JP4296332B2 - 電気二重層キャパシタ及びその製造方法 - Google Patents

電気二重層キャパシタ及びその製造方法 Download PDF

Info

Publication number
JP4296332B2
JP4296332B2 JP12725599A JP12725599A JP4296332B2 JP 4296332 B2 JP4296332 B2 JP 4296332B2 JP 12725599 A JP12725599 A JP 12725599A JP 12725599 A JP12725599 A JP 12725599A JP 4296332 B2 JP4296332 B2 JP 4296332B2
Authority
JP
Japan
Prior art keywords
thin film
double layer
substrate
layer capacitor
electric double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12725599A
Other languages
English (en)
Other versions
JP2000323362A (ja
Inventor
成人 龍田
浩 板原
有光 臼杵
由継 小島
博昭 若山
喜章 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP12725599A priority Critical patent/JP4296332B2/ja
Publication of JP2000323362A publication Critical patent/JP2000323362A/ja
Application granted granted Critical
Publication of JP4296332B2 publication Critical patent/JP4296332B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【0001】
【技術分野】
本発明は,電気二重層キャパシタ及びその製造方法に関するもので,特に耐電圧に優れた電気二重層キャパシタに関するものである。
【0002】
【従来技術】
電気二重層キャパシタは,一対の電極と,これらの電極間に配設されたセパレータと,電解液とより構成される。上記電極としては,例えば活性炭等の導電性多孔体が用いられている。そして,電気二重層キャパシタは,電極と電解液との界面に形成される電気二重層によって電荷を蓄積するタイプの大容量コンデンサである。
従来の電気二重層キャパシタとしては,上記電解液の種類により大きく2種類に大別される。一つは硫酸水溶液のような水溶液系電解液を用いたものであり,他の一つは有機溶媒に電解質を溶解させた有機溶媒系電解液を用いたものである。
【0003】
【解決しようとする課題】
ところで,上記従来の電気二重層キャパシタは,いずれの種類においても,次の問題を有していた。
即ち,従来の電気二重層キャパシタは,充放電を繰り返した場合に初期の電気容量を長期間維持することが困難であった。
【0004】
この原因は,充放電の繰り返しによって,活性炭等よりなる電極の表面において電解液が徐々に分解すること,また,電極の表面に徐々に欠陥が生じることによると考えられる。
一方,特開平9−063905号公報においては,上記電解液の分解を抑制することにより電気二重層キャパシタの耐電圧を高めようとした技術が開示されている。即ち,電極としての活性炭の表面の少なくとも一部に酸化ケイ素もしくは金属酸化物からなる被覆層を設けることにより,活性炭の活性点が引き金となる電解液の分解を抑える技術である。
【0005】
しかしながら,上記従来技術では,上記被覆層の形成を,ケイ素もしくは金属のアルコキシドを活性炭に付着させた後加水分解することにより行っている。そのため,活性炭が有する細孔の内部にまで均一に上記被覆層を形成することは不可能である。
それ故,上記従来技術1では,上記被覆層が存在しない部分において,電解液の分解抑制効果が十分に得られず,また,電極自体の欠陥が発生するので,電気二重層キャパシタの充放電サイクル特性の向上が得られない。
【0006】
本発明は,かかる従来の問題点に鑑みてなされたもので,充放電サイクル特性に優れた電気二重層キャパシタ及びその製造方法を提供しようとするものである。
【0007】
【課題の解決手段】
請求項1の発明は,一対の電極と,該電極の間に配設されたセパレータと,電解液とを有する電気二重層キャパシタにおいて,
上記電極は,多数の細孔を有する基材と該基材の表面を被覆する薄膜とよりなり,かつ該薄膜は,上記電解液の分解を抑制する絶縁性酸化物,あるいは上記電解液と可逆的な電気化学反応を起こしうる電気化学反応性酸化物のいずれかよりなると共に,上記基材の上記表面及び上記細孔の内面を均一に被覆しており,
上記薄膜は,圧力容器内において上記薄膜形成用の前駆体を上記基材の表面及び上記細孔の内面に超臨界コート法によりコートし,次いで,上記圧力容器内から上記前駆体をコートした上記基材を取り出し,その後,該基材を加熱して上記前駆体の反応生成物として形成することにより設けてなることを特徴とする電気二重層キャパシタにある。
【0008】
本発明において最も注目すべきことは,上記電極が上記基材と上記特定の薄膜とより構成されていると共に,上記基材の細孔の内面を均一に被覆するように上記薄膜を配設したことである。
上記薄膜が基材の細孔の内面を均一に被覆する状態を得るには,例えば後述する超臨界コート法を用いることができる。
【0009】
上記基材としては,多数の細孔を有し比表面積が高いもの,例えば活性炭等の多孔質炭素,多孔質アルミや多孔質タンタル等の多孔質金属,多孔質酸化ルテニウム,多孔質酸化バナジウム,多孔質酸化インジウム,多孔質酸化錫,多孔質酸化ニッケル等の金属および/または半金属の導電性を持つ酸化物からなる多孔質体等を用いることができる。
【0010】
また,上記薄膜として導電性を有するものを採用した場合には,上記基材自体が必ずしも導電性を有する必要はない。この場合は,例えば,多孔質シリカ,多孔質アルミナ,多孔質チタニア,多孔質アルミナシリケートなどの金属および/または半金属の導電性を持たない酸化物からなる多孔質体を用いることができる。
【0011】
上記薄膜としては,上記絶縁性酸化物あるいは上記電気化学反応性酸化物を用いる。
上記絶縁性酸化物は,電気二重層キャパシタの充放電時における電解質の分解を抑制するものであって,例えば,SiO2,TiO2,Al23,Ta25等がある。
また,上記電気化学反応性酸化物は,上記電解液と可逆的な電気化学反応を起こしうるものであって,例えば,Ni1-XO(X=0〜0.5),Mn1-YO(Y=0〜0.7),Co1-ZO(Z=0〜0.5),RuOe,LiNi1-WMnW2(W=0〜1),LiCo1-VNiV2(V=0〜1)等がある。
【0012】
また,上記薄膜は,上記基材の表面に密着した極薄い膜であり,上記細孔の内面においても,これを均一に被覆してなる。ここで,均一とは,薄膜が存在せずに基材が露出している部分が殆どできないような被覆状態をいう。定量的にいえば,基材の表面積の90%以上の部分を上記薄膜により覆った状態をいう。なお,より好ましい被覆状態は99%以上である。
【0013】
上記電解液としては,例えばLiOH,KOH,NaOH,CaOH,水酸化テトラアルキルアンモニウム等のアルカリを電解質とする水溶液系電解液を用いることができる。好ましくはアルカリ金属のアルカリの水溶液,さらに好ましくはLiOH水溶液がよい。
【0014】
あるいは,例えばプロピレンカーボネート,エチレンカーボネート,ブチレンカーボネート,ジメチルカーボネート,メチルカーボネート,ジエチルカーボネート,スルホラン,メチルスルホラン,γ−ブチロラクトン,γ−バレロラクトン,N−メチルオキサゾリジノン,ジメチルスルホキシド,及びトリメチルスルホキシド等から選ばれる1種類以上からなる有機溶媒に,例えば,リチウムイオン,カリウムイオン等のアルカリ金属カチオンと,BF4 ,PF6 ,ClO4 ,またはCF3SO3 なるアニオンとを組み合わせた塩を電解質として溶解させた有機溶媒系電解液を用いることもできる。特に非常に卑な電位を示すリチウム元素を含む物質がより好ましい。
【0015】
また,上記セパレータとしては,例えば,電解紙,ポリエチレン不織布,ポリプロピレン不織布,ポリエステル不織布,ガラス繊維シート,多孔質ポリエチレン,多孔質ポリプロピレン,多孔質ポリエステル等を用いることができる。
【0016】
次に,本発明の作用につき説明する。
本発明の電気二重層キャパシタにおいては,上記電極の基材を上記薄膜により被覆してある。そして,その被覆状態は,基材の細孔の内面を均一に被覆する状態となっている。そのため,上記電気二重層キャパシタにおいては,基材と電解液との直接接触を回避することができ,従来のように基材の活性点を起点として生じる電解液の分解による劣化,及び基材への欠陥の発生を確実に抑制することができる。
それ故,本発明の電気二重層キャパシタは,上記薄膜の特徴を最大限に生かして,電解液及び電極の耐久性を従来よりも向上させることができる。
【0017】
即ち,上記基材の表面に上記絶縁性酸化物よりなる薄膜を設けた場合には,該薄膜が基材の表面における活性点(例えば活性炭表面の官能基など)を被覆し,この活性点での電解液の分解反応を防止するという作用により,電気二重層キャパシタの充放電時における電解液の分解を抑制することができる。そのため,電解液の劣化を防止することができ,電気容量の増大及び充放電サイクル特性の向上を図ることができる。
【0018】
また,上記基材の表面に上記電気化学反応性酸化物よりなる薄膜を配設した場合には,この薄膜に上記電解液と可逆的な電気化学反応を起こさせることができる。そのため,電気二重層の形成による電気エネルギーの蓄積に加え,上記の電気化学的反応により,電気エネルギーを化学エネルギーとして蓄積できるため,電気二重層キャパシタの電気容量の増大及び充放電サイクル特性の向上を図ることができる。
【0019】
したがって,本発明によれば,充放電サイクル特性に優れた電気二重層キャパシタ及びその製造方法を提供することができる。
【0020】
次に,請求項2の発明は,一対の電極と,該電極の間に配設されたセパレータと,電解液とを有する電気二重層キャパシタにおいて,
上記電極は,多数の凹凸を有する薄膜よりなり,かつ該薄膜は,上記電解液と可逆的な電気化学反応を起こしうる電気化学反応性酸化物よりなり,
上記薄膜の被覆は,圧力容器内において上記薄膜形成用の前駆体を多数の細孔を有する基材の表面及び上記細孔の内面に超臨界コート法によりコートし,次いで,上記圧力容器内から上記前駆体をコートした上記基材を取り出し,その後,該基材を加熱して上記前駆体の反応生成物として形成し,次いで,上記基材を除去することにより設けてなることを特徴とする電気二重層キャパシタにある。
【0021】
本発明において最も注目すべきことは,上述したような基材を用いずに上記多数の凹凸を有する薄膜のみにより構成された電極を有していることである。
また,上記薄膜としては,可逆的な電気化学反応を起こしうる電気化学反応性酸化物を用いる。
【0022】
この場合には,上記電極を上記薄膜のみによって構成してあるので,活性炭を除去した分,電極重量が減り,単位重量あたりの充放電容量が増大するという作用効果を得ることができる。
【0023】
また,請求項3の発明のように,上記薄膜の比表面積は,1×1082/m3以上であることが好ましい。
この場合には,上記薄膜と電解液との接触面積を非常に大きくできるため,蓄積可能な電気容量を非常に大きくすることができる。
【0024】
次に,請求項4の発明は,一対の電極と,該電極の間に配設されたセパレータと,電解液とを有し,上記電極は多数の細孔を有する基材と該基材の表面を被覆する薄膜とよりなり,かつ該薄膜は,上記電解液の分解を抑制する絶縁性酸化物,あるいは上記電解液と可逆的な電気化学反応を起こしうる電気化学反応性酸化物のいずれかよりなると共に,上記基材の上記表面及び上記細孔の内面を均一に被覆してなる電気二重層キャパシタを製造する方法であって,
上記電極を作製するに当たり,圧力容器内において上記薄膜形成用の前駆体を上記基材の表面及び上記細孔の内面に超臨界コート法によりコートし,次いで,上記圧力容器内から上記前駆体をコートした上記基材を取り出し,その後,該基材を加熱して上記前駆体の反応生成物として上記薄膜を形成することにより,該薄膜により上記基材の上記表面及び上記細孔の内面を均一に被覆することを特徴とする電気二重層キャパシタの製造方法にある。
【0025】
本発明の製造方法において最も注目すべきことは,上記電極を作製するに当たり,超臨界コート法用いて上記薄膜を形成することである。
ここで,上記超臨界コート法とは,上記前駆体を超臨界流体に溶解させ,この超臨界流体と基材とを接触させて基材表面に上記前駆体を被覆し,次いで,前駆体を反応させてその反応生成物として上記薄膜を形成するという方法である。
【0026】
上記超臨界流体とは,液体と同等の溶解能力と,気体に近い拡散性,粘性を有する物質である。そのため,微細孔内にまで容易,かつ迅速に多量の前駆体を運ぶことができる。上記溶解能力は,温度,圧力,エントレーナー(添加物)等により調整できる。
【0027】
上記超臨界流体としては,例えば,メタン,エタン,プロパン,ブタン,エチレン,プロピレン等の炭化水素,メタノール,エタノール,プロパノール,iso-プロパノール,ブタノール,iso-ブタノール,sec-ブタノール,tert-ブタノール等のアルコール,アセトン,メチルエチルケトン等のケトン類,二酸化炭素,アンモニア,塩素,クロロホルム,フレオン類等を用いることができる。
【0028】
また,反応前駆体の超臨界流体への溶解度を調整するために,メタノール,エタノール,プロパノール等のアルコール,アセトン,エチルメチルケトン等のケトン類,ベンゼン,トルエン,キシレン等の芳香族炭化水素等をエントレーナーとして用いることができる。
【0029】
次に,上記前駆体は,得ようとする薄膜の種類に応じて選択する。薄膜としては,上述した絶縁性酸化物,電気化学反応性酸化物,あるいはその他の物質を用いることができる。
そして,上記前駆体の形態としては,上記薄膜の構成成分である金属または半金属(半導体)の,アルコキシド,アセチルアセテート,有機酸塩,硝酸塩,オキシ塩化物,塩化物等の1種又は2種以上等がある。
【0030】
具体的には,得ようとする薄膜が例えばNi1-XO(X=0〜0.5)である場合には,その前駆体としては,Ni(II)アセチルアセテート,NiCl2,Ni(NO3)2等がある。
また得ようとする薄膜が例えばMn1-YO・(Y=0〜0.7)である場合には,その前駆体としては,Mn(II)アセチルアセテート,Mn(III)アセチルアセテートなどのアセチルアセテート,Mn(II)イソプロポキシド,Mn(II)エトキシドなどのアルコシシド,酢酸マンガン,硝酸マンガン,塩化マンガン,等がある。
【0031】
また,基材に被覆した上記前駆体を被膜とする反応の開始は,加熱あるいは反応開始剤と前駆体の接触等により起こさせることができる。
この場合の反応開始剤としては,例えば,水,−OH基等の表面官能基がある。
また,上記基材としては,上述したような,多数の細孔を有し比表面積が高い多孔質体等を用いることができる。
【0032】
そして,本発明の製造方法においては,上記前駆体を超臨界流体に溶解させ,これを上記基材に接触させる。このとき,超臨界流体は,その優れた性質によって,基材の細孔を閉塞することなく,その内部まで十分に侵入する。そのため,超臨界流体に溶解されている上記前駆体は細孔の内面に均一にコートされる。
次いで,上記前駆体を反応させる。これにより,上記前駆体の反応生成物として,上記薄膜が形成される。
それ故,該薄膜は,基材の細孔の内面を均一に被覆した状態で得られる。
【0033】
このように,本発明の製造方法によれば,上記基材の細孔の内面を薄膜により均一に被覆してなる電極を有する電気二重層キャパシタを,容易に製造することができる。
【0034】
次に,請求項5の発明は,一対の電極と,該電極の間に配設されたセパレータと,電解液とを有し,上記電極は多数の凹凸を有する薄膜よりなり,かつ該薄膜は,上記電解液と可逆的な電気化学反応を起こしうる電気化学反応性酸化物よりなる電気二重層キャパシタを製造する方法であって,
上記電極を作製するに当たり,多数の細孔を有する基材を準備し,圧力容器内において該基材の表面及び上記細孔の内面に上記薄膜形成用の前駆体を超臨界コート法によりコートし,次いで,上記圧力容器内から上記前駆体をコートした上記基材を取り出し,その後,該基材を加熱して上記前駆体の反応生成物として上記薄膜を形成することにより,該薄膜により上記基材の上記表面及び上記細孔の内面を均一に被覆し,次いで,上記基材を除去することを特徴とする電気二重層キャパシタの製造方法にある。
【0035】
本発明の製造方法において最も注目すべきことは上記電極を作製するに当たり,超臨界コート法用いて上記薄膜を形成し,その後上記基材を除去することにより,上記薄膜のみからなる電極を作製することである。
上記基材の除去方法は,基材及び薄膜の種類により変更することができる。例えば焼成等による酸化除去方法がある。
【0036】
本発明の製造方法においては,上記超臨界コート法により,基材の表面形状を忠実に再現した上記薄膜を形成することができる。そのため,上記薄膜の形状を容易に基材表面の多孔質形状,即ち,多数の凹凸を有する高比表面積の形状にすることができる。そして,上記のごとく,基材を除去することにより,容易に多数の凹凸を有する薄膜のみからなる電極を作製することができる。それ故,上記薄膜のみからなる電極を有する電気二重層キャパシタを容易に作製することができる。
【0037】
【発明の実施の形態】
実施形態例1
本発明の実施形態例にかかる電気二重層キャパシタ及びその製造方法につき,図1〜図3を用いて説明する。
本例の電気二重層キャパシタ1は,図2に示すごとく,一対の電極11,12と,電極11,12の間に配設されたセパレータ3と,電解液4とを有する電気二重層キャパシタである。
【0038】
上記電極11,12は,図1(a)に示すごとく,多数の細孔15を有する基材10と該基材10の表面を被覆する薄膜2とよりなる。かつ該薄膜2は,上記電解液4と可逆的な電気化学反応を起こしうる電気化学反応性酸化物よりなると共に,上記基材10の上記細孔15の内面を均一に被覆している。
【0039】
この電気二重層キャパシタ1の電極11,12を作製するに当たっては,上記薄膜2形成用の前駆体を上記基材10の表面に超臨界コート法によりコートし,該前駆体から上記薄膜2を形成することにより,該薄膜2により上記基材10の上記細孔15の内面を均一に被覆することにより行った。
以下,これを詳説する。
【0040】
本例における電極11,12の基材10としては,比表面積3120m2/gの活性炭粉末70重量部と,フェノール樹脂粉末30重量部を均一に混ぜたものを加圧成形し,次に得られた成形品を窒素雰囲気中において温度800℃に3時間保持して炭化したものを用いた。サイズは直径15.6mm,重さ約20mgである。この基材10は,上記活性炭粉末を用いているので,多数の細孔15を有するものとなる。
【0041】
次に,本例では,上記基材10の表面に超臨界コート法により上記薄膜2を被覆した。
本例の薄膜2はMn1-YO(Y=0〜0.5)より構成した。そのため,薄膜2の前駆体としては,Mn(II)アセチルアセトナートを準備した。
超臨界流体としてはイソプロパノールを準備した。そして,次のように超臨界コート法を実施した。
【0042】
まず,図3に示すごとく,内容積30mlの圧力容器71を準備し,その内部に,前駆体20としてMn(II)アセチルアセトナートを1gと,超臨界流体となるイソプロパノール80を20g入れた。
そして,20枚の基材10をステンレス製のかご711に入れて圧力容器71内に配置した。
【0043】
次いで,圧力容器71を,イソプロパノールの臨界温度(235℃)以上の温度である250℃に加熱した防爆仕様の熱風乾燥炉に入れて,250℃まで昇温し,その温度に2時間保持した。これにより,上記前駆体20は,基材10の表面にコートされた。
次いで,圧力容器71を室温まで冷却した。
【0044】
次いで,圧力容器71を開いて上記前駆体20をコートした基材10を取り出した。
次いで,基材10から水分を除去するため,前駆体20をコートした基材10を温度105℃に6時間保持して熱風乾燥した。
【0045】
次に,基材10を空気雰囲気下において275℃に加熱し,1時間保持した。これにより,基材10上の前駆体の反応生成物として,Mn1-YOよりなる薄膜2が基材10の表面に形成された。
そして,基材10の多数の細孔15の内面を薄膜2により均一に被覆してなる電極11,12が得られた。
【0046】
次に,図2に示すごとく,上記電極11,12を用いて,次のように電気二重層キャパシタ1を構成した。
まず,一対の電極11,12との間にポリエチレンよりなるセパレータ3を配設した。これらの電極11,12とセパレータ3を導電性容器52に密着させ,電解液で満たした。電解液は,プロピレンカーボネートにLiPF6を1モル/リットル溶解させたものを用いた。
【0047】
更に,電極11の上面には集電用の上極51を配設し,さらに,電極,セパレータ,電解液が外部と遮断されるように,ポリプロピレン製中セル53およびOリング13で押さえ,締めつけ用の外セル54および56を押さえねじ56で加圧し,シールした。
また,外部の配線を行いやすくするため,上極51には端子510を,また,導電性容器52には端子520を設けた。絶縁板55により,両端子51と52との絶縁性は確保されている。
【0048】
次に,本例の作用効果につき説明する。
本例の電気二重層キャパシタ1においては,上記電極11,12の基材10を薄膜2により被覆してある。そして,その被覆状態は,基材10の細孔15の内面を均一に被覆する状態となっている。そのため,電気二重層キャパシタ1においては,基材10と電解液4との直接接触を回避することができ,従来のように基材の活性点を起点として生じる電解液の分解による劣化,及び基材への欠陥の発生を確実に抑制することができる。
【0049】
また,上記薄膜2は,Mn1-YO(Y=0〜0.5),即ち,電気化学反応性酸化物よりなる。そのため,薄膜2に,電解液4と可逆的な電気化学反応を起こさせることができる。そのため,電気二重層の形成による電気エネルギーの蓄積に加え,上記の電気化学的反応により,電気エネルギーを化学エネルギーとして蓄積できるため,電気二重層キャパシタ1の電気容量の増大及び充放電サイクル特性の向上を図ることができる。
【0050】
実施形態例2
本例では,実施形態例1により得られる電気二重層キャパシタ1の優れた特性を定量的に評価した。
なお比較のために,本発明品としては,上記実施形態例1の電気二重層キャパシタ1(実施例E1とする)の他に,2種類の電気二重層キャパシタ(実施例E2,E3)を準備した。また,比較品として2種類の電気二重層キャパシタ(比較例C1,C2)を準備した。
【0051】
まず,実施例E2,E3および比較例C1,C2の製造方法について説明する。
(実施例E2)
実施例E2は,実施例E1における前駆体に代えてNi(II)アセチルアセトナートを用い,実施例E1における超臨界流体に代えて超臨界アセトンを用いたこと以外は実施例E1と同様にして作製した電極を用いた。即ち,実施例E2の電極における薄膜は,Ni1-XO(X=0〜0.5)である。
【0052】
(実施例E3)
実施例E3は,実施例E1における前駆体に代えてCo(II)アセチルアセトナートを用い,実施例E1における超臨界流体に代えて超臨界アセトンを用いたこと以外は実施例E1と同様にして作製した電極を用いた。即ち,実施例E3の電極における薄膜は,Co1-ZO(Z=0〜0.5)である。
【0053】
(比較例C1)
比較例C1の電極としては,実施例E1における基材10をそのまま用いた。即ち基材10の表面には薄膜を一切設けなかった。その他は実施例E1と同様にした。
【0054】
(比較例C2)
比較例C2の電極は,実施例E1における基材10に対して,超臨界コート法ではなく,前駆体を溶解した溶液に基材10を浸漬する液相法という方法によりNiOをコートした。即ち,Ni(II)アセチルアセトナート1gを溶解したアセトン溶液に20枚の基材10を2時間浸漬した後,空気雰囲気下において温度275℃に1時間保持した。これにより,基材10の表面にNi1-XO(X=0〜0.5)をコートした電極を得た。その他は実施例E1と同様にした。
【0055】
次に,本例では得られた各電気二重層キャパシタにおける電極の断面構造を観察した。その結果を図1(a)〜(c)に示す。図1(a)は,実施例E1〜E3の電極の断面構造を示すモデルである。同図(b)は,比較例C1の電極の断面構造を示すモデルである。同図(c)は,比較例C2の電極の断面構造を示すモデルである。
【0056】
同図(a)より知られるごとく,本発明品である実施例E1〜E3の電気二重層キャパシタの電極は,いずれも,基材10の細孔15の内面が薄膜2により均一に被覆されている。
同図(b)より知られるごとく,比較例C1の電気二重層キャパシタの電極は,基材10の細孔15の内面が被膜92によりところどころ覆われている。
同(c)より知られるごとく,比較例C2の電気二重層キャパシタの電極は,基材10の細孔15の表面には何ら被膜が存在しない。
【0057】
次に,本例では,各電気二重層キャパシタの充放電容量を測定した。
具体的には,各電気二重層キャパシタにおける上極51側を正極,下極52側を負極として,充放電を行った。充放電電流密度は2mA/cm2一定(全電流:3.75mA)とし,充放電電圧4.4−1.6Vとした。
測定結果を表1に示す。
【0058】
表1より知られるごとく,本発明品である実施例E1〜E3は,比較品である比較例C1,C2に比べて非常に高い充放電容量特性を発揮することが分かった。これは,図1に示すごとく,電極の基材10の表面の均一な薄膜2の存在が,充放電容量の向上に有効であることを示している。
【0059】
【表1】
Figure 0004296332
【0060】
実施形態例3
本例では,実施形態例1,2における薄膜2に代えて,電解液の分解を抑制する絶縁性酸化物を用いた2種類の本発明品(実施例E4,E5)を作製し,その充放電サイクル特性を評価した。比較のために,2つの比較例C3,C4も準備してその充放電サイクル特性も評価した。
【0061】
まず,実施例E4,E5および比較例C3,C4の製造方法につき説明する。(実施例E4)
実施例E4における電極を作製するに当たっては,図1(a)と同様に,実施例E1に示した基材10の表面に超臨界コート法により薄膜2を被覆した。
本実施例E4の薄膜2はSiO2とした。そのため,薄膜2の前駆体としては,TEOS(テトラエトキシシラン)を準備した。
超臨界流体としては超臨界CO2を用いることとし,その源となる固体CO2(通称;ドライアイス)を準備した。また,超臨界流体のエントレーナとしてエタノールを準備した。そして,次のように超臨界コート法を実施した。
【0062】
まず,図4に示すごとく,内容積50mlの圧力容器72を準備し,その内部に,前駆体20としてTEOSを2gと,エントレーナ82としてエタノールを2g入れた。
そして,40枚の基材10をステンレス製のかご721に入れて圧力容器72内に配置した。
次いで,圧力容器72内にドライアイス81を30g入れ,圧力容器72を密封した。
【0063】
次いで,オイルバスを用いて,圧力容器72をCO2の臨界温度(31℃)以上の温度である150℃まで昇温し,2時間保持した。これにより,上記前駆体20が基材10の表面にコートされた。
次いで,圧力容器72を室温まで冷却した。
その後,圧力容器72の上方に配設されたリークバルブ75を開いて,圧力容器72内のCO2を放出させた。
【0064】
次いで,圧力容器72を開いて上記前駆体20をコートした基材10を取り出した。
次いで,基材10から水分及びエントレーナを除去するため,基材10を温度105℃に6時間保持して熱風乾燥した。
【0065】
次に,基材10を窒素雰囲気下において300℃に加熱し,1時間保持した。これにより,基材10上の前駆体の反応生成物として,SiO2よりなる薄膜2が基材10の表面に形成された。
これにより,基材10の多数の細孔15の内面を薄膜2により均一に被覆してなる電極11,12が得られた。
次に,得られた電極11,12を用い,実施形態例1と同様にして,図2に示すごとき電気二重層キャパシタ1を作製し,これを実施例E4とした。
【0066】
(実施例E5)
実施例E5は,実施例E1における前駆体に代えてペンタエトキシタンタルを用い,実施例E1における超臨界流体に代えて超臨界アセトンを用いたこと以外は実施例E1と同様にして作製した電極を用いた。即ち,実施例E5の電極における薄膜は,Ta25である。
【0067】
(比較例C3)
比較例C3は,溶液法によりSiO2をコートした活性炭で作製した電気二重層キャパシタを用いた。即ち,容量50mlのビーカーにTEOS2gとエタノール20gを入れて調整した溶液に,20枚の基材10を浸漬した後,基材10から水分を除去するために,コートした基材10を温度105℃に6時間保持して熱風乾燥した。次に,基材10を窒素雰囲気下において300℃に加熱し,1時間保持した。これにより,液相法により,基材10上に,SiO2が形成された。比較例C3では,このような手順により作製した電極を用い,実施形態例1と同様の電気二重層キャパシタを作製した。
【0068】
(比較例C4)
比較例C4は,上述した比較例C1とまったく同じ仕様の電気二重層キャパシタを用いた。即ち,比較例C4の電極としては,実施形態例1における基材10をそのまま用いた。
【0069】
次に,本例では,次のように充放電サイクル特性を測定した。
まず,各電気二重層キャパシタを温度70℃に保温された恒温槽に保持し,充放電解析装置(北斗電工製充放電装置HJ101SM6)を用いて放電容量を測定した。充放電電流密度は2mA/cm2(全電流3.75A)一定とし,充放電電圧は4.8−1.2Vとした。また,充放電は5000回行った。
【0070】
得られた各電気二重層キャパシタの充放電サイクル特性を,表2及び図5に示す。同図は,横軸に充放電サイクル数(回数)を,縦軸に放電容量(mAh/g)をとったものである。
表2及び図5より知られるごとく,本発明品である実施例E4,E5は,非常に優れた充放電サイクル特性を示した。一方,比較例C3は,実施例E4,E5に比べて充放電サイクルの増加に対する放電容量の低下が大きかった。また,比較例C4は,充放電サイクルを1000回繰り返す以前に充放電ができなくなり電気二重層キャパシタとしての機能を停止した。
【0071】
【表2】
Figure 0004296332
【0072】
【発明の効果】
上述のごとく,本発明によれば,充放電サイクル特性に優れた電気二重層キャパシタ及びその製造方法を提供することができる。
【図面の簡単な説明】
【図1】実施形態例1,2における,(a)実施例E1〜E3,(b)比較例C1,(c)比較例C2の,電極の断面を示す説明図。
【図2】実施形態例1における,電気二重層キャパシタの構成を示す説明図。
【図3】実施形態例1における,圧力容器を示す説明図。
【図4】実施形態例3における,圧力容器を示す説明図。
【図5】実施形態例3における,充放電サイクル特性を示す説明図。
【符号の説明】
1...電気二重層キャパシタ,
10...基材,
11,12...電極,
15...細孔,
2...薄膜,

Claims (7)

  1. 一対の電極と,該電極の間に配設されたセパレータと,電解液とを有する電気二重層キャパシタにおいて,
    上記電極は,多数の細孔を有する基材と該基材の表面を被覆する薄膜とよりなり,かつ該薄膜は,上記電解液の分解を抑制する絶縁性酸化物,あるいは上記電解液と可逆的な電気化学反応を起こしうる電気化学反応性酸化物のいずれかよりなると共に,上記基材の上記表面及び上記細孔の内面を均一に被覆しており,
    上記薄膜は,圧力容器内において上記薄膜形成用の前駆体を上記基材の表面及び上記細孔の内面に超臨界コート法によりコートし,次いで,上記圧力容器内から上記前駆体をコートした上記基材を取り出し,その後,該基材を加熱して上記前駆体の反応生成物として形成することにより設けてなることを特徴とする電気二重層キャパシタ。
  2. 一対の電極と,該電極の間に配設されたセパレータと,電解液とを有する電気二重層キャパシタにおいて,
    上記電極は,多数の凹凸を有する薄膜よりなり,かつ該薄膜は,上記電解液と可逆的な電気化学反応を起こしうる電気化学反応性酸化物よりなり,
    上記薄膜の被覆は,圧力容器内において上記薄膜形成用の前駆体を多数の細孔を有する基材の表面及び上記細孔の内面に超臨界コート法によりコートし,次いで,上記圧力容器内から上記前駆体をコートした上記基材を取り出し,その後,該基材を加熱して上記前駆体の反応生成物として形成し,次いで,上記基材を除去することにより設けてなることを特徴とする電気二重層キャパシタ。
  3. 請求項1又は2において,上記薄膜の比表面積は,1×1082/m3以上であることを特徴とする電気二重層キャパシタ。
  4. 一対の電極と,該電極の間に配設されたセパレータと,電解液とを有し,上記電極は多数の細孔を有する基材と該基材の表面を被覆する薄膜とよりなり,かつ該薄膜は,上記電解液の分解を抑制する絶縁性酸化物,あるいは上記電解液と可逆的な電気化学反応を起こしうる電気化学反応性酸化物のいずれかよりなると共に,上記基材の上記表面及び上記細孔の内面を均一に被覆してなる電気二重層キャパシタを製造する方法であって,
    上記電極を作製するに当たり,圧力容器内において上記薄膜形成用の前駆体を上記基材の表面及び上記細孔の内面に超臨界コート法によりコートし,次いで,上記圧力容器内から上記前駆体をコートした上記基材を取り出し,その後,該基材を加熱して上記前駆体の反応生成物として上記薄膜を形成することにより,該薄膜により上記基材の上記表面及び上記細孔の内面を均一に被覆することを特徴とする電気二重層キャパシタの製造方法。
  5. 一対の電極と,該電極の間に配設されたセパレータと,電解液とを有し,上記電極は多数の凹凸を有する薄膜よりなり,かつ該薄膜は,上記電解液と可逆的な電気化学反応を起こしうる電気化学反応性酸化物よりなる電気二重層キャパシタを製造する方法であって,
    上記電極を作製するに当たり,多数の細孔を有する基材を準備し,圧力容器内において該基材の表面及び上記細孔の内面に上記薄膜形成用の前駆体を超臨界コート法によりコートし,次いで,上記圧力容器内から上記前駆体をコートした上記基材を取り出し,その後,該基材を加熱して上記前駆体の反応生成物として上記薄膜を形成することにより,該薄膜により上記基材の上記表面及び上記細孔の内面を均一に被覆し,次いで,上記基材を除去することを特徴とする電気二重層キャパシタの製造方法。
  6. 請求項1〜3のいずれか1項において,上記電気化学反応性酸化物は,Ni 1-X O(X=0〜0.5),Mn 1-Y O(Y=0〜0.7),Co 1-Z O(Z=0〜0.5),RuOe,LiNi 1-W Mn W 2 (W=0〜1),またはLiCo 1-V Ni V 2 (V=0〜1)よりなることを特徴とする電気二重層キャパシタ。
  7. 請求項4又は5において,上記電気化学反応性酸化物は,Ni 1-X O(X=0〜0.5),Mn 1-Y O(Y=0〜0.7),Co 1-Z O(Z=0〜0.5),RuOe,LiNi 1-W Mn W 2 (W=0〜1),またはLiCo 1-V Ni V 2 (V=0〜1)よりなることを特徴とする電気二重層キャパシタの製造方法。
JP12725599A 1999-05-07 1999-05-07 電気二重層キャパシタ及びその製造方法 Expired - Fee Related JP4296332B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12725599A JP4296332B2 (ja) 1999-05-07 1999-05-07 電気二重層キャパシタ及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12725599A JP4296332B2 (ja) 1999-05-07 1999-05-07 電気二重層キャパシタ及びその製造方法

Publications (2)

Publication Number Publication Date
JP2000323362A JP2000323362A (ja) 2000-11-24
JP4296332B2 true JP4296332B2 (ja) 2009-07-15

Family

ID=14955533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12725599A Expired - Fee Related JP4296332B2 (ja) 1999-05-07 1999-05-07 電気二重層キャパシタ及びその製造方法

Country Status (1)

Country Link
JP (1) JP4296332B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007029742A1 (ja) * 2005-09-08 2009-03-19 株式会社クラレ 分極性電極
US8749953B2 (en) 2010-06-30 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Electric double layer capacitor, lithium ion capacitor and manufacturing method thereof
JP5531902B2 (ja) * 2010-10-08 2014-06-25 マツダ株式会社 蓄電装置用活性炭含有活物質、その製造方法、及び同活物質を有する蓄電装置
WO2015166839A1 (ja) 2014-04-28 2015-11-05 クラレケミカル株式会社 エネルギー貯蔵デバイスの電極用多孔質炭素材料およびその製造方法
WO2019049905A1 (ja) * 2017-09-05 2019-03-14 国立大学法人北海道大学 金属酸化物-多孔体複合体の製造方法及び多孔質炭素材料と金属酸化物との複合体

Also Published As

Publication number Publication date
JP2000323362A (ja) 2000-11-24

Similar Documents

Publication Publication Date Title
JP7233015B2 (ja) 電解コンデンサおよびその製造方法
Xing et al. Co 3 O 4 nanowire@ NiO nanosheet arrays for high performance asymmetric supercapacitors
EP1039492B1 (en) Method for manufacturing large-capacity electric double-layer capacitor
CN103460444B (zh) 隔膜及包含该隔膜的电化学装置
EP0953197B1 (en) High surface area metal oxynitrides for electrical energy storage
AU2002242732B2 (en) Mesoporous network electrode for electrochemical cell
KR101252941B1 (ko) 도공액, 전극판 제조용 도공액, 언더코트제 및 그 사용
EP2418712B1 (en) Separator with porous coating layer, manufacturing method therefor and electrochemical device comprising same
KR101341166B1 (ko) 파이버 전극과 파이버 전지 및 그 제조방법, 파이버 전극과 파이버 전지의 제조설비
US8243420B2 (en) Conductive electrode using conducting metal oxide film with network structure of nanograins and nanoparticles, preparation method thereof and supercapacitor using the same
KR102157512B1 (ko) 리그노셀룰로오스 바이오매스를 이용한 구형의 다공성 활성탄 제조방법 및 이를 이용한 슈퍼커패시터의 제조방법
Xia et al. Porous manganese oxide generated from lithiation/delithiation with improved electrochemical oxidation for supercapacitors
MXPA06008210A (es) Capacitores electroliticos con una capa externa polimerica y proceso para la produccion de los mismos.
JP2007035769A (ja) 電気化学素子用電極の製造方法および電気化学素子の製造方法
Liu et al. High energy and power density Li–O 2 battery cathodes based on amorphous RuO 2 loaded carbon free and binderless nickel nanofoam architectures
JP4296332B2 (ja) 電気二重層キャパシタ及びその製造方法
CN108028139A (zh) 含碳复合材料和电极
KR101660297B1 (ko) 이온성 액체로부터 합성된 다공성 활성탄, 그 제조방법, 상기 활성탄을 이용한 슈퍼커패시터 및 그 제조방법
JP6377586B2 (ja) 電極、電極の製造方法及び非水電解質電池
JP3463081B2 (ja) 電気化学反応装置用セパレータ及びそれを用いた電気化学反応装置
US10446332B2 (en) Ultrathin asymmetric nanoporous-nickel graphene-copper based supercapacitor
KR101571679B1 (ko) 탄소나노섬유-이온성액체 복합체, 그 제조방법, 상기 탄소나노섬유-이온성액체 복합체를 이용한 울트라커패시터 및 그 제조방법
JP4997279B2 (ja) ハイブリッドスーパーキャパシタ
CA2267439A1 (en) High surface area metal nitrides or metal oxynitrides for electrical energy storage
JP2005142381A (ja) 電気二重層コンデンサ及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees