WO2016062126A1 - 多层共挤涂覆制备锂电池复合隔膜的方法及装置 - Google Patents
多层共挤涂覆制备锂电池复合隔膜的方法及装置 Download PDFInfo
- Publication number
- WO2016062126A1 WO2016062126A1 PCT/CN2015/084123 CN2015084123W WO2016062126A1 WO 2016062126 A1 WO2016062126 A1 WO 2016062126A1 CN 2015084123 W CN2015084123 W CN 2015084123W WO 2016062126 A1 WO2016062126 A1 WO 2016062126A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coating
- aqueous
- slurry
- layer
- preparing
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/457—Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
- H01M50/406—Moulding; Embossing; Cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/426—Fluorocarbon polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
- H01M50/434—Ceramics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/443—Particulate material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to a lithium ion battery separator, in particular to a method and a device for preparing a lithium battery composite diaphragm capable of improving coating efficiency and reducing waste of raw materials in a multi-layer coating process.
- lithium batteries As one of the four major materials of lithium batteries, although it does not participate in the electrochemical reaction in the battery, it is a key inner layer component in lithium batteries.
- the key properties of the battery capacity, cycle performance and charge and discharge current density are directly related to the diaphragm.
- the improvement of the diaphragm performance plays an important role in improving the overall performance of the lithium battery.
- the diaphragm After the diaphragm absorbs the electrolyte, the positive and negative electrodes can be isolated to prevent short circuit, but at the same time, lithium ion conduction is allowed.
- the diaphragm In the case of overcharging or rising temperature, the diaphragm also has high-temperature self-closing performance to block current conduction and prevent explosion.
- lithium battery separators also have high strength, fire resistance, chemical resistance, acid and alkali corrosion resistance, good biocompatibility, non-toxic and so on.
- Coating the functional layer on the polyolefin membrane is the most direct and effective way to improve and improve its performance at this stage.
- the coating may be a single layer or a plurality of layers, but now the main coating process can only be applied one layer at a time, and multiple functional layer coating membranes can be applied multiple times, while multiple functional layers are applied. The method is less efficient and wasteful.
- the present invention provides a method and apparatus for preparing a lithium battery composite separator capable of improving coating efficiency and reducing waste of raw materials in a multilayer coating process.
- the object of the present invention is a method for preparing a lithium battery composite separator by multi-layer co-extrusion coating, which comprises the following steps:
- Step 1 Configuring an aqueous PVDF slurry and an aqueous ceramic slurry
- Step 2 using a polyolefin separator as a coating substrate, the aqueous slurry prepared in the step 1 is once coated on the substrate, and the aqueous ceramic coating and the aqueous PVDF coating are sequentially applied on the surface of the substrate, and the coating rate is applied. It is 5 to 100 m/min, and dried in an oven at 30 to 100 ° C to obtain a final polyolefin layer/ceramic layer/PVDF layer three-layer composite separator.
- the method for preparing the aqueous PVDF slurry in the step 1 is:
- Deionized water is used as a solvent, and the water-soluble adhesive, surfactant, dispersant and thickener are added to deionized water at room temperature to be stirred and dissolved to form a solution; then the polymer powder particles are added, stirred uniformly, and formulated into water. Slurry; the slurry contains 0.1% to 2% of water-soluble polymer thickener, 0.01% to 2% of aqueous dispersant, 0.01% to 1% of surfactant, 0.1% to 5% of water-based adhesive
- the agent is 5% to 25% of polymer powder particles, and 67% to 83% of deionized water, all of which are mass fractions.
- the preparation method of the aqueous ceramic slurry in the step 1 is:
- Deionized water is used as a solvent, and the water-soluble adhesive and thickener are added to deionized water at room temperature to be stirred and dissolved to form a solution; then, a surfactant, an aqueous dispersant and a ceramic powder are sequentially added to the above solution, and stirred.
- Adhesive 5% to 25% ceramic powder particles, 67% to 83% deionized water, all of which are mass fractions.
- the polymer powder particles are one of polytetrafluoroethylene, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, polyimide, polypropylene fine, and aramid resin. Or a plurality of; the polymer powder particles are aggregated in a particle size ranging from 0.01 ⁇ m to 10 ⁇ m.
- the ceramic powder particles are any one or more of SiO 2 , Al 2 O 3 , CaO, TiO 2 , MgO, ZnO, SnO 2 , and ZrO 2 ; and the particle size ranges from 0.01 ⁇ m to ⁇ 10 ⁇ m.
- the invention also discloses an apparatus for multi-layer co-extrusion coating of a lithium battery composite membrane, comprising a coating roller for moving a transmission substrate, one side of the coating roller is provided with a double-die coating head, the double The two discharge ports of the die coating head are directed to the surface of the substrate which is driven by the coating roller, and the two-mode coating head is provided with supply channels respectively communicating with the two discharge ports, wherein the supply channels are respectively provided by a diaphragm
- the pump is connected to a slurry tank, and the slurry tank is respectively filled with the aqueous PVDF slurry or the aqueous ceramic slurry according to claim 1.
- the dual-mode coating head comprises an upper module, a lower module and an intermediate wedge block, and a supply channel is formed between the upper module and the intermediate wedge block and between the lower module and the intermediate wedge block, respectively.
- a discharge port for the surface of the two-pointing substrate is formed between the upper module and the intermediate wedge block and between the lower module and the intermediate wedge block, respectively.
- the diaphragm pump is a pulseless diaphragm pump.
- the pressure in the feed channel ranges from 0.5 to 10.0 bar.
- a vacuum chamber is disposed under the substrate and the discharge opening.
- the invention utilizes a dual-mode coating head to simultaneously coat two functional coatings, greatly improving production efficiency and reducing waste in multiple coating processes.
- the ceramic coating can improve the thermal safety of the separator and improve the wettability of the electrolyte to the separator, and facilitate the absorption of the electrolyte; and the PVDF-HFP powder in the PVDF coating can swell in the electrolyte and have good absorption. And the ability to maintain the electrolyte, has a high electrical conductivity, so that the lithium battery has a good cycle life.
- the positive and negative electrodes of the battery can be well bonded and improved, and the hardness and shape retention ability of the battery are improved.
- the solvents used in the two coating slurries are all water, and do not contain organic solvents such as acetone, DMF, NMP, etc., which will not pollute the environment and will not endanger the health of workers.
- organic solvents such as acetone, DMF, NMP, etc.
- Figure 1 is a cross-sectional view showing a battery separator of an embodiment of the present invention
- FIG. 2 is a schematic structural view of a coating apparatus according to an embodiment of the present invention.
- the composite separator includes a polyolefin separator 1, a ceramic coating 2, and a PVDF coating 3 which are sequentially laminated.
- the preparation method comprises the following steps:
- Step 1 Configuring an aqueous PVDF slurry and an aqueous ceramic slurry
- Step 2 using the polyolefin separator 1 as a coating substrate, the aqueous slurry prepared in the step 1 is once coated on the substrate, and the aqueous ceramic coating layer 2 and the aqueous PVDF coating layer 3 are sequentially coated on the surface of the substrate.
- the coating rate is 5 to 100 m/min, and dried in an oven at 30 to 100 ° C to obtain a final polyolefin layer/ceramic layer/PVDF layer three-layer composite separator.
- An apparatus for multi-layer co-extrusion coating of a composite battery of a lithium battery comprising a coating roller 4 for moving the polyolefin membrane layer 1 with a double-die coating head disposed on one side of the coating roller 4 6.
- the two discharge ports of the dual-mode coating head 6 are directed to the surface of the polyolefin separator layer 1 driven by the coating roller, and the two-die coating head 6 is respectively disposed with the two discharge ports.
- a first supply passage 7 and a second supply passage 12 the first supply passage 7 is connected to a slurry tank 9 by a diaphragm pump 8, and the second supply passage 12 is connected to a slurry by a diaphragm pump 14.
- the coating roller 4 is rotated counterclockwise, the slurry tank 9 is placed with the aqueous PVDF slurry, and the slurry tank 15 is placed with the aqueous ceramic slurry.
- the polyolefin separator may be a PP separator, a PE separator, a PP/PE/PP composite separator, or the like.
- the polyolefin separator 1 moves from the bottom upward, and at this time, the slit discharge port disposed under the double-die coating head 6 flows out of the aqueous ceramic slurry disposed by the slurry tank 15, and The slit discharge port above the double-die coating head 6 simultaneously flows out of the PVDF slurry placed in the slurry tank 9, so that two functional coatings can be simultaneously coated, which greatly improves the production efficiency and reduces the multiple coating. Waste in the process.
- the ceramic coating can improve the thermal safety of the separator and improve the wettability of the electrolyte to the separator, and facilitate the absorption of the electrolyte; and the PVDF-HFP powder in the PVDF coating can swell in the electrolyte and have good absorption. And the ability to maintain the electrolyte, has a high electrical conductivity, so that the lithium battery has a good cycle life.
- the positive and negative electrodes of the battery can be well bonded and improved, and the hardness and shape retention ability of the battery are improved.
- the solvents used in the two coating slurries are all water, and do not contain organic solvents such as acetone, DMF, NMP, etc., which will not pollute the environment and will not endanger the health of workers.
- organic solvents such as acetone, DMF, NMP, etc.
- the preparation method of the aqueous PVDF slurry in the step 1 is:
- Deionized water is used as a solvent, and the water-soluble adhesive, surfactant, dispersant and thickener are added to deionized water at room temperature to be stirred and dissolved to form a solution; then the polymer powder particles are added, stirred uniformly, and formulated into water.
- the slurry contains 0.1% to 2% of water-soluble polymer thickener, 0.01% to 2% of aqueous dispersant, 0.01% to 1% of surfactant, 0.1% to 5% of water-based adhesive
- the agent 5% to 25% of polymer powder particles, 67% to 83% of deionized water, all of which are mass fraction; the polymer powder particles have a weight average molecular weight of 12 to 160,000 and a particle diameter of 100 to 300 nm.
- the preparation method of the aqueous ceramic slurry in the step 1 is:
- Deionized water is used as a solvent, and the water-soluble adhesive and thickener are added to deionized water at room temperature to be stirred and dissolved to form a solution; then, a surfactant, an aqueous dispersant and a ceramic powder are sequentially added to the above solution, and stirred.
- Adhesive 5% to 25% ceramic powder particles, 67% to 83% deionized water, all of which are mass fractions.
- the thickness of the polyolefin separator 1 ranges from 8 ⁇ m to 100 ⁇ m
- the porosity ranges from 30% to 80%
- the average pore diameter is 0.01 ⁇ m - 10 ⁇ m.
- the polymer powder particles are polytetrafluoroethylene, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer based on the foregoing technical solutions.
- the ceramic powder particles are SiO 2 , Al 2 O 3 , CaO, TiO 2 , MgO, ZnO, SnO 2 , ZrO any one or more, preferably of SiO 2 and Al 2 O 3 2; particle size range of 0.01 ⁇ m ⁇ 10 ⁇ m, 0.1 ⁇ m ⁇ 3 ⁇ m is preferred.
- the method for preparing a lithium battery composite separator by multi-layer co-extrusion coating of the present invention based on the foregoing technical solutions,
- the thickness of the ceramic coating layer and the polymer coating layer is from 1 ⁇ m to 10 ⁇ m in total, preferably from 1 ⁇ m to 4 ⁇ m.
- the dual-mode coating head 6 comprises an upper module 5, a lower module 11 and an intermediate wedge block 13, the upper module 2 and the middle A supply passage 7 is formed between the wedge blocks 13 and a supply passage 12 is formed between the lower module 11 and the intermediate wedge block 13, and a space is formed between the upper module 7 and the intermediate wedge block 13 and between the lower module 11 and the intermediate wedge block 13, respectively. Two points to the discharge port on the surface of the substrate.
- the apparatus for multi-layer co-extrusion coating of a lithium battery composite separator of the present invention is based on the foregoing technical solutions, and the diaphragm pumps 8, 14 are pulseless diaphragm pumps to ensure uniformity of the slurry.
- the pressure of the flow portion of the die portion ranges from 0.5 to 10.0 bar on the basis of the foregoing technical solutions.
- a vacuum chamber 10 is disposed under the substrate and the discharge port on the basis of the foregoing technical solutions. It is used to ensure the stability of the discharge of the discharge port.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Cell Separators (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
本发明公开了一种多层共挤涂覆制备锂电池复合隔膜的方法,包括如下步骤:步骤1:配置水性PVDF浆料和水性陶瓷浆料;步骤2:以聚烯烃隔膜作为涂布基材,将步骤1中制备水性浆料一次性涂布在基材上,在基材表面依次涂布水性陶瓷涂层、水性PVDF涂层,涂布速率为5~100m/min,经过30~100℃烘箱烘干,得到最终聚烯烃层/陶瓷层/PVDF层三层复合隔膜。本发明还公开了多层共挤涂覆制备锂电池复合隔膜的装置。本发明具有能在多层涂覆过程提高涂覆效率、减少原料浪费的优点。
Description
本发明涉及锂离子电池隔膜,尤其是涉及一种能在多层涂覆过程提高涂覆效率、减少原料浪费的多层共挤涂覆制备锂电池复合隔膜的方法及装置。
作为锂电池四大材料之一的隔膜,尽管并不参与电池中的电化学反应,但却是锂电池中关键的内层组件。电池的容量、循环性能和充放电电流密度等关键性能都与隔膜有着直接的关系,隔膜性能的改善对提高锂电池的综合性能起着重要作用。在锂电池中,隔膜吸收电解液后,可隔离正、负极,以防止短路,但同时还要允许锂离子的传导。而在过度充电或者温度升高时,隔膜还要有高温自闭性能,以阻隔电流传导防止爆炸。不仅如此,锂电池隔膜还要有强度高、防火、耐化学试剂、耐酸碱腐蚀性、生物相容性好、无毒等特点。在聚烯烃隔膜上涂覆功能层是现阶段改善和提高其性能一种最直接最有效的方法。涂层可以是单层也可以是多层,但是现在主要的涂覆工艺一次只能涂覆一层,多种功能层涂覆隔膜要多次涂覆才能实现,而多次涂覆功能层的方法效率较低,浪费严重。
发明内容
为克服上述缺点,本发明提供一种能在多层涂覆过程提高涂覆效率、减少原料浪费的多层共挤涂覆制备锂电池复合隔膜的方法及装置。
本发明的目的是通过以下技术措施实现的,一种多层共挤涂覆制备锂电池复合隔膜的方法,包括如下步骤:
步骤1:配置水性PVDF浆料和水性陶瓷浆料;
步骤2:以聚烯烃隔膜作为涂布基材,将步骤1中制备水性浆料一次性涂布在基材上,在基材表面依次涂布水性陶瓷涂层、水性PVDF涂层,涂布速率为5~100m/min,经过30~100℃烘箱烘干,得到最终聚烯烃层/陶瓷层/PVDF层三层复合隔膜。
作为一种优选方式,所述步骤1中水性PVDF浆料配制方法为:
以去离子水作为溶剂,把水溶性胶黏剂、表面活性剂、分散剂、增稠剂在常温加入去离子水中搅拌溶解,配成溶液;再加入聚合物粉末粒子,搅拌均匀,配成水性浆料;浆料中含0.1%~2%的水溶性高分子增稠剂,0.01%~2%的水性分散剂,0.01%~1%的表面活性剂,0.1%~5%的水性胶黏剂,5%~25%的聚合物粉末粒子,67%~83%的去离子水,上述都为质量分数。
作为一种优选方式,所述步骤1中水性陶瓷浆料配制方法为:
以去离子水作为溶剂,把水溶性胶黏剂、增稠剂在常温下加入去离子水中搅拌溶解,配成溶液;然后在上述溶液中依次加入表面活性剂、水性分散剂和陶瓷粉末,搅拌均匀,配成水性浆料;浆料中含0.1%~2%的增稠剂,0.01%~2%的水性分散剂,0.01%~1%的表面活性剂,0.1%~5%的水性胶黏剂,5%~25%的陶瓷粉末粒子,67%~83%的去离子水,上述都为质量分数。
作为一种优选方式,所述聚合物粉末粒子为聚四氟乙烯、聚偏氟乙烯、聚偏氟乙烯-六氟丙烯共聚物、聚酰亚胺、聚丙烯晴、芳纶树脂中的一种或者多种;聚所述聚合物粉末粒子的粒径范围为0.01μm-10μm。
作为一种优选方式,所述陶瓷粉末粒子为SiO2、Al2O3、CaO、TiO2、MgO、ZnO、SnO2、ZrO2中的任意一种或者多种;粒径范围为0.01μm~10μm。
本发明还公开了一种用于多层共挤涂覆锂电池复合隔膜的装置,包括传动基材移动的涂覆辊,所述涂覆辊的一侧设置有一双模涂头,所述双模涂头的二出料口都指向由涂覆辊传动移动的基材表面,所述双模涂头内设置分别与二出料口连通的供料通道,所述供料通道分别由一隔膜泵连通一浆料罐,二所述浆料罐内分别容置有如权利要求1所述的水性PVDF浆料或水性陶瓷浆料。
作为一种优选方式,所述双模涂头包括上模块、下模块和中间楔形块,所述上模块和中间楔形块之间以及下模块和中间楔形块之间分别形成供料通道,所述上模块和中间楔形块之间以及下模块和中间楔形块之间分别形成二指向基材表面的出料口。
作为一种优选方式,所述隔膜泵为无脉冲隔膜泵。
作为一种优选方式,所述供料通道内的压力范围为0.5~10.0bar。
作为一种优选方式,所述基材与出料口的下方设置有一真空腔。
本发明利用双模涂头能同时涂覆二种功能涂层,极大地提高了生产效率,减少了多次涂覆过程中的浪费。其中的陶瓷涂层能提高隔膜的热安全性并能提高电解液对隔膜的浸润性,便于电解液的吸收;而PVDF涂层中的PVDF-HFP粉末,能够在电解液中溶胀,有良好吸收和保持电解液的能力,具有较高的电导率,从而使锂电池具有良好的循环使用寿命。同时,能使电池正负极很好的粘结贴合,提高电芯硬度和形体保持能力。二种涂布浆料所用溶剂均为水,不含丙酮、DMF、NMP等有机溶剂,不会对环境造成污染,不会危害工人的健康。作为工业化生产的产品,使用水作为溶剂极大地降低了生产成本,使产品更具竞争力。
图1为本发明实施例电池隔膜的剖面图;
图2为本发明实施例涂布装置的结构示意图。
下面对本发明作进一步详细说明。
一种多层共挤涂覆制备锂电池复合隔膜的方法,参考图1,复合隔膜包括依次层叠的聚烯烃隔膜1、陶瓷涂层2和PVDF涂层3。其制备方法包括如下步骤:
步骤1:配置水性PVDF浆料和水性陶瓷浆料;
步骤2:以聚烯烃隔膜1作为涂布基材,将步骤1中制备水性浆料一次性涂布在基材上,在基材表面依次涂布水性陶瓷涂层2、水性PVDF涂层3,涂布速率为5~100m/min,经过30~100℃烘箱烘干,得到最终聚烯烃层/陶瓷层/PVDF层三层复合隔膜。
一种用于多层共挤涂覆锂电池复合隔膜的装置,参考图2,包括传动聚烯烃隔膜层1移动的涂覆辊4,所述涂覆辊4的一侧设置有一双模涂头6,所述双模涂头6的二出料口都指向由涂覆辊传动移动的聚烯烃隔膜层1表面,所述双模涂头6内设置分别与二出料口连
通的第一供料通道7和第二供料通道12,所述第一供料通道7由一隔膜泵8连通一浆料罐9,第二供料通道12由一隔膜泵14连通一浆料罐15,在本实施例中涂覆辊4逆时针旋转,浆料罐9内容置有水性PVDF浆料而浆料罐15内容置有水性陶瓷浆料。聚烯烃隔膜可以是PP隔膜、PE隔膜、PP/PE/PP复合隔膜等。
当涂覆辊4逆时针旋转时,聚烯烃隔膜1由下向上运动,此时设置在双模涂头6下方的狭缝出料口流出由浆料罐15内容置的水性陶瓷浆料,而双模涂头6上方的狭缝出料口同时流出由浆料罐9内容置的PVDF浆料,这样能同时涂覆二种功能涂层,极大地提高了生产效率,减少了多次涂覆过程中的浪费。其中的陶瓷涂层能提高隔膜的热安全性并能提高电解液对隔膜的浸润性,便于电解液的吸收;而PVDF涂层中的PVDF-HFP粉末,能够在电解液中溶胀,有良好吸收和保持电解液的能力,具有较高的电导率,从而使锂电池具有良好的循环使用寿命。同时,能使电池正负极很好的粘结贴合,提高电芯硬度和形体保持能力。二种涂布浆料所用溶剂均为水,不含丙酮、DMF、NMP等有机溶剂,不会对环境造成污染,不会危害工人的健康。作为工业化生产的产品,使用水作为溶剂极大地降低了生产成本,使产品更具竞争力。
本发明的多层共挤涂覆制备锂电池复合隔膜的方法,在前面技术方案的基础上,步骤1中水性PVDF浆料配制方法为:
以去离子水作为溶剂,把水溶性胶黏剂、表面活性剂、分散剂、增稠剂在常温加入去离子水中搅拌溶解,配成溶液;再加入聚合物粉末粒子,搅拌均匀,配成水性浆料;浆料中含0.1%~2%的水溶性高分子增稠剂,0.01%~2%的水性分散剂,0.01%~1%的表面活性剂,0.1%~5%的水性胶黏剂,5%~25%的聚合物粉末粒子,67%~83%的去离子水,上述都为质量分数;聚合物粉末粒子的重均分子量为12-16万,粒径为100-300nm。
本发明的多层共挤涂覆制备锂电池复合隔膜的方法,在前面技术方案的基础上,步骤1中水性陶瓷浆料配制方法为:
以去离子水作为溶剂,把水溶性胶黏剂、增稠剂在常温下加入去离子水中搅拌溶解,配成溶液;然后在上述溶液中依次加入表面活性剂、水性分散剂和陶瓷粉末,搅拌均匀,配成水性浆料;浆料中含0.1%~2%的增稠剂,0.01%~2%的水性分散剂,0.01%~1%的表面活性剂,0.1%~5%的水性胶黏剂,5%~25%的陶瓷粉末粒子,67%~83%的去离子水,上述都为质量分数。
本发明的多层共挤涂覆制备锂电池复合隔膜的方法,在前面技术方案的基础上,聚烯烃隔膜1的厚度范围在8μm-100μm,孔隙率范围为30%-80%,平均孔径在0.01μm-10μm。
本发明的多层共挤涂覆制备锂电池复合隔膜的方法,在前面技术方案的基础上,聚合物粉末粒子为聚四氟乙烯、聚偏氟乙烯、聚偏氟乙烯-六氟丙烯共聚物、聚酰亚胺、聚丙烯晴、芳纶树脂中的一种或者多种,优选聚偏氟乙烯或者聚偏氟乙烯-六氟丙烯共聚物;聚所述聚合物粉末粒子的粒径范围为0.01μm-10μm,,优选0.1μm-2μm。
本发明的多层共挤涂覆制备锂电池复合隔膜的方法,在前面技术方案的基础上,陶瓷粉末粒子为SiO2、Al2O3、CaO、TiO2、MgO、ZnO、SnO2、ZrO2中的任意一种或者多种,优选SiO2和Al2O3;粒径范围为0.01μm~10μm,优选0.1μm~3μm。
本发明的多层共挤涂覆制备锂电池复合隔膜的方法,在前面技术方案的基础上,
陶瓷涂覆层和聚合物涂覆层的厚度共为1μm-10μm,优选1μm~4μm。
本发明的多层共挤涂覆锂电池复合隔膜的装置,在前面技术方案的基础上,双模涂头6包括上模块5、下模块11和中间楔形块13,所述上模块2和中间楔形块13之间形成供料通道7以及下模块11和中间楔形块13之间形成供料通道12,上模块7和中间楔形块13之间以及下模块11和中间楔形块13之间分别形成二指向基材表面的出料口。
本发明的多层共挤涂覆锂电池复合隔膜的装置,在前面技术方案的基础上,隔膜泵8、14为无脉冲隔膜泵,以保证出浆料的均匀性。
本发明的多层共挤涂覆锂电池复合隔膜的装置,在前面技术方案的基础上,模头部分流道的压力范围在0.5~10.0bar。
本发明的多层共挤涂覆锂电池复合隔膜的装置,在前面技术方案的基础上,基材与出料口的下方设置有一真空腔10。用于保证出料口出料的稳定性。
以上是对本发明多层共挤涂覆制备锂电池复合隔膜的方法及装置进行了阐述,用于帮助理解本发明,但本发明的实施方式并不受上述实施例的限制,任何未背离本发明原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (10)
- 一种多层共挤涂覆制备锂电池复合隔膜的方法,其特征在于包括如下步骤:步骤1:配置水性PVDF浆料和水性陶瓷浆料;步骤2:以聚烯烃隔膜作为涂布基材,将步骤1中制备水性浆料一次性涂布在基材上,在基材表面依次涂布水性陶瓷涂层、水性PVDF涂层,涂布速率为5~100m/min,经过30~100℃烘箱烘干,得到最终聚烯烃层/陶瓷层/PVDF层三层复合隔膜。
- 根据权利要求1所述的多层共挤涂覆制备锂电池复合隔膜的方法,其特征在于:所述步骤1中水性PVDF浆料配制方法为:以去离子水作为溶剂,把水溶性胶黏剂、表面活性剂、分散剂、增稠剂在常温加入去离子水中搅拌溶解,配成溶液;再加入聚合物粉末粒子,搅拌均匀,配成水性浆料;浆料中含0.1%~2%的水溶性高分子增稠剂,0.01%~2%的水性分散剂,0.01%~1%的表面活性剂,0.1%~5%的水性胶黏剂,5%~25%的聚合物粉末粒子,67%~83%的去离子水,上述都为质量分数。
- 根据权利要求1所述的多层共挤涂覆制备锂电池复合隔膜的方法,其特征在于:所述步骤1中水性陶瓷浆料配制方法为:以去离子水作为溶剂,把水溶性胶黏剂、增稠剂在常温下加入去离子水中搅拌溶解,配成溶液;然后在上述溶液中依次加入表面活性剂、水性分散剂和陶瓷粉末,搅拌均匀,配成水性浆料;浆料中含0.1%~2%的增稠剂,0.01%~2%的水性分散剂,0.01%~1%的表面活性剂,0.1%~5%的水性胶黏剂,5%~25%的陶瓷粉末粒子,67%~83%的去离子水,上述都为质量分数。
- 根据权利要求2所述的多层共挤涂覆制备锂电池复合隔膜的方法,其特征在于:所述聚合物粉末粒子为聚四氟乙烯、聚偏氟乙烯、聚偏氟乙烯-六氟丙烯共聚物、聚酰亚胺、聚丙烯晴、芳纶树脂中的一种或者多种;聚所述聚合物粉末粒子的粒径范围为0.01μm-10μm。
- 根据权利要求3所述的多层共挤涂覆制备锂电池复合隔膜的方法,其特征在于:所述陶瓷粉末粒子为SiO2、Al2O3、CaO、TiO2、MgO、ZnO、SnO2、ZrO2中的任意一种或者多种;粒径范围为0.01μm~10μm。
- 一种多层共挤涂覆制备锂电池复合隔膜的装置,其特征在于:包括传动基材移动的涂覆辊,所述涂覆辊的一侧设置有一双模涂头,所述双模涂头的二出料口都指向由涂覆辊传动移动的基材表面,所述双模涂头内设置分别与二出料口连通的供料通道,所述供料通道分别由一隔膜泵连通一浆料罐,二所述浆料罐内分别容置有如权利要求1所述的水性PVDF浆料或水性陶瓷浆料。
- 根据权利要求6所述的多层共挤涂覆制备锂电池复合隔膜的装置,其特征在于:所述双模涂头包括上模块、下模块和中间楔形块,所述上模块和中间楔形块之间以及下模块和中间楔形块之间分别形成供料通道,所述上模块和中间楔形块之间以及下模块和中间楔形块之间分别形成二指向基材表面的出料口。
- 根据权利要求6或7所述的多层共挤涂覆制备锂电池复合隔膜的装置,其特征在于:所述隔膜泵为无脉冲隔膜泵。
- 根据权利要求6或7所述的多层共挤涂覆制备锂电池复合隔膜的装置,其特征在于:所述供料通道内的压力范围为0.5~10.0bar。
- 根据权利要求6或7所述的多层共挤涂覆制备锂电池复合隔膜的装置,其特征在于:所述基材与出料口的下方设置有一真空腔。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410579725.0 | 2014-10-24 | ||
CN201410579725.0A CN104269506A (zh) | 2014-10-24 | 2014-10-24 | 多层共挤涂覆制备锂电池复合隔膜的方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016062126A1 true WO2016062126A1 (zh) | 2016-04-28 |
Family
ID=52161012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/084123 WO2016062126A1 (zh) | 2014-10-24 | 2015-07-15 | 多层共挤涂覆制备锂电池复合隔膜的方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104269506A (zh) |
WO (1) | WO2016062126A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109616605A (zh) * | 2018-12-27 | 2019-04-12 | 江苏理士电池有限公司 | 一种锂离子电池隔膜及其制备方法 |
EP3644404A4 (en) * | 2017-06-20 | 2020-06-10 | Shenzhen Senior Technology Material Co., Ltd. | LITHIUM ION SEPARATOR WITH A CERAMIC AND POLYMER COMPOSITE COATING AND METHOD FOR PREPARING THE SAME |
CN111987273A (zh) * | 2019-05-23 | 2020-11-24 | 河北金力新能源科技股份有限公司 | PVDF&Al2O3混涂浆料及其制备方法、锂离子电池隔膜以及锂离子电池 |
CN113611982A (zh) * | 2021-08-02 | 2021-11-05 | 东莞市卓高电子科技有限公司 | 一种高粘结性陶瓷涂覆浆料及其制备方法 |
CN114335899A (zh) * | 2022-01-30 | 2022-04-12 | 中材锂膜有限公司 | 复合涂层隔膜及其制备方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104269506A (zh) * | 2014-10-24 | 2015-01-07 | 深圳市星源材质科技股份有限公司 | 多层共挤涂覆制备锂电池复合隔膜的方法及装置 |
CN105964481A (zh) * | 2016-06-11 | 2016-09-28 | 深圳市新嘉拓自动化技术有限公司 | 双模腔模头 |
CN106549128A (zh) * | 2017-01-19 | 2017-03-29 | 宁德卓高新材料科技有限公司 | 一种非全覆盖式涂覆隔膜的制备方法 |
CN106784542B (zh) * | 2017-02-13 | 2019-08-06 | 河北金力新能源科技股份有限公司 | 一种耐高温多种涂层的锂离子电池隔膜及其制备方法 |
CN108400271B (zh) * | 2018-02-12 | 2020-11-27 | 重庆云天化纽米科技股份有限公司 | 一种体系稳定的锂离子电池隔膜用水性pvdf浆料的制备方法 |
CN108807819B (zh) * | 2018-06-15 | 2021-06-29 | 珠海冠宇电池股份有限公司 | 隔膜及其制备方法和锂硫电池 |
CN111584794A (zh) * | 2019-03-20 | 2020-08-25 | 河北金力新能源科技股份有限公司 | 一种陶瓷和pvdf复合涂布锂电隔膜及其制备方法 |
CN110379999A (zh) * | 2019-07-18 | 2019-10-25 | 恒大新能源科技集团有限公司 | 一种复合电极、电极涂覆装置及电极制备方法 |
CN110660951B (zh) * | 2019-10-08 | 2020-10-20 | 华南理工大学 | 一种锂离子电池隔膜 |
CN112201898A (zh) * | 2020-08-26 | 2021-01-08 | 河北金力新能源科技股份有限公司 | 锂电池梯度分布涂覆隔膜及其制备方法 |
CN114178159B (zh) * | 2020-09-14 | 2023-02-21 | 上海恩捷新材料科技有限公司 | 一种电池隔膜及其涂布工艺、涂布系统和电池 |
CN113823877A (zh) * | 2021-08-31 | 2021-12-21 | 远景动力技术(江苏)有限公司 | 锂离子电池的隔膜及其制备方法和用途 |
CN115051113A (zh) * | 2022-06-21 | 2022-09-13 | 岳阳耀宁新能源科技有限公司 | 一种高安全性能的锂电池隔膜和通信基站用的磷酸铁锂电池 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101389459A (zh) * | 2006-03-01 | 2009-03-18 | 株式会社钟化 | 多层聚酰亚胺膜的制造方法 |
CN102821927A (zh) * | 2009-12-29 | 2012-12-12 | 3M创新有限公司 | 共挤出模头和系统、制备共挤出制品的方法、以及由此制备的共挤出制品 |
US20140272526A1 (en) * | 2013-03-14 | 2014-09-18 | GM Global Technology Operations LLC | Porous separator for a lithium ion battery and a method of making the same |
CN104269506A (zh) * | 2014-10-24 | 2015-01-07 | 深圳市星源材质科技股份有限公司 | 多层共挤涂覆制备锂电池复合隔膜的方法及装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7097673B2 (en) * | 2001-06-07 | 2006-08-29 | 3M Innovative Properties Company | Coating edge control |
CN100400172C (zh) * | 2004-12-30 | 2008-07-09 | 刘大佼 | 共挤压涂布两种涂层的方法 |
EP2639855A3 (en) * | 2008-03-27 | 2013-12-25 | ZPower, LLC | Electrode separator |
CN102569701A (zh) * | 2012-01-04 | 2012-07-11 | 宁德新能源科技有限公司 | 一种锂离子电池及其隔膜 |
US9034134B2 (en) * | 2013-03-15 | 2015-05-19 | GM Global Technology Operations LLC | Manufacturability of ePTFE laminated membranes |
CN103515564B (zh) * | 2013-10-15 | 2017-06-30 | 深圳市星源材质科技股份有限公司 | 一种复合隔膜及其制备方法 |
-
2014
- 2014-10-24 CN CN201410579725.0A patent/CN104269506A/zh active Pending
-
2015
- 2015-07-15 WO PCT/CN2015/084123 patent/WO2016062126A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101389459A (zh) * | 2006-03-01 | 2009-03-18 | 株式会社钟化 | 多层聚酰亚胺膜的制造方法 |
CN102821927A (zh) * | 2009-12-29 | 2012-12-12 | 3M创新有限公司 | 共挤出模头和系统、制备共挤出制品的方法、以及由此制备的共挤出制品 |
US20140272526A1 (en) * | 2013-03-14 | 2014-09-18 | GM Global Technology Operations LLC | Porous separator for a lithium ion battery and a method of making the same |
CN104269506A (zh) * | 2014-10-24 | 2015-01-07 | 深圳市星源材质科技股份有限公司 | 多层共挤涂覆制备锂电池复合隔膜的方法及装置 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3644404A4 (en) * | 2017-06-20 | 2020-06-10 | Shenzhen Senior Technology Material Co., Ltd. | LITHIUM ION SEPARATOR WITH A CERAMIC AND POLYMER COMPOSITE COATING AND METHOD FOR PREPARING THE SAME |
CN109616605A (zh) * | 2018-12-27 | 2019-04-12 | 江苏理士电池有限公司 | 一种锂离子电池隔膜及其制备方法 |
CN109616605B (zh) * | 2018-12-27 | 2023-12-26 | 江苏理士电池有限公司 | 一种锂离子电池隔膜及其制备方法 |
CN111987273A (zh) * | 2019-05-23 | 2020-11-24 | 河北金力新能源科技股份有限公司 | PVDF&Al2O3混涂浆料及其制备方法、锂离子电池隔膜以及锂离子电池 |
CN113611982A (zh) * | 2021-08-02 | 2021-11-05 | 东莞市卓高电子科技有限公司 | 一种高粘结性陶瓷涂覆浆料及其制备方法 |
CN114335899A (zh) * | 2022-01-30 | 2022-04-12 | 中材锂膜有限公司 | 复合涂层隔膜及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104269506A (zh) | 2015-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016062126A1 (zh) | 多层共挤涂覆制备锂电池复合隔膜的方法及装置 | |
WO2016034020A1 (zh) | 陶瓷和凝胶聚合物多层复合的锂电池隔膜及其制备方法 | |
WO2016034019A1 (zh) | 水性的聚合物和无机纳米粒子复合的锂电池隔膜及其制备方法 | |
TWI629176B (zh) | 多孔膜及多層多孔膜 | |
WO2019153822A1 (zh) | 一种粘结性聚合物涂覆锂离子电池隔膜及其制备方法 | |
CN100522602C (zh) | 聚烯烃微多孔膜 | |
TWI310253B (en) | Surface-treated microporous membrane and electrochemical device prepared thereby | |
KR101330675B1 (ko) | 이차전지용 코팅 분리막 및 그 제조방법 | |
US20150056491A1 (en) | Organic/inorganic composite porous separator and preparation method thereof and electrochemical device | |
CN103531735B (zh) | 一种锂离子电池用聚烯烃多层微多孔膜及其制备方法 | |
WO2014093519A8 (en) | Ceramic coating on battery separators | |
CN106784542A (zh) | 一种耐高温多种涂层的锂离子电池隔膜及其制备方法 | |
WO2016196688A8 (en) | Nano-engineered coatings for anode active materials, cathode active materials, and solid-state electrolytes and methods of making batteries containing nano-engineered coatings | |
JP2019536253A (ja) | リチウムイオン電池用複合機能多層セパレーター | |
CN108695475B (zh) | 锂离子电池隔膜及锂离子电池 | |
WO2015156127A1 (ja) | 電池用セパレータ | |
CN109792020A (zh) | 包括功能性粘合剂的电池隔板以及包括该电池隔板的电化学装置 | |
CN109860486A (zh) | 一种电池用隔膜及其制备方法 | |
CN103474609A (zh) | 一种叠涂复合锂电池隔膜及其制备方法 | |
KR102410233B1 (ko) | 접착성과 통기성이 우수한 이차전지용 분리막 및 이의 제조방법 | |
CN204011539U (zh) | 锂离子电池隔膜的制造装置 | |
CN103746087A (zh) | 一种锂离子电池隔膜制造方法及锂电池 | |
CN103311485A (zh) | 锂离子电池隔膜表面陶瓷化的方法 | |
CN113921989A (zh) | 一种柔性隔膜制备工艺 | |
CN111545397A (zh) | 一种隔膜涂覆装置以及隔膜涂覆方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15852668 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15852668 Country of ref document: EP Kind code of ref document: A1 |