WO2016034020A1 - 陶瓷和凝胶聚合物多层复合的锂电池隔膜及其制备方法 - Google Patents
陶瓷和凝胶聚合物多层复合的锂电池隔膜及其制备方法 Download PDFInfo
- Publication number
- WO2016034020A1 WO2016034020A1 PCT/CN2015/084122 CN2015084122W WO2016034020A1 WO 2016034020 A1 WO2016034020 A1 WO 2016034020A1 CN 2015084122 W CN2015084122 W CN 2015084122W WO 2016034020 A1 WO2016034020 A1 WO 2016034020A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ceramic
- aqueous
- slurry
- layer
- coating
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/443—Particulate material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a lithium ion battery separator, and more particularly to a ceramic and gel polymer multilayer composite lithium battery separator having high thermal safety and high ability to hold an electrolyte and a preparation method thereof.
- lithium batteries Although it does not participate in the electrochemical reaction in the battery, it is a key inner layer component in lithium batteries.
- the key properties of the battery capacity, cycle performance and charge and discharge current density are directly related to the diaphragm.
- the improvement of the diaphragm performance plays an important role in improving the overall performance of the lithium battery.
- the diaphragm After the diaphragm absorbs the electrolyte, the positive and negative electrodes can be isolated to prevent short circuit, but at the same time, lithium ion conduction is allowed.
- the diaphragm also has high-temperature self-closing performance to block current conduction and prevent explosion.
- lithium battery separators also have high strength, fire resistance, chemical resistance, acid and alkali corrosion resistance, good biocompatibility, non-toxic and so on.
- the safety of lithium-ion batteries is the focus of the industry, and the safety of the diaphragm is one of the top priorities. This requires the diaphragm to have excellent mechanical properties, lower closed cell temperatures and the ability to retain shape at higher temperatures.
- the large-scale commercialized lithium battery separator is mainly made of polypropylene and polyethylene. With the higher performance requirements of lithium batteries, the thermal safety of the diaphragms of these two materials and the ability to maintain the electrolyte are difficult to meet. It is required that the study of high-performance composite membranes for the preparation of other materials and polyolefins is the most important direction for membrane modification.
- the present invention provides a method for preparing a ceramic and gel polymer multilayer composite lithium battery separator having high thermal safety and high electrolyte retention ability.
- the object of the present invention is achieved by the following technical measures, a method for preparing a ceramic and gel polymer multilayer composite lithium battery separator, comprising the following steps:
- Step 1 Configuring an aqueous PVDF slurry and an aqueous ceramic slurry
- Step 2 a polypropylene separator and a polyethylene separator are composited, and a polypropylene separator and a polyethylene separator are thermally compounded at 50 to 100 ° C to obtain a PP/PE composite separator;
- Step 3 coating, using the PP/PE composite separator obtained in step 2 as a coating substrate, coating the aqueous slurry prepared in step 1 on the PE surface of the substrate, first coating the aqueous ceramic slurry to form a ceramic layer.
- the aqueous PVDF slurry is then coated to form a gel polymer layer at a coating rate of 5 to 100 m/min, and dried in an oven at 30 to 100 ° C to obtain a final four-layer composite separator.
- the PE surface is coated because the PE layer is easily deformed at a high temperature, and mainly plays a thermal shutdown effect in the composite separator. This is advantageous for improving the phenomenon of coating the separator to fall off when the battery is fabricated. (1) stirring the polyolefin resin, the lubricant and other additives through a stirring mixer to obtain a mixture;
- the method for preparing the aqueous PVDF slurry in the step 1 is:
- Deionized water is used as a solvent, and the water-soluble adhesive, surfactant, dispersant and thickener are added to deionized water at room temperature to be stirred and dissolved to form a solution; then the polymer powder particles are added, stirred uniformly, and formulated into water.
- the slurry contains 0.1% to 2% of water-soluble polymer thickener, 0.01% to 2% of aqueous dispersant, 0.01% to 1% of surfactant, 0.1% to 5% of water-based adhesive Agent, 5% to 25% of polymer powder particles, 67% to 83% deionized Water, all of which are mass fractions; the polymer powder particles have a weight average molecular weight of 12 to 160,000 and a particle diameter of 100 to 300 nm.
- the preparation method of the aqueous ceramic slurry in the step 1 is:
- Deionized water is used as a solvent, and the water-soluble adhesive and thickener are added to deionized water at room temperature to be stirred and dissolved to form a solution; then, a surfactant, an aqueous dispersant and a ceramic powder are sequentially added to the above solution, and stirred.
- Adhesive 5% to 25% ceramic powder particles, 67% to 83% deionized water, all of which are mass fractions.
- the polypropylene porous film has a thickness ranging from 8 ⁇ m to 100 ⁇ m, a porosity ranging from 30% to 80%, and an average pore diameter of from 0.01 ⁇ m to 10 ⁇ m.
- the polymer powder particles are one of polytetrafluoroethylene, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, polyimide, polypropylene fine, and aramid resin. Or a plurality of; the polymer powder particles are aggregated in a particle size ranging from 0.01 ⁇ m to 10 ⁇ m.
- the ceramic powder particles are any one or more of SiO 2 , Al 2 O 3 , CaO, TiO 2 , MgO, ZnO, SnO 2 , and ZrO 2 ; and the particle size ranges from 0.01 ⁇ m to ⁇ 10 ⁇ m.
- the invention also discloses a ceramic and gel polymer multilayer composite lithium battery separator prepared by the above method, comprising a polypropylene support layer, a polyethylene barrier layer, a ceramic coating layer and a polymer coating layer which are sequentially laminated.
- the polypropylene support layer has a thickness ranging from 8 ⁇ m to 100 ⁇ m, a porosity ranging from 30% to 80%, and an average pore diameter of from 0.01 ⁇ m to 10 ⁇ m.
- the polyethylene barrier layer has a thickness of 7 ⁇ m to 30 ⁇ m and a porosity of 30% to 60%; and when the temperature is greater than 125 ° C, the pores of the PE layer are closed.
- the ceramic coating layer and the polymer coating layer have a total thickness of from 1 ⁇ m to 10 ⁇ m.
- the inorganic particle coating improves the thermal safety of the separator.
- the composite separator is placed at a high temperature of 135 ° C for 1 hour, and the heat shrinkage rate is less than 3%.
- the inorganic particle coating improves the wettability of the electrolyte to the separator and facilitates the absorption of the electrolyte; the organic particles are PVDF-HFP powder, which can swell in the electrolyte and have a good ability to absorb and retain the electrolyte.
- the conductivity of the lithium battery thus gives the lithium battery a good cycle life.
- the positive and negative electrodes of the battery are well bonded, and the hardness and shape retention ability of the battery are improved.
- the PE layer in the composite membrane has a lower melting temperature, so that the composite membrane has a lower closed cell temperature, which can effectively prevent thermal runaway of the lithium battery under abnormal conditions and provide high lithium battery safety.
- the solvent used for coating the slurry is water, and does not contain organic solvents such as acetone, DMF, NMP, etc., which will not pollute the environment and will not endanger the health of workers.
- organic solvents such as acetone, DMF, NMP, etc.
- Example 1 is an apparent topographical view of a polymer coating of Example 1 of the present invention
- Figure 2 is a cross-sectional view showing a battery separator of an embodiment of the present invention.
- Fig. 3 is a graph showing the temperature of the closed cell rupture film of the embodiment and the comparative example of the present invention.
- a ceramic and gel polymer multilayer composite lithium battery separator comprises a polypropylene support layer 1, a polyethylene barrier layer 2, a ceramic coating layer 3 and a polymer coating layer 4 which are sequentially laminated.
- the preparation method comprises the following steps:
- Step 1 Configuring an aqueous PVDF slurry and an aqueous ceramic slurry
- Step 2 a polypropylene separator and a polyethylene separator are composited, and a polypropylene separator and a polyethylene separator are thermally compounded at 50 to 100 ° C to obtain a PP/PE composite separator;
- Step 3 coating, using the PP/PE composite separator obtained in step 2 as a coating substrate, coating the aqueous slurry prepared in step 1 on the PE surface of the substrate, first coating the aqueous ceramic slurry to form a ceramic layer.
- the aqueous PVDF slurry is then coated to form a gel polymer layer at a coating rate of 5 to 100 m/min, and dried in an oven at 30 to 100 ° C to obtain a final four-layer composite separator.
- the PE surface is coated because the PE layer is easily deformed at a high temperature, and mainly plays a thermal shutdown effect in the composite separator. This is advantageous for improving the phenomenon of coating the separator to fall off when the battery is fabricated. (1) stirring the polyolefin resin, the lubricant and other additives through a stirring mixer to obtain a mixture;
- the preparation method of the ceramic battery and the gel polymer multilayer composite lithium battery separator of the present invention on the basis of the foregoing technical solutions, the preparation method of the aqueous PVDF slurry in the step 1 is:
- Deionized water is used as a solvent, and the water-soluble adhesive, surfactant, dispersant and thickener are added to deionized water at room temperature to be stirred and dissolved to form a solution; then the polymer powder particles are added, stirred uniformly, and formulated into water.
- the slurry contains 0.1% to 2% of water-soluble polymer thickener, 0.01% to 2% of aqueous dispersant, 0.01% to 1% of surfactant, 0.1% to 5% of water-based adhesive
- the agent 5% to 25% of polymer powder particles, 67% to 83% of deionized water, all of which are mass fraction; the polymer powder particles have a weight average molecular weight of 12 to 160,000 and a particle diameter of 100 to 300 nm.
- the preparation method of the ceramic battery and the gel polymer multilayer composite lithium battery separator of the present invention on the basis of the foregoing technical solutions, the preparation method of the aqueous ceramic slurry in the step 1 is:
- Deionized water is used as a solvent, and the water-soluble adhesive and thickener are added to deionized water at room temperature to be stirred and dissolved to form a solution; then, a surfactant, an aqueous dispersant and a ceramic powder are sequentially added to the above solution, and stirred.
- Adhesive 5% to 25% ceramic powder particles, 67% to 83% deionized water, all of which are mass fractions.
- the polypropylene porous film has a thickness ranging from 8 ⁇ m to 100 ⁇ m and a porosity ranging from 30% to 80%.
- the average pore diameter is from 0.01 ⁇ m to 10 ⁇ m.
- the polymer powder particles are polytetrafluoroethylene, polyvinylidene fluoride, polyvinylidene fluoride-hexafluorocarbon One or more of a propylene copolymer, a polyimide, a polypropylene, and an aramid resin, preferably a polyvinylidene fluoride or a polyvinylidene fluoride-hexafluoropropylene copolymer; a pellet of the polymer powder particles
- the diameter ranges from 0.01 ⁇ m to 10 ⁇ m, preferably from 0.1 ⁇ m to 2 ⁇ m.
- the ceramic powder particles are SiO 2 , Al 2 O 3 , CaO, TiO 2 , MgO, ZnO, SnO. any one of 2, ZrO 2 or more of, preferably SiO 2 and Al 2 O 3; particle size range of 0.1 ⁇ m ⁇ 3 ⁇ m 0.01 ⁇ m ⁇ 10 ⁇ m, preferably.
- the preparation method of the ceramic and gel polymer multilayer composite lithium battery separator of the invention has the thickness of the propylene porous film ranging from 8 ⁇ m to 100 ⁇ m and the porosity ranging from 30% to 80%, based on the foregoing technical solutions. Aperture In the range of 0.01 ⁇ m to 10 ⁇ m. This layer is the support layer in the composite separator and has better heat resistance than the PE layer.
- the polyethylene microporous film has a thickness of 7 ⁇ m to 30 ⁇ m and a porosity of 30% to 60%. At higher temperatures (greater than 125 ° C), the pores of the PE layer are slowly closed. This layer mainly acts as a thermal shutdown in the composite film to prevent thermal runaway and improve the safety of the lithium battery.
- the method for preparing a ceramic and gel polymer multilayer composite lithium battery separator of the present invention has the thickness of the ceramic coating layer and the polymer coating layer being 1 ⁇ m to 10 ⁇ m, preferably 1 ⁇ m to 4 ⁇ m, based on the foregoing technical solutions. .
- the polypropylene separator was a dry uniaxially stretched film of S Company, having a thickness of 16 ⁇ and a porosity of 42%.
- the polyethylene diaphragm is made of S company wet diaphragm with a thickness of 12 ⁇ and a porosity of 44%.
- the two separators were thermally compounded at 80 ° C to obtain a PE/PP composite separator as a substrate for preparing a coating film.
- the micro gravure coating was used, but it is not limited to this coating method, and slit extrusion coating, dip coating, spray coating, or the like may be used.
- the acrylic adhesive and tackifier CMC were added to deionized water and stirred at 300 r/min for 20 min at room temperature until completely dissolved.
- a fluorocarbon surfactant a dispersant polyvinylpyrrolidone (PVP) and a PVDF-HFP powder were sequentially added to the above solution, and the mixture was further stirred at 300 r/min for 10 minutes, and finally stirred at a high speed of 5000 r/min for 5 minutes, and the slurry configuration was completed.
- the fluorocarbon surfactant: PVDF-HFP 0.1:100
- the PVDF-HFP has a weight average molecular weight of about 140,000 and a particle diameter of 100 to 300 nm.
- PVA adhesive and tackifier CMC were added to deionized water and stirred at 300 r/min for 20 min at room temperature until completely dissolved.
- sodium polyacrylate dispersant was added, and stirring was continued at 300 r/min for 10 min.
- Al2O3 powder was added, and stirred at 7000 r/min for 5 min, and the slurry configuration was completed.
- sodium polyacrylate: Al2O3 0.5: 100
- Al2O3 powder D50 1.0 ⁇ m.
- the aqueous ceramic slurry was coated, coated with a micro-concave roll, and the coating rate was 20 m/min; using a three-stage oven for drying, the oven temperatures of the respective stages were 50-57 ° C, 55-63 ° C, 63- At 70 ° C, wait until the PP / PE / ceramic layer three-layer composite diaphragm, wherein the thickness of the ceramic coating is 4 ⁇ .
- FIG. 1 is an apparent topographical view of the polymer coating of the present embodiment.
- the adhesive PVA and the tackifier CMC were added to the deionized water, and stirred at 300 r/min for 20 min at room temperature until completely dissolved.
- CMC: PVDF-HFP 1:100.
- the PVDF-HFP has a weight average molecular weight of about 140,000 and a particle diameter of 100 to 300 nm.
- the base film was selected from S company 16 ⁇ dry polypropylene microporous membrane with a porosity of 42%.
- the other coating process conditions were the same as those in Example 1, and finally a three-layer composite separator of PP/ceramic layer/PVDF layer was obtained.
- the base film was selected from S company 16 ⁇ dry polypropylene microporous membrane, the porosity was 42%, the slurry was selected from the aqueous ceramic slurry in Example 1, and the aqueous ceramic coating process in Example 1 was used to prepare the single-sided ceramic coating. Double layer composite diaphragm.
- the base film was selected from S company 16 ⁇ dry polypropylene microporous membrane, the porosity was 42%, the slurry was selected from the aqueous PVDF slurry in Example 1, and the aqueous PVDF coating process in Example 1 was used to prepare the single-sided PVDF coating.
- Two-layer composite diaphragm Two-layer composite diaphragm.
- Diaphragm heat shrinkage test method 3 samples of 100mm ⁇ 100mm are cut for each diaphragm. The length of the measured MD direction is recorded as L0. The sample is placed in a specified temperature blast oven. After a specified time, the length of the measured MD direction is taken.
- the formula for calculating the heat shrinkage rate is as follows:
- the heat shrinkage rate of the three samples was measured, and then the average value was taken as the heat shrinkage rate of the separator.
- MD is the direction of stretching of the dry uniaxially stretched membrane.
- the test method of liquid absorption rate the size of the separator is taken as 100mm ⁇ 100mm, soaked in the electrolyte for 1h; the surface of the electrolyte is removed and the amount of electrolyte absorbed is weighed; then the weight of the electrolyte absorbed by the diaphragm per square meter is calculated, ie It is the liquid absorption rate and the unit is g/m 2 .
- the separators prepared in accordance with the examples and comparative examples are the relevant test results of the separators in Table 1.
- the inventive examples 1 and 2 have good heat resistance, high liquid absorption rate, and excellent adhesion to a pole piece after being formed into a battery, and a ceramic coated separator and a polymer are assembled. The advantages of both coatings are very effective in improving the safety of the battery.
- Table 2 shows the closed cell rupture temperature of some samples.
- Diaphragm closed-cell membrane temperature test method a simple lithium battery is prepared by using a self-made mold, a two-pole link internal resistance meter, and a temperature probe inside. Put this simple battery into the 250 °C incubator and record the relationship between the internal resistance of the battery and the internal temperature.
- the first temperature inflection point is the closed cell temperature of the diaphragm
- the second temperature inflection point is the membrane rupture temperature of the diaphragm. See Figure 3 for details.
- Example 1 having a PE layer has a lower closed cell temperature than the comparative example, and can effectively prevent thermal runaway of the lithium battery under abnormal conditions, providing a high lithium battery. Security.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Cell Separators (AREA)
Abstract
本发明公开了一种陶瓷和凝胶聚合物多层复合的锂电池隔膜的制备方法,包括如下步骤:步骤1:配置水性PVDF浆料和水性陶瓷浆料;步骤2:聚丙烯隔膜和聚乙烯隔膜复合,将一层聚丙烯隔膜和一层聚乙烯隔膜在50~100℃下热复合,得到PP/PE复合隔膜;步骤3:涂布,以步骤2中得到PP/PE复合隔膜作为涂布基材,将步骤1中制备水性浆料涂布在基材的PE面上,先涂布水性陶瓷浆料形成陶瓷层后再涂布水性PVDF浆料形成凝胶聚合物层,涂布速率为5~100m/min,经过30~100℃烘箱烘干,得到最终四层复合隔膜。本发明还公开了依此方法所制备的隔膜。本发明具有加工出的隔膜具有热安全性高和保持电解液的能力强的优点。
Description
本发明涉及锂离子电池隔膜,尤其是涉及一种热安全性高和保持电解液的能力强的陶瓷和凝胶聚合物多层复合的锂电池隔膜及其制备方法。
作为锂电池四大材料之一的隔膜,尽管并不参与电池中的电化学反应,但却是锂电池中关键的内层组件。电池的容量、循环性能和充放电电流密度等关键性能都与隔膜有着直接的关系,隔膜性能的改善对提高锂电池的综合性能起着重要作用。在锂电池中,隔膜吸收电解液后,可隔离正、负极,以防止短路,但同时还要允许锂离子的传导。而在过度充电或者温度升高时,隔膜还要有高温自闭性能,以阻隔电流传导防止爆炸。不仅如此,锂电池隔膜还要有强度高、防火、耐化学试剂、耐酸碱腐蚀性、生物相容性好、无毒等特点。
锂离子电池的安全性是业内一直关注的重点,而隔膜的安全性是其中的重中之重。这就要求隔膜具有优异的力学性能,较低闭孔温度和在较高的温度下保持形状的能力。现在大规模商用化的锂电池隔膜主用采用聚丙烯和聚乙烯材质,随着人们对锂电池性能要求越来越高,单纯这两种材质的隔膜热安全性和保持电解液的能力难以满足要求,研究制备其他材料和聚烯烃的高性能复合隔膜成为目前隔膜改性的最重要的方向。
发明内容
为克服上述缺点,本发明提供一种制备热安全性高和保持电解液的能力强的陶瓷和凝胶聚合物多层复合的锂电池隔膜的方法
本发明的目的是通过以下技术措施实现的,一种陶瓷和凝胶聚合物多层复合的锂电池隔膜的制备方法,包括如下步骤:
步骤1:配置水性PVDF浆料和水性陶瓷浆料;
步骤2:聚丙烯隔膜和聚乙烯隔膜复合,将一层聚丙烯隔膜和一层聚乙烯隔膜在50~100℃下热复合,得到PP/PE复合隔膜;
步骤3:涂布,以步骤2中得到PP/PE复合隔膜作为涂布基材,将步骤1中制备水性浆料涂布在基材的PE面上,先涂布水性陶瓷浆料形成陶瓷层后再涂布水性PVDF浆料形成凝胶聚合物层,涂布速率为5~100m/min,经过30~100℃烘箱烘干,得到最终四层复合隔膜。其中在PE面涂布,是因为PE层容易在高温下变型,在复合隔膜中主要起到热关闭作用。这样有利于改善在制作电池时,涂覆隔膜掉粉现象。(1)将聚烯烃树脂、润滑剂及其他添加剂通过搅拌混料机搅拌均匀,得到混合物;
作为一种优选方式,所述步骤1中水性PVDF浆料配制方法为:
以去离子水作为溶剂,把水溶性胶黏剂、表面活性剂、分散剂、增稠剂在常温加入去离子水中搅拌溶解,配成溶液;再加入聚合物粉末粒子,搅拌均匀,配成水性浆料;浆料中含0.1%~2%的水溶性高分子增稠剂,0.01%~2%的水性分散剂,0.01%~1%的表面活性剂,0.1%~5%的水性胶黏剂,5%~25%的聚合物粉末粒子,67%~83%的去离子
水,上述都为质量分数;聚合物粉末粒子的重均分子量为12-16万,粒径为100-300nm。
作为一种优选方式,所述步骤1中水性陶瓷浆料配制方法为:
以去离子水作为溶剂,把水溶性胶黏剂、增稠剂在常温下加入去离子水中搅拌溶解,配成溶液;然后在上述溶液中依次加入表面活性剂、水性分散剂和陶瓷粉末,搅拌均匀,配成水性浆料;浆料中含0.1%~2%的增稠剂,0.01%~2%的水性分散剂,0.01%~1%的表面活性剂,0.1%~5%的水性胶黏剂,5%~25%的陶瓷粉末粒子,67%~83%的去离子水,上述都为质量分数。
作为一种优选方式,所述聚丙烯多孔薄膜的厚度范围在8μm-100μm,孔隙率范围为30%-80%,平均孔径在0.01μm-10μm。
作为一种优选方式,所述聚合物粉末粒子为聚四氟乙烯、聚偏氟乙烯、聚偏氟乙烯-六氟丙烯共聚物、聚酰亚胺、聚丙烯晴、芳纶树脂中的一种或者多种;聚所述聚合物粉末粒子的粒径范围为0.01μm-10μm。
作为一种优选方式,所述陶瓷粉末粒子为SiO2、Al2O3、CaO、TiO2、MgO、ZnO、SnO2、ZrO2中的任意一种或者多种;粒径范围为0.01μm~10μm。
本发明还公开了一种上述方法制备的陶瓷和凝胶聚合物多层复合的锂电池隔膜,包括依次层叠的聚丙烯支撑层、聚乙烯隔断层、陶瓷涂覆层和聚合物涂覆层。
作为一种优选方式,所述聚丙烯支撑层的厚度范围在8μm-100μm,孔隙率范围为30%-80%,平均孔径在0.01μm-10μm。
作为一种优选方式,所述聚乙烯隔断层的厚度为7μm~30μm,孔隙率为30%~60%;在温度大于125℃时,PE层的孔关闭。
作为一种优选方式,所述陶瓷涂覆层和聚合物涂覆层的厚度共为1μm-10μm。
本发明具有以下优点:
1)无机粒子涂层提高了隔膜的热安全性,复合隔膜在135℃的高温下放置1小时,热收缩率小于3%。
2)无机粒子涂层提高了电解液对隔膜的浸润性,便于电解液的吸收;有机粒子为PVDF-HFP粉末,能够在电解液中溶胀,有良好吸收和保持电解液的能力,具有较高的电导率,从而使锂电池具有良好的循环使用寿命。同时,使电池正负极很好的粘结贴合,提高电芯硬度和形体保持能力。
3)复合隔膜中的PE层具有较低的熔融温度,使得复合隔膜有较低的闭孔温度,能有效的防止锂电池在异常情况下的热失控,提供高锂电池的安全性。
4)涂布浆料所用溶剂为水,不含丙酮、DMF、NMP等有机溶剂,不会对环境造成污染,不会危害工人的健康。作为工业化生产的产品,使用水作为溶剂极大地降低了生产成本,使产品更具竞争力。
图1为本发明实施例1聚合物涂层的表观形貌图;
图2为本发明实施例电池隔膜的剖面图;
图3为本发明实施例和对比例闭孔破膜温度曲线图。
下面对本发明作进一步详细说明。
一种陶瓷和凝胶聚合物多层复合的锂电池隔膜,参考图2,包括依次层叠的聚丙烯支撑层1、聚乙烯隔断层2、陶瓷涂覆层3和聚合物涂覆层4。其制备方法包括如下步骤:
步骤1:配置水性PVDF浆料和水性陶瓷浆料;
步骤2:聚丙烯隔膜和聚乙烯隔膜复合,将一层聚丙烯隔膜和一层聚乙烯隔膜在50~100℃下热复合,得到PP/PE复合隔膜;
步骤3:涂布,以步骤2中得到PP/PE复合隔膜作为涂布基材,将步骤1中制备水性浆料涂布在基材的PE面上,先涂布水性陶瓷浆料形成陶瓷层后再涂布水性PVDF浆料形成凝胶聚合物层,涂布速率为5~100m/min,经过30~100℃烘箱烘干,得到最终四层复合隔膜。其中在PE面涂布,是因为PE层容易在高温下变型,在复合隔膜中主要起到热关闭作用。这样有利于改善在制作电池时,涂覆隔膜掉粉现象。(1)将聚烯烃树脂、润滑剂及其他添加剂通过搅拌混料机搅拌均匀,得到混合物;
本发明的陶瓷和凝胶聚合物多层复合的锂电池隔膜的制备方法,在前面技术方案的基础上,步骤1中水性PVDF浆料配制方法为:
以去离子水作为溶剂,把水溶性胶黏剂、表面活性剂、分散剂、增稠剂在常温加入去离子水中搅拌溶解,配成溶液;再加入聚合物粉末粒子,搅拌均匀,配成水性浆料;浆料中含0.1%~2%的水溶性高分子增稠剂,0.01%~2%的水性分散剂,0.01%~1%的表面活性剂,0.1%~5%的水性胶黏剂,5%~25%的聚合物粉末粒子,67%~83%的去离子水,上述都为质量分数;聚合物粉末粒子的重均分子量为12-16万,粒径为100-300nm。
本发明的陶瓷和凝胶聚合物多层复合的锂电池隔膜的制备方法,在前面技术方案的基础上,步骤1中水性陶瓷浆料配制方法为:
以去离子水作为溶剂,把水溶性胶黏剂、增稠剂在常温下加入去离子水中搅拌溶解,配成溶液;然后在上述溶液中依次加入表面活性剂、水性分散剂和陶瓷粉末,搅拌均匀,配成水性浆料;浆料中含0.1%~2%的增稠剂,0.01%~2%的水性分散剂,0.01%~1%的表面活性剂,0.1%~5%的水性胶黏剂,5%~25%的陶瓷粉末粒子,67%~83%的去离子水,上述都为质量分数。
本发明的陶瓷和凝胶聚合物多层复合的锂电池隔膜的制备方法,在前面技术方案的基础上,聚丙烯多孔薄膜的厚度范围在8μm-100μm,孔隙率范围为30%-80%,平均孔径在0.01μm-10μm。
本发明的陶瓷和凝胶聚合物多层复合的锂电池隔膜的制备方法,在前面技术方案的基础上,聚合物粉末粒子为聚四氟乙烯、聚偏氟乙烯、聚偏氟乙烯-六氟丙烯共聚物、聚酰亚胺、聚丙烯晴、芳纶树脂中的一种或者多种,优选聚偏氟乙烯或者聚偏氟乙烯-六氟丙烯共聚物;聚所述聚合物粉末粒子的粒径范围为0.01μm-10μm,,优选0.1μm-2μm。
本发明的陶瓷和凝胶聚合物多层复合的锂电池隔膜的制备方法,在前面技术方案的基础上,陶瓷粉末粒子为SiO2、Al2O3、CaO、TiO2、MgO、ZnO、SnO2、ZrO2中的任意一种或者多种,优选SiO2和Al2O3;粒径范围为0.01μm~10μm,优选0.1μm~3μm。
本发明的陶瓷和凝胶聚合物多层复合的锂电池隔膜的制备方法,在前面技术方案的基础上,丙烯多孔薄膜的厚度范围在8μm-100μm,孔隙率范围为30%-80%,平均孔径
在0.01μm-10μm。此层是复合隔膜中支撑层,耐热性能要优于PE层。
本发明的陶瓷和凝胶聚合物多层复合的锂电池隔膜的制备方法,在前面技术方案的基础上,聚乙烯微孔膜的厚度为7μm~30μm,孔隙率为30%~60%。在温度较高(大于125℃)时,PE层的孔慢慢关闭,此层在复合膜中主要起到热关闭的作用,防止热失控,提高锂电池的安全性。
本发明的陶瓷和凝胶聚合物多层复合的锂电池隔膜的制备方法,在前面技术方案的基础上,陶瓷涂覆层和聚合物涂覆层的厚度共为1μm-10μm,优选1μm~4μm。
下面结合具体实施例和对比例对上述方案做进一步说明,以下实施例和对比例中,聚丙烯隔膜采用S公司干法单向拉伸膜,厚度16μ,孔隙率为42%。聚乙烯隔膜采用S公司湿法隔膜,厚度12μ,孔隙率44%。在80℃下将两种隔膜进行热复合,得到PE/PP复合隔膜,作为制备涂覆膜的基材。实施例和对比例中选用微凹版涂布,但不局限于此涂布方式,狭缝式挤压涂布,浸涂、喷涂等方式都可以。
实施例1
水性PVDF浆料制备
浆料中重量配比PVDF-HFP∶去离子水=100∶500。首先把丙烯酸类胶黏剂和增粘剂CMC加入去离子水中,在常温下以300r/min搅拌20min直至完全溶解,其中丙烯酸类胶黏剂和CMC的重量配比分别为胶黏剂∶PVDF-HFP=5∶100,CMC∶PVDF-HFP=1∶100。然后在上述溶液中依次加入氟碳表面活性剂、分散剂聚乙烯吡咯烷酮(PVP)和PVDF-HFP粉末,继续以300r/min搅拌10min,最后在5000r/min高速下搅拌5min,浆料配置完成。其中氟碳表面活性剂∶PVDF-HFP=0.1∶100,PVP∶PVDF-HFP=0.3∶100。PVDF-HFP重均分子量约为14万,粒径为100-300nm。
2)陶瓷浆料制备
浆料中重量配比Al2O3∶去离子水=100∶150。
首先把PVA类胶黏剂和增粘剂CMC加入去离子水中,在常温下以300r/min搅拌20min直至完全溶解,其中PVA类胶黏剂和CMC的重量配比分别为胶黏剂∶PVDF-HFP=4∶100,CMC∶PVDF-HFP=1∶100。然后加入聚丙烯酸钠分散剂,继续以300r/min搅拌10min,最后加入Al2O3粉体,在7000r/min高速下搅拌5min,浆料配置完成。其中聚丙烯酸钠∶Al2O3=0.5∶100,Al2O3粉末D50=1.0μm。
3)实施涂布
首先进行水性陶瓷浆料涂布,用微凹辊涂布,涂布速率为20m/min;使用三级烘箱进行烘干,各级烘箱温度分别为50~57℃,55~63℃,63~70℃,等到PP/PE/陶瓷层三层复合隔膜,其中陶瓷涂层的厚度为4μ。然后再以上述三层复合隔膜为基材,在陶瓷层上涂布一层水性PVDF涂层,涂层厚度为2μ,涂布速度为20m/min,烘烤工艺同上,最终得到PP/PE/陶瓷层/PVDF层四层复合隔膜。图1为本实施例聚合物涂层的表观形貌图。
实施例2
1)水性PVDF浆料制备
聚合物涂覆层由水性浆料涂布而成,水性浆料中重量配比PVDF-HFP∶去离子水=100∶500。首先把胶黏剂PVA和增粘剂CMC加入去离子水中,在常温下以300r/min搅拌20min直至完全溶解,其中PVA和CMC的重量配比分别为PVA∶PVDF-HFP=5∶100,
CMC∶PVDF-HFP=1∶100。然后在上述溶液中依次加入氟碳表面活性剂、分散剂聚氧乙烯二油酸酯和PVDF-HFP粉末,继续以300r/min搅拌10min,最后在5000r/min高速下搅拌5min,浆料配置完成。其中氟碳表面活性剂∶PVDF-HFP=0.1∶100,聚氧乙烯二油酸酯∶PVDF-HFP=0.3∶100。PVDF-HFP重均分子量约为14万,粒径为100-300nm。
其他同实施例1。
对比例1
基膜选用S公司16μ干法聚丙烯微孔膜,孔隙率为42%,其他涂布工艺条件同实施例1,最终制得PP/陶瓷层/PVDF层三层复合隔膜。
对比例2
基膜选用S公司16μ干法聚丙烯微孔膜,孔隙率为42%,浆料选用实施例1中水性陶瓷浆料,采用实施例1中水性陶瓷涂布工艺,制备单面陶瓷涂布的双层复合隔膜。
对比例3
基膜选用S公司16μ干法聚丙烯微孔膜,孔隙率为42%,浆料选用实施例1中水性PVDF浆料,采用实施例1中水性PVDF涂布工艺,制备单面PVDF涂布的两层复合隔膜。
表1
隔膜热收缩率测试方法:每种隔膜裁取3个100mm×100mm样品,测量MD方向长度记为L0,把样品放入指定温度鼓风烘箱,在规定的时间过后取出测量MD方向的长度记L,热收缩率的计算公式如下:
ΔL=(L-L0)/L0×100%
测出三个样品热收缩率,然后取平均值即为此种隔膜的热收缩率。
其中MD为干法单向拉伸隔膜的拉伸方向。
吸液率的测试方法:截取隔膜大小为100mm×100mm,在电解液中浸泡1h;取出擦干表面电解液,称量吸收电解液的量;然后算出每平方米隔膜吸收电解液的重量,即为吸液率,单位为g/m2。
按照实施例和对比例制备的隔膜,表1中是隔膜的相关测试结果。从表1中可以看出来,本发明实施例1和2具有好的耐热性、高的吸液率和做成电池后与极片优异的贴合性,集合了陶瓷涂覆隔膜和聚合物涂覆隔膜两者的优点,能非常有效的提高电池的安全性。
表2为部分样品的闭孔破膜温度。
隔膜闭孔破膜温度测试方法:采用自制模具,制备一个简易的锂电池,两极链接内阻仪,内部有测温探头。把此简易电池放入250℃恒温箱中,记录下电池内阻和内部温度的变化关系。第一个温度拐点为隔膜闭孔温度,第二个温度拐点为隔膜的破膜温度,详见图3。
结合表2和图3可以看出来,具有PE层的实施例1样品相对于对比例来说有更低的闭孔温度,能有效的防止锂电池在异常情况下的热失控,提供高锂电池的安全性。
以上是对本发明陶瓷和凝胶聚合物多层复合的锂电池隔膜及其制备方法进行了阐述,用于帮助理解本发明,但本发明的实施方式并不受上述实施例的限制,任何未背离本发明原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (10)
- 一种陶瓷和凝胶聚合物多层复合的锂电池隔膜的制备方法,其特征在于包括如下步骤:步骤1:配置水性PVDF浆料和水性陶瓷浆料;步骤2:聚丙烯隔膜和聚乙烯隔膜复合,将一层聚丙烯隔膜和一层聚乙烯隔膜在50~100℃下热复合,得到PP/PE复合隔膜;步骤3:涂布,以步骤2中得到PP/PE复合隔膜作为涂布基材,将步骤1中制备水性浆料涂布在基材的PE面上,先涂布水性陶瓷浆料形成陶瓷层后再涂布水性PVDF浆料形成凝胶聚合物层,涂布速率为5~100m/min,经过30~100℃烘箱烘干,得到最终四层复合隔膜。
- 根据权利要求1所述的陶瓷和凝胶聚合物多层复合的锂电池隔膜的制备方法,其特征在于:所述步骤1中水性PVDF浆料配制方法为:以去离子水作为溶剂,把水溶性胶黏剂、表面活性剂、分散剂、增稠剂在常温加入去离子水中搅拌溶解,配成溶液;再加入聚合物粉末粒子,搅拌均匀,配成水性浆料;浆料中含0.1%~2%的水溶性高分子增稠剂,0.01%~2%的水性分散剂,0.01%~1%的表面活性剂,0.1%~5%的水性胶黏剂,5%~25%的聚合物粉末粒子,67%~83%的去离子水,上述都为质量分数;聚合物粉末粒子的重均分子量为12-16万,粒径为100-300nm。
- 根据权利要求1所述的陶瓷和凝胶聚合物多层复合的锂电池隔膜的制备方法,其特征在于:所述步骤1中水性陶瓷浆料配制方法为:以去离子水作为溶剂,把水溶性胶黏剂、增稠剂在常温下加入去离子水中搅拌溶解,配成溶液;然后在上述溶液中依次加入表面活性剂、水性分散剂和陶瓷粉末,搅拌均匀,配成水性浆料;浆料中含0.1%~2%的增稠剂,0.01%~2%的水性分散剂,0.01%~1%的表面活性剂,0.1%~5%的水性胶黏剂,5%~25%的陶瓷粉末粒子,67%~83%的去离子水,上述都为质量分数。
- 根据权利要求1所述的陶瓷和凝胶聚合物多层复合的锂电池隔膜的制备方法,其特征在于:所述聚丙烯多孔薄膜的厚度范围在8μm-100μm,孔隙率范围为30%-80%,平均孔径在0.01μm-10μm。
- 根据权利要求2所述的陶瓷和凝胶聚合物多层复合的锂电池隔膜的制备方法,其特征在于:所述聚合物粉末粒子为聚四氟乙烯、聚偏氟乙烯、聚偏氟乙烯-六氟丙烯共聚物、聚酰亚胺、聚丙烯晴、芳纶树脂中的一种或者多种;聚所述聚合物粉末粒子的粒径范围为0.01μm-10μm。
- 根据权利要求3所述的陶瓷和凝胶聚合物多层复合的锂电池隔膜的制备方法,其特征在于:所述陶瓷粉末粒子为SiO2、Al2O3、CaO、TiO2、MgO、ZnO、SnO2、ZrO2中的任意一种或者多种;粒径范围为0.01μm~10μm。
- 一种陶瓷和凝胶聚合物多层复合的锂电池隔膜,其特征在于:包括依次层叠的聚丙烯支撑层、聚乙烯隔断层、陶瓷涂覆层和聚合物涂覆层。
- 根据权利要求7所述的陶瓷和凝胶聚合物多层复合的锂电池隔膜,其特征在于:所述聚丙烯支撑层的厚度范围在8μm-100μm,孔隙率范围为30%-80%,平均孔径在0.01μm-10μm。
- 根据权利要求7所述的陶瓷和凝胶聚合物多层复合的锂电池隔膜,其特征在于:所述聚乙烯隔断层的厚度为7μm~30μm,孔隙率为30%~60%;在温度大于125℃时,PE 层的孔关闭。
- 根据权利要求7所述的陶瓷和凝胶聚合物多层复合的锂电池隔膜,其特征在于:所述陶瓷涂覆层和聚合物涂覆层的厚度共为1μm-10μm。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410445356.6 | 2014-09-02 | ||
CN201410445356.6A CN104157819A (zh) | 2014-09-02 | 2014-09-02 | 陶瓷和凝胶聚合物多层复合的锂电池隔膜及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016034020A1 true WO2016034020A1 (zh) | 2016-03-10 |
Family
ID=51883272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/084122 WO2016034020A1 (zh) | 2014-09-02 | 2015-07-15 | 陶瓷和凝胶聚合物多层复合的锂电池隔膜及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104157819A (zh) |
WO (1) | WO2016034020A1 (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3503256A4 (en) * | 2017-01-06 | 2019-08-21 | LG Chem, Ltd. | SEPARATOR FOR BATTERY WITH APPLIED FUNCTIONAL BINDER AND ELECTROCHEMICAL DEVICE THEREWITH |
CN111613755A (zh) * | 2020-05-29 | 2020-09-01 | 东莞东阳光科研发有限公司 | 一种复合隔膜及其制备方法 |
CN113193303A (zh) * | 2021-04-16 | 2021-07-30 | 江西京九动力能源有限公司 | 一种锂电池用的复合隔膜及其制备方法 |
CN113675401A (zh) * | 2021-07-13 | 2021-11-19 | 天能电池集团股份有限公司 | 一种叠片式锂离子电池的负极极片及叠片式锂离子电池 |
CN113794035A (zh) * | 2020-05-26 | 2021-12-14 | 深圳格林德能源集团有限公司 | 一种锂离子电池隔膜及其锂离子电池 |
CN114335902A (zh) * | 2021-12-23 | 2022-04-12 | 上海瑞浦青创新能源有限公司 | 一种复合隔膜及其制备方法和应用 |
CN114388884A (zh) * | 2021-12-08 | 2022-04-22 | 电子科技大学长三角研究院(湖州) | 一种复合固态电解质及其制备方法 |
US11349177B2 (en) * | 2018-01-05 | 2022-05-31 | Lg Energy Solution, Ltd. | Separator including separator substrate with coating layer including carboxymethyl cellulose, particle-type binder, and dissolution-type binder |
CN115000622A (zh) * | 2022-07-21 | 2022-09-02 | 浙江人行道化工有限公司 | Pvdf涂覆隔膜及其制备方法 |
CN115566361A (zh) * | 2021-07-02 | 2023-01-03 | 宁德时代新能源科技股份有限公司 | 隔离膜、锂离子电池、电池模组、电池包及用电装置 |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104157819A (zh) * | 2014-09-02 | 2014-11-19 | 深圳市星源材质科技股份有限公司 | 陶瓷和凝胶聚合物多层复合的锂电池隔膜及其制备方法 |
CN104868081A (zh) * | 2014-12-22 | 2015-08-26 | 上海恩捷新材料科技股份有限公司 | 锂离子电池用的水性多层隔膜 |
CN104868156A (zh) * | 2014-12-22 | 2015-08-26 | 上海恩捷新材料科技股份有限公司 | 锂离子电池 |
JP6494273B2 (ja) * | 2014-12-22 | 2019-04-03 | 三星エスディアイ株式会社Samsung SDI Co., Ltd. | 非水電解質二次電池用電極巻回素子、それを用いた非水電解質二次電池、及び非水電解質二次電池用電極巻回素子の製造方法 |
US10256471B2 (en) | 2014-12-22 | 2019-04-09 | Samsung Sdi Co., Ltd. | Electrode winding element for non-aqueous electrolyte rechareable battery, non-aqueous electrolyte rechargeable lithium battery including same, method of preparing same |
CN104577013A (zh) * | 2015-01-10 | 2015-04-29 | 鸿德新能源科技有限公司 | 一种水性陶瓷隔膜浆料及其在锂离子电池中的应用 |
KR20180030533A (ko) * | 2015-07-15 | 2018-03-23 | 로베르트 보쉬 게엠베하 | 리튬 이온 배터리용 분리막과 그 제조 방법, 및 리튬 이온 배터리 |
CN105118950A (zh) * | 2015-09-13 | 2015-12-02 | 中南大学 | 一种锂离子电池隔膜的制备方法 |
CN105552277B (zh) * | 2015-12-22 | 2018-05-15 | 沧州明珠隔膜科技有限公司 | 一种pvdf涂覆锂离子电池隔膜及其制备方法 |
CN105602309B (zh) * | 2015-12-28 | 2018-05-08 | 深圳市星源材质科技股份有限公司 | 一种高弹性导离子涂层浆料及其锂离子电池隔膜制备方法 |
CN105470435B (zh) * | 2016-01-13 | 2019-02-05 | 浙江天能能源科技股份有限公司 | 一种基于无纺布的锂离子电池用多层复合隔膜及其制备方法 |
WO2017160892A1 (en) * | 2016-03-14 | 2017-09-21 | Amtek Research International Llc | Laminable, dimensionally-stable microporous webs |
CN105789524A (zh) * | 2016-04-29 | 2016-07-20 | 宁德卓高新材料科技有限公司 | 聚乙烯醇隔离膜的制备方法及其制得的隔离膜 |
CN106784534B (zh) * | 2016-08-29 | 2019-09-13 | 东莞市卓高电子科技有限公司 | Pvdf共聚物陶瓷涂覆隔膜的制备方法 |
CN106129312B (zh) * | 2016-09-13 | 2019-01-25 | 河北金力新能源科技股份有限公司 | 一种耐高温多层复合锂离子电池隔膜的制备方法 |
CN106450444B (zh) * | 2016-10-11 | 2018-11-06 | 天津工业大学 | 一种锂硫电池电解质及其制备方法 |
CN106654123B (zh) * | 2017-01-20 | 2020-01-24 | 东莞市卓高电子科技有限公司 | 一种含pvdf或pvdf共聚物涂层隔膜的制备方法 |
WO2018140284A1 (en) | 2017-01-27 | 2018-08-02 | Merit Medical Systems, Inc. | Disinfecting luer cap and method of use |
CN106910858A (zh) * | 2017-03-10 | 2017-06-30 | 深圳中兴创新材料技术有限公司 | 一种聚合物复合锂电池隔膜及其制备方法 |
CN107093694B (zh) * | 2017-05-17 | 2019-12-31 | 河北金力新能源科技股份有限公司 | 一种水性pvdf涂布锂离子电池隔膜及其制备方法 |
CN107275550B (zh) * | 2017-06-20 | 2020-07-07 | 深圳市星源材质科技股份有限公司 | 一种陶瓷和聚合物复合涂覆锂离子隔膜及其制备方法 |
CN107994183B (zh) * | 2017-10-27 | 2022-09-13 | 桑顿新能源科技(长沙)有限公司 | 一种锂电池专用复合涂层隔膜制作方法 |
EP3750207A4 (en) * | 2018-03-02 | 2022-01-12 | Amtek Research International LLC | DIMENSIONALLY STABLE MICROPOROUS WEBS |
CN109192902B (zh) * | 2018-07-10 | 2021-11-23 | 深圳中兴新材技术股份有限公司 | 一种多级安全防护锂电池隔膜的制备方法及锂电池隔膜 |
CN108987650B (zh) * | 2018-07-20 | 2021-06-15 | 河北金力新能源科技股份有限公司 | 电池用隔膜及其制备方法和电池 |
CN108807801A (zh) * | 2018-08-09 | 2018-11-13 | 珠海恩捷新材料科技有限公司 | 一种锂离子电池隔膜及其制备方法 |
CN108807806A (zh) * | 2018-08-23 | 2018-11-13 | 河北金力新能源科技股份有限公司 | 一种电池隔膜及其制备方法 |
CN109244321B (zh) * | 2018-09-18 | 2021-10-01 | 武汉惠强新能源材料科技有限公司 | 一种锂电池隔膜用耐热水性涂层及其制备方法、应用 |
CN109301136A (zh) * | 2018-11-28 | 2019-02-01 | 河北金力新能源科技股份有限公司 | 一种耐热的锂电池隔膜及其制备方法 |
CN109728233A (zh) * | 2018-12-19 | 2019-05-07 | 乐凯胶片股份有限公司 | 陶瓷浆料、陶瓷隔膜和锂离子电池 |
CN111584794A (zh) * | 2019-03-20 | 2020-08-25 | 河北金力新能源科技股份有限公司 | 一种陶瓷和pvdf复合涂布锂电隔膜及其制备方法 |
CN110048058A (zh) * | 2019-04-10 | 2019-07-23 | 上海市纳米科技与产业发展促进中心 | 一种复合型锂离子电池隔膜及其制备方法 |
CN112421128B (zh) * | 2019-08-05 | 2021-10-22 | 宁德时代新能源科技股份有限公司 | 一种锂离子电池 |
CN112886142A (zh) * | 2019-11-29 | 2021-06-01 | 上海恩捷新材料科技有限公司 | 一种具有粘接性的耐高温涂布膜 |
CN113078414A (zh) * | 2019-12-17 | 2021-07-06 | 山东海科创新研究院有限公司 | 一种具备低温热闭孔机制的聚丙烯复合隔膜及其制备方法、锂离子电池 |
CN111554857A (zh) * | 2020-05-13 | 2020-08-18 | 深圳润丰新能源有限公司 | 一种新型锂电池及其制造方法 |
CN111933875A (zh) * | 2020-06-29 | 2020-11-13 | 宁波新思创机电科技股份有限公司 | 一种三元软包聚合物汽车启停电池 |
CN112216931A (zh) * | 2020-09-30 | 2021-01-12 | 广东嘉尚新能源科技有限公司 | 一种具有亲水表层的锂离子电池隔膜及其制备方法 |
CN113764823B (zh) * | 2021-09-17 | 2023-06-30 | 江苏卓高新材料科技有限公司 | 高性能梯度复合凝胶聚合物隔膜及其制备方法 |
CN114142160B (zh) * | 2021-11-27 | 2023-07-28 | 上海比杰科技有限公司 | 一种纳米陶瓷-聚丙烯复合电池隔膜及制备方法 |
CN115312967A (zh) * | 2022-08-19 | 2022-11-08 | 南木纳米科技(北京)有限公司 | 一种多层结构复合隔膜及其制备方法和应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102751463A (zh) * | 2012-07-15 | 2012-10-24 | 湛江市鑫满矿业有限公司 | 一种锂离子动力电池隔离膜及其制备方法 |
CN103354279A (zh) * | 2013-06-20 | 2013-10-16 | 深圳中兴创新材料技术有限公司 | 一种用于锂离子电池的三层隔膜 |
CN103647034A (zh) * | 2013-12-04 | 2014-03-19 | 合肥国轩高科动力能源股份公司 | 一种应用于锂离子电池的氮化物陶瓷涂层的制备方法 |
EP2733772A1 (en) * | 2012-11-20 | 2014-05-21 | Samsung SDI Co., Ltd. | Separator for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same |
CN103996877A (zh) * | 2013-11-26 | 2014-08-20 | 深圳市星源材质科技股份有限公司 | 利用涂覆隔膜加工锂离子电池电芯的方法 |
CN104157819A (zh) * | 2014-09-02 | 2014-11-19 | 深圳市星源材质科技股份有限公司 | 陶瓷和凝胶聚合物多层复合的锂电池隔膜及其制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102569701A (zh) * | 2012-01-04 | 2012-07-11 | 宁德新能源科技有限公司 | 一种锂离子电池及其隔膜 |
CN103746085B (zh) * | 2013-11-07 | 2017-01-04 | 深圳市星源材质科技股份有限公司 | 一种涂层复合隔膜及其制备方法 |
CN103915591A (zh) * | 2014-04-09 | 2014-07-09 | 深圳市星源材质科技股份有限公司 | 水性陶瓷涂层锂离子电池隔膜及其加工方法 |
CN103956450B (zh) * | 2014-05-16 | 2016-08-24 | 中国东方电气集团有限公司 | 一种锂离子电池用复合隔膜及其制备方法 |
-
2014
- 2014-09-02 CN CN201410445356.6A patent/CN104157819A/zh active Pending
-
2015
- 2015-07-15 WO PCT/CN2015/084122 patent/WO2016034020A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102751463A (zh) * | 2012-07-15 | 2012-10-24 | 湛江市鑫满矿业有限公司 | 一种锂离子动力电池隔离膜及其制备方法 |
EP2733772A1 (en) * | 2012-11-20 | 2014-05-21 | Samsung SDI Co., Ltd. | Separator for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same |
CN103354279A (zh) * | 2013-06-20 | 2013-10-16 | 深圳中兴创新材料技术有限公司 | 一种用于锂离子电池的三层隔膜 |
CN103996877A (zh) * | 2013-11-26 | 2014-08-20 | 深圳市星源材质科技股份有限公司 | 利用涂覆隔膜加工锂离子电池电芯的方法 |
CN103647034A (zh) * | 2013-12-04 | 2014-03-19 | 合肥国轩高科动力能源股份公司 | 一种应用于锂离子电池的氮化物陶瓷涂层的制备方法 |
CN104157819A (zh) * | 2014-09-02 | 2014-11-19 | 深圳市星源材质科技股份有限公司 | 陶瓷和凝胶聚合物多层复合的锂电池隔膜及其制备方法 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3503256A4 (en) * | 2017-01-06 | 2019-08-21 | LG Chem, Ltd. | SEPARATOR FOR BATTERY WITH APPLIED FUNCTIONAL BINDER AND ELECTROCHEMICAL DEVICE THEREWITH |
US11258135B2 (en) | 2017-01-06 | 2022-02-22 | Lg Energy Solution, Ltd. | Battery separator including functional binder and electrochemical device comprising the same |
US11349177B2 (en) * | 2018-01-05 | 2022-05-31 | Lg Energy Solution, Ltd. | Separator including separator substrate with coating layer including carboxymethyl cellulose, particle-type binder, and dissolution-type binder |
CN113794035A (zh) * | 2020-05-26 | 2021-12-14 | 深圳格林德能源集团有限公司 | 一种锂离子电池隔膜及其锂离子电池 |
CN111613755B (zh) * | 2020-05-29 | 2022-04-29 | 东莞东阳光科研发有限公司 | 一种复合隔膜及其制备方法 |
CN111613755A (zh) * | 2020-05-29 | 2020-09-01 | 东莞东阳光科研发有限公司 | 一种复合隔膜及其制备方法 |
CN113193303A (zh) * | 2021-04-16 | 2021-07-30 | 江西京九动力能源有限公司 | 一种锂电池用的复合隔膜及其制备方法 |
CN115566361A (zh) * | 2021-07-02 | 2023-01-03 | 宁德时代新能源科技股份有限公司 | 隔离膜、锂离子电池、电池模组、电池包及用电装置 |
CN113675401A (zh) * | 2021-07-13 | 2021-11-19 | 天能电池集团股份有限公司 | 一种叠片式锂离子电池的负极极片及叠片式锂离子电池 |
CN113675401B (zh) * | 2021-07-13 | 2022-12-13 | 天能电池集团股份有限公司 | 一种叠片式锂离子电池的负极极片及叠片式锂离子电池 |
CN114388884A (zh) * | 2021-12-08 | 2022-04-22 | 电子科技大学长三角研究院(湖州) | 一种复合固态电解质及其制备方法 |
CN114335902A (zh) * | 2021-12-23 | 2022-04-12 | 上海瑞浦青创新能源有限公司 | 一种复合隔膜及其制备方法和应用 |
CN115000622A (zh) * | 2022-07-21 | 2022-09-02 | 浙江人行道化工有限公司 | Pvdf涂覆隔膜及其制备方法 |
CN115000622B (zh) * | 2022-07-21 | 2024-04-26 | 浙江人行道化工有限公司 | Pvdf涂覆隔膜及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104157819A (zh) | 2014-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016034020A1 (zh) | 陶瓷和凝胶聚合物多层复合的锂电池隔膜及其制备方法 | |
WO2016034019A1 (zh) | 水性的聚合物和无机纳米粒子复合的锂电池隔膜及其制备方法 | |
JP7228625B2 (ja) | リチウムイオン電池用改良型隔離板および関連する方法 | |
KR102543254B1 (ko) | 복합 리튬 전지 분리막 및 이의 제조방법 | |
CN110444718B (zh) | 具有高粘结性聚合物涂膜的陶瓷复合隔膜的制备方法 | |
WO2016062126A1 (zh) | 多层共挤涂覆制备锂电池复合隔膜的方法及装置 | |
JP7443241B2 (ja) | セパレータを製造するためのコーティングスラリー、電気化学デバイスのためのセパレータ及びその製造方法 | |
WO2016165633A1 (en) | Polymer composite membrane and preparation method thereof, gel electrolyte and lithium ion battery having the same | |
WO2020211621A1 (zh) | 多孔隔膜及其制备方法和锂离子电池 | |
CN106784542A (zh) | 一种耐高温多种涂层的锂离子电池隔膜及其制备方法 | |
CN108695475B (zh) | 锂离子电池隔膜及锂离子电池 | |
CN110635090B (zh) | 高耐热性偏氟乙烯聚合物混涂隔膜的制备方法 | |
KR102410233B1 (ko) | 접착성과 통기성이 우수한 이차전지용 분리막 및 이의 제조방법 | |
CN110635089B (zh) | 高透气性偏氟乙烯聚合物混涂隔膜的制备方法 | |
WO2019157695A1 (en) | Separator and preparation method therefor and electrochemical device comprising separator | |
KR101470696B1 (ko) | 리튬이차전지용 분리막의 제조방법 및 이에 따라 제조된 분리막 및 이를 구비하는 리튬이차전지 | |
WO2019192475A1 (en) | Coating slurries for preparing separators, separators for electrochemical devices and preparation methods therefor | |
WO2020107287A1 (zh) | 多孔复合隔膜,其制备方法和包含其的锂离子电池 | |
TWI752384B (zh) | 陶瓷隔離膜及其製備方法 | |
TW201351757A (zh) | 電化學隔離膜結構及其製作方法 | |
TW201327985A (zh) | 隔離膜及其製造方法 | |
CN104466061A (zh) | 多层共挤涂覆制备锂电池复合隔膜 | |
CN106876632A (zh) | 一种锂离子电池用陶瓷隔膜及其制备方法 | |
TWI497803B (zh) | 耐熱多孔隔離膜及其製造方法 | |
WO2019096225A1 (en) | Coating slurries, separators, and methods for making the coating slurries and the separators thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15837636 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15837636 Country of ref document: EP Kind code of ref document: A1 |