WO2016034019A1 - 水性的聚合物和无机纳米粒子复合的锂电池隔膜及其制备方法 - Google Patents

水性的聚合物和无机纳米粒子复合的锂电池隔膜及其制备方法 Download PDF

Info

Publication number
WO2016034019A1
WO2016034019A1 PCT/CN2015/084120 CN2015084120W WO2016034019A1 WO 2016034019 A1 WO2016034019 A1 WO 2016034019A1 CN 2015084120 W CN2015084120 W CN 2015084120W WO 2016034019 A1 WO2016034019 A1 WO 2016034019A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous
coating
polymer
slurry
lithium battery
Prior art date
Application number
PCT/CN2015/084120
Other languages
English (en)
French (fr)
Inventor
吴术球
杨佳富
苗发成
陈良
Original Assignee
深圳市星源材质科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市星源材质科技股份有限公司 filed Critical 深圳市星源材质科技股份有限公司
Publication of WO2016034019A1 publication Critical patent/WO2016034019A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a lithium ion battery separator, in particular to an aqueous battery and inorganic nanoparticle composite lithium battery separator with high thermal safety performance, long cycle life and less environmental pollution, and a preparation method thereof.
  • the performance of the diaphragm determines the interface structure and internal resistance of the battery, which directly affects the capacity, cycle and safety performance of the battery.
  • the separator with excellent performance plays an important role in improving the overall performance of the battery. Therefore, the development of high performance diaphragms has become an important direction to improve the performance of lithium batteries, especially the safety of diaphragms has become our focus.
  • the safety of lithium-ion batteries is the focus of the industry, and the safety of the diaphragm is one of the top priorities. This requires the diaphragm to have excellent mechanical properties, lower closed cell temperature and the ability to retain shape at higher temperatures.
  • the large-scale commercialized lithium battery separator is mainly made of polypropylene and polyethylene. With the higher performance requirements of lithium batteries, the thermal safety of the diaphragms of these two materials and the ability to maintain the electrolyte are difficult to meet. It is required that the study of high-performance composite membranes for the preparation of other materials and polyolefins is the most important direction for membrane modification.
  • the present invention provides an aqueous battery and inorganic nanoparticle composite lithium battery separator having high thermal safety performance, long cycle life, and low environmental pollution.
  • an aqueous polymer and inorganic nanoparticle composite lithium battery separator comprising a polyolefin support layer, the polyolefin support layer side is a polymer coating, and the other The side is a ceramic coating; the polymer coating and the ceramic coating are both compounded by a coating process, and the coating slurry used for the polymer coating and the ceramic coating is an aqueous slurry, and the polymer coating
  • the layer includes at least an aqueous binder and polymer particles, and the ceramic coating includes at least an aqueous binder and inorganic nanoparticles.
  • the polyolefin support layer is a polyethylene porous film, a polypropylene porous film; the polyolefin support layer has a thickness ranging from 8 ⁇ m to 100 ⁇ m, and a porosity ranging from 30% to 80%, and an average value.
  • the pore size is between 0.01 ⁇ m and 10 ⁇ m.
  • the polymer particles are one of polytetrafluoroethylene, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, polyimide, polypropylene, and aramid resin. a plurality of, preferably polyvinylidene fluoride or polyvinylidene fluoride-hexafluoropropylene copolymer; the polymer particles having a particle size ranging from 0.01 ⁇ m to 10 ⁇ m, preferably from 0.1 ⁇ m to 2 ⁇ m; the polymer particles occupying the aqueous PVDF coating The mass fraction (wt%) of the coating is 2% to 40%.
  • the inorganic nanoparticles are any one or more of SiO 2 , Al 2 O 3 , CaO, TiO 2 , MgO, ZnO, SnO 2 , and ZrO 2 ;
  • the diameter ranges from 0.01 ⁇ m to 10 ⁇ m; the inorganic nanoparticles constitute a mass fraction of the aqueous ceramic slurry.
  • the invention also discloses a preparation method of a lithium battery separator compounded by an aqueous polymer and an inorganic nano particle.
  • the method is divided into two large steps, first polymer coating, and then ceramic coating on the other side, the specific steps are as follows:
  • A1 Deionized water is used as a solvent, and water-soluble adhesive, surfactant, dispersant, thickener and the like are dissolved under high-temperature stirring at normal temperature to prepare a solution; then polymer powder particles are added, and the mixture is uniformly stirred at a high speed.
  • An aqueous slurry; the slurry contains 0.1% to 2% of a water-soluble polymer thickener, 0.01% to 2% of an aqueous dispersant, 0.01% to 1% of a surfactant, and 0.1% to 5% of an aqueous solution.
  • Adhesive 5% to 25% of polymer powder particles, 67% to 83% of deionized water, all of which are mass fractions;
  • step a2 using a micro-concave coating, the aqueous slurry prepared in step a1 is applied to a surface of the support layer separator, the coating rate is 5 to 100 m / min;
  • step a3 drying the coating film obtained in step a2 through an oven at 30 to 100 ° C;
  • B1 using deionized water as a solvent, adding a water-soluble adhesive and a thickener to deionized water at room temperature, stirring and dissolving, and formulating a solution; then adding a surfactant, an aqueous dispersant and an inorganic nanoparticle in sequence in the above solution
  • the particles are evenly stirred and formulated into an aqueous slurry; the slurry contains 0.1% to 2% thickener, 0.01% to 2% aqueous dispersant, 0.01% to 1% surfactant, 0.1% to 5%.
  • Water-based adhesive 5% to 25% of inorganic nanoparticles, 67% to 83% of deionized water, all of which are mass fractions;
  • step b2 coated with a micro-concave roll, the aqueous ceramic slurry prepared in step b1 is applied to the other surface of the support layer separator, the coating rate is 5 to 100 m / min;
  • step B3 The coated film obtained in step b2 is dried in an oven at 30 to 100 ° C to obtain a final composite film.
  • the thickness of the support layer separator ranges from 8 ⁇ m to 100 ⁇ m
  • the porosity ranges from 30% to 80%
  • the average pore diameter ranges from 0.01 ⁇ m to 10 ⁇ m.
  • the polymer powder particles are one of polytetrafluoroethylene, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, polyimide, polypropylene fine, and aramid resin. Or a plurality of; the polymer powder particles are aggregated in a particle size ranging from 0.01 ⁇ m to 10 ⁇ m.
  • the inorganic nanoparticles are any one or more of SiO 2 , Al 2 O 3 , CaO, TiO 2 , MgO, ZnO, SnO 2 , and ZrO 2 ; and the particle size ranges from 0.01 ⁇ m to ⁇ 10 ⁇ m.
  • the inorganic nanoparticle coating improves the thermal safety of the separator.
  • the composite separator is placed at a high temperature of 135 ° C for 1 hour, and the heat shrinkage rate is less than 3%.
  • the inorganic nanoparticle coating improves the wettability of the electrolyte to the separator and facilitates the absorption of the electrolyte;
  • the organic particles are PVDF-HFP powder, which can swell in the electrolyte and have good ability to absorb and maintain the electrolyte.
  • High conductivity which makes the lithium battery have a good cycle life.
  • the positive and negative electrodes of the battery are well bonded, and the hardness and shape retention ability of the battery are improved.
  • the solvent used for coating the slurry is water, and does not contain organic solvents such as acetone, DMF, NMP, etc., which will not pollute the environment and will not endanger the health of workers.
  • organic solvents such as acetone, DMF, NMP, etc.
  • Example 1 is an apparent topographical view of a polymer coating of Example 1 of the present invention
  • FIG. 2 is a cross-sectional view showing a battery separator of an embodiment of the present invention.
  • An aqueous battery and inorganic nanoparticle composite lithium battery separator comprising a polyolefin support layer 2, the polyolefin support layer 2 is a polymer coating 1 on one side and a ceramic coating on the other side 3; the polymer coating 1 and the ceramic coating 3 are all compounded by a coating process, and the coating slurry used for the polymer coating 1 and the ceramic coating 3 is an aqueous slurry, and the polymer coating
  • the layer 1 includes at least an aqueous binder and polymer particles, and the ceramic coating 3 includes at least an aqueous binder and inorganic nanoparticles.
  • the preparation method is divided into two large steps, first polymer coating, and then ceramic coating on the other side, the specific steps are as follows:
  • A1 Deionized water is used as a solvent, and water-soluble adhesive, surfactant, dispersant, thickener and the like are dissolved under high-temperature stirring at normal temperature to prepare a solution; then polymer powder particles are added, and the mixture is uniformly stirred at a high speed.
  • An aqueous slurry; the slurry contains 0.1% to 2% of a water-soluble polymer thickener, 0.01% to 2% of an aqueous dispersant, 0.01% to 1% of a surfactant, and 0.1% to 5% of an aqueous solution.
  • Adhesive 5% to 25% of polymer powder particles, 67% to 83% of deionized water, all of which are mass fractions;
  • step a2 using a micro-concave coating, the aqueous slurry prepared in step a1 is applied to a surface of the support layer separator, the coating rate is 5 to 100 m / min;
  • step a3 drying the coating film obtained in step a2 through an oven at 30 to 100 ° C;
  • B1 using deionized water as a solvent, adding a water-soluble adhesive and a thickener to deionized water at room temperature, stirring and dissolving, and formulating a solution; then adding a surfactant, an aqueous dispersant and an inorganic nanoparticle in sequence in the above solution
  • the particles are evenly stirred and formulated into an aqueous slurry; the slurry contains 0.1% to 2% thickener, 0.01% to 2% aqueous dispersant, 0.01% to 1% surfactant, 0.1% to 5%.
  • Water-based adhesive 5% to 25% of inorganic nanoparticles, 67% to 83% of deionized water, all of which are mass fractions;
  • step b2 coated with a micro-concave roll, the aqueous ceramic slurry prepared in step b1 is applied to the other surface of the support layer separator, the coating rate is 5 to 100 m / min;
  • step B3 The coated film obtained in step b2 is dried in an oven at 30 to 100 ° C to obtain a final composite film.
  • the polyolefin support layer is a polyethylene porous film and a polypropylene porous film; the thickness of the polyolefin support layer ranges from Between 8 ⁇ m and 100 ⁇ m, the porosity ranges from 30% to 80%, and the average pore diameter ranges from 0.01 ⁇ m to 10 ⁇ m.
  • the lithium battery separator of the aqueous polymer and inorganic nanoparticle composite of the present invention is based on the foregoing technical solutions, and the polymer particles are polytetrafluoroethylene, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, One or more of polyimide, polypropylene, and aramid resin, preferably polyvinylidene fluoride or polyvinylidene fluoride-hexafluoropropylene copolymer; the polymer particles have a particle size range of 0.01 ⁇ m- 10 ⁇ m, preferably 0.1 ⁇ m to 2 ⁇ m; the polymer particles account for 2% to 40% by mass of the aqueous PVDF coating slurry.
  • the inorganic nanoparticles of the present invention are SiO 2 , Al 2 O 3 , CaO, TiO 2 , MgO, ZnO, SnO 2 , ZrO. any one or more of 2; particle size range of the inorganic nanoparticles is 0.01 ⁇ m ⁇ 10 ⁇ m; the inorganic nanoparticle mass fraction of the aqueous ceramic slurry.
  • micro gravure coating is used, but not limited to this coating method, slit extrusion coating, dip coating, spray coating, etc. The way is fine.
  • the acrylic adhesive and tackifier CMC were added to deionized water and stirred at 300 r/min for 20 min at room temperature until completely dissolved.
  • a fluorocarbon surfactant a dispersant polyvinylpyrrolidone (PVP) and a PVDF-HFP powder were sequentially added to the above solution, and the mixture was further stirred at 300 r/min for 10 minutes, and finally stirred at a high speed of 5000 r/min for 5 minutes, and the slurry configuration was completed.
  • the fluorocarbon surfactant: PVDF-HFP 0.1:100
  • the PVDF-HFP has a weight average molecular weight of about 140,000 and a particle diameter of 100 to 300 nm.
  • PVA adhesive and tackifier CMC were added to deionized water and stirred at 300 r/min for 20 min at room temperature until completely dissolved.
  • sodium polyacrylate dispersant was added, and stirring was continued at 300 r/min for 10 min.
  • Al2O3 powder was added, and stirred at 7000 r/min for 5 min, and the slurry configuration was completed.
  • sodium polyacrylate: Al2O3 0.5: 100
  • Al 2 O 3 powder D 50 1.0 ⁇ m.
  • the aqueous PVDF coating was carried out, and the coating rate was 40 m/min by using a micro-concave roll; the coated base film was a 16 ⁇ m dry polypropylene microporous film of S Company, and the porosity was 42%; baking was performed using a three-stage oven. Dry, the oven temperature of each stage is 50 ⁇ 57 ° C, 55 ⁇ 63 ° C, 63 ⁇ 70 ° C, the thickness of the PVDF coating is 2 ⁇ .
  • the aqueous ceramic slurry coating was performed on the other side of the base film at a coating speed of 20 m/min, and other coating conditions were the same as those of the aqueous PVDF coating, and the thickness of the ceramic coating layer was 4 ⁇ .
  • Figure 1 is an apparent topographical view of the polymer coating of the present embodiment.
  • the adhesive PVA and the tackifier CMC were added to deionized water, and stirred at 300 r/min for 20 min at room temperature until completely dissolved.
  • the PVDF-HFP has a weight average molecular weight of about 140,000 and a particle diameter of 100 to 300 nm.
  • the base film was selected from S company 16 ⁇ dry polypropylene microporous membrane, the porosity was 42%, and the slurry was selected from the water in Example 1.
  • a two-sided PVDF coated two-layer composite separator was prepared by the aqueous PVDF coating process of Example 1.
  • the base film was selected from S company 16 ⁇ dry polypropylene microporous membrane, the porosity was 42%, the slurry was selected from the aqueous ceramic slurry in Example 1, and the aqueous ceramic coating process in Example 1 was used to prepare the single-sided ceramic coating. Double layer composite diaphragm.
  • Diaphragm heat shrinkage test method 3 samples of 100mm ⁇ 100mm are cut for each diaphragm, the length of the measured MD direction is recorded as L 0 , and the sample is placed in a blast oven at a specified temperature. After a specified time, the length of the measured MD direction is taken out. L, the formula for calculating the heat shrinkage rate is as follows:
  • the heat shrinkage rate of the three samples was measured, and then the average value was taken as the heat shrinkage rate of the separator.
  • MD is the direction of stretching of the dry uniaxially stretched membrane.
  • the test method of liquid absorption rate the size of the separator is taken as 100mm ⁇ 100mm, soaked in the electrolyte for 1h; the surface of the electrolyte is removed and the amount of electrolyte absorbed is weighed; then the weight of the electrolyte absorbed by the diaphragm per square meter is calculated, ie It is the liquid absorption rate and the unit is g/m 2 .
  • Example 1 of the present invention has good heat resistance, high liquid absorption rate, and excellent adhesion to a pole piece after being formed into a battery, and is a combination of a ceramic coated separator and a polymer coating.
  • the advantages of both separators can effectively improve the safety of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

一种水性的聚合物和无机纳米粒子复合的锂电池隔膜,包括聚烯烃支撑层(2),所述聚烯烃支撑层一侧为聚合物涂层(1),另一侧为陶瓷涂层(3);所述聚合物涂层(1)和陶瓷涂层(3)都采用涂布工艺复合,所述聚合物涂层(1)和陶瓷涂层(3)所用的涂布浆料都为水性浆料,所述聚合物涂层(1)中至少包括水性胶黏剂和聚合物粒子,所述陶瓷涂层(3)中至少包括水性胶黏剂和无机纳米粒子。还公开了上述隔膜的制备方法。具有加工出的隔膜热安全性能高、循环使用寿命长,制备时环境污染少的优点。

Description

水性的聚合物和无机纳米粒子复合的锂电池隔膜及其制备方法 技术领域
本发明涉及锂离子电池隔膜,尤其是涉及一种热安全性能高、循环使用寿命长、环境污染少的水性的聚合物和无机纳米粒子复合的锂电池隔膜及其制备方法。
背景技术
随着3C产品的普及和电动汽车市场的兴起,对锂离子二次电池的需求越来越大。隔膜作为锂离子电池的关键部件,其性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。因此,高性能隔膜的开发已经成为改善锂电池性能的重要方向,尤其隔膜的安全性成为我们关注的重点。
锂离子电池的安全性是业内一直关注的重点,而隔膜的安全性是其中的重中之重。这就要求隔膜具有优异的力学性能,较低闭孔温度和较高的温度下保持形状的能力。现在大规模商用化的锂电池隔膜主用采用聚丙烯和聚乙烯材质,随着人们对锂电池性能要求越来越高,单纯这两种材质的隔膜热安全性和保持电解液的能力难以满足要求,研究制备其他材料和聚烯烃的高性能复合隔膜成为目前隔膜改性的最重要的方向。
发明内容
为克服上述缺点,本发明提供一种热安全性能高、循环使用寿命长、环境污染少的水性的聚合物和无机纳米粒子复合的锂电池隔膜。
本发明的目的是通过以下技术措施实现的,一种水性的聚合物和无机纳米粒子复合的锂电池隔膜,包括聚烯烃支撑层,所述聚烯烃支撑层一侧为聚合物涂层,另一侧为陶瓷涂层;所述聚合物涂层和陶瓷涂层都采用涂布工艺复合,所述聚合物涂层和陶瓷涂层所用的涂布浆料都为水性浆料,所述聚合物涂层中至少包括水性胶黏剂和聚合物粒子,所述陶瓷涂层中至少包括水性胶黏剂和无机纳米粒子。
作为一种优选方式,所述聚烯烃支撑层为聚乙烯多孔薄膜、聚丙烯多孔薄膜;所述聚烯烃支撑层的厚度范围在8μm-100μm之间,孔隙率范围为30%-80%,平均孔径在0.01μm-10μm之间。
作为一种优选方式,所述聚合物粒子为聚四氟乙烯、聚偏氟乙烯、聚偏氟乙烯-六氟丙烯共聚物、聚酰亚胺、聚丙烯晴、芳纶树脂中的一种或者多种,优选聚偏氟乙烯或者聚偏氟乙烯-六氟丙烯共聚物;所述聚合物粒子的粒径范围为0.01μm-10μm,优选0.1μm-2μm;所述聚合物粒子占水性PVDF涂覆浆料的质量分数(wt%)为2%-40%。
作为一种优选方式,所述无机纳米粒子为SiO2、Al2O3、CaO、TiO2、MgO、ZnO、SnO2、ZrO2中的任意一种或者多种;所述无机纳米粒子的粒径范围为0.01μm~10μm;所述无机纳米粒子占水性陶瓷浆料的质量分数。
本发明还公开了一种水性的聚合物和无机纳米粒子复合的锂电池隔膜的制备方 法,分为两个大的步骤,先聚合涂布,然后在另一面进行陶瓷涂布,具体步骤如下:
a)水性聚合物浆料制备与涂布
a1:以去离子水作为溶剂,把水溶性胶黏剂、表面活性剂、分散剂、增稠剂等在常温高速搅拌下溶解,配成溶液;再加入聚合物粉末粒子,高速搅拌均匀,配成水性浆料;浆料中含0.1%~2%的水溶性高分子增稠剂,0.01%~2%的水性分散剂,0.01%~1%的表面活性剂,0.1%~5%的水性胶黏剂,5%~25%的聚合物粉末粒子,67%~83%的去离子水,上述都为质量分数;
a2:采用微凹辊涂布,将a1步制备的水性浆料涂布于支撑层隔膜的一表面,涂布速率为5~100m/min;
a3:将a2步得到的涂覆膜经过30~100℃烘箱烘干;
b)水性陶瓷浆料制备与涂布
b1:以去离子水作为溶剂,把水溶性胶黏剂、增稠剂在常温下加入去离子水中搅拌溶解,配成溶液;然后在上述溶液中依次加入表面活性剂、水性分散剂和无机纳米粒子,搅拌均匀,配成水性浆料;浆料中含0.1%~2%的增稠剂,0.01%~2%的水性分散剂,0.01%~1%的表面活性剂,0.1%~5%的水性胶黏剂,5%~25%的无机纳米粒子,67%~83%的去离子水,上述都为质量分数;
b2:采用微凹辊涂布,将b1步制备的水性陶瓷浆料涂布于支撑层隔膜的另一表面,涂布速率为5~100m/min;
b3:将b2步得到的涂覆膜经过30~100℃烘箱烘干,得到最终复合膜。
作为一种优选方式,所述支撑层隔膜的厚度范围在8μm-100μm,孔隙率范围为30%-80%,平均孔径在0.01μm-10μm。
作为一种优选方式,所述聚合物粉末粒子为聚四氟乙烯、聚偏氟乙烯、聚偏氟乙烯-六氟丙烯共聚物、聚酰亚胺、聚丙烯晴、芳纶树脂中的一种或者多种;聚所述聚合物粉末粒子的粒径范围为0.01μm-10μm。
作为一种优选方式,所述无机纳米粒子为SiO2、Al2O3、CaO、TiO2、MgO、ZnO、SnO2、ZrO2中的任意一种或者多种;粒径范围为0.01μm~10μm。
本发明具有以下优点:
1)无机纳米粒子涂层提高了隔膜的热安全性,复合隔膜在135℃的高温下放置1小时,热收缩率小于3%。
2)无机纳米粒子涂层提高了电解液对隔膜的浸润性,便于电解液的吸收;有机粒子为PVDF-HFP粉末,能够在电解液中溶胀,有良好吸收和保持电解液的能力,具有较高的电导率,从而使锂电池具有良好的循环使用寿命。同时,使电池正负极很好的粘结贴合,提高电芯硬度和形体保持能力。
3)涂布浆料所用溶剂为水,不含丙酮、DMF、NMP等有机溶剂,不会对环境造成污染,不会危害工人的健康。作为工业化生产的产品,使用水作为溶剂极大地降低了生产成本,使产品更具竞争力。
附图说明
图1为本发明实施例1聚合物涂层的表观形貌图;
图2为本发明实施例电池隔膜的剖面图。
具体实施方式
下面对本发明作进一步详细说明。
一种水性的聚合物和无机纳米粒子复合的锂电池隔膜,参考图2,包括聚烯烃支撑层2,所述聚烯烃支撑层2一侧为聚合物涂层1,另一侧为陶瓷涂层3;所述聚合物涂层1和陶瓷涂层3都采用涂布工艺复合,所述聚合物涂层1和陶瓷涂层3所用的涂布浆料都为水性浆料,所述聚合物涂层1中至少包括水性胶黏剂和聚合物粒子,所述陶瓷涂层3中至少包括水性胶黏剂和无机纳米粒子。
制备方法,分为两个大的步骤,先聚合涂布,然后在另一面进行陶瓷涂布,具体步骤如下:
a)水性聚合物浆料制备与涂布
a1:以去离子水作为溶剂,把水溶性胶黏剂、表面活性剂、分散剂、增稠剂等在常温高速搅拌下溶解,配成溶液;再加入聚合物粉末粒子,高速搅拌均匀,配成水性浆料;浆料中含0.1%~2%的水溶性高分子增稠剂,0.01%~2%的水性分散剂,0.01%~1%的表面活性剂,0.1%~5%的水性胶黏剂,5%~25%的聚合物粉末粒子,67%~83%的去离子水,上述都为质量分数;
a2:采用微凹辊涂布,将a1步制备的水性浆料涂布于支撑层隔膜的一表面,涂布速率为5~100m/min;
a3:将a2步得到的涂覆膜经过30~100℃烘箱烘干;
b)水性陶瓷浆料制备与涂布
b1:以去离子水作为溶剂,把水溶性胶黏剂、增稠剂在常温下加入去离子水中搅拌溶解,配成溶液;然后在上述溶液中依次加入表面活性剂、水性分散剂和无机纳米粒子,搅拌均匀,配成水性浆料;浆料中含0.1%~2%的增稠剂,0.01%~2%的水性分散剂,0.01%~1%的表面活性剂,0.1%~5%的水性胶黏剂,5%~25%的无机纳米粒子,67%~83%的去离子水,上述都为质量分数;
b2:采用微凹辊涂布,将b1步制备的水性陶瓷浆料涂布于支撑层隔膜的另一表面,涂布速率为5~100m/min;
b3:将b2步得到的涂覆膜经过30~100℃烘箱烘干,得到最终复合膜。
本发明的水性的聚合物和无机纳米粒子复合的锂电池隔膜,在前面技术方案的基础上,聚烯烃支撑层为聚乙烯多孔薄膜、聚丙烯多孔薄膜;所述聚烯烃支撑层的厚度范围在8μm-100μm之间,孔隙率范围为30%-80%,平均孔径在0.01μm-10μm之间。
本发明的水性的聚合物和无机纳米粒子复合的锂电池隔膜,在前面技术方案的基础上,聚合物粒子为聚四氟乙烯、聚偏氟乙烯、聚偏氟乙烯-六氟丙烯共聚物、聚酰亚胺、聚丙烯晴、芳纶树脂中的一种或者多种,优选聚偏氟乙烯或者聚偏氟乙烯-六氟丙烯共聚物;所述聚合物粒子的粒径范围为0.01μm-10μm,优选0.1μm-2μm;所述聚合物粒子占水性PVDF涂覆浆料的质量分数(wt%)为2%-40%。
本发明的水性的聚合物和无机纳米粒子复合的锂电池隔膜,在前面技术方案的基础上,无机纳米粒子为SiO2、Al2O3、CaO、TiO2、MgO、ZnO、SnO2、ZrO2中的任意一种或者多种; 所述无机纳米粒子的粒径范围为0.01μm~10μm;所述无机纳米粒子占水性陶瓷浆料的质量分数。
下面结合具体实施例和对比例对上述方案做进一步说明,以下实施例和对比例中选用微凹版涂布,但不局限于此涂布方式,狭缝式挤压涂布,浸涂、喷涂等方式都可以。
实施例1
1)水性PVDF浆料制备
聚合物涂覆层由水性浆料涂布而成,浆料中重量配比PVDF-HFP∶去离子水=100∶500。首先把丙烯酸类胶黏剂和增粘剂CMC加入去离子水中,在常温下以300r/min搅拌20min直至完全溶解,其中丙烯酸类胶黏剂和CMC的重量配比分别为胶黏剂∶PVDF-HFP=5∶100,CMC∶PVDF-HFP=1∶100。然后在上述溶液中依次加入氟碳表面活性剂、分散剂聚乙烯吡咯烷酮(PVP)和PVDF-HFP粉末,继续以300r/min搅拌10min,最后在5000r/min高速下搅拌5min,浆料配置完成。其中氟碳表面活性剂∶PVDF-HFP=0.1∶100,PVP∶PVDF-HFP=0.3∶100。PVDF-HFP重均分子量约为14万,粒径为100-300nm。
2)陶瓷浆料制备
浆料中重量配比Al2O3∶去离子水=100∶150。首先把PVA类胶黏剂和增粘剂CMC加入去离子水中,在常温下以300r/min搅拌20min直至完全溶解,其中PVA类胶黏剂和CMC的重量配比分别为胶黏剂∶PVDF-HFP=4∶100,CMC∶PVDF-HFP=1∶100。然后加入聚丙烯酸钠分散剂,继续以300r/min搅拌10min,最后加入Al2O3粉体,在7000r/min高速下搅拌5min,浆料配置完成。其中聚丙烯酸钠∶Al2O3=0.5∶100,Al2O3粉末D50=1.0μm。
3)实施涂布
首先进行水性PVDF涂布,用微凹辊涂布,涂布速率为40m/min;涂布基膜为S公司16μ干法聚丙烯微孔膜,孔隙率为42%;使用三级烘箱进行烘干,各级烘箱温度分别为50~57℃,55~63℃,63~70℃,PVDF涂层的厚度为2μ。然后在基膜另一侧进行水性陶瓷浆料涂布,涂布速度为20m/min,其他涂布条件和水性PVDF涂布一致,陶瓷涂层的厚度为4μ。
图1为本实施例聚合物涂层的表观形貌图。
实施例2
1)水性PVDF浆料制备
聚合物涂覆层由水性浆料涂布而成,水性浆料中重量配比PVDF-HFP∶去离子水=100∶500。首先把胶黏剂PVA和增粘剂CMC加入去离子水中,在常温下以300r/min搅拌20min直至完全溶解,其中PVA和CMC的重量配比分别为PVA∶PVDF-HFP=5∶100,CMC∶PVDF-HFP=1∶100。然后在上述溶液中依次加入氟碳表面活性剂、分散剂聚氧乙烯二油酸酯和PVDF-HFP粉末,继续以300r/min搅拌10min,最后在5000r/min高速下搅拌5min,浆料配置完成。其中氟碳表面活性剂∶PVDF-HFP=0.1∶100,聚氧乙烯二油酸酯∶PVDF-HFP=0.3∶100。PVDF-HFP重均分子量约为14万,粒径为100-300nm。
其他同实施例1。
对比例1
基膜选用S公司16μ干法聚丙烯微孔膜,孔隙率为42%,浆料选用实施例1中水 性PVDF浆料,采用实施例1中水性PVDF涂布工艺,制备单面PVDF涂布的两层复合隔膜。
对比例2
基膜选用S公司16μ干法聚丙烯微孔膜,孔隙率为42%,浆料选用实施例1中水性陶瓷浆料,采用实施例1中水性陶瓷涂布工艺,制备单面陶瓷涂布的双层复合隔膜。
表1
Figure PCTCN2015084120-appb-000001
隔膜热收缩率测试方法:每种隔膜裁取3个100mm×100mm样品,测量MD方向长度记为L0,把样品放入指定温度鼓风烘箱,在规定的时间过后取出测量MD方向的长度记L,热收缩率的计算公式如下:
ΔL=(L-L0)/L0×100%
测出三个样品热收缩率,然后取平均值即为此种隔膜的热收缩率。
其中MD为干法单向拉伸隔膜的拉伸方向。
吸液率的测试方法:截取隔膜大小为100mm×100mm,在电解液中浸泡1h;取出擦干表面电解液,称量吸收电解液的量;然后算出每平方米隔膜吸收电解液的重量,即为吸液率,单位为g/m2
按照实施例1、实施例2、对比例1和对比例2制备的隔膜,表1中是隔膜的相关测试结果。从表1中可以看出来,本发明实施例1具有好的耐热性、高的吸液率和做成电池后与极片优异的贴合性,集合了陶瓷涂覆隔膜和聚合物涂覆隔膜两者的优点,能非常有效的提高电池的安全性。
以上是对本发明水性的聚合物和无机纳米粒子复合的锂电池隔膜及其制备方法进行了阐述,用于帮助理解本发明,但本发明的实施方式并不受上述实施例的限制,任何未背离本发明原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

  1. 一种水性的聚合物和无机纳米粒子复合的锂电池隔膜,其特征在于:包括聚烯烃支撑层,所述聚烯烃支撑层一侧为聚合物涂层,另一侧为陶瓷涂层;所述聚合物涂层和陶瓷涂层都采用涂布工艺复合,所述聚合物涂层和陶瓷涂层所用的涂布浆料都为水性浆料,所述聚合物涂层中至少包括水性胶黏剂和聚合物粒子,所述陶瓷涂层中至少包括水性胶黏剂和无机纳米粒子。
  2. 根据权利要求1所述的水性的聚合物和无机纳米粒子复合的锂电池隔膜,其特征在于:所述聚烯烃支撑层为聚乙烯多孔薄膜、聚丙烯多孔薄膜;所述聚烯烃支撑层的厚度范围在8μm-100μm之间,孔隙率范围为30%-80%,平均孔径在0.01μm-10μm之间。
  3. 根据权利要求1所述的水性的聚合物和无机纳米粒子复合的锂电池隔膜,其特征在于:所述聚合物粒子为聚四氟乙烯、聚偏氟乙烯、聚偏氟乙烯-六氟丙烯共聚物、聚酰亚胺、聚丙烯晴、芳纶树脂中的一种或者多种;所述聚合物粒子的粒径范围为0.01μm-10μm;所述聚合物粒子占水性PVDF涂覆浆料的质量分数为2%-40%。
  4. 根据权利要求1所述的水性的聚合物和无机纳米粒子复合的锂电池隔膜,其特征在于:所述无机纳米粒子为SiO2、Al2O3、CaO、TiO2、MgO、ZnO、SnO2、ZrO2中的任意一种或者多种;所述无机纳米粒子的粒径范围为0.01μm~10μm;所述无机纳米粒子占水性陶瓷浆料的质量分数。
  5. 一种水性的聚合物和无机纳米粒子复合的锂电池隔膜的制备方法,其特征在于包括如下步骤:
    a)水性聚合物浆料制备与涂布
    a1:以去离子水作为溶剂,把水溶性胶黏剂、表面活性剂、分散剂、增稠剂等在常温高速搅拌下溶解,配成溶液;再加入聚合物粉末粒子,高速搅拌均匀,配成水性浆料;浆料中含0.1%~2%的水溶性高分子增稠剂,0.01%~2%的水性分散剂,0.01%~1%的表面活性剂,0.1%~5%的水性胶黏剂,5%~25%的聚合物粉末粒子,67%~83%的去离子水,上述都为质量分数;
    a2:采用微凹辊涂布,将a1步制备的水性浆料涂布于支撑层隔膜的一表面,涂布速率为5~100m/min;
    a3:将a2步得到的涂覆膜经过30~100℃烘箱烘干;
    b)水性陶瓷浆料制备与涂布
    b1:以去离子水作为溶剂,把水溶性胶黏剂、增稠剂在常温下加入去离子水中搅拌溶解,配成溶液;然后在上述溶液中依次加入表面活性剂、水性分散剂和陶瓷粉末,搅拌均匀,配成水性浆料;浆料中含0.1%~2%的增稠剂,0.01%~2%的水性分散剂,0.01%~1%的表面活性剂,0.1%~5%的水性胶黏剂,5%~25%的无机纳米粒子,67%~83%的去离子水,上述都为质量分数;
    b2:采用微凹辊涂布,将b1步制备的水性陶瓷浆料涂布于支撑层隔膜的另一表面,涂布速率为5~100m/min;
    b3:将b2步得到的涂覆膜经过30~100℃烘箱烘干,得到最终复合膜。
  6. 根据权利要求5所述的水性的聚合物和无机纳米粒子复合的锂电池隔膜的制备方法,其特征在于:所述支撑层隔膜的厚度范围在8μm-100μm,孔隙率范围为30%-80%,平均孔径在0.01μm-10μm。
  7. 根据权利要求5所述的水性的聚合物和无机纳米粒子复合的锂电池隔膜的制备方法,其特征在于:所述聚合物粉末粒子为聚四氟乙烯、聚偏氟乙烯、聚偏氟乙烯-六氟丙烯共聚物、聚酰亚胺、聚丙烯晴、芳纶树脂中的一种或者多种;聚所述聚合物粉末粒子的粒径范围为0.01μm-10μm。
  8. 根据权利要求5所述的水性的聚合物和无机纳米粒子复合的锂电池隔膜的制备方法,其特征在于:所述无机纳米粒子为SiO2、Al2O3、CaO、TiO2、MgO、ZnO、SnO2、ZrO2中的任意一种或者多种;粒径范围为0.01μm~10μm。
PCT/CN2015/084120 2014-09-02 2015-07-15 水性的聚合物和无机纳米粒子复合的锂电池隔膜及其制备方法 WO2016034019A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410445320.8 2014-09-02
CN201410445320.8A CN104157818A (zh) 2014-09-02 2014-09-02 水性的聚合物和无机纳米粒子复合的锂电池隔膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2016034019A1 true WO2016034019A1 (zh) 2016-03-10

Family

ID=51883271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084120 WO2016034019A1 (zh) 2014-09-02 2015-07-15 水性的聚合物和无机纳米粒子复合的锂电池隔膜及其制备方法

Country Status (2)

Country Link
CN (1) CN104157818A (zh)
WO (1) WO2016034019A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111129397A (zh) * 2019-12-18 2020-05-08 中国科学院广州能源研究所 一种锂离子电池隔膜水性涂层及其制备方法
CN113451542A (zh) * 2021-06-29 2021-09-28 北京宇程科技有限公司 一种锂离子电池用一体化高安全复合电极及其制备方法
CN113871795A (zh) * 2021-09-26 2021-12-31 惠州亿纬锂能股份有限公司 一种浸润性隔膜及其制备方法和应用
CN114024097A (zh) * 2020-07-17 2022-02-08 深圳市星源材质科技股份有限公司 锂离子电池及其制备方法
CN114050376A (zh) * 2021-10-21 2022-02-15 东风汽车集团股份有限公司 一种双层电极支撑无机隔膜及其制备方法
CN114156591A (zh) * 2021-10-21 2022-03-08 东风汽车集团股份有限公司 一种水性涂覆电极支撑无机隔膜及其制备方法
CN114497881A (zh) * 2022-01-29 2022-05-13 湖北亿纬动力有限公司 一种复合隔膜及其制备方法和应用
US11349177B2 (en) * 2018-01-05 2022-05-31 Lg Energy Solution, Ltd. Separator including separator substrate with coating layer including carboxymethyl cellulose, particle-type binder, and dissolution-type binder
CN114883747A (zh) * 2022-07-07 2022-08-09 中国长江三峡集团有限公司 一种锂电池复合隔膜及其制备方法和应用
CN115000628A (zh) * 2022-06-01 2022-09-02 江苏久泰电池科技有限公司 一种钠离子锂电池用纳米纤维隔膜材料及其制备方法
CN115312962A (zh) * 2022-08-18 2022-11-08 惠州锂威电子科技有限公司 一种交联复合隔膜及其制备方法
CN116960574A (zh) * 2023-09-21 2023-10-27 中材锂膜(南京)有限公司 复合涂布隔膜及其制备方法、包含其的锂离子电池

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157818A (zh) * 2014-09-02 2014-11-19 深圳市星源材质科技股份有限公司 水性的聚合物和无机纳米粒子复合的锂电池隔膜及其制备方法
CN104577013A (zh) * 2015-01-10 2015-04-29 鸿德新能源科技有限公司 一种水性陶瓷隔膜浆料及其在锂离子电池中的应用
CN104638217A (zh) * 2015-02-02 2015-05-20 深圳市慧通天下科技股份有限公司 一种复合改性隔膜及其制备方法
CN104916802B (zh) * 2015-04-09 2017-11-07 厦门大学 一种复合隔膜及其应用
CN104979515B (zh) * 2015-07-29 2017-05-10 沧州明珠隔膜科技有限公司 一种芳纶聚合体涂覆的锂离子电池隔膜及其制备方法
CN104993089B (zh) * 2015-07-29 2018-03-16 沧州明珠隔膜科技有限公司 一种芳纶涂覆的锂离子电池隔膜及其制备方法
CN105552277B (zh) * 2015-12-22 2018-05-15 沧州明珠隔膜科技有限公司 一种pvdf涂覆锂离子电池隔膜及其制备方法
CN106252565B (zh) * 2016-09-23 2019-03-29 佛山市金辉高科光电材料有限公司 一种复合涂覆处理的锂离子电池隔膜及其制备方法
CN106654119A (zh) * 2016-11-14 2017-05-10 宁波中车新能源科技有限公司 一种混合涂层隔膜及其制备方法和应用
CN107275550B (zh) * 2017-06-20 2020-07-07 深圳市星源材质科技股份有限公司 一种陶瓷和聚合物复合涂覆锂离子隔膜及其制备方法
CN109244321B (zh) * 2018-09-18 2021-10-01 武汉惠强新能源材料科技有限公司 一种锂电池隔膜用耐热水性涂层及其制备方法、应用
CN109411678A (zh) * 2018-10-16 2019-03-01 苏州捷力新能源材料有限公司 一种用于锂离子电池的高安全性陶瓷隔膜及制备方法
CN109461867A (zh) * 2018-10-18 2019-03-12 苏州捷力新能源材料有限公司 一种多层水系pvdf锂离子电池隔膜及制备方法
CN109638349B (zh) * 2018-12-04 2022-08-16 中国科学院山西煤炭化学研究所 一种无机-有机纳米复合固态电解质隔膜及其制备方法和应用
CN111697186A (zh) * 2019-03-15 2020-09-22 深圳格林德能源集团有限公司 一种高能量密度锂离子电池
CN111584796B (zh) * 2019-07-03 2023-03-28 河北金力新能源科技股份有限公司 一种复合涂层隔膜及其制备方法和应用
CN112909429B (zh) * 2019-11-15 2023-07-25 珠海恩捷新材料科技有限公司 一种动力电池隔膜及其锂电池
CN112350026B (zh) * 2019-12-25 2023-03-17 万向一二三股份公司 一种隔膜及使用该隔膜的锂电池
CN112226182B (zh) * 2020-08-24 2023-02-10 湖北亿纬动力有限公司 水性粘结剂、制备方法、涂胶隔膜、制备方法及锂离子二次电池
CN111883726A (zh) * 2020-08-28 2020-11-03 芜湖天弋能源科技有限公司 一种锂离子电池隔膜浆料及其制备方法和应用
CN113178663A (zh) * 2021-04-28 2021-07-27 惠州亿纬锂能股份有限公司 一种复合隔膜及其制备方法和用途
CN114243214A (zh) * 2021-12-30 2022-03-25 东莞凯德新能源有限公司 一种无机陶瓷涂敷隔膜及其制备方法和应用
CN114950166A (zh) * 2022-06-08 2022-08-30 浙江金海高科股份有限公司 非对称阻燃性复合膜、其制备方法以及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102522516A (zh) * 2011-12-22 2012-06-27 中国科学院青岛生物能源与过程研究所 锂离子二次电池用不对称复合隔膜及其制备方法
US20140045033A1 (en) * 2012-08-07 2014-02-13 Celgard Llc Separator membranes for lithium ion batteries and related methods
CN103814460A (zh) * 2011-11-11 2014-05-21 株式会社Lg化学 隔膜及包含该隔膜的电化学器件
CN104157818A (zh) * 2014-09-02 2014-11-19 深圳市星源材质科技股份有限公司 水性的聚合物和无机纳米粒子复合的锂电池隔膜及其制备方法
CN104332578A (zh) * 2014-11-20 2015-02-04 深圳市星源材质科技股份有限公司 能粘结的复合隔膜及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013185335A1 (zh) * 2012-06-15 2013-12-19 新乡市中科科技有限公司 一种锂离子电池复合隔膜
CN103746085B (zh) * 2013-11-07 2017-01-04 深圳市星源材质科技股份有限公司 一种涂层复合隔膜及其制备方法
CN103996877B (zh) * 2013-11-26 2016-08-17 深圳市星源材质科技股份有限公司 利用涂覆隔膜加工锂离子电池电芯的方法
CN103915591A (zh) * 2014-04-09 2014-07-09 深圳市星源材质科技股份有限公司 水性陶瓷涂层锂离子电池隔膜及其加工方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103814460A (zh) * 2011-11-11 2014-05-21 株式会社Lg化学 隔膜及包含该隔膜的电化学器件
CN102522516A (zh) * 2011-12-22 2012-06-27 中国科学院青岛生物能源与过程研究所 锂离子二次电池用不对称复合隔膜及其制备方法
US20140045033A1 (en) * 2012-08-07 2014-02-13 Celgard Llc Separator membranes for lithium ion batteries and related methods
CN104157818A (zh) * 2014-09-02 2014-11-19 深圳市星源材质科技股份有限公司 水性的聚合物和无机纳米粒子复合的锂电池隔膜及其制备方法
CN104332578A (zh) * 2014-11-20 2015-02-04 深圳市星源材质科技股份有限公司 能粘结的复合隔膜及其制造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11349177B2 (en) * 2018-01-05 2022-05-31 Lg Energy Solution, Ltd. Separator including separator substrate with coating layer including carboxymethyl cellulose, particle-type binder, and dissolution-type binder
CN111129397A (zh) * 2019-12-18 2020-05-08 中国科学院广州能源研究所 一种锂离子电池隔膜水性涂层及其制备方法
CN114024097A (zh) * 2020-07-17 2022-02-08 深圳市星源材质科技股份有限公司 锂离子电池及其制备方法
CN113451542A (zh) * 2021-06-29 2021-09-28 北京宇程科技有限公司 一种锂离子电池用一体化高安全复合电极及其制备方法
CN113871795B (zh) * 2021-09-26 2023-11-03 惠州亿纬锂能股份有限公司 一种浸润性隔膜及其制备方法和应用
CN113871795A (zh) * 2021-09-26 2021-12-31 惠州亿纬锂能股份有限公司 一种浸润性隔膜及其制备方法和应用
CN114050376A (zh) * 2021-10-21 2022-02-15 东风汽车集团股份有限公司 一种双层电极支撑无机隔膜及其制备方法
CN114156591A (zh) * 2021-10-21 2022-03-08 东风汽车集团股份有限公司 一种水性涂覆电极支撑无机隔膜及其制备方法
CN114497881A (zh) * 2022-01-29 2022-05-13 湖北亿纬动力有限公司 一种复合隔膜及其制备方法和应用
CN115000628A (zh) * 2022-06-01 2022-09-02 江苏久泰电池科技有限公司 一种钠离子锂电池用纳米纤维隔膜材料及其制备方法
CN115000628B (zh) * 2022-06-01 2024-02-09 江苏久泰电池科技有限公司 一种锂电池用纳米纤维隔膜材料及其制备方法
CN114883747A (zh) * 2022-07-07 2022-08-09 中国长江三峡集团有限公司 一种锂电池复合隔膜及其制备方法和应用
CN115312962A (zh) * 2022-08-18 2022-11-08 惠州锂威电子科技有限公司 一种交联复合隔膜及其制备方法
CN116960574A (zh) * 2023-09-21 2023-10-27 中材锂膜(南京)有限公司 复合涂布隔膜及其制备方法、包含其的锂离子电池
CN116960574B (zh) * 2023-09-21 2024-01-23 中材锂膜(南京)有限公司 复合涂布隔膜及其制备方法、包含其的锂离子电池

Also Published As

Publication number Publication date
CN104157818A (zh) 2014-11-19

Similar Documents

Publication Publication Date Title
WO2016034019A1 (zh) 水性的聚合物和无机纳米粒子复合的锂电池隔膜及其制备方法
WO2016034020A1 (zh) 陶瓷和凝胶聚合物多层复合的锂电池隔膜及其制备方法
KR102543254B1 (ko) 복합 리튬 전지 분리막 및 이의 제조방법
JP7338897B2 (ja) 改質固体電解質膜を製造する方法
CN110444718B (zh) 具有高粘结性聚合物涂膜的陶瓷复合隔膜的制备方法
CN107785522B (zh) 一种锂离子电池隔膜和锂离子电池及其制备方法
CN106159173B (zh) 一种聚合物复合膜及其制备方法、该方法制备的聚合物复合膜、凝胶电解质、锂离子电池
WO2017107436A1 (zh) 一种复合涂层锂离子电池隔膜及其制备方法
KR101341196B1 (ko) 수계 코팅액을 이용한 유/무기 복합 코팅 다공성 분리막과 그의 제조방법 및 상기 분리막을 이용한 전기화학소자
JP7443241B2 (ja) セパレータを製造するためのコーティングスラリー、電気化学デバイスのためのセパレータ及びその製造方法
US20150056491A1 (en) Organic/inorganic composite porous separator and preparation method thereof and electrochemical device
WO2020211621A1 (zh) 多孔隔膜及其制备方法和锂离子电池
CN107528038B (zh) 制备复合隔膜的混合浆料及复合隔膜的制备方法
CN104766937B (zh) 一种环保型锂离子电池隔膜及其制备方法
CN105762317A (zh) 一种水溶性聚合物辅助的无机复合隔膜的制备方法
CN206505967U (zh) 一种用于锂离子电池的隔膜及锂离子电池
CN104409674A (zh) 复合隔膜材料及其制备方法与应用
CN107634168A (zh) 锂离子电池隔膜用的涂覆浆料、锂离子电池隔膜及其制备方法
WO2012061963A1 (zh) 多孔膜及其制备方法
JP2018536261A (ja) 複合フィルム、その製造方法およびそれを有するリチウム電池
KR102410233B1 (ko) 접착성과 통기성이 우수한 이차전지용 분리막 및 이의 제조방법
WO2020107287A1 (zh) 多孔复合隔膜,其制备方法和包含其的锂离子电池
CN113594632A (zh) 一种低水分溶剂型pvdf涂覆隔膜
KR20140046137A (ko) 리튬이차전지용 분리막의 제조방법 및 이에 따라 제조된 분리막 및 이를 구비하는 리튬이차전지
CN110635089A (zh) 高透气性偏氟乙烯聚合物混涂隔膜的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837751

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15837751

Country of ref document: EP

Kind code of ref document: A1