WO2015166839A1 - エネルギー貯蔵デバイスの電極用多孔質炭素材料およびその製造方法 - Google Patents

エネルギー貯蔵デバイスの電極用多孔質炭素材料およびその製造方法 Download PDF

Info

Publication number
WO2015166839A1
WO2015166839A1 PCT/JP2015/062103 JP2015062103W WO2015166839A1 WO 2015166839 A1 WO2015166839 A1 WO 2015166839A1 JP 2015062103 W JP2015062103 W JP 2015062103W WO 2015166839 A1 WO2015166839 A1 WO 2015166839A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous carbon
carbon material
electrode
mass
parts
Prior art date
Application number
PCT/JP2015/062103
Other languages
English (en)
French (fr)
Inventor
裕美加 西田
西村 修志
江川 義史
清人 大塚
Original Assignee
クラレケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラレケミカル株式会社 filed Critical クラレケミカル株式会社
Priority to US15/306,956 priority Critical patent/US10297398B2/en
Priority to KR1020167030035A priority patent/KR20160146754A/ko
Priority to JP2016516325A priority patent/JP6491644B2/ja
Priority to CN201580023621.4A priority patent/CN106233408B/zh
Publication of WO2015166839A1 publication Critical patent/WO2015166839A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a porous carbon material for energy storage devices that is effective for improving durability, suppressing gas generation, and improving withstand voltage, and a method for producing the same.
  • Electric double layer capacitors one of the energy storage devices, are superior in output characteristics and life characteristics compared to batteries. Therefore, using these characteristics, backup of various memories, power assist for automobiles and trains, UPS, etc. It has been developed and put to practical use for storage power applications such as (Uninterruptible Power Supply). In recent years, electric double layer capacitors have attracted attention as auxiliary power sources for electric vehicles (EV) and hybrid vehicles (HV) and for regenerative energy storage because of the above-described excellent characteristics. Such automotive energy storage devices are used under harsh usage conditions compared to consumer applications and not only require higher energy density, but also have longer-term capacity retention characteristics and higher durability Sex is required.
  • a power storage method using an electric double layer does not involve a chemical reaction, in principle, it has excellent temperature characteristics and durability.
  • gas is generated due to decomposition of the electrolytic solution, the electrolyte, etc., and durability and capacity decrease occur.
  • the cause is not clear, but water is present on the surface of carbon materials such as activated carbon used in energy storage devices, and the water is not sufficiently desorbed and removed during drying at the time of electrode production.
  • degradation is prominent when reductive decomposition generates H 2 gas and OH ⁇ , and further activation of hydrolysis of a solvent such as an electrolytic solution and electrolyte by OH ⁇ .
  • electrolytes and electrolytes are electrochemically oxidized and decomposed, resulting in polymerization and fluorination, which affects durability.
  • Patent Document 1 is based on activated carbon having a specific oxygen atom / carbon atom ratio, which is considered to react with oxygen in the activated carbon and solute in the electrolyte when the amount of oxygen in the activated carbon is large.
  • An electric double layer capacitor in which a decrease in discharge capacity is suppressed has been proposed.
  • This document describes heat treatment at a temperature of 500 to 1100 ° C. in order to obtain activated carbon having a specific oxygen atom / carbon atom ratio.
  • Patent Document 2 discloses an activated carbon that suppresses deterioration over time by heat treatment at 500 to 1000 ° C. when producing activated carbon obtained from mesophase-based soft carbon that has particularly large gas generation and large capacity reduction.
  • a manufacturing method and a manufacturing apparatus therefor have been proposed.
  • Patent Document 3 discloses that as a negative electrode active material of a Li ion type power storage device, a fine particle activated carbon having a spherical and submicron average particle diameter in which siloxane is supported on the surface and pores using an organic solvent is used. It is disclosed that an increase in capacity and durability of the device can be achieved. However, since the siloxane itself supported on the activated carbon surface becomes an insulator and a resistor between particles, there is a possibility that the input / output characteristics may be deteriorated.
  • Patent Document 4 a silane compound or a silazane compound is used as a surface modifier, and the alkoxy group in the silane compound or the silazane compound is eliminated and bonded to the surface of the activated carbon, thereby improving the wettability with the electrolytic solution.
  • an electric double layer capacitor having good life characteristics by smoothly absorbing and desorbing ions. Although this method suppresses the decrease in capacity, no consideration has been given to gas generation, which is one of the practical problems. Further, when the added surface modifier remains in an unreacted state, there is a possibility that the cause of gas generation or the deterioration of the electrolyte solution is promoted. Furthermore, since the surface modifier used in the present invention has a low flash point, there is a concern that attention must be paid when the electrode is dried.
  • Patent Document 5 by attaching a silicon or metal oxide to at least a part of the surface of the activated carbon and hydrolyzing it, the active sites are covered to suppress the decomposition of the electrolytic solution, and the withstand voltage of the cell is improved. It is disclosed.
  • the metal oxide described in the same document becomes an insulator or a resistor like the siloxane described in Patent Document 3, and the resistance increases, which may adversely affect the input / output characteristics.
  • the metal may be deposited during charging / discharging due to decomposition of the metal oxide, which may cause a short circuit or promote deterioration.
  • Patent Document 6 discloses that either an insulating oxide or an electrochemically reactive oxide capable of causing a reversible electrochemical reaction with an electrolytic solution is applied to a substrate having pores by a method such as a supercritical coating method. By coating, the substrate surface including the inside of the pores is uniformly coated (quantitatively speaking, 90% or more of the surface area), and direct contact between the electrolyte and the substrate is avoided, and the electrolyte is decomposed. It is disclosed that by suppressing it, an excellent charge / discharge cycle can be provided. However, the oxide described in the same document becomes an insulator or a resistor like the siloxane described in Patent Document 3, and the resistance increases, which may adversely affect the input / output characteristics. In addition, the performance may be deteriorated due to deterioration due to oxidation / reduction of the oxide itself.
  • An object of the present invention has been made in view of the above circumstances, and is a porous carbon material for an electrode of an energy storage device, which is effective in improving durability, suppressing gas generation, and improving withstand voltage, and a method for producing the same. Is to provide.
  • the present inventors have studied the porous carbon material for an electrode of an energy storage device and the production method thereof in detail, and have reached the present invention.
  • the present invention includes the following preferred embodiments.
  • Porous carbon material 0.5 to 5 parts by mass of an insulating material having a boiling point of 150 ° C. or higher with respect to 100 parts by mass of the porous carbon material, and 1300 to 2050 m, containing 0.25 to 15 parts by mass of a conductive additive with respect to 100 parts by mass of the insulating material, and carrying the insulating material and the conductive additive together on the porous carbon material.
  • a porous carbon material for an electrode of an energy storage device having a BET specific surface area of 2 / g.
  • porous carbon material for an electrode of an energy storage device according to any one of [1] to [4], further comprising a polymer compound supported thereon.
  • a method for producing a porous carbon material for an electrode of an energy storage device having a BET specific surface area of 1300 to 2050 m 2 / g, the porous carbon material comprising 100 parts by mass of the porous carbon material A production method of carrying 0.5 to 5 parts by mass of an insulating material having a boiling point of 150 ° C. or higher, and 0.25 to 15 parts by mass of a conductive additive with respect to 100 parts by mass of the insulating material.
  • the porous carbon material for an electrode of the energy storage device of the present invention When used for an electrode, durability such as a performance maintenance rate of the energy storage device is improved, gas generation is suppressed, and a withstand voltage is improved.
  • This is not only suitable for use as an electrode for electric double layer capacitors and lithium ion capacitors that require high durability, but is also suitable as a positive electrode additive for lithium ion batteries. Although this principle is unknown, it is considered that not only the adsorption of water to the porous carbon material is suppressed, but also the deterioration and decomposition of the electrolyte solution of the energy storage device are suppressed.
  • the porous carbon material for an electrode of the energy storage device of the present invention is formed when the electrode is molded from the porous carbon material for an electrode of the present invention, or the porous carbon material for an electrode of the present invention is used as another positive electrode material.
  • the electrode is formed by addition, a conductive path is formed between the porous carbon materials for electrodes, and it is considered that the performance maintenance ratio is excellent by suppressing an increase in resistance due to the addition of the insulating material.
  • the specific surface area of the porous carbon material for electrodes or the porous carbon material used as the base material of the porous carbon material for electrodes, the electrostatic capacity per volume of the electrode in the 25 ° C. measurement after the durability test, and 1 Hz and 1000 Hz It is a figure which shows the relationship with the difference of resistance value in.
  • the specific surface area of the porous carbon material for electrodes or the porous carbon material used as the base material of the porous carbon material for electrodes, the electrostatic capacity per volume of the electrode in the measurement at ⁇ 30 ° C. after the durability test, and 1 Hz It is a figure which shows the relationship with the difference of the resistance value in 1000 Hz.
  • the porous carbon material for an electrode of the energy storage device of the present invention has a BET specific surface area of 1300 to 2050 m 2 / g, and is 0.5 to 5 with respect to 100 parts by mass of the porous carbon material and the porous carbon material. 0.25 to 15 parts by mass of a conductive additive with respect to 100 parts by mass of the insulating material and 100 parts by mass of the insulating material, and the porous carbon material carries the insulating material and the conductive auxiliary together It is characterized by being a porous carbon material for electrodes.
  • the porous carbon material for an electrode of the energy storage device of the present invention is 1300 to 2050 m 2 / g, preferably 1320 to 2000 m 2 / g, more preferably 1400 to 2000 m 2 / g, still more preferably 1340 to 1950 m 2 / g. And most preferably has a BET specific surface area of 1500-1950 m 2 / g. If the BET specific surface area is too small, ions in the electrolytic solution are difficult to move, and the capacitance per unit mass is reduced. Moreover, when a BET specific surface area is too large, the bulk density of the electrode using the porous carbon material for electrodes of this invention will fall, and the electrostatic capacitance per volume will fall.
  • the BET specific surface area is calculated by a nitrogen adsorption method, and can be measured by, for example, the method described in Examples.
  • the porous carbon material for an electrode of the energy storage device of the present invention comprises a porous carbon material, 0.5 to 5 parts by mass of an insulating material and 100 parts by mass of the insulating material with respect to 100 parts by mass of the porous carbon material. On the other hand, it contains 0.25 to 15 parts by mass of a conductive additive.
  • the porous carbon material is not particularly limited, and examples thereof include charcoal, activated carbon, carbon nanotubes, carbon nanohorns, mesoporous carbon prepared using an inorganic porous material as a template, and carbon aerogel obtained by drying and carbonizing an organic wet gel.
  • the porous carbon material is preferably activated carbon.
  • Specific examples of activated carbon include, for example, plant-based activated carbon obtained by carbonizing and activating wood, sawdust, charcoal, fruit shells such as coconut shells and walnut shells, fruit seeds, pulp production by-products, lignin, and molasses. Mineral activated carbon, phenol, saran, acrylic resin, etc.
  • the activation method include gas activation for treatment with high-temperature steam or carbon dioxide gas, and chemical activation for treatment with chemicals such as phosphoric acid, sulfuric acid, sodium hydroxide, potassium hydroxide, and any activation method is used. I do not care.
  • the porous carbon material these porous carbon materials may be used alone, or two or more kinds may be used in combination.
  • activated carbon activated carbon derived from coconut shell is preferable from the viewpoint of availability, price, and quality, and activated carbon obtained by gas-activating the coconut shell is more preferable.
  • the porous carbon material is preferably a porous carbon material from which impurities are removed as much as possible.
  • the impurities include metals such as alkali metals, alkaline earth metals, nickel, and iron.
  • a porous carbon material from which such impurities have been removed by washing with water or a washing solution such as an aqueous solution of an inorganic acid such as hydrochloric acid, sulfuric acid or phosphoric acid may be used as the porous carbon material in the present invention.
  • the porous carbon material may contain impurities (for example, silicon) that cannot be removed by washing with the above-described aqueous solution of an inorganic acid.
  • a porous carbon material from which impurities such as silicon are removed by washing with an aqueous solution of an alkali metal hydroxide such as sodium hydroxide may be used as the porous carbon material in the present invention.
  • the cleaning may be performed once or a plurality of times with one type of cleaning liquid, or may be performed a plurality of times by combining two or more cleaning liquids.
  • the porous carbon material from the viewpoint of obtaining an electrode for the porous carbon material of the present invention having the above predetermined BET specific surface area, preferably 1300 ⁇ 2400m 2 / g, more preferably 1400 ⁇ 2300m 2 / g, more preferably It has a BET specific surface area of 1420 to 2300 m 2 / g, more preferably 1450 to 2200 m 2 / g, and most preferably 1520 to 2200 m 2 / g. If the BET specific surface area of the porous carbon material is too small, in the energy storage device including the electrode manufactured using the porous carbon material for electrodes, ions in the electrolytic solution are difficult to move, and the electrostatic capacity per unit mass Becomes smaller. Moreover, when the BET specific surface area of a porous carbon material is too large, the bulk density of the electrode using the porous carbon material for electrodes will fall, and the electrostatic capacitance per volume will fall.
  • the porous carbon material for an electrode of the present invention includes 0.5 to 5 parts by mass of an insulating material having a boiling point of 150 ° C. or higher with respect to 100 parts by mass of the porous carbon material.
  • the insulating material is not particularly limited as long as it has a boiling point of 150 ° C. or higher, a high dielectric breakdown voltage, and a low dielectric loss.
  • paraffinic or naphthenic hydrorefined mineral oil For example, paraffinic or naphthenic hydrorefined mineral oil; Hydrocarbon synthetic oils such as olefins, alkylbenzenes, alkylnaphthalenes, alkyldiphenylalkanes; oxygen-containing synthetic oils such as diesters, polyol esters, polyoxyalkylene glycols, polyphenyl ethers; dimethyl silicones, methyl phenyl silicones, methyl hydrogen silicones, Silicone oil such as cyclic dimethyl silicone (siloxane compound having a siloxane unit in the main chain); fluorocarbon compound such as perfluoroalkyl ether, perfluoropolyether, hydrochlorofluorocarbon; rapeseed oil Esterified products due to grade alcohol.
  • Hydrocarbon synthetic oils such as olefins, alkylbenzenes, alkylnaphthalenes, alkyldiphenylalkanes
  • silicone oil (a siloxane compound having a siloxane unit in the main chain) is preferable from the viewpoint of high dielectric breakdown voltage and electrochemical stability, and dimethyl silicone is more preferable from the viewpoint of availability and price. preferable.
  • these insulating materials may be used alone or in combination of two or more as the insulating material.
  • the porous carbon material for an electrode of the present invention is 0.5 to 5 parts by mass, preferably 0.7 to 4.5 parts by mass, more preferably 1 to 4 parts by mass with respect to 100 parts by mass of the porous carbon material. Insulation material is included. When the amount of the insulating material is lower than the predetermined amount, in the energy storage device including the electrode manufactured using the porous carbon material for an electrode of the present invention, the effect of suppressing the gas generation due to the decomposition of the electrolytic solution and the performance maintenance rate and Energy density improvement effect is not enough.
  • the amount of the insulating material exceeds 5 parts by mass with respect to 100 parts by mass of the porous carbon material, the effect of suppressing gas generation is saturated and does not improve, while the pores of the porous carbon material are blocked to save energy.
  • the ability may decrease.
  • the kinematic viscosity at 25 ° C. of the insulating material is preferably 1 to 1000 mm 2 / s, more preferably 1 from the viewpoint of obtaining a sufficient effect even when the insulating material is thinly and uniformly supported to obtain a sufficient effect and energy storage capacity. 0.5 to 500 mm 2 / s, more preferably 2 to 300 mm 2 / s. If the kinematic viscosity is too low, the boiling point of the insulating material is relatively low, and when the porous carbon material for an electrode of the present invention is produced or dried before or after electrode preparation, the porous carbon material for an electrode of the present invention is used.
  • the insulating material is volatilized and the amount of the insulating material carried decreases, and the effect may be reduced. If the kinematic viscosity is too high, it is difficult to carry it thinly and uniformly because the viscosity is high, and the carrying amount necessary to achieve a sufficient effect may increase. Moreover, the pores of the porous carbon material are blocked, and the energy storage capacity may be reduced.
  • the kinematic viscosity can be measured at 25 ° C. based on JIS-K2283 (2000).
  • the boiling point of the insulating material is 150 ° C. or higher, preferably 200 ° C. or higher.
  • the boiling point of the insulating material is 150 ° C. or higher, preferably 200 ° C. or higher.
  • the insulating material volatilizes, the amount of the insulating material carried decreases, and the effect may be reduced. Further, there is a risk of ignition when performing heat treatment or drying.
  • the upper limit of the boiling point of the insulating material is not particularly limited.
  • the pour point of the insulating material is preferably ⁇ 30 ° C. or lower, more preferably ⁇ 40 ° C. or lower. If the pour point is too high, the kinematic viscosity rapidly increases in a low temperature environment such as a cold region, and the insulating material solidifies, which may reduce the energy storage capacity.
  • a pour point depressant may be added. By adding the pour point depressant, the interfacial tension is lowered, and it can be supported thinly and uniformly in the pores of the porous carbon material. It does not specifically limit as a pour point depressant to add, A well-known additive can be used.
  • pour point depressants include polyalkyl acrylate, polyvinyl acetate, polyalkyl styrene, polybutene, ethylene propylene copolymer, polyalkyl methacrylate, chlorinated paraffin and condensate of naphthalene or phenol. From these pour point depressants, effective ones can be appropriately selected and used. When a pour point depressant is added, the amount of pour point depressant added may be appropriately selected depending on the type of insulating material to be added, but from the viewpoint of obtaining the effect of lowering the fluidity, 100 parts by mass of the insulating material is added. On the other hand, it is preferable that it is 0.01 mass part or more. In addition, from the viewpoint of low possibility of affecting the pores of the porous carbon material when adhering to the porous carbon material, the amount is 0.3 parts by mass or less with respect to 100 parts by mass of the insulating material. Is preferred.
  • the porous carbon material for an electrode of the present invention comprises 0.5 to 5 parts by mass of an insulating material having a boiling point of 150 ° C. or higher with respect to 100 parts by mass of the porous carbon material, and 100 parts by mass of the insulating material. 0.25 to 15 parts by mass of a conductive additive.
  • the conductive aid is not particularly limited as long as it can exist chemically and electrochemically stably in the energy storage device, and for example, a particulate or fibrous conductive aid can be used.
  • the particulate conductive additive include carbon black such as acetylene black and furnace black, natural graphite, artificial graphite, titanium nitride particles, and the like, and those subjected to surface modification are also preferably used. it can.
  • the conductive additive it is preferable to use a particulate conductive additive from the viewpoint of availability and cost, and it is more preferable to use carbon black such as acetylene black.
  • the fibrous conductive additive include carbon fibers such as vapor grown carbon fiber (VGCF).
  • VGCF vapor grown carbon fiber
  • one type of conductive additive may be used alone, or two or more conductive additives may be used in combination.
  • the primary particle size of the particulate conductive aid is preferably 20 nm or more, more preferably 30 nm or more, from the viewpoint of dispersibility.
  • the primary particle diameter of the particulate conductive additive is preferably 100 nm or less, more preferably 50 nm or less, from the viewpoint of increasing the number of conductive paths and enhancing the effect of suppressing the increase in resistance caused by the addition of the insulating material.
  • a primary particle diameter is an average value of the particle diameter measured using the electron microscope.
  • the porous carbon material for an electrode of the present invention includes a porous carbon material, an insulating material, and a conductive additive.
  • the amount of the conductive additive is 0.25 to 15 parts by mass, preferably 0.5 to 12.5 parts by mass, more preferably 1 to 12.5 parts by mass with respect to 100 parts by mass of the insulating material.
  • the amount of the conductive additive is lower than the predetermined range, the effect of suppressing the increase in resistance due to the addition of the insulating material is not sufficiently exhibited.
  • the amount of the conductive additive exceeds the predetermined range, the effect of suppressing an increase in resistance due to the addition of the insulating material is reduced. Although the cause is not clear, this is considered to be because the dispersibility of the conductive additive is lowered.
  • the porous carbon material for an electrode of the energy storage device of the present invention includes a porous carbon material, an insulating material, and a conductive additive, and the insulating material and the conductive additive are carried together on the porous carbon material. It is the porous carbon material for electrodes made.
  • the conductive aid carried together suppresses the increase in resistance associated with the addition of insulating material, resulting in performance It is possible to obtain a porous carbon material for an electrode of an energy storage device that is excellent in durability such as a maintenance rate, has a small amount of gas generation, and can be used at a high potential.
  • Examples of the state in which the insulating material and the conductive additive are supported together on the porous carbon material include, for example, a state in which the insulating material and the conductive auxiliary material exist as a mixture on the surface of the porous carbon material, It is conceivable that the conductive auxiliary material is embedded or dispersed in the insulating material spread on the surface of the material.
  • the porous carbon material for an electrode of the energy storage device includes 0.5 to 5 parts by mass of an insulating material with respect to 100 parts by mass of the porous carbon material and 100 parts by mass of the insulating material. And 0.25 to 15 parts by mass of a conductive additive can be supported.
  • the amount of the insulating material to be supported is preferably 0.7 to 4.5 parts by mass, more preferably 1 to 4 parts by mass with respect to 100 parts by mass of the porous carbon material.
  • the amount of the conductive additive to be supported is preferably 0.5 to 12.5 parts by mass, more preferably 1 to 12.5 parts by mass with respect to 100 parts by mass of the porous carbon material.
  • the supporting method is not particularly limited.
  • an insulating material and a conductive additive are simultaneously added to and supported on a porous carbon material, or a mixture containing an insulating material and a conductive aid is added to and supported on a porous carbon material.
  • a method in which a porous carbon material is immersed and supported in a mixture containing an insulating material and a conductive additive For example, it can be carried out by the following method using the stock solution or the solution.
  • An insulating material stock solution or an insulating material diluted with a solvent and a conductive additive are simultaneously added to the porous carbon material, for example, by spraying, spraying, or the like. Add, stir and mix.
  • An insulating material and a conductive additive are mixed in advance to prepare a mixed solution (adhesive stock solution), and the mixed solution is sprayed onto the porous carbon material, or the mixed solution is applied to the porous carbon material. In addition, stirring and mixing.
  • a mixed solution adheresive stock solution
  • Insulating material stock solution or an adding solution obtained by diluting an insulating material with a solvent and an adding solution obtained by diluting a conductive additive with a solvent are simultaneously added to the porous carbon material by, for example, spraying or the like.
  • a spray may be used as the spraying device.
  • the conductive additive may be added by spraying on the porous carbon material.
  • a device for spraying for example, a powder coating device made of air blast or air spray, an electrostatic coating device, or the like may be used.
  • a mixing / stirring device such as a double cone mixer, horizontal cylindrical mixer, rocking and rotating mixer, concrete mixer, etc. You can do it.
  • spraying and spraying can be performed in an apparatus capable of stirring and heating such as a rotary kiln and then drying.
  • the porous carbon material When soaking the stock solution or the stock solution, the porous carbon material may be added and soaked in the stock solution or the stock solution, and the solid may be separated and dried as necessary. From the viewpoint of ease of processing and the coexistence probability of the insulating material and the conductive additive, it is preferable to use the methods (2) and (4).
  • the porous carbon material for electrodes of the energy storage device of the present invention can be manufactured by adding and loading an additive stock solution made of an insulating material and a conductive additive to the porous carbon material. It is also possible to dilute the adhering stock solution by mixing it with a solvent or a solvent containing a polymer compound described below and add it to the porous carbon material to carry it.
  • the insulating material and conductive additive are dispersed to a certain degree uniformly in the mixed solution. This is preferable because it can be uniformly supported on the carbonaceous material.
  • the mixed solution is made into an emulsion, or a polymer compound described below is added to the mixed solution.
  • preparation of the mixed solution immediately before adding or spraying the porous material, or re-stirring immediately before adding or spraying, etc. may increase dispersion.
  • the solvent is preferably removed by a drying treatment at 100 to 330 ° C.
  • a solvent examples include water, alcohols such as ethanol, methanol, propanol, and butanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, benzene, toluene, xylene, and cyclohexane.
  • a solvent one type of solvent may be used alone, or two or more types may be used in combination. Among these, it is preferable to use water as a solvent from the viewpoint of the global environment and manufacturing safety.
  • the method of dispersing the conductive additive in the adhering stock solution or the insulating material constituting the additive solution is not particularly limited as long as the conductive aid can be dispersed, and various dispersing devices can be used.
  • a high-speed mixer that stirs with a high-speed rotating impeller, a roll mill that kneads between two or three rollers, a bead mill, a ball mill, or a material that exerts an effect by moving a hard ball in a predetermined container
  • High-speed rotary shearing stirrer that simultaneously pulverizes and disperses
  • high-pressure jet disperser that applies high pressure to the target suspension and performs dispersion emulsification by collision between liquids, ultrasonic emulsification disperser using ultrasonic waves, etc.
  • These devices can be suitably used for dispersion and mixing of the insulating material and the conductive additive, and dispersion and mixing of the insulating material and / or the conductive additive and the solvent. It is also possible to use one type or two or more types of devices.
  • a polymer compound can be added.
  • the polymer compound is not particularly limited as long as it can exist chemically and electrochemically stably in the energy storage device, and can increase the dispersion of the insulating material and the conductive additive, or can increase the viscosity.
  • cellulose derivatives sodium salt or ammonium salt of carboxymethyl cellulose (CMC)
  • polyacrylic acid and polyacrylate polyethylene oxide and derivatives thereof.
  • the polymer compound one of these may be used alone, or two or more may be used in combination.
  • carboxymethylcellulose is preferable from the viewpoint of use in electrode materials.
  • the amount of the polymer compound varies depending on the polymer compound to be used and is not particularly limited. However, considering the influence on the pores of a porous carbon material such as activated carbon, for example, as a solid content with respect to 100 parts by mass of the porous carbon material. The amount is preferably less than 5 parts by mass, and more preferably less than 2 parts by mass.
  • the porous carbon material for an electrode of the energy storage device of the present invention may further carry a polymer compound together.
  • the polymer compound is an additive that does not contribute to the storage capacity, it is preferable that the polymer compound is not supported. However, from the viewpoint of improving and maintaining the dispersibility of the conductive additive, it is together. It may be supported.
  • the amount of the polymer compound in the porous carbon material for electrodes of the energy storage device of the present invention is based on 100 parts by mass of the porous carbon material in consideration of the influence on the pores of the porous carbon material such as activated carbon.
  • the solid content is preferably less than 5 parts by mass, and more preferably less than 2 parts by mass.
  • the porous carbon material for an electrode of the energy storage device of the present invention can be produced by drying the porous carbon material after supporting the insulating material and the conductive additive on the porous carbon material. Drying is an operation for removing moisture adsorbed on the porous carbon material or a solvent used when diluting the stock solution, for example, by heating the porous carbon material, It is possible to remove the water adsorbed on the solvent and the solvent used when diluting the stock solution. In addition to heating or instead of heating, for example, when drying by means such as reduced pressure, reduced pressure heating, freezing, etc., to dilute the moisture adsorbed on the porous carbon material and the adhering stock solution The solvent to be removed may be removed.
  • Drying is preferably performed by heating at a temperature of 100 to 330 ° C., preferably for 0.1 to 24 hours.
  • the drying temperature is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, and further preferably 120 ° C. or higher from the viewpoint of removing moisture adsorbed on the porous carbon material.
  • the drying temperature is preferably 330 ° C. or lower, more preferably 300 ° C. or lower, and further preferably 250 ° C. or lower from the viewpoint of preventing the insulating material from being decomposed and volatilized by heating the insulating material. preferable.
  • the drying time depends on the drying temperature employed, but is preferably 0.1 hours or more, more preferably 0.5 hours or more from the viewpoint of removing moisture adsorbed on the porous carbon material. More preferably, it is 1 hour or more. In terms of economy, it is preferably 24 hours or shorter, more preferably 12 hours or shorter, and even more preferably 6 hours or shorter.
  • Drying can be performed under normal pressure or a reduced pressure atmosphere.
  • it is preferably performed in an inert gas atmosphere such as nitrogen gas or argon gas or in an air atmosphere with a dew point of ⁇ 20 ° C. or lower.
  • the porous carbon material for electrodes of the energy storage device of the present invention suppresses the adsorption of water and the decomposition of the electrolytic solution, suppresses the amount of gas generation, and has an excellent performance maintenance ratio and withstand voltage. Therefore, the porous carbon material for an electrode of the present invention can be suitably used as an electrode for an electric double layer capacitor or a lithium ion capacitor that requires high durability.
  • the porous carbon material for an electrode of the present invention is used as an electrode, for example, the porous carbon material for an electrode of the present invention is pulverized so as to have an appropriate center particle diameter, and the pulverized porous carbon material for an electrode is used as a binder.
  • the porous carbon material for an electrode of the present invention can be used as an additive for a positive electrode of a lithium ion battery, for example.
  • the porous carbon material for an electrode of the present invention is used as an additive for an electrode, for example, it is pulverized to have an appropriate center particle diameter, and the pulverized porous carbon material for an electrode is used as a member constituting a lithium ion battery.
  • the positive electrode can be manufactured by adding, mixing and molding.
  • As the binder polytetrafluoroethylene “6J” manufactured by Mitsui DuPont Co., Ltd.
  • a conductive adhesive 2 “HITASOL GA-703” manufactured by Hitachi Chemical Co., Ltd. was applied to an etching aluminum foil 3 obtained from Hosen Co., Ltd. so as to have a coating thickness of 100 ⁇ m.
  • the tab 4 with the sealant 5 made from aluminum obtained from Hosen Co., Ltd. was welded to the etching aluminum foil 3 using an ultrasonic welding machine. After welding, vacuum drying was performed at 120 ° C. to obtain a polarizable electrode 6 including an aluminum current collector.
  • an aluminum laminated resin sheet manufactured by Hosen Co., Ltd. is cut into a rectangle (length 200 mm ⁇ width 60 mm), folded in two, and one side ((1) in FIG. 4) remains by thermocompression bonding.
  • a bag-shaped exterior sheet 7 having two open sides was prepared.
  • an electrolyte solution was injected in a dry box in an argon atmosphere (dew point ⁇ 90 ° C. or less).
  • an electrolytic solution a 1.5 mol / L triethylmethylammonium tetrafluoroborate propylene carbonate solution manufactured by Toyo Gosei Kogyo Co., Ltd. was used.
  • the laminate was impregnated with the electrolyte in the exterior sheet 7, the remaining one side ((3) in FIG. 5) of the exterior sheet 7 was thermocompression bonded to produce the electric double layer capacitor 8 shown in FIG. .
  • Resistance measurement was performed using an electrochemical measurement device (VSP manufactured by BioLogic). At 25 ° C and -30 ° C, a constant voltage alternating current impedance measurement method was used to give an amplitude range of 5 mV centered on 0 V, and a frequency of 4 mHz to 1 MHz. Measurement was carried out to obtain a Board-Plot (FIG. 6) showing the relationship between frequency and impedance. The difference in resistance value at 1 Hz and 1000 Hz in this Plot was determined as the resistance related to charge transfer (electrode reaction and ion adsorption / desorption), and the resistance values were compared. The results are shown in Table 3.
  • the amount of gas generated is measured by measuring the dry weight of the measuring electrode cell and the weight in water, obtaining the cell volume from the generated buoyancy and water density, and calculating the gas volume calculated from the change in cell volume before and after the durability test. It was corrected by the temperature difference and obtained. That is, the amount of generated gas was determined by the following equation (2).
  • the cell weight A represents the cell weight (g) in the air
  • the cell weight W represents the cell weight (g) in the water.
  • Example 1 Dimethyl silicone oil “KF-96-100CS”, one of siloxane compounds (manufactured by Shin-Etsu Chemical Co., Ltd., boiling point: 200 ° C. or more, volatile content at 150 ° C./24 h of 0.5 or less, kinematic viscosity: 100 mm 2 / s ) 2.00 parts by mass, Denka Black (manufactured by Denki Kagaku Kogyo Co., Ltd.) 0.02 parts by mass (corresponding to 1 part by mass with respect to 100 parts by mass of the insulating material) are mixed, and the thin film swirl type high-speed mixer The mixture was stirred with "40-40 type" (manufactured by Primex).
  • siloxane compounds manufactured by Shin-Etsu Chemical Co., Ltd., boiling point: 200 ° C. or more, volatile content at 150 ° C./24 h of 0.5 or less, kinematic viscosity: 100 mm 2 / s ) 2.00 parts
  • the obtained porous carbon material for an electrode was finely pulverized so as to have a center particle diameter of 6 ⁇ m, and then an electrode composition 1 was obtained according to the method for producing an electrode described above. Using this electrode composition 1, a polarizable electrode 6 and an electric double layer capacitor 8 were produced according to the method for producing a measurement electrode cell described above. Various measurements were performed using the obtained electric double layer capacitor 8. Tables 1 to 3 show various physical property values of the obtained porous material for electrodes and measurement results of the obtained electric double layer capacitor.
  • Example 2 Dimethyl silicone oil “KF-96-100CS” (2.00 parts by mass) and Denka Black 0.02 parts by mass (corresponding to 1 part by mass with respect to 100 parts by mass of the insulating material) were added to CMC “Serogen 7A” (Daiichi Kogyo Seiyaku). It was mixed with 0.50 part by mass of a 2% by weight aqueous solution (manufactured by Co., Ltd.) and stirred with a thin film swirl type high speed mixer “Filmix 40-40 type”. Furthermore, it mixed with ion-exchange water and stirred so that it might become 30.00 mass parts as a whole, and the addition liquid was prepared.
  • Example 3 1.50 parts by weight of dimethyl silicone oil “KF-96-100CS”, Softener sill 10 which is an emulsion of dimethyl silicone oil (kinematic viscosity 100 mm 2 / s) (manufactured by Shin-Etsu Chemical Co., Ltd., nonvolatile content 30%, of which 2% is a mixture) 1.79 parts by mass and Denka Black 0.02 parts by mass (corresponding to 1 part by mass with respect to 100 parts by mass of the insulating material) were stirred with a thin film swirl type high-speed mixer “Filmix 40-40”. Further, the emulsion solution was prepared by mixing and stirring with ion-exchanged water so that the total amount was 40.00 parts by mass.
  • Dimethyl silicone oil “KF-96-100CS”
  • Softener sill 10 which is an emulsion of dimethyl silicone oil (kinematic viscosity 100 mm 2 / s) (manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 4 A porous carbon material for an electrode was obtained in the same manner as in Example 2 except that the amount of dimethyl silicon oil was changed to 1.00 parts by mass (the amount of the conductive auxiliary material was 2 parts by mass with respect to 100 parts by mass of the insulating material). Equivalent to).
  • the porous carbon material for electrodes after spraying and drying was 101.03 parts by mass.
  • the obtained porous carbon material for electrodes was finely pulverized so as to have a center particle diameter of 6 ⁇ m, and then the electrode composition 1, the polarizable electrode 6 and the electric double layer capacitor 8 were produced in the same manner as in Example 1. .
  • Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Example 5 A porous carbon material for an electrode was obtained in the same manner as in Example 2 except that the amount of dimethylsilicone oil was changed to 3.00 parts by mass (the amount of conductive additive was 0.67 parts by mass with respect to 100 parts by mass of the insulating material). Part)).
  • the porous carbon material for electrodes after spraying and drying was 103.03 parts by mass.
  • the obtained porous carbon material for electrodes was finely pulverized so as to have a center particle diameter of 6 ⁇ m, and then the electrode composition 1, the polarizable electrode 6 and the electric double layer capacitor 8 were produced in the same manner as in Example 1. .
  • Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Example 6 A porous carbon material for an electrode was obtained in the same manner as in Example 2 except that the amount of dimethyl silicon oil was changed to 5.00 parts by mass (the amount of conductive auxiliary was 0.40 parts by mass with respect to 100 parts by mass of the insulating material). Part)).
  • the porous carbon material for an electrode after spraying and drying was 105.03 parts by mass.
  • the obtained porous carbon material for electrodes was finely pulverized so as to have a center particle diameter of 6 ⁇ m, and then the electrode composition 1, the polarizable electrode 6 and the electric double layer capacitor 8 were produced in the same manner as in Example 1. .
  • Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Example 7 A porous carbon material for electrodes was obtained in the same manner as in Example 1 except that dimethyl silicone oil “KF96-100CS” was changed to “KF96L-2CS” (boiling point: 230 ° C., kinematic viscosity: 2 mm 2 / s). .
  • the porous carbon material for electrodes after spraying and drying was 102.02 parts by mass.
  • the obtained porous carbon material for electrodes was finely pulverized so as to have a center particle diameter of 6 ⁇ m, and then the electrode composition 1, the polarizable electrode 6 and the electric double layer capacitor 8 were produced in the same manner as in Example 1. .
  • Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Example 8 Example 1 except that dimethyl silicone oil “KF96-100CS” was changed to “KF96-50CS” (boiling point: 200 ° C. or higher, volatile content at 150 ° C./24 h of 0.5 or lower, kinematic viscosity: 50 mm 2 / s) Similarly, a porous carbon material for an electrode was obtained. In Example 8, the porous carbon material for an electrode after spraying and drying was 102.06 parts by mass. The obtained porous carbon material for electrodes was finely pulverized so as to have a center particle diameter of 6 ⁇ m, and then the electrode composition 1, the polarizable electrode 6 and the electric double layer capacitor 8 were produced in the same manner as in Example 1. . Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Example 9 Except for changing dimethyl silicone oil “KF-96-100CS” to “KF-96-1000CS” (boiling point: 200 ° C. or more, volatile content 0.5 or less at 150 ° C./24 h, kinematic viscosity: 1000 mm 2 / s)
  • an electrode porous carbon material was obtained.
  • the porous carbon material for electrodes after spraying and drying was 102.02 parts by mass.
  • the obtained porous carbon material for electrodes was finely pulverized so as to have a center particle diameter of 6 ⁇ m, and then the electrode composition 1, the polarizable electrode 6 and the electric double layer capacitor 8 were produced in the same manner as in Example 1. .
  • Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Example 10 A porous carbon material for electrodes was obtained in the same manner as in Example 2 except that the amount of Denka black was changed to 0.05 parts by mass (corresponding to 2.5 parts by mass with respect to 100 parts by mass of the insulating material).
  • the porous carbon material for an electrode after spraying and drying was 102.06 parts by mass.
  • the obtained porous carbon material for electrodes was finely pulverized so as to have a center particle diameter of 6 ⁇ m, and then the electrode composition 1, the polarizable electrode 6 and the electric double layer capacitor 8 were produced in the same manner as in Example 1. .
  • Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Example 11 A porous carbon material for electrodes was obtained in the same manner as in Example 2 except that the amount of Denka black was changed to 0.20 parts by mass (corresponding to 10 parts by mass with respect to 100 parts by mass of the insulating material).
  • the porous carbon material for an electrode after spraying and drying was 102.21 parts by mass.
  • the obtained porous carbon material was finely pulverized so as to have a center particle diameter of 6 ⁇ m, and then the electrode composition 1, the polarizable electrode 6 and the electric double layer capacitor 8 were produced in the same manner as in Example 1.
  • Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Example 12 A porous carbon material for an electrode was obtained in the same manner as in Example 1 except that the coconut shell granular activated carbon manufactured by Kuraray Chemical Co., Ltd. was changed to one having a BET specific surface area of 1450 m 2 / g.
  • the porous carbon material for electrodes after spraying and drying was 102.02 parts by mass.
  • the obtained porous carbon material for electrodes was finely pulverized so as to have a center particle diameter of 6 ⁇ m, and then the electrode composition 1, the polarizable electrode 6 and the electric double layer capacitor 8 were produced in the same manner as in Example 1. .
  • Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Example 13 A porous carbon material for an electrode was obtained in the same manner as in Example 1 except that the coconut shell granular activated carbon manufactured by Kuraray Chemical Co., Ltd. was changed to one having a BET specific surface area of 1862 m 2 / g.
  • the porous carbon material for an electrode after spraying and drying was 102.02 parts by mass.
  • the obtained porous carbon material for electrodes was finely pulverized so as to have a center particle diameter of 6 ⁇ m, and then the electrode composition 1, the polarizable electrode 6 and the electric double layer capacitor 8 were produced in the same manner as in Example 1. .
  • Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Example 14 A porous carbon material for an electrode was obtained in the same manner as in Example 1 except that the coconut shell granular activated carbon manufactured by Kuraray Chemical Co., Ltd. was changed to one having a BET specific surface area of 2069 m 2 / g.
  • the porous carbon material for electrodes after spraying and drying was 102.02 parts by mass.
  • the obtained porous carbon material for electrodes was finely pulverized so as to have a center particle diameter of 6 ⁇ m, and then the electrode composition 1, the polarizable electrode 6 and the electric double layer capacitor 8 were produced in the same manner as in Example 1. .
  • Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Example 15 In the same manner as in Example 2, a porous carbon material for electrodes and a polarizable electrode 6 were obtained. In place of the 1.5 mol / L triethylmethylammonium tetrafluoroborate propylene carbonate solution as the electrolytic solution, 1.0 mol / L tetraethylammonium tetrafluoroborate acetonitrile solution “LIPASTE” manufactured by Toyama Pharmaceutical Co., Ltd. An electrode composition 1, a polarizable electrode 6 and an electric double layer capacitor 8 were produced in the same manner as in Example 1 except that “-AN / EAF1” was used. Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Example 16 In the same manner as in Example 11, a porous carbon material for electrodes and a polarizable electrode 6 were obtained. In place of the 1.5 mol / L triethylmethylammonium tetrafluoroborate propylene carbonate solution as the electrolytic solution, 1.0 mol / L tetraethylammonium tetrafluoroborate acetonitrile solution “LIPASTE” manufactured by Toyama Pharmaceutical Co., Ltd. An electrode composition 1, a polarizable electrode 6 and an electric double layer capacitor 8 were produced in the same manner as in Example 1 except that “-AN / EAF1” was used. Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Example 1 The electrode composition 1 and the polarizable electrode were used in the same manner as in Example 1, using the pulverized coconut shell granular activated carbon produced in Kuraray Chemical Co., Ltd. used in Example 1 without spraying the impregnating solution on the activated carbon. 6 and electric double layer capacitor 8 were produced. Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Example 2 Using Kuraray Chemical Co., Ltd., the coconut shell granular activated carbon was changed to one with a BET specific surface area of 1290 m 2 / g, and pulverized coconut shell granular activated carbon was used as it was without spraying the additive liquid on the activated carbon. In the same manner as in Example 1, an electrode composition 1, a polarizable electrode 6 and an electric double layer capacitor 8 were produced. Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Example 3 Using Kuraray Chemical Co., Ltd., the coconut shell granular activated carbon was changed to one with a BET specific surface area of 1450 m 2 / g, and pulverized coconut shell granular activated carbon was used as it was without spraying the impregnating liquid on the activated carbon. In the same manner as in Example 1, an electrode composition 1, a polarizable electrode 6 and an electric double layer capacitor 8 were produced. Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Reference example 4 Example: Using Kuraray Chemical Co., Ltd., coconut shell granular activated carbon with a BET specific surface area of 1862 m 2 / g, and pulverizing coconut shell granular activated carbon as it is without spraying the adsorbent on the activated carbon.
  • an electrode composition 1, a polarizable electrode 6 and an electric double layer capacitor 8 were produced.
  • Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Example 1 Using Kuraray Chemical Co., Ltd., the coconut shell granular activated carbon was changed to one with a BET specific surface area of 2069 m 2 / g. In the same manner as in Example 1, an electrode composition 1, a polarizable electrode 6 and an electric double layer capacitor 8 were produced. Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Example 6 Using Kuraray Chemical Co., Ltd., coconut shell granular activated carbon with a BET specific surface area of 2224 m 2 / g, and pulverizing coconut shell granular activated carbon as it is without spraying the adsorbent on the activated carbon. In the same manner as in Example 1, an electrode composition 1, a polarizable electrode 6 and an electric double layer capacitor 8 were produced. Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Comparative Example 1 A porous carbon material for an electrode was obtained in the same manner as in Example 1 except that Denka black was omitted.
  • the electrode porous carbon material after spraying and drying was 102.00 parts by mass.
  • the porous carbon material for electrodes was finely pulverized so as to have a center particle diameter of 6 ⁇ m, and then the electrode composition 1, the polarizable electrode 6 and the electric double layer capacitor 8 were produced in the same manner as in Example 1.
  • Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Comparative Example 2 A porous carbon material for an electrode was obtained in the same manner as in Example 2 except that the amount of dimethyl silicon oil “KF-96-100CS” was changed to 0.30 parts by mass (the amount of conductive auxiliary material was 100 mass of insulating material). Equivalent to 6.67 parts by weight).
  • the electrode porous carbon material after spraying and drying was 100.33 parts by mass.
  • the obtained porous carbon material for an electrode was finely pulverized so as to have a center particle diameter of 6 ⁇ m, and then an electrode composition 1, a polarizable electrode 6 and an electric double layer capacitor 8 were produced in the same manner as in Example 1.
  • Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Comparative Example 3 A porous carbon material for an electrode was obtained in the same manner as in Example 2 except that the amount of dimethyl silicon oil was changed to 7.00 parts by mass (the amount of conductive auxiliary was 0.29 parts by mass with respect to 100 parts by mass of the insulating material). Part)).
  • the electrode porous carbon material after spraying and drying was 107.03 parts by mass.
  • the obtained porous carbon material for an electrode was finely pulverized so as to have a center particle diameter of 6 ⁇ m, and then an electrode composition 1, a polarizable electrode 6 and an electric double layer capacitor 8 were produced in the same manner as in Example 1.
  • Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Comparative Example 4 In the same manner as in Example 1, except that dimethyl silicon oil “KF-96-100CS” was changed to “KF-96L-0.65CS” (boiling point: 100 ° C., kinematic viscosity: 0.65 mm 2 / s). A porous carbon material was obtained. In Comparative Example 3, the electrode porous carbon material after spraying and drying was 100.42 parts by mass. The obtained porous carbon material for an electrode was finely pulverized so as to have a center particle diameter of 6 ⁇ m, and then an electrode composition 1, a polarizable electrode 6 and an electric double layer capacitor 8 were produced in the same manner as in Example 1. Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Comparative Example 5 A porous carbon material for electrodes was obtained in the same manner as in Example 2 except that the amount of Denka black was changed to 0.002 parts by mass (corresponding to 0.1 parts by mass with respect to 100 parts by mass of the insulating material). In Comparative Example 5, the porous carbon material for electrodes after spraying and drying was 102.12 parts by mass. The obtained porous carbon material for an electrode was finely pulverized so as to have a center particle diameter of 6 ⁇ m, and then an electrode composition 1, a polarizable electrode 6 and an electric double layer capacitor 8 were produced in the same manner as in Example 1. Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Comparative Example 6 A porous carbon material for electrodes was obtained in the same manner as in Example 2 except that the amount of Denka black was changed to 0.40 parts by mass (corresponding to 20 parts by mass with respect to 100 parts by mass of the insulating material). In Comparative Example 6, the electrode porous carbon material after spraying and drying was 102.41 parts by mass. The obtained porous carbon material for an electrode was finely pulverized so as to have a center particle diameter of 6 ⁇ m, and then an electrode composition 1, a polarizable electrode 6 and an electric double layer capacitor 8 were produced in the same manner as in Example 1. Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Comparative Example 7 A porous carbon material for an electrode was obtained in the same manner as in Example 1 except that the coconut shell granular activated carbon manufactured by Kuraray Chemical Co., Ltd. was changed to one having a BET specific surface area of 2224 m 2 / g.
  • the electrode porous carbon material after spraying and drying was 102.02 parts by mass.
  • the obtained porous carbon material for an electrode was finely pulverized so as to have a center particle diameter of 6 ⁇ m, and then an electrode composition 1, a polarizable electrode 6 and an electric double layer capacitor 8 were produced in the same manner as in Example 1.
  • Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • Comparative Example 8 A porous carbon material for electrode, electrode composition 1 and polarizable electrode 6 were obtained in the same manner as in Example 2 except that Denka black was removed. Then, an electric double layer capacitor was obtained in the same manner as in Example 1 except that 1.0 mol / L tetraethylammonium tetrafluoroborate acetonitrile solution “LIPASTE-AN / EAF1” manufactured by Toyama Pharmaceutical Co., Ltd. was used as the electrolyte. 8 was produced. Various measurements were performed in the same manner as in Example 1. The measurement results are shown in Tables 1 to 3.
  • the deterioration of the capacitor is caused by deterioration of the constituent members (electrode, electrolyte, binder, etc.) of the capacitor due to an electrochemical reaction.
  • the following reactions can be considered.
  • (3) SEI (Solid electrolyte interface) coating at electrode interface Changes in pore diameter or pore closure due to the formation of (4) decomposition of residual moisture, oxidation of surface functional groups contained in the porous carbon material, and generation of gas due to deterioration of the electrolyte solution.
  • the deterioration of the capacitor is caused such as an increase in the capacitance, a decrease in the capacitance, and expansion of the cell due to gas generation.
  • the viscosity of the electrolyte increases due to the low temperature, and electrode material, electrode interface degradation and / or electrolyte degradation, etc. It is thought that it is reflected remarkably.
  • an endurance test 60 ° C, 3V load for a predetermined time
  • the subsequent deterioration state is evaluated at -30 ° C. Compared to the center.
  • the electric double layer capacitor produced by the polarizable electrode using the porous carbon material for an electrode of the present invention has a porous carbon material and an insulating material as a base material for the porous carbon material for an electrode. Compared with an electric double layer capacitor produced using a porous carbon material for electrodes containing only the material, it has an initial capacitance equal to or higher than that at 25 ° C. and ⁇ 30 ° C. When an insulating material is supported on the porous carbon material, the pores of the porous carbon material are blocked by the insulating material, and the capacitance is reduced.
  • the electric double layer capacitor manufactured by the polarizable electrode using the porous carbon material for an electrode of the present invention hardly has such a decrease in capacitance. Furthermore, a high capacity retention rate is exhibited even after the durability test, and the generation of gas is also suppressed. Moreover, as shown in Table 3, the electric double layer capacitor produced from the polarizable electrode using the porous carbon material for an electrode of the present invention has an increase in resistance and is greatly improved in durability. From these facts, it is clear that when the porous carbon material for an electrode of the present invention is used for an electrode, an energy storage device having excellent durability can be obtained.
  • FIG. 6 shows the relationship between the frequency and the resistance value of the porous carbon material for an electrode and the porous carbon material used as the substrate of the porous carbon material for an electrode in constant voltage AC impedance measurement at ⁇ 30 ° C. Represent (Bode-Plot diagram).
  • charge transfer electrowetting reaction and ion adsorption / desorption
  • the difference between 1 Hz and 1000 Hz was determined as the resistance related to charge transfer.
  • the interface resistance electrical resistance
  • Example 1 when Comparative Example 1 and Example 1 containing the same amount of insulating material and conductive additive in the test electrode are compared, since Example 1 has a smaller resistance than Comparative Example 1, it is porous. It can be seen that the increase in resistance is suppressed when the porous carbon material for an electrode contains the insulating material and the conductive additive, rather than adding the conductive additive after the insulating material is supported on the carbon material.
  • FIGS. 7 and 8 show the specific surface area of the electrode porous carbon material or the porous carbon material used as the base material for the electrode, and the volume of the electrode measured at 25 ° C. or ⁇ 30 ° C. after the durability test. The relationship between the per-capacitance and the difference in resistance component at 1 Hz and 1000 Hz is shown.
  • the plots related to the electrode porous carbon material are Example 12, Example 1, Example 13, Example 14, in order from the one with the lowest specific surface area of the electrode porous carbon material. This corresponds to Comparative Example 7.
  • the plot regarding porous carbon material (unsupported) is the reference example 2, the reference example 3, the reference example 1, the reference example 4, the reference example 5, and the reference example 6 in an order from the thing with the low specific surface area of a porous carbon material. It corresponds to.
  • the porous carbon material (the insulating material and the conductive auxiliary material are not carried) included in the porous carbon material for electrodes of the above-described Example 12, Example 1, Example 13, Example 14, and Comparative Example 7 was used.
  • the electrodes prepared in this manner correspond to Reference Example 3, Reference Example 1, Reference Example 4, Reference Example 5, and Reference Example 6, respectively. 7 and 8, when the specific surface area of the porous carbon material is less than 1300 m 2 / g, the capacitance is rapidly decreased.
  • the retention rate of the capacitance increases as the specific surface area of the porous carbon material for electrodes increases, but from FIG. 7, when the specific surface area exceeds 2050 m 2 / g, 25 ° C.
  • the electrostatic capacity is reduced, and further, the effect of supporting the insulating material and the conductive additive is not obtained. From these facts, it is understood that when the specific surface area is less than 1300 m 2 / g, sufficient capacity cannot be obtained due to clogging of the pores, and when it exceeds 2050 m 2 / g, the effect of increasing the electrostatic capacity cannot be obtained. .
  • the amount of the insulating material when the amount of the insulating material is 0.5 to 5 parts by mass with respect to 100 parts by mass of the porous carbon material, a high performance maintenance rate and a gas generation amount suppressing effect can be obtained. Can do. If the amount of the insulating material is lower than 0.5 parts by mass with respect to 100 parts by mass of the porous carbon material, the effect of suppressing gas generation, the performance maintaining rate, and the effect of suppressing increase in resistance are not sufficient. On the other hand, if the amount of the insulating material is more than 5 parts by mass with respect to 100 parts by mass of the porous carbon material, the gas generation suppression effect is saturated, while the pores of the porous carbon material are blocked, resulting in electrostatic capacitance. In addition, the performance maintenance rate decreases.
  • Comparative Example 4 having the lowest kinematic viscosity shown in FIGS. 12 and 13 is a comparative example using an insulating material having a boiling point of less than 150 ° C.
  • Examples 1 and 7 to 9 using an insulating material having a boiling point of 150 ° C. or higher a high performance maintenance ratio and an effect of suppressing gas generation can be obtained. From FIG. 12 and FIG. 13, when the boiling point is less than 150 ° C., the amount of the insulating material carried by the insulating material is volatilized by the temperature of drying or the like when the electrode is produced using the porous carbon material for an electrode. Decrease, the effect is reduced.
  • the kinematic viscosity is preferably 1000 mm 2 / s or less because the viscosity can be supported thinly and uniformly without being too high, and a high capacitance can be obtained without blocking the pores of the porous carbon material. I understand that.
  • the amount of the conductive additive is lower than 0.25 parts by mass with respect to 100 parts by mass of the insulating material added at the same time, the number of conductive paths cannot be increased, and the effect of suppressing increase in resistance is not exhibited. If the amount of the conductive additive is more than 15 parts by mass with respect to 100 parts by mass of the insulating material added at the same time, the ratio of the conductive additive is increased and the dispersibility is lowered, so that a sufficient effect cannot be obtained.
  • the present invention provides 0.5 to 5 parts by mass of an insulating material having a boiling point of 150 ° C. or higher with respect to 100 parts by mass of the porous carbon material, and 0 to 100 parts by mass of the insulating material.
  • Energy storage having a BET specific surface area of 1300 to 2050 m 2 / g, comprising 25 to 15 parts by mass of a conductive additive, the insulating material and the conductive additive being supported together on the porous carbon material
  • the conductive additive carried together suppresses the increase in resistance caused by the addition of insulating material, has excellent durability such as performance maintenance rate, has low gas generation, and can be used at high potential. A storage device can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 多孔質炭素材料、該多孔質炭素材料100質量部に対して0.5~5質量部の、150℃以上の沸点を有する絶縁材、および、該絶縁材100質量部に対して0.25~15質量部の導電助材を含み、該多孔質炭素材料に、該絶縁材および該導電助材が一緒になって担持された、1300~2050m/gのBET比表面積を有する、エネルギー貯蔵デバイスの電極用多孔質炭素材料。

Description

エネルギー貯蔵デバイスの電極用多孔質炭素材料およびその製造方法
 本特許出願は、日本国特許出願第2014-092892号(2014年4月28日出願)に基づくパリ条約上の優先権を主張するものであり、ここに引用することによって、上記出願に記載された内容の全体が、本明細書中に組み込まれるものとする。
 本発明は、耐久性の向上、ガス発生の抑制および耐電圧の向上に有効なエネルギー貯蔵デバイス用多孔質炭素材料およびその製造方法に関する。
 エネルギー貯蔵デバイスの1つである電気二重層キャパシタは、電池と比較して出力特性、寿命特性に優れていることから、その特性を生かして各種メモリーのバックアップ、自動車や列車などのパワーアシスト、UPS(Uninterruptible Power Supply)などの蓄電源用途などに多く開発され、実用化されている。近年では、電気二重層キャパシタは上記の優れた特性から、電気自動車(EV)やハイブリッド車(HV)の補助電源、回生エネルギーの貯蔵用途として注目されている。このような車載用のエネルギー貯蔵デバイスは、民生用途と比較して厳しい使用条件下で使用され、より高エネルギー密度であることが要求されるだけでなく、より長期の容量維持特性およびより高い耐久性が要求される。
 電気二重層を用いた蓄電方法は化学反応を伴わないため、原理的には温度特性や耐久性に優れている。しかし現実には、電解液や電解質等の分解によりガスが発生し、耐久性および容量低下が生じる。原因は定かではないが、エネルギー貯蔵デバイスに使用されている活性炭等の炭素材料の表面には水が存在し、電極製造時の乾燥では該水が十分に脱離、除去されず、残留水分の還元分解によってHガスとOHが発生し、さらにOHによって電解液や電解質等の溶媒の加水分解が活性化されることにより、劣化が顕著になるとも言われている。また電解液や電解質等が電気化学的に酸化分解され、ポリマー化・フッ素化が起こり、耐久性に影響を及ぼすとも言われている。
 特許文献1には、活性炭中の酸素が多いと、活性炭中の酸素と電解液中の溶質とが反応すると考えなされた、特定の酸素原子/炭素原子の比を有する活性炭を基材とする、放電容量の低下が抑制された電気二重層キャパシタが提案されている。同文献には、特定の酸素原子/炭素原子の比を有する活性炭を得るために、500~1100℃の温度で熱処理することが記載されている。特許文献2には、特にガス発生が多く容量低下が大きいメソフェーズ系のソフトカーボンを原料としたときに得られる活性炭を製造するに際し、500~1000℃で熱処理することにより経時劣化を抑制した、活性炭の製造方法およびその製造装置が提案されている。いずれの方法も一定の効果を発現するが、500~1000℃といった高温での処理が必要であり、製造コストがかかるだけでなく、高温での処理により活性炭が熱収縮して容量低下が起き、静電容量に対する市場からの高い要求を満たすことができない場合がある。
 特許文献3には、Liイオン型蓄電装置の負極活物質として、有機溶媒を用いて表面および細孔にシロキサンを担持させた球状かつサブミクロンの平均粒子径を有する微粒子活性炭を用いることにより、蓄電装置の高容量化および耐久性向上が達成されることが開示されている。しかしながら、活性炭表面に担持されたシロキサン自体が絶縁体となり、粒子間の抵抗体となるため、出入力特性を低下させる可能性がある。
 特許文献4には、表面改質剤としてシラン化合物またはシラザン化合物を用い、シラン化合物またはシラザン化合物中のアルコキシ基が脱離して活性炭の表面に結合することにより、電解液との接液性が向上すると共に、イオンの吸脱着がスムーズに行われることによる、寿命特性の良好な電気二重層キャパシタが提案されている。この方法により容量の低下は抑制されるとしているが、実用上の課題のひとつであるガス発生に関しては何ら検討されていない。また、添加した表面改質剤が未反応状態で残留した場合、ガス発生の原因あるいは電解液の劣化を促進させる可能性がある。さらに同発明で使用される表面改質剤は引火点が低く、電極乾燥に際し、留意が必要となる懸念が残される。
 特許文献5には、活性炭の表面の少なくとも一部にケイ素もしくは金属の酸化物を付着させ、加水分解することによって、活性点が被覆され電解液の分解を抑制し、セルの耐電圧が向上することが開示されている。しかし、同文献に記載された金属酸化物は特許文献3に記載されたシロキサンと同様に絶縁体あるいは抵抗体となり、抵抗が増加し、出入力特性に悪影響を及ぼす可能性がある。また、金属酸化物の分解などによって、充放電中に金属が析出する可能性があり、短絡の原因となったり劣化促進の原因となったりすることが危惧される。
 特許文献6には、絶縁性酸化物、あるいは電解液と可逆的な電気化学反応を起こしうる電気化学反応性酸化物のいずれかを、細孔を有する基材に超臨界コート法等の方法によりコートすることによって、細孔内を含む基材表面を均一に(定量的に言えば表面積の90%以上)被覆し、電解液と基材の直接的な接触を回避し、電解液の分解を抑制することにより充放電サイクルに優れたものが提供できると開示されている。しかし、同文献に記載された上記の酸化物は、特許文献3に記載されたシロキサンと同様に絶縁体あるいは抵抗体となり、抵抗が増加し、出入力特性に悪影響を及ぼす可能性がある。また、酸化物自身の酸化還元による劣化等により、性能が低下する恐れがある。
特開平10-116755号公報 特許第4392223号公報 特開2012-84359号公報 特開2012-124388号公報 特開平09-063905号公報 特許第4296332号公報
 本発明の課題は、上記実状に鑑みてなされたものであり、耐久性の向上、ガス発生の抑制および耐電圧の向上に有効な、エネルギー貯蔵デバイスの電極用多孔質炭素材料およびその製造方法を提供することである。
 本発明者等は、上記課題を解決するために、エネルギー貯蔵デバイスの電極用多孔質炭素材料およびその製造方法について詳細に検討を重ねた結果、本発明に到達した。
 すなわち、本発明は、以下の好適な態様を包含する。
〔1〕多孔質炭素材料、
 該多孔質炭素材料100質量部に対して0.5~5質量部の、150℃以上の沸点を有する絶縁材、および、
 該絶縁材100質量部に対して0.25~15質量部の導電助材
を含み、該多孔質炭素材料に、該絶縁材および該導電助材が一緒になって担持された、1300~2050m/gのBET比表面積を有する、エネルギー貯蔵デバイスの電極用多孔質炭素材料。
〔2〕前記絶縁材の25℃における動粘度が1~1000mm/sである、前記〔1〕に記載のエネルギー貯蔵デバイスの電極用多孔質炭素材料。
〔3〕前記絶縁材の流動点は-30℃以下である、前記〔1〕または〔2〕に記載のエネルギー貯蔵デバイスの電極用多孔質炭素材料。
〔4〕前記絶縁材は主鎖にシロキサン単位を有するシロキサン化合物である、前記〔1〕~〔3〕のいずれかに記載のエネルギー貯蔵デバイスの電極用多孔質炭素材料。
〔5〕さらに高分子化合物が一緒になって担持された、前記〔1〕~〔4〕のいずれかに記載のエネルギー貯蔵デバイスの電極用多孔質炭素材料。
〔6〕1300~2050m/gのBET比表面積を有する、エネルギー貯蔵デバイスの電極用多孔質炭素材料の製造方法であって、多孔質炭素材料に、該多孔質炭素材料100質量部に対して0.5~5質量部の、150℃以上の沸点を有する絶縁材、および、該絶縁材100質量部に対して0.25~15質量部の導電助材を担持させる、製造方法。
〔7〕多孔質炭素材料に絶縁材および導電助材を添加して担持させる、前記〔6〕に記載の製造方法。
〔8〕多孔質炭素材料に絶縁材および導電助材を含む混合物を添加して担持させる、前記〔6〕に記載の製造方法。
〔9〕多孔質炭素材料を絶縁材および導電助材を含む混合物に浸漬させて担持させる、前記〔6〕に記載の製造方法。
〔10〕前記混合物はさらに高分子化合物を含有する、前記〔8〕または〔9〕に記載のエネルギー貯蔵デバイスの電極用多孔質炭素材料の製造方法。
 本発明のエネルギー貯蔵デバイスの電極用多孔質炭素材料を電極に使用すると、エネルギー貯蔵デバイスの性能維持率等の耐久性が向上し、ガス発生が抑制され、耐電圧が向上する。これは高耐久性が求められる電気二重層キャパシタやリチウムイオンキャパシタ用の電極として好適に利用できるだけでなく、リチウムイオン電池の正極用添加材としても好適である。この原理は不明であるが、多孔質炭素材料への水の吸着が抑制されるだけでなく、エネルギー貯蔵デバイスの電解液の劣化・分解が抑制されることによると考えられる。また、本発明のエネルギー貯蔵デバイスの電極用多孔質炭素材料は、本発明の電極用多孔質炭素材料から電極を成形する際、または、本発明の電極用多孔質炭素材料を他の正極材料に添加して電極を成形する際に、電極用多孔質炭素材料間に導電パスが形成され、絶縁材添加に伴う抵抗の増加を抑制することによって性能維持率に優れると考えられる。
シート状の電極組成物を示す図である。 集電体(エッチングアルミニウム箔)に導電性接着剤を塗布した図である。 シート状の電極組成物と集電体を接着しアルミニウム製タブを超音波溶接した分極性電極を示す図である。 袋状の外装シートを示す図である。 電気二重層キャパシタを示す図である。 周波数と、-30℃での定電圧交流インピ-ダンス測定における電極用多孔質炭素材料および該電極用多孔質炭素材料の基材となる多孔質炭素材料の抵抗値との関係を表す図(Bode-Plot)である。 電極用多孔質炭素材料または該電極用多孔質炭素材料の基材となる多孔質炭素材料の比表面積と、耐久試験後の25℃測定における、電極の体積あたりの静電容量と、1Hzおよび1000Hzにおける抵抗値の差との関係を示す図である。 電極用多孔質炭素材料または該電極用多孔質炭素材料の基材となる多孔質炭素材料の比表面積と、耐久試験後の-30℃測定における、電極の体積あたりの静電容量と、1Hzと1000Hzにおける抵抗値の差との関係を示す図である。 電極用多孔質炭素材料の比表面積と、耐久試験後の-30℃測定における静電容量維持率と、ガス発生量との関係を示す図である。 多孔質炭素材料100質量部に対する絶縁材の担持量と、耐久試験後の-30℃測定における静電容量維持率と、ガス発生量との関係を示す図である。 多孔質炭素材料100質量部に対する絶縁材の担持量と、耐久試験後の-30℃測定における1Hzおよび1000Hzにおける抵抗値の差との関係を示す図である。 絶縁材の動粘度と、耐久試験後の-30℃測定における静電容量維持率と、ガス発生量との関係を示す図である。 絶縁材の動粘度と、耐久試験後の-30℃測定における1Hzと1000Hzにおける抵抗値の差との関係を示す図である。 導電助材の担持量と、耐久試験後の-30℃測定における静電容量維持率と、ガス発生量との関係を示す図である。 導電助材の担持量と、耐久試験後の-30℃測定時の1Hzと1000Hzにおける抵抗値の差との関係を示す図である。
 本発明のエネルギー貯蔵デバイスの電極用多孔質炭素材料は、1300~2050m/gのBET比表面積を有し、多孔質炭素材料、該多孔質炭素材料100質量部に対して0.5~5質量部の絶縁材および該絶縁材100質量部に対して0.25~15質量部の導電助材を含み、該多孔質炭素材料に、該絶縁材および該導電助材が一緒になって担持された、電極用多孔質炭素材料であることを特徴とする。
 本発明のエネルギー貯蔵デバイスの電極用多孔質炭素材料は、1300~2050m/g、好ましくは1320~2000m/g、より好ましくは1400~2000m/g、更に好ましくは1340~1950m/g、最も好ましくは1500~1950m/gのBET比表面積を有する。BET比表面積が小さすぎると電解液中のイオンが移動しにくくなり、単位質量あたりの静電容量が小さくなる。また、BET比表面積が大きすぎると、本発明の電極用多孔質炭素材料を用いた電極の嵩密度が低下し、体積あたりの静電容量が低下する。
 ここで、BET比表面積は窒素吸着法により算出され、例えば実施例に記載する方法により測定することができる。
 本発明のエネルギー貯蔵デバイスの電極用多孔質炭素材料は、多孔質炭素材料、該多孔質炭素材料100質量部に対して0.5~5質量部の絶縁材および該絶縁材量100質量部に対して0.25~15質量部の導電助材を含む。
 多孔質炭素材料としては、特に限定されないが、例えば木炭、活性炭、カーボンナノチューブ、カーボンナノホーン、無機多孔体を鋳型とし作成されるメソポーラスカーボン、有機湿潤ゲルを乾燥、炭化したカーボンエアロゲル等が挙げられる。入手容易性や価格面から、多孔質炭素材料は活性炭であることが好ましい。活性炭の具体例としては、例えば、木材、鋸屑、木炭、ヤシ殻やクルミ殻などの果実殻、果実種子、パルプ製造副生物、リグニン、廃糖蜜などを炭化および賦活して得られる植物系活性炭、泥炭、草炭、亜炭、褐炭、レキ青炭、無煙炭、コークス、コールタール、石炭ピッチ、石油蒸留残査、石油ピッチなどを炭化および賦活して得られる鉱物系活性炭、フェノール、サラン、アクリル樹脂などを炭化および賦活して得られる合成樹脂系活性炭、再生繊維(レーヨン)、綿などを炭化および賦活して得られる天然繊維系活性炭等が挙げられる。賦活方法としては、高温の水蒸気や炭酸ガスなどで処理するガス賦活、燐酸や硫酸、水酸化ナトリウム、水酸化カリウム等の薬品で処理する薬品賦活が挙げられ、いずれの賦活方法を使用しても構わない。多孔質炭素材料として、これらの多孔質炭素材料を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。活性炭としては、入手の容易性、価格および品質の観点から、椰子殻に由来する活性炭が好ましく、椰子殻をガス賦活して得た活性炭がより好ましい。
 多孔質炭素材料は、不純物をできるだけ除去した多孔質炭素材料であることが好ましい。不純物としては、例えばアルカリ金属、アルカリ土類金属、ニッケル、鉄等の金属が挙げられる。例えば水または、塩酸、硫酸、燐酸等の無機酸の水溶液等の洗浄液で洗浄することによりこのような不純物を除去した多孔質炭素材料を、本発明において多孔質炭素材料として使用してもよい。また、多孔質炭素材料が、上記の無機酸の水溶液等を用いる洗浄では取り除けない不純物(例えばケイ素等)を含有する場合がある。この場合、例えば水酸化ナトリウム等のアルカリ金属水酸化物の水溶液で洗浄することによりケイ素等の不純物を除去した多孔質炭素材料を、本発明において多孔質炭素材料として使用してもよい。洗浄は、1種の洗浄液で1回または複数回行ってもよいし、2種以上の洗浄液を組み合わせて複数回行ってもよい。また、攪拌および/または加熱しながら洗浄を行ってもよい。攪拌および/または加熱しながら洗浄を行うことは、洗浄効率の観点から好ましい。
 多孔質炭素材料は、上記所定のBET比表面積を有する本発明の電極用多孔質炭素材料を得る観点から、好ましくは1300~2400m/g、より好ましくは1400~2300m/g、更に好ましくは1420~2300m/g、更に好ましくは1450~2200m/g、最も好ましくは1520~2200m/gのBET比表面積を有する。多孔質炭素材料のBET比表面積が小さすぎると、電極用多孔質炭素材料を用いて製造した電極を含むエネルギー貯蔵デバイスにおいて、電解液中のイオンが移動しにくくなり、単位質量あたりの静電容量が小さくなる。また多孔質炭素材料のBET比表面積が大きすぎると、電極用多孔質炭素材料を用いた電極の嵩密度が低下し、体積あたりの静電容量が低下する。
 本発明の電極用多孔質炭素材料は、多孔質炭素材料100質量部に対して0.5~5質量部の、150℃以上の沸点を有する絶縁材を含む。絶縁材としては、150℃以上の沸点を有し、絶縁破壊電圧が高く、誘電損失の小さい物質であれば何ら限定されないが、例えば、パラフィン系やナフテン系の水素化精製鉱物油;ポリα-オレフィン、アルキルベンゼン、アルキルナフタレン、アルキルジフェニルアルカンなどの炭化水素系合成油;ジエステル、ポリオールエステル、ポリオキシアルキレングリコール、ポリフェニルエーテルなどの含酸素合成油;ジメチルシリコーン、メチルフェニルシリコーン、メチルハイドロジェンシリコーン、環状ジメチルシリコーンなどのシリコーン油(主鎖にシロキサン単位を有するシロキサン化合物);パーフルオロアルキルエーテル、パーフルオロポリエーテル、ハイドロクロロフルオロカーボンなどのフルオロカーボン化合物;菜種油の低級アルコールによるエステル化物などが挙げられる。なかでも、絶縁破壊電圧が高く、電気化学的に安定的である観点から、シリコーン油(主鎖にシロキサン単位を有するシロキサン化合物)が好ましく、入手の容易さ、価格面の観点からジメチルシリコーンがより好ましい。本発明の電極用多孔質炭素材料は、絶縁材として、これらの絶縁材を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 本発明の電極用多孔質炭素材料は、多孔質炭素材料100質量部に対して0.5~5質量部、好ましくは0.7~4.5質量部、より好ましくは1~4質量部の絶縁材を含む。絶縁材の量が上記所定の量より低いと、本発明の電極用多孔質炭素材料を用いて製造した電極を含むエネルギー貯蔵デバイスにおいて、電解液の分解によるガス発生の抑制効果や性能維持率およびエネルギー密度改善効果が十分でない。絶縁材の量が多孔質炭素材料100質量部に対して5質量部を超えてもガス発生の抑制効果が飽和しており向上しない一方で、多孔質炭素材料の細孔が閉塞され、エネルギー貯蔵能力が低下する場合がある。
 絶縁材の25℃における動粘度は、絶縁材を薄く均一に担持させて少ない担持量でも十分な効果を得る観点およびエネルギー貯蔵能力の観点から、好ましくは1~1000mm/s、より好ましくは1.5~500mm/s、更に好ましくは2~300mm/sである。動粘度が低すぎると、絶縁材の沸点が相対的に低くなり、本発明の電極用多孔質炭素材料を製造する際あるいは電極作成前後の乾燥や、本発明の電極用多孔質炭素材料を用いて電極を作製する際の加熱処理等の温度によっては、絶縁材が揮散して絶縁材の担持量が減少し、効果が低減する場合がある。動粘度が高すぎると、粘性が高いために薄く均一に担持させることが難しくなり、十分な効果を達成するに必要な担持量が増加する場合がある。また、多孔質炭素材料の細孔が閉塞され、エネルギー貯蔵能力が低下する可能性がある。ここで、動粘度の測定は、JIS-K2283(2000年)に基づいて、25℃で行うことができる。
 絶縁材の沸点は、150℃以上であり、好ましくは200℃以上である。絶縁材の沸点が低すぎる場合、本発明の電極用多孔質炭素材料を製造する際あるいは電極作成前後の乾燥や、本発明の電極用多孔質炭素材料を用いて電極を作製する際の加熱処理等の温度によっては、絶縁材が揮発して、絶縁材の担持量が減少し、効果が低減する場合がある。また、加熱処理や乾燥等を行う際に、着火する恐れがある。絶縁材の沸点の上限は、特に限定されない。
 絶縁材の流動点は、好ましくは-30℃以下、より好ましくは-40℃以下である。流動点が高すぎると、寒冷地等の低温環境下において動粘度が急激に上昇し、絶縁材が固化することにより、エネルギー貯蔵能力が低下する可能性がある。また、絶縁材の流動点を調整するために、流動点降下剤を添加してもよい。流動点降下剤を添加することによって界面張力が下がり、多孔質炭素材料の細孔に薄く均一に担持することができる。添加する流動点降下剤としては特に限定されず、周知の添加剤を用いることができる。具体的には、ポリアルキルアクリレート、ポリビニルアセテート、ポリアルキルスチレン、ポリブテン、エチレンプロピレン共重合体、ポリアルキルメタクリレート、塩素化パラフィンとナフタリンまたはフェノールの縮合物等が挙げられる。これらの流動点降下剤の中から適宜有効なものを選択して使用することができる。流動点降下剤を添加する場合、流動点降下剤の添加量は、添加対象である絶縁材の種類によって適宜選択してよいが、流動性降下の効果を得る観点から、絶縁材100質量部に対して0.01質量部以上であることが好ましい。また、多孔質炭素材に添着させる際に多孔質炭素材の細孔を閉塞するなどの影響を及ぼす可能性が低い観点から、絶縁材100質量部に対して0.3質量部以下であることが好ましい。
 本発明の電極用多孔質炭素材料は、多孔質炭素材料100質量部に対して0.5~5質量部の、150℃以上の沸点を有する絶縁材、および、該絶縁材100質量部に対して0.25~15質量部の導電助材を含む。導電助材は、エネルギー貯蔵デバイス内部において化学的および電気化学的に安定して存在できるものであれば特に限定されず、例えば粒子状または繊維状の導電助材を使用することができる。粒子状の導電助材としては、例えばアセチレンブラック、ファーネスブラックなどのカーボンブラック、天然黒鉛、人造黒鉛、窒化チタン粒子などが挙げられ、さらにこれらの表面改質を施したものも好適に用いることができる。導電助材として、粒子状導電助材を用いることが入手の容易性と価格の観点から好ましく、アセチレンブラックなどのカーボンブラックを用いることがより好ましい。繊維状の導電助材としては、気相法炭素繊維(VGCF)などの炭素繊維などが挙げられる。導電助材として、1種類の導電助材を単独で使用してもよいし、2種以上の導電助材を組み合わせて使用してもよい。
 導電助材として粒子状導電助材を使用する本発明の一態様において、粒子状導電助材の一次粒子径は、分散性の観点から、好ましくは20nm以上、より好ましくは30nm以上である。粒子状導電助材の一次粒子径は、導電パス数を高めて、絶縁材添加に伴う抵抗増加の抑制効果を高める観点から、好ましくは100nm以下、より好ましくは50nm以下である。なお、一次粒子径は、電子顕微鏡を用いて測定された粒子径の平均値である。
 本発明の電極用多孔質炭素材料は、多孔質炭素材料と絶縁材および導電助材を含む。導電助材の量は、絶縁材100質量部に対して0.25~15質量部、好ましくは0.5~12.5質量部、より好ましくは1~12.5質量部である。導電助材の量が上記所定の範囲より低いと、絶縁材の添加による抵抗増加を抑制する効果が十分に発現されない。導電助材の量が上記所定の範囲を超えると、絶縁材の添加による抵抗増加を抑制する効果が低下する。これは、原因は明確ではないが、導電助材の分散性が低下するためであると考えられる。
 本発明のエネルギー貯蔵デバイスの電極用多孔質炭素材料は、多孔質炭素材料、絶縁材および導電助材を含み、該多孔質炭素材料に、該絶縁材および該導電助材が一緒になって担持された電極用多孔質炭素材料である。多孔質炭素材料に絶縁材および導電助材が一緒になって担持されることによって、劣化の要因となり得る水が多孔質炭素材料に吸着することを抑制すること、および、多孔質炭素材料界面と電解液との直接的な接触を低減し、エネルギー貯蔵デバイスの劣化を抑制することに加えて、一緒になって担持された導電助材により、絶縁材添加に伴う抵抗の増加が抑制され、性能維持率等の耐久性に優れ、ガス発生量が少なく、高電位で使用可能なエネルギー貯蔵デバイスの電極用多孔質炭素材料を得ることができる。
 多孔質炭素材料に、絶縁材および導電助材が一緒になって担持された状態としては、例えば多孔質炭素材料の表面上に、絶縁材および導電助材が混合物として存在する状態、多孔質炭素材料の表面上に広がった絶縁材に導電助材が埋め込まれているか、または分散されている状態等が考えられる。
 本発明のエネルギー貯蔵デバイスの電極用多孔質炭素材料は、多孔質炭素材料に、多孔質炭素材料100質量部に対して0.5~5質量部の絶縁材および該絶縁材100質量部に対して0.25~15質量部の導電助材を担持させて、製造することができる。担持させる絶縁材量は、多孔質炭素材料100質量部に対して好ましくは0.7~4.5質量部、より好ましくは1~4質量部である。担持させる導電助材量は、多孔質炭素材料100質量部に対して好ましくは0.5~12.5質量部、より好ましくは1~12.5質量部である。
 担持の方法は特に限定されないが、例えば多孔質炭素材料に絶縁材および導電助材を同時に添加して担持させる方法や、多孔質炭素材料に絶縁材および導電助材を含む混合物を添加して担持させる方法や、多孔質炭素材料を絶縁材および導電助材を含む混合物に浸漬させて担持させる方法で行ってよい。例えば以下に示す添着原液または添着液を用いる方法により行うことができる。
(1)絶縁材の添着原液または絶縁材を溶媒で希釈した添着液と、導電助材とを、多孔質炭素材料に対して例えば噴霧、吹付け等により同時に添加するか、多孔質炭素材料に添加して撹拌・混合する方法。
(2)絶縁材および導電助材を予め混合して混合液(添着原液)を調製し、該混合液を多孔質炭素材料に対して噴霧するか、または、該混合液を多孔質炭素材料に加えて撹拌・混合する方法。
(3)絶縁材の添着原液または絶縁材を溶媒で希釈した添着液と、導電助材を溶媒で希釈した添着液とを、多孔質炭素材料に対して例えば噴霧等により同時に添加するか、多孔質炭素材料に添加して撹拌・混合するか、または多孔質炭素材料を所定量の絶縁材を溶媒で希釈した添着液および所定量の導電助材を溶媒で希釈した添着液の混合物に浸漬させる方法。なお、溶媒は、必要に応じて乾燥させてよい。
(4)絶縁材、導電助材および溶媒を予め混合して得た添着液を、多孔質炭素材料に対して噴霧等により添加するか、多孔質炭素材料に添加して撹拌・混合するか、または該添着液に多孔質炭素材料を浸漬させる方法。なお、必要に応じて溶媒を乾燥させてよい。
 添着原液または添着液を噴霧により添加する場合、噴霧装置としては例えばスプレー等を用いてよい。導電助材が粉末状である場合、導電助材を、多孔質炭素材料に対して吹付けることにより添加してよい。吹付けを行う装置としては、例えばエアーブラスト・エアースプレーからなる粉体塗装装置、静電塗装装置等を用いてよい。また、ダブルコーンミキサー、水平円筒型ミキサー、揺動回転型ミキサー、コンクリートミキサー等の混合・攪拌装置内で多孔質炭素材料を回転させながらあるいはボールミルやビーズミル、ジェットミル等の粉砕機内で噴霧、吹付けを行ってよい。さらにはロータリーキルン等の攪拌加熱可能な装置内で噴霧、吹付けを行い、次いで乾燥することも可能である。添着原液または添着液を浸漬させる場合、添着原液または添着液中に多孔質炭素材料を加えて浸漬させ、必要に応じて固体を分離し、乾燥させてよい。加工の容易さおよび絶縁材、導電助材の共存確率の観点から、上記(2)、(4)の方法を使用することが好ましい。
 本発明のエネルギー貯蔵デバイスの電極用多孔質炭素材料は、多孔質炭素材料に絶縁材および導電助材からなる添着原液を添加して担持させて製造することができる。添着原液を、溶媒あるいは以下に述べる高分子化合物を含む溶媒と混合することにより希釈して多孔質炭素材料に添加して、担持させることも可能である。
 絶縁材および導電助材を予め混合して得た混合液を使用する場合、該混合液中に絶縁材および導電助材がある程度均一に分散していることが、添加量が少ない場合においても多孔質炭素材料への均一な担持が可能となるため好ましい。均質に分散させるためには、例えば該混合液をエマルジョンとすることや、該混合液に以下に述べる高分子化合物を添加する方法などが挙げられる。また、混合液を多孔質材料に添加、噴霧等する直前に調製することや、添加、噴霧等する直前に再撹拌することにより、分散を高めることなどが挙げられる。
 絶縁材および/または導電助材の添着原液を溶媒で希釈した添着液を使用して同時担持を行う場合、溶媒は、好ましくは100~330℃の乾燥処理により取り除かれるものであることが好ましい。このような溶媒としては、例えば水、エタノール、メタノール、プロパノール、ブタノール等のアルコール、アセトン、メチルエチルケトン、メチルイソブチルケトン、ベンゼン、トルエン、キシレン、シクロヘキサン等が挙げられる。溶媒として1種類の溶媒を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。中でも溶媒として水を用いることが、地球環境や製造上の安全性の面から好ましい。
 添着原液あるいは添着液を構成する絶縁材中に導電助材を分散させる方法としては、導電助材が分散可能な方法であれば特に限定されず、各種分散装置の利用が可能である。例えば高速回転するインペラによって攪拌するハイスピードミキサや、2本または3本のローラの間で練込むロールミルや硬球を所定容器内で運動させその際に生じる衝撃により効果を発現させるビーズミル、ボールミル、材料の粉砕と分散を同時に行う高速回転せん断型攪拌機、対象となる懸濁液に高圧をかけ、液同士の衝突により分散乳化を図る高圧噴射型分散機、超音波を用いる超音波乳化分散機などが挙げられる。
 これらの装置は絶縁材と導電助材との分散、混合、および、絶縁材および/または導電助材と溶媒等との分散、混合に好適に使用することが可能である。1種または2種以上の装置を利用することも可能である。
 水等の溶媒に、絶縁材および/または導電助材を分散させる目的で、高分子化合物を添加することが可能である。高分子化合物としては、エネルギー貯蔵デバイス内部において化学的および電気化学的に安定して存在でき、絶縁材および導電助材の分散を高めるか、あるいは、増粘性を発現できるものであれば特に限定されないが、例えばセルロース誘導体(カルボキシメチルセルロース(CMC)のナトリウム塩、もしくはアンモニウム塩)、ポリアクリル酸およびポリアクリル酸塩、ポリエチレンオキサイドおよびその誘導体などが挙げられる。高分子化合物として、これらの1種を単独で使用してよいし、2種以上を組み合わせて使用してもよい。高分子化合物としては、電極材への使用実績の観点から、カルボキシメチルセルロースが好ましい。高分子化合物の量は使用する高分子化合物によって異なり特に限定されないが、例えば活性炭等の多孔質炭素材料の細孔への影響を考慮すると、該多孔質炭素材料100質量部に対して固形分として5質量部未満が好ましく、2質量部未満であることがより好ましい。
 高分子化合物を用いる本発明の一態様において、本発明のエネルギー貯蔵デバイスの電極用多孔質炭素材料は、さらに高分子化合物が一緒になって担持されていてよい。ここで、高分子化合物は蓄電容量に寄与するものではない添加物である為、担持されていないことが好ましいが、導電助材の分散性の向上や維持等の観点からは、一緒になって担持されてもかまわない。本発明のエネルギー貯蔵デバイスの電極用多孔質炭素材料における高分子化合物の量は、例えば活性炭等の多孔質炭素材料の細孔への影響を考慮し、該多孔質炭素材料100質量部に対して固形分として5質量部未満が好ましく、2質量部未満であることがより好ましい。
 多孔質炭素材料に絶縁材および導電助材を担持させた後、多孔質炭素材料を乾燥することにより本発明のエネルギー貯蔵デバイスの電極用多孔質炭素材料を製造することができる。乾燥は、多孔質炭素材料に吸着している水分や添着原液を希釈する際に使用される溶媒等を除去するための操作であり、例えば多孔質炭素材料を加熱することにより、多孔質炭素材料に吸着している水分や添着原液を希釈する際に使用される溶媒等を除去することができる。加熱することに加えて、または、加熱することに代えて、例えば減圧、減圧加熱、凍結などの手段により乾燥を行い、多孔質炭素材料に吸着している水分や添着原液を希釈する際に使用される溶媒等を除去してもよい。
 乾燥は、好ましくは100~330℃の温度で、好ましくは0.1~24時間かけて加熱して行うことが好ましい。
 乾燥温度は、多孔質炭素材料に吸着している水分の除去の観点から、100℃以上であることが好ましく、110℃以上であることがより好ましく、120℃以上であることが更に好ましい。乾燥温度は、絶縁材が加熱されることによる絶縁材の分解および揮散を防ぐ観点から、330℃以下であることが好ましく、300℃以下であることがより好ましく、250℃以下であることが更に好ましい。
 乾燥時間は採用する乾燥温度にもよるが、多孔質炭素材料に吸着している水分の除去の観点から、0.1時間以上であることが好ましく、0.5時間以上であることがより好ましく、1時間以上であることが更に好ましい。また、経済性の面では、24時間以下であることが好ましく、12時間以下であることがより好ましく、6時間以下であることが更に好ましい。
 乾燥を、常圧あるいは減圧雰囲気下で行うことが可能である。乾燥を常圧で行う場合、窒素ガスやアルゴンガスなどの不活性ガス雰囲気下あるいは露点-20℃以下のエアー雰囲気下で行うことが好ましい。
 本発明のエネルギー貯蔵デバイスの電極用多孔質炭素材料は、水の吸着や電解液の分解を抑制し、ガス発生量が抑制され、性能維持率および耐電圧に優れた効果を有する。そのため、本発明の電極用多孔質炭素材料は、高耐久性が求められる電気二重層キャパシタやリチウムイオンキャパシタ用の電極として好適に利用できる。本発明の電極用多孔質炭素材料を電極として使用する場合、例えば本発明の電極用多孔質炭素材料を適当な中心粒径となるように粉砕し、粉砕した電極用多孔質炭素材料を、バインダーおよび必要に応じてさらなる導電助材と混合し、得られた混合物を成形して電極を製造することができる。また、本発明の電極用多孔質炭素材料は、例えばリチウムイオン電池の正極用の添加材としても使用することができる。本発明の電極用多孔質炭素材料を電極の添加材として使用する場合、例えば適当な中心粒径となるように粉砕し、粉砕した電極用多孔質炭素材料を、リチウムイオン電池を構成する部材に添加、混合し、成形して正極を製造することができる。
 以下、実施例を用いて本発明をより詳細に説明するが、本発明は実施例により何ら制限されるものではない。本実施例および比較例における各物性値は以下の方法により測定した。
[比表面積測定]
 日本ベル株式会社製のBELSORP-miniを使用し、活性炭または炭素材料を窒素気流下(窒素流量:50mL/分)にて120℃で3時間加熱した後、77Kにおける活性炭および炭素材料の窒素吸着等温線を測定した。得られた吸着等温線からBET式により多点法による解析を行い、得られた曲線の相対圧p/p=0.01~0.1の領域での直線から比表面積を算出した。
[動粘度測定]
 JIS K2283(2000年)に基づいて、25℃で測定した。測定装置としては、ウベローデ粘度計を使用した。
[試験用電極の作成]
 電極構成部材である電極用多孔質炭素材料、バインダーおよび導電助材を、事前に120℃、減圧(0.1KPa以下)の雰囲気にて16時間以上減圧乾燥を行い使用した。
 電極用多孔質炭素材料、導電助材およびバインダーを、(電極用多孔質炭素材料に含まれる多孔質炭素材料および絶縁材の質量):(電極用多孔質炭素材料に含まれる導電助材の質量+電極作成時に添加した導電助材の質量):バインダーの質量の比が81:9:10となるように秤量し、混錬した。上記バインダーとしては、三井・デュポン株式会社製のポリテトラフルオロエチレン「6J」を使用し、上記導電助材としては、電気化学工業株式会社製の導電性カーボンブラック「デンカブラック粒状」を使用した。混錬した後、さらに均一化を図る為、1mm角以下のフレーク状にカットし、コイン成形機にて400Kg/cmの圧力を与え、コイン状の二次成形物を得た。得られた二次成形物をロールプレス機により160μm±5%の厚みのシート状に成形した後、所定の大きさ(3cm×3cm)に切り出し、図1に示すような電極組成物1を作製した。そして、得られた電極組成物1を120℃、減圧雰囲気下で16時間以上乾燥した後、重量、シート厚みおよび寸法を計測し、以下の測定に用いた。なお、電極用多孔質炭素材料の作成については、それぞれの実施例および比較例について後述する。また、表1に電極用多孔質材料の組成を示す。
 [測定電極セルの作成]
 図2に示すように、宝泉株式会社より入手したエッチングアルミニウム箔3に日立化成工業株式会社製の導電性接着剤2「HITASOL GA-703」を塗布厚が100μmになるように塗布した。そして、図3に示すように、導電性接着剤2が塗布されたエッチングアルミニウム箔3と先にカットしておいたシート状の電極組成物1とを接着した。そして、宝泉株式会社より入手したアルミニウム製のシーラント5付きタブ4をエッチングアルミニウム箔3に超音波溶接機を用いて溶接した。溶接後、120℃で真空乾燥し、アルミニウム製の集電体を備える分極性電極6を得た。
 図4に示すように、宝泉株式会社製のアルミニウム積層樹脂シートを長方形(縦200mm×横60mm)に切り出し2つ折にして、1辺(図4中の(1))を熱圧着して残る2辺が開放された袋状外装シート7を準備した。日本高度紙工業株式会社製のセルロース製セパレーター「TF-40」(図示せず)を介して上記の分極性電極6を2枚重ね合わせた積層体を作製した。この積層体を外装シート7に挿入して、タブ4が接する1辺(図5中の(2))を熱圧着して分極性電極6を固定した。そして、120℃、減圧雰囲気下で16時間以上真空乾燥させた後、アルゴン雰囲気(露点-90℃以下)のドライボックス内で電解液を注入した。電解液としては、東洋合成工業株式会社製の1.5mol/Lのトリエチルメチルアンモニウム・テトラフルオロボレートのプロピレンカーボネート溶液を使用した。外装シート7内で積層体に電解液を含侵させた後、外装シート7の残る1辺(図5中の(3))を熱圧着して図5に示す電気二重層キャパシタ8を作製した。
 [静電容量測定]
 得られた電気二重層キャパシタ8を菊水電子工業株式会社製の「CAPACITOR TESTER PFX2411」を用いて、25℃および-30℃において、到達電圧3.0Vまで、電極表面積あたり200mAで定電流充電し、さらに、3.0Vで30分、定電圧下補充電し、補充電完了後、25mAで放電した。得られた放電曲線データをエネルギー換算法で算出し静電容量(F)とした。具体的には、充電の後電圧がゼロになるまで放電し、このとき放電した放電エネルギーから静電容量(F)を計算した。そして、電極体積あたりで割った静電容量(F/cc)を求めた。その結果を表2に示す。
 [耐久性試験]
 耐久性試験は先に記述した静電容量測定後、60℃の恒温槽中にて3.0Vの電圧を印加しながら400時間保持した後で、上記と同様にして25℃および-30℃において静電容量測定を行った。耐久試験前後の静電容量から、次の式(1)に従いそれぞれの温度についての容量維持率を求めた。60℃の恒温槽中にて3.0Vの電圧を印加しながら400時間保持する前を耐久試験前とし、400時間保持した後を耐久試験後とした。その結果を表2に示す。
Figure JPOXMLDOC01-appb-M000001
 [抵抗測定]
 抵抗測定は電気化学測定装置(BioLogic社製 VSP)を用い、25℃および-30℃において、定電圧交流インピ-ダンス測定法にて0Vを中心に5mVの振幅幅を与え、4mHzから1MHzの周波数にて測定を実施し、周波数とインピーダンスの関係を示すBode-Plot(図6)を得た。本Plotにおける1Hzおよび1000Hzにおける抵抗値の差を電荷移動(電極反応およびイオン吸脱着)にかかわる抵抗として求め、抵抗値を比較した。その結果を表3に示す。
 [ガス発生量測定]
 発生したガス量は、測定電極セルの乾燥重量と水中の重量を測り、発生した浮力および水の密度からセル体積を求め、耐久試験前後のセル体積の変化から算出したガス体積量を測定時の温度差で補正し、求めた。すなわち、発生したガス量は以下の式(2)で求めた。なお、式(2)中、セル重量Aとは空気中でのセル重量(g)を表し、セル重量Wとは水中でのセル重量(g)を表す。
Figure JPOXMLDOC01-appb-M000002
 上記のガス発生量をさらに電極組成物を構成する活性炭質量で割った値を、活性炭質量あたりのガス発生量(cc/g)とした。その結果を表2に示す。
実施例1
 シロキサン化合物の1種であるジメチルシリコンオイル「KF-96-100CS」(信越化学工業株式会社製、沸点:200℃以上、150℃/24hにおける揮発分0.5以下、動粘度:100mm/s)2.00質量部、デンカブラック(電気化学工業株式会社製)0.02質量部(絶縁材100質量部に対して1質量部に相当する)を混合し、薄膜旋回型高速ミキサー「フィルミックス40-40型」(プライミクス社製)にて攪拌した。さらに、1時間超音波振動を与えて均一分散させ、添着液を調製した。
 この添着液を、クラレケミカル株式会社製の椰子殻粒状活性炭(BET比表面積:1630m/g、粒径:10メッシュのふるいを通過し、60メッシュのふるいを通過しない活性炭が98重量%以上、強熱残分:0.17%)100質量部に、スプレーを使用して噴霧した。その後得られた炭素材料を120℃で16時間乾燥し、102.02質量部の電極用多孔質炭素材料を得た。得られた電極用多孔質炭素材料を用い各種物性を測定した。
 得られた電極用多孔質炭素材料を中心粒径が6μmになるように微粉砕した後、前述した電極の作成方法に従い、電極組成物1を得た。この電極組成物1を用い、前述した測定電極セルの作成方法に従い、分極性電極6および電気二重層キャパシタ8を作成した。そして得られた電気二重層キャパシタ8を用いて各種測定を実施した。得られた電極用多孔質材料の各種物性値および得られた電気二重層キャパシタの各測定結果を表1~3に示す。
実施例2
 ジメチルシリコンオイル「KF-96-100CS」2.00質量部、デンカブラック0.02質量部(絶縁材100質量部に対し1質量部に相当する)を、CMC「セロゲン7A」(第一工業製薬株式会社製)2質量%水溶液0.50質量部と混合し、薄膜旋回型高速ミキサー「フィルミックス40-40型」にて攪拌した。さらに全体で30.00質量部となるようイオン交換水と混合、攪拌し、添着液を調製した。この溶液を、実施例1と同様に椰子殻粒状活性炭100質量部に噴霧した。その後、得られた炭素材料を120℃、減圧雰囲気下で16時間以上真空乾燥し、102.03質量部の電極用多孔質炭素材料を得た。得られた電極用多孔質炭素材料を中心粒径が6μmになるように微粉砕した後、実施例1と同様にして、電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
実施例3
 ジメチルシリコンオイル「KF-96-100CS」1.50質量部、ジメチルシリコンオイル(動粘度100mm/s)のエマルジョンであるソフナーシル10(信越化学工業株式会社製、不揮発分30%、うち混合物2%と記載)1.79質量部、デンカブラック0.02質量部(絶縁材100質量部に対し1質量部に相当する)を、薄膜旋回型高速ミキサー「フィルミックス40-40型」にて攪拌し、さらに全体で40.00質量部となるようイオン交換水と混合、攪拌し、エマルジョン溶液を調製した。この溶液を、実施例1と同様に椰子殻粒状活性炭100質量部に噴霧した。その後得られた炭素材料を120℃で16時間乾燥し、102.06質量部の電極用多孔質炭素材料を得た。得られた電極用多孔質炭素材料を中心粒径が6μmになるように微粉砕した後、実施例1と同様にして、電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
実施例4
 ジメチルシリコンオイルの量を1.00質量部に変更した以外は、実施例2と同様にして電極用多孔質炭素材料を得た(導電助材量は絶縁材100質量部に対し2質量部に相当する)。実施例4において、噴霧、乾燥後の電極用多孔質炭素材料は101.03質量部であった。得られた電極用多孔質炭素材料を中心粒径が6μmになるように微粉砕した後、実施例1と同様にして、電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
実施例5
 ジメチルシリコンオイルの量を3.00質量部に変更した以外は実施例2と同様にして、電極用多孔質炭素材料を得た(導電助材量は絶縁材100質量部に対し0.67質量部に相当する)。実施例5において、噴霧、乾燥後の電極用多孔質炭素材料は103.03質量部であった。得られた電極用多孔質炭素材料を中心粒径が6μmになるように微粉砕した後、実施例1と同様にして、電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
実施例6
 ジメチルシリコンオイルの量を5.00質量部に変更した以外は実施例2と同様にして、電極用多孔質炭素材料を得た(導電助材量は絶縁材100質量部に対し0.40質量部に相当する)。実施例6において、噴霧、乾燥後の電極用多孔質炭素材料は105.03質量部であった。得られた電極用多孔質炭素材料を中心粒径が6μmになるように微粉砕した後、実施例1と同様にして、電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
実施例7
 ジメチルシリコンオイル「KF96-100CS」を「KF96L-2CS」(沸点:230℃、動粘度:2mm/s)に変更した以外は実施例1と同様にして、電極用多孔質炭素材料を得た。実施例7において、噴霧、乾燥後の電極用多孔質炭素材料は102.02質量部であった。得られた電極用多孔質炭素材料を中心粒径が6μmになるように微粉砕した後、実施例1と同様にして、電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
実施例8
 ジメチルシリコンオイル「KF96-100CS」を「KF96-50CS」(沸点:200℃以上、150℃/24hにおける揮発分0.5以下、動粘度:50mm/s)に変更した以外は実施例1と同様にして、電極用多孔質炭素材料を得た。実施例8において、噴霧、乾燥後の電極用多孔質炭素材料は102.06質量部であった。得られた電極用多孔質炭素材料を中心粒径が6μmになるように微粉砕した後、実施例1と同様にして、電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
実施例9
 ジメチルシリコンオイル「KF-96-100CS」を「KF-96-1000CS」(沸点:200℃以上、150℃/24hにおける揮発分0.5以下、動粘度:1000mm/s)に変更した以外は実施例1と同様にして、電極用多孔質炭素材料を得た。実施例9において、噴霧、乾燥後の電極用多孔質炭素材料は102.02質量部であった。得られた電極用多孔質炭素材料を中心粒径が6μmになるように微粉砕した後、実施例1と同様にして、電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
実施例10
 デンカブラックの量を0.05質量部(絶縁材100質量部に対し2.5質量部に相当する)に変更した以外は実施例2と同様にして、電極用多孔質炭素材料を得た。実施例10において、噴霧、乾燥後の電極用多孔質炭素材料は102.06質量部であった。得られた電極用多孔質炭素材料を中心粒径が6μmになるように微粉砕した後、実施例1と同様にして、電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
実施例11
 デンカブラックの量を0.20質量部(絶縁材100質量部に対し10質量部に相当する)に変更した以外は実施例2と同様にして、電極用多孔質炭素材料を得た。実施例11において、噴霧、乾燥後の電極用多孔質炭素材料は102.21質量部であった。得られた多孔質炭素材料を中心粒径が6μmになるように微粉砕した後、実施例1と同様にして、電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
実施例12
 クラレケミカル株式会社製の椰子殻粒状活性炭をBET比表面積が1450m/gのものに変更した以外は、実施例1と同様にして電極用多孔質炭素材料を得た。実施例12において、噴霧、乾燥後の電極用多孔質炭素材料は102.02質量部であった。得られた電極用多孔質炭素材料を中心粒径が6μmになるように微粉砕した後、実施例1と同様にして、電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
実施例13
 クラレケミカル株式会社製の椰子殻粒状活性炭をBET比表面積が1862m/gのものに変更した以外は実施例1と同様にして、電極用多孔質炭素材料を得た。実施例13において、噴霧、乾燥後の電極用多孔質炭素材料は102.02質量部であった。得られた電極用多孔質炭素材料を中心粒径が6μmになるように微粉砕した後、実施例1と同様にして、電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
実施例14
 クラレケミカル株式会社製の椰子殻粒状活性炭をBET比表面積が2069m/gのものに変更した以外は実施例1と同様にして、電極用多孔質炭素材料を得た。実施例14において、噴霧、乾燥後の電極用多孔質炭素材料は102.02質量部であった。得られた電極用多孔質炭素材料を中心粒径が6μmになるように微粉砕した後、実施例1と同様にして、電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
実施例15
 実施例2と同様にして、電極用多孔質炭素材料および分極性電極6を得た。そして電解液として、1.5mol/Lのトリエチルメチルアンモニウム・テトラフルオロボレートのプロピレンカーボネート溶液に代えて、富山薬品工業株式会社製の1.0mol/Lのテトラエチルアンモニウム・テトラフルオロボレートのアセトニトリル溶液「LIPASTE-AN/EAF1」を用いた以外は実施例1と同様にして、電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
実施例16
 実施例11と同様にして、電極用多孔質炭素材料および分極性電極6を得た。そして電解液として、1.5mol/Lのトリエチルメチルアンモニウム・テトラフルオロボレートのプロピレンカーボネート溶液に代えて、富山薬品工業株式会社製の1.0mol/Lのテトラエチルアンモニウム・テトラフルオロボレートのアセトニトリル溶液「LIPASTE-AN/EAF1」を用いた以外は実施例1と同様にして、電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
参考例1
 活性炭に添着液を噴霧することなく、実施例1で用いたクラレケミカル株式会社製の椰子殻粒状活性炭を粉砕したものをそのまま用いて、実施例1と同様にして電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
参考例2
 クラレケミカル株式会社製の椰子殻粒状活性炭をBET比表面積が1290m/gのものに変更し、活性炭に添着液を噴霧することなく、椰子殻粒状活性炭を粉砕したものをそのまま用いて、実施例1と同様にして電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
参考例3
 クラレケミカル株式会社製の椰子殻粒状活性炭をBET比表面積が1450m/gのものに変更し、活性炭に添着液を噴霧することなく、椰子殻粒状活性炭を粉砕したものをそのまま用いて、実施例1と同様にして電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
参考例4
 クラレケミカル株式会社製の椰子殻粒状活性炭をBET比表面積が1862m/gのものに変更し、活性炭に添着液を噴霧することなく、椰子殻粒状活性炭を粉砕したものをそのまま用いて、実施例1と同様にして電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
参考例5
 クラレケミカル株式会社製の椰子殻粒状活性炭をBET比表面積が2069m/gのものに変更し、活性炭に添着液を噴霧することなく、椰子殻粒状活性炭を粉砕したものをそのまま用いて、実施例1と同様にして電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
参考例6
 クラレケミカル株式会社製の椰子殻粒状活性炭をBET比表面積が2224m/gのものに変更し、活性炭に添着液を噴霧することなく、椰子殻粒状活性炭を粉砕したものをそのまま用いて、実施例1と同様にして電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
参考例7
 参考例1と同様にして、電極組成物1および分極性電極6を得た。そして電解液として、1.5mol/Lのトリエチルメチルアンモニウム・テトラフルオロボレートのプロピレンカーボネート溶液に代えて、富山薬品工業株式会社製の1.0mol/Lのテトラエチルアンモニウム・テトラフルオロボレートのアセトニトリル溶液「LIPASTE-AN/EAF1」を用いたこと以外は実施例1と同様にして、電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
比較例1
 デンカブラックを除いたこと以外は実施例1と同様にして、電極用多孔質炭素材料を得た。比較例1において、噴霧、乾燥後の電極用多孔質炭素材料は102.00質量部であった。この電極用多孔質炭素材料を中心粒径が6μmになるように微粉砕した後、実施例1と同様にして電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
比較例2
 ジメチルシリコンオイル「KF-96-100CS」の量を0.30質量部に変更した以外は実施例2と同様にして、電極用多孔質炭素材料を得た(導電助材量は絶縁材100質量部に対し6.67質量部に相当する)。比較例2において、噴霧、乾燥後の電極用多孔質炭素材料は100.33質量部であった。得られた電極用多孔質炭素材料を中心粒径が6μmになるように微粉砕した後、実施例1と同様にして電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
比較例3
 ジメチルシリコンオイルの量を7.00質量部に変更した以外は実施例2と同様にして、電極用多孔質炭素材料を得た(導電助材量は絶縁材100質量部に対し0.29質量部に相当する)。比較例3において、噴霧、乾燥後の電極用多孔質炭素材料は107.03質量部であった。得られた電極用多孔質炭素材料を中心粒径が6μmになるように微粉砕した後、実施例1と同様にして電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。測定結果を表1~3に示す。
比較例4
 ジメチルシリコンオイル「KF-96-100CS」を「KF-96L-0.65CS」(沸点:100℃、動粘度:0.65mm/s)に変更した以外は実施例1と同様にして、電極用多孔質炭素材料を得た。比較例3において、噴霧、乾燥後の電極用多孔質炭素材料は100.42質量部であった。得られた電極用多孔質炭素材料を中心粒径が6μmになるように微粉砕した後、実施例1と同様にして電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
比較例5
 デンカブラックの量を0.002質量部(絶縁材100質量部に対し0.1質量部に相当する)に変更した以外は実施例2と同様にして、電極用多孔質炭素材料を得た。比較例5において、噴霧、乾燥後の電極用多孔質炭素材料は102.012質量部であった。得られた電極用多孔質炭素材料を中心粒径が6μmになるように微粉砕した後、実施例1と同様にして電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
比較例6
 デンカブラックの量を0.40質量部(絶縁材100質量部に対し20質量部に相当する)に変更した以外は、実施例2と同様にして電極用多孔質炭素材料を得た。比較例6において、噴霧、乾燥後の電極用多孔質炭素材料は102.41質量部であった。得られた電極用多孔質炭素材料を中心粒径が6μmになるように微粉砕した後、実施例1と同様にして電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
比較例7
 クラレケミカル株式会社製の椰子殻粒状活性炭をBET比表面積が2224m/gのものに変更した以外は実施例1と同様にして、電極用多孔質炭素材料を得た。比較例7において、噴霧、乾燥後の電極用多孔質炭素材料は102.02質量部であった。得られた電極用多孔質炭素材料を中心粒径が6μmになるように微粉砕した後、実施例1と同様にして電極組成物1、分極性電極6および電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
比較例8
 デンカブラックを除いたこと以外は実施例2と同様にして、電極用多孔質炭素材料、電極組成物1および分極性電極6を得た。そして電解液として富山薬品工業株式会社製の1.0mol/Lのテトラエチルアンモニウム・テトラフルオロボレートのアセトニトリル溶液「LIPASTE-AN/EAF1」を用いた以外は実施例1と同様にして、電気二重層キャパシタ8を作製した。そして実施例1と同様の方法で各種測定を実施した。各測定結果を表1~3に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
<電気二重層キャパシタの初期性能、および耐久試験後の性能評価>
 キャパシタの性能評価として耐久性の評価を行う場合、一般的には、常温(25℃)での容量や抵抗の評価を加速試験の前後で行い、その変化を測定する。しかしながら常温での評価では劣化現象を確認する為に長期にわたる加速試験を必要とする(たとえば60℃の電圧負荷試験であれば2000時間程度)。低温下で容量や抵抗の評価を行うことにより、常温で評価を行う場合と比較して、劣化現象を早期に比較・確認することが可能である。ここで、キャパシタの劣化は、キャパシタの構成部材(電極、電解液、バインダー等)が電気化学的反応により劣化することで引き起こされる。
 具体的には以下のような反応が考えられる。
(1)電解液の分解
(2)多孔質炭素材料および/または電解液中に残留する水分の分解に伴うフッ化水素酸の生成と副反応
(3)電極界面におけるSEI(Solid electrolyte interface)被膜の生成による、細孔径の変化あるいは細孔の閉塞
(4)残留水分の分解や、多孔質炭素材料に含まれる表面官能基の酸化および電解液の劣化に伴うガスの発生
 これらの現象により、抵抗の増加、静電容量の低下やガス発生に伴うセルの膨張といったキャパシタの劣化が引き起こされると考えられる。
 特に、低温下で測定比較を行う場合には、低温であるために電解液の粘性が増加し、電極材、電極界面の劣化および/または電解液の劣化などが、容量や抵抗等の評価により顕著に反映されると考えられる。このような観点から本発明においては、劣化現象を明確に比較、検討するため、耐久試験(60℃、3Vの負荷を所定時間)を実施し、その後の劣化状態を-30℃での評価を中心に比較した。
 表2に示すように、本発明の電極用多孔質炭素材料を用いた分極性電極により作製された電気二重層キャパシタは、該電極用多孔質炭素材料の基材となる多孔質炭素材料および絶縁材のみを含む電極用多孔質炭素材料を用いて作製した電気二重層キャパシタと比較して、25℃および-30℃において同等以上の初期静電容量を有している。多孔質炭素材料に絶縁材を担持させる場合、多孔質炭素材料の細孔が絶縁材によって閉塞され、静電容量が低下する。これに対し、本発明の電極用多孔質炭素材料を用いた分極性電極により作製された電気二重層キャパシタでは、このような静電容量の低下がほとんどないことが分かる。さらに耐久試験後においても高い容量維持率を示しており、ガスの発生も抑制されている。また表3に示すように、本発明の電極用多孔質炭素材料を用いた分極性電極より作製された電気二重層キャパシタは、抵抗の増加が抑制され、耐久性が大幅に向上する。これらのことから、本発明の電極用多孔質炭素材料を電極に使用すると、優れた耐久性を有するエネルギー貯蔵デバイスを得ることができることが明らかである。
 図6に、周波数と、-30℃での定電圧交流インピ-ダンス測定における電極用多孔質炭素材料および該電極用多孔質炭素材料の基材となる多孔質炭素材料の抵抗値との関係を表す(Bode-Plot図)。なお、耐久性には電荷移動(電極反応およびイオン吸脱着)が関与していると考えられていることから、1Hzと1000Hzの差を電荷移動に関わる抵抗として求めた。図6に示すように、高周波数域で抵抗が低下していることから、界面抵抗(電気抵抗)に効果があることが分かる。さらに、試験用電極中に同量の絶縁材および導電助材を含有する比較例1と実施例1とを比較すると、実施例1は比較例1より抵抗が小さくなっていることから、多孔質炭素材料に絶縁材を担持し後から導電助材を加えるより、電極用多孔質炭素材料に絶縁材と導電助材とが含まれていることで、抵抗増加が抑制されることが分かる。
 図7および図8に、電極用多孔質炭素材料または電極用多孔質炭素材料の基材となる多孔質炭素材料の比表面積と、耐久試験後に25℃または-30℃で測定した、電極の体積あたりの静電容量と、1Hzおよび1000Hzにおける抵抗成分の差との関係を示す。なお、図7および図8中、電極用多孔質炭素材料に関するプロットは、電極用多孔質炭素材料の比表面積が低いものから順に、実施例12、実施例1、実施例13、実施例14、比較例7に相当する。また、多孔質炭素材料(未担持)に関するプロットは、多孔質炭素材料の比表面積が低いものから順に、参考例2、参考例3、参考例1、参考例4、参考例5、参考例6に相当する。また、上記の実施例12、実施例1、実施例13、実施例14、比較例7の電極用多孔質炭素材料に含まれる多孔質炭素材料(絶縁材および導電助材は未担持)を用いて作製した電極が、それぞれ、参考例3、参考例1、参考例4、参考例5、参考例6に相当する。
 図7および図8において、多孔質炭素材料の比表面積が1300m/g未満の場合、静電容量は急激に低下している。
 また、図9に示すように、静電容量の維持率は電極用多孔質炭素材料の比表面積が大きくなると共に増加しているが、図7から比表面積が2050m/gを超えると25℃における静電容量は低下しており、さらに絶縁材と導電助材とを担持させることによる効果が得られていない。これらのことから、比表面積が1300m/g未満では細孔が塞がることにより十分な容量が得られないことと、2050m/gを超えると静電容量の増加効果が得られないことがわかる。
 図10および図11に示すように、絶縁材の量が多孔質炭素材料100質量部に対して0.5~5質量部であれば、高い性能維持率とガス発生量の抑制効果を得ることができる。絶縁材の量が多孔質炭素材料100質量部に対して0.5質量部より低いと、ガス発生の抑制効果や性能維持率および抵抗増加の抑制効果が十分でない。また絶縁材の量が多孔質炭素材料100質量部に対して5質量部より多いと、ガス発生の抑制効果が飽和する一方で、多孔質炭素材料の細孔が閉塞されてしまい、静電容量および性能維持率が低下する。
 図12および図13に示す動粘度が最も低い比較例4は、150℃未満の沸点を有する絶縁材を使用した比較例である。これに対し、150℃以上の沸点を有する絶縁材を使用した実施例1、7~9では、高い性能維持率とガス発生量の抑制効果を得ることができる。図12および図13より、沸点が150℃未満であると、電極用多孔質炭素材料を用いて電極を作製する際の乾燥等の温度によって、絶縁材が揮散することにより絶縁材の担持量が減少し、効果が低減する。また動粘度としては、1000mm/s以下である場合、粘性が高すぎることなく薄く均一に担持させることでき、多孔質炭素材料の細孔を塞ぐことなく、高い静電容量が得られるため好ましいことがわかる。
 図14および図15に示すように、導電助材の量が多孔質炭素材料に同時に添加される絶縁材100質量部に対して0.25~15質量部であれば、高い性能維持率とガス発生量の抑制効果を得ることができる。また、絶縁材のみを担持させた比較例1と比べて、絶縁材と導電助材とを担持させた実施例1および実施例11は、電極用多孔質炭素材料間に導電パスが形成され、絶縁材添加に伴う抵抗の増加を抑制することにより性能維持率に優れていると考えられる。ただし、導電助材の量が同時に添加される絶縁材100質量部に対して0.25質量部より低いと、導電パス数を高めることができず、抵抗増加の抑制効果が発現されない。また導電助材の量が同時に添加される絶縁材100質量部に対して15質量部より多いと、導電助材が占める割合が高くなり分散性が低下するため、十分な効果が得られない。
 以上のことから、本発明は、多孔質炭素材料100質量部に対して0.5~5質量部の、150℃以上の沸点を有する絶縁材、および、該絶縁材100質量部に対して0.25~15質量部の導電助材を含み、該多孔質炭素材料に該絶縁材および該導電助材が一緒になって担持された、1300~2050m/gのBET比表面積を有するエネルギー貯蔵デバイスの電極用多孔質炭素材料を用いることにより、目的を達成できる。効果としては、劣化の要因となり得る水が多孔質炭素材料に吸着することを抑制すること、および、多孔質炭素材料界面と電解液との直接的な接触を低減し、電解液の劣化、電極の劣化および/または電極界面における劣化などのエネルギー貯蔵デバイスの劣化を抑制することが可能となる。加えて、一緒になって担持された導電助材により、絶縁材添加に伴う抵抗の増加が抑制され、性能維持率等の耐久性に優れ、ガス発生量が少なく、高電位で使用可能なエネルギー貯蔵デバイスを得ることができる。
 1 電極組成物
 2 導電性接着剤
 3 エッチングアルミニウム箔
 4 タブ
 5 シーラント
 6 分極性電極
 7 外装シート
 8 電気二重層キャパシタ

Claims (10)

  1.  多孔質炭素材料、
     該多孔質炭素材料100質量部に対して0.5~5質量部の、150℃以上の沸点を有する絶縁材、および、
     該絶縁材100質量部に対して0.25~15質量部の導電助材
    を含み、該多孔質炭素材料に、該絶縁材および該導電助材が一緒になって担持された、1300~2050m/gのBET比表面積を有する、エネルギー貯蔵デバイスの電極用多孔質炭素材料。
  2.  前記絶縁材の25℃における動粘度が1~1000mm/sである、請求項1に記載のエネルギー貯蔵デバイスの電極用多孔質炭素材料。
  3.  前記絶縁材の流動点は-30℃以下である、請求項1または2に記載のエネルギー貯蔵デバイスの電極用多孔質炭素材料。
  4.  前記絶縁材は主鎖にシロキサン単位を有するシロキサン化合物である、請求項1~3のいずれかに記載のエネルギー貯蔵デバイスの電極用多孔質炭素材料。
  5.  さらに高分子化合物が一緒になって担持された、請求項1~4のいずれかに記載のエネルギー貯蔵デバイスの電極用多孔質炭素材料。
  6.  1300~2050m/gのBET比表面積を有する、エネルギー貯蔵デバイスの電極用多孔質炭素材料の製造方法であって、多孔質炭素材料に、該多孔質炭素材料100質量部に対して0.5~5質量部の、150℃以上の沸点を有する絶縁材、および、該絶縁材100質量部に対して0.25~15質量部の導電助材を担持させる、製造方法。
  7.  多孔質炭素材料に絶縁材および導電助材を添加して担持させる、請求項6に記載の製造方法。
  8.  多孔質炭素材料に絶縁材および導電助材を含む混合物を添加して担持させる、請求項6に記載の製造方法。
  9.  多孔質炭素材料を絶縁材および導電助材を含む混合物に浸漬させて担持させる、請求項6に記載の製造方法。
  10.  前記混合物はさらに高分子化合物を含有する、請求項8または9に記載のエネルギー貯蔵デバイスの電極用多孔質炭素材料の製造方法。
PCT/JP2015/062103 2014-04-28 2015-04-21 エネルギー貯蔵デバイスの電極用多孔質炭素材料およびその製造方法 WO2015166839A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/306,956 US10297398B2 (en) 2014-04-28 2015-04-21 Porous carbon material for electrode of energy storage device and method for manufacturing said material
KR1020167030035A KR20160146754A (ko) 2014-04-28 2015-04-21 에너지 저장 디바이스의 전극용 다공질 탄소 재료 및 그 제조 방법
JP2016516325A JP6491644B2 (ja) 2014-04-28 2015-04-21 エネルギー貯蔵デバイスの電極用多孔質炭素材料およびその製造方法
CN201580023621.4A CN106233408B (zh) 2014-04-28 2015-04-21 储能设备的电极用多孔质碳材料及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014092892 2014-04-28
JP2014-092892 2014-04-28

Publications (1)

Publication Number Publication Date
WO2015166839A1 true WO2015166839A1 (ja) 2015-11-05

Family

ID=54358570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062103 WO2015166839A1 (ja) 2014-04-28 2015-04-21 エネルギー貯蔵デバイスの電極用多孔質炭素材料およびその製造方法

Country Status (5)

Country Link
US (1) US10297398B2 (ja)
JP (1) JP6491644B2 (ja)
KR (1) KR20160146754A (ja)
CN (1) CN106233408B (ja)
WO (1) WO2015166839A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146417A (zh) * 2019-12-24 2020-05-12 中国科学院山西煤炭化学研究所 一种快充型锂离子电池球形石墨负极材料及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1123123A1 (en) 1998-10-02 2001-08-16 Pall Corporation Biological fluid filter and system
EP3499532B1 (en) * 2017-12-15 2022-12-07 Hitachi Energy Switzerland AG A supercapacitor
CN111252866B (zh) * 2020-01-20 2021-08-06 中南大学 一种cdi电极活性材料及其制备和应用
CN113603075B (zh) * 2021-08-03 2023-01-31 上海汉禾生物新材料科技有限公司 一种酶解木质素基硬碳材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037682A (ja) * 2006-08-03 2008-02-21 Toyota Motor Corp 活性炭の処理方法と、処理済み活性炭と、処理済み活性炭を使用している蓄電装置
JP2011049231A (ja) * 2009-08-25 2011-03-10 Nippon Zeon Co Ltd 電気化学素子用電極の製造方法、電気化学素子用電極及び電気化学素子
WO2013128776A1 (ja) * 2012-02-29 2013-09-06 日本ゼオン株式会社 電気化学素子電極用複合粒子、電気化学素子電極用複合粒子の製造方法、電気化学素子電極材料及び電気化学素子電極
JP2014042063A (ja) * 2013-10-31 2014-03-06 Nippon Zeon Co Ltd 電気化学素子用電極の製造方法、電気化学素子用電極及び電気化学素子

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04296332A (ja) 1991-03-26 1992-10-20 Nitto Denko Corp フッ素樹脂薄肉チューブ
JPH0963905A (ja) 1995-08-29 1997-03-07 Matsushita Electric Ind Co Ltd 電気二重層キャパシタおよびその製造方法
JPH10116755A (ja) 1996-10-11 1998-05-06 Toyota Central Res & Dev Lab Inc 電気二重層キャパシタ用電極
JP4296332B2 (ja) 1999-05-07 2009-07-15 株式会社豊田中央研究所 電気二重層キャパシタ及びその製造方法
JP4392223B2 (ja) 2003-10-31 2009-12-24 Jfeケミカル株式会社 活性炭の製造方法およびその製造装置
JP5336752B2 (ja) * 2007-03-30 2013-11-06 住友化学株式会社 炭素粒子フィルム、積層電極、および電気二重層キャパシタの製造方法
CN101388291B (zh) 2008-10-31 2012-10-31 中国科学院上海硅酸盐研究所 含硼多孔碳电极材料及其制备方法
CN101604580B (zh) 2009-04-03 2011-10-05 中国科学院上海硅酸盐研究所 单源化合物一步分解法制备多孔碳电极材料的方法
WO2011115349A1 (ko) * 2010-03-17 2011-09-22 경상대학교산학협력단 튜브형 구조의 생체 삽입 전지
JP5531902B2 (ja) 2010-10-08 2014-06-25 マツダ株式会社 蓄電装置用活性炭含有活物質、その製造方法、及び同活物質を有する蓄電装置
JP2012124388A (ja) 2010-12-09 2012-06-28 Mitsubishi Electric Corp 電気二重層キャパシタ及び電気二重層キャパシタ用電極の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037682A (ja) * 2006-08-03 2008-02-21 Toyota Motor Corp 活性炭の処理方法と、処理済み活性炭と、処理済み活性炭を使用している蓄電装置
JP2011049231A (ja) * 2009-08-25 2011-03-10 Nippon Zeon Co Ltd 電気化学素子用電極の製造方法、電気化学素子用電極及び電気化学素子
WO2013128776A1 (ja) * 2012-02-29 2013-09-06 日本ゼオン株式会社 電気化学素子電極用複合粒子、電気化学素子電極用複合粒子の製造方法、電気化学素子電極材料及び電気化学素子電極
JP2014042063A (ja) * 2013-10-31 2014-03-06 Nippon Zeon Co Ltd 電気化学素子用電極の製造方法、電気化学素子用電極及び電気化学素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146417A (zh) * 2019-12-24 2020-05-12 中国科学院山西煤炭化学研究所 一种快充型锂离子电池球形石墨负极材料及其制备方法

Also Published As

Publication number Publication date
US20170047173A1 (en) 2017-02-16
CN106233408A (zh) 2016-12-14
KR20160146754A (ko) 2016-12-21
CN106233408B (zh) 2018-09-07
JPWO2015166839A1 (ja) 2017-04-20
US10297398B2 (en) 2019-05-21
JP6491644B2 (ja) 2019-03-27

Similar Documents

Publication Publication Date Title
US9053871B2 (en) High surface area and low structure carbon blacks for energy storage applications
JP6491644B2 (ja) エネルギー貯蔵デバイスの電極用多孔質炭素材料およびその製造方法
CN104956455B (zh) 电极、使用了该电极的双电层电容器及电极的制造方法
US20100296226A1 (en) Electric double layer capacitor
Yu et al. Double‐Layer MnCo2S4@ Ni‐Co‐S Core/Shell Nanostructure on Nickel Foam for High‐Performance Supercapacitor
JP2001284188A (ja) 電気二重層キャパシタ電極用炭素材料の製造方法及びこの炭素材料を用いた電気二重層キャパシタの製造方法
KR20200067149A (ko) 수화된 탄소 재료 분말 및 전기 저장 장치용 전극의 제조를 위한 그의 용도
JP2005136397A (ja) 活性炭及びそれを用いた電極材料並びに電気二重層キャパシタ
JP5087466B2 (ja) 電気二重層キャパシタ
JP5548837B1 (ja) 分極性電極用炭素材料及びその製造方法
CN115380347B (zh) 碳的稳定水性分散体
JP4838152B2 (ja) 多孔質炭素材料およびその製造方法ならびに電気二重層キャパシタ
JP2008010613A (ja) 電気二重層キャパシタ
JP2007335443A (ja) 電気二重層キャパシタ塗布型電極用スラリー、電気二重層キャパシタ用シート及び電気二重層キャパシタ
JP4957373B2 (ja) 電気二重層キャパシタ
JP2008108979A (ja) 電気二重層キャパシタ用電極材料、およびその製造方法
JP4718320B2 (ja) 多孔質材料および電気二重層キャパシタ
JP2006278364A (ja) 電気二重層キャパシタ用分極性電極および電気二重層キャパシタ
JP2011258643A (ja) 電気二重層キャパシタ用多孔質炭素材料およびその製造方法ならびに電気二重層キャパシタ
JP6848877B2 (ja) 電極、その電極を用いたキャパシタ、および電極の製造方法
JP2008244267A (ja) 電気二重層キャパシタ
KR20220019333A (ko) 유체역학을 이용하여 2차원의 몰리브덴 디설파이드 나노시트를 제조하는 방법
JP2020516063A (ja) 自己支持炭素電極
JP2008288466A (ja) 電気二重層キャパシタ用非多孔質炭素材料の製造方法
JP2007214174A (ja) 積層型電極及びそれを用いた電気二重層キャパシタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15786609

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016516325

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167030035

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15306956

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15786609

Country of ref document: EP

Kind code of ref document: A1