WO2012061963A1 - 多孔膜及其制备方法 - Google Patents

多孔膜及其制备方法 Download PDF

Info

Publication number
WO2012061963A1
WO2012061963A1 PCT/CN2010/002200 CN2010002200W WO2012061963A1 WO 2012061963 A1 WO2012061963 A1 WO 2012061963A1 CN 2010002200 W CN2010002200 W CN 2010002200W WO 2012061963 A1 WO2012061963 A1 WO 2012061963A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous film
film according
producing
solvent
porous
Prior art date
Application number
PCT/CN2010/002200
Other languages
English (en)
French (fr)
Inventor
李翔
孙庆津
唐杰
Original Assignee
微宏动力系统(湖州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 微宏动力系统(湖州)有限公司 filed Critical 微宏动力系统(湖州)有限公司
Publication of WO2012061963A1 publication Critical patent/WO2012061963A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a porous membrane and a method of producing the same.
  • a porous film generally refers to a film having a certain porosity per unit area.
  • Porous membranes are mostly prepared by non-solvent induced phase inversion (DIPS) or thermally induced phase separation (TIPS).
  • the non-solvent-induced phase transformation method developed earlier, the technology is more mature, and the method is relatively simple, but the obtained membrane has poor mechanical strength and low porosity.
  • the thermally induced phase separation method utilizes a crystalline and thermoplastic polymer and a high boiling point, low molecular weight diluent to form a homogeneous casting solution at a high temperature, and a solid-liquid or liquid-liquid phase separation occurs when the temperature is lowered, and then the dilution is removed. Agent, a polymer microporous membrane is obtained.
  • the TIPS method is complicated, and it is often required to have a mixture of a polymer and a diluent, a high temperature, and a large amount of extraction solvent, and the production cost is high.
  • a porous film mainly composed of a polyolefin resin can be used in the fields of battery separators, capacitor separators, and the like.
  • a polyolefin resin containing a high molecular weight is generally melt-extruded and stretched to obtain a porous film.
  • the separator currently widely used in lithium ion secondary batteries is a polyolefin-based melt-stretched separator, mainly polypropylene, polyethylene single-layer separator, or polypropylene/polyethylene/polypropylene three-layer composite separator.
  • the porous structure is generally a tensile through-hole having a pore size of between about 0.01 and 1 ⁇ !. Due to the limitation of its own polyolefin-based materials, the ambient temperature of its use should not be too high. In the working environment of high-current charge and discharge, the internal temperature of the battery may rise rapidly, and the polyolefin-based separator may be closed or even thermally contracted. In turn, the internal resistance of the battery is significantly increased, eventually leading to battery failure. Therefore, the existing polyolefin-based separator is difficult to meet the requirements of the separator for a lithium ion power secondary battery that is charged and discharged at a high current and a high rate.
  • Degussa developed a PET (polyethylene terephthalate) nonwoven fabric as a matrix material with nanometers. Ceramic impregnated coated membrane (U.S. Patent and Trademark Office Application No. 20080245735).
  • the separator has a melting point of 220 ° C or higher and good thermal stability, which can improve the high current charge and discharge performance of the lithium ion battery.
  • the nano-ceramic coating and the non-woven fabric base material in the separator are less likely to cause creases and breakage of the separator during the processing of the battery, and even the ceramic coating peeling off causes defects, etc. A series of problems that lead to safety hazards during battery use.
  • the prior invention proposes coating an organic polymer film-forming material such as a polyolefin-based mixed resin on the high-melting-point porous matrix material.
  • organic polymer film-forming material such as a polyolefin-based mixed resin
  • Related patents are: CN101635341, CN 101471432A, CN1670989A and the like. Under the premise of ensuring the thermal stability of the diaphragm, the adhesion of the porous base material to the surface coating is enhanced, and the bending winding ability of the diaphragm is improved.
  • TIPS thermally induced phase separation method
  • the method is to dissolve the polymer in a high boiling point, low volatility solvent (diluent) at a high temperature, and then extrude to form a thick sheet, which is cooled on a chill roll to cause phase separation of the solution, and is subjected to biaxial stretching equipment.
  • the film is longitudinally and transversely stretched to obtain a film having a phase separation structure, and a diluent is extracted by using a volatile organic solvent as an extracting agent to form a polymer film having a certain microporous structure.
  • a method for preparing a microporous polyolefin film is disclosed in Japanese Patent No. 20090286161A1, which comprises (1) melt mixing a polyolefin resin and a film forming solvent; (2) extruding the solution; (3) cooling The extrudate forms a gel sheet; (4) stretches it; (5) removes the film forming solvent to form a microporous film; (6) secondary stretching; (7) thermoforming the stretched microporous film A microporous polyolefin film was obtained.
  • the method requires cooling gel, solvent removal and two stretching processes. The process is relatively complicated and costly, which is not conducive to mass production.
  • the present invention provides a novel method for producing a porous membrane and a porous membrane prepared by the method.
  • the polymer is selected from a polymer which can be dissolved by a solvent which can be used simultaneously, and includes a fluoropolymer, polymethacrylate (PMMA), polyacrylonitrile (PAN), polyethylene oxide (PEO), polysulfone (PS). :), polyethersulfone (PES) and polyvinyl chloride One or more of the olefins (PVC).
  • PMMA polymethacrylate
  • PAN polyacrylonitrile
  • PEO polyethylene oxide
  • PS polysulfone
  • PES polyethersulfone
  • PVC polyvinyl chloride
  • PVC olefins
  • the fluoropolymer is selected from one or both of polyvinylidene fluoride (PVDF) and a polyvinylidene fluoride-containing copolymer.
  • PVDF polyvinylidene fluoride
  • the polyvinylidene fluoride-containing copolymer is selected from one or both of polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) and polyvinylidene fluoride-chlorotrifluoroethylene (PVDF-CTFE) copolymer.
  • the solvent is selected from organic solvents having a boiling point of 150 ° C or higher.
  • the organic solvent may be N-methylpyrrolidone (oxime), hydrazine, hydrazine monodimethylacetamide (DMAC), N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and phosphoric acid.
  • DMAC N-methylpyrrolidone
  • DMAC hydrazine monodimethylacetamide
  • DMF N,N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • phosphoric acid phosphoric acid.
  • the organic solvent is ⁇ -methylpyrrolidone (oxime).
  • the mass ratio of the solvent to the polymer has a very important influence on the final film forming strength and pore structure.
  • the mass ratio of solvent to polymer also determines the viscosity of the slurry, which in turn affects subsequent processing steps and film formation processes.
  • the mass ratio of the solvent to the polymer is from 1 to 4, preferably from 1.5 to 3. It is also possible to continue to add a solvent during the dispersion to adjust the viscosity and pore structure of the polymer slurry.
  • the material for preparing the slurry in the step a) may further include an inorganic salt.
  • an inorganic salt by adding an inorganic salt, the formation of the finger holes during the film formation process can be improved to a certain extent, and the pore distribution is more uniform and regular.
  • the inorganic salt used is an inorganic salt which is soluble in an organic solvent having a boiling point of 150 ° C or more.
  • the preferred inorganic salt is lithium chloride (LiCI).
  • the mass ratio of the inorganic salt to the solvent is from 0.005 to 0.1, preferably from 0.01 to 0.05.
  • step a) the polymer is thoroughly mixed with the solvent and the inorganic salt, and in order to achieve a better mixing and dispersion effect, it is necessary to control the dispersion temperature within a certain range.
  • the mixing and dispersion process has a temperature in the range of 50" 150 ° C, preferably 60 ⁇ 100 ° C, depending on the nature of the particular polymer and solvent.
  • Step a) comprises mixing and dispersing the polymer with a solvent and an inorganic salt through a multi-screw extruder to form a slurry.
  • the mixed dispersion equipment can also be used in any industry. Since the viscosity of the slurry is high due to the high polymer content of the present invention, a multi-screw machine such as a twin-screw machine or a three-screw machine is used for mixing and dispersing. At the same time, the melt pump can be used in series with a multi-screw extruder.
  • the slurry is discharged in a die mode through the narrow slit.
  • the fluid is then introduced into a gel bath containing the gel solution, and a gel film is formed by gelation while simultaneously phase-separating the polymer from the solvent to form a porous film.
  • the gel is selected from any liquid that can gel the polymer film.
  • the gel solution is water.
  • the temperature of the gel solution can be controlled at a temperature of 20 ° C 95 ° C depending on the size of the micropore of the film surface after film formation.
  • the film is washed several times by a pulling roller into an extraction tank containing the extract.
  • the extract is water.
  • the gel solution and the extract are both water, which is one of the characteristics of the present; On the one hand, due to the use of water, the preparation cost is low; on the other hand, the environmental protection and safety in the production process are greatly improved.
  • the extracted wet thin film enters the drying furnace through the traction roller, and after being sufficiently dried, the hair is obtained. Bright porous membrane.
  • step b) the film or porous membrane can be stretched.
  • the draw ratio is controlled between 1.03 and 1.30.
  • the step of recovering the solvent of the gel liquid and the extract in steps b) and c) is further included.
  • the separation process of the mixed liquid can be carried out by a conventional solvent separation method such as distillation. If an embodiment containing an inorganic salt, a step of recovering the inorganic salt is also included.
  • Another object of the present invention is to provide a porous film comprising a film having a porous structure formed of a polymer, the porous structure being a three-dimensional mesh structure interpenetrating each other.
  • the polymer is selected from a polymer which can be dissolved by a solvent which can be used simultaneously, and includes a fluoropolymer, polymethacrylate (PMMA), polyacrylonitrile (PAN), polyethylene oxide (PEO), polysulfone (PS).
  • PMMA polymethacrylate
  • PAN polyacrylonitrile
  • PEO polyethylene oxide
  • PS polysulfone
  • PES polyethersulfone
  • PVC polyvinyl chloride
  • the fluoropolymer is selected from one or both of polyvinylidene fluoride (PVDF) and a polyvinylidene fluoride-containing copolymer.
  • PVDF polyvinylidene fluoride
  • the polyvinylidene fluoride-containing copolymer is selected from one or both of polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) and polyvinylidene fluoride-chlorotrifluoroethylene (PVDF-CTFE) copolymer.
  • the porous film has a thickness of 10 ⁇ 400 ⁇ m, preferably 20 ⁇ 100 ⁇ m.
  • the porous film has a porosity of 30 ⁇ 80%, preferably 50 - 70%.
  • the porous membrane has a pore diameter of 0.01 to 5 ⁇ m, preferably 0.01 to 2 ⁇ m.
  • the porous film provided by the present invention can be widely used in industrial and civil applications such as primary batteries (e.g., alkaline batteries), secondary batteries (including lithium ion batteries, polymer lithium ion batteries, electrochemical capacitors, nickel hydrogen batteries, etc.).
  • primary batteries e.g., alkaline batteries
  • secondary batteries including lithium ion batteries, polymer lithium ion batteries, electrochemical capacitors, nickel hydrogen batteries, etc.
  • the preparation method of the porous membrane provided by the invention has strict limits on the amount, variety and performance of the solvent and the inorganic salt, the boiling point of the solvent is high, and the inorganic salt is required to be soluble in the solvent used, and the temperature of the slurry dispersion process is controlled. accurate. Further, only one organic solvent and one inorganic salt may be used in the film formation process of the porous film, and it is not necessary to use any second organic solvent, plasticizer or other auxiliary agent, and no other organic solvent and components are introduced. This method enables a higher polymer solids content of the film forming process, resulting in a significant reduction in solvent usage compared to other technologies.
  • the porous film provided by the present invention in the embodiment, is used for a lithium ion secondary battery separator, so that the performance of the battery is remarkably improved, including but not limited to effective internal resistance of the battery, battery improvement, and battery pack after grouping.
  • the high performance and high current rate of charge and discharge performance significantly extending the cycle life of the battery.
  • a separator prepared by a conventional stretching method easily forms a through-hole structure.
  • the diaphragm having a through-hole generally has a larger air permeability than the three-dimensional mesh structure diaphragm having communication with each other.
  • the invention provides The porous membrane preparation method has a high gas permeability.
  • the membrane has a gas permeability of 20-500 S/100 CC, preferably 30-300 S/100 CC»
  • the lithium ion secondary battery separator used as a power battery requires a large porosity to improve the liquid absorption of the electrolyte, and at the same time provides more channels and paths for the conduction of lithium ions.
  • the porous membrane provided by the invention can also significantly improve the porosity of the membrane and has good electrolyte wettability, so that the battery has low internal resistance and high ionic conductivity.
  • Figure 1 is an SEM image of the surface of a separator prepared in Example 1 of the present invention.
  • Figure 2 is a SEM image of a cross section of a separator prepared in Example 1 of the present invention.
  • Fig. 3 is a comparison diagram of a cyclic test of a 5 C charge and 15 C discharge using a flexible package lithium ion secondary battery fabricated by using the separator of Example 1 of the present invention.
  • Fig. 4 is a cycle life test chart of a 5 C charge and 20 C discharge using a flexible package lithium ion secondary battery fabricated by using the separator of Example 1 of the present invention.
  • Fig. 5 is a comparison diagram of a cyclic test of a 6 C charge and 10 C discharge using a flexible package lithium ion secondary battery pack fabricated by using the separator of Example 1 of the present invention.
  • PVPF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • PVDF polyvinylidene fluoride
  • TEP triethyl phosphate
  • a separator was produced in the same manner as in Example 1, except that polyvinylidene fluoride (PVDF) was replaced with polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP).
  • PVDF polyvinylidene fluoride
  • PVDF-HFP polyvinylidene fluoride-hexafluoropropylene
  • a separator was produced in the same manner as in Example 1 except that polyvinylidene fluoride (PVDF) was replaced with polyvinylidene fluoride-trifluorovinyl chloride (PVDF-CTFE).
  • PVDF polyvinylidene fluoride
  • PVDF-CTFE polyvinylidene fluoride-trifluorovinyl chloride
  • Example 6 A flexible package laminated lithium ion secondary battery was prepared.
  • a power-type lithium ion secondary battery is produced according to a known technique, wherein lithium iron phosphate is used as the positive electrode material, graphite is used as the negative electrode material, and a carbonate solution of lithium hexafluorophosphate is used as the electrolytic solution.
  • the separator was produced using the separator of the embodiment 1.
  • the above-mentioned flexible package lithium battery has a capacity of 2.4 Ah, and the 1 KHz AC internal resistance is 2.58 mO.
  • a flexible package laminated lithium ion secondary battery was fabricated in accordance with the method of Example 6, except that the separator was replaced with a commercially available 20 ⁇ , ⁇ / ⁇ / ⁇ three-layer commercial separator.
  • the above-mentioned flexible package lithium secondary battery has a capacity of 2.4 Ah, and the internal resistance of 1 KHz AC is measured to be 4.33 mQ.
  • Example 1 The basic properties of the separator produced in Example 1 were compared with physical properties of a PP/PE/PP three-layer commercial separator.
  • Table 1 shows the basic properties of the separator produced in Example 1 in comparison with the physical properties of the PP/PE/PP three-layer commercial separator.
  • the porosity and porous structure of the membrane of Example 1 of the present invention are excellent, and the conductivity of the ions in the separator is remarkably improved, which provides a guarantee for high-current high-rate charge and discharge of the lithium ion secondary battery.
  • Fig. 4 is a cycle life test chart of a 5 C charge and 20 C discharge, which is a flexible package battery made of the separator of Example 1 of the present invention.
  • the results show that the battery fabricated by the separator of the present invention has excellent performance in 5 C charging and 20 C discharge rate measurement, and the capacity decay is slow after 1000 cycles, and remains at 80% or more of the initial capacity.
  • the cycle life performance of the lithium ion secondary battery is remarkably improved.
  • Fig. 5 is a flexible package lithium ion secondary battery in which three single cells are connected in parallel to form a battery pack, and a high current high rate charge and discharge performance test chart is performed.
  • the results show that the battery fabricated by the separator of the present invention is assembled in a battery pack in parallel, and is charged at 6 C, and the discharge performance of the 10 C discharge rate is excellent. After 1000 cycles, the capacity decays slowly and remains above 80% of the initial capacity. The performance is significantly better than the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Cell Separators (AREA)

Description

多孔膜及其制备方法
技术领域
本发明涉及一种多孔膜及其制造方法。
背景技术
多孔膜通常指单位面积上具有一定孔隙率的薄膜。
多孔膜多采用非溶剂诱导相转化法(DIPS)或热致相分离法(TIPS)制备。 非溶剂诱导相 转化法发展较早, 技术比较成熟, 方法也相对比较简单, 但制得的膜机械强度差, 孔隙率低。 热致相分离法是利用结晶性和热塑性聚合物与高沸点、 低分子量.的稀释剂在高温时形成均相 铸膜液, 温度降低时发生固一液或液一液相分离, 之后除去稀释剂, 得到聚合物微孔膜。 TIPS 法比较复杂, 往往需要聚合物和稀释剂为多元混合物、 高温以及大量的萃取溶剂, 生产成本 高。
以聚烯烃类树脂为主的多孔膜可用于电池隔膜、 电容器隔膜等领域。 作为这种多孔膜的 制造方法之一, 一般是将含有高分子量的聚烯烃树脂加热熔融挤出, 进行拉伸制得多孔膜。
隔膜是电池的关键组成部分之一, 位于电池的正、 负电极之间, 用来隔离正、 负电极, 避免电池内部短路, 同时又保证离子在充放电时能够顺利通过。 用于电池的隔膜是一种多孔 结构的电子绝缘薄膜, 具有高的离子传导性能和良好的机械强度, 能够在电解液中长期稳定 存在, 不发生化学反应。 在二次电池中, 隔膜性能的优劣直接影响着电池的内阻、 容量、 充 放电电流密度、 循环寿命和安全等电池的关键性能。 针对锂离子二次电池而言, 隔膜的成本 占据了锂离子电池(特别是用于电动车辆的锂离子动力二次电池)成本的 15-30%。 因此, 隔 膜对锂离子二次电池的性能和成本都起着非常重要的作用。
目前正广泛应用于锂离子二次电池中的隔膜为聚烯烃类融熔拉伸隔膜, 主要为聚丙烯, 聚乙烯单层隔膜, 或是聚丙烯 /聚乙烯 /聚丙烯三层复合隔膜, 其多孔结构一般为拉伸贯通孔, 孔径大约在 0.01-1 μπ!之间。 而由于其本身聚烯烃类材料的限制, 其使用环境温度不宜太高, 在大电流充放电的工作环境中, 电池内部温度可能迅速升高, 容易使聚烯烃类隔膜闭孔甚至 发生热收缩, 进而使电池内阻显著增加, 最终导致电池失效。 因此, 现有聚烯烃类隔膜很难 满足大电流高倍率充放的锂离子动力二次电池对隔膜的要求。
为了提高隔膜的工作温度和锂离子二次电池的热稳定型, 德固赛公司 (Degussa )开发了 一种以 PET (聚对苯二甲酸乙二醇酯)无纺布为基体材料, 具有纳米陶瓷浸渍涂层的隔膜(美 国专利与商标局申请号 20080245735)。 这种隔膜熔点在 220 °C以上, 热稳定性好, 能够提高 锂离子电池的大电流充放电性能。 但是, 这种隔膜中的纳米陶瓷涂层与无紡布基体材料由于 附着力较差, 在电池的加工过程中容易造成隔膜折痕及破损, 甚至陶瓷涂层脱落造成缺陷等 系列问题, 从而导致电池使用过程中的安全隐患。
为了解决无纺布多孔基体- -无机纳米陶瓷材料复合隔膜中,无机涂层容易脱落的问题,之 前发明提出了在高熔点多孔基体材料上涂布聚烯烃类混合树脂等有机高分子成膜材料。 相关 专利如: CN101635341, CN 101471432A, CN1670989A等。 这在保证隔膜热稳定性的前提下, 增强了多孔基体材料与表面涂层的附着力, 提高了隔膜的弯曲卷绕能力。 但是, 在多孔基体 材料表面涂布高分子成膜材料的过程中, 容易造成基体材料孔的堵塞, 以及不同高分子材料 存在热收缩差异等问题, 进而影响隔膜和电池的相关性能。
日本的 Asahi-Kasei和 Tonen Chemical公司的相关专利 JP2004323820、 US6245272公开了 一种热致相分离方法(TIPS)。该法是在高温下将聚合物溶于高沸点、低挥发性溶剂(稀释剂) 中, 然后挤出形成厚片, 在骤冷辊上冷却使溶液产生相分离, 采用双向拉伸设备对其进行纵 横拉伸, 获得具有相分离结构的薄膜, 使用挥发性有机溶剂作为萃取剂将稀释剂萃取出来, 形成具有一定微孔结构的高分子薄膜。
美国 Bell Communications Research公司于 1994年公布了一种聚合物隔膜的制备方法(美 国专利 US5460904), 将 PVDF-HFP共聚物溶于丙酮或者 N—甲基吡咯垸酮或它们的混合溶液 中, 加入一定量的增塑剂, 还可以再加入气相氧化硅或氧化铝等, 制成浆料, 用涂布机制成 一定厚度的薄膜, 蒸发掉溶剂后得到湿膜, 再使用萃取剂将增塑剂萃取后经干燥制得干膜。 该法最大的弊端是需要使用大量的萃取剂, 增加了制备工艺的复杂度以及成本。
日本的 Tonen Chemical公司在专利 US20090286161A1中公开了一种微孔聚烯烃薄膜的制 备方法, 包括(1)将聚烯烃树脂和成膜溶剂熔融混合; (2)将溶液挤出成形; (3 )冷却挤出 物形成凝胶片; (4) 对其进行拉伸; (5 ) 去除成膜溶剂形成微孔薄膜; (6) 二次拉伸; (7 ) 将拉伸过的微孔薄膜热成形制得微孔聚烯烃薄膜。 该方法需要经过冷却凝胶、 去除溶剂以及 两次拉伸过程, 工艺相对复杂, 成本较高, 不利于大规模生产。
发明内容
为了解决上述产品及其制备方法的不足, 本发明提供一种新的多孔膜的制备方法以及由 该方法制备的多孔膜。
本发明的一个目的是提供一种多孔膜的制备方法, 包括以下步骤:
a) 将聚合物及溶剂进行混合分散, 制得浆料;
b) 将 a ) 中的浆料通过狭形间缝流出在凝胶槽中形成薄膜;
c) 将 b) 中的薄膜引入萃取槽中进行溶剂置换, 形成多孔薄膜;
d) 将多孔薄膜进行干燥。
聚合物是选自能够被同时使用的溶剂溶解的聚合物, 其中包括含氟聚合物、 聚甲基丙烯 酸酯 (PMMA)、 聚丙烯腈 (PAN )、 聚氧化乙烯 (PEO)、 聚砜(PS:)、 聚醚砜(PES)及聚氯乙 烯 (PVC) 中的一种或几种。
含氟聚合物选自聚偏氟乙烯 (PVDF ) 及含聚偏氟乙烯的共聚物中的一种或两种。 其中, 含聚偏氟乙烯的共聚物选自聚偏氟乙烯-六氟丙烯 (PVDF-HFP ) 及聚偏氟乙烯 -三氟氯乙烯 ( PVDF-CTFE ) 共聚物中的一种或两种。
溶剂选自沸点为 150 °C以上的有机溶剂。有机溶剂可以为 N—甲基吡咯垸酮(ΝΜΡ)、 Ν,Ν 一二甲基乙酰胺(DMAC)、N,N—二甲基甲酰胺(DMF )、二甲亚砜(DMSO )及磷酸三乙酯(ΤΕΡ ) 中的一种或几种。 优选地, 有机溶剂为 Ν—甲基吡咯烷酮 (ΝΜΡ)。
上述在步骤 a ) 中, 溶剂与聚合物的质量配比对最终成膜强度及孔结构等性能具有非常 重要的影响。 另外, 溶剂与聚合物的质量配比也决定了浆料的粘度, 进而影响后续的操作步 骤及成膜工艺。 根据本发明的实施方式, 溶剂与聚合物的质量比为 1〜4, 优选为 1.5〜3。 在 分散过程中还可以继续加入溶剂以调节高分子聚合物桨料粘度和成孔结构。
步骤 a )中制备浆料的材料还可以包括无机盐。在本发明的部分实施例中, 通过加入无机 盐, 可以一定程度上改善指状孔在成膜过程中的形成, 使成孔分布更加均匀及规整。 所使用 的无机盐为可以溶于沸点为 150 °C以上有机溶剂的无机盐。 在本发明的实施例中, 优选的无 机盐为氯化锂 (LiCI)。 无机盐与溶剂的质量配比为质量比为 0.005〜0.1, 优选为 0.01〜0.05。
步骤 a ) 中, 将聚合物与溶剂及无机盐进行充分混合, 为了达到更好的混合分散效果, 需要将分散温度控制在一定的范围内。 根据具体的聚合物和溶剂的性质不同, 混合分散过程 的温度范围为 50"150 °C, 优选为 60·100。C。
步骤 a ) 包括将聚合物与溶剂及无机盐通过多螺杆挤出机进行混合分散, 形成浆料。 混 合分散也可以采用任何行业中常用的混合分散设备, 由于本发明聚合物含量较高所导致浆料 粘度偏高, 因此采用多螺杆机, 比如双螺杆机、 三螺杆机进行混合分散。 同时, 可以将熔体 泵与多螺杆挤出机串联使用。 通过在上述步骤 a ) 中提到的方法及精确的物料配比及温度控 制, 本发明实现了较高聚合物含量的桨料成膜工艺。
上述步骤 b ) 中, 包括将浆料通过狭形间缝以口模方式流出。 然后将流体引入装有凝胶 液的凝胶槽中, 通过凝胶液凝胶成膜并同时实现聚合物与溶剂的相分离, 形成多孔薄膜。 凝 胶液选自可以使聚合物膜凝胶的任何液体。 根据本发明的实施方式, 凝胶液为水。 凝胶液的 温度可根据所需成膜后膜表面微孔径的大小, 控制其温度在 20^95 °C。
上述步骤 c) 中, 薄膜通过牵引辊进入装有萃取液的萃取槽中多次洗涤。 根据本发朋的 实施方式, 萃取液为水。
上述步骤 b )及 c ) 中, 凝胶液及萃取液均为水, 这是本; ^明的特点之一。一方面, 由于 使用水, 制备成本低; 另一方面, 生产过程中的环保性及安全性得以大大提高。
上述步骤 d ) 中, 经过萃取的湿薄通过牵引辊进入干燥炉, 经过充分干燥后, 制得本发 明的多孔膜。
在步骤 b)、 c) 或 d ) 中, 可以对所述薄膜或多孔隔膜进行拉伸。 拉伸比控制在为 1.03 至 1.30之间。
根据本发明的实施方式, 进一步包括将步骤 b)和 c) 中凝胶液、 萃取液的溶剂进行回收 的步骤。 混合液体的分离工艺可以采用传统溶剂分离方法如蒸馏等工艺进行。 如果含有无机 盐的实施方式, 还包括回收无机盐的步骤。
本发明的另外一个目的是提供一种多孔膜, 包括由聚合物形成的具有多孔结构的薄膜, 所述多孔结构为相互贯通的三维网孔结构。
聚合物是选自能够被同时使用的溶剂溶解的聚合物, 其中包括含氟聚合物、 聚甲基丙烯 酸酯 (PMMA)、 聚丙烯腈(PAN )、 聚氧化乙烯 (PEO)、 聚砜(PS)、 聚醚砜(PES)及聚氯乙 烯 (PVC) 中的一种或几种。
含氟聚合物选自聚偏氟乙烯 (PVDF ) 及含聚偏氟乙烯的共聚物中的一种或两种。 其中, 含聚偏氟乙烯的共聚物选自聚偏氟乙烯-六氟丙烯 (PVDF-HFP ) 及聚偏氟乙烯 -三氟氯乙烯 ( PVDF-CTFE) 共聚物中的一种或两种。
所述多孔膜的厚度为 10·400 μ m, 优选 20^100 μ m。
所述多孔膜的孔隙率为 30^80%, 优选 50-70%。
所述多孔膜的孔径为 0.01-5 μ m, 优选 0.01-2 μ m。
本发明提供的多孔膜可以广泛应用于一次电池(如碱性电池)、 二次电池(包括锂离子电 池、 聚合物锂离子电池、 电化学电容器、 镍氢电池等) 等工业及民用用途。
本发明提供的多孔膜制备方法, 对溶剂及无机盐使用量、 品种及性能均有严格限制, 溶 剂的沸点较高, 并且要求无机盐能够溶于所使用的溶剂中, 浆料分散过程温度控制精确。 并 且在多孔薄膜的成膜过程中可以只使用一种有机溶剂及一种无机盐, 不需要使用任何第二种 有机溶剂、 增塑剂或其他助剂, 没有引入其他有机溶剂和组分。 该方法能够实现较高聚合物 固含量的桨料成膜工艺, 从而使溶剂的使用量比其他技术明显减少。 水作为唯一的凝胶液和 萃取液, 简化了后续有机溶剂与混合液分离回收工艺, 使溶剂及无机盐得到有效回收再利用, 减少了工业废液对环境的污染。 整个制备过程步骤简单、 成本低、 安全性高。
本发明提供的多孔膜, 在实施例中用于锂离子二次电池隔膜, 使得电池的性能得到明显 地改善, 包括但不限于有效的降 电池的内阻、 提高电池以及成组后电池包的安 性能和大 电流高倍率充放电性能、 非常明显的延长了电池的循环寿命。
通常, 通过传统拉伸方法制备的隔膜容易形成直通孔结构。 在其他条件相同的情况下, 一般具有直通孔的隔膜比具有彼此连通的三维网孔结构隔膜具有更大的透气率。 本发明提供 的多孔膜制备方法, 所制得的隔膜却具有较高的透气率。 根据本发明的实施方式, 隔膜的透 气率为 20-500 S/100 CC, 优选 30-300 S/100 CC»
另一方面, 作为动力电池使用的锂离子二次电池隔膜需要大的孔隙率有利于提高电解液 吸液量, 同时为锂离子的传导提供了更多通道及路径。 本发明提供的多孔膜, 还能够显著提 高隔膜的孔隙率, 并具有很好的电解液吸液润湿性, 使得电池具有较低的内阻和较高的离子 电导率。
附图说明
图 i为本发明实施例 1制备的隔膜表面 SEM图。
图 2为本发明实施例 1制备的隔膜横截面 SEM图。
图 3为使用本发明实施例 1隔膜制作的软包装锂离子二次电池, 进行 5 C充电, 15 C放电的 循环测试对比图。
图 4为使用本发明实施例 1隔膜制作的软包装锂离子二次电池, 进行 5 C充电, 20 C放电的 循环寿命测试图。
图 5为使用本发明实施例 1隔膜制作的软包装锂离子二次电池组, 进行 6 C充电, 10 C放电 的循环测试对比图。
具体实施方式
以下是具体说明本发明提供的隔膜的制作方法和性能比较。
实施例 1
将聚偏氟乙烯 (PVPF) 材料 10 kg、 N—甲基吡咯烷酮 (NMP) 溶剂 20 kg进行混合, 控 制温度 90 °C在双螺杆机中分散,通过熔体泵,在口模头挤出,进入水中凝胶形成薄膜。接着, 将上述薄膜牵引进入萃取槽中, 用水萃取出溶剂, 从而形成多孔结构的薄膜。 最后, 将上述 多孔薄膜经过热风干燥, 之后分切成宽度为 125 mm, 厚度为 22 μ(η, 除静电后完成收卷。 测 得透气率为 150秒 /100 CC。
实施例 2
将聚砜 (PS) 材料 10 kg、 N—甲基吡咯烷酮 (NMP ) 溶剂 25 kg、 氯化锂 (LiCI ) 0.3 kg 进行混合, 控制温度 100 °C在双螺杆机中分散, 通过熔体泵, 在口模头挤出, 进入水中凝胶 形成薄膜。 接着, 将上述薄膜牵引进入萃取槽中, 用水萃取出溶剂及无机盐, 从而形成多孔 结构的薄膜。最后,将上述多孔薄膜经过热风干燥,之后分切成宽度为 125 mm,厚度为 30 Wn, 除静电后完成收卷。 测得透气率为 120秒 /100 CC。
实施例 3
将聚偏氟乙烯 (PVDF) 材料 10 kg、 磷酸三乙酯 (TEP ) 溶剂 30 kg进行混合, 控制温度 90 °C在双螺杆机中分散, 通过熔体泵, 在口模头挤出, 进入水中凝胶形成薄膜。 接着, 将上 述薄膜牵引进入萃取槽中, 用水萃取出溶剂, 从而形成多孔结构的薄膜。 最后, 将上述多孔 薄膜经过热风千燥, 之后分切成宽度为 125 mm, 厚度为 22 μΓΠ, 除静电后完成收卷。 测得透 气率为 150秒 /100CC。
实施例 4
按照实施例 1中的方法制作隔膜, 不同的是将聚偏氟乙烯(PVDF)换成聚偏氟乙烯 -六氟 丙烯 (PVDF-HFP)o
实施例 S
按照实施例 1中的方法制作隔膜, 不同的是将聚偏氟乙烯(PVDF)换成聚偏氟乙烯 -三氟 氯乙烯 (PVDF-CTFE)。
实施例 6 制备软包装叠片锂离子二次电池。
按照公知技术制作倍率动力型锂离子二次电池, 其中正极材料使用磷酸亚铁锂, 负极材 料使用石墨, 电解液使用 1 M六氟磷酸锂的碳酸酯溶液。隔膜使用实施例 1方案制作的隔膜。 上述软包装锂子电池容量为 2.4 Ah, 1 KHz交流内阻测得为 2.58 mO。
对比例 1
按照实施例 6中的方法制作软包装叠片锂离子二次电池,不同的是将隔膜换成市场购买的 20 μΓΠ, ΡΡ/ΡΕ/ΡΡ三层商品隔膜。 上述软包装锂子二次电池容量为 2.4 Ah, 1 KHz交流内阻测 得为 4.33 mQ。
隔膜及软包装锂离子电池性能测试:
(1) 将实施例 1制作的隔膜的基本性能与 PP/PE/PP三层商品隔膜进行物理性能对比。
(2) 软包装锂离子二次电池测试: 将实施例 4和对比例 1中制作的软包装锂离子二次电池 进行大电流高倍率充放电性能测试。其中充电电流为 5 C (12.5 A),放电电流为 15 C (37.5 A:)。
(3) 软包装锂离子二次电池大电流高倍率充放电性能循环寿命测试。 其中充电电流为 5 C (12.5A), 放电电流为 20C (50A)。
(4)软包装锂离子二次电池 3个单体电池并联组成电池包, 不加任何保护电路。进行大电流 高倍率充放电性能测试。 其中充电电流为 6C (50 A), 放电电流为 IOC (75A:)。
测试结果:
(1) 表 1为实施例 1制作的隔膜的基本性能与 PP/PE/PP三层商品隔膜进行物理性能 对比。 表 1
Figure imgf000008_0001
*: 采用 ASTM D 737-2004纺织纤维透气率的试验方法
根据测试结果表明, 本发明中实施例 1的隔膜孔隙率和多孔结构优良, 显著的提高了离 子在隔膜中的传导能力, 为锂离子二次电池大电流高倍率充放电提供了保障。
( 2)如图 3所示, 图 3为软包装锂离子二次电池进行 5 C充电, 15 C放电的循环测试对 比图。结果表明用本发明隔膜制作的电池在 5 C充电, 15 C放电倍率测试性能优良, 300个循 环后容量衰减缓慢, 仍保持在初始容量的 80%以上。性能明显好于对比例 1隔膜制作的电池。
(3 ) 如图 4所示, 图 4为本发明实施例 1隔膜制作的软包装电池, 进行 5 C充电, 20 C 放电的循环寿命测试图。 结果表明用本发明隔膜制作的电池在 5 C充电, 20 C放电倍率测试 性能优良, 1000次循环后容量衰减缓慢, 仍保持在初始容量的 80%以上。 显著提高了锂离子 二次电池的循环寿命性能。
(4)如图 5所示, 图 5为软包装锂离子二次电池 3个单体电池并联组成电池包, 进行大 电流高倍率充放电性能测试图。结果表明本发明隔膜制作的电池, 并联组成电池包后, 在 6 C 充电, 10C放电倍率测试性能优良, 1000个循环后容量衰减缓慢, 仍保持在初始容量的 80% 以上。 性能明显好于对比例 1隔膜制作的并联电池包。

Claims

1. 一种制备多孔膜的方法, 包括:
a ) 将聚合物及溶剂进行混合分散, 制得浆料;
b ) 将 a ) 中的浆料通过狭形间缝流出在凝胶槽中形成薄膜;
c) 将 b) 中的薄膜引入萃取槽中进行溶剂置换, 形成多孔薄膜;
d ) 将多孔薄膜进行干燥。
2. 如权利要求 1所述的制备多孔膜的方法, 其特征在于, 所述聚合物选自能够被同时使用 的溶剂溶解的聚合物, 包括含氟聚合物、 聚甲基丙烯酸酯 (PMMA)、 聚丙烯腈(PAN)、 聚氧化乙烯 (PEO)、 聚砜(PS)、 聚醚砜(PES)及聚氯乙烯(PVC) 中的一种或几种。
3. 如权利要求 2所述的制备多孔膜的方法,其特征在于,含氟聚合物选自聚偏氟乙烯(PVDF) 及含聚偏氟乙烯的共聚物中的一种或两种。
4. 如权利要求 3所述的制备多孔膜的方法, 其特征在于, 含聚偏氟乙烯的共聚物选自聚偏 氟乙烯-六氟丙烯(PVDF-HFP )及聚偏氟乙烯 -三氟氯乙烯 (PVDF-CTFE )共聚物中的一种 或两种。
5. 如权利要求 1所述的制备多孔膜的方法, 其特征在于, 所述溶剂选自沸点为 150 Ό以上 的有机溶剂。
6. 如权利要求 5所述的制备多孔膜的方法,其特征在于,所述有机溶剂选自 N—甲基吡咯垸 酮(ΝΜΡ)、 Ν,Ν—二甲基乙酰胺(DMAC)、 Ν,Ν—二甲基甲酰胺(DMF)、二甲亚砜(DMSO) 及磷酸三乙酯(TEP) 中的一种或几种。
7. 如权利要求 6所述的制备多孔膜的方法,其特征在于,所述有机溶剂为 N—甲基吡咯垸酮
8. 如权利要求 1所述的制备多孔膜的方法, 其特征在于, 溶剂与聚合物的质量比为 1〜4。
9. 如权利要求 8所述的制备多孔膜的方法, 其特征在于, 溶剂与聚合物的质量比为 1.5〜3。
10.如权利要求 1所述的制备多孔膜的方法, 其特征在于, a)步骤包括将无机盐与聚合物 及溶剂进行混合分散, 制得浆料。
11.如权利要求 10所述的制备多孔膜的方法, 其特征在于, 所述无机盐为可以溶于沸点为
150 °C以上有机溶剂的无机盐。
12. 如权利要求 11所述的制备多孔膜的方法, 其特征 ^于, 所述无机盐为氯化锂 (ϋα)。
13.如权利要求 12所述的制备多孔膜的方法,其特征在于,无机盐与溶剂的质量比为 0.005〜 0.1。
14.如权利要求 13所述的制备多孔膜的方法, 其特征在于, 无机盐与溶剂的质量比为 0.01〜
0.05。
15. 如权利要求 14所述的制备多孔膜的方法, 其特征在于, 聚合物与溶剂及无机盐进行混合 分散的温度为 50-150 °C。
16. 如权利要求 15所述的制备多孔膜的方法, 其特征在于, 聚合物与溶剂及无机盐进行混合 分散的温度为 6(M00 °C。
17. 如权利要求 16所述的制备多孔膜的方法, 其特征在于, 步骤 a ) 包括将聚合物与溶剂及 无机盐通过多螺杆挤出机进行混合分散, 形成浆料。
18. 如权利要求 17所述的制备多孔膜的方法, 其特征在于, 步骤 b ) 包括将浆料通过口模方 式流出。
19. 如权利要求 18所述的制备多孔膜的方法, 其特征在于, 步骤 b) 包括将流体引入凝胶槽 中形成多孔薄膜。
20. 如权利要求 1所述的制备多孔膜的方法,其特征在于,步骤 b )中凝胶槽中的凝胶液为水。
21. 如权利要求 20 所述的制备多孔膜的方法, 其特征在于, 凝胶槽中凝胶液的温度为
20-95 °C。
22. 如权利要求 1所述的制备多孔膜的方法,其特征在于,步骤 c)中萃取槽中的萃取液为水。
23. 如权利要求 1所述的制备多孔膜的方法, 其特征在于, 在步骤 b)、 c)或 d ) 中对所述薄 膜或多孔膜进行拉伸。
24. 如权利要求 23所述的制备多孔膜的方法, 其特征在于, 对薄膜或多孔膜进行拉伸的拉伸 比为 1: 1.03至 1: 1.3。
25. 如权利要求 1〜24任一所述的制备多孔膜的方法, 还进一步包括从使用后的凝胶液及萃 取液中回收溶剂的步骤。
26. 如权利要求 25所述的制备多孔膜的方法, 其特征在于, 回收溶剂的方法为采用蒸馏工艺 将水和溶剂分离。
27. 如权利要求 9〜: 12任一所述的制备多孔膜的方法, 还进一步包括从使用后的凝胶液及萃 取液中回收无机盐的步骤。
28. 一种多孔膜, 包括由聚合物形成的具有多孔结构的薄膜, 其特征在于, 所述多孔结构为 ' 相互贯通的三维网孔结构。
29. 如权利要求 28所述的多孔膜, 其特征在于, 所述聚合物选自能够被同时使用的溶剂溶解 的聚合物, 包括含氟聚合物、 聚甲基丙烯酸酯 (PMMA)、 聚丙烯腈 (PAN )、 聚氧化乙烯
( PEO)、 聚砜 (PS)、 聚醚砜 (PES) 及聚氯乙烯 (PVC) 中的一种或几种。 如权利要求 29所述的多孔膜, 其特征在于, 所述含氟聚合物选自聚偏氟乙烯(PVDF)及 含聚偏氟乙烯的共聚物中的一种或两种。
如权利要求 30所述的制备多孔膜的方法, 其特征在于, 含聚偏氟乙烯的共聚物选自聚偏 氟乙烯-六氟丙烯 (PVDF-HFP)及聚偏氟乙烯 -三氟氯乙烯 (PVDF-CTFE)共聚物中的一种 或两种。
如权利要求 28~31任一所述的多孔膜, 其特征在于, 多孔膜的厚度为 10〜400 m。 如权利要求 32所述的多孔膜, 其特征在于, 多孔膜的厚度为 20〜: LOO n m。
如权利要求 28~31任一所述的多孔膜, 其特征在于, 多孔膜的孔径为 0.01〜5 μ ητι。 如权利要求 34所述的多孔膜, 其特征在于, 多孔膜的孔径为 0.01〜2 n m。
如权利要求 28~31任一所述的多孔膜, 其特征在于, 多孔膜的孔隙率为 30〜80%。 如权利要求 36所述的多孔膜, 其特征在于, 多孔膜的孔隙率为 50〜70%。
PCT/CN2010/002200 2010-11-13 2010-12-29 多孔膜及其制备方法 WO2012061963A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010105515947A CN102464803A (zh) 2010-11-13 2010-11-13 多孔膜及其制备方法
CN201010551594.7 2010-11-13

Publications (1)

Publication Number Publication Date
WO2012061963A1 true WO2012061963A1 (zh) 2012-05-18

Family

ID=46050293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/002200 WO2012061963A1 (zh) 2010-11-13 2010-12-29 多孔膜及其制备方法

Country Status (2)

Country Link
CN (1) CN102464803A (zh)
WO (1) WO2012061963A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115663396A (zh) * 2022-11-02 2023-01-31 湖南科技大学 一种电池隔膜及其制备方法和应用

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103515563A (zh) * 2013-10-15 2014-01-15 杨海燕 一种高安全性锂离子电池用陶瓷隔膜的制作方法
CN104973558B (zh) * 2014-04-10 2017-02-15 中国科学院苏州纳米技术与纳米仿生研究所 Iii–v族纳米结构及其制作方法
CN104051687B (zh) * 2014-07-07 2016-08-17 中国科学院宁波材料技术与工程研究所 一种多孔隔膜、其制备方法及锂离子电池
CN106876639A (zh) * 2015-12-13 2017-06-20 中国科学院大连化学物理研究所 一种用于金属锂二次电池的复合膜及其制备和应用
CN107591545A (zh) * 2016-07-07 2018-01-16 中国科学院大连化学物理研究所 一种共混多孔膜在液流电池中的应用
CN111224042B (zh) 2017-05-10 2023-12-26 微宏先进膜公司 一种芳香族聚酰胺多孔膜、制备方法及锂二次电池
CN107227022B (zh) * 2017-06-09 2020-06-19 扬州大学 聚醚砜树脂/石墨烯纳米片多孔纳米复合材料、制备方法及其用途
CN109309183B (zh) * 2017-07-27 2021-08-13 微宏动力系统(湖州)有限公司 一种芳香族聚酰胺多孔膜、制备方法及锂离子二次电池
CN110299450B (zh) * 2018-03-23 2021-03-26 中国科学院物理研究所 一种柔性多孔碳对电极制备方法及钙钛矿型太阳能电池
CN109135021A (zh) * 2018-09-03 2019-01-04 厦门朗纳科材料技术有限公司 一种多孔薄膜配方及制造工艺
CN109309186A (zh) * 2018-12-03 2019-02-05 河北金力新能源科技股份有限公司 一种pvdf隔膜及其制备方法
CN110429228B (zh) * 2019-08-15 2022-04-19 宁德卓高新材料科技有限公司 具有高粘结性聚合物涂膜的复合隔膜的制备方法
CN112271403A (zh) * 2020-10-19 2021-01-26 深圳市鼎泰祥新能源科技有限公司 一种聚合物涂覆隔膜及其制备方法和锂离子电池
CN112242589A (zh) * 2020-10-19 2021-01-19 深圳市鼎泰祥新能源科技有限公司 一种聚合物和陶瓷复合涂覆隔膜及其制备方法和锂电子电池
CN113839143A (zh) * 2021-08-02 2021-12-24 兰溪聪普新材料有限公司 一种聚芳醚砜锂离子电池隔膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1437629A (zh) * 2000-06-30 2003-08-20 东燃化学株式会社 热塑性树脂微多孔膜的制造方法
CN1704152A (zh) * 2004-06-04 2005-12-07 杨虎 亲水聚偏氟乙烯微孔膜的制备
CN1810863A (zh) * 2006-01-18 2006-08-02 浙江大学 低介电常数聚合物膜及其制备方法
CN101164678A (zh) * 2006-10-18 2008-04-23 中国科学院化学研究所 具有可控孔结构的聚偏氟乙烯多孔膜的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100534593C (zh) * 2007-07-11 2009-09-02 湖北工业大学 一种高渗透通量平板多孔膜的制备方法
CN102035043B (zh) * 2009-09-25 2014-02-12 上海比亚迪有限公司 聚合物多孔膜、其制备方法、聚合物电解质及聚合物电池和电池的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1437629A (zh) * 2000-06-30 2003-08-20 东燃化学株式会社 热塑性树脂微多孔膜的制造方法
CN1704152A (zh) * 2004-06-04 2005-12-07 杨虎 亲水聚偏氟乙烯微孔膜的制备
CN1810863A (zh) * 2006-01-18 2006-08-02 浙江大学 低介电常数聚合物膜及其制备方法
CN101164678A (zh) * 2006-10-18 2008-04-23 中国科学院化学研究所 具有可控孔结构的聚偏氟乙烯多孔膜的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BU HAIJUN ET AL.: "Preparation and characterization of fingerlike and sponge like poly(vinylidene fluoride)porous membranes", POLYMER MATERIALS SCIENCE AND ENGINEERING, vol. 22, no. 3, May 2006 (2006-05-01), pages 243 - 246 *
CAO JIANHUA: "Study on the Relationship between Preparation, Structure and Properties of Polymer Electrolyte Porous Membranes for Lithium Ion Rechargeable Battery", CHINESE DOCTORAL DISSERTATIONS & MASTER'S THESES FULL-TEXT DATABASE (DOCTOR) ENGINEERING SCIENCE AND TECHNOLOGY II, 15 July 2006 (2006-07-15), pages 36 *
LI QIAN ET AL.: "Effect of Coagulation Bath Composition and Temperature on Morphology and Property of Microporous PVDF Hydrophobic Membrane", JOURNAL OF CHEMICAL ENGINEERING OF CHINESE UNIVERSITIES, vol. 24, no. 2, April 2010 (2010-04-01), pages 336 - 339 *
M.G BUONOMENNA ET AL.: "Poly(vinylidene fluoride) membranes by phase inversion: the role the casting and coagulation conditions play in their morphology, crystalline structure and properties", EUROPEAN POLYMER JOURNAL, vol. 43, 10 January 2007 (2007-01-10), pages 1558 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115663396A (zh) * 2022-11-02 2023-01-31 湖南科技大学 一种电池隔膜及其制备方法和应用
CN115663396B (zh) * 2022-11-02 2024-06-07 湖南科技大学 一种电池隔膜及其制备方法和应用

Also Published As

Publication number Publication date
CN102464803A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
WO2012061963A1 (zh) 多孔膜及其制备方法
CN106159173B (zh) 一种聚合物复合膜及其制备方法、该方法制备的聚合物复合膜、凝胶电解质、锂离子电池
TWI629176B (zh) 多孔膜及多層多孔膜
CN101710614B (zh) 介孔纳米粒子改性锂电池隔膜
CN105633326B (zh) 芳香族聚酰胺复合隔膜
CN104766937B (zh) 一种环保型锂离子电池隔膜及其制备方法
KR20200047451A (ko) 복합 다공성막 및 이의 제조 방법과 용도
CN108039443B (zh) 一种锂电池用复合隔膜及其制备方法
CN109560235B (zh) 一种新型锂离子电池芳纶隔膜制备方法
WO2019192540A1 (zh) 一种芳香族聚酰胺微孔膜及其制备方法和用途
JP2009143060A (ja) 多層多孔膜
CN104409674A (zh) 复合隔膜材料及其制备方法与应用
CN112688029B (zh) 一种锂离子电池多层复合隔膜及其制备方法
CN112521616B (zh) 接枝陶瓷粉体及制备方法、陶瓷隔膜及制备方法、锂离子电池、电池模组和电池包
CN106229445A (zh) 一种锂离子电池隔膜及其制备方法和锂离子电池
JP2020084084A (ja) ポリオレフィン微多孔膜
CN1232577C (zh) 锂离子电池用聚合物隔膜的制备方法
JP5588722B2 (ja) ポリオレフィン微多孔膜、及びリチウムイオン二次電池
CN101241982A (zh) 锂离子电池用多孔隔膜的制备方法
JP5235324B2 (ja) ポリオレフィン製微多孔膜
CN114649560A (zh) 一种Zn-MOF/PAN@PAN复合隔膜材料及其制备方法和应用
CN111592717B (zh) 一种含聚四氟乙烯类改性剂的聚丙烯微孔膜及其制备方法
CN110350131B (zh) 一种相转化法制备复合聚丙烯微孔膜的方法及其制品和用途
JP2012087223A (ja) 微多孔性フィルム及び電池用セパレータ
CN109742295B (zh) 一种干法锂电池隔膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859433

Country of ref document: EP

Kind code of ref document: A1