な要素、修正、削除、組み合わせ、改良及び/又は変更を含むあらゆる実施形態をも包含する。クレームの限定事項はそのクレームで用いられた用語に基づいて広く解釈されるべきであり、本明細書あるいは本願のプロセキューション中に記載された実施形態に限定されるべきではない。本発明は、クレームで用いられた用語に基づいて広く解釈されるべきである。
 T  変速装置
 V  ビークル
 10,20,30  発電機
 11,21,31  ロータ
 12,22,32  ステータ
 14  エンジン
 15  制御装置
 16  コンバータ
 17  インバータ
 18  モータ
 131,231,331  供給電流調整部
 141  エンジン出力調整部
 151  トルク要求受付部
 152  調整制御部
 323  第一ステータコア部
 324  第二ステータコア部
 344  供給電圧調整部

Claims (15)

  1.  エンジンから出力された回転のトルク及び回転速度を変えて回転機構に供給する変速装置であって、
     前記変速装置は、
    前記エンジンから伝達される回転パワーに応じた電力を出力するように構成された発電機であって、永久磁石を有し前記エンジンから伝達される回転パワーにより回転するロータと、巻線及び前記巻線が巻かれたステータコアを有し前記ロータと対向して配置されたステータと、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えることによって前記巻線のインダクタンスを変え、前記発電機から出力される電流を調整するように構成された供給電流調整部とを有する発電機と、
    前記発電機から出力された電力で駆動され、前記回転機構に回転パワーを出力するように構成されたモータと、
    前記変速装置から前記回転機構に出力するトルクとして前記変速装置に要求されるトルク要求に応じて前記供給電流調整部を制御し、前記供給電流調整部に前記巻線のインダクタンスを変えさせることによって前記発電機から出力される電流を調整させるように構成された制御装置と
    を備える。
  2.  請求項1に記載の変速装置であって、
     前記変速装置は、前記発電機と前記モータとの間の電力の供給経路に設けられ、前記モータに供給する電力を制御するように構成されたモータ電力制御部をさらに備え、
     前記制御装置は、前記モータ電力制御部及び前記供給電流調整部の両方を制御するように構成されている。
  3.  請求項1に記載の変速装置であって、
     前記エンジンは、前記エンジンから出力される回転パワーを調整するように構成された出力調整部を有し、
     前記制御装置は、前記出力調整部と連携して、前記供給電流調整部に、前記巻線のインダクタンスを変えることによって前記発電機から出力される電流を調整させるように構成されている。
  4.  請求項1から3のいずれか1項に記載の変速装置であって、
     前記巻線から見た、前記ステータコアを通る磁気回路は、少なくとも1つの非磁性体ギャップを含み、
     前記供給電流調整部は、前記少なくとも1つの非磁性体ギャップのうち、前記巻線と前記ロータとの間にある非磁性体ギャップの磁気抵抗を変えることによって前記巻線のインダクタンスを変え、前記発電機から出力される電流を調整するように構成されている。
  5.  請求項1から4のいずれか1項に記載の変速装置であって、
     前記巻線から見た、前記ステータコアを通る磁気回路は、少なくとも1つの非磁性体ギャップを含み、
     前記供給電流調整部は、前記少なくとも1つの非磁性体ギャップのうち、前記巻線のインダクタンスが設定可能な値の範囲内で最も大きい値に設定されている時の磁気抵抗が最も大きい非磁性体ギャップの磁気抵抗を変えることによって前記巻線のインダクタンスを変え、前記発電機から出力される電流を調整するように構成されている。
  6.  請求項1から5のいずれか1項に記載の変速装置であって、
     前記供給電流調整部が、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えることによって、前記巻線と鎖交する磁束の変化率が前記巻線のインダクタンスの変化率よりも小さくなるように前記巻線のインダクタンスを変え、前記発電機から出力される電流を調整するように構成されている。
  7.  請求項1から6のいずれか1項に記載の変速装置であって、
     前記供給電流調整部が、前記巻線に対する前記ステータコアの少なくとも一部の相対位置を移動させて、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えることによって前記巻線のインダクタンスを変え、前記発電機から出力される電流を調整するように構成されている。
  8.  請求項7に記載の変速装置であって、
     前記供給電流調整部が、前記ロータに対する前記ステータコアの相対位置を維持するように前記巻線に対する前記ステータコアの相対位置を移動させて、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えることによって前記巻線のインダクタンスを変え、前記発電機から出力される電流を調整するように構成されている。
  9.  請求項1から7のいずれか1項に記載の変速装置であって、
     前記供給電流調整部が、前記巻線を移動させて前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えることによって前記巻線のインダクタンスを変え、前記発電機から出力される電流を調整するように構成されている。
  10. 請求項1から4のいずれか1項に記載の変速装置であって、
     前記発電機は、前記ロータの永久磁石から出て前記巻線と鎖交する鎖交磁束を変えることによって前記巻線の誘導起電圧を変え、前記発電機から出力される電圧を調整するように構成された供給電圧調整部を備える。
  11.  請求項10に記載の変速装置であって、
     前記供給電圧調整部が、前記巻線に対する前記永久磁石の相対位置を移動させて前記ロータの永久磁石から生じて前記巻線と鎖交する前記鎖交磁束を変えることによって前記巻線の誘導起電圧を変え、前記発電機から出力される電圧を調整するように構成されている。
  12.  請求項1から4のいずれか1項に記載の変速装置であって、
     前記ステータコアは、前記ロータに非磁性体ギャップを介して対面する対面部を有する複数の第一ステータコア部と、前記対面部を含まない第二ステータコア部とを備え、
     前記供給電流調整部が、前記複数の第一ステータコア部及び前記第二ステータコア部の一方を他方に対して移動させることによって、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えるように構成されている。
  13. 請求項12に記載の変速装置であって、
     前記供給電流調整部が、
    前記複数の第一ステータコア部のそれぞれと前記第二ステータコア部との間の非磁性体ギャップ長が、前記複数の第一ステータコア部のうち隣り合う第一ステータコア部の間の非磁性体ギャップ長よりも短い第一状態から、
    前記複数の第一ステータコア部のそれぞれと前記第二ステータコア部との間の非磁性体ギャップ長が、前記複数の第一ステータコア部のうち隣り合う第一ステータコア部の間の非磁性体ギャップ長よりも長い第二状態まで、
    前記複数の第一ステータコア部及び前記第二ステータコア部の一方を他方に対して移動させることによって、前記巻線から見た、前記ステータコアを通る磁気回路の磁気抵抗を変えるように構成されている。
  14.  請求項1から13いずれか1項に記載の変速装置に用いられる制御装置であって、
     前記制御装置は、
     前記変速装置から前記回転機構に出力するトルクとして前記変速装置に要求されるトルクに関するトルク要求を受け付けるように構成されたトルク要求受付部と、
    前記トルク要求受付部によって受付けられたトルク要求に応じて、前記巻線のインダクタンスを変えることによって電流を調整する前記供給電流調整部を制御するように構成された調整制御部とを備える。
  15.  ビークルであって、
     前記ビークルは、
    請求項1から13いずれか1項に記載の変速装置と、
    前記変速装置に回転パワーを供給するように構成されたエンジンと、
    前記変速装置でトルク及び回転速度が変換された回転パワーの供給を受けて前記ビークルを駆動するように構成された、前記回転機構としての回転駆動機構と
    を備える。
PCT/JP2015/082930 2014-11-25 2015-11-24 変速装置、制御装置、及びビークル WO2016084800A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112017010343A BR112017010343A2 (pt) 2014-11-25 2015-11-24 transmissão, dispositivo de controle, e veículo
CN201580063944.6A CN107005185B (zh) 2014-11-25 2015-11-24 变速装置、控制装置和车辆
RU2017122164A RU2017122164A (ru) 2014-11-25 2015-11-24 Трансмиссия, устройство управления и транспортное средство
EP15863113.5A EP3206295B1 (en) 2014-11-25 2015-11-24 Transmission device, control device, and vehicle
TW104139338A TWI611952B (zh) 2014-11-25 2015-11-25 車輛
TW104139296A TWI577597B (zh) 2014-11-25 2015-11-25 變速裝置、控制裝置、及車輛
US15/587,569 US10449846B2 (en) 2014-11-25 2017-05-05 Transmission, control device, and vehicle

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2014-237372 2014-11-25
JP2014237372A JP2018014771A (ja) 2014-11-25 2014-11-25 電流供給システム及び電力供給システム
JP2015-196669 2015-10-02
JP2015-196667 2015-10-02
JP2015196667A JP2018012346A (ja) 2015-10-02 2015-10-02 ビークル、及びビークル駆動用エンジン発電ユニット
JP2015196669A JP2018012348A (ja) 2015-10-02 2015-10-02 変速装置、制御装置、及びビークル
JP2015-196668 2015-10-02
JP2015-196670 2015-10-02
JP2015196670A JP2018012349A (ja) 2015-10-02 2015-10-02 電力供給システム、制御装置、ビークル、及びビークル駆動用エンジン発電機ユニット
JP2015196668A JP2018012347A (ja) 2015-10-02 2015-10-02 駆動システム、制御装置、及びビークル

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/587,569 Continuation-In-Part US10449846B2 (en) 2014-11-25 2017-05-05 Transmission, control device, and vehicle

Publications (1)

Publication Number Publication Date
WO2016084800A1 true WO2016084800A1 (ja) 2016-06-02

Family

ID=56074358

Family Applications (6)

Application Number Title Priority Date Filing Date
PCT/JP2015/082928 WO2016084798A1 (ja) 2014-11-25 2015-11-24 電流供給システム、電力供給システム、及び制御装置
PCT/JP2015/082931 WO2016084801A1 (ja) 2014-11-25 2015-11-24 駆動システム、及びビークル
PCT/JP2015/082933 WO2016084803A1 (ja) 2014-11-25 2015-11-24 ビークル
PCT/JP2015/082929 WO2016084799A1 (ja) 2014-11-25 2015-11-24 電力供給システム、制御装置、ビークル、及びビークル駆動用エンジン発電機ユニット
PCT/JP2015/082932 WO2016084802A1 (ja) 2014-11-25 2015-11-24 ビークル、及びビークル駆動用エンジン発電ユニット
PCT/JP2015/082930 WO2016084800A1 (ja) 2014-11-25 2015-11-24 変速装置、制御装置、及びビークル

Family Applications Before (5)

Application Number Title Priority Date Filing Date
PCT/JP2015/082928 WO2016084798A1 (ja) 2014-11-25 2015-11-24 電流供給システム、電力供給システム、及び制御装置
PCT/JP2015/082931 WO2016084801A1 (ja) 2014-11-25 2015-11-24 駆動システム、及びビークル
PCT/JP2015/082933 WO2016084803A1 (ja) 2014-11-25 2015-11-24 ビークル
PCT/JP2015/082929 WO2016084799A1 (ja) 2014-11-25 2015-11-24 電力供給システム、制御装置、ビークル、及びビークル駆動用エンジン発電機ユニット
PCT/JP2015/082932 WO2016084802A1 (ja) 2014-11-25 2015-11-24 ビークル、及びビークル駆動用エンジン発電ユニット

Country Status (8)

Country Link
US (6) US10434858B2 (ja)
EP (6) EP3206296B1 (ja)
CN (6) CN107005186B (ja)
BR (6) BR112017010337A2 (ja)
ES (1) ES2890658T3 (ja)
RU (4) RU2017122165A (ja)
TW (6) TWI596888B (ja)
WO (6) WO2016084798A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013014457A1 (de) * 2013-08-30 2015-03-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Antrieb eines Kraftfahrzeuges sowie Antriebssystem für ein Kraftfahrzeug
JP6539747B2 (ja) * 2015-10-13 2019-07-03 株式会社デンソー 鞍乗型車両用カム角センサ異常診断装置、エンジンシステム、及び鞍乗型車両
EP3517346A4 (en) * 2016-09-21 2020-05-06 NSK Ltd. ELECTRIC VEHICLE DRIVE DEVICE
US20190389467A1 (en) * 2016-09-21 2019-12-26 Nsk Ltd. Electric vehicle drive apparatus
JP6745202B2 (ja) * 2016-11-25 2020-08-26 株式会社Soken 回転電機
DE102017101145A1 (de) * 2017-01-20 2018-07-26 Torqeedo Gmbh Vorrichtung zum Bereitstellen elektrischer Energie für einen elektrischen Verbraucher und/oder zum Laden einer Batterie in einem Boot
JP6676676B2 (ja) 2018-02-22 2020-04-08 本田技研工業株式会社 電動車両および電動車両用制御装置
US10944302B2 (en) 2018-04-09 2021-03-09 Williams International Co., L.L.C. Permanent-magnet generator incorporating a variable-reluctance stator system
WO2020122110A1 (ja) * 2018-12-14 2020-06-18 日本精工株式会社 制振装置
US20210081863A1 (en) * 2019-07-25 2021-03-18 Airwire Technologies Vehicle intelligent assistant
JP7129956B2 (ja) * 2019-07-25 2022-09-02 日立建機株式会社 電動車両
RU201828U1 (ru) * 2020-10-05 2021-01-14 Общество с ограниченной ответственностью "Инжиниринговый центр "Русэлпром" (ООО "Инжиниринговый центр "Русэлпром") Транспортное средство с автоматической без перерыва мощности электромеханической трансмиссией (эмт) с центральным приводом
US11124054B1 (en) * 2020-10-06 2021-09-21 Arvinmeritor Technology, Llc Axle assembly having a sensor for detecting a shift collar
WO2023175992A1 (ja) * 2022-03-18 2023-09-21 日産自動車株式会社 発電機制御方法及び発電機制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002345109A (ja) * 2001-05-16 2002-11-29 Nissan Motor Co Ltd ハイブリッド車両
JP2006271040A (ja) * 2005-03-22 2006-10-05 Yamaha Motor Co Ltd 鞍乗型ハイブリッド車両
JP2007195334A (ja) * 2006-01-19 2007-08-02 Hitachi Ltd 鉄道車両の駆動装置
US20130096745A1 (en) * 2011-10-18 2013-04-18 Fuel Motion Inc. Method and apparatus for a vehicle control unit (VCU), Using current and historical instantaneous power usage data, to determine optimum power settings for a hybrid electric drive system

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3229138A (en) * 1962-12-04 1966-01-11 L R Power Corp Dynamoelectric machine
US3497027A (en) * 1967-08-23 1970-02-24 Albert F Wild Electric automobile
DE4025557A1 (de) * 1990-08-11 1992-02-13 Kugelfischer G Schaefer & Co Stromgenerator
US5763977A (en) * 1995-07-21 1998-06-09 Honda Giken Kogyo Kabushiki Kaisha Motor vehicle alternator and system for controlling the same
US6057622A (en) * 1999-01-21 2000-05-02 Lockhead Martin Energy Research Corporation Direct control of air gap flux in permanent magnet machines
US6072258A (en) * 1999-08-04 2000-06-06 Magna Force, Inc. Permanent magnet coupler with adjustable air gaps
US6793027B1 (en) * 1999-08-27 2004-09-21 Yamaha Hatsudoki Kabushiki Kaisha Hybrid drive system
JP2002370630A (ja) * 2001-06-15 2002-12-24 Hitachi Ltd 自動車の予防保全サービスシステム
DE10202060A1 (de) * 2002-01-18 2003-08-14 Lutz Baur Fahrzeug mit einem Antriebsmotor
JP4079213B2 (ja) 2002-04-22 2008-04-23 ヤマハモーターパワープロダクツ株式会社 エンジン発電機
US6943531B2 (en) 2002-03-20 2005-09-13 Yamaha Hatsudoki Kabushiki Kaisha Portable power supply incorporating a generator driven by an engine
JP4088865B2 (ja) * 2002-04-16 2008-05-21 スズキ株式会社 スクータ型自動二輪車
US7204011B2 (en) 2003-02-06 2007-04-17 Matra Manufacturing & Services Sas Method for manufacturing adaptive machines
TWI239712B (en) * 2003-03-31 2005-09-11 Yamaha Motor Co Ltd Rotating electric machine and electric vehicle
CN100530907C (zh) * 2003-03-31 2009-08-19 雅马哈发动机株式会社 旋转电机及电动车
TWI237231B (en) * 2004-07-15 2005-08-01 Tatung Co Method for adjusting display parameters of display equipment
JP4668721B2 (ja) * 2004-11-30 2011-04-13 日立オートモティブシステムズ株式会社 永久磁石式回転電機
JP2006191782A (ja) * 2004-12-09 2006-07-20 Yamaha Motor Co Ltd 回転電機
CN1787340B (zh) * 2004-12-09 2012-05-16 雅马哈发动机株式会社 旋转电机
CN101292411A (zh) * 2005-10-19 2008-10-22 劳伦斯·P·策普 具有去耦以消除磁感应转矩损失的轴向转子的无刷永磁电动机/发电机
EP1993187A4 (en) * 2006-03-06 2009-04-22 Honda Motor Co Ltd ENGINE
JP4462224B2 (ja) * 2006-03-31 2010-05-12 マツダ株式会社 車両のハイブリッドシステム
US20110246010A1 (en) 2006-06-09 2011-10-06 De La Torre Bueno Jose Technique for Optimizing the Use of the Motor in Hybrid Vehicles
JP5205593B2 (ja) * 2006-08-14 2013-06-05 日産自動車株式会社 回転電機
JP2008285011A (ja) * 2007-05-17 2008-11-27 Toyota Motor Corp ハイブリッド車両の制御装置
US7540466B2 (en) * 2007-07-17 2009-06-02 Inventec Multimedia & Telecom (Tianjin) Co., Ltd. Adjustable stand for electronic devices
JP2009071910A (ja) * 2007-09-11 2009-04-02 Hitachi Ltd 回転電機およびそれを搭載した自動車
US7948141B2 (en) * 2007-11-22 2011-05-24 Seiko Epson Corporation Electric motor device
JP5277655B2 (ja) * 2008-02-15 2013-08-28 セイコーエプソン株式会社 流体を受けて発電する発電装置
EP2093098B1 (en) * 2008-02-21 2010-05-12 Yamaha Hatsudoki Kabushiki Kaisha Wheel driving apparatus and electric vehicle including the same
TW201016541A (en) * 2008-10-16 2010-05-01 Zhong-Tai Chen Power system of electric vehicle
JP2010125868A (ja) 2008-11-25 2010-06-10 Denso Corp 充放電計画装置
TWM358746U (en) * 2009-02-24 2009-06-11 Chun-Wen Lay Electric vehicle having power generating auxiliary module
TWI401858B (zh) * 2009-10-05 2013-07-11 Chin Lien Hong Electric vehicle and its energy saving module power plant
US8222789B2 (en) * 2009-11-25 2012-07-17 Silicon Valley Micro M Corporation Vehicle disk motor with movable magnet poles
JP5482280B2 (ja) 2010-02-18 2014-05-07 ソニー株式会社 情報処理装置、電動移動体、及び放電管理方法
RU2478618C2 (ru) * 2010-03-15 2013-04-10 Закрытое Акционерное Общество "Инфарма" Новое биологически активное соединение n-[3-(4-нитрофениламино)-индол-2-илметилен] аминогуанидина гидрохлорид с противовоспалительной активностью
JP5744427B2 (ja) * 2010-07-13 2015-07-08 愛三工業株式会社 造粒蓄熱材および蒸発燃料処理装置
US20120012674A1 (en) * 2010-07-14 2012-01-19 Naandan Jain Irrigation C.S. Ltd. Sprinkler base
JP5521890B2 (ja) * 2010-08-20 2014-06-18 株式会社日立製作所 車両制御システム及び車両の駆動制御方法,列車制御装置
US8288982B2 (en) * 2010-12-10 2012-10-16 Current Motor Company, Inc. Permanent magnet motor with field weakening
US9028362B2 (en) 2011-02-01 2015-05-12 Jing He Powertrain and method for a kinetic hybrid vehicle
TWM421388U (en) * 2011-04-06 2012-01-21 Ho-Yo Liao The structure of generate electric power of the motor of an electric vehicle
TWM421259U (en) * 2011-05-17 2012-01-21 rong-feng Lin Power device for electric racing car
JP5665232B2 (ja) * 2011-08-06 2015-02-04 本田技研工業株式会社 車両の位置発信装置
JP5895472B2 (ja) 2011-11-22 2016-03-30 三菱自動車工業株式会社 電力供給車両
JP5900022B2 (ja) * 2012-03-01 2016-04-06 トヨタ自動車株式会社 報知装置、車両および報知装置の制御方法
WO2014054069A1 (ja) * 2012-10-03 2014-04-10 川崎重工業株式会社 電動車両及びバッテリパック
JP6033637B2 (ja) * 2012-10-25 2016-11-30 株式会社クボタ 着脱式ハイブリッドシステム及び着脱式発電機
JP5584750B2 (ja) * 2012-11-30 2014-09-03 ツネイシクラフト&ファシリティーズ株式会社 電気推進船制御システムおよび電気推進船

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002345109A (ja) * 2001-05-16 2002-11-29 Nissan Motor Co Ltd ハイブリッド車両
JP2006271040A (ja) * 2005-03-22 2006-10-05 Yamaha Motor Co Ltd 鞍乗型ハイブリッド車両
JP2007195334A (ja) * 2006-01-19 2007-08-02 Hitachi Ltd 鉄道車両の駆動装置
US20130096745A1 (en) * 2011-10-18 2013-04-18 Fuel Motion Inc. Method and apparatus for a vehicle control unit (VCU), Using current and historical instantaneous power usage data, to determine optimum power settings for a hybrid electric drive system

Also Published As

Publication number Publication date
BR112017010345A2 (pt) 2017-12-26
US20170253113A1 (en) 2017-09-07
EP3206295A1 (en) 2017-08-16
EP3205524B1 (en) 2021-07-21
CN107005184A (zh) 2017-08-01
WO2016084801A1 (ja) 2016-06-02
EP3206295B1 (en) 2020-01-01
US10434858B2 (en) 2019-10-08
TW201637345A (zh) 2016-10-16
CN107000568B (zh) 2019-10-22
TW201637346A (zh) 2016-10-16
RU2017122168A3 (ja) 2018-12-26
CN107000568A (zh) 2017-08-01
WO2016084798A1 (ja) 2016-06-02
US10081238B2 (en) 2018-09-25
EP3206294A4 (en) 2017-11-08
CN107005184B (zh) 2019-10-25
TWI574861B (zh) 2017-03-21
CN107005186A (zh) 2017-08-01
TW201628880A (zh) 2016-08-16
CN107005188B (zh) 2020-04-07
BR112017010361A2 (pt) 2017-12-26
EP3206296A4 (en) 2017-11-08
EP3206296A1 (en) 2017-08-16
EP3206293A1 (en) 2017-08-16
BR112017010343A2 (pt) 2017-12-26
US10434859B2 (en) 2019-10-08
TWI611952B (zh) 2018-01-21
EP3206294A1 (en) 2017-08-16
CN107005187A (zh) 2017-08-01
RU2017122166A3 (ja) 2018-12-26
EP3206296B1 (en) 2020-01-01
CN107005185A (zh) 2017-08-01
TWI595742B (zh) 2017-08-11
EP3206293B1 (en) 2020-01-15
WO2016084799A1 (ja) 2016-06-02
BR112017010326A2 (pt) 2017-12-26
EP3206292A1 (en) 2017-08-16
EP3205524A1 (en) 2017-08-16
CN107005188A (zh) 2017-08-01
TWI577597B (zh) 2017-04-11
US20170244348A1 (en) 2017-08-24
WO2016084802A1 (ja) 2016-06-02
RU2017122165A3 (ja) 2018-12-26
EP3205524A4 (en) 2018-04-11
EP3206292A4 (en) 2017-11-08
US20170253233A1 (en) 2017-09-07
EP3206294B1 (en) 2019-10-30
TWI596888B (zh) 2017-08-21
EP3206292B1 (en) 2019-10-16
US20170240053A1 (en) 2017-08-24
TW201623041A (zh) 2016-07-01
EP3206292B8 (en) 2020-02-26
US10493833B2 (en) 2019-12-03
BR112017010337A2 (pt) 2017-12-26
WO2016084803A1 (ja) 2016-06-02
RU2017122168A (ru) 2018-12-26
BR112017010338A2 (pt) 2017-12-26
US10358022B2 (en) 2019-07-23
RU2017122166A (ru) 2018-12-26
RU2017122164A (ru) 2018-12-26
TWI641528B (zh) 2018-11-21
EP3206295A4 (en) 2017-11-08
ES2890658T3 (es) 2022-01-21
TW201623083A (zh) 2016-07-01
CN107005186B (zh) 2019-10-25
CN107005187B (zh) 2019-10-25
US20170244349A1 (en) 2017-08-24
CN107005185B (zh) 2019-10-25
EP3206293A4 (en) 2017-11-08
RU2017122164A3 (ja) 2018-12-26
TW201636262A (zh) 2016-10-16
RU2017122165A (ru) 2018-12-26
US20170256106A1 (en) 2017-09-07
US10449846B2 (en) 2019-10-22

Similar Documents

Publication Publication Date Title
WO2016084800A1 (ja) 変速装置、制御装置、及びビークル
US7825623B2 (en) Electric vehicle drive apparatus
JP2018012348A (ja) 変速装置、制御装置、及びビークル
JP2018012347A (ja) 駆動システム、制御装置、及びビークル
JP2018012349A (ja) 電力供給システム、制御装置、ビークル、及びビークル駆動用エンジン発電機ユニット
OA18282A (en) Transmission device, control device, and vehicle.
OA18283A (en) Drive system and vehicle.
JP2018014771A (ja) 電流供給システム及び電力供給システム
OA18281A (en) Electric power supply system, control device, vehicle, and engine/generator unit for vehicle drive.
JP2008220108A (ja) 電気自動車用駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863113

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015863113

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017010343

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017122164

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017010343

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170517

NENP Non-entry into the national phase

Ref country code: JP