CN113839143A - 一种聚芳醚砜锂离子电池隔膜及其制备方法 - Google Patents

一种聚芳醚砜锂离子电池隔膜及其制备方法 Download PDF

Info

Publication number
CN113839143A
CN113839143A CN202110882818.0A CN202110882818A CN113839143A CN 113839143 A CN113839143 A CN 113839143A CN 202110882818 A CN202110882818 A CN 202110882818A CN 113839143 A CN113839143 A CN 113839143A
Authority
CN
China
Prior art keywords
water
mass ratio
bisphenol
diaphragm
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110882818.0A
Other languages
English (en)
Inventor
虞鑫海
储健
王丽华
陈晓军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanxi Congpu New Material Co ltd
Donghua University
Original Assignee
Lanxi Congpu New Material Co ltd
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanxi Congpu New Material Co ltd, Donghua University filed Critical Lanxi Congpu New Material Co ltd
Priority to CN202110882818.0A priority Critical patent/CN113839143A/zh
Publication of CN113839143A publication Critical patent/CN113839143A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

本发明涉及一种聚芳醚砜锂离子电池隔膜及其制备方法,所述隔膜断面呈现海绵孔状结构,孔之间相互贯穿连通。本发明的隔膜有利于锂离子的迁移,表现出优异的孔隙率、吸液率和离子电导率;且在180℃下放置1h没有发生收缩,表现出优异的耐热性能;同时本发明工艺简单,成本低,可实现规模化生产。

Description

一种聚芳醚砜锂离子电池隔膜及其制备方法
技术领域
本发明属于高分子材料领域,特别涉及一种聚芳醚砜锂离子电池隔膜及其制备方法。
背景技术
目前,市场上商业化的锂离子电池隔膜主要是以聚乙烯(PE)和聚丙烯(PP)为代表的聚烯烃隔膜。聚烯烃隔膜因具有良好的化学稳定性、力学性能以及较低的成本而被广泛应用于商用锂离子电池中。然而,聚烯烃隔膜固有的热稳定性低和电解液润湿性差的缺陷,使得锂离子电池存在安全隐患,并且限制了其电化学性能。因此,开发一种热稳定性高、电化学性能好的锂离子电池隔膜具有重大意义。
开发具有热稳定性高、电化学性能好的锂离子电池隔膜仍是目前锂离子电池领域研究的热点,例如采用聚酰亚胺(PI)、聚苯并咪唑(PBI)、聚丙烯晴(PAN)、聚偏氟乙烯(PVDF)、聚对苯二甲酸乙二醇酯(PET)等耐热聚合物作为膜材料,利用静电纺丝法、相转化法等制备出锂离子电池隔膜,显示出比商业聚烯烃隔膜更好地耐热性和电化学稳定性。
Cho等【Cho S J,Choi H,Youk,J H.Evaluation of PBI Nanofiber Membranesas aHigh-temperature Resistance Separator for Lithium-ion Batteries[J].Fibersand Polymers,2020,21(5):993-998.】,以PBI为膜材料,通过静电纺丝法和热压处理,制备出耐高温和阻燃的纳米纤维膜;显示出比PP隔膜更好的热尺寸稳定性、电化学稳定性以及与电极的界面相容性。
Tan等【Tan J Y,Kong L Y,Qiu Z M,et al.Flexible,high-wettability andthermostable separator based on fluorinated polyimide for lithium-ion battery[J].Journal of Solid State Electrochemistry,2018,22(11):3363-3373.】,采用合成的含氟聚酰亚胺,通过相转化法制备出具有海绵状孔结构的隔膜,该隔膜的拉伸强度达到了26.8MPa,组装的锂离子电池在5C下的放电比容量高于PE隔膜组装的电池,且在0.2C下循环100圈后可保持95%的容量,表现出优异的倍率性能和循环性能。
聚芳醚砜(PES)是一类非结晶性高分子膜材料,具有很好的成膜性能和化学稳定性,由于其分子中含有砜基(-SO2-)等极性基团,与极性电解液具有良好润湿性。然而,商品化PES由于其结构单一已经无法满足各种领域对材料性能的需求。因此,通过设计分子结构,开发出更高耐热性能和机械性能的新型聚芳醚砜受到了人们的关注。
目前,聚芳醚砜在膜方面主要应用于离子交换膜、超滤膜和抗菌膜等,如(1)【Simari C,Lufrano E,Brunetti A,et al.Highly-performing and low-cost na-nostructured membranes based on Polysulfone and layered doubled hydroxide forhigh-temperature proton exchange membrane fuel cells[J].Journal of PowerSource,2020,471(01):1-10.】;(2)【耿文哲,冯永,王馨昱,等.新型高性能NH2-MIL-125(Ti)/聚芳醚砜反应性杂化超滤膜[J].东北师大学报(自然科学版),2020,52(04):143-150.】;(3)【Koulivand H,Shahbazi A,Vatanpour V,et al.Novel antifouling andantibacterial polyethersulfone membrane prepared by embedding nitrogen-dopedcarbon dots for efficient salt and dye rejection[J].Materials Science&Engineering C-Materials for Biologic Application,2020,111:1-9.】等,而在锂离子电池隔膜方面还未见过相关报道。
发明内容
本发明所要解决的技术问题是提供一种聚芳醚砜锂离子电池隔膜及其制备方法,该隔膜有利于锂离子的迁移,表现出优异的孔隙率、吸液率和离子电导率;且在180℃下放置1h没有发生收缩,表现出优异的耐热性能;同时本发明工艺简单,成本低,可实现规模化生产。
本发明提供了一种聚芳醚砜锂离子电池隔膜,所述隔膜断面呈现海绵孔状结构,孔之间相互贯穿连通;分子结构通式如下所示:
Figure BDA0003192682350000021
其中:m,n为不小于1的正整数,各自独立,并且200≥m+n≥20;-Q1-、-Q2-为不同的二元酚的二价残基。
所述二元酚选自对苯二酚、间苯二酚、邻甲基对苯二酚、2-特丁基对苯二酚、2,5-二特丁基对苯二酚、2,5-二甲基对苯二酚、双酚A、双酚S、双酚F、双酚AF、联苯二酚、四甲基双酚A、四甲基双酚S、四甲基双酚AF、四甲基双酚F、四甲基联苯二酚中的至少两种。
本发明还提供了一种聚芳醚砜锂离子电池隔膜的制备方法,包括:
将二元酚、成盐剂、有机溶剂、4,4’-二氯二苯砜放入反应釜中,加热回流分水反应结束后,过滤除盐,在沉析剂中沉析,过滤,100℃-150℃真空干燥3小时-8小时,得到固体产物,随后用磷酸三乙酯溶解固体产物得到铸膜液,静置脱泡,涂膜,凝固液凝固,洗涤,干燥脱膜即可;其中,所述二元酚与4,4’-二氯二苯砜的摩尔比为1:0.9-1.1。
所述成盐剂选自无水碳酸钾、无水碳酸钠、无水碳酸锂、氢氧化钠、氢氧化钾、氢氧化锂、氢氧化钙中的一种或几种。
所述有机溶剂为质量比10-1:1的强极性非质子有机溶剂与共沸脱水剂的混合溶剂。
所述强极性非质子有机溶剂选自N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基-2-吡咯烷酮、N-乙基-2-吡咯烷酮、二甲基亚砜、环丁砜中的一种或几种;所述共沸脱水剂选自甲苯、二甲苯、氯苯、邻二氯苯、庚烷中的一种或几种。
所述成盐剂与二元酚的摩尔比为1.0-2.5:1。
所述有机溶剂与反应物的质量比为2-10:1;其中,反应物的质量是指二元酚、成盐剂与4,4’-二氯二苯砜的质量之和。
所述加热回流分水反应温度范围为100℃-220℃反应时间为5小时-30小时。
所述沉析剂选自水、甲醇、乙醇、乙醚、乙二醇、乙二醇单甲醚、乙二醇二甲醚、丙醇、异丙醇、丙酮、丁酮、甲基异丙酮、甲基异丁酮、二甘醇、三甘醇、四甘醇中的一种或几种。
所述沉析剂与有机溶剂的质量比为2-10:1。
所述铸膜液质量百分比浓度为1%-30%。
所述凝固浴为:水、乙醇、甲醇、丙醇、异丙醇、甲乙酮、丙酮、甲基异丁基酮、质量比为1:1-8水和乙醇混合液、质量比为1:1-8水和甲醇混合液、质量比为1:1-8水和丙醇混合液、质量比为1:1-8水和异丙醇混合液、质量比为1:1-8水和甲乙酮混合液、质量比为1:1-8水和丙酮混合液。
所述洗涤,是指采用去离子水洗涤2-5次。
所述干燥,是指25℃-180℃的温度范围内干燥2小时-10小时。
有益效果
(1)本发明通过非溶剂致相分离法(NIPS法)制备得到具有海绵状孔结构的聚芳醚砜隔膜,孔之间相互贯穿连通,有利于锂离子的迁移,从而提高电化学性能。
(2)本发明所使用的聚芳醚砜具有醚键、砜基等极性基团,与极性电解液具有优异的界面相容性,从而有利于降低界面电阻,提高电解液润湿性。
(3)本发明所使用的聚芳醚砜热分解温度达到了500℃,且在800℃下质量保持率在40%以上,表现出优异的热稳定性。
附图说明
图1是本发明实施例1聚芳醚砜锂离子电池隔膜PASF-1的断面SEM电镜图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
将22.8克(0.1摩尔)双酚A、22.2克(0.1摩尔)2,5-二特丁基对苯二酚、51.7克(0.18摩尔)4,4’-二氯二苯砜DCDS、226.0克N-甲基-2-吡咯烷酮NMP、22.6克甲苯和27.6克(0.2摩尔)碳酸钾放入反应釜中,于100℃-220℃加热回流分水反应5小时后,过滤除盐,将母液倒入497.2克的水中快速沉析,过滤,100℃真空干燥8小时,得到76.3克固体产物(理论产量79.1克,收率为96.4%),记作PASR-1。取其中的5.0克PASR-1固体产物,随后用495.0克磷酸三乙酯(TEP)溶解得到铸膜液,铸膜液的质量百分比浓度为1%,静置脱泡,于干净的玻璃板上涂膜,采用乙醇凝固液凝固,用干净的去离子水洗涤2次-5次,于25℃-180℃的温度范围内干燥10小时,脱膜,得到聚芳醚砜锂离子电池隔膜,记作PASF-1,断面形貌SEM图如图1所示。
实施例2
将25.0克(0.1摩尔)双酚S、11.0克(0.1摩尔)对苯二酚、57.4克(0.2摩尔)4,4’-二氯二苯砜DCDS、800.0克NMP和12.0克DMAc、812.0克甲苯和69.0克(0.5摩尔)碳酸钾放入反应釜中,于100℃-220℃加热回流分水反应30小时后,过滤除盐,将母液倒入16240克乙醇中快速沉析,过滤,150℃真空干燥3小时,得到76.7克固体产物(理论产量78.8克,收率为98.3%),记作PASR-2。取其中的5.0克PASR-2固体产物,随后用45.0克磷酸三乙酯(TEP)溶解得到铸膜液,铸膜液的质量百分比浓度为10%,静置脱泡,于干净的玻璃板上涂膜,采用质量比为1:1水和异丙醇混合液的凝固液凝固,用干净的去离子水洗涤2次-5次,于25℃-180℃的温度范围内干燥2小时,脱膜,得到聚芳醚砜锂离子电池隔膜,记作PASF-2。
实施例3
将25.0克(0.1摩尔)双酚S、12.4克(0.1摩尔)邻甲基对苯二酚、63.1克(0.22摩尔)4,4’-二氯二苯砜DCDS、418.8克NMP、83.8克二甲苯和69.0克(0.5摩尔)碳酸钾放入反应釜中,于100℃-220℃加热回流分水反应20小时后,过滤除盐,将母液倒入2500克甲醇中快速沉析,过滤,130℃真空干燥6小时,得到78.3克固体产物(理论产量80.2克,收率为97.6%),记作PASR-3。取其中的5.0克PASR-3固体产物,随后用20.0克磷酸三乙酯(TEP)溶解得到铸膜液,铸膜液的质量百分比浓度为20%,静置脱泡,于干净的玻璃板上涂膜,采用质量比为1:8水和异丙醇混合液的凝固液凝固,用干净的去离子水洗涤2次-5次,于25℃-180℃的温度范围内干燥8小时,脱膜,得到聚芳醚砜锂离子电池隔膜,记作PASF-3。
实施例4
将22.8克(0.1摩尔)双酚A、33.6克(0.1摩尔)双酚AF、57.4克(0.2摩尔)4,4’-二氯二苯砜DCDS、869.2克NMP、44.8克甲苯、100.0克二甲苯和55.2克(0.4摩尔)碳酸钾放入反应釜中,于100℃-220℃加热回流分水反应18小时后,过滤除盐,将母液倒入3042克水中快速沉析,过滤,120℃真空干燥6小时,得到98.1克固体产物(理论产量99.2克,收率为98.9%),记作PASR-4。取其中的5.0克PASR-4固体产物,随后用28.3克磷酸三乙酯(TEP)溶解得到铸膜液,铸膜液的质量百分比浓度为15%,静置脱泡,于干净的玻璃板上涂膜,采用质量比为1:5水和丙醇混合液的凝固液凝固,用干净的去离子水洗涤2次-5次,于25℃-180℃的温度范围内干燥6小时,脱膜,得到聚芳醚砜锂离子电池隔膜,记作PASF-4。
实施例5
将实施例1-4的固体产物PASR-1~PASR-4,分别取30克溶于120克DMAc中,得到均相透明粘稠的树脂液,于干净的平板玻璃上涂膜,放入鼓风烘箱脱溶剂干燥成膜,具体工艺为:从室温开始升温至100℃,保持1小时,继续升温至180℃,保持1小时后,关闭加热,自然冷却至室温,脱膜,得到聚芳醚砜树脂膜,分别记作PASM-1~PASM-4,测其性能,结果如表1所示。
实施例1-4的聚芳醚砜锂离子电池隔膜PASF-1~PASF-4的性能测试结果如表2所示。
测试方法:
一、聚芳醚砜树脂膜
1.介电损耗
(1)测试仪器:自动元件LCR分析仪
(2)制样及测试方法:将薄膜裁剪成2×2cm的样品,厚度约25μm。用边长为1.5cm的正方形铜片夹在自动原件分析仪上进行测试,测试频率范围为10KHz-1MHz。介电损耗值tanΦ由仪器直接读出。
2.吸水率
(1)测试仪器:烧杯
(2)制样及测试方法:将薄膜裁剪成3×3cm的样品,每组试样6个,分别测量干重。将薄膜在25℃恒温水浴中浸泡24h后取出,迅速擦干表面水分,分别测量湿重。吸水率由下式计算。
Figure BDA0003192682350000051
式中,W为吸水率,%,G2、G1分别表示薄膜的湿重和干重,mg。吸水率测试结果以六次的算数平均值为准。
3.可见光透过率
(1)测试仪器:紫外可见分光光度计
(2)制样及测试方法:选取15μm左右的薄膜,使用紫外可见分光光度计进行光学性能测试,以空气为对照,波长扫描范围200~1100nm。
4.力学性能测试
(1)测试仪器:Instron 3365万能拉伸机
(2)制样及测试方法:将薄膜裁剪成1cmx5cm的长条,在10mm/min的拉伸速度下对薄膜进行拉伸测试。每种薄膜取五个样品,最后结果取五个样品力学性能的平均值。拉伸强度(Rm)可通过下式计算:
Figure BDA0003192682350000061
式中,Rm为拉伸强度(MPa),F为样条载荷(N),a为样条的宽度(mm),d为样条的厚度(mm)。
断裂伸长率(σ)可以从下式计算:
Figure BDA0003192682350000062
式中,σ为断裂伸长率(%),La是样条的初始长度(cm),Lb是样条断裂时的长度(cm)。
5.玻璃化转变温度
(1)测试仪器:差示扫描量热仪
(2)制样及测试方法:利用差示扫描量热仪对样品进行分析。称量5~8mg样品放入坩埚中,在40-300℃温度范围内进行测试,需要通入氮气保护,升温速率为10℃/min。
二、聚芳醚砜锂离子电池隔膜
1.厚度
(1)测试仪器:螺旋测微器
(2)制样及测试方法:将薄膜裁剪成3×3cm的样品,利用螺旋测微器进行测量,每种薄膜测量5次,取平均值。
2.孔隙率
(1)测试仪器:烧杯
(2)制样及测试方法:采用正丁醇吸液法来测定隔膜孔隙率。测试之前,用冲环机将隔膜裁成直径为19mm的圆片,将圆片放入真空干燥箱中干燥以除去隔膜内的水分,取出称量干膜的质量,记为Wdry。然后将干膜放入正丁醇溶液中浸泡8h,使得隔膜充分吸收正丁醇;取出隔膜并用吸液纸将其表面的溶液除去,称量湿膜的质量,记为Wwet。每种隔膜取五个样品,最后结果取五个样品孔隙率的平均值。隔膜的孔隙率可用下式计算得到:
Figure BDA0003192682350000063
式中,P为隔膜的孔隙率(%),Wdry为隔膜的干重(g),Wwet为隔膜的湿重(g),ρ为正丁醇的密度(g/cm3),V为隔膜的体积(cm3)。
3.吸液率
(1)测试仪器:烧杯
(2)制样及测试方法:测试之前,用冲环机将隔膜裁成直径为19mm的圆片,将圆片放入真空干燥箱中干燥以除去隔膜内的水分,并称量干膜的质量,记为M1。然后将干膜浸入1mol/L的LiPF6(EC:DEC:EMC=1/1/1,V/V/V)的电解液中8h,使得隔膜充分吸收电解液;取出隔膜并用吸液纸将其表面的溶液除去,称量湿膜的质量,记为M2。每种隔膜取五个样品,最后结果取五个样品吸液率的平均值。隔膜的吸液率可用下式计算得到:
Figure BDA0003192682350000071
式中,EU为隔膜的吸液率(%),M1为隔膜的干重(g),M2为隔膜的湿重(g)。
4.接触角
(1)测试仪器:接触角测量仪
(2)制样及测试方法:将隔膜剪成1cm×5cm的长条,紧贴在载玻片上使其表面平整,通过注射器将电解液滴在隔膜表面,30S后测量其接触角的大小。每种隔膜取五个样品,最后结果取五个样品接触角的平均值。
5.离子电导率测试
(1)测试仪器:电化学工作站
(2)制样及测试方法:利用交流阻抗法(EIS)测量隔膜的本体电阻,进而计算出隔膜的离子电导率。具体方法为:用冲环机将隔膜裁成直径为19mm的圆片,将其置于两张不锈钢片之间,按照正极壳、不锈钢片、隔膜(隔膜需要用电解液浸润)、不锈钢片、负极壳的组装顺序封装成CR2032型电池,进行交流阻抗测试。测试频率范围设置为0.1-106Hz,幅度设置为5mV,离子电导率的结果可由下式计算得出:
Figure BDA0003192682350000072
式中,d代表隔膜的有效厚度(μm),S代表隔膜与不锈钢片的有效接触面积(cm2),R代表隔膜的本体电阻(Ω)。
6.热尺寸稳定性测试
(1)测试仪器:真空干燥箱
(2)制样及测试方法:用冲环机将隔膜裁成直径为19mm的圆片,分别在30℃,120℃,150℃,180℃的真空干燥箱中放置30min,取出测量隔膜热收缩后的面积。并通过下式计算隔膜的热收缩率:
Figure BDA0003192682350000081
式中,A0代表热处理前隔膜的面积(cm2),A1代表热处理后隔膜的面积(cm2)。
表1聚芳醚砜树脂膜性能数据表
Figure BDA0003192682350000082
表2聚芳醚砜锂离子电池隔膜性能数据表
Figure BDA0003192682350000083
由表1和表2可知:本发明的聚芳醚砜树脂膜具有优异介电性能,具有很低的介电损耗值,0.21%-0.33%之间;同时具有很低的吸水率,高的拉伸强度,高的可见光透过率,高的耐热性,玻璃化转变温度高达170℃以上;而且由此制得的锂离子电池隔膜具有非常优异的综合性能,即零热收缩率,优异的吸液率、孔隙率和离子电导率等。

Claims (10)

1.一种聚芳醚砜锂离子电池隔膜,其特征在于:所述隔膜断面呈现海绵孔状结构,孔之间相互贯穿连通;分子结构通式如下所示:
Figure FDA0003192682340000011
其中:m,n为不小于1的正整数,各自独立,并且200≥m+n≥20;-Q1-、-Q2-为不同的二元酚的二价残基。
2.根据权利要求1所述的隔膜,其特征在于:所述二元酚选自对苯二酚、间苯二酚、邻甲基对苯二酚、2-特丁基对苯二酚、2,5-二特丁基对苯二酚、2,5-二甲基对苯二酚、双酚A、双酚S、双酚F、双酚AF、联苯二酚、四甲基双酚A、四甲基双酚S、四甲基双酚AF、四甲基双酚F、四甲基联苯二酚中的至少两种。
3.一种聚芳醚砜锂离子电池隔膜的制备方法,包括:
将如权利要求2所述的二元酚、成盐剂、有机溶剂、4,4’-二氯二苯砜放入反应釜中,加热回流分水反应结束后,过滤除盐,在沉析剂中沉析,过滤,100℃-150℃真空干燥3小时-8小时,得到固体产物,随后用磷酸三乙酯溶解固体产物得到铸膜液,静置脱泡,涂膜,凝固液凝固,洗涤,干燥脱膜即可;其中,所述二元酚与4,4’-二氯二苯砜的摩尔比为1:0.9-1.1。
4.根据权利要求3所述的制备方法,其特征在于:所述成盐剂选自无水碳酸钾、无水碳酸钠、无水碳酸锂、氢氧化钠、氢氧化钾、氢氧化锂、氢氧化钙中的一种或几种。
5.根据权利要求3所述的制备方法,其特征在于:所述有机溶剂为质量比10-1:1的强极性非质子有机溶剂与共沸脱水剂的混合溶剂。
6.根据权利要求5所述的制备方法,其特征在于:所述强极性非质子有机溶剂选自N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基-2-吡咯烷酮、N-乙基-2-吡咯烷酮、二甲基亚砜、环丁砜中的一种或几种;所述共沸脱水剂选自甲苯、二甲苯、氯苯、邻二氯苯、庚烷中的一种或几种。
7.根据权利要求3所述的制备方法,其特征在于:所述成盐剂与二元酚的摩尔比为1.0-2.5:1。
8.根据权利要求3所述的制备方法,其特征在于:所述有机溶剂与反应物的质量比为2-10:1;其中,反应物的质量是指二元酚、成盐剂与4,4’-二氯二苯砜的质量之和。
9.根据权利要求3所述的制备方法,其特征在于:所述沉析剂选自水、甲醇、乙醇、乙醚、乙二醇、乙二醇单甲醚、乙二醇二甲醚、丙醇、异丙醇、丙酮、丁酮、甲基异丙酮、甲基异丁酮、二甘醇、三甘醇、四甘醇中的一种或几种。
10.根据权利要求3所述的制备方法,其特征在于:所述凝固浴为:水、乙醇、甲醇、丙醇、异丙醇、甲乙酮、丙酮、甲基异丁基酮、质量比为1:1-8水和乙醇混合液、质量比为1:1-8水和甲醇混合液、质量比为1:1-8水和丙醇混合液、质量比为1:1-8水和异丙醇混合液、质量比为1:1-8水和甲乙酮混合液、质量比为1:1-8水和丙酮混合液中的一种。
CN202110882818.0A 2021-08-02 2021-08-02 一种聚芳醚砜锂离子电池隔膜及其制备方法 Pending CN113839143A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110882818.0A CN113839143A (zh) 2021-08-02 2021-08-02 一种聚芳醚砜锂离子电池隔膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110882818.0A CN113839143A (zh) 2021-08-02 2021-08-02 一种聚芳醚砜锂离子电池隔膜及其制备方法

Publications (1)

Publication Number Publication Date
CN113839143A true CN113839143A (zh) 2021-12-24

Family

ID=78963185

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110882818.0A Pending CN113839143A (zh) 2021-08-02 2021-08-02 一种聚芳醚砜锂离子电池隔膜及其制备方法

Country Status (1)

Country Link
CN (1) CN113839143A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117239220A (zh) * 2023-11-14 2023-12-15 珠海冠宇电池股份有限公司 一种电芯

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322020A (zh) * 2000-04-29 2001-11-14 中国科学院物理研究所 一种具有高温自封闭机制的微孔聚合物隔膜及其制备方法
CN1479392A (zh) * 2003-01-22 2004-03-03 �Ϻ���ͨ��ѧ 一种用于锂二次电池的复合聚合物隔膜及其制备技术
CN102464803A (zh) * 2010-11-13 2012-05-23 微宏动力系统(湖州)有限公司 多孔膜及其制备方法
US20130131200A1 (en) * 2011-11-18 2013-05-23 GM Global Technology Operations LLC Making a lithium ion battery separator
CN104051687A (zh) * 2014-07-07 2014-09-17 中国科学院宁波材料技术与工程研究所 一种多孔隔膜、其制备方法及锂离子电池
CN105968357A (zh) * 2016-06-29 2016-09-28 江苏傲伦达科技实业股份有限公司 一种聚芳醚砜的制备方法
CN107275554A (zh) * 2017-06-15 2017-10-20 大连理工大学 一种用静电纺丝纤维喷涂聚烯烃微孔膜制备复合锂电池隔膜及其制备方法
CN109817865A (zh) * 2018-12-19 2019-05-28 长沙新材料产业研究院有限公司 一种复合隔膜及其制备方法
CN110890502A (zh) * 2018-09-07 2020-03-17 中南大学 一种poss接枝碳纳米管的新型复合锂硫电池隔膜的制备方法
CN111804148A (zh) * 2020-06-29 2020-10-23 浙江美易膜科技有限公司 高孔隙率亲水微孔膜、其制备方法及应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322020A (zh) * 2000-04-29 2001-11-14 中国科学院物理研究所 一种具有高温自封闭机制的微孔聚合物隔膜及其制备方法
CN1479392A (zh) * 2003-01-22 2004-03-03 �Ϻ���ͨ��ѧ 一种用于锂二次电池的复合聚合物隔膜及其制备技术
CN102464803A (zh) * 2010-11-13 2012-05-23 微宏动力系统(湖州)有限公司 多孔膜及其制备方法
US20130131200A1 (en) * 2011-11-18 2013-05-23 GM Global Technology Operations LLC Making a lithium ion battery separator
CN104051687A (zh) * 2014-07-07 2014-09-17 中国科学院宁波材料技术与工程研究所 一种多孔隔膜、其制备方法及锂离子电池
CN105968357A (zh) * 2016-06-29 2016-09-28 江苏傲伦达科技实业股份有限公司 一种聚芳醚砜的制备方法
CN107275554A (zh) * 2017-06-15 2017-10-20 大连理工大学 一种用静电纺丝纤维喷涂聚烯烃微孔膜制备复合锂电池隔膜及其制备方法
CN110890502A (zh) * 2018-09-07 2020-03-17 中南大学 一种poss接枝碳纳米管的新型复合锂硫电池隔膜的制备方法
CN109817865A (zh) * 2018-12-19 2019-05-28 长沙新材料产业研究院有限公司 一种复合隔膜及其制备方法
CN111804148A (zh) * 2020-06-29 2020-10-23 浙江美易膜科技有限公司 高孔隙率亲水微孔膜、其制备方法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XU G R, LIU X Y, XU J M, ET AL.: "High flux nanofiltration membranes based on layer-by-layer assembly modified electrospun nanofibrous substrate", 《APPLIED SURFACE SCIENCE》 *
李智杰等: "含叔丁基新型聚芳醚砜薄膜的制备及性能研究", pages 1, Retrieved from the Internet <URL:https://kns.cnki.net/kcms/detail/11.2357.TQ.20210511.1309.142.html> *
霍鹏飞: "基于功能性聚芳醚砜薄膜的电化学电容器", 《中国博士学位论文全文数据库》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117239220A (zh) * 2023-11-14 2023-12-15 珠海冠宇电池股份有限公司 一种电芯
CN117239220B (zh) * 2023-11-14 2024-02-23 珠海冠宇电池股份有限公司 一种电芯

Similar Documents

Publication Publication Date Title
Yang et al. Preparation and characterization of polyvinyl alcohol/chitosan blended membrane for alkaline direct methanol fuel cells
Zhu et al. Enhanced wettability and thermal stability of a novel polyethylene terephthalate-based poly (vinylidene fluoride) nanofiber hybrid membrane for the separator of lithium-ion batteries
Jang et al. Highly proton conductive, dense polybenzimidazole membranes with low permeability to vanadium and enhanced H 2 SO 4 absorption capability for use in vanadium redox flow batteries
Guan et al. Effect of casting solvent on the morphology and performance of sulfonated polyethersulfone membranes
CN108346765B (zh) 一种复合锂离子电池隔膜及其制备方法
Dai et al. Effect of casting solvent and annealing temperature on recast Nafion membranes for vanadium redox flow battery
Smitha et al. Proton-conducting composite membranes of chitosan and sulfonated polysulfone for fuel cell application
EP1515346B1 (en) Polyelectrolyte membrane and production method therefor
US7649025B2 (en) Composite ion-exchange membrane
Yang et al. Sulfonated poly (phenylene oxide) membranes as promising materials for new proton exchange membranes
Wang et al. Nanoporous regenerated cellulose separator for high-performance lithium ion batteries prepared by nonsolvent-induced phase separation
Reyes-Rodriguez et al. Proton conducting electrospun sulfonated polyether ether ketone graphene oxide composite membranes
Yang et al. Two step modification of poly (vinyl alcohol) by UV radiation with 2-hydroxy ethyl methacrylate and sol–gel process for the application of polymer electrolyte membrane
KR20150101039A (ko) 다공성 지지체, 이의 제조방법, 및 이를 포함하는 강화막
CN106229445A (zh) 一种锂离子电池隔膜及其制备方法和锂离子电池
KR101451567B1 (ko) 다공성 지지체, 이의 제조방법, 및 이를 포함하는 강화막
CN113839143A (zh) 一种聚芳醚砜锂离子电池隔膜及其制备方法
Xie et al. Poly (aryl ether ketone) composite membrane as a high‐performance lithium‐ion batteries separator
EP1447816A1 (en) Polymer electrolyte solution for manufacturing electrode for fuel cell
Unnikrishnan et al. Sulfonated polysulfone/TiO 2 nanocomposite membranes for fuel cell application
KR101971269B1 (ko) 다공성 지지체, 이의 제조방법, 및 이를 포함하는 강화막
CN104524991A (zh) 制备复合导电膜的方法
Dai et al. Amphoteric Nafion membrane with tunable cationic and anionic ratios for vanadium redox flow battery prepared via atom transfer radical polymerization
Shen et al. Preparation and characterization of sulfonated polyetherimide/polyetherimide blend membranes
KR20170091108A (ko) 이온전도체의 충진 특성이 우수한 다공성 지지체, 이의 제조방법, 및 이를 포함하는 강화막

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination