WO2016047691A1 - 感光性樹脂組成物、感光性樹脂積層体、樹脂パターンの製造方法、硬化膜及び表示装置 - Google Patents
感光性樹脂組成物、感光性樹脂積層体、樹脂パターンの製造方法、硬化膜及び表示装置 Download PDFInfo
- Publication number
- WO2016047691A1 WO2016047691A1 PCT/JP2015/076940 JP2015076940W WO2016047691A1 WO 2016047691 A1 WO2016047691 A1 WO 2016047691A1 JP 2015076940 W JP2015076940 W JP 2015076940W WO 2016047691 A1 WO2016047691 A1 WO 2016047691A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- photosensitive resin
- film
- compound
- mass
- resin laminate
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
- G03F7/032—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
- G03F7/033—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
- G03F7/028—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
- G03F7/031—Organic compounds not covered by group G03F7/029
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/038—Macromolecular compounds which are rendered insoluble or differentially wettable
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/09—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/30—Imagewise removal using liquid means
- G03F7/32—Liquid compositions therefor, e.g. developers
- G03F7/322—Aqueous alkaline compositions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
- B32B2457/208—Touch screens
Definitions
- the present invention relates to a photosensitive resin composition, a photosensitive resin laminate, a method for producing a resin pattern using the photosensitive resin laminate, a cured film, and a display device, and more particularly a liquid crystal display device and an organic EL display device.
- Photosensitive resin composition, photosensitive resin laminate suitable for forming flattening film, protective film and interlayer insulating film of electronic parts such as touch panel display device, integrated circuit element, solid-state imaging element, semiconductor element and the like
- the present invention relates to a method for manufacturing a resin pattern.
- Touch panels are used not only for large electronic devices such as personal computers and televisions, but also for small electronic devices such as car navigation systems, mobile phones, and electronic dictionaries, and display devices such as OA / FA devices.
- An electrode made of a material is provided.
- ITO Indium-Tin-Oxide
- indium oxide Indium oxide
- tin oxide As the transparent conductive electrode material, ITO (Indium-Tin-Oxide), indium oxide, and tin oxide are known, and these materials have high visible light transmittance, so that electrode materials for substrates for liquid crystal display elements, etc. It is mainly used as.
- Existing touch panel methods include resistive film method, optical method, pressure method, capacitance method, electromagnetic wave induction method, image recognition method, vibration detection method, ultrasonic method, etc.
- capacitive touch panels have been most advanced.
- a capacitive touch panel when a fingertip, which is a conductor, contacts the touch input surface, capacitive coupling occurs between the fingertip and the conductive film, thereby forming a capacitor.
- the capacitive touch panel detects the coordinates by capturing the change in charge at the contact position of the fingertip.
- the projected capacitive touch panel can detect multiple points on the fingertip, and thus has a good operability to give complicated instructions.
- a plurality of X electrodes and a plurality of Y electrodes orthogonal to the plurality of X electrodes have a two-layer structure in order to express two-dimensional coordinates by the X axis and the Y axis.
- ITO is used as the electrode material.
- the frame area of the touch panel is an area where the touch position cannot be detected, reducing the area of the frame area is an important factor for improving the product value.
- metal wiring is required to transmit a touch position detection signal, but in order to reduce the frame area, it is necessary to reduce the width of the metal wiring.
- copper is used for metal wiring.
- a load may be applied to the touch panel itself.
- the load on the protective film increases with the curvature of the substrate, and cracks are likely to occur.
- Patent Documents 1 and 2 These solutions are proposed in Patent Documents 1 and 2, for example.
- the protective film is used to suppress corrosion of the copper wiring used to transmit the touch position detection signal, but there is no description relating to bending resistance.
- patent document 2 although there exists description that a toughness can be provided to material by combining a specific crosslinking agent, only description of an elasticity modulus is described and the relationship with crack resistance is not described.
- a protective film for protecting the wiring board surface or pattern circuit provided on the flexible display substrate in addition to the protective film, various films such as a photosensitive coverlay film and a photosensitive dry film resist can be used. A photosensitive material is also used.
- Epoxy films have been handled for a long time and are excellent in heat resistance and chemical resistance, but are known to have poor bending resistance.
- Patent Document 3 proposes a dry film resist used when producing a printed wiring board.
- the flexibility of the resist after hardening is excellent, in performance required as a permanent material which protects an electrode or metal wiring (For example, corrosion suppression of copper wiring, the thermomechanical strength of material, etc.) No related description has been made.
- Patent Document 4 A polyimide film is proposed in Patent Document 4, for example.
- Patent Document 4 although heat resistance, chemical resistance and bending resistance in a cured film are excellent, gas generated during imidization reaction or deblocking of blocked isocyanate is cited as a matter of concern. It is done.
- an object of the present invention is to provide a photosensitive resin composition and a photosensitive resin which are less outgassing at the time of thermosetting, have an excellent balance of rust prevention, flexibility and hardness, and are suitable for protecting conductor parts such as wiring and electrodes. It is to provide a resin laminate.
- the present inventors have conducted intensive studies, and as a result, (A) an alkali-soluble polymer, (B) a compound having an ethylenically unsaturated double bond, and (C) a photosensitizer containing a photopolymerization initiator.
- the crosslinked density after curing of the photosensitive resin laminate formed from the photosensitive resin composition is 1,000 to 8,000 mol / m 3 and the peak top value of Tan ⁇ is 0.4 or more, and the refractive index in the 532 nm region is When it is in the range of 1.50 to 1.60, it has been found that the film has an excellent balance of rust prevention, flexibility and hardness, and the present invention has been completed.
- the present invention is as follows. [1] (A) an alkali-soluble polymer; (B) a compound having an ethylenically unsaturated double bond; and (C) a photopolymerization initiator; Is a photosensitive resin laminate in which a photosensitive resin layer containing is laminated on a support film, The photosensitive resin laminate is used for forming a protective film of a conductor part, The photosensitive resin layer has a thickness of 20 ⁇ m or less, and the cured product of the photosensitive resin layer has the following (1) to (3): (1) The crosslink density is 1,000 mol / m 3 to 8,000 mol / m 3 ; (2) The peak top value of Tan ⁇ is 0.4 or more; and (3) The refractive index at a wavelength of 532 nm is 1.50 to 1.60; Satisfying the conditions of The photosensitive resin laminate.
- the compound (B) having an ethylenically unsaturated double bond is a compound having at least three ethylenically unsaturated double bonds, and the following formula (1) in the molecule: ⁇ In the formula, A is an alkylene group having 4 or more carbon atoms, and m is an integer of 1 to 30.
- the (A) alkali-soluble polymer contains a phenyl group which may have a substituent
- the (B) compound having an ethylenically unsaturated double bond is represented by the following formula (1): ⁇ In the formula, A is an alkylene group having 4 or more carbon atoms, and m is an integer of 1 to 30.
- the photosensitive resin composition according to [8] or [9], wherein the photosensitive resin composition for a wiring protective film further contains (D) a thermal crosslinking agent.
- a photosensitive resin laminate comprising: a supporting film; and a photosensitive resin layer comprising the photosensitive resin composition for a wiring protective film according to any one of [8] to [10] provided on the supporting film. body.
- Pattern production comprising a step of laminating the photosensitive resin laminate according to any one of [1] to [7] and [11] on a substrate, exposing and developing the pattern to produce a pattern Method.
- a cured film pattern obtained by subjecting the pattern obtained by the method according to [12] to post-exposure treatment and / or heat treatment.
- a touch panel display device having the cured film pattern according to [13].
- the apparatus which has a cured film pattern and touch sensor as described in [13].
- a photosensitive resin composition and a photosensitive resin laminate that have an excellent balance of rust prevention, flexibility and hardness and are suitable for wiring protection.
- the photosensitive resin laminate is composed of a photosensitive resin composition containing (A) an alkali-soluble polymer, (B) a compound having an ethylenically unsaturated double bond, and (C) a photopolymerization initiator. It is formed.
- the photosensitive resin composition may further contain (D) a thermal crosslinking agent and / or other compounds, if desired.
- the photosensitive resin composition is preferably used for forming a protective film for a conductor portion, and more preferably used for forming a protective film for a wiring or a protective film for a touch panel electrode. Each component constituting the photosensitive resin composition will be specifically described below.
- Alkali-soluble polymer is a polymer containing a carboxyl group, for example, (meth) acrylic acid, (meth) acrylic acid ester, (meth) acrylonitrile, (meth) acrylamide, etc. A combined or novolak resin-modified product is shown.
- a copolymer as a binder polymer in addition to the structural units described above, other monomers copolymerizable with these structural units may be included as structural units.
- other monomers include hydroxyalkyl (meth) acrylate, maleic anhydride derivatives, (meth) acrylic acid tetrahydrofurfuryl ester, (meth) acrylic acid dimethylaminoethyl ester, (meth) acrylic acid diethylaminoethyl ester, ( (Meth) acrylic acid glycidyl ester, (meth) acrylic acid benzyl ester, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, (meth) acrylamide, (Meth) acrylonitrile, diacetone (meth) acrylamide, styrene, vinyltoluene, and PR-300G (trade name, manufactured by Show
- copolymers from the viewpoint of rust prevention of the wiring or electrode produced on the substrate, it is derived from a structural unit derived from (meth) acrylic acid and (meth) acrylic acid aromatic ester or styrene.
- a copolymer containing a structural unit is more preferable.
- the hydrophobicity of the alkali-soluble polymer is increased and the rust prevention property is improved.
- the aromatic group may be, for example, a phenyl group that may have a substituent.
- the alkali-soluble polymer having an aromatic group increases the film density after curing of the photosensitive resin laminate and improves the rust prevention property.
- the film density of the photosensitive resin layer has a close correlation with the refractive index, and the film density tends to increase as the refractive index increases. From the viewpoint of rust prevention, it is considered that a higher refractive index is preferable, but from the viewpoint of developability, if it is too high, developability deteriorates.
- the acid equivalent (g / mol) of the alkali-soluble polymer is preferably 430 to 860.
- the acid equivalent is preferably 430 or more from the viewpoint of improving rust prevention, and preferably 860 or less from the viewpoint of improving developability.
- the acid equivalent is more preferably 430 to 570, and still more preferably 430 to 510, from the viewpoint of the balance between rust prevention and developability.
- the acid equivalent is measured by a potentiometric titration method using a Hiranuma automatic titrator (COM-555) manufactured by Hiranuma Sangyo Co., Ltd. and using 0.1 mol / L sodium hydroxide.
- the acid equivalent refers to that of the entire alkali-soluble polymer.
- the weight average molecular weight of the alkali-soluble polymer is not limited, but is usually preferably 5,000 or more and 500,000 or less from the viewpoints of coatability, coating film strength, and developability.
- the weight average molecular weight of the alkali-soluble polymer is preferably 5,000 or more from the viewpoint of the properties of the development aggregate and the properties of the unexposed film such as the edge fuse property and the cut chip property of the photosensitive resin laminate. From the viewpoint of improving developability, 500,000 or less is preferable.
- the edge fuse property is a phenomenon in which the photosensitive resin composition layer protrudes from the end face of the roll when the photosensitive resin laminate is rolled up.
- Cut chip property is a phenomenon in which a chip flies when an unexposed film is cut with a cutter. If the scattered chips adhere to the upper surface of the photosensitive resin laminate or the like, it is transferred to the mask in the subsequent exposure process or the like, causing a defect.
- the weight average molecular weight of the alkali-soluble polymer is more preferably 5,000 or more and 300,000 or less, and still more preferably 10,000 or more and 200,000 or less.
- the measurement of the weight average molecular weight is performed using gel permeation chromatography (GPC) manufactured by JASCO Corporation set under the following conditions. The obtained weight average molecular weight is a polystyrene equivalent value.
- the content of the alkali-soluble polymer in the photosensitive resin composition is 30% by mass to 70% by mass based on the mass of the photosensitive resin composition, and the anticorrosive property of the wiring or electrode produced on the substrate. In view of the above, it is preferably 40 to 65% by mass, more preferably 50% to 60% by mass.
- the compound having an ethylenically unsaturated double bond is, for example, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, polyalkylene glycol-modified trimethylolpropane.
- unsaturated carboxylic acids for example, acrylic acid, methacrylic acid, etc.
- ⁇ , ⁇ -unsaturated carboxylic acids are added to glycidyl group-containing compounds such as trimethylolpropane triglycidyl ether tri (meth) acrylate Examples thereof include compounds obtained by addition.
- a compound having at least three ethylenically unsaturated double bonds should be used. Specific examples thereof are selected from (meth) acrylate compounds having a skeleton derived from pentaerythritol, (meth) acrylate compounds having a skeleton derived from trimethylolpropane, and (meth) acrylate compounds having a skeleton derived from glycerin.
- the (meth) acrylate having a skeleton derived from pentaerythritol means an esterified product of pentaerythritol or dipentaerythritol and (meth) acrylic acid, and the esterified product is modified with an alkyleneoxy group.
- compounds include compounds.
- a compound having 1 to 6 ester bonds in one molecule may be mixed (in the case of pentaerythritol, the maximum number of ester bonds is 4, and in the case of dipentaerythritol, ester bonds Is a maximum of 6).
- the (meth) acrylate compound having a skeleton derived from trimethylolpropane means an esterified product of trimethylolpropane or ditrimethylolpropane and (meth) acrylic acid, and the esterified product is modified with an alkyleneoxy group. Also included are compounds.
- a compound having 1 to 4 ester bonds in one molecule may be mixed (in the case of trimethylolpropane, the maximum number of ester bonds is 3, and in the case of ditrimethylolpropane, The number of bonds is a maximum of 4).
- the (meth) acrylate compound having a skeleton derived from glycerin means an esterified product of glycerin or diglycerin and (meth) acrylic acid, and the esterified product includes a compound modified with an alkyleneoxy group. .
- a compound having 1 to 4 ester bonds in one molecule may be mixed (in the case of glycerol, the maximum number of ester bonds is 3, and in the case of diglycerol, the number of ester bonds) Is a maximum of 4).
- a (meth) acrylate compound having a skeleton derived from pentaerythritol modified with alkylene oxide which is a flexible chain
- a (meth) acrylate compound having a skeleton derived from trimethylolpropane and a skeleton derived from glycerin
- Preferred is at least one compound selected from (meth) acrylate compounds having polyethylene, diethylene glycol di (meth) acrylate, and polytetramethylene glycol di (meth) acrylate, and among these, derived from pentaerythritol modified with alkylene oxide
- a small amount selected from a (meth) acrylate compound having a skeleton, a (meth) acrylate compound having a skeleton derived from trimethylolpropane, and polytetramethylene glycol di (meth) acrylate With one compound are more preferable.
- the above-mentioned compound having an ethylenically unsaturated double bond can be used alone, but is preferably used in combination of two or more kinds from the viewpoint of compatibility between rust prevention and flexibility.
- the compound having an ethylenically unsaturated double bond has the following general formula (1) in the molecule: ⁇ In the formula, A is an alkylene group having 4 or more carbon atoms, and m is an integer of 1 to 30. ⁇ More preferably, the compound (B-1) containing a group represented by the formula:
- A is a divalent alkylene group having 4 or more carbon atoms from the viewpoint of achieving both rust prevention and flexibility.
- Preferable examples of compound (B-1) include 1,5-pentanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and 1,7-heptanediol di (meth) acrylate, for example.
- preferred examples of the compound (B-1) include, for example, one or more selected from the group consisting of bisphenol A, pentaerythritol, glycerin, dipentaerythritol, diglycerin, and isocyanurate modified with polytetramethylene oxide.
- Reactive urethane oligomer compound obtained by reacting a polyurethane prepolymer comprising a polytetramethylene glycol polyol and a diisocyanate compound with hydroxyethyl (meth) acrylate or hydroxypropyl (meth) acrylate Is mentioned.
- A is preferably a linear divalent alkylene group having 4 or more carbon atoms, and the repeating unit m is 2 to More preferably, it is an integer of 30.
- the compound having an ethylenically unsaturated double bond is represented by the following general formula (2): It is preferable that the compound (B-2) containing the group represented by these is included.
- the leftmost carbon atom can be a primary to quaternary carbon atom, but is preferably a quaternary carbon atom.
- a compound having a skeleton derived from trimethylolpropane is preferable. Suitable examples include, for example, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate or triacrylate modified with alkylene oxide, ditrimethylolpropane tetramethacrylate, ditrimethylolpropane tetraacrylate, alkylene oxide.
- tetramethacrylate or tetraacrylate of ditrimethylolpropane modified by the above.
- trimethylolpropane trimethacrylate or ditrimethylolpropane tetramethacrylate is preferred.
- the compound containing both the group represented by the general formula (1) and the group represented by the general formula (2) in the molecule is the compound (B-1) and the compound (B- 2) Has both functions. Therefore, in this embodiment, when such a compound is used alone, it should be understood that both the compound (B-1) and the compound (B-2) are used.
- Examples of the compound containing both the group represented by the general formula (1) and the group represented by the general formula (2) in the molecule include trimethylolpropane or ditrimethylolpropane modified with polytetramethylene oxide. And poly (meth) acrylate compounds.
- the content of the compound having an ethylenically unsaturated double bond in the photosensitive resin composition is 20% by mass or more based on the mass of the photosensitive resin composition from the viewpoint of resolution, adhesion and rust prevention. It is preferably 60% by mass, more preferably 30% by mass to 50% by mass.
- the content of the compound (B-1) in the photosensitive resin composition is 10% by mass to 60% by mass with respect to 100% by mass of (A) the alkali polymer. Is preferred.
- the content of the compound (B-1) is preferably 10% by mass or more from the viewpoint of flexibility, preferably 60% by mass or less, more preferably 20% by mass to 50% by mass from the viewpoint of rust prevention and pencil hardness. It is.
- the content of the compound (B-2) in the photosensitive resin composition is preferably 10% by mass to 60% by mass with respect to 100 parts by mass of the (A) alkali polymer.
- the content of the compound (B-2) is preferably 10% by mass or more from the viewpoint of rust prevention, preferably 60% by mass or less, more preferably 20% by mass to 50% by mass from the viewpoint of flexibility.
- Photopolymerization initiator for example, benzophenone, N, N, N ′, N′-tetramethyl-4,4′-diaminobenzophenone (Michler ketone), N, N, N ′, N′-tetraethyl- 4,4′-diaminobenzophenone, 4-methoxy-4′-dimethylaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-methyl-1- [4- Aromatic ketones such as (methylthio) phenyl] -2-morpholino-propanone-1, acrylated benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide; benzoin ether compounds such as benzoin methyl ether, benzoin ethyl ether and benzoin phenyl ether Benzoins
- an oxime ester compound and / or a phosphine oxide compound are preferable from the transparency of the protective film formed and the pattern forming ability when the film thickness is 10 ⁇ m or less.
- oxime ester compound examples include ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime) (BASF Japan , Irgacure Oxe02), 1- [4- (phenylthio) phenyl] -3-cyclopentylpropane-1,2-dione-2- (o-benzoyloxime) (TR-PBG-305, manufactured by Nikko Chemtech Co., Ltd.) Product name), and 1,2-propanedione, 3-cyclohexyl-1- [9-ethyl-6- (2-furanylcarbonyl) -9H-carbazol-3-yl]-, 2- (O-acetyloxime) ) (TR-PBG-326 manufactured by Nikko Chemtech Co., Ltd., product name).
- 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide is preferable because of the transparency of the protective film formed and the pattern forming ability when the film thickness is 10 ⁇ m or less.
- 2,4,6-Trimethylbenzoyl-diphenyl-phosphine oxide is commercially available, for example, as LUCIRIN TPO (trade name, manufactured by BASF Corporation).
- the content of the photopolymerization initiator in the photosensitive resin composition is 0.1% by mass to 10% by mass with respect to 100% by mass of the total solid content of the photosensitive resin composition. From the viewpoint of properties, the content is more preferably 0.5% by mass to 5% by mass. If the content of the photopolymerization initiator is in the range of 0.1% by mass to 10% by mass, the photosensitivity will be sufficient, and the absorption on the surface of the composition will increase when irradiated with actinic rays. Problems such as insufficient internal photocuring and a decrease in visible light transmittance can be suppressed.
- thermal crosslinking agent means a compound that causes an addition reaction or a condensation reaction with (A) an alkali-soluble polymer or an unreacted (B) compound having an ethylenically unsaturated double bond by heat.
- the temperature causing the addition reaction or condensation reaction is preferably 100 ° C. to 150 ° C. The addition reaction or condensation reaction occurs during heat treatment after pattern formation by development.
- Specific thermal crosslinking agents include maleimide compounds, epoxy compounds, oxetane compounds, melamine compounds, and the following general formula (3): ⁇ In the formula, X represents an aromatic group which may have a substituent, or a nitrogen atom; R 1 represents hydrogen or an alkyl group having 1 to 4 carbon atoms; and n represents 1 or 2] It is an integer. ⁇ Although the compound which has a structure represented by these is mentioned, It is not limited to these.
- maleimide compound general maleimide or maleimide derivatives can be used. Specific examples thereof include maleimide, N-methylmaleimide, N-ethylmaleimide, Nn-propylmaleimide, N-isopropylmaleimide.
- Y represents an alkylene chain optionally having 1 to 10 carbon atoms or an arylene chain having 6 to 15 carbon atoms
- R 2 to R 7 are each independently hydrogen
- carbon number Re represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 6 carbon atoms or a hydroxy group
- o, p, q, r, s and t each independently represents an integer of 1 to 4;
- Y is preferably an alkylene chain optionally having 1 to 6 carbon atoms or an arylene chain having 6 to 10 carbon atoms
- R 2 to R 7 are These are preferably each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a hydroxy group.
- the alkylene chain, arylene chain, alkyl group and alkoxy group may be either unsubstituted or substituted.
- bismaleimides represented by the general formulas (4) to (6) include, for example, 1,2-bis (maleimide) ethane, 1,3-bis (maleimido) propane, 1,4-bis ( Maleimido) butane, 1,5-bis (maleimido) pentane, 1,6-bis (maleimido) hexane, 2,2,4-trimethyl-1,6-bis (maleimido) hexane, N, N′-1,3 -Phenylenebis (maleimide), 4-methyl-N, N'-1,3-phenylenebis (maleimide), N, N'-1,4-phenylenebis (maleimide), 3-methyl-N, N'- 1,4-phenylenebis (maleimide), 4,4′-bis (maleimido) diphenylmethane, 3,3′-diethyl-5,5′-dimethyl-4,4′-bis (maleimido) diphenylmethane or 2 2- bis [4- (4-maleimide
- the maleimide compound is preferably a bismaleimide compound represented by the general formulas (4) to (6) from the viewpoint of wet heat resistance of the cured film or adhesion to the substrate.
- 3,3′-diethyl-5,5′-dimethyl-4,4′-bis (from the viewpoint of transmittance in the visible light region (400 nm to 700 nm)
- Maleimido diphenylmethane or 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane
- 3,3′-diethyl-5,5′-dimethyl-4,4′-bis (maleimido) diphenylmethane is particularly preferred. preferable.
- the epoxy compound examples include an alkylene oxide compound, an epoxy compound containing a bisphenol A type group, and a compound containing a hydrogenated bisphenol A type group.
- the alkylene oxide compound include ethylene glycol diglycidyl ether (for example, Epolite 40E manufactured by Kyoeisha Chemical Co., Ltd.), diethylene glycol diglycidyl ether (for example, Epolite 100E manufactured by Kyoeisha Chemical Co., Ltd.), triethylene glycol diglycidyl ether, tetra Ethylene glycol diglycidyl ether (for example, Epolite 200E manufactured by Kyoeisha Chemical Co., Ltd.), pentaethylene glycol diglycidyl ether, hexaethylene glycol diglycidyl ether, heptaethylene glycol diglycidyl ether, octaethylene glycol diglycidyl ether, nonaethylene glycol diglycidyl Ether (for example, Epoli
- Tetrapropylene glycol diglycidyl ether pentapropylene glycol diglycidyl ether, hexapropylene glycol diglycidyl ether, heptapropylene glycol diglycidyl ether (for example, Epolite 400P manufactured by Kyoeisha Chemical Co., Ltd.), octapropylene glycol diglycidyl ether, nonapropylene glycol di Glycidyl ether, decapropylene glycol diglycidyl ether, tetramethylene glycol diglycidyl ether, ditetramethylene glycol diglycidyl ether, tritetramethylene glycol diglycidyl ether, tetratetramethylene glycol diglycidyl ether, pentatetramethylene glycol diglycidyl ether, hexa Tetramethylene glycol diglycy Ether, heptatetramethylene glycol diglycidyl ether, octate
- Examples include diglycidyl ethers containing n1 mol and n2 mol of ethylene glycol and propylene glycol, respectively.
- Examples of n1 and n2 in the diglycidyl ether include combinations described in Table 1 below.
- Examples of the epoxy compound containing a bisphenol A type group include, for example, bisphenol A-propylene oxide 2-mol adduct diglycidyl ether (for example, Epolite 3002 manufactured by Kyoeisha Chemical Co., Ltd.) Glycidyl ether, bisphenol A-propylene oxide 6 mol adduct diglycidyl ether, bisphenol A-propylene oxide 8 mol adduct diglycidyl ether, bisphenol A-propylene oxide 10 mol adduct diglycidyl ether, bisphenol A-ethylene oxide 2 mol adduct Diglycidyl ether, bisphenol A-ethylene oxide 4 mol adduct diglycidyl ether, bisphenol A-ethylene oxide 6 mol adduct diglycid Examples thereof include dil ether, bisphenol A-ethylene oxide 8 mol adduct diglycidyl ether, and bisphenol A-ethylene oxide 10 mol adduct diglycidyl ether.
- Examples of the compound containing a hydrogenated bisphenol A type group include hydrogenated bisphenol A-ethylene oxide 2 mol adduct diglycidyl ether, hydrogenated bisphenol A-ethylene oxide 4 mol adduct diglycidyl ether, hydrogenated bisphenol A-ethylene oxide.
- oxetane compounds include 1,4-bis ⁇ [(3-ethyl-3-oxetanyl) methoxy] methyl ⁇ benzene, bis [1-ethyl (3-oxetanyl)] methyl ether, 4,4′-bis [(3 -Ethyl-3-oxetanyl) methyl] biphenyl, 4,4′-bis (3-ethyl-3-oxetanylmethoxy) biphenyl, ethylene glycol bis (3-ethyl-3-oxetanylmethyl) ether, diethylene glycol bis (3-ethyl -3-Oxetanylmethyl) ether, bis (3-ethyl-3-oxetanylmethyl) diphenoate, trimethylolpropane tris (3-ethyl-3-oxetanylmethyl) ether, pentaerythritol tetrakis (3-ethyl-3-oxetanyl
- Examples of the melamine compound include trimethylol melamine, hexamethylol melamine, trimethoxymethyl melamine, hexamethoxymethyl melamine and the like. From the viewpoint of storage stability, trimethoxymethyl melamine and hexamethoxymethyl melamine are preferable.
- R 8 and R 9 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms and R 10 CO— (where R 10 is a carbon atom having 1 to 10 carbon atoms) A hydrogen group.) Is a group selected from the group consisting of: ⁇ And the following general formula (8): ⁇ Wherein R 11 is a hydrogen atom or a monovalent group selected from the group consisting of a methyl group, an ethyl group, an n-propyl group, and an isopropyl group, and R 12 is a hydrogen atom, a hydroxyl group, a carbon At least one monovalent organic group selected from the group consisting of an alkyl group having 1 to 4 atoms, an alkoxy group, an ester group having 2 to 10 carbon atoms, and a urethane group having 2 to 10 carbon atoms; 1 is an integer from 1 to 5, u 2
- Examples of the compound having the structure represented by the general formula (7) include compounds selected from the group consisting of the structure represented by the following general formula (9).
- Examples of the compound having the structure represented by the general formula (8) include compounds selected from the group consisting of the structure represented by the following general formula (10).
- a compound selected from the group consisting of the structure represented by the general formula (9) is preferable.
- thermal cross-linking agents it consists of bismaleimide and a structure represented by the above general formula (9) from the viewpoints of heat and humidity resistance of a cured film, adhesion to a substrate and developability.
- a compound selected from the group is preferred, and bismaleimide is more preferred from the viewpoint of storage stability.
- the content of the thermal crosslinking agent in the photosensitive resin composition is preferably 0.2% by mass to 10% by mass with respect to 100% by mass of the total solid content in the photosensitive resin composition. From the viewpoint of obtaining flexibility, resolution, and hardness, it is more preferably 1% by mass to 7% by mass, and further preferably 2% by mass to 5% by mass. (D) When the content of the thermal crosslinking agent is in the range of 0.2% by mass to 10% by mass, the balance of the performance is good.
- the photosensitive resin composition has at least one compound selected from the group consisting of a triazole compound, a thiadiazole compound, and a tetrazole compound (hereinafter ( It is preferable to further contain E) (also referred to as component).
- triazole compound examples include benzotriazole, 1H-benzotriazole-1-acetonitrile, 5-carboxybenzotriazole, 1- (2-di-n-butylaminomethyl) -5-carboxybenzotriazole, 1- (2-di -N-butylaminomethyl) -6-carboxybenzotriazole, 1H-benzotriazole-1-methanol, carboxybenzotriazole, 1-hydroxybenzotriazole, triazole compounds containing a mercapto group such as 3-mercaptotriazole; 3-amino- And triazole compounds containing an amino group such as 5-mercaptotriazole.
- thiadiazole compound examples include 2-amino-5-mercapto-1,3,4-thiadiazole, 2,1,3-benzothiadiazole and the like.
- tetrazole compound examples include 1H-tetrazole, 5-amino-1H-tetrazole, 5-methyl-1H-tetrazole, 1-methyl-5-ethyl-tetrazole, and 1-methyl-5-mercapto-tetrazole. 1-carboxymethyl-5-mercapto-tetrazole and the like.
- triazole compounds containing amino groups triazole compounds containing carboxyl groups, hydroxyl groups
- triazole compounds containing groups and 5-amino-1H-tetrazole are particularly preferred.
- the content of the component (E) in the photosensitive resin composition is preferably 0.05% by mass to 10% by mass with respect to 100% by mass of the total solid content of the photosensitive resin composition. More preferably, the content is 0.1% by mass to 2.0% by mass, and further preferably 0.2% by mass to 1.0% by mass. If the content of the component (E) is in the range of 0.05% by mass to 10% by mass, the ability to suppress electrode corrosion or adhesion to the metal electrode is suppressed while suppressing defects such as developability or resolution. The effect which improves property can fully be acquired.
- the photosensitive resin composition preferably contains a polymerization inhibitor (hereinafter also referred to as component (F)) from the viewpoint of thermal stability and storage stability.
- a polymerization inhibitor hereinafter also referred to as component (F)
- polymerization inhibitor examples include p-methoxyphenol, hydroquinone, pyrogallol, naphthylamine, tert-butylcatechol, cuprous chloride, 2,6-di-tert-butyl-p-cresol, 2,2′-methylenebis ( 4-methyl-6-tert-butylphenol), 2,2′-methylenebis (4-ethyl-6-tert-butylphenol), nitrosophenylhydroxyamine aluminum salt, diphenylnitrosamine and the like.
- the content of the polymerization inhibitor (F) in the photosensitive resin composition is preferably 0.005% by mass to 1% by mass with respect to 100% by mass of the total solid content of the photosensitive resin composition. It is more preferably from 0.5% by mass to 0.5% by mass, and even more preferably from 0.02% by mass to 0.1% by mass. (F) If the content of the polymerization inhibitor is in the range of 0.005% by mass to 1% by mass, the storage stability of the photosensitive resin composition can be ensured without greatly suppressing the photocrosslinking performance.
- adhesion imparting agents such as silane coupling agents, leveling agents, plasticizers, fillers, antifoaming agents, flame retardants, stabilizers, antioxidants, perfumes, thermal crosslinking agents. And the like can be contained in an amount of about 0.01 to 20 parts by mass with respect to 100 parts by mass of the total amount of component (A) and component (B). These can be used alone or in combination of two or more.
- the photosensitive resin laminate includes a photosensitive resin layer made of a photosensitive resin composition and a support, and may further include a protective film for protecting the photosensitive resin layer in some cases.
- a layer made of the photosensitive resin composition is laminated on a support, and when a protective film is required, a protective film is provided on the surface of the photosensitive resin layer opposite to the support.
- the method for forming a photosensitive resin layer includes a step of applying and drying a coating solution on a support such as a PET film.
- the coating liquid can be obtained by uniformly dissolving the photosensitive resin composition in a solvent.
- Examples of the solvent for dissolving the photosensitive resin composition include ketones typified by methyl ethyl ketone (MEK); alcohols typified by methanol, ethanol, or isopropanol.
- MEK methyl ethyl ketone
- the solvent is preferably added to the photosensitive resin composition so that the viscosity of the solution of the photosensitive resin composition applied onto the support is 10 mPa ⁇ s to 500 mPa ⁇ s at 25 ° C.
- Application methods include, for example, doctor blade coating method, Meyer bar coating method, roll coating method, screen coating method, spinner coating method, inkjet coating method, spray coating method, dip coating method, gravure coating method, curtain coating method, die coating Examples thereof include a coating method.
- the drying conditions of the coating solution are not particularly limited, but the drying temperature is preferably 50 ° C. to 130 ° C., and the drying time is preferably 30 seconds to 30 minutes.
- the support used here is preferably a transparent one that transmits light emitted from the exposure light source.
- support films include polyethylene terephthalate film, polyvinyl alcohol film, polyvinyl chloride film, vinyl chloride copolymer film, polyvinylidene chloride film, vinylidene chloride copolymer film, polymethyl methacrylate copolymer film, Examples thereof include a polystyrene film, a polyacrylonitrile film, a styrene copolymer film, a polyamide film, and a cellulose derivative film. These films can be stretched if necessary.
- the haze is preferably 5 or less. The thinner the film, the more advantageous in terms of image formation and economy, but a film having a thickness of 10 to 30 ⁇ m is preferably used in order to maintain the strength.
- the protective film constituting the photosensitive resin laminate will be described.
- An important characteristic of the protective film used here is that the protective film is sufficiently smaller than the support film in terms of adhesion to the photosensitive resin layer and can be easily peeled off.
- a polymer film can be used as the protective film. Examples of the polymer film include polyethylene, polypropylene, polyethylene-vinyl acetate copolymer, and a film made of a laminated film of polyethylene-vinyl acetate copolymer and polyethylene.
- the protective film when the film is produced by a method of hot-melting, kneading, extruding and stretching the material, or casting, a defect that can occur when undissolved materials and deteriorated materials of the material are incorporated into the film ( Hereinafter referred to as “fisheye”).
- the diameter of the fish eye varies depending on the material, but is about 10 ⁇ m to 1 mm, and the height from the film surface is about 1 to 50 ⁇ m.
- the fish eye diameter can be measured by, for example, an optical microscope, a contact surface roughness meter, or a scanning electron microscope.
- the diameter of the fish eye means the maximum diameter.
- the diameter of fish eyes in the protective film is preferably as small as possible, and the number of fish eyes is preferably as small as possible.
- the number of fish eyes having a diameter of 50 ⁇ m or more is more preferably 300 / m 2 or less, further preferably 100 / m 2 or less, and particularly preferably 50 / m 2 or less.
- the polymer film is preferably formed of polypropylene from the viewpoint of fish eyes.
- the center line average roughness Ra is preferably 0.005 ⁇ m to 0.05 ⁇ m, and more preferably 0.01 ⁇ m to 0.03 ⁇ m.
- the surface roughness can be measured using a contact-type surface roughness meter.
- the film thickness of the protective film is preferably 5 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 70 ⁇ m, and particularly preferably 15 ⁇ m to 50 ⁇ m from the viewpoint of storing in a roll shape.
- the film thickness is less than 5 ⁇ m, the production of the protective film tends to be difficult, and when the film thickness exceeds 100 ⁇ m, the price of the protective film tends to increase.
- the film thickness of the photosensitive resin layer is preferably 3 ⁇ m or more as the thickness after drying from the viewpoint of following the unevenness of the wiring and ensuring rust prevention, and 20 ⁇ m or less from the viewpoint of transparency and flexibility. Preferably, it is 10 ⁇ m or less.
- the present invention is closely related to “the peak top value of Tan ⁇ , crosslinking density and refractive index” after curing of the photosensitive resin layer of the present invention and “coexistence of rust prevention and flexibility”. As described above, it has been found by the result of the diligent examination by the people. The inventors of the present invention have made the following considerations regarding the correlation between parameters and characteristics.
- the refractive index is controlled by the type or combination of (A) the alkali-soluble polymer and (B) the compound having an ethylenically unsaturated double bond. Conceivable.
- the refractive index has a close correlation with the film density of the material, and the refractive index tends to increase as the film density increases. From the viewpoint of suppressing the intrusion of the corrosive components, it is considered that a higher refractive index is preferable.
- a preferable range is considered to exist.
- the preferable refractive index range is 1.50 to 1.60 at a wavelength of 532 nm. From the viewpoint of rust prevention, 1.54 to 1.60 is considered more preferable, and from the viewpoint of balance between both characteristics. More preferred is 1.55 to 1.58.
- the refractive index means a refractive index measured by a method as described in Examples described later.
- the crosslinking density is controlled by the type or combination of (A) an alkali-soluble polymer and (B) an ethylenically unsaturated double bond. It is thought that there is a controlling factor in the compound that has. Since the crosslinking density is considered to have a correlation with the film density of the material as well as the refractive index, it is considered that a higher crosslinking density is preferable from the viewpoint of suppressing the intrusion of the corrosion component.
- E'min represents the minimum value of the storage modulus E 'in the rubber region
- ⁇ represents the front coefficient ( ⁇ 1)
- ⁇ represents the sample density
- R represents the gas constant
- T represents It represents the absolute temperature of E'min
- Mc represents the molecular weight between crosslinks.
- the crosslink density (n CD ) is proportional to the storage elastic modulus E ′ of the material, and the higher the crosslink density, the higher the storage elastic modulus E ′. This results in a loss of flexibility, which is an important characteristic of the.
- the crosslinking density is 1,000 to 8,000 mol / m 3 , and 1,500 from the viewpoint of emphasizing rust prevention. More preferably ⁇ 8,000mol / m 3, more preferably 2,500 ⁇ 8,000mol / m 3. On the other hand, from the viewpoint of emphasizing flexibility, 1,000 to 6,000 mol / m 3 is more preferable, and 1,000 to 4,000 mol / m 3 is still more preferable.
- the crosslink density here is determined by the dynamic viscoelasticity test method for thermosetting materials described in JIS K7244-4 and the calculation formula shown in the above calculation formula (1), as will be explained in the item of the examples described later. It is done. When it is difficult to confirm the minimum storage elastic modulus E ′ in the rubber region, the minimum value of the storage elastic modulus E ′ in the rubber region within the measurement temperature range is defined as E′min.
- Tan ⁇ increases as the loss elastic modulus E ′′ becomes larger than the storage elastic modulus E ′, as shown in the above calculation formula (2).
- the meaning of Tan ⁇ means that the temperature at a certain temperature
- the flow component of the curable material is larger than that of the fixed component, which is considered to indicate the shock absorption property of the material.
- Tan ⁇ is preferably large, so that the peak top value of Tan ⁇ is preferably 0.4 or more, and more preferably 0.43 or more. it is conceivable that.
- the Tg after exposure of the photosensitive resin layer is preferably less than 100 ° C., more preferably 65 ° C. or more and less than 100 ° C.
- a constant temperature and humidity test under a condition of 65 ° C./RH 90% is used for a reliability test of a permanent material as an electronic material application. If the Tg after exposure of the photosensitive resin layer is 65 ° C. or higher, good results can be obtained in the constant temperature and humidity test.
- the heating temperature is 100 in relation to Tg of the substrate (for example, ITO).
- the heating temperature is sufficiently higher than the Tg of the photosensitive resin layer, the thermal crosslinking reaction is likely to proceed and unreacted ethylenically unsaturated double bonds are reduced. It is considered that the rust prevention property is easily improved.
- a photosensitive resin layer comprising a photosensitive resin composition comprising (A) an alkali-soluble polymer, (B) a compound having an ethylenically unsaturated double bond, and (C) a photopolymerization initiator.
- the crosslinking density after curing is 1,000 to 8,000 mol / m 3
- the peak top value of Tan ⁇ is 0.4 or more
- the refractive index in the wavelength region of 532 nm is 1.50 to 1.60. It is thought that it is important for both rust prevention and flexibility, and that the Tg after exposure of the photosensitive resin layer is less than 100 ° C. is also important.
- the photosensitive resin laminated body is used in order to form the protective film of a conductor part, and it is more preferable that a conductor part is a copper electrode or a transparent electrode in that case. . More specifically, the photosensitive resin laminate can be used as a protective film for the transparent electrode in the sensing region of the touch panel (touch sensor).
- the protective film when the protective film is applied to the transparent electrode in the sensing area of the touch panel (touch sensor), for example, a metal layer (a layer in which a copper layer is formed on the ITO electrode, etc.) in the frame area of the touch panel (touch sensor) If the protective film is visible from the edge of the sensing area when the protective layer is protected, the minimum visible light transmittance at 400 nm to 700 nm of the photosensitive resin layer coated on the substrate is 90% or more. , Because it is possible to sufficiently suppress the image display quality, hue, or luminance in the sensing area from being lowered, it is considered preferable, and is preferably 93% or more, and more preferably 95% or more. .
- the visible light transmittance of the photosensitive resin layer coated on the support is determined as follows: A coating liquid containing the photosensitive resin composition is applied onto a support such as a PET film so that the thickness after drying is 10 ⁇ m, and dried to form a photosensitive resin layer. Further, the sample is laminated on a glass substrate using a laminator so that the photosensitive layer is in contact with each other to obtain a measurement sample in which the photosensitive layer and the support are laminated on the glass substrate. Next, after the photosensitive layer was photocured by irradiating the obtained measurement sample with ultraviolet rays, the PET film was peeled off and further subjected to heat treatment, and the resulting protective film (cured product of the photosensitive layer) was UV-visible. Using a spectrophotometer, the transmittance in the measurement wavelength range of 400 nm to 700 nm is measured.
- the photosensitive resin layer preferably has a b * of ⁇ 0.2 to 1.0 in the CIELAB color system from the viewpoint of further improving the visibility of the touch panel. More preferably, it is more preferably 0.1 to 0.5. As in the case where the minimum value of the visible light transmittance is 90% or more, b * is ⁇ 0.2 to 1.0 from the viewpoint of preventing the image display quality or the hue of the sensing area from being deteriorated. Is preferred.
- b * in the CIELAB color system for example, using a spectrophotometer “CM-5” manufactured by Konica Minolta, a photosensitive resin layer having a thickness of 10 ⁇ m is formed on a glass substrate having a thickness of 0.7 mm, This is obtained by irradiating with ultraviolet rays to photocur the photosensitive resin layer, and then performing heat treatment, and measuring by setting the measurement condition to a D65 light source and a viewing angle of 2 °.
- CM-5 spectrophotometer manufactured by Konica Minolta
- the haze value of the two-layer film measured according to the measurement method described in JIS K 7136 is preferably 2% or less, and preferably 1% or less. More preferably, it is particularly preferably 0.5% or less.
- Formation of a resist pattern using the photosensitive resin laminate includes the following steps: A laminating step of laminating the photosensitive resin laminate on a substrate; An exposure step of exposing the laminated photosensitive resin laminate; and a developing step of developing the exposed photosensitive resin laminate; It can carry out by the manufacturing method of the resin pattern containing this.
- the resin pattern manufacturing method includes a step of forming a cured film pattern by subjecting the resin pattern to post-exposure treatment and / or heat treatment after the development step. It is preferable.
- a transparent electrode for example, ITO, Ag nanowire base material, etc.
- a metal electrode was formed on a base material in which copper wiring was formed on a flexible copper-clad laminate, a glass base material, and a transparent resin base material.
- a touch panel base material or a touch sensor base material for example, a force sensor
- a flexible copper clad laminate or a base material for touch panel electrode formation is a base material in which a copper layer is formed on a flexible film.
- the film examples include films made of polyimide, polyester (PET, PEN), cycloolefin polymer (COP), and the like.
- the thickness of the film is preferably 10 ⁇ m to 100 ⁇ m.
- the alloy containing copper as a main component other than pure copper can be used.
- the alloy metal for example, an alloy of nickel, palladium, silver, titanium, molybdenum or the like and copper can be cited.
- the thickness of the copper layer is preferably 50 nm to 2 ⁇ m. 100 nm or more is preferable from the viewpoint of the uniformity of the copper layer.
- a photosensitive resin layer is formed on the substrate, preferably on the copper layer of the substrate.
- the protective film is peeled off, and then the photosensitive resin laminate is heat-pressed and laminated on the substrate surface with a laminator.
- the crimping means include a crimping roll.
- the pressure-bonding roll may include a heating means so that it can be heat-bonded.
- thermocompression bonding is 10 ° C. or more so that the constituents of the photosensitive resin laminate are hardly thermally cured or thermally decomposed while ensuring sufficient adhesion between the photosensitive resin laminate and the substrate. It is preferably 180 ° C, more preferably 20 ° C to 160 ° C, and further preferably 30 ° C to 150 ° C. Adhesion and chemical resistance are improved by performing thermocompression bonding twice or more.
- the thermocompression bonding may be performed using a two-stage laminator equipped with two rolls, or is performed by repeatedly passing the photosensitive resin laminate and the substrate through the rolls a plurality of times. Also good.
- the photosensitive resin laminated body may be laminated
- the pressure during the thermocompression bonding is 50 N / m to 1 ⁇ 10 5 as a linear pressure.
- N / m is preferable, 2.5 ⁇ 10 2 N / m to 5 ⁇ 10 4 N / m is more preferable, and 5 ⁇ 10 2 N / m to 4 ⁇ 10 4 N / m. More preferably.
- the exposure machine includes a scattered light exposure machine with a light source that effectively emits ultraviolet rays, such as a carbon arc lamp, an ultra-high pressure mercury lamp, a high-pressure mercury lamp, and a xenon lamp, a parallel light exposure machine with the same degree of parallelism, and a mask and workpiece. And a proximity exposure machine that provides a gap between the two.
- a projection type exposure machine having a mask to image size ratio of 1: 1 1, a reduction projection exposure machine called a high illumination stepper (registered trademark), or an exposure machine using a concave mirror called a mirror projection aligner (registered trademark).
- the dose of active ray is usually 10mJ / cm 2 ⁇ 1,000mJ / cm 2, and irradiation can also be accompanied by heating.
- the irradiation amount of actinic rays is less than 10 mJ / cm 2 , photocuring tends to be insufficient, and when the irradiation amount of actinic rays exceeds 1,000 mJ / cm 2 , the photosensitive resin layer may be discolored. There is.
- Direct drawing exposure is a method in which exposure is performed by directly drawing on a substrate without using a photomask.
- the light source for example, a solid laser having a wavelength of 350 nm to 410 nm, a semiconductor laser, or an ultrahigh pressure mercury lamp is used.
- the drawing pattern is controlled by a computer.
- the exposure amount in this case is determined by the light source illuminance and the moving speed of the substrate.
- a developing process is performed using a developing device. After the exposure, if there is a support film on the photosensitive resin layer, this is removed if necessary, and then the unexposed portion is developed and removed using a developer of an alkaline aqueous solution to obtain a resist image.
- an aqueous solution (alkaline aqueous solution) of Na 2 CO 3 or K 2 CO 3 is preferably used.
- the alkaline aqueous solution is appropriately selected according to the characteristics of the photosensitive resin layer, but is preferably about 0.2% by mass to 5% by mass aqueous solution, for example, an aqueous Na 2 CO 3 solution of 20 ° C. to 40 ° C. is common. is there.
- a surface active agent, an antifoaming agent, a small amount of an organic solvent for accelerating development, and the like may be mixed in the alkaline aqueous solution.
- an amine-based alkaline aqueous solution such as a tetraammonium hydroxide (TMAH) aqueous solution can also be used.
- TMAH tetraammonium hydroxide
- the density can be appropriately selected according to the developing speed.
- an aqueous solution of Na 2 CO 3 of 1% by mass and 30 ° C. is particularly preferable.
- Examples of the developing method include known methods such as alkaline water spraying, showering, rocking immersion, brushing, and scraping.
- the base of the alkaline aqueous solution remaining in the two-layer film after photocuring is converted into an acid by known methods such as spraying, rocking immersion, brushing, and scraping using an organic acid, an inorganic acid, or an aqueous acid solution thereof. It can be treated (neutralized). Furthermore, after the acid treatment (neutralization treatment), a step of washing the photosensitive resin layer after photocuring with water can be performed.
- a resist pattern can be obtained through each step included in the method for producing a resin pattern, but a cured film pattern obtained by subjecting the resist pattern to a post-exposure treatment and / or a heat treatment is used as a conductor portion (metal wiring). Or it can be used as a protective film of an electrode).
- One aspect of the cured film having a predetermined pattern includes the following steps: A laminating step of laminating the photosensitive resin laminate described above on a substrate; An exposure step of exposing the laminated photosensitive resin laminate; and a development step of developing the exposed photosensitive resin laminate to obtain a resin pattern; A curing step in which the resin pattern is subjected to post-exposure treatment and / or heat treatment to obtain a cured film pattern; including.
- the cured film having a predetermined pattern thus obtained is preferably used as a protective film for a conductor portion, more preferably as a protective film for wiring or a protective film for touch panel electrodes.
- the laminating step, the exposing step, and the developing step can be performed as described in the item of the resin pattern manufacturing method.
- the irradiation amount of post-exposure treatment the temperature of it is preferred, and / or heat treatment is 200mJ / cm 2 ⁇ 1,000mJ / cm 2 is preferably about 40 °C ⁇ 200 °C.
- the heating temperature of the heat treatment is 40 ° C. to 200 ° C. so that the protective film composed of the base material, the conductor portion formed on the base material, and the photosensitive resin layer protecting them is not deteriorated by heat. It is preferably 50 ° C. to 180 ° C., more preferably 60 ° C. to 150 ° C.
- the time for performing the heat treatment is generally preferably less than 60 minutes. From the viewpoint of the production process, the shorter the time, the more preferable. By carrying out the post-exposure and / or heat treatment, further rust prevention can be improved.
- a heating furnace of an appropriate system such as hot air, infrared rays, far infrared rays, etc. can be used for heating, and examples of the heating atmosphere include an N 2 atmosphere or an N 2 / O 2 atmosphere. From the viewpoint, it is preferable to perform the heat treatment in an N 2 atmosphere.
- a photosensitive resin laminate having good developability and transparency, and a good balance of rust prevention, flexibility and hardness.
- a photosensitive resin laminate is suitable, for example, as a protective film for wiring, electrodes, etc. for touch panel or touch sensor applications.
- the base material for touchscreens with a protective film which concerns on this invention is demonstrated.
- the photosensitive resin layer may be laminated on a substrate having a touch panel (touch sensor) electrode, and a protective film made of the photosensitive resin layer may be provided.
- the protective film preferably satisfies the conditions of the film thickness, visible light transmittance, and b * in the CIELAB color system described above for the photosensitive resin layer.
- the manufacturing method of the base material for touchscreens with a protective film which concerns on this invention is the following processes: 1st process of providing the protective film which consists of the said photosensitive resin layer on the base material for touchscreens which has the electrode for touchscreens; A second step of curing a predetermined portion of the protective film by irradiation with actinic rays; After irradiation with actinic light, the part other than the predetermined part of the protective film (the part of the protective film that is not irradiated with active light) is removed, and the predetermined part of the protective film is cured so as to cover part or all of the electrode.
- the manufacturing method of the base material for touchscreens with a protective film contains a 1st process, a 2nd process, a 3rd process, and a 4th process in this order.
- the substrate for the touch panel examples include a substrate generally used for a touch panel or a touch sensor, such as a glass plate, a plastic plate, and a ceramic plate.
- a touch panel electrode to be a target for forming a protective film is provided on this substrate.
- the electrode examples include electrodes such as ITO, Cu, Al, Ag, and Mo, and thin film transistors (TFTs).
- An insulating layer may be provided between the substrate and the electrode.
- the touch panel substrate having the touch panel electrode can be obtained, for example, by the following procedure. After a metal film is formed on a touch panel substrate such as polyester or COP film by sputtering in the order of ITO and Cu, an etching photosensitive film is pasted on the metal film to form a desired resist pattern, which is unnecessary Cu is removed with an etching solution such as an iron chloride aqueous solution, and the resist pattern is further removed and removed.
- a metal film is formed on a touch panel substrate such as polyester or COP film by sputtering in the order of ITO and Cu
- an etching photosensitive film is pasted on the metal film to form a desired resist pattern, which is unnecessary Cu is removed with an etching solution such as an iron chloride aqueous solution, and the resist pattern is further removed and removed.
- the first to fourth steps in the method for producing a touch panel substrate with a protective film follow the methods described in the above ⁇ Method for producing resin pattern> and ⁇ Method for producing cured film pattern>.
- the photosensitive resin laminate according to the present invention is preferably used for forming a protective film of a base material for a touch panel.
- a touch panel display device with a protective film or a touch sensor An apparatus having a touch panel display device with a protective film or a touch sensor according to the present invention will be described.
- a touch panel display device having a cured film of the photosensitive resin laminate by producing a touch panel substrate having a cured film pattern of the photosensitive resin laminate.
- a device having a cured film of a photosensitive resin laminate and a touch sensor can be provided.
- binder polymer solution (A2) a binder polymer solution having a weight average molecular weight of about 50,000 and an acid equivalent of 573 using 15% by weight of methacrylic acid and 85% by weight of benzyl methacrylate. Solid content 50% by mass) (A2) was obtained.
- binder polymer solution (A3) In the same manner as the binder polymer (A1), using 19% by weight of methacrylic acid, 58% by weight of benzyl methacrylate, 23% by weight of 2-ethylhexyl acrylate, the weight average molecular weight is about 70,000, and the acid equivalent was a binder polymer solution (solid content 46% by mass) (A3).
- binder polymer solution (A4) In the same manner as the above binder polymer (A1), using 21% by weight of methacrylic acid, 40% by weight of styrene and 39% by weight of methyl methacrylate, the weight average molecular weight is about 50,000 and the acid equivalent is 410. A certain binder polymer solution (solid content 40% by mass) (A4) was obtained.
- binder polymer solution (A5) In the same manner as the above binder polymer (A1), 19% by weight of methacrylic acid, 8% by weight of methyl methacrylate, 50% by weight of benzyl methacrylate, and 23% by weight of lauryl acrylate have a weight average molecular weight of about 40,000. And a binder polymer solution (solid content: 45% by mass) (A5) having an acid equivalent weight of 450 was obtained.
- binder polymer solution (A6) ⁇ Preparation of binder polymer solution (A6)>
- the weight average molecular weight was about 160,000 using 23% by mass of methacrylic acid, 67% by mass of methyl methacrylate, and 10% by mass of n-butyl acrylate, and the acid.
- ⁇ Preparation of binder polymer solution (A7)> A flask equipped with a stirrer, reflux condenser, inert gas inlet and thermometer was charged with 100% by mass of 1-methoxy-2-propanol (PGME), heated to 90 ° C. in a nitrogen gas atmosphere, and methacrylic. An acid 54 mass%, cyclohexyl methacrylate 46 mass%, and an azo polymerization initiator (Wako Pure Chemical Industries, Ltd., V-601) were uniformly added dropwise over 2 hours. After dropping, stirring was continued at 90 ° C. for 4 hours.
- PGME 1-methoxy-2-propanol
- binder polymer solution (A8) In the same manner as the above binder polymer (A1), 25% by weight of methacrylic acid, 65% by weight of methyl methacrylate and 10% by weight of n-butyl acrylate have a weight average molecular weight of about 85,000 and an acid. A binder polymer solution (solid content: 39% by mass) (A8) having an equivalent weight of 344 was obtained.
- the photosensitive resin composition preparation liquid was uniformly applied to the surface of a 16 ⁇ m-thick polyethylene terephthalate film (FB40, manufactured by Toray Industries, Inc.) as a support using a blade coater, and 3 in a dryer at 95 ° C. It dried for 6 minutes or 6 minutes, and formed the uniform photosensitive resin layer on the support body.
- the thickness of the photosensitive resin layer was 10 ⁇ m or 50 ⁇ m.
- a 33 ⁇ m-thick polyethylene film manufactured by Tamapoly Co., Ltd., GF-858
- Table 4 shows the names of the material components in the photosensitive resin composition preparation liquid represented by abbreviations in Tables 2 and 3.
- Dynamic viscoelasticity measurement ⁇ sample preparation method> A photosensitive resin laminate having a photosensitive resin layer thickness of 50 ⁇ m is cut into 30 cm ⁇ 20 cm, a negative pattern forming mask having a size of 0.3 cm ⁇ 4 cm is placed thereon, and a scattered light exposure machine (Corporation) The exposure was carried out from the support side with the optimum exposure amount of each composition by Oak Mfg. Co., Ltd. (HMW-201KB). And after leaving still for 30 minutes or more, the protective film is peeled off, and using a developing device manufactured by Fuji Kiko Co., Ltd., a 1% by mass Na 2 CO at 30 ° C. with a developing cone pressure of 0.15 MPa using a full cone type nozzle.
- aqueous solutions were sprayed for a predetermined time and developed, and the unexposed portion of the photosensitive resin layer was dissolved and removed. After development, the mixture was allowed to stand for 30 minutes or more, and then exposed from the photosensitive layer side with an exposure amount of 375 mJ / cm 2 with a scattered light exposure machine, and allowed to stand for 30 minutes or more. Then, heat treatment was performed for 30 minutes. After the heat treatment, the photosensitive resin layer was peeled from the support to prepare a sample having a size of 0.3 cm ⁇ 4 cm. The prepared sample was conditioned for one day at 23 ° C. and RH 50%, and then tested.
- the above-mentioned optimum exposure amount is the remaining amount when exposed via a stouffer 21-step step tablet (step tablet in which the optical density is 0.00 at the first step and the optical density is increased by 0.15 for each step).
- the exposure amount is such that the number of steps to be filmed is six.
- the predetermined time in the development step means a time twice as long as the minimum development time when the minimum time required for completely dissolving the photosensitive resin layer in the unexposed portion is measured as the minimum development time.
- the water washing step was performed simultaneously with the development step at a water washing spray pressure of 0.15 MPa with a flat type nozzle.
- Refractive index measurement ⁇ sample preparation method> A photosensitive resin laminate having a photosensitive resin layer thickness of 10 ⁇ m was cut into 5 cm ⁇ 5 cm, and exposed from the support side with the optimum exposure amount of each composition. After standing still for 30 minutes or more, the protective film is peeled off, and using a developing device manufactured by Fuji Kiko Co., Ltd., a 1% by mass Na 2 CO at 30 ° C. with a developing spray pressure of 0.15 MPa using a full cone type nozzle. Three aqueous solutions were sprayed for a predetermined time and developed, and the unexposed portion of the photosensitive resin layer was dissolved and removed.
- the film After standing for 30 minutes or more after development, the film was exposed with an exposure amount of 375 mJ / cm 2 from the photosensitive layer side with a scattered light exposure machine. After leaving still for 30 minutes or more, it processed by 150 degreeC with the hot-air circulation type oven for 30 minutes, and produced the sample of 5 cm x 5 cm size.
- the optimum exposure amount and the predetermined time are defined in the same manner as in the dynamic viscoelasticity measurement sample preparation method.
- the film After standing for 30 minutes or more after development, the film was exposed with an exposure amount of 375 mJ / cm 2 from the photosensitive layer side with a scattered light exposure machine. After leaving still for 30 minutes or more, it heat-processed for 30 minutes at 150 degreeC in the hot-air circulation type oven continuously, and produced the sample of 2 cm x 20 cm size.
- the produced sample for evaluation was conditioned at 23 ° C. and 50% RH for one day, and then subjected to the test.
- the optimum exposure amount and the predetermined time are defined in the same manner as in the dynamic viscoelasticity measurement sample preparation method.
- Pencil hardness test ⁇ sample preparation method> While removing the protective film of the photosensitive resin laminate having a photosensitive resin layer thickness of 10 ⁇ m, a hot roll laminator (manufactured by Taisei Laminator Co., Ltd., VA-) is placed on a 10 cm ⁇ 10 cm ⁇ 1 mm glass plate (Tempax Float). 400III) and laminated at a roll temperature of 100 ° C. The air pressure was 0.4 MPa, and the laminating speed was 1.0 m / min. It exposed with the optimal exposure amount of each composition with the scattered light exposure machine (Corporation
- the support After leaving still for 30 minutes or more, the support is peeled off, and using a developing device manufactured by Fuji Kiko Co., Ltd., a 1% by mass Na 2 CO 3 aqueous solution at 30 ° C. with a developing cone pressure of 0.15 MPa using a full cone type nozzle.
- a developing device manufactured by Fuji Kiko Co., Ltd., a 1% by mass Na 2 CO 3 aqueous solution at 30 ° C. with a developing cone pressure of 0.15 MPa using a full cone type nozzle.
- the film After standing for 30 minutes or more after development, the film was exposed with an exposure amount of 375 mJ / cm 2 from the photosensitive layer side with a scattered light exposure machine. After leaving still for 30 minutes or more, it heat-processed for 30 minutes at 150 degreeC in the hot-air circulation type oven continuously, and produced the sample.
- the produced sample for evaluation was conditioned at 23 ° C. and 50% RH for one day, and then subjected to the test.
- Salt water test ⁇ sample preparation method> A hot roll laminator is formed on the copper surface (size: 3 cm ⁇ 3 cm) of the substrate on which the resin, ITO, and sputtered copper are laminated in this order while peeling off the protective film of the photosensitive resin laminate having a photosensitive resin layer thickness of 10 ⁇ m. (VA-400III, manufactured by Taisei Laminator Co., Ltd.) was used for lamination.
- the roll temperature was 100 ° C.
- the air pressure was 0.4 MPa
- the support After leaving still for 30 minutes or more, the support is peeled off, and using a developing device manufactured by Fuji Kiko Co., Ltd., a 1% by mass Na 2 CO 3 aqueous solution at 30 ° C. with a developing cone pressure of 0.15 MPa using a full cone type nozzle.
- a developing device manufactured by Fuji Kiko Co., Ltd., a 1% by mass Na 2 CO 3 aqueous solution at 30 ° C. with a developing cone pressure of 0.15 MPa using a full cone type nozzle.
- the film After standing for 30 minutes or more after development, the film was exposed with an exposure amount of 375 mJ / cm 2 from the photosensitive layer side with a scattered light exposure machine. After leaving still for 30 minutes or more, it heat-processed for 30 minutes at 150 degreeC in the hot-air circulation type oven continuously, and produced the sample.
- the produced sample for evaluation was conditioned at 23 ° C. and 50% RH for one day, and then subjected to the test.
- Cross-cut test ⁇ Sample preparation method> A hot roll laminator is formed on the copper surface (size: 3 cm ⁇ 3 cm) of the substrate on which the resin, ITO, and sputtered copper are laminated in this order while peeling off the protective film of the photosensitive resin laminate having a photosensitive resin layer thickness of 10 ⁇ m. (VA-400III, manufactured by Taisei Laminator Co., Ltd.) was used for lamination.
- the roll temperature was 100 ° C.
- the support After leaving still for 30 minutes or more, the support is peeled off, and using a developing device manufactured by Fuji Kiko Co., Ltd., a 1% by mass Na 2 CO 3 aqueous solution at 30 ° C. with a developing cone pressure of 0.15 MPa using a full cone type nozzle.
- a developing device manufactured by Fuji Kiko Co., Ltd., a 1% by mass Na 2 CO 3 aqueous solution at 30 ° C. with a developing cone pressure of 0.15 MPa using a full cone type nozzle.
- the film After standing for 30 minutes or more after development, the film was exposed with an exposure amount of 375 mJ / cm 2 from the photosensitive layer side with a scattered light exposure machine. After leaving still for 30 minutes or more, it heat-processed for 30 minutes at 150 degreeC in the hot-air circulation type oven continuously, and produced the sample.
- the produced sample for evaluation was conditioned at 23 ° C. and 50% RH for one day, and then subjected to the test.
- thermogravimetry The protective film of the photosensitive resin laminate having a photosensitive resin layer thickness of 50 ⁇ m was peeled off, the photosensitive resin layer surfaces were folded, and only the photosensitive resin layer was peeled from the support to obtain 15 mg of the photosensitive resin layer.
- the support After leaving still for 30 minutes or more, the support is peeled off, and using a developing device manufactured by Fuji Kiko Co., Ltd., a 1% by mass Na 2 CO 3 aqueous solution at 30 ° C. with a developing cone pressure of 0.15 MPa using a full cone type nozzle.
- a developing device manufactured by Fuji Kiko Co., Ltd., a 1% by mass Na 2 CO 3 aqueous solution at 30 ° C. with a developing cone pressure of 0.15 MPa using a full cone type nozzle.
- the film After standing for 30 minutes or more after development, the film was exposed with an exposure amount of 375 mJ / cm 2 from the photosensitive layer side with a scattered light exposure machine. After leaving still for 30 minutes or more, it heat-processed for 30 minutes at 150 degreeC in the hot-air circulation type oven continuously, and produced the sample.
- the produced sample for evaluation was conditioned at 23 ° C. and 50% RH for one day, and then subjected to the test.
- the transmittance was measured using the prepared sample for evaluation.
- the total transmittance at 400 nm to 700 nm was measured using a UV spectrometer (U-3010 manufactured by Hitachi High-Tech Science Co., Ltd.) according to the standard of JIS K7361-1.
- the transmittance at 400 nm to 700 nm was 90% or more.
- the support After leaving still for 30 minutes or more, the support is peeled off, and using a developing device manufactured by Fuji Kiko Co., Ltd., a 1% by mass Na 2 CO 3 aqueous solution at 30 ° C. with a developing cone pressure of 0.15 MPa using a full cone type nozzle.
- a developing device manufactured by Fuji Kiko Co., Ltd., a 1% by mass Na 2 CO 3 aqueous solution at 30 ° C. with a developing cone pressure of 0.15 MPa using a full cone type nozzle.
- the film After standing for 30 minutes or more after development, the film was exposed with an exposure amount of 375 mJ / cm 2 from the photosensitive layer side with a scattered light exposure machine. After leaving still for 30 minutes or more, it heat-processed for 30 minutes at 150 degreeC in the hot-air circulation type oven continuously, and produced the sample.
- the produced sample for evaluation was conditioned at 23 ° C. and 50% RH for one day, and then subjected to the test.
- Haze measurement was performed using the produced sample for evaluation.
- the haze measurement was carried out according to the standard of JIS K7136 using a haze meter (Nippon Electric Decoration Turbidimeter NDH2000, manufactured by Nippon Denshoku Kogyo Co., Ltd.). In all of Examples 1 to 29, the haze value was 0.5% or less.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Architecture (AREA)
- Structural Engineering (AREA)
- Materials For Photolithography (AREA)
- Non-Metallic Protective Coatings For Printed Circuits (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
[1]
(A)アルカリ可溶性高分子;
(B)エチレン性不飽和二重結合を有する化合物;及び
(C)光重合開始剤;
を含む感光性樹脂層が支持フィルム上に積層された感光性樹脂積層体であって、
前記感光性樹脂積層体は、導体部の保護膜形成に用いられ、
前記感光性樹脂層の厚みが、20μm以下であり、かつ
前記感光性樹脂層の硬化物が、下記(1)~(3):
(1)架橋密度が1,000mol/m3~8,000mol/m3である;
(2)Tanδのピークトップ値が0.4以上である;及び
(3)波長532nmでの屈折率が1.50~1.60である;
の条件を満たす、
前記感光性樹脂積層体。
[2]
前記(A)アルカリ可溶性高分子が、置換基を有してもよいフェニル基を含む、[1]に記載の感光性樹脂積層体。
[3]
前記感光性樹脂層の露光後のガラス転移温度が、100℃未満である、[1]又は[2]に記載の感光性樹脂積層体。
[4]
前記(B)エチレン性不飽和二重結合を有する化合物が、少なくとも3つのエチレン性不飽和二重結合を有する化合物、及び分子内に下記式(1):
で表わされる基を含む化合物を含む、[1]~[3]のいずれか1項に記載の感光性樹脂積層体。
[5]
前記導体部が、銅電極又は透明電極である、[1]~[4]のいずれか1項に記載の感光性樹脂積層体。
[6]
前記感光性樹脂積層体が、タッチパネル用保護膜又はタッチセンサー保護膜として使用される、[1]~[5]のいずれか1項に記載の感光性樹脂積層体。
[7]
前記感光性樹脂層が、更に(D)熱架橋剤を含む、[1]~[6]のいずれか1項に記載の感光性樹脂積層体。
[8]
(A)アルカリ可溶性高分子30質量%~70質量%、(B)エチレン性不飽和二重結合を有する化合物20質量%~60質量%、及び(C)光重合開始剤0.1質量%~10質量%を含む配線保護膜用感光性樹脂組成物であって、
前記(A)アルカリ可溶性高分子が、置換基を有してもよいフェニル基を含み、そして
前記(B)エチレン性不飽和二重結合を有する化合物が、分子内に下記式(1):
で表わされる基を含む化合物、及び分子内に下記式(2):
前記配線保護膜用感光性樹脂組成物。
[9]
前記(B)エチレン性不飽和二重結合を有する化合物が、トリメチロールプロパントリ(メタ)アクリレート、及びポリテトラメチレングリコールジ(メタ)アクリレートを含む、[8]に記載の配線保護膜用感光性樹脂組成物。
[10]
前記配線保護膜用感光性樹脂組成物が、更に(D)熱架橋剤を含む、[8]又は[9]に記載の感光性樹脂組成物。
[11]
支持フィルムと、該支持フィルム上に設けられた[8]~[10]のいずれか1項に記載の配線保護膜用感光性樹脂組成物から成る感光性樹脂層とを備える、感光性樹脂積層体。
[12]
基材上に、[1]~[7]及び[11]のいずれか1項に記載の感光性樹脂積層体をラミネートし、露光し、そして現像することによりパターンを作製する工程を含むパターン製造方法。
[13]
[12]に記載の方法で得られたパターンを後露光処理及び/又は加熱処理に供して得られた硬化膜パターン。
[14]
[13]に記載の硬化膜パターンを有するタッチパネル表示装置。
[15]
[13]に記載の硬化膜パターン及びタッチセンサーを有する装置。
実施の形態では、感光性樹脂積層体が、(A)アルカリ可溶性高分子、(B)エチレン性不飽和二重結合を有する化合物、及び(C)光重合開始剤を含む感光性樹脂組成物から形成される。感光性樹脂組成物は、所望により、(D)熱架橋剤及び/又はその他の化合物を更に含んでよい。感光性樹脂組成物は、導体部の保護膜を形成するために使用されることが好ましく、配線の保護膜又はタッチパネル電極の保護膜を形成するために使用されることがより好ましい。感光性樹脂組成物を構成する各成分について、以下具体的に説明する。
(A)アルカリ可溶性高分子は、カルボキシル基を含有する高分子体のことであり、例えば、(メタ)アクリル酸、(メタ)アクリル酸エステル、(メタ)アクリロニトリル、(メタ)アクリルアミド等の共重合体、又はノボラック樹脂変性体を示す。
ポンプ:Gulliver、PU-1580型
カラム:昭和電工(株)製Shodex(登録商標)(KF-807、KF-806M、KF-806M、KF-802.5)4本直列、
移動層溶媒:テトラヒドロフラン
検量線:ポリスチレン標準サンプルを用いて規定された検量線{ポリスチレン標準サンプル(昭和電工(株)製Shodex STANDARD SM-105)による検量線使用}
(B)エチレン性不飽和二重結合を有する化合物は、例えば、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ポリアルキレングリコール変性トリメチロールプロパンジ(メタ)アクリレート、ビスフェノールA変性ポリアルキレンオキシジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の多価アルコールにα,β-不飽和カルボン酸(例えば、アクリル酸、メタアクリル酸等)を反応させて得られる化合物;トリメチロールプロパントリグリシジルエーテルトリ(メタ)アクリレート等のグリシジル基含有化合物にα,β-不飽和カルボン酸を付加して得られる化合物等が挙げられる。
で表される基を含む化合物(B-1)を含むことがさらに好ましい。
(C)光重合開始剤としては、例えば、ベンゾフェノン、N,N,N’,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)、N,N,N’,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパノン-1、アクリル化ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド等の芳香族ケトン;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル化合物;ベンゾイン、メチルベンゾイン、エチルベンゾイン等のベンゾイン化合物;1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)(BASFジャパン(株)製、Irgacure Oxe02)、1-[4-(フェニルチオ)フェニル]-3-シクロペンチルプロパン-1,2-ジオン-2-(o-ベンゾイルオキシム)(上州強力電子材料(株)製、PBG305)、1,2-プロパンジオン,3-シクロヘキシル-1-[9-エチル-6-(2-フラニルカルボニル)-9H-カルバゾール-3-イル]-,2-(O-アセチルオキシム)(日興ケムテック(株)製TR-PBG-326、製品名)等のオキシムエステル化合物;ベンジルジメチルケタール等のベンジル誘導体;9-フェニルアクリジン、1,7-ビス(9,9’-アクリジニル)ヘプタン等のアクリジン誘導体;N-フェニルグリシン等のN-フェニルグリシン誘導体;クマリン化合物;オキサゾール化合物;2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド等のホスフィンオキサイド化合物が挙げられる。光重合開始剤は、単独で、又は2種以上混合して用いることもできる。
感光性樹脂組成物には、より高い防錆性能を発現させるという観点から、(D)熱架橋剤を更に配合することが好ましい。(D)熱架橋剤とは、熱により(A)アルカリ可溶性高分子、又は未反応の(B)エチレン性不飽和二重結合を有する化合物と付加反応、又は縮合反応を起こす化合物を意味する。ここで、付加反応又は縮合反応を起こす温度としては、100℃~150℃が好ましい。付加反応又は縮合反応は、現像によりパターン形成をした後の加熱処理の際に生じる。
で表される構造を有する化合物が挙げられるが、これらに限定されない。
アルキレンオキシド化合物の好ましい例としては、エチレングリコールジグリシジルエーテル(例えば共栄社化学(株)製エポライト40E)、ジエチレングリコールジグリシジルエーテル(例えば共栄社化学(株)製エポライト100E)、トリエチレングリコールジグリシジルエーテル、テトラエチレングリコールジグリシジルエーテル(例えば共栄社化学(株)製エポライト200E)、ペンタエチレングリコールジグリシジルエーテル、ヘキサエチレングリコールジグリシジルエーテル、ヘプタエチレングリコールジグリシジルエーテル、オクタエチレングリコールジグリシジルエーテル、ノナエチレングリコールジグリシジルエーテル(例えば共栄社化学(株)製エポライト400E)、デカエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル(例えば共栄社化学(株)製エポライト70P)、ジプロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル(例えば共栄社化学(株)製エポライト200P)、
耐熱性の観点から、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル、4,4′-ビス(3-エチル-3-オキセタニルメトキシ)ビフェニル、OXT121(東亞合成製、商品名)が好ましい。
本発明の実施形態において、感光性樹脂組成物は、防錆性と現像性を両立する点から、トリアゾール化合物、チアジアゾール化合物、及びテトラゾール化合物から成る群より選択される少なくとも1種の化合物(以下(E)成分とも呼ぶ)を更に含有することが好ましい。
次に上記感光性樹脂組成物を用いた感光性樹脂積層体について説明する。感光性樹脂積層体は、感光性樹脂組成物より成る感光性樹脂層と支持体とを含み、場合によっては感光性樹脂層を保護する保護フィルムを更に含む。具体的には、支持体上に前記の感光性樹脂組成物より成る層が積層されており、保護フィルムが必要な場合は、感光性樹脂層の支持体側とは反対側の表面に保護フィルムを有する。
nCD=ρ/Mc=E’min/3ΦRT (1)
{式中、E’minは、ゴム領域における貯蔵弾性率E’の最小値を表わし、Φはフロント係数(≒1)を表わし、ρは試料密度を表わし、Rは気体定数を表わし、TはE’minの絶対温度を表わし、かつMcは架橋間分子量を表わす。}
に示されるように、架橋密度(nCD)は、材料の貯蔵弾性率E’と比例関係があり、架橋密度が高いほど貯蔵弾性率E’は高くなるため、材料としては硬くなり、本発明における重要な特性であるフレキシブル性を損なう結果となる。従って、フレキシブル性を大きく損なうことなく、防錆性を付与できる好ましい範囲があり、その架橋密度が1,000~8,000mol/m3であり、防錆性を重視する観点からは1,500~8,000mol/m3がより好ましく、2,500~8,000mol/m3が更に好ましい。一方、フレキシブル性を重視する観点からは1,000~6,000mol/m3がより好ましく、1,000~4,000mol/m3が更に好ましい。ここでいう架橋密度は、後述の実施例の項目で説明される通り、JIS K7244-4に記載の熱硬化性材料の動的粘弾性試験方法及び上記計算式(1)に示す計算式により求められる。
なお、ゴム領域における最小貯蔵弾性率E’の確認が困難な場合には、測定温度範囲内のゴム領域における貯蔵弾性率E’の最小値をE’minとする。
Tanδ=E”/E’ (2)
に従って算出される値である。
上記計算式(2)に従い求められるTanδが最大値のときの温度が、ガラス転移温度(Tg)として定義される。
PETフィルム等の支持体上に、該感光性樹脂組成物を含有する塗布液を、乾燥後の厚みが10μmとなるように塗布し、これを乾燥することにより、感光性樹脂層を形成する。更に、ガラス基板上に、感光層が接するようにラミネーターを用いてラミネートして、ガラス基板上に、感光層及び支持体が積層された測定用試料を得る。次に、得られた測定用試料に紫外線を照射して感光層を光硬化させた後にPETフィルムを剥離し、更に熱処理を行い、得られた保護膜(感光層の硬化物)について、紫外可視分光光度計を用いて、測定波長域400nm~700nmにおける透過率を測定する。
感光性樹脂積層体を用いたレジストパターンの形成は、以下の工程:
基材上に前記の感光性樹脂積層体をラミネートするラミネート工程;
該ラミネートされた感光性樹脂積積層体に露光する露光工程;及び
該露光された感光性樹脂積層体を現像する現像工程;
を含む樹脂パターンの製造方法によって行うことができる。
上記基材に対して感光性樹脂積層体をラミネートする工程を行うことにより、基材上に、好ましくは基材の銅層上に、感光性樹脂層を形成する。感光性樹脂積層体が保護フィルムを有する場合には、該保護フィルムを剥離した後、ラミネーターで感光性樹脂積層体を基板表面に加熱圧着して積層する。圧着手段としては、圧着ロール等が挙げられる。圧着ロールは、加熱圧着できるように加熱手段を備えていてもよい。
更に、酸処理(中和処理)の後、光硬化後の感光性樹脂層を水洗する工程を行うこともできる。
上記樹脂パターンの製造方法に含まれる各工程を経てレジストパターンを得ることができるが、レジストパターンを後露光処理及び/又は加熱処理に供することにより得られた硬化膜パターンを、導体部(金属配線又は電極)の保護膜として使用することができる。
上記で説明された感光性樹脂積層体を基材上にラミネートするラミネート工程;
ラミネートされた感光性樹脂積積層体に露光する露光工程;及び
露光された感光性樹脂積層体を現像して、樹脂パターンを得る現像工程;
樹脂パターンを後露光処理及び/又は加熱処理に供して、硬化膜パターンを得る硬化工程;
を含む。
このようにして得られた所定のパターンを有する硬化膜は、好ましくは導体部の保護膜として、より好ましくは配線の保護膜又はタッチパネル電極の保護膜として使用される。
本発明に係る保護膜付きタッチパネル用基材について説明する。上記感光性樹脂層を、タッチパネル(タッチセンサー)用電極を有する基材上にラミネートして、上記感光性樹脂層から成る保護膜を設けてもよい。この用途の場合においても、保護膜は、感光性樹脂層について上記で説明した膜厚、可視光線透過率及びCIELAB表色系でのb*の条件を満たすことが好ましい。
タッチパネル用電極を有するタッチパネル用基材上に、上記感光性樹脂層から成る保護膜を設ける第1工程;
保護膜の所定部分を活性光線の照射により硬化させる第2工程;
活性光線の照射後に、保護膜の所定部分以外の部分(保護膜の活性光線が照射されていない部分)を除去し、電極の一部又は全部を被覆するように、保護膜の所定部分の硬化物から成るパターンニングされた保護膜を形成する第3工程;及び
パターンニングされた保護膜を設けたタッチパネル用基材を露光及び/又は熱処理する第4工程;
を含む。保護膜付きタッチパネル用基材の製造方法は、第1工程、第2工程、第3工程及び第4工程をこの順に含むことが好ましい。
本発明に係る保護膜付きタッチパネル表示装置又はタッチセンサーを有する装置について説明する。<保護膜付きタッチパネル用基材>に記載された方法に従って、感光性樹脂積層体の硬化膜パターンを有するタッチパネル用基材を作製することによって、感光性樹脂積層体の硬化膜を有するタッチパネル表示装置、又は感光性樹脂積層体の硬化膜及びタッチセンサーを有する装置を提供することができる。
最初に、バインダーポリマー溶液の作製について説明する。
撹拌機、還流冷却器、不活性ガス導入口及び温度計を備えたフラスコに、エチルメチルケトンを100質量%仕込み、窒素ガス雰囲気下で75℃に昇温し、メタクリル酸20質量%、メタクリル酸ベンジル80質量%、アゾ系重合開始剤(和光純薬社製、V-601)を2時間掛けて均一に滴下した。滴下後、75℃で10時間撹拌を続け、反応終了後に、エチルメチルケトンを用いて得られた樹脂溶液を希釈し、(メタ)アクリル酸由来の構成単位が20質量%であり、重量平均分子量が約50,000であり、かつ酸当量が430であるバインダーポリマー溶液(固形分50質量%)(A1)を得た。
上記バインダポリマー(A1)と同様の方法で、メタクリル酸15質量%、メタクリル酸ベンジル85質量%を用いて、重量平均分子量が約50,000であり、かつ酸当量が573であるバインダーポリマー溶液(固形分50質量%)(A2)を得た。
上記バインダポリマー(A1)と同様の方法で、メタクリル酸19質量%、メタクリル酸ベンジル58質量%、2-エチルヘキシルアクリレート23質量%を用いて、重量平均分子量が約70,000であり、かつ酸当量が450であるバインダーポリマー溶液(固形分46質量%)(A3)を得た。
上記バインダポリマー(A1)と同様の方法で、メタクリル酸21質量%、スチレン40質量%、メタクリル酸メチル39質量%を用いて、重量平均分子量が約50,000であり、かつ酸当量が410であるバインダーポリマー溶液(固形分40質量%)(A4)を得た。
上記バインダポリマー(A1)と同様の方法で、メタクリル酸19質量%、メタクリル酸メチル8質量%、メタクリル酸ベンジル50質量%、アクリル酸ラウリル23質量%を用いて、重量平均分子量が約40,000であり、かつ酸当量が450であるバインダーポリマー溶液(固形分45質量%)(A5)を得た。
上記バインダポリマー(A1)と同様の方法で、メタクリル酸23質量%、メタクリル酸メチル67質量%、アクリル酸n-ブチル10質量%を用いて、重量平均分子量が約160,000であり、かつ酸当量が373であるバインダーポリマー溶液(固形分32質量%)(A6)を得た。
撹拌機、還流冷却器、不活性ガス導入口及び温度計を備えたフラスコに、1-メトキシ-2-プロパノール(PGME)を100質量%仕込み、窒素ガス雰囲気下で90℃に昇温し、メタクリル酸54質量%、メタクリル酸シクロヘキシル46質量%、アゾ系重合開始剤(和光純薬社製、V-601)を2時間かけて均一に滴下した。滴下後、90℃で4時間撹拌を続けた。
その後、ハイドロキノンモノメチルエーテル、及びテトエチルアンモニウムブロマイド 少量を加えた後、グリシジルメタクリレート34質量%を2時間かけて滴下した。滴下後、空気を吹き込みながら90℃で4時間反応させ、反応終了後に、プロピレングリコール-1-モノメチルエーテル-2-アセタート(PGMEA)を用いて得られた樹脂溶液を希釈し、重量平均分子量が約21,000であり、かつ酸当量が450であるバインダーポリマー溶液(固形分45質量%)(A7)を得た。
上記バインダポリマー(A1)と同様の方法で、メタクリル酸25質量%、メタクリル酸メチル65質量%、アクリル酸n-ブチル10質量%を用いて、重量平均分子量が約85,000であり、かつ酸当量が344であるバインダーポリマー溶液(固形分39質量%)(A8)を得た。
実施例及び比較例における評価用フィルムは、次のようにして作製した。
<感光性樹脂積層体の作製>
下記表2,3に示す組成に従って、複数の成分をそれぞれ250mlのプラスチックボトルに量り取り、固形分濃度が49質量%となるようにエチルメチルケトンを投入し、攪拌機を用いて5時間に亘って溶解・混合を行って、感光性樹脂組成物を得た。その後、感光性樹脂組成物を3μmのフィルターに通し、感光性樹脂組成物調合液(実施例1~29、及び比較例1~10)を調製した。
また、国際公開第2014/024951号に記載の通り、アルカリ可溶性樹脂、添加剤及び溶媒としてのγ‐ブチロラクトンを用いて、固形分濃度が55質量%なるように調整し、同様の方法で感光性樹脂組成物調合液(比較例11)を調製した。
<サンプル作製法>
感光性樹脂層の厚みが50μmの感光性樹脂積層体を30cm×20cmにカットし、その上に0.3cm×4cmのサイズのネガ型パターン形成用マスクを置き、散乱光露光機((株)オーク製作所社製、HMW―201KB)により、支持体側から各組成の最適露光量で露光した。そして30分以上静置した後、保護フィルムを剥離し、(株)フジ機工製現像装置を用い、フルコーンタイプのノズルにて現像スプレー圧0.15MPaで、30℃の1質量%Na2CO3水溶液を所定時間スプレーして現像し、感光性樹脂層の未露光部分を溶解除去した。現像後30分以上静置した後、散乱光露光機にて感光層側から375mJ/cm2の露光量で露光し、30分以上静置した後、続いて、熱風循環式オーブンにて150℃で30分間に亘って熱処理を行った。熱処理後に、支持体から感光性樹脂層を剥離し、0.3cm×4cmサイズのサンプルを作製した。作製したサンプルは、23℃、RH50%にて1日調湿した後、試験を行った。
上記最適露光量とは、ストゥーファー21段ステップタブレット(光学密度0.00を1段目とし、1段毎に光学密度が0.15ずつ増加するステップタブレット)を介して露光した場合に残膜する段数が6段となるような露光量を意味する。
また現像工程における上記所定時間は、未露光部分の感光性樹脂層が完全に溶解するのに要する最も少ない時間を最小現像時間として測定したときに、最小現像時間の2倍の時間を意味する。水洗工程は、フラットタイプのノズルにて水洗スプレー圧0.15MPaにおいて、現像工程と同時間に亘って行われた。
上記方法で作製した感光性樹脂層の自立膜を動的粘弾性測定装置((株)エーアンドディー、DDV-01FP)により、以下の条件で動的粘弾性測定を行い、得られたデータから架橋密度:nCD(mol/m3)とTanδのピークトップ値を算出した。
サンプルサイズ:0.3cm×4cm×50μm(幅×長さ×厚み)
測定温度条件:25-150℃
昇温速度:5℃/分
荷重:3.0gf
加振周波数:1Hz
加振振幅:16μm
架橋密度nCDは上記計算式(1)に示す計算式を用いて算出した。本測定においてはいずれのサンプルもゴム領域における明確な最小貯蔵弾性率E’minの確認が困難であったため、測定温度条件の中で貯蔵弾性率E’の最小値を示した150℃における貯蔵弾性率E’を用いて架橋密度nCDを算出した。
<サンプル作製法>
感光性樹脂層の厚みが10μmの感光性樹脂積層体を5cm×5cmにカットし、支持体側から各組成の最適露光量で露光した。そして30分以上静置したのち、保護フィルムを剥離し、(株)フジ機工製現像装置を用い、フルコーンタイプのノズルにて現像スプレー圧0.15MPaで、30℃の1質量%Na2CO3水溶液を所定時間スプレーして現像し、感光性樹脂層の未露光部分を溶解除去した。現像後30分以上静置した後、散乱光露光機にて感光層側から375mJ/cm2の露光量で露光した。30分以上静置した後、続いて、熱風循環式オーブンにて150℃で30分間処理を行い、5cm×5cmサイズのサンプルを作製した。上記最適露光量及び所定時間は動的粘弾性測定サンプル作製方法と同様の定義である。
上記方法で作製したサンプルを屈折率測定装置(Metricon社製、Prism CouplerModel2010/M)を用いて532nmのレーザー光源を用いて、サンプルの平面方向において、任意の4ヶ所、垂直方向において、任意の4ヶ所の屈折率を測定し、その平均値を算出した。
<サンプル作製法>
感光性樹脂層の厚みが10μmの感光性樹脂積層体を2cm×20cmにカットし、散乱光露光機((株)オーク製作所社製、HMW―201KB)により、支持体側から各組成の最適露光量で露光した。30分以上静置した後、保護フィルムを剥離し、(株)フジ機工製現像装置を用い、フルコーンタイプのノズルにて現像スプレー圧0.15MPaで、30℃の1質量%Na2CO3水溶液を所定時間スプレーして現像した。現像後30分以上静置した後、散乱光露光機にて感光層側から375mJ/cm2の露光量で露光した。30分以上静置した後、続いて、熱風循環式オーブンにて150℃で30分間に亘って熱処理を行い、2cm×20cmサイズのサンプルを作製した。作製した評価用サンプルは、23℃、50%RHにて1日調湿した後、試験に供した。上記最適露光量及び所定時間は動的粘弾性測定サンプル作製方法と同様の定義である。
図1のように、固定した任意のφを有する円筒形マンドレル2を支点に、作製したサンプル1の感光層を外側にして、1秒~2秒掛けて90℃折り曲げ、元に戻す操作を1回とし、10回繰り返し同様の操作を行った。その後、サンプルについて、顕微鏡を用いて、剥がれ及び感光層の割れの有無を観察し、以下のように判定した。
A:0.5mmφのマンドレルにて、割れ及び剥がれが観察されなかった場合
B:1mmφのマンドレルにて、割れ又は剥がれが観察されなかった場合
C:2mmφのマンドレルにて、割れ又は剥がれが観察されなかった場合
D:3mmφのマンドレルにて、割れ又は剥がれが観察されなかった場合
E:3mmφのマンドレルにて、割れ又は剥がれが観察された場合
耐屈曲性試験の結果においては、2mmφのマンドレルにて割れ又は剥がれが観察されなかった場合を良好な結果とする。
<サンプル作製法>
感光性樹脂層の厚みが10μmの感光性樹脂積層体の保護フィルムを剥がしながら、10cm×10cm×1mmのガラス板(テンパックスフロート)上に、ホットロールラミネーター(大成ラミネーター(株)製、VA-400III )を用いてロール温度100℃でラミネートした。エアー圧力は0.4MPaとし、ラミネート速度は1.0m/分とした。散乱光露光機((株)オーク製作所社製、HMW―201KB)により、各組成の最適露光量で露光した。30分以上静置した後、支持体を剥がし、(株)フジ機工製現像装置を用い、フルコーンタイプのノズルにて現像スプレー圧0.15MPaで、30℃の1質量%Na2CO3水溶液を所定時間スプレーして現像した。現像後30分以上静置した後、散乱光露光機にて感光層側から375mJ/cm2の露光量で露光した。30分以上静置した後、続いて、熱風循環式オーブンにて150℃で30分間に亘って熱処理を行い、サンプルを作製した。作製した評価用サンプルは、23℃、50%RHにて1日調湿した後、試験に供した。上記最適露光量及び所定時間は動的粘弾性測定サンプル作製方法と同様の定義である。
作製した評価用サンプルを、クレメンス型引っ掻き硬度試験器(テスター産業(株)製)を用いて、JIS K5600-5-4(ISO/DIN 15184)に準じて、速度0.5mm/秒、引っ掻き幅1cm、荷重750gにて鉛筆硬度試験を行い、以下のように判定した。
A:3H以下の硬さで膜剥がれがなかった場合(基材のガラスにまで傷が達していなければ、サンプル表面に傷は付いても合格とした。)
B:2H以下の硬さで膜剥がれが観察されなかった場合
C:H以下の硬さで膜剥がれが観察されなかった場合
D:F以下の硬さで膜剥がれが観察されなかった場合
E:F以下の硬さで膜剥がれが観察された場合
鉛筆硬度試験の結果においては、H以下の硬さで膜剥がれが観察されなかった場合を良好な結果とする。
<サンプル作製法>
感光性樹脂層の厚みが10μm感光性樹脂積層体の保護フィルムを剥がしながら、樹脂、ITO、及びスパッタ銅がこの順に積層された基板の銅表面(サイズ:3cm×3cm)上に、ホットロールラミネーター(大成ラミネーター(株)製、VA-400III )を用いてラミネートした。ロール温度は100℃、エアー圧力は0.4MPaとし、ラミネート速度は1.0m/分とした。散乱光露光機((株)オーク製作所社製、HMW―201KB)により、各組成の最適露光量で露光した。30分以上静置した後、支持体を剥がし、(株)フジ機工製現像装置を用い、フルコーンタイプのノズルにて現像スプレー圧0.15MPaで、30℃の1質量%Na2CO3水溶液を所定時間スプレーして現像した。現像後30分以上静置した後、散乱光露光機にて感光層側から375mJ/cm2の露光量で露光した。30分以上静置した後、続いて、熱風循環式オーブンにて150℃で30分間に亘って熱処理を行い、サンプルを作製した。作製した評価用サンプルは、23℃、50%RHにて1日調湿した後、試験に供した。上記最適露光量及び所定時間は動的粘弾性測定サンプル作製方法と同様の定義である。
上記処理後のサンプルを密閉可能な容器の底に、感光性樹脂面が上になるように、ポリイミドテープで固定した。そこへ5質量%の塩化ナトリウム水溶液を入れてサンプルを浸漬させ、容器に蓋をして、65℃の恒温オーブン中で24時間静置した。24時間経過後のサンプルの状態を以下のようにランク分けした。
A:基材表面のCuの腐食又は変色がない
B:基材表面のCuの腐食又は変色が、全体面積の5%未満であった場合
C:基材表面のCuの腐食又は変色が、全体面積の10%未満であった場合
D:基材表面のCuの腐食又は変色が、全体面積の15%未満であった場合
E:基材表面のCuの腐食又は変色が、全体面積の15%以上であった場合
塩水試験の結果においては、基材表面のCuの腐食又は変色が、全体面積の10%未満であった場合を良好な結果とする。
<サンプル作製法>
感光性樹脂層の厚みが10μm感光性樹脂積層体の保護フィルムを剥がしながら、樹脂、ITO、及びスパッタ銅がこの順に積層された基板の銅表面(サイズ:3cm×3cm)上に、ホットロールラミネーター(大成ラミネーター(株)製、VA-400III )を用いてラミネートした。ロール温度は100℃、エアー圧力は0.4MPaとし、ラミネート速度は1.0m/分とした。散乱光露光機((株)オーク製作所社製、HMW―201KB)により、各組成の最適露光量で露光した。30分以上静置した後、支持体を剥がし、(株)フジ機工製現像装置を用い、フルコーンタイプのノズルにて現像スプレー圧0.15MPaで、30℃の1質量%Na2CO3水溶液を所定時間スプレーして現像した。現像後30分以上静置した後、散乱光露光機にて感光層側から375mJ/cm2の露光量で露光した。30分以上静置した後、続いて、熱風循環式オーブンにて150℃で30分間に亘って熱処理を行い、サンプルを作製した。作製した評価用サンプルは、23℃、50%RHにて1日調湿した後、試験に供した。上記最適露光量及び所定時間は動的粘弾性測定サンプル作製方法と同様の定義である。
上記処理後のサンプルを、JIS規格 K5400を参考に、100マスのクロスカット試験を実施した。試験面にカッターナイフを用いて、1×1mm四方の碁盤目の切り傷を入れ、碁盤目部分にメンディングテープ#810(スリーエム(株)製)を強く圧着させ、テープの端をほぼ0°の角度で緩やかに引き剥がした後、碁盤目の状態を観察し、以下の評点に従ってクロスカット密着性を評価した。
A:全面積中、ほぼ剥がれなし
B:全面積中、5%未満で剥がれがある
C:全面積中、5~15%の剥がれがある
D:全面積中、15~35%の剥がれがある
E:全面積中、35%以上の剥がれがある
クロスカット試験の結果においては、全面積中、5%未満で剥がれがある場合までを良好な結果とする。
<サンプル作製法>
感光性樹脂層の厚みが50μm感光性樹脂積層体の保護フィルムを剥がし、感光性樹脂層面同士を折り畳み、感光性樹脂層のみを支持体から剥離し、15mgの感光性樹脂層を得た。
上記サンプルをアルミニウム製のセルに入れ、熱分析装置(SHIMAZU社製、DTG-60A)を用いて、以下の条件で熱重量減少量を測定した。
サンプル量:15mg
測定温度条件:25-150℃(100℃ 10分ホールド/150℃ 30分ホールド)
昇温速度:10℃/分
雰囲気下:N2 50ml/分
<サンプル作製法>
感光性樹脂層の厚みが10μmの感光性樹脂積層体の保護フィルムを剥がしながら、10cm×10cm×1mmのガラス板(テンパックスフロート)上に、ホットロールラミネーター(大成ラミネーター(株)製、VA-400III )を用いてロール温度100℃でラミネートした。エアー圧力は0.4MPaとし、ラミネート速度は1.0m/分とした。散乱光露光機((株)オーク製作所社製、HMW―201KB)により、各組成の最適露光量で露光した。30分以上静置した後、支持体を剥がし、(株)フジ機工製現像装置を用い、フルコーンタイプのノズルにて現像スプレー圧0.15MPaで、30℃の1質量%Na2CO3水溶液を所定時間スプレーして現像した。現像後30分以上静置した後、散乱光露光機にて感光層側から375mJ/cm2の露光量で露光した。30分以上静置した後、続いて、熱風循環式オーブンにて150℃で30分間に亘って熱処理を行い、サンプルを作製した。作製した評価用サンプルは、23℃、50%RHにて1日調湿した後、試験に供した。上記最適露光量及び所定時間は動的粘弾性測定サンプル作製方法と同様の定義である。
作製した評価用サンプルを用いて、透過率測定を行った。透過率測定は400nm~700nmにおける全透過率をJIS K7361-1の規格に準じ、UV分光器(日立ハイテクサイエンス社製 U-3010)を用いて測定した。実施例1~29のいずれも400nm~700nmにおける透過率は90%以上であった。
<サンプル作製法>
感光性樹脂層の厚みが10μmの感光性樹脂積層体の保護フィルムを剥がしながら、10cm×10cm×1mmのガラス板(テンパックスフロート)上に、ホットロールラミネーター(大成ラミネーター(株)製、VA-400III )を用いてロール温度100℃でラミネートした。エアー圧力は0.4MPaとし、ラミネート速度は1.0m/分とした。散乱光露光機((株)オーク製作所社製、HMW―201KB)により、各組成の最適露光量で露光した。30分以上静置した後、支持体を剥がし、(株)フジ機工製現像装置を用い、フルコーンタイプのノズルにて現像スプレー圧0.15MPaで、30℃の1質量%Na2CO3水溶液を所定時間スプレーして現像した。現像後30分以上静置した後、散乱光露光機にて感光層側から375mJ/cm2の露光量で露光した。30分以上静置した後、続いて、熱風循環式オーブンにて150℃で30分間に亘って熱処理を行い、サンプルを作製した。作製した評価用サンプルは、23℃、50%RHにて1日調湿した後、試験に供した。上記最適露光量及び所定時間は動的粘弾性測定サンプル作製方法と同様の定義である。
作製した評価用サンプルを用いて、ヘイズ測定を行った。ヘイズ測定はJIS K7136の規格に準じ、ヘイズメーター(日本電飾工業社製 日本電飾濁度計NDH2000)を用いて測定した。実施例1~29のいずれもヘイズの値は0.5%以下であった。
2 任意のφを有する円筒形マンドレル
Claims (15)
- (A)アルカリ可溶性高分子;
(B)エチレン性不飽和二重結合を有する化合物;及び
(C)光重合開始剤;
を含む感光性樹脂層が支持フィルム上に積層された感光性樹脂積層体であって、
前記感光性樹脂積層体は、導体部の保護膜形成に用いられ、
前記感光性樹脂層の厚みが、20μm以下であり、かつ
前記感光性樹脂層の硬化物が、下記(1)~(3):
(1)架橋密度が1,000mol/m3~8,000mol/m3である;
(2)Tanδのピークトップ値が0.4以上である;及び
(3)波長532nmでの屈折率が1.50~1.60である;
の条件を満たす、
前記感光性樹脂積層体。 - 前記(A)アルカリ可溶性高分子が、置換基を有してもよいフェニル基を含む、請求項1に記載の感光性樹脂積層体。
- 前記感光性樹脂層の露光後のガラス転移温度が、100℃未満である、請求項1又は2に記載の感光性樹脂積層体。
- 前記導体部が、銅電極又は透明電極である、請求項1~4のいずれか1項に記載の感光性樹脂積層体。
- 前記感光性樹脂積層体が、タッチパネル用保護膜又はタッチセンサー保護膜として使用される、請求項1~5のいずれか1項に記載の感光性樹脂積層体。
- 前記感光性樹脂層が、更に(D)熱架橋剤を含む、請求項1~6のいずれか1項に記載の感光性樹脂積層体。
- 前記(B)エチレン性不飽和二重結合を有する化合物が、トリメチロールプロパントリ(メタ)アクリレート、及びポリテトラメチレングリコールジ(メタ)アクリレートを含む、請求項8に記載の配線保護膜用感光性樹脂組成物。
- 前記配線保護膜用感光性樹脂組成物が、更に(D)熱架橋剤を含む、請求項8又は9に記載の感光性樹脂組成物。
- 支持フィルムと、該支持フィルム上に設けられた請求項8~10のいずれか1項に記載の配線保護膜用感光性樹脂組成物から成る感光性樹脂層とを備える、感光性樹脂積層体。
- 基材上に、請求項1~7及び11のいずれか1項に記載の感光性樹脂積層体をラミネートし、露光し、そして現像することによりパターンを作製する工程を含むパターン製造方法。
- 請求項12に記載の方法で得られたパターンを後露光処理及び/又は加熱処理に供して得られた硬化膜パターン。
- 請求項13に記載の硬化膜パターンを有するタッチパネル表示装置。
- 請求項13に記載の硬化膜パターン及びタッチセンサーを有する装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016550361A JP6318260B2 (ja) | 2014-09-24 | 2015-09-24 | 感光性樹脂積層体、樹脂パターンの製造方法、硬化膜の製造方法及び表示装置の製造方法 |
CN201580049650.8A CN107077067B (zh) | 2014-09-24 | 2015-09-24 | 感光性树脂组合物、感光性树脂层压体、树脂图案的制造方法、固化膜和显示装置 |
KR1020177003745A KR101922354B1 (ko) | 2014-09-24 | 2015-09-24 | 감광성 수지 조성물, 감광성 수지 적층체, 수지 패턴의 제조 방법, 경화막 및 표시 장치 |
US15/510,619 US10338468B2 (en) | 2014-09-24 | 2015-09-24 | Photosensitive resin composition, photosensitive resin laminate, resin pattern production method, cured film, and display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014194059 | 2014-09-24 | ||
JP2014-194059 | 2014-09-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016047691A1 true WO2016047691A1 (ja) | 2016-03-31 |
Family
ID=55581214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/076940 WO2016047691A1 (ja) | 2014-09-24 | 2015-09-24 | 感光性樹脂組成物、感光性樹脂積層体、樹脂パターンの製造方法、硬化膜及び表示装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10338468B2 (ja) |
JP (2) | JP6318260B2 (ja) |
KR (1) | KR101922354B1 (ja) |
CN (1) | CN107077067B (ja) |
TW (1) | TWI576666B (ja) |
WO (1) | WO2016047691A1 (ja) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017009702A (ja) * | 2015-06-18 | 2017-01-12 | 日立化成株式会社 | 感光性樹脂組成物及び感光性エレメント |
JP2017032824A (ja) * | 2015-08-03 | 2017-02-09 | 三洋化成工業株式会社 | 感光性樹脂組成物 |
WO2017038278A1 (ja) * | 2015-08-28 | 2017-03-09 | 富士フイルム株式会社 | 転写フィルム、静電容量型入力装置の電極保護膜、積層体、積層体の製造方法および静電容量型入力装置 |
JP2017097320A (ja) * | 2015-11-17 | 2017-06-01 | 富士フイルム株式会社 | 感光性組成物、硬化物の製造方法、硬化膜、表示装置、及び、タッチパネル |
WO2018105532A1 (ja) * | 2016-12-05 | 2018-06-14 | 旭化成株式会社 | 感光性樹脂組成物、感光性樹脂積層体、樹脂パターンの製造方法及び硬化膜パターン製造方法 |
KR20180070209A (ko) * | 2016-12-16 | 2018-06-26 | 코오롱인더스트리 주식회사 | 드라이 필름 포토 레지스트용 감광성 수지 조성물 |
WO2018181722A1 (ja) * | 2017-03-29 | 2018-10-04 | 日立化成株式会社 | タッチパネル電極の保護膜及びタッチパネル |
JP2019035932A (ja) * | 2017-01-30 | 2019-03-07 | 旭化成株式会社 | 感光性樹脂組成物、感光性樹脂積層体、レジストパターンが形成された基板および回路基板の製造方法 |
JP2019105841A (ja) * | 2015-09-11 | 2019-06-27 | 旭化成株式会社 | 感光性樹脂組成物 |
CN110637256A (zh) * | 2017-05-15 | 2019-12-31 | 三菱瓦斯化学株式会社 | 光刻用膜形成材料、光刻用膜形成用组合物、光刻用下层膜及图案形成方法 |
JP2020027220A (ja) * | 2018-08-16 | 2020-02-20 | 旭化成株式会社 | 感光性樹脂積層体、感光性樹脂積層体を用いたパターン製造方法及び装置 |
JP2020086238A (ja) * | 2018-11-28 | 2020-06-04 | 旭化成株式会社 | 感光性樹脂組成物、並びにその感光性樹脂組成物を用いた転写フィルム、樹脂パターン及び硬化膜パターン |
JPWO2021095784A1 (ja) * | 2019-11-11 | 2021-05-20 | ||
CN113613898A (zh) * | 2019-03-26 | 2021-11-05 | 富士胶片株式会社 | 银导电性材料保护膜用转印膜、带图案的银导电性材料的制造方法、层叠体及触摸面板 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI639889B (zh) * | 2015-12-25 | 2018-11-01 | 旭化成股份有限公司 | 感光性樹脂組合物、感光性樹脂積層體、樹脂圖案製造方法、硬化膜圖案製造方法及顯示裝置 |
KR102408329B1 (ko) * | 2016-01-08 | 2022-06-10 | 동우 화인켐 주식회사 | 필름 터치 센서 및 이의 제조 방법 |
WO2019142786A1 (ja) * | 2018-01-18 | 2019-07-25 | 旭化成株式会社 | 感光性樹脂積層体およびその製造方法 |
KR102687890B1 (ko) * | 2018-02-05 | 2024-07-25 | 제이에스알 가부시끼가이샤 | 배선 부재 |
TWI796478B (zh) * | 2018-05-15 | 2023-03-21 | 日商Dic股份有限公司 | 含酸基之(甲基)丙烯酸酯樹脂組成物、硬化性樹脂組成物、硬化物、絕緣材料、阻焊用樹脂材料及阻焊構件 |
CN118778362A (zh) * | 2018-06-22 | 2024-10-15 | 旭化成株式会社 | 感光性树脂组合物和抗蚀图案的形成方法 |
EP3613393B1 (en) * | 2018-08-24 | 2021-11-10 | The Procter & Gamble Company | Packaging material |
KR102522185B1 (ko) * | 2018-10-04 | 2023-04-14 | 주식회사 엘지화학 | 봉지재용 조성물 |
JP2022017603A (ja) * | 2018-10-17 | 2022-01-26 | 株式会社カネカ | 熱硬化性・感光性樹脂組成物 |
JP7405768B2 (ja) * | 2018-12-19 | 2023-12-26 | 太陽ホールディングス株式会社 | 硬化性樹脂組成物、ドライフィルム、硬化物および電子部品 |
TWI797993B (zh) * | 2022-02-16 | 2023-04-01 | 長春人造樹脂廠股份有限公司 | 光阻膜及其應用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003021899A (ja) * | 2001-07-06 | 2003-01-24 | Toagosei Co Ltd | エッチングレジスト用硬化型組成物 |
WO2012086371A1 (ja) * | 2010-12-24 | 2012-06-28 | 旭化成イーマテリアルズ株式会社 | 感光性樹脂組成物 |
WO2012101908A1 (ja) * | 2011-01-25 | 2012-08-02 | 日立化成工業株式会社 | 感光性樹脂組成物、感光性エレメント、レジストパターンの製造方法及びプリント配線板の製造方法 |
JP2013076821A (ja) * | 2011-09-30 | 2013-04-25 | Toray Ind Inc | ネガ型感光性樹脂組成物およびそれを用いた保護膜およびタッチパネル部材 |
WO2013084873A1 (ja) * | 2011-12-05 | 2013-06-13 | 日立化成株式会社 | タッチパネル用電極の保護膜の形成方法、感光性樹脂組成物及び感光性エレメント、並びに、タッチパネルの製造方法 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS534970A (en) | 1976-07-02 | 1978-01-18 | Hitachi Ltd | Handling system |
JPS534973A (en) | 1976-07-03 | 1978-01-18 | Tokyo Denki Sangiyou Kk | Apparatus for detecting level of granular material or other |
JPS577420A (en) | 1980-06-18 | 1982-01-14 | Yamasa Shoyu Co Ltd | Antitumor agent |
CN100569825C (zh) * | 2004-07-15 | 2009-12-16 | 太阳油墨制造株式会社 | 光固化性·热固化性树脂组合物及其固化物 |
JP2006331478A (ja) * | 2005-05-23 | 2006-12-07 | Hitachi Chem Co Ltd | 感光性樹脂組成物及び感光性エレメント。 |
KR20100015471A (ko) * | 2007-04-11 | 2010-02-12 | 바이엘 머티리얼사이언스 아게 | 고굴절률을 갖는 방향족 우레탄 아크릴레이트 |
JP4846867B2 (ja) | 2010-03-31 | 2011-12-28 | 三菱レイヨン株式会社 | 積層体及びその製造方法 |
CN102883878B (zh) | 2010-03-31 | 2014-04-23 | 三菱丽阳株式会社 | 积层体及其制造方法 |
JP5505066B2 (ja) * | 2010-04-28 | 2014-05-28 | Jsr株式会社 | 感放射線性樹脂組成物、表示素子の層間絶縁膜、保護膜及びスペーサーならびにそれらの形成方法 |
JP2011237668A (ja) | 2010-05-12 | 2011-11-24 | Jsr Corp | 感放射線性樹脂組成物、表示素子の層間絶縁膜、保護膜またはスペーサーならびにそれらの形成方法 |
JP5765049B2 (ja) * | 2010-05-27 | 2015-08-19 | Jsr株式会社 | 硬化膜形成用感放射線性樹脂組成物、硬化膜形成用感放射線性樹脂組成物の製造方法、硬化膜、硬化膜の形成方法及び表示素子 |
TW201329618A (zh) * | 2011-09-26 | 2013-07-16 | Nippon Steel & Sumikin Chem Co | 感光性樹脂組成物及乾膜阻劑 |
JP5899798B2 (ja) | 2011-10-26 | 2016-04-06 | 日立化成株式会社 | 感光性樹脂組成物、感光性エレメント、レジストパターンの形成方法及びプリント配線板の製造方法 |
JP5304970B1 (ja) | 2011-12-05 | 2013-10-02 | 日立化成株式会社 | タッチパネル用電極の保護膜の形成方法、感光性樹脂組成物、感光性エレメント、タッチパネルの製造方法及びタッチパネル用電極の保護膜 |
WO2013084282A1 (ja) | 2011-12-05 | 2013-06-13 | 日立化成株式会社 | 樹脂硬化膜パターンの形成方法、感光性樹脂組成物及び感光性エレメント |
JP5304973B1 (ja) | 2011-12-05 | 2013-10-02 | 日立化成株式会社 | タッチパネル用電極の保護膜の形成方法、感光性樹脂組成物及び感光性エレメント、並びに、タッチパネルの製造方法 |
KR102025036B1 (ko) * | 2011-12-05 | 2019-09-24 | 히타치가세이가부시끼가이샤 | 터치패널용 전극의 보호막의 형성 방법, 감광성 수지 조성물 및 감광성 엘리먼트, 및, 터치패널의 제조 방법 |
CN104583867B (zh) | 2012-08-08 | 2020-03-17 | 旭化成株式会社 | 感光性膜层积体、柔性印刷布线板及其制造方法 |
US20150299520A1 (en) * | 2012-10-15 | 2015-10-22 | Hitachi Chemical Company, Ltd. | Adhesive sheet for image display device, method for manufacturing image display device, and image display device |
CN106233204A (zh) * | 2014-05-13 | 2016-12-14 | 日立化成株式会社 | 感光性树脂组合物、感光性元件、抗蚀图案的形成方法和印刷配线板的制造方法 |
KR102582910B1 (ko) * | 2014-05-13 | 2023-09-26 | 가부시끼가이샤 레조낙 | 감광성 수지 조성물, 감광성 엘리먼트, 레지스트 패턴의 형성 방법 및 프린트 배선판의 제조 방법 |
JP6284913B2 (ja) * | 2014-08-29 | 2018-02-28 | 富士フイルム株式会社 | タッチパネル電極保護膜形成用組成物、転写フィルム、積層体、タッチパネル用電極の保護膜及びその形成方法、静電容量型入力装置、並びに、画像表示装置 |
-
2015
- 2015-09-24 KR KR1020177003745A patent/KR101922354B1/ko active IP Right Grant
- 2015-09-24 WO PCT/JP2015/076940 patent/WO2016047691A1/ja active Application Filing
- 2015-09-24 TW TW104131652A patent/TWI576666B/zh active
- 2015-09-24 CN CN201580049650.8A patent/CN107077067B/zh active Active
- 2015-09-24 JP JP2016550361A patent/JP6318260B2/ja active Active
- 2015-09-24 US US15/510,619 patent/US10338468B2/en active Active
-
2017
- 2017-12-07 JP JP2017235088A patent/JP6738790B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003021899A (ja) * | 2001-07-06 | 2003-01-24 | Toagosei Co Ltd | エッチングレジスト用硬化型組成物 |
WO2012086371A1 (ja) * | 2010-12-24 | 2012-06-28 | 旭化成イーマテリアルズ株式会社 | 感光性樹脂組成物 |
WO2012101908A1 (ja) * | 2011-01-25 | 2012-08-02 | 日立化成工業株式会社 | 感光性樹脂組成物、感光性エレメント、レジストパターンの製造方法及びプリント配線板の製造方法 |
JP2013076821A (ja) * | 2011-09-30 | 2013-04-25 | Toray Ind Inc | ネガ型感光性樹脂組成物およびそれを用いた保護膜およびタッチパネル部材 |
WO2013084873A1 (ja) * | 2011-12-05 | 2013-06-13 | 日立化成株式会社 | タッチパネル用電極の保護膜の形成方法、感光性樹脂組成物及び感光性エレメント、並びに、タッチパネルの製造方法 |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017009702A (ja) * | 2015-06-18 | 2017-01-12 | 日立化成株式会社 | 感光性樹脂組成物及び感光性エレメント |
JP2017032824A (ja) * | 2015-08-03 | 2017-02-09 | 三洋化成工業株式会社 | 感光性樹脂組成物 |
WO2017038278A1 (ja) * | 2015-08-28 | 2017-03-09 | 富士フイルム株式会社 | 転写フィルム、静電容量型入力装置の電極保護膜、積層体、積層体の製造方法および静電容量型入力装置 |
JP7026606B2 (ja) | 2015-09-11 | 2022-02-28 | 旭化成株式会社 | 感光性樹脂組成物 |
JP2019105841A (ja) * | 2015-09-11 | 2019-06-27 | 旭化成株式会社 | 感光性樹脂組成物 |
JP2017097320A (ja) * | 2015-11-17 | 2017-06-01 | 富士フイルム株式会社 | 感光性組成物、硬化物の製造方法、硬化膜、表示装置、及び、タッチパネル |
WO2018105532A1 (ja) * | 2016-12-05 | 2018-06-14 | 旭化成株式会社 | 感光性樹脂組成物、感光性樹脂積層体、樹脂パターンの製造方法及び硬化膜パターン製造方法 |
CN110036341A (zh) * | 2016-12-05 | 2019-07-19 | 旭化成株式会社 | 感光性树脂组合物、感光性树脂层积体、树脂图案的制造方法和固化膜图案制造方法 |
JPWO2018105532A1 (ja) * | 2016-12-05 | 2019-10-24 | 旭化成株式会社 | 感光性樹脂組成物、感光性樹脂積層体、樹脂パターンの製造方法及び硬化膜パターン製造方法 |
CN110036341B (zh) * | 2016-12-05 | 2023-06-09 | 旭化成株式会社 | 感光性树脂组合物、感光性树脂层积体、树脂图案的制造方法和固化膜图案制造方法 |
KR20180070209A (ko) * | 2016-12-16 | 2018-06-26 | 코오롱인더스트리 주식회사 | 드라이 필름 포토 레지스트용 감광성 수지 조성물 |
KR102326008B1 (ko) * | 2016-12-16 | 2021-11-11 | 코오롱인더스트리 주식회사 | 드라이 필름 포토 레지스트용 감광성 수지 조성물 |
JP2019035932A (ja) * | 2017-01-30 | 2019-03-07 | 旭化成株式会社 | 感光性樹脂組成物、感光性樹脂積層体、レジストパターンが形成された基板および回路基板の製造方法 |
WO2018181722A1 (ja) * | 2017-03-29 | 2018-10-04 | 日立化成株式会社 | タッチパネル電極の保護膜及びタッチパネル |
EP3627224A4 (en) * | 2017-05-15 | 2020-06-03 | Mitsubishi Gas Chemical Company, Inc. | FILM-FORMING MATERIAL FOR LITHOGRAPHY, COMPOSITION FOR FORMING FILM IN LITHOGRAPHY, UNDERLAYER FILM FOR LITHOGRAPHY AND PATTERN FORMING METHOD |
CN110637256A (zh) * | 2017-05-15 | 2019-12-31 | 三菱瓦斯化学株式会社 | 光刻用膜形成材料、光刻用膜形成用组合物、光刻用下层膜及图案形成方法 |
JP2020027220A (ja) * | 2018-08-16 | 2020-02-20 | 旭化成株式会社 | 感光性樹脂積層体、感光性樹脂積層体を用いたパターン製造方法及び装置 |
JP7260264B2 (ja) | 2018-08-16 | 2023-04-18 | 旭化成株式会社 | 感光性樹脂積層体、感光性樹脂積層体を用いたパターン製造方法及び装置 |
JP2020086238A (ja) * | 2018-11-28 | 2020-06-04 | 旭化成株式会社 | 感光性樹脂組成物、並びにその感光性樹脂組成物を用いた転写フィルム、樹脂パターン及び硬化膜パターン |
JP7149173B2 (ja) | 2018-11-28 | 2022-10-06 | 旭化成株式会社 | 感光性樹脂組成物、並びにその感光性樹脂組成物を用いた転写フィルム、樹脂パターン及び硬化膜パターン |
CN113613898A (zh) * | 2019-03-26 | 2021-11-05 | 富士胶片株式会社 | 银导电性材料保护膜用转印膜、带图案的银导电性材料的制造方法、层叠体及触摸面板 |
JPWO2021095784A1 (ja) * | 2019-11-11 | 2021-05-20 | ||
WO2021095784A1 (ja) * | 2019-11-11 | 2021-05-20 | 旭化成株式会社 | 感光性樹脂組成物及び感光性樹脂積層体 |
JP7485692B2 (ja) | 2019-11-11 | 2024-05-16 | 旭化成株式会社 | 感光性樹脂組成物及び感光性樹脂積層体 |
Also Published As
Publication number | Publication date |
---|---|
KR101922354B1 (ko) | 2018-11-26 |
KR20170032364A (ko) | 2017-03-22 |
US20170285474A1 (en) | 2017-10-05 |
US10338468B2 (en) | 2019-07-02 |
CN107077067A (zh) | 2017-08-18 |
JP2018077490A (ja) | 2018-05-17 |
JPWO2016047691A1 (ja) | 2017-05-25 |
TW201619705A (zh) | 2016-06-01 |
JP6738790B2 (ja) | 2020-08-12 |
TWI576666B (zh) | 2017-04-01 |
CN107077067B (zh) | 2021-04-13 |
JP6318260B2 (ja) | 2018-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6318260B2 (ja) | 感光性樹脂積層体、樹脂パターンの製造方法、硬化膜の製造方法及び表示装置の製造方法 | |
JP6669742B2 (ja) | タッチパネル用水性樹脂組成物、転写フィルム及び硬化膜積層体、並びに樹脂パターンの製造方法及びタッチパネル表示装置 | |
US10795469B2 (en) | Laminate containing conductive fiber, photosensitive conductive film, method for producing conductive pattern, conductive pattern substrate, and touch panel | |
WO2018061707A1 (ja) | タッチパネルの製造方法 | |
WO2017169257A1 (ja) | 転写フィルム、静電容量型入力装置の電極保護膜、積層体および静電容量型入力装置 | |
WO2018042833A1 (ja) | 感光性樹脂組成物、転写フィルム、タッチパネル用保護膜、タッチパネル及びその製造方法、並びに画像表示装置 | |
WO2017057348A1 (ja) | 転写フィルム、静電容量型入力装置の電極保護膜、積層体、積層体の製造方法および静電容量型入力装置 | |
WO2018008376A1 (ja) | 感光性組成物、転写フィルム、硬化膜、並びに、タッチパネル及びその製造方法 | |
JP2015060091A (ja) | 導電パターンの製造方法、その方法により製造された導電パターンを備える導電パターン基板、その導電パターン基板を含むタッチパネルセンサ、及び感光性導電フィルム | |
JP6838876B2 (ja) | 感光性樹脂組成物、感光性樹脂積層体、樹脂パターンの製造方法、硬化膜及び表示装置 | |
JPWO2019077891A1 (ja) | 転写材料、タッチセンサー及びその製造方法、並びに画像表示装置 | |
JP2019101322A (ja) | 感光性組成物、転写フィルム、硬化膜、並びに、タッチパネル及びその製造方法 | |
JP6888148B2 (ja) | 転写フィルム、静電容量型入力装置の電極保護膜、積層体および静電容量型入力装置 | |
JP2017198878A (ja) | 感光性導電フィルム及びそれを用いた導電パターン、導電パターン基板、タッチパネルセンサの製造方法 | |
JP6399175B2 (ja) | 導電パターンの製造方法、その方法により製造された導電パターンを備える導電パターン基板、その導電パターン基板を含むタッチパネルセンサ、及び感光性導電フィルム | |
JP6943279B2 (ja) | 転写型感光性フィルム、硬化膜パターンの形成方法及びタッチパネル | |
WO2019207648A1 (ja) | 感光性樹脂組成物、転写型感光性フィルム、硬化膜付き基材及びセンシングデバイス | |
JPWO2017056530A1 (ja) | 感光性樹脂組成物、感光性エレメント、レジストパターンの形成方法及びタッチパネルの製造方法 | |
WO2018181722A1 (ja) | タッチパネル電極の保護膜及びタッチパネル | |
WO2018134883A1 (ja) | 感光性樹脂組成物、感光性エレメント、タッチパネル電極の保護膜及びタッチパネル | |
WO2018096616A1 (ja) | 感光性樹脂組成物、感光性エレメント、保護膜及びタッチパネル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15843562 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016550361 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177003745 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15510619 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15843562 Country of ref document: EP Kind code of ref document: A1 |