WO2015083782A1 - 循環水利用システム群の遠隔監視方法及び遠隔監視システム - Google Patents

循環水利用システム群の遠隔監視方法及び遠隔監視システム Download PDF

Info

Publication number
WO2015083782A1
WO2015083782A1 PCT/JP2014/082094 JP2014082094W WO2015083782A1 WO 2015083782 A1 WO2015083782 A1 WO 2015083782A1 JP 2014082094 W JP2014082094 W JP 2014082094W WO 2015083782 A1 WO2015083782 A1 WO 2015083782A1
Authority
WO
WIPO (PCT)
Prior art keywords
circulating water
treatment
utilization system
water utilization
water
Prior art date
Application number
PCT/JP2014/082094
Other languages
English (en)
French (fr)
Inventor
寛之 八木田
南浦 純一
潤 兵頭
幸信 横田
隼人 新
力 北川
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US15/037,601 priority Critical patent/US10315930B2/en
Priority to MX2016006861A priority patent/MX2016006861A/es
Publication of WO2015083782A1 publication Critical patent/WO2015083782A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B1/00Methods or layout of installations for water supply
    • E03B1/04Methods or layout of installations for water supply for domestic or like local supply
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B1/00Methods or layout of installations for water supply
    • E03B1/04Methods or layout of installations for water supply for domestic or like local supply
    • E03B1/041Greywater supply systems
    • E03B1/042Details thereof, e.g. valves or pumps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/001Runoff or storm water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/002Grey water, e.g. from clothes washers, showers or dishwashers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/008Mobile apparatus and plants, e.g. mounted on a vehicle
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/008Processes using a programmable logic controller [PLC] comprising telecommunication features, e.g. modems or antennas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2307/00Location of water treatment or water treatment device
    • C02F2307/14Treatment of water in water supply networks, e.g. to prevent bacterial growth
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B1/00Methods or layout of installations for water supply
    • E03B1/04Methods or layout of installations for water supply for domestic or like local supply
    • E03B1/041Greywater supply systems
    • E03B2001/045Greywater supply systems using household water
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B1/00Methods or layout of installations for water supply
    • E03B1/04Methods or layout of installations for water supply for domestic or like local supply
    • E03B1/041Greywater supply systems
    • E03B2001/047Greywater supply systems using rainwater

Definitions

  • the present disclosure relates to a remote monitoring method for a circulating water utilization system group that remotely monitors a circulating water utilization system group configured by a plurality of circulating water utilization systems constructed for a specific area separately from a public water supply network. And a remote monitoring system.
  • Patent Document 1 discloses a wastewater reuse system that can be configured to use drainage of rainwater and rainwater used in general households as washing water for flush toilets and the like to save water.
  • Patent Document 2 discloses a facility for planting greenery in a building that uses middle water to process miscellaneous wastewater generated in the building to generate middle water and reuse the generated middle water as irrigation water for plants cultivated in the building. Is disclosed.
  • the above-mentioned conventional reuse system basically purifies the drainage of tap water supplied from the water supply network in one building or one household and uses it as middle water for specific purposes.
  • the middle water is discharged into the sewer network.
  • it is premised on the existence of an existing public water supply network and sewer network, and cannot be a system that replaces this.
  • the new circulating water utilization system that the present applicant is examining, as described in detail later, is, for example, up and down with respect to areas and complex facilities where 10,000 people live.
  • This system provides integrated water treatment services, and is a system in which water supply and water treatment are performed cyclically in the area / building.
  • this circulating water utilization system is basically constructed independently of the existing water supply network and sewerage network, although it is considered that it will be supplied from the water supply only for drinking water for the time being. It is a small-scale distributed water and sewage integrated treatment system.
  • At least one embodiment of the present invention has been made in view of the conventional problems as described above.
  • the purpose of the present invention is to develop a new circulating water utilization system over a wide area.
  • An object of the present invention is to provide a remote monitoring method and a remote monitoring system for circulating water utilization systems for efficiently eliminating an imbalance between supply and demand gaps among a plurality of circulating water utilization systems.
  • At least one embodiment of the present invention provides: A circulating water utilization system group remote monitoring method for remotely monitoring a circulating water utilization system group constituted by a plurality of circulating water utilization systems,
  • the circulating water utilization system is: A circulation channel through which the circulating water flows; Circulating the discharged water discharged from a water demand body composed of a plurality of small water demand bodies consisting of at least one of a residence, a tenant, and an office that uses the circulating water flowing through the circulation channel.
  • the purification process for purifying the circulating water including the discharged water flowing through the circulation flow path is divided into a plurality of treatment processes, and a plurality of treatment tanks each containing a treatment apparatus for performing each treatment process are connected to each other.
  • a purification means including a treatment tank row Including at least a supply flow path for supplying circulating water purified by the purification means to the water demand body
  • the method for remotely monitoring the circulating water utilization system group includes: In each of a plurality of circulating water utilization systems constituting the circulating water utilization system group, an operation rate detection step of detecting an operation rate of the treatment tanks constituting the treatment tank row of the purification means; A data transmission step of transmitting data on the operation rate of the plurality of treatment tanks detected in the operation rate detection step via a communication line; A data receiving step for receiving data relating to operating rates of the plurality of processing tanks transmitted from the data transmitting step; A data display step of displaying data relating to the operating rates of the plurality of processing tanks received in the data receiving step.
  • a treatment device that performs one treatment step among a series of purification steps divided into a plurality of treatment steps is provided inside the container.
  • a container-type treatment tank stored in is used.
  • This purifying means carries a container-type treatment tank for performing the first treatment process, a container-type treatment tank for carrying out the next treatment process, and a container-type treatment tank for carrying out the next treatment process to the site, and connecting them in series.
  • Including a treatment tank array configured to be connected to Such a container-type treatment tank is excellent in portability because it can be loaded and transported on a truck as it is. Moreover, since it is detachably accommodated in the container container, it can be installed and removed freely.
  • the processing capacity per one processing tank of the container type processing tank is assumed to be a scale capable of processing about 1,000 people of discharged water. For this reason, for example, when this circulating water utilization system is introduced to an area or complex facility where 10,000 people live, a plurality of (for example, 10) treatment tanks that perform the same treatment process are required. Become. Thus, by providing a plurality of processing tanks that perform the same processing step, the processing capacity per processing tank can be reduced. Therefore, it is possible to flexibly cope with population fluctuations and water demand seasonal fluctuations in the target area. Moreover, it is easy to prepare an alternative processing tank, and the maintenance is excellent.
  • detection is performed from the purification means of one circulating water utilization system in which the operating rate detected is lower than a specified first threshold value among the plurality of circulating water utilization systems constituting the circulating water utilization system group.
  • the process tank movement process which moves the said process tank to the purification
  • the processing tank row in which a plurality of the processing tanks are connected is moved.
  • At least one embodiment of the present invention provides: A circulating water utilization system group remote monitoring system for remotely monitoring a circulating water utilization system group comprising a plurality of circulating water utilization systems,
  • the circulating water utilization system is: A circulation channel through which the circulating water flows; Circulating the discharged water discharged from a water demand body composed of a plurality of small water demand bodies consisting of at least one of a residence, a tenant, and an office that uses the circulating water flowing through the circulation channel.
  • the purification process for purifying the circulating water including the discharged water flowing through the circulation flow path is divided into a plurality of treatment processes, and a plurality of treatment tanks each containing a treatment apparatus for performing each treatment process are connected to each other.
  • a purification means including a treatment tank row, Including at least a supply flow path for supplying circulating water purified by the purification means to the water demand body
  • the remote monitoring system for the circulating water utilization system group is: An operation rate detection means capable of detecting an operation rate of the plurality of treatment tanks constituting the purification means in each of the plurality of circulating water use systems constituting the circulating water use system group; Data transmission means capable of transmitting data on the operation rates of the plurality of processing tanks detected by the operation rate detection means via a communication line; A data receiving unit capable of receiving data related to operating rates of the plurality of processing tanks transmitted from the data transmitting means, and a data display capable of displaying data related to operating rates of the plurality of processing tanks received by the data receiving unit.
  • a remote monitoring device including a section.
  • the operation rate detection means capable of detecting the operation rate of the treatment tank of the purification means, and this A means for transmitting data relating to the operation rate, a receiving unit capable of receiving the transmitted data, and a remote monitoring device including a display unit capable of displaying the received data are provided.
  • an imbalance in the supply and demand gap among a plurality of circulating water utilization systems scattered over a wide area can be efficiently performed. Therefore, it is possible to provide a remote monitoring method and a remote monitoring system for the circulating water utilization system group.
  • FIG. 2 is a schematic view corresponding to the circulating water utilization system shown in FIG. 1, and particularly shows an arrangement example of treatment tanks in the purifying means and the drinking water generating means. It is the whole schematic diagram for demonstrating the remote monitoring method and remote monitoring system of the circulating water utilization system group concerning one Embodiment of this invention. It is explanatory drawing for demonstrating the processing tank moving process in one Embodiment of this invention. It is explanatory drawing for demonstrating the processing tank moving process in one Embodiment of this invention. It is a flowchart for demonstrating the remote monitoring method of the circulating water utilization system group concerning one Embodiment of this invention.
  • FIG. 1 is an overall schematic diagram showing a circulating water utilization system according to an embodiment of the present invention.
  • the circulating water utilization system 1 is a system constructed for a specific area separately from the public water supply network.
  • the population scale targeted by this system is assumed to be approximately 5,000 to 20,000.
  • the target area includes a condominium that is a collection of residences, an office building that is a collection of offices, a commercial facility that is a collection of tenants, and a complex facility in which these are mixed.
  • the circulating water utilization system 1 includes a circulating flow path 2, a water demand body 3, a discharge flow path 4, a supply flow path 6, a purification means 8, a potable water generating means 12, and a drinking water supply means 14. , Etc.
  • the circulation channel 2 is configured as a pipe network in which water pipes are arranged in a closed loop shape.
  • Devices such as a pump (not shown) and a valve (not shown) are appropriately arranged in the circulation channel 2 according to the terrain conditions so that the circulating water circulates in one direction.
  • the raw water of the circulating water flowing through the circulation channel 2 is not limited to tap water supplied from a public water supply, and may be well water, water taken from a river, water obtained by desalinating seawater, rainwater, or the like. Further, when the circulating water is insufficient, the raw water may be taken into the circulation channel 2 as makeup water from the outside.
  • the water consumer 3 is a main body that uses the circulating water flowing through the circulation channel 2 as domestic water.
  • the water demanding body 3 is constituted by a plurality of small water demanding bodies consisting of at least one of the residence 3a, the tenant 3b, and the office 3c.
  • the dwelling 3a refers to a room in a condominium where one household lives or a detached house.
  • the tenant 3b refers to a store that provides services to general customers in a section of a commercial facility.
  • the business types include, for example, retail stores such as clothing stores, general stores, drug stores, liquor stores, and restaurants, restaurants, cafes, sushi restaurants, taverns, and the like.
  • the office 3c refers to a place where a worker who works in a part of an office building performs office work for a certain purpose.
  • Examples of the use of domestic water in the residence 3a include showers, baths, washing, washing dishes, washing hands, washing faces, toilets, and the like.
  • Examples of the use of domestic water in the tenant 3b include washing and toilets.
  • the amount of water demand varies greatly depending on the type of industry. For example, restaurants use a much larger amount of domestic water than retailers.
  • the use of domestic water in the office 3c is mainly a toilet.
  • drinking water is supplied to the water consumer 3 separately from the circulating water described above.
  • This drinking water is generated by further purifying tap water introduced from a public water supply network, and has the same quality as commercially available mineral water.
  • Such a mechanism can eliminate the anxiety of those who are reluctant to drink circulating water, and is expected to become a selling point when spreading this circulating water utilization system 1. It is.
  • the tap water is led from the public water supply network to the drinking water generating means 12 through the tap water conduit 16.
  • the drinking water generating means 12 purifies the introduced tap water and generates drinking water for the water consumer 3.
  • the potable water generating means 12 uses a container-type treatment tank in which a processing device that performs one processing step among a series of purification steps is stored in the container, similarly to the purification means 8 described later. And it is comprised by connecting this container type processing tank in series along the order of a process process.
  • a container refers to the rectangular container by which the dimension was standardized for the transportation use.
  • the raw water of the drinking water in the circulating water utilization system 1 is not limited to tap water,
  • the water taken from the well water, the river, the water which desalinated seawater, etc. may be sufficient.
  • Drinking water generated by the drinking water generating means 12 is supplied to each of the small-bore water consumer by the drinking water supply means 14.
  • the potable water supply means 14 includes a potable water feed pipe 14a, a storage tank 14b, a potable water pipe 14c, and the like.
  • the potable water generated by the potable water generating means 12 is sent to the storage tank 14b via the potable water supply pipe 14a and temporarily stored in the storage tank 14b.
  • the drinking water currently stored by the storage tank 14b is supplied to each of the small-lot water demand body which consists of the residence 3a mentioned above, the tenant 3b, and the office 3c via the drinking water piping 14c.
  • the discharge flow path 4 is a flow path for draining the discharged water discharged from the water consumer 3 to the circulation flow path 2.
  • the discharged water discharged from the discharge flow path 4 includes potable water and other water derived from outside the system in addition to the circulating water used by the water consumer 3 as domestic water.
  • the supply flow path 6 is a flow path for supplying the circulating water purified by the purification means 8 described later to the water consumer 3 as domestic water. Both the discharge flow path 4 and the supply flow path 6 are constituted by pipe lines. Further, the discharge channel 4 and the supply channel 6 are appropriately set according to the terrain conditions so that the discharged water is drained into the circulation channel 2 or the circulating water is supplied to the water demanding body 3. Devices such as a pump (not shown) and a valve (not shown) are arranged.
  • the purification means 8 is a means for purifying the circulating water including the discharged water flowing through the circulation flow path 2.
  • the purification means 8 uses a container-type treatment tank in which a treatment apparatus that performs one treatment step among a series of purification steps is stored inside the container. And it is comprised by connecting this container type processing tank in series along the order of a process process.
  • the purifying unit 8 of the present embodiment is a first process in which a processing apparatus that performs one processing step in which a series of purifying steps is divided into, for example, a plurality of processing steps of three or more is stored inside the container.
  • a tank for example, a processing tank L3 to be described later
  • a second processing tank for example, to be described later
  • a processing apparatus that performs the next processing step of the processing step performed in the first processing tank among the plurality of processing steps is stored inside the container.
  • Processing tank L4 a third processing tank (for example, a processing tank L5 described later) in which a processing apparatus that performs the next processing step of the processing step performed in the second processing tank among the plurality of processing steps is stored inside the container,
  • column formed by connecting these three process tanks is included.
  • the circulation channel 2 is not connected to a public sewer network.
  • surplus sludge such as sludge cake generated in the purification process of discharged water is carried out of the system, but other discharged water is reused 100%. That is, the present circulating water utilization system 1 is a completely circulating circulating water utilization system in which water supply and water treatment are performed cyclically in the system, and sewage is not discharged outside the system.
  • FIG. 2 is a schematic diagram corresponding to the circulating water utilization system shown in FIG. 1, and particularly shows an arrangement example of treatment tanks in the purifying means and the drinking water generating means.
  • the purifying means 8 includes a screen / flow control container L1, an anaerobic container L2, an aerobic container L3, a rough membrane container L4, a fine membrane container L5, an ozone treatment container L6, and a water sterilization container L7.
  • the sterilization container L8 is configured by being connected in series in this order.
  • the screen / flow rate adjusting container L1 is a processing tank that removes inspection and oil contained in the discharged water, and includes equipment such as an oil trap and a screen device.
  • the anaerobic container L2 and the aerobic container L3 are treatment tanks for performing anaerobic treatment and aerobic treatment to remove organic substances contained in the discharged water.
  • As the treatment method various known treatment methods such as A20 activated sludge method, batch activated sludge method, contact oxidation method, oxidation ditch method and the like can be adopted.
  • the coarse film container L4 is a treatment tank for separating sludge from the discharged water.
  • Various apparatuses and methods such as a precipitation tank, MF membrane, UF membrane, and centrifugal separation can be employed.
  • the fine membrane container L5 is a treatment tank for increasing the quality of the circulating water to the level of water supply.
  • Various devices and methods such as reverse osmosis membrane, activated carbon, sand filtration, ozone generator, ion exchange, and mineral addition device can be employed.
  • the ozone treatment container L6 is a treatment tank for performing ozone treatment on the purified circulating water.
  • the water storage sterilization container L7 is a treatment tank for temporarily storing the purified circulating water while storing and sterilizing the water with ultraviolet rays.
  • the sterilization container L8 is a treatment tank for sterilizing and purifying the purified circulating water with ultraviolet rays, chlorine, ozone, or the like.
  • the sludge return / sludge dewatering container L9 is a treatment tank for dewatering and drying the sludge.
  • the sludge storage containers L10 and L11 are treatment tanks for storing wastes generated in the sewage treatment such as sludge cakes and grinds. . Excess sludge such as sludge cake stored in the sludge storage containers L10 and L11 is taken out of the system, for example, by being collected by a fertilizer supplier.
  • generation means 12 has the fine membrane container H1, the ion exchange container H2, the water storage sterilization container H3, the mineral adjustment container H4, and the disinfection container H5 connected in series in this order. Is made up of.
  • the fine membrane container H1, the ion exchange container H2, the water storage sterilization container H3, the mineral adjustment container H4, and the disinfection container H5 are treatment tanks for further purifying the tap water to the same quality as commercially available mineral water. .
  • the fine membrane container H1 is equipped with various devices and methods such as reverse osmosis membrane, activated carbon and sand filtration.
  • the ion exchange container H2 includes an ion exchange device and the like.
  • the water storage sterilization container H3 is a treatment tank for temporarily storing purified tap water while storing and sterilizing the water with ultraviolet rays.
  • the mineral adjustment container H4 includes a mineral addition device and the like.
  • the sterilization container H5 is a treatment tank for sterilizing and purifying purified tap water with ultraviolet rays, chlorine, ozone, and the like.
  • symbol TW in a figure has shown the flow of the tap water supplied from a public water supply network.
  • the tap water TW may be configured not only to be supplied to the drinking water generating means 12 as described above, but also to be supplied to the circulation channel 2 as make-up water as necessary.
  • the supply position in this case is preferably on the downstream side of the fine membrane container L5 where the purification process of the discharged water is almost completed.
  • symbol WW4 in a figure is a return pipeline for sending concentrated water to the screen / flow control container L1.
  • a series of purification steps for example, 3
  • a container-type processing tank is used in which a processing apparatus that performs one processing step among the plurality of processing steps described above is stored inside a container. Then, a container-type processing tank that performs the first processing step, a container-type processing tank that performs the next processing step, and a container-type processing tank that performs the subsequent processing steps are brought into the field, and each is connected in series with a connecting pipe.
  • the purifying means 8 is constructed by connecting to.
  • Such a container-type treatment tank is excellent in portability because it can be loaded and transported on a truck as it is. Moreover, since it is detachably accommodated in the container container, it can be installed and removed freely.
  • the processing capacity per one processing tank of the container type processing tank is assumed to be a scale capable of processing about 1,000 people of discharged water. For this reason, for example, when this circulating water utilization system is introduced to an area or complex facility where 10,000 people live, a plurality of (for example, 10) treatment tanks that perform the same treatment process are required. Become. Thus, by providing a plurality of processing tanks that perform the same processing step, the processing capacity per processing tank can be reduced. Therefore, it is possible to flexibly cope with population fluctuations and water demand seasonal fluctuations in the target area. Moreover, it is easy to prepare an alternative processing tank, and the maintenance is excellent.
  • FIG. 3 is an overall schematic diagram for explaining a remote monitoring method and a remote monitoring system for a circulating water utilization system group according to an embodiment of the present invention.
  • the circulating water utilization system group according to an embodiment of the present invention is configured by a plurality of the circulating water utilization systems 1A, 1B, 1C scattered in a wide area.
  • the remote monitoring device 10 is a device for monitoring a plurality of these circulating water utilization systems from a remote location.
  • Reference numerals 3A, 3B, and 3C and reference numerals 8A, 8B, and 8C in the figure respectively indicate water demand bodies and purification means in each of the plurality of circulating water utilization systems 1A, 1B, and 1C.
  • the plurality of treatment tanks L1 to L8 constituting the purification means 8 will be described as an example, but the present invention can also be applied to the plurality of treatment tanks H1 to H5 constituting the drinking water generating means 12.
  • the remote monitoring system for the circulating water utilization system group includes a plurality of treatment tanks L1 to L8 that constitute the purification means 8A, 8B, 8C in each of the plurality of circulating water utilization systems 1A, 1B, 1c.
  • the operation rate detection means 36A, 36B, 36C capable of detecting the operation rate of the plurality of processing tanks L1 to L8 detected by the operation rate detection means 36A, 36B, 36C and the data on the operation rates of the processing tanks L1 to L8.
  • Data transmission means 37A, 37B, and 37C capable of transmitting via a communication line 60 such as a line.
  • These operating rate detection means 36A, 36B, 36C and data transmission means 37A, 37B, 37C are arranged for each of the plurality of circulating water utilization systems 1A, 1B, 1C.
  • the operation rate detecting means 36 is a process configured as a microcomputer including a central processing unit (CPU), a random access memory (RAM), a read only memory (ROM), an I / O interface, and the like.
  • the tank monitoring device 36a includes an operation rate sensor 36b that detects the operation rates of the plurality of processing tanks L1 to L8. These operating rate sensors 36b are attached to all the processing tanks L1 to L8, and the data regarding the operating rate of each processing tank detected by these operating rate sensors 36b is separated from the purification means 8 by wire or wirelessly. It is transmitted to the processing tank monitoring device 36a at the position. The transmitted data regarding the operating rate of each processing tank is displayed on the display unit of the processing tank monitoring device 36a and is transmitted to the remote monitoring device 10 at a remote place by the data transmitting means 37.
  • the operation rate of the treatment tank can be defined as the flow rate ratio of the water to be treated which is actually treated with respect to the rated treatment capacity of the treatment tank.
  • the remote monitoring device 10 is configured as a microcomputer including a central processing unit (CPU), a random access memory (RAM), a read only memory (ROM), and an I / O interface. As shown in FIG. 3, the remote monitoring device 10 receives the data regarding the operating rate of the plurality of processing tanks L1 to L8 transmitted from the data transmitting unit 37, and the data receiving unit 10A receives the data.
  • a data display unit 10B capable of displaying data relating to the operation rates of the plurality of treatment tanks L1 to L8 is included.
  • the treatment tanks of the purification means 8A, 8B, 8C are provided in each of the circulating water utilization systems 1A, 1B, 1C constituting the circulating water utilization system group.
  • Operating rate detecting means 36A, 36B, 36C capable of detecting the operating rate
  • data transmitting means 37A, 37B, 37C for transmitting data relating to the operating rate
  • data receiving unit 10A capable of receiving transmitted data
  • the treatment tank is moved from the purification means of the circulating water utilization system having a low operation rate of the treatment tank to the purification means of the circulating water utilization system having a high utilization ratio of the treatment tank. Judgment materials can be obtained in real time.
  • the operating rates of the treatment tank rows 41LA and 42LA in the purification means 8A of the circulating water utilization system 1A before relocation are 30%, respectively, and the treatment tank rows in the purification means 8B of the circulating water utilization system 1B.
  • Each of 41LB, 42LB, and 43LB is 100%.
  • the treatment tank row 42LA moves from the purification means 8A of the circulating water utilization system 1A having a low operation rate of the treatment tank to the purification means 8B of the circulating water utilization system 1B having a high utilization ratio of the treatment tank.
  • the operating rate of the treatment tank row 41LA in the purification means 8A of the circulating water utilization system 1A increases to 60%, while the treatment tank rows 41LB, 42LB, 43LB in the purification means 8B of the circulation water utilization system 1B.
  • the operating rate of each of them will be reduced to 75%, and the operating rate will be leveled between the two circulating water utilization systems.
  • a threshold value may be set in advance. For example, a first threshold value (for example, 40%) and a second threshold value (for example, 80%) that exceeds the first threshold value are set in advance, and the detected operating rate is lower than the first threshold value (for example, 40%).
  • a first threshold value for example, 40%
  • a second threshold value for example, 80%
  • the detected operating rate is lower than the first threshold value (for example, 40%).
  • the entire treatment tank row 42LA in the purification means 8A of the circulating water utilization system 1A is moved.
  • this invention is not limited to this, For example, as shown in FIG. 6, you may move only the one part processing tank in the some processing tank which comprises a processing tank row
  • a plurality of treatment tanks 41a, 41b, 41c, 41d constituting the treatment tank row 41LA and a plurality of treatments constituting the treatment tank row 42LA are arranged in the purification means 8A of the circulating water utilization system 1A.
  • the processing tanks 41d and 42d have an operation rate of 0% and are not operating. This is because purification by the treatment tanks 41d and 42d is unnecessary because of the quality of the discharged water discharged from the circulating water utilization system 1A.
  • the treatment tanks 41d and 42d are also operated at an operation rate of 60%, similarly to the treatment tanks 41a to 41c and 42a to 42c.
  • the treatment tanks 41d and 42d are moved from the purification means 8A of the circulating water utilization system 1A to the purification means 8B of the circulating water utilization system 1B, effective utilization of the treatment tanks 41d and 42d that are not in operation is performed. Can be achieved, and the water quality level of the circulating water in the circulating water utilization system 1B can be increased.
  • FIG. 6 is a flowchart for explaining the remote monitoring method for the circulating water utilization system group according to the embodiment of the present invention.
  • the circulating water utilization system group remote monitoring method according to one embodiment of the present invention, as shown in FIG. 6, first, in step S61, a plurality of circulating water utilization systems 1A constituting the above-described circulating water utilization system group, In each of 1B and 1C, the operation rates of a plurality of treatment tanks constituting the treatment tank rows of the respective purification means 8A, 8B and 8C are detected (operation rate detection step). The detection of the operating rate is performed by the operating rate detecting means 36 described above.
  • step S62 data relating to the operating rates of the plurality of processing tanks detected in step S61 is transmitted to the remote monitoring device 10 in the remote location via the communication line 60 (data transmission step).
  • step S63 the data reception unit 10A of the remote monitoring device 10 receives the data relating to the operating rates of the plurality of processing tanks transmitted in step S62 (data receiving step).
  • step S64 the data regarding the operating rates of the plurality of processing tanks received in step S63 is displayed on the data display unit 10B of the remote monitoring device 10 (data display step).
  • step S65 based on the data regarding the operating rates of the plurality of treatment tanks displayed in step S64, another circulating water use with a high operating rate is obtained from the purification means of one circulating water using system with a low operating rate.
  • the processing tank is moved to the purification means of the system (processing tank moving step).
  • an arbitrary treatment tank (for example, L3) is the next to the treatment process performed in the first treatment tank and the first treatment tank.
  • a processing tank (for example, L4) that performs the processing process is referred to as a second processing tank, and a processing tank (for example, L5) that performs the next processing process of the processing process performed in the second processing tank is referred to as a third processing tank.
  • the first processing tank, the second processing tank, and the third processing tank are each a plurality, the plurality of first processing tanks being a first processing tank group, the plurality of second processing tanks being a second processing tank group, The plurality of third treatment tanks are referred to as a third treatment tank group, respectively.
  • FIG. 7 is a schematic view showing a first processing tank, a second processing tank, a third processing tank, and a container container for storing them.
  • FIG. 8 is a schematic diagram for explaining a connection mode of the first processing tank, the second processing tank, and the third processing tank.
  • each of the first processing tank 41, the second processing tank 42, and the third processing tank 43 is detachably accommodated in the container container 50.
  • the first processing tank 41 and the second processing tank 42 are connected by a first-second connecting pipe 44.
  • the second processing tank 42 and the third processing tank are connected by a 2-3 connecting pipe 45.
  • the first-second connecting pipe 44 and the second-third connecting pipe 45 are different in at least one of the pipe diameter, joint structure, and pipe color.
  • the pipe diameter of the first-second connecting pipe 44a is formed larger than the pipe diameter of the second-third connecting pipe 45, and the pipe diameters of both are different. Yes.
  • the aspect in which the pipe diameter of the first-second connecting pipe 44a is the same as the pipe diameter of the second-third connecting pipe 45, and only the pipe diameter of the connecting portion is changed by an adapter is also referred to in the present invention. It is contained in the aspect from which the pipe diameter of a connection part differs.
  • the joint structure of the first-second connecting pipe 44b is an insertion joint
  • the joint structure of the second-third connecting pipe 45b is a flange joint. The structure is different.
  • the purification means 8 of the circulating water utilization system 1 includes a plurality of types of treatment tanks (first treatment tank 41, second treatment tank 42, and third treatment tank 43) that perform different treatment steps, respectively.
  • a series of purification steps are performed by being connected in series by the 1-2 connecting pipe 44 and the 2-3 connecting pipe 45. If the connection order of a plurality of types of treatment tanks is wrong, a series of purification steps may not be performed correctly, and a situation where the purification means 8 does not function well is assumed. Therefore, in the purification means 8 of the circulating water utilization system 1, the first-second connecting pipe 44 that connects the first treatment tank 41 and the second treatment tank 42, the second treatment tank 42, and the third treatment tank 43. And connecting the second and third connecting pipes 45, so that at least one of the diameter of the connecting portion, the joint structure, and the pipe color is different. It is preventing.
  • either the pipe diameter or the joint structure is different.
  • the piping color serves as an identification mark, it does not physically prevent erroneous piping.
  • the adapter is connected to the first-second connecting pipe or the second-third connecting pipe so that it can be connected to different pipe diameters, for example, the first processing tank and the third processing pipe. It is possible to flexibly handle special combinations such as connecting a tank.
  • FIG. 9 is a schematic view showing a first processing tank group, a second processing tank group, a third processing tank group, and a container container that stores them.
  • FIG. 10 is a diagram for explaining a connection mode between the same treatment tank groups arranged in one direction.
  • the containers of the first processing tank 41, the second processing tank 42, and the third processing tank 43 have the same outer shape.
  • the container container 50 has the base surface 50a and the several rectangular recessed part 51,52,53 formed in the base surface 50a.
  • the plurality of recesses are formed in a row in one direction of the pedestal surface 50a and in the other direction orthogonal to the one direction, and are arranged in one direction.
  • the plurality of recesses arranged in the one direction have a plurality of treatment tanks (a plurality of first treatment tanks 41a constituting the first treatment tank group 41G) that perform the same treatment process.
  • the first treatment tank 41, the second treatment tank 42, and the third treatment tank 43 are fitted and inserted into the plurality of recesses arranged in the other direction so as to be arranged in this order. And the some processing tank which performs the said same process process is connected through the water flow holes 54, 55, and 56 so that water flow is possible.
  • the containers of the first processing tank 41, the second processing tank 42, and the third processing tank 43 have the same outer shape, and are excellent in manufacturability and handleability.
  • a plurality of treatment tanks that perform the same processing step are inserted into the plurality of recesses arranged in one direction, and the first treatment tank 41 and the second treatment are arranged in the plurality of recesses arranged in the other direction. It inserts so that the tank 42 and the 3rd process tank 43 may be arranged in this order.
  • the some processing tank which performs the same process process is connected through the water flow holes 54, 55, 56 formed in the base surface 50a so that water flow is possible.
  • the first processing tank 41a, the second processing tank 41a, the second processing tank 42a, and the third processing tank 43a are provided on the side surfaces of the containers. Openings 54a, 55a, 56a connected to the water passage holes 54, 55, 56 are formed at different positions in the processing tank 42a and the third processing tank 43a, respectively. And the water flow holes 54, 55, 56 are formed at different positions for the respective recesses 51a, 52a, 53a into which the first treatment tank 41a, the second treatment tank 42a, and the third treatment tank 43a are inserted. The opening and the water passage hole are connected only when the treatment tank corresponding to the recess is inserted.
  • the opening 54a on the side surface of the container of the first treatment tank 41a is formed at a position on the left side surface so as to be connected to the water passage hole 54 when fitted into the corresponding recess 51a.
  • the opening 55a on the side surface of the container of the second treatment tank 42a is formed at a position in the middle of the side surface so as to be connected to the water passage hole 55 when fitted into the corresponding recess 52a.
  • the opening 56a on the side surface of the container of the third treatment tank 43a is formed at a position on the right side surface so as to be connected to the water passage hole 56 when fitted into the corresponding recess 53a.
  • the water passage hole 54 communicates the left side portion between the recesses 51a and 51b.
  • the water passage hole 55 communicates the middle portion between the recesses 52a and 52b.
  • the water passage hole 56 communicates the right side portion between the recesses 53a and 53b.
  • the opening and the water passage hole are connected only when the processing tank corresponding to the recess is inserted. For this reason, even if the 2nd processing tank 42a is inserted in the recessed part 51a in which the 1st processing tank 41a should be inserted, the opening part 55a and the water flow hole 54 of the 2nd processing tank 42a are not connected. Therefore, erroneous connection of the processing tank is reliably prevented from the above configuration.
  • the first processing tank 41a, the second processing tank 42a, and the third processing tank 43a are disposed on the side surfaces of the containers.
  • 59a is formed.
  • the fitting recesses 57, 58, 59 are formed at different positions for the recesses 51a, 52a, 53a into which the first processing tank 41a, the second processing tank 42a, and the third processing tank 43a are inserted. And only when the processing tank corresponding to this recessed part is inserted, a fitting convex part and the said fitting recessed part fit, and it is comprised so that the processing tank corresponding to a recessed part may be inserted.
  • the fitting convex portion 57a on the container side surface of the first processing tank 41a is formed at the front side position.
  • the fitting convex part 58a of the container side surface of the 2nd processing tank 41a is formed in the center position.
  • the fitting convex part 59a of the container side surface of the 3rd processing tank 43a is formed in the back
  • the fitting recessed part 57 of the recessed part 51a in which the 1st processing tank 41a is inserted is formed in the position of the near side of an opening edge.
  • the fitting recess 58 of the recess 52a into which the second treatment tank 42a is inserted is formed at the center of the opening edge.
  • the fitting recess 59 of the recess 53a into which the third treatment tank 43a is inserted is formed on the back side of the opening edge.
  • the fitting convex portion formed on the container side surface and the fitting concave portion formed on the opening edge of the concave portion are provided. Mating. For this reason, even if it is going to insert the 2nd processing tank 42a in the recessed part 51a in which the 1st processing tank 41a should be inserted, the fitting convex part 58a formed in the container side surface becomes an obstacle, and it fits in the recessed part 51a. I can't insert it. Thus, the above configuration reliably prevents erroneous connection of the treatment tank.
  • At least one embodiment of the present invention can be suitably used in a circulating water utilization system constructed for a specific area separately from a public water supply network.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Telephonic Communication Services (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Selective Calling Equipment (AREA)

Abstract

 特定の地域を対象として構築される循環水利用システム1が複数集まって構成される循環水利用システム群を遠隔監視する循環水利用システム群の遠隔監視方法であって、循環水利用システム群を構成する複数の循環水利用システム各々において、浄化手段8の処理槽列を構成する処理槽の稼働率を検知する稼働率検知工程と、稼働率検知工程で検知される複数の処理槽の稼働率に関するデータを、通信回線60を介して送信するデータ送信工程と、データ送信工程から送信される複数の処理槽の稼働率に関するデータを受信するデータ受信工程と、データ受信工程で受信した複数の処理槽の稼働率に関するデータを表示するデータ表示工程と、を備える。

Description

循環水利用システム群の遠隔監視方法及び遠隔監視システム
 本開示は、公共の上水道網とは別に、特定の地域を対象として構築される循環水利用システムが複数集まって構成される循環水利用システム群を遠隔監視する循環水利用システム群の遠隔監視方法及び遠隔監視システムに関する。
 限られた水資源を有効に利用するため、建物や家庭等から排出される排出水を浄化して再利用するシステムが従前より知られている。例えば特許文献1には、一般家庭等で使用した上水の排水及び雨水を、水洗トイレの洗浄水等に使用するように構成し、節水を図ることのできる排水再利用システムが開示されている。また特許文献2には、建物内で発生した雑排水を処理して中水を生成し、生成した中水を建物内で栽培する植物の灌漑水として再利用する中水利用の建物内緑化設備が開示されている。
特開平8-19773号公報 特開平10-286033号公報
 ところで本出願人は、上述した従来の再利用システムとは全くスケールの異なる、新たな循環水利用システムを検討しているところである。
 上述した従来の再利用システムは、基本的に一建物内や一家庭等内において、上水道網から供給される上水の排水を浄化して特定用途の中水として利用するものであり、利用後の中水は下水道網に排出される。すなわち、既存の公共の上水道網、下水道網の存在が前提であり、これに代替するシステムとはなり得ない。
 これに対して、本出願人が検討している新規な循環水利用システムは、後で詳述するように、例えば10,000人規模の人々が生活する地域や複合施設等に対して、上下水統合処理サービスを提供するものであり、その地域・建物内では、循環的に水供給と水処理が行われるシステムである。すなわち、この循環水利用システムは、当面の間は飲用水に限って上水道からの供給を受けることを考えてはいるものの、基本的には既存の上水道網及び下水道網とは独立して構築される小規模分散型の上下水道統合処理システムとなっている。
 このような新規の循環水利用システムを広域的に展開していくにあたり、広域的に点在する複数の循環水利用システム間における需給ギャップのアンバランスをいかにして効率的に解消していくかが課題であった。
 本発明の少なくとも一つの実施形態は、上述したような従来の課題に鑑みなされたものであって、その目的とするところは、新規の循環水利用システムを広域的に展開していくにあたり、広域的に点在する複数の循環水利用システム間における需給ギャップのアンバランスを効率的に解消するための循環水利用システム群の遠隔監視方法及び遠隔監視システムを提供することにある。
 本発明の少なくとも一つの実施形態は、
 循環水利用システムが複数集まって構成される循環水利用システム群を遠隔監視する循環水利用システム群の遠隔監視方法であって、
 前記循環水利用システムは、
 循環水が流れる循環流路と、
 前記循環流路を流れる循環水を使用する、住居、テナント、及び事務所の内の少なくとも一種からなる小口水需要体が複数集まって構成される水需要体、から排出される排出水を前記循環流路へ排水する排出流路と、
 前記循環流路を流れる前記排出水を含む循環水を浄化する浄化工程を複数の処理工程に分割し、各処理工程を行う処理装置が夫々容器の内部に格納された処理槽が複数接続されてなる処理槽列を含む浄化手段と、
 前記浄化手段で浄化された循環水を前記水需要体に供給する供給流路と、を少なくとも含み、
 前記循環水利用システム群の遠隔監視方法は、
 前記循環水利用システム群を構成する複数の循環水利用システム各々において、前記浄化手段の前記処理槽列を構成する前記処理槽の稼働率を検知する稼働率検知工程と、
 前記稼働率検知工程で検知される前記複数の処理槽の稼働率に関するデータを、通信回線を介して送信するデータ送信工程と、
 前記データ送信工程から送信される前記複数の処理槽の稼働率に関するデータを受信するデータ受信工程と、
 前記データ受信工程で受信した前記複数の処理槽の稼働率に関するデータを表示するデータ表示工程と、を備える。
 本出願人が検討している新規の循環水利用システムでは、排出水を浄化する浄化手段として、一連の浄化工程を複数の処理工程に分割した内の一処理工程を行う処理装置がコンテナの内部に格納されたコンテナ式の処理槽が使用される。この浄化手段は、最初の処理工程を行うコンテナ式の処理槽、次の処理工程を行うコンテナ式の処理槽、次々の処理工程を行うコンテナ式の処理槽、を現場に搬入し、それぞれを直列に接続すること構成される処理槽列を含む。このようなコンテナ式の処理槽は、そのままの状態でトラックに積載して搬送することが出来るため、可搬性に優れている。また、コンテナ収容体に取り外し自在に収容されるため、設置・撤去を自在に行うことが出来る。
 上記コンテナ式処理槽の1処理槽当たりの処理能力は、1,000人程度の排出水を処理できる規模を想定している。このため、例えば10,000人規模の人々が生活する地域や複合施設に対して本循環水利用システムを導入する場合には、同一の処理工程を行う処理槽も複数(例えば10個)必要となる。このように、同一処理工程を行う処理槽を複数備えることで、1処理槽当たりの処理能力を小さくすることが出来る。よって、対象地域における人口の変動や水需要の季節変動にも柔軟に対応可能である。また、代替の処理槽を準備することも容易であり、メンテナンス性にも優れている。
 このような新規の循環水利用システムを広域的に展開していくにあたり、上記循環水利用システム群の遠隔監視方法によれば、循環水利用システム群を構成する複数の循環水利用システム各々において、浄化手段の処理槽の稼働率を検知し、この稼働率に関するデータを送受信して遠隔地にて一括して表示することで、例えば処理槽の稼働率の低い循環水利用システムの浄化手段から、処理槽の稼働率の高い循環水利用システムの浄化手段へと処理槽を移動させる判断材料とすることが出来るため、広域的に点在する複数の循環水利用システム間における需給ギャップのアンバランスを効率的に解消することが可能となる。
 幾つかの実施形態では、循環水利用システム群を構成する複数の循環水利用システムの内、検知される稼働率が規定の第1閾値よりも低い一の循環水利用システムの浄化手段から、検知される稼働率が第1閾値を上回るように設定される第2閾値よりも高い他の循環水利用システムの浄化手段へと前記処理槽を移動する処理槽移動工程をさらに備える。
 このような実施形態によれば、検知される稼働率が第1閾値よりも低い一の循環水利用システムの浄化手段から、検知される稼働率が第2閾値よりも高い他の循環水利用システムの浄化手段へと処理槽を移動する処理槽移動工程をさらに備えるため、広域的に点在する複数の循環水利用システム間における需給ギャップのアンバランスを効率的に解消することが出来る。
 幾つかの実施形態では、上記処理槽移動工程において、前記処理槽が複数接続されてなる前記処理槽列を移動する。
 このように、処理槽移動工程において処理槽列単位で処理槽を移動することで、複数の循環水利用システム間における処理槽の移動及びその管理を容易に行うことが出来る。
 また、本発明の少なくとも一つの実施形態は、
 循環水利用システムが複数集まって構成される循環水利用システム群を遠隔監視する循環水利用システム群の遠隔監視システムであって、
 前記循環水利用システムは、
 循環水が流れる循環流路と、
 前記循環流路を流れる循環水を使用する、住居、テナント、及び事務所の内の少なくとも一種からなる小口水需要体が複数集まって構成される水需要体、から排出される排出水を前記循環流路へ排水する排出流路と、
 前記循環流路を流れる前記排出水を含む循環水を浄化する浄化工程を複数の処理工程に分割し、各処理工程を行う処理装置が夫々容器の内部に格納された処理槽が複数接続されてなる処理槽列を含む浄化手段と、
 前記浄化手段で浄化された循環水を前記水需要体に供給する供給流路と、を少なくとも含み、
 前記循環水利用システム群の遠隔監視システムは、
 前記循環水利用システム群を構成する複数の循環水利用システム各々における前記浄化手段を構成する前記複数の処理槽の稼働率を検知可能な稼働率検知手段と、
 前記稼働率検知手段で検知される前記複数の処理槽の稼働率に関するデータを、通信回線を介して送信可能なデータ送信手段と、
 前記データ送信手段から送信される前記複数の処理槽の稼働率に関するデータを受信可能なデータ受信部、及び前記データ受信部で受信した前記複数の処理槽の稼働率に関するデータを表示可能なデータ表示部を含む遠隔監視装置と、を備える。
 上記循環水利用システム群の遠隔監視システムによれば、循環水利用システム群を構成する複数の循環水利用システム各々において、浄化手段の処理槽の稼働率を検知可能な稼働率検知手段と、この稼働率に関するデータを送信する手段と、送信されるデータを受信可能な受信部、及び受信したデータを表示可能な表示部を含む遠隔監視装置と、を備えている。このため、例えば処理槽の稼働率の低い循環水利用システムの浄化手段から、処理槽の稼働率の高い循環水利用システムの浄化手段へと処理槽を移動させるにあたっての判断材料をリアルタイムに得ることが出来るため、広域的に点在する複数の循環水利用システム間における需給ギャップのアンバランスを効率的に解消することが可能となる。
 本発明の少なくとも一つの実施形態によれば、新規の循環水利用システムを広域的に展開していくにあたり、広域的に点在する複数の循環水利用システム間における需給ギャップのアンバランスを効率的に解消するための循環水利用システム群の遠隔監視方法及び遠隔監視システムを提供することが出来る。
本発明の一実施形態にかかる循環水利用システムを示した全体模式図である。 図1に示した循環水利用システムに対応する模式図であって、特に、浄化手段及び飲用水生成手段における処理槽の配置例を示したものである。 本発明の一実施形態にかかる循環水利用システム群の遠隔監視方法及び遠隔監視システムを説明するための全体模式図である。 本発明の一実施形態における処理槽移動工程を説明するための説明図である。 本発明の一実施形態における処理槽移動工程を説明するための説明図である。 本発明の一実施形態にかかる循環水利用システム群の遠隔監視方法を説明するためのフロー図である。 第1処理槽、第2処理槽、第3処理槽、及びこれらを収容するコンテナ収容体を示した概略図である。 第1処理槽、第2処理槽、及び第3処理槽の接続態様を説明するための概略図である。 第1処理槽群、第2処理槽群、第3処理槽群、及びこれらを収容するコンテナ収容体を示した概略図である。 一方向に配列される同一処理槽群間における接続態様を説明するための図である。
 以下、本発明の実施形態について、図面に基づいてより詳細に説明する。
 ただし、本発明の範囲は以下の実施形態に限定されるものではない。以下の実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、本発明の範囲をそれにのみ限定する趣旨ではなく、単なる説明例に過ぎない。
 図1は、本発明の一実施形態にかかる循環水利用システムを示した全体模式図である。
 循環水利用システム1は、公共の上水道網とは別に、特定の地域を対象として構築されるシステムである。本システムの対象となる人口規模としては、おおよそ5,000~20,000人を想定している。対象地域としては、住居の集合体であるマンション、事務所の集合体であるオフィスビル、テナントの集合体である商業施設、及びこれらが混在する複合施設などである。
 図1に示したように、循環水利用システム1は、循環流路2、水需要体3、排出流路4、供給流路6、浄化手段8、飲用水生成手段12、飲用水供給手段14、などからなる。
 循環流路2は、水道管が閉ループ状に配管されてなる管網として構成される。循環流路2には、循環水が一方向に循環して流れるように、地形条件等に応じて適宜ポンプ(不図示)やバルブ(不図示)などの機器類が配置される。
 循環流路2を流れる循環水の原水は、公共の上水道から供給される水道水に限定されず、井戸水、河川から取水した水、海水を淡水化した水、雨水等であってもよい。また、循環水が不足する場合には、これらの原水を外部から補給水として循環流路2に取り入れるように構成してもよい。なお、これらの原水を補給水として循環流路2に取り入れる場合、その水質レベルに応じて後述する浄化手段8の処理槽に取り込むとよい。例えば、比較的水質の良い井戸水、河川から取水した水、海水を淡水化した水については、後述する浄化手段8の粗膜コンテナL4又は微細膜コンテナL5に取り込み、比較的水質の悪い雨水については通気性コンテナL2、好気性コンテナL3に取り込むように構成するとよい。
 水需要体3は、循環流路2を流れる循環水を生活用水として利用する主体である。水需要体3は、住居3a、テナント3b、及び事務所3cの内の少なくとも一種からなる小口水需要体が複数集まって構成される。住居3aとは、1世帯が生活するマンションの一部屋や戸建て家屋などを指す。テナント3bは、商業施設の一区画において一般顧客に対してサービスを提供する店舗などを指す。業種としては、例えば、服飾店、雑貨店、ドラッグストア、酒屋、等々の小売業や、レストラン、カフェ、寿司屋、居酒屋、等々の飲食業などを含む。事務所3cは、オフィスビルの一部分などにおいて、そこで働く勤務者が一定の目的のために事務を行う場所を指す。
 住居3aにおける生活用水の用途としては、例えばシャワーや風呂、洗濯、食器の洗浄、手洗いや洗顔、トイレ、等々が挙げられる。テナント3bにおける生活用水の用途としては、洗浄やトイレ等が挙げられる。また業種によって水需要量が大きく異なっており、例えば飲食店は小売業と比べてはるかに大量の生活用水を利用する。事務所3cにおける生活用水の用途は主にトイレである。
 また、水需要体3には、上述した循環水とは別に、飲用水が供給される。この飲用水は、公共の上水道網から導水した水道水を更に浄化することで生成され、市販のミネラルウォーターと同等の品質を有するものである。このような仕組みは、循環水を飲用することに抵抗を感じる人の不安感を解消させることができるとともに、本循環水利用システム1を普及させる際のセールスポイントとなることを期待してのものである。
 水道水は、水道水導水管16を介して、公共の上水道網から飲用水生成手段12に導水される。飲用水生成手段12は、導水した水道水を浄化して水需要体3のための飲用水を生成する。飲用水生成手段12は、後述する浄化手段8と同様に、一連の浄化工程を分割した内の一処理工程を行う処理装置がコンテナの内部に格納されたコンテナ式の処理槽が使用される。そして、このコンテナ式の処理槽を処理工程の順番に沿って直列に接続することで構成される。
 なお、本明細書においてコンテナとは、輸送用途のため寸法が規格化された矩形状の容器のことを指す。
 なお、循環水利用システム1における飲用水の原水は、水道水には限定されず、例えば井戸水や河川から取水した水、海水を淡水化した水などであってもよい。
 飲用水生成手段12で生成された飲用水は、飲用水供給手段14によって小口水需要体の各々に供給される。飲用水供給手段14は、飲用水送水管14a、貯留タンク14b、及び飲用水配管14cなどからなる。飲用水生成手段12で生成された飲用水は、飲用水送水管14aを介して貯留タンク14bに送水され、貯留タンク14bにて一旦貯留される。そして、貯留タンク14bに貯留されている飲用水は、飲用水配管14cを介して、上述した住居3a、テナント3b、及び事務所3cからなる小口水需要体の各々に供給される。
 排出流路4は、水需要体3から排出される排出水を循環流路2へ排水するための流路である。この排出流路4から排水される排出水には、水需要体3が生活用水として利用した循環水の他に、飲用水やその他のシステム外由来の水も含まれている。供給流路6は、後述する浄化手段8で浄化された循環水を生活用水として水需要体3に供給するための流路である。排出流路4及び供給流路6は共に管路から構成される。また、排出流路4及び供給流路6には、排出水が循環流路2に排水されるように、又は循環水が水需要体3に供給されるように、地形条件等に応じて適宜ポンプ(不図示)やバルブ(不図示)などの機器類が配置される。
 浄化手段8は、循環流路2を流れる排出水を含む循環水を浄化する手段である。浄化手段8は、一連の浄化工程を分割した内の一処理工程を行う処理装置がコンテナの内部に格納されたコンテナ式の処理槽が使用される。そして、このコンテナ式の処理槽を処理工程の順番に沿って直列に接続することで構成される。本実施形態の浄化手段8は、後述するように、一連の浄化工程を例えば3以上の複数の処理工程に分割した内の一処理工程を行う処理装置が容器の内部に格納された第1処理槽(例えば後述する処理槽L3)、複数の処理工程の内、第1処理槽で行われる処理工程の次処理工程を行う処理装置が容器の内部に格納された第2処理槽(例えば後述する処理槽L4)、複数の処理工程の内、第2処理槽で行われる処理工程の次処理工程を行う処理装置が容器の内部に格納された第3処理槽(例えば後述する処理槽L5)、の3つの処理槽が接続されてなる処理槽列を含んでいる。
 また、本循環水利用システム1において、上記循環流路2は、公共の下水道網には接続されていない。後述するように、排出水の浄化過程で発生する汚泥ケーキ等の余剰汚泥はシステム外に搬出されるが、それ以外の排出水は100%再利用される。すなわち、本循環水利用システム1は、システム内で循環的に水供給と水処理とが行われ、システム外には下水を排出しない完全循環型の循環水利用システムとなっている。
 図2は、図1に示した循環水利用システムに対応する模式図であって、特に、浄化手段及び飲用水生成手段における処理槽の配置例を示したものである。図2に示した実施形態では、浄化手段8は、スクリーン/流量調整コンテナL1、嫌気性コンテナL2、好気性コンテナL3、粗膜コンテナL4、微細膜コンテナL5、オゾン処理コンテナL6、貯水殺菌コンテナL7、消毒コンテナL8が、この順番で直列に接続されることで構成されている。
 スクリーン/流量調整コンテナL1は、排出水に含まれるし査やオイルなどを除去する処理槽であり、オイルトラップやスクリーン装置などの設備を備える。嫌気性コンテナL2及び好気性コンテナL3は、嫌気性処理及び好気性処理を行って排出水に含まれる有機物を除去するための処理槽である。処理方法としては、A20活性汚泥法、回分式活性汚泥法、接触酸化法、オキシデーションディッチ法などの各種公知の処理方法を採用することが出来る。粗膜コンテナL4は、排出水から汚泥を分離するための処理槽である。沈殿槽、MF膜、UF膜、遠心分離などの各種装置・方法を採用することが出来る。微細膜コンテナL5は、循環水の水質を上水レベルまで高めるための処理槽である。逆浸透膜、活性炭、砂濾過、オゾン発生器、イオン交換、ミネラル添加装置などの各種装置・方法を採用することが出来る。オゾン処理コンテナL6は、浄化された循環水に対してオゾン処理を行うための処理槽である。貯水殺菌コンテナL7は、浄化された循環水を紫外線などで貯水殺菌しながら一時的に貯水するための処理槽である。消毒コンテナL8は、浄化された循環水を紫外線、塩素、オゾンなどによって殺菌消毒するための処理槽である。
 汚泥返送/汚泥脱水コンテナL9は、汚泥を脱水乾燥させる処理槽である、汚泥貯留コンテナL10,L11は、汚泥ケーキやし査などの汚水処理において発生する廃棄物を貯蔵するための処理槽である。汚泥貯留コンテナL10,L11に貯蔵される汚泥ケーキなどの余剰汚泥は、例えば肥料業者などが引き取ることにより、システム外に搬出される。
 また、図2に示した実施形態では、飲用水生成手段12は、微細膜コンテナH1、イオン交換コンテナH2、貯水殺菌コンテナH3、ミネラル調整コンテナH4、消毒コンテナH5が、この順番で直列に接続されることで構成されている。これら微細膜コンテナH1、イオン交換コンテナH2、貯水殺菌コンテナH3、ミネラル調整コンテナH4、消毒コンテナH5は、水道水を更に浄化して市販のミネラルウォーターと同等の品質にまで高めるための処理槽である。
 微細膜コンテナH1は、逆浸透膜、活性炭、砂濾過などの各種装置・方法を備えている。イオン交換コンテナH2は、イオン交換装置などを備えている。貯水殺菌コンテナH3は、浄化された水道水を紫外線などで貯水殺菌しながら一時的に貯水するための処理槽である。ミネラル調整コンテナH4は、ミネラル添加装置などを備えている。消毒コンテナH5は、浄化された水道水を紫外線、塩素、オゾンなどによって殺菌消毒するための処理槽である。
 なお、上述した浄化手段8及び飲用水生成手段12の処理槽の配置及び構成は一例であって、排水される排出水の水質や目標とする浄化水準に応じて種々変更可能である。また、図中の符号TWは公共の上水道網から供給される水道水の流れを示している。水道水TWは、上述したように飲用水生成手段12に供給されるだけでなく、必要に応じて補給水として循環流路2にも供給するように構成してもよい。この場合の供給位置は、排出水の浄化処理がほぼ完了する、微細膜コンテナL5の下流側とするのが良い。また、図中の符号WW4は、濃縮水をスクリーン/流量調整コンテナL1に送水するための戻し管路である。
 このように、本出願人が検討している新規の循環水利用システム1では、排出水を浄化する浄化手段8、及び水道水を浄化する飲用水生成手段12として、一連の浄化工程を例えば3以上の複数の処理工程に分割した内の一処理工程を行う処理装置がコンテナの内部に格納されたコンテナ式の処理槽が使用される。そして、最初の処理工程を行うコンテナ式の処理槽、次の処理工程を行うコンテナ式の処理槽、次々の処理工程を行うコンテナ式の処理槽、を現場に搬入し、それぞれを接続管で直列に接続することで浄化手段8が構築される。このようなコンテナ式の処理槽は、そのままの状態でトラックに積載して搬送することが出来るため、可搬性に優れている。また、コンテナ収容体に取り外し自在に収容されるため、設置・撤去を自在に行うことが出来る。
 上記コンテナ式処理槽の1処理槽当たりの処理能力は、1,000人程度の排出水を処理できる規模を想定している。このため、例えば10,000人規模の人々が生活する地域や複合施設に対して本循環水利用システムを導入する場合には、同一の処理工程を行う処理槽も複数(例えば10個)必要となる。このように、同一処理工程を行う処理槽を複数備えることで、1処理槽当たりの処理能力を小さくすることが出来る。よって、対象地域における人口の変動や水需要の季節変動にも柔軟に対応可能である。また、代替の処理槽を準備することも容易であり、メンテナンス性にも優れている。
 図3は、本発明の一実施形態にかかる循環水利用システム群の遠隔監視方法及び遠隔監視システムを説明するための全体模式図である。
 図3に示したように、本発明の一実施形態にかかる循環水利用システム群は、広域的に点在する上述した循環水利用システム1A、1B、1Cが複数集まって構成される。遠隔監視装置10は、これら点在する複数の循環水利用システムを遠隔地より監視するための装置である。図中の符号3A、3B、3C及び符号8A、8B、8Cは、複数の循環水利用システム1A、1B、1C各々における水需要体及び浄化手段を夫々示している。
 なお、以下の説明では、浄化手段8を構成する複数の処理槽L1~L8を例に説明するが、飲用水生成手段12を構成する複数の処理槽H1~H5についても適用可能である。
 また、循環水利用システム群の遠隔監視システムは、図1に示すように、複数の循環水利用システム1A、1B、1c各々における浄化手段8A、8B、8Cを構成する複数の処理槽L1~L8の稼働率を検知可能な稼働率検知手段36A、36B、36Cと、稼働率検知手段36A、36B、36Cで検知される複数の処理槽L1~L8の稼働率に関するデータを携帯電話回線や無線LAN回線などの通信回線60を介して送信可能なデータ送信手段37A、37B、37Cと、を備える。これら稼働率検知手段36A、36B、36C、及びデータ送信手段37A、37B、37Cは、複数の循環水利用システム1A、1B、1Cの各々に対して夫々配置されている。
 稼働率検知手段36は、図2に示すように、中央処理装置(CPU)、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、およびI/Oインターフェイスなどからなるマイクロコンピュータとして構成される処理槽監視装置36aと、複数の処理槽L1~L8夫々の稼働率を検出する稼働率センサ36bからなる。これら稼働率センサ36bは、全ての処理槽L1~L8に付設されており、これら稼働率センサ36bによって検出された各処理槽の稼働率に関するデータが、有線又は無線によって、浄化手段8から離れた位置にある処理槽監視装置36aに送信されるようになっている。送信された各処理槽の稼働率に関するデータは、処理槽監視装置36aの表示部に表示されるとともに、データ送信手段37によって遠隔地にある遠隔監視装置10に送信されるようになっている。
 ここで処理槽の稼働率とは、処理槽の定格処理能力に対する実際に処理している被処理水の流量比として定義することが出来る。
 遠隔監視装置10は、中央処理装置(CPU)、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、およびI/Oインターフェイスなどからなるマイクロコンピュータとして構成される。遠隔監視装置10は、図3に示すように、データ送信手段37から送信される複数の処理槽L1~L8の稼働率に関するデータを受信可能なデータ受信部10A、及びデータ受信部10Aで受信した複数の処理槽L1~L8の稼働率に関するデータを表示可能なデータ表示部10Bを含む。そして、複数の循環水利用システム1A、1B、1C各々に配置されるデータ送信手段37A、37B、37Cから、各々の浄化手段8A、8B、8Cを構成する複数の処理槽L1~L8の稼働率に関するデータが送信され、これらがデータ表示部10Bにおいて一括して表示されるようになっている。
 このような循環水利用システム群の遠隔監視システムによれば、循環水利用システム群を構成する複数の循環水利用システム1A、1B、1Cの各々において、浄化手段8A、8B、8Cの処理槽の稼働率を検知可能な稼働率検知手段36A、36B、36Cと、この稼働率に関するデータを送信するデータ送信手段37A、37B、37Cと、送信されるデータを受信可能なデータ受信部10A、及び受信したデータを表示可能なデータ表示部10Bを含む遠隔監視装置10と、を備えている。
 このため、例えば図4に示すように、処理槽の稼働率の低い循環水利用システムの浄化手段から、処理槽の稼働率の高い循環水利用システムの浄化手段へと処理槽を移動させるにあたっての判断材料をリアルタイムに得ることが出来る。図4に示した実施形態では、再配置前の循環水利用システム1Aの浄化手段8Aにおける処理槽列41LA、42LAの稼働率はそれぞれ30%、循環水利用システム1Bの浄化手段8Bにおける処理槽列41LB、42LB、43LBはそれぞれ100%となっている。これに対して、再配置後は、処理槽の稼働率の低い循環水利用システム1Aの浄化手段8Aから、処理槽の稼働率の高い循環水利用システム1Bの浄化手段8Bへと処理槽列42LAを移動させることで、循環水利用システム1Aの浄化手段8Aにおける処理槽列41LAの稼働率は60%に上昇する一方で、循環水利用システム1Bの浄化手段8Bにおける処理槽列41LB、42LB、43LBの稼働率はそれぞれ75%に低下し、両循環水利用システム間において稼働率の平準化が図られる。
 このように、処理槽の稼働率の低い循環水利用システムの浄化手段から、処理槽の稼働率の高い循環水利用システムの浄化手段へと処理槽を移動させることで、広域的に点在する複数の循環水利用システム間における需給ギャップのアンバランスを効率的に解消することが可能となる。
 ここで処理槽を移動させる場合の稼働率の目安として、予め閾値を設けておくとよい。例えば、第1閾値(例えば40%)と、第1閾値を上回る第2閾値(例えば80%)とを予め設定しておき、検知される稼働率が第1閾値(例えば40%)よりも低い一の循環水利用システムの浄化手段から、検知される稼働率が第2閾値(例えば80%)よりも高い他の循環水利用システムの浄化手段へと処理槽列を移動することで、広域的に点在する複数の循環水利用システム間における需給ギャップのアンバランスを効率的に解消することが可能となる。
 上記実施形態では、循環水利用システム1Aの浄化手段8Aにおける処理槽列42LAの全体を移動した。このように、処理槽列単位で処理槽を移動することで、複数の循環水利用システム間における処理槽の移動及びその管理を容易に行うことが出来る。
 しかしながら本発明はこれに限定されず、例えば図6に示すように、処理槽列を構成する複数の処理槽の内の一部の処理槽だけを移動してもよい。
 図6に示した実施形態では、循環水利用システム1Aの浄化手段8Aにおいて、処理槽列41LAを構成する複数の処理槽41a、41b、41c、41d、及び処理槽列42LAを構成する複数の処理槽列42a、42b、42c、42dの内、処理槽41d、42dは稼働率が0%となっており、稼働していない。これは、循環水利用システム1Aから排出される排出水の水質の関係上、処理槽41d、42dによる浄化は不要だからである。一方、循環水利用システム1Bの浄化手段8Bにおいては、処理槽41d、42dについても、処理槽41a~41c、42a~42cと同様に稼働率60%で稼働している。
 このような場合において、循環水利用システム1Aの浄化手段8Aから循環水利用システム1Bの浄化手段8Bへと処理槽41d、42dを移動することで、稼働していない処理槽41d、42dの有効利用が図れるとともに、循環水利用システム1Bにおける循環水の水質レベルを高めることが出来る。
 図6は、本発明の一実施形態にかかる循環水利用システム群の遠隔監視方法を説明するためのフロー図である。
 本発明の一実施形態にかかる循環水利用システム群の遠隔監視方法では、図6に示したように、先ずステップS61において、上述した循環水利用システム群を構成する複数の循環水利用システム1A、1B、1Cの各々において、各々の浄化手段8A、8B、8Cの処理槽列を構成する複数の処理槽の稼働率を検知する(稼働率検知工程)。この稼働率の検知は、上述した稼働率検知手段36によって行われる。
 次に、ステップS62において、ステップS61において検知された複数の処理槽の稼働率に関するデータを、通信回線60を介して遠隔地にある遠隔監視装置10に向かって送信する(データ送信工程)。
 次に、ステップS63において、ステップS62において送信された複数の処理槽の稼働率に関するデータを、遠隔監視装置10のデータ受信部10Aにて受信する(データ受信工程)。
 次に、ステップS64において、ステップS63において受信した複数の処理槽の稼働率に関するデータを、遠隔監視装置10のデータ表示部10Bに表示する(データ表示工程)。
 最後に、ステップS65において、ステップS64において表示された複数の処理槽の稼働率に関するデータに基づいて、稼働率が低い一の循環水利用システムの浄化手段から、稼働率が高い他の循環水利用システムの浄化手段へと処理槽を移動する(処理槽移動工程)。
 以上、このような循環水利用システム群の遠隔監視方法によれば、広域的に点在する複数の循環水利用システム間における需給ギャップのアンバランスを効率的に解消することが可能である。
<処理槽間の接続について>
 ここで、排出水を浄化する一連の浄化工程を行う上記L1-L8までの処理槽の内、任意の処理槽(例えばL3)を第1処理槽、第1処理槽で行われる処理工程の次処理工程を行う処理槽(例えばL4)を第2処理槽、第2処理槽で行われる処理工程の次処理工程を行う処理槽(例えばL5)を第3処理槽、とそれぞれ呼ぶこととする。また、これら第1処理槽、第2処理槽、及び第3処理槽は夫々複数であり、複数の第1処理槽を第1処理槽群、複数の第2処理槽を第2処理槽群、複数の第3処理槽を第3処理槽群、とそれぞれ呼ぶこととする。
 図7は、第1処理槽、第2処理槽、第3処理槽、及びこれらを収容するコンテナ収容体を示した概略図である。図8は、第1処理槽、第2処理槽、及び第3処理槽の接続態様を説明するための概略図である。
 図7に示したように、第1処理槽41、第2処理槽42、及び第3処理槽43の夫々は、コンテナ収容体50に取り外し自在に収容される。そして、第1処理槽41と第2処理槽42とは、第1-2接続管44によって接続される。また、第2処理槽42と第3処理槽とは、第2-3接続管45によって接続される。
 そして、図8に示したように、上記第1-2接続管44と第2-3接続管45とでは、少なくとも管径、継手構造、及び配管色の何れか一つが異なっている。図8(a)に示した実施形態では、第1-2接続管44aの管径が第2-3接続管45の管径よりも大径に形成されており、両者の管径は異なっている。なお、第1-2接続管44aの管径が第2-3接続管45の管径を同一の管径とし、アダプタによって接続部の管径だけを異ならせる態様も、本発明で言うところの接続部の管径が異なる態様に含まれる。また、図8(b)に示した実施形態では、第1-2接続管44bの継手構造が差込継手、第2-3接続管45bの継手構造がフランジ継手となっており、両者の継手構造が異なっている。
 このように、上記循環水利用システム1の浄化手段8は、各々異なる処理工程を行う複数種類の処理槽(第1処理槽41、第2処理槽42、第3処理槽43)が、それぞれ第1-2接続管44及び第2-3接続管45によって直列に接続されることで一連の浄化工程が行われるように構成される。複数種類の処理槽の接続順番を間違うと、一連の浄化工程が正しく行われず、浄化手段8としてうまく機能しない事態も想定される。そこで上記循環水利用システム1の浄化手段8では、第1処理槽41と第2処理槽42とを接続する接続する第1-2接続管44と、第2処理槽42と第3処理槽43とを接続する接続する第2-3接続管45とで、少なくとも接続部の管径、継手構造、及び配管色の何れか一つが異なるように構成し、異なる種類の処理槽間における誤配管を防止している。
 上記実施形態において、好ましくは、配管色に加えて、管径、及び継手構造の何れか一方が異なっているのがよい。配管色は識別マークとしての役目は果たすものの、誤配管を物理的に阻害できるものではない。これに対して、管径、及び継手構造の何れか一方が異なっていれば、異なる種類の処理槽間における誤配管を物理的に確実に防止することが出来る。
 また上記実施形態において、第1-2接続管や第2-3接続管に対してアダプタを接続し、異なる管径に対して接続可能とすることで、例えば、第1処理槽と第3処理槽とを接続するなどの特殊な組み合わせにも柔軟に対応することが出来る。 
 図9は、第1処理槽群、第2処理槽群、第3処理槽群、及びこれらを収容するコンテナ収容体を示した概略図である。図10は、一方向に配列される同一処理槽群間における接続態様を説明するための図である。
 幾つかの実施形態では、図9に示したように、上記第1処理槽41、第2処理槽42、及び第3処理槽43の各々のコンテナは同一の外形状からなる。そして、図10に示したように、コンテナ収容体50は、台座面50aと、台座面50aに形成される複数の矩形状の凹部51,52,53とを有している。しかも、上記複数の凹部は、図10に示したように、台座面50aの一方向及び該一方向と直交する他方向に夫々列をなして複数形成され、一方向に配列される複数の凹部の間には、隣接する凹部間(凹部51aと51b、凹部52aと凹部52b、凹部53aと凹部53b)を連通する通水孔54,55,56が形成されている。そして、図10に示したように、上記一方向に配列される複数の凹部には、同一の処理工程を行う複数の処理槽(第1処理槽群41Gを構成する複数の第1処理槽41a,41b,41c、第2処理槽群42Gを構成する複数の第2処理槽42a,42b,42c、又は第3処理槽群43Gを構成する複数の第3処理槽43a,43b,43c)が夫々嵌挿される。上記他方向に配列されている複数の凹部には、第1処理槽41、第2処理槽42、及び第3処理槽43がこの順番で配列されるように嵌挿される。そして、上記同一の処理工程を行う複数の処理槽は、通水孔54,55,56を介して通水可能に接続される。
 このような実施形態によれば、第1処理槽41、第2処理槽42、及び第3処理槽43の各々のコンテナはともに同一の外形状であり、製造性や取扱い性に優れる。しかも、一方向に配列される複数の凹部には、同一の処理工程を行う複数の処理槽が嵌挿され、他方向に配列される複数の凹部には、第1処理槽41、第2処理槽42、及び第3処理槽43がこの順番で配列されるように嵌挿される。そして、同一の処理工程を行う複数の処理槽は、台座面50aに形成される通水孔54,55,56を介して通水可能に接続される。よって、水需要の季節変動や、排出水の水質悪化等に対応するため、処理槽の数を一時的に増設するような場合に、一方向に配列されている凹部に同一処理工程を行う処理槽を嵌挿するだけで処理槽が通水可能に接続される。このため、処理槽の増設が容易であり、水需要の季節変動や浄化水の水質悪化等に柔軟に対応することが出来る。
 幾つかの実施形態では、図10に示したように、第1処理槽41a、第2処理槽42a、及び第3処理槽43aの各々のコンテナの側面には、第1処理槽41a、第2処理槽42a、及び第3処理槽43aとで夫々異なる位置に通水孔54,55,56と接続する開口部54a,55a,56aが形成される。そして、通水孔54,55,56が、第1処理槽41a、第2処理槽42a、及び第3処理槽43aが嵌挿される凹部51a,52a,53a毎に夫々異なる位置に形成されており、該凹部に対応する処理槽が嵌挿されたときだけ、開口部と通水孔とが接続するように構成されている。
 詳しく説明すると、図示した実施形態では、第1処理槽41aのコンテナ側面の開口部54aは、対応する凹部51aに嵌挿された時に通水孔54と接続するように側面左側の位置に形成されている。第2処理槽42aのコンテナ側面の開口部55aは、対応する凹部52aに嵌挿された時に通水孔55と接続するように、側面真ん中の位置に形成されている。第3処理槽43aのコンテナ側面の開口部56aは、対応する凹部53aに嵌挿された時に通水孔56と接続するように、側面右側の位置に形成されている。また、通水孔54は、凹部51a,51bの間の左側部分を連通している。通水孔55は、凹部52a,52bの間の真ん中部分を連通している。通水孔56は、凹部53a,53bの間の右側部分を連通している。
 このような実施形態によれば、凹部に対応する処理槽が嵌挿されたときだけ開口部と通水孔とが接続される。このため、仮に第1処理槽41aが嵌挿されるべき凹部51aに第2処理槽42aが嵌挿されたとしても、第2処理槽42aの開口部55aと通水孔54とは接続されない。よって、上記構成より、処理槽の誤接続が確実に防止される。
 幾つかの実施形態では、図9に示したように、第1処理槽41a、第2処理槽42a、及び第3処理槽43aの各々のコンテナの側面には、第1処理槽41a、第2処理槽42a、及び第3処理槽43aとで夫々異なる位置に凹部51a,52a,53aの開口縁に形成されている嵌合凹部57,58,59と嵌合する嵌合凸部57a,58a,59aが形成されている。そして、上記嵌合凹部57,58,59が、第1処理槽41a、第2処理槽42a、及び第3処理槽43aが嵌挿される凹部51a,52a,53a毎に夫々異なる位置に形成されており、該凹部に対応する処理槽が嵌挿されたときだけ、嵌合凸部と前記嵌合凹部とが嵌合し、凹部に対応する処理槽が嵌挿されるように構成されている。
 詳しく説明すると、図示した実施形態では、第1処理槽41aのコンテナ側面の嵌合凸部57aは、手前側の位置に形成されている。第2処理槽41aのコンテナ側面の嵌合凸部58aは、真ん中の位置に形成されている。第3処理槽43aのコンテナ側面の嵌合凸部59aは、奥側の位置に形成されている。
 また、第1処理槽41aが嵌挿される凹部51aの嵌合凹部57は、開口縁の手前側の位置に形成されている。第2処理槽42aが嵌挿される凹部52aの嵌合凹部58は、開口縁の真ん中の位置に形成されている。第3処理槽43aが嵌挿される凹部53aの嵌合凹部59は、開口縁の奥側に形成されている。
 このような実施形態によれば、凹部に対応する処理槽が嵌挿されたときだけ、コンテナ側面に形成されている嵌合凸部と、凹部の開口縁に形成されている嵌合凹部とが嵌合する。このため、仮に第1処理槽41aが嵌挿されるべき凹部51aに第2処理槽42aを嵌挿しようとしても、コンテナ側面に形成されている嵌合凸部58aが障害となって凹部51aに嵌挿することが出来ない。よって、上記構成により、処理槽の誤接続が確実に防止される。
 以上、本発明の好ましい形態について説明したが、本発明は上記の形態に限定されるものではない。例えば上述した実施形態を組み合わせても良く、本発明の目的を逸脱しない範囲での種々の変更が可能である。
 本発明の少なくとも一実施形態は、公共の上水道網とは別に、特定の地域を対象として構築される循環水利用システムにおいて好適に用いることが出来る。
1     循環水利用システム
2     循環流路
3     水需要体
3a    住居
3b    テナント
3c    事務所
4     排出流路
6     供給流路
8     浄化手段(浄化装置)
8a    浄化手段制御ユニット
10    遠隔監視装置
10A   データ受信部
10B   データ表示部
12    飲用水生成手段
14    飲用水供給手段
14a   飲用水送水管
14b   貯留タンク、飲用水タンク
14c   飲用水配管
16    水道水導水管
36    稼働率検知手段
36a   処理槽監視装置
36b   稼働率センサ
37    データ送信手段
41    第1処理槽、
41G   第1処理槽群
42    第2処理槽
42G   第2処理槽群
43    第3処理槽
43G   第3処理槽群
44    第1-2接続管、
45    第2-3接続管
50    コンテナ収容体
50a   台座面
51    凹部
54、55、56     通水孔
54a、55a、56a  開口部
57、58、59     嵌合凹部
57a、58a、59a  嵌合凸部
60    通信回線
 

Claims (4)

  1.  循環水利用システムが複数集まって構成される循環水利用システム群を遠隔監視する循環水利用システム群の遠隔監視方法であって、
     前記循環水利用システムは、
     循環水が流れる循環流路と、
     前記循環流路を流れる循環水を使用する、住居、テナント、及び事務所の内の少なくとも一種からなる小口水需要体が複数集まって構成される水需要体、から排出される排出水を前記循環流路へ排水する排出流路と、
     前記循環流路を流れる前記排出水を含む循環水を浄化する浄化工程を複数の処理工程に分割し、各処理工程を行う処理装置が夫々容器の内部に格納された処理槽が複数接続されてなる処理槽列を含む浄化手段と、
     前記浄化手段で浄化された循環水を前記水需要体に供給する供給流路と、を少なくとも含み、
     前記循環水利用システム群の遠隔監視方法は、
     前記循環水利用システム群を構成する複数の循環水利用システム各々において、前記浄化手段の前記処理槽列を構成する前記処理槽の稼働率を検知する稼働率検知工程と、
     前記稼働率検知工程で検知される前記複数の処理槽の稼働率に関するデータを、通信回線を介して送信するデータ送信工程と、
     前記データ送信工程から送信される前記複数の処理槽の稼働率に関するデータを受信するデータ受信工程と、
     前記データ受信工程で受信した前記複数の処理槽の稼働率に関するデータを表示するデータ表示工程と、を備える
    循環水利用システム群の遠隔監視方法。
  2.  前記循環水利用システム群を構成する前記複数の循環水利用システムの内、検知される稼働率が規定の第1閾値よりも低い一の循環水利用システムの浄化手段から、検知される稼働率が前記第1閾値を上回るように設定される第2閾値よりも高い他の循環水利用システムの浄化手段へと前記処理槽を移動する処理槽移動工程をさらに備える
    請求項1に記載の循環水利用システム群の遠隔監視方法。
  3.  前記処理槽移動工程において、前記処理槽が複数接続されてなる前記処理槽列を移動する
    請求項2に記載の循環水利用システム群の遠隔監視方法。
  4.  循環水利用システムが複数集まって構成される循環水利用システム群を遠隔監視する循環水利用システム群の遠隔監視システムであって、
     前記循環水利用システムは、
     循環水が流れる循環流路と、
     前記循環流路を流れる循環水を使用する、住居、テナント、及び事務所の内の少なくとも一種からなる小口水需要体が複数集まって構成される水需要体、から排出される排出水を前記循環流路へ排水する排出流路と、
     前記循環流路を流れる前記排出水を含む循環水を浄化する浄化工程を複数の処理工程に分割し、各処理工程を行う処理装置が夫々容器の内部に格納された処理槽が複数接続されてなる処理槽列を含む浄化手段と、
     前記浄化手段で浄化された循環水を前記水需要体に供給する供給流路と、を少なくとも含み、
     前記循環水利用システム群の遠隔監視システムは、
     前記循環水利用システム群を構成する複数の循環水利用システム各々における前記浄化手段を構成する前記複数の処理槽の稼働率を検知可能な稼働率検知手段と、
     前記稼働率検知手段で検知される前記複数の処理槽の稼働率に関するデータを、通信回線を介して送信可能なデータ送信手段と、
     前記データ送信手段から送信される前記複数の処理槽の稼働率に関するデータを受信可能なデータ受信部、及び前記データ受信部で受信した前記複数の処理槽の稼働率に関するデータを表示可能なデータ表示部を含む遠隔監視装置と、を備える
    循環水利用システム群の遠隔監視システム。
     
     
     
PCT/JP2014/082094 2013-12-05 2014-12-04 循環水利用システム群の遠隔監視方法及び遠隔監視システム WO2015083782A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/037,601 US10315930B2 (en) 2013-12-05 2014-12-04 Method and system for remotely monitoring a group of circulating-water utilization systems
MX2016006861A MX2016006861A (es) 2013-12-05 2014-12-04 Metodo y sistema para monitorear remotamente un grupo de sistemas de utilizacion de agua circulante.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-251622 2013-12-05
JP2013251622A JP5518245B1 (ja) 2013-12-05 2013-12-05 循環水利用システム群の遠隔監視方法及び遠隔監視システム

Publications (1)

Publication Number Publication Date
WO2015083782A1 true WO2015083782A1 (ja) 2015-06-11

Family

ID=51031274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082094 WO2015083782A1 (ja) 2013-12-05 2014-12-04 循環水利用システム群の遠隔監視方法及び遠隔監視システム

Country Status (4)

Country Link
US (1) US10315930B2 (ja)
JP (1) JP5518245B1 (ja)
MX (1) MX2016006861A (ja)
WO (1) WO2015083782A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108285250A (zh) * 2018-04-12 2018-07-17 成都碧水水务建设工程有限公司 一种装配式污水处理场站及其建设方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251186A (ja) * 1994-03-17 1995-10-03 Hitachi Ltd 水処理システム
JP2006281159A (ja) * 2005-04-04 2006-10-19 Hitachi Ltd 水処理プラントの水処理方法及び水処理プラント

Family Cites Families (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3638490A (en) 1969-01-17 1972-02-01 Carl F Buettner Fluid flow measuring device
US3558255A (en) 1970-01-26 1971-01-26 Keene Corp Control system for waste water treatment plants
US4335606A (en) 1980-06-13 1982-06-22 Michalak Janusz K Apparatus and method for measuring fluid
JPS61230707A (ja) 1985-04-06 1986-10-15 Toyota Motor Corp 限外濾過方法
JPS63119892A (ja) 1986-11-10 1988-05-24 株式会社日立ビルシステムサービス 給水管内部洗浄装置
US5186052A (en) 1991-08-07 1993-02-16 Environmental Monitoring And Technologies, Inc. Storm water flow monitoring
JPH0679142A (ja) 1992-09-07 1994-03-22 Mitsubishi Heavy Ind Ltd 逆浸透モジュールにおける液の給排方法
JPH06210291A (ja) 1992-11-20 1994-08-02 Shimizu Corp 総合水利用システム
JPH06226059A (ja) 1993-01-29 1994-08-16 Kuraray Co Ltd 濾過装置
JPH06240711A (ja) 1993-02-19 1994-08-30 Toto Ltd 中水処理システム
JPH06269766A (ja) 1993-03-17 1994-09-27 Shimizu Corp 地域排水再利用システム
JPH06277455A (ja) 1993-03-29 1994-10-04 Mitsubishi Heavy Ind Ltd 限外ろ過膜モジュールの運転方法
US6015496A (en) 1993-04-12 2000-01-18 Khudenko; Boris M. In-sewer treatment of wastewater and sludges
JPH0677886U (ja) 1993-04-14 1994-11-01 河内板金工業株式会社 流水殺菌装置
JP3270211B2 (ja) 1993-09-02 2002-04-02 株式会社竹中工務店 淡水製造装置
JPH0819773A (ja) 1994-07-07 1996-01-23 Onochiyuu:Kk 排水再利用システム
JP3567011B2 (ja) 1995-02-27 2004-09-15 株式会社住本科学研究所 中水道の循環システム及び貯水槽
JPH09296493A (ja) 1996-05-03 1997-11-18 Inax Corp 真空排水システム
US5873996A (en) 1996-05-03 1999-02-23 Puraq Water Systems, Inc. Community drinking water purification system
JP3579187B2 (ja) 1996-07-29 2004-10-20 旭化成ケミカルズ株式会社 濾過装置
JPH1057941A (ja) 1996-08-21 1998-03-03 Inax Corp 排水再利用装置
US5817231A (en) 1996-12-20 1998-10-06 American Dryer Corporation Water purifying and vending apparatus
JPH10286033A (ja) 1997-04-15 1998-10-27 Shimizu Corp 中水利用の建物内緑化設備
US5958240A (en) 1997-05-19 1999-09-28 Hoel; Timothy L. System for recycling waste water
JPH1190464A (ja) 1997-09-24 1999-04-06 Toto Ltd 排水再利用装置
JP3381834B2 (ja) 1997-10-20 2003-03-04 栗田工業株式会社 排水の再利用方法
JPH11207155A (ja) 1998-01-27 1999-08-03 Kurita Water Ind Ltd 海水等の淡水化装置
JPH11220155A (ja) 1998-02-02 1999-08-10 Tokuzo Hirose 発電装置
US6463956B2 (en) 1998-09-29 2002-10-15 International Water-Guard Industries Inc. Method of water distribution and apparatus therefor
JP2000288570A (ja) 1999-04-09 2000-10-17 Shimizu Corp 建物内排水再利用方法とそれに用いる排水処理装置
US6783679B1 (en) 1999-10-19 2004-08-31 Pmc Technologies, Inc. Waste treatment process
JP2001170458A (ja) 1999-12-15 2001-06-26 Meidensha Corp 膜浄水処理における膜破断とファウリングの検出方法
CA2396853A1 (en) 2000-01-11 2001-07-19 Nephros, Inc. Thermally enhanced dialysis/diafiltration system
US20020079267A1 (en) 2000-08-01 2002-06-27 Savage E. Stuart Process for direct filtration of wastewater
JP2002045872A (ja) 2000-08-02 2002-02-12 Matsushita Electric Works Ltd 汚水処理水再利用装置
US6488853B1 (en) 2000-10-04 2002-12-03 Great Circle Technologies, Inc. Process and apparatus for treating wastewater
JP2002166263A (ja) 2000-11-29 2002-06-11 Japan Organo Co Ltd 水回収利用システム
JP2002215731A (ja) 2001-01-15 2002-08-02 Mitsubishi Electric Corp 市場管理配送システム
JP4798644B2 (ja) 2001-01-16 2011-10-19 オルガノ株式会社 逆浸透膜を用いる脱塩方法
JP2002267657A (ja) 2001-03-07 2002-09-18 Sanyo Electric Co Ltd 排水排出者に対して課金を行なうシステム
JP2002316143A (ja) 2001-04-23 2002-10-29 Toshiba Corp 水質管理システム
US6846407B2 (en) 2001-04-26 2005-01-25 Emi, Llc Method and apparatus for recovery of waste water
JP2003019491A (ja) 2001-07-06 2003-01-21 Ataka Construction & Engineering Co Ltd 油脂の嫌気性処理方法
JP2003075209A (ja) 2001-09-04 2003-03-12 Ibic Service:Kk 上下水道量管理システム
JP4114712B2 (ja) 2001-09-18 2008-07-09 賢士 宍戸 建造物内の使用済み水を甦生する循環水処理システム
JP2003178155A (ja) 2001-12-12 2003-06-27 Komatsu Ltd 機械の管理支援システム、その管理支援方法およびその管理支援プログラム
JP2004008958A (ja) 2002-06-07 2004-01-15 Mitsubishi Rayon Eng Co Ltd 精製水製造装置
JP2004038902A (ja) 2002-07-01 2004-02-05 Alniko:Kk 水処理装置の課金システム
JP2004041887A (ja) 2002-07-10 2004-02-12 Mitsubishi Heavy Ind Ltd 逆浸透膜装置及びその運転方法
JP4251879B2 (ja) 2002-08-29 2009-04-08 オルガノ株式会社 分離膜モジュールの運転方法
US6887375B2 (en) 2003-01-28 2005-05-03 William Chando Johnson System to save and recycle domestic water
JP2004249174A (ja) 2003-02-18 2004-09-09 Toshiba Corp ろ過装置およびその運転方法
JP4665378B2 (ja) 2003-03-25 2011-04-06 三菱電機株式会社 水環境指標換算システム
JP2005149003A (ja) 2003-11-13 2005-06-09 Komatsu Tokyo Ltd 入出庫遠隔監視管理システム
JP2005186960A (ja) 2003-12-24 2005-07-14 Sekisui Seikei Ltd 合成樹脂製容器及びその製造方法
JP4561231B2 (ja) 2004-08-16 2010-10-13 栗田工業株式会社 水供給システムおよび水供給方法
US7497957B2 (en) 2005-01-21 2009-03-03 Bernard Frank System, method and apparatus for end-to-end control of water quality
US7767093B2 (en) 2005-01-21 2010-08-03 Bernard Frank Method for end-to-end control of water quality
JP2006223935A (ja) 2005-02-15 2006-08-31 Hitachi Ltd 中水製造装置および中水製造方法
JP2006233779A (ja) 2005-02-22 2006-09-07 Yanmar Co Ltd 水力発電利用型施設
JP2006281074A (ja) 2005-03-31 2006-10-19 Kobelco Eco-Solutions Co Ltd 有機汚泥の処理方法
JP4469305B2 (ja) 2005-04-21 2010-05-26 株式会社日立製作所 水質管理システム
JP2006305499A (ja) 2005-04-28 2006-11-09 Miura Co Ltd 膜濾過システムの運転方法
JP2006310209A (ja) 2005-05-02 2006-11-09 Ricoh Co Ltd 燃料電池システム及び電子機器並びに燃料電池システムの起動方法
US7313955B2 (en) 2005-05-16 2008-01-01 City Meter, Inc. Liquid flow meter
US7181964B2 (en) 2005-05-16 2007-02-27 Nivens Jr Kirk N Liquid flow meter
JP4611120B2 (ja) 2005-06-01 2011-01-12 ヤンマー株式会社 排水リサイクルシステム
DE602005020521D1 (de) 2005-07-06 2010-05-20 Glowtec Bio Pte Ltd Wasserbehandlungsverfahren
JP5034381B2 (ja) 2005-09-01 2012-09-26 東レ株式会社 膜ろ過装置の運転条件の決定方法、およびそれを用いた膜ろ過装置の運転方法
WO2007109579A2 (en) 2006-03-17 2007-09-27 Crosslink Manufacturing Method of integrating water treatment assemblies
US7431834B2 (en) 2006-04-17 2008-10-07 Ebara Corporation Waste water and sludge treatment apparatus
JP5116986B2 (ja) 2006-04-20 2013-01-09 三菱電機ビルテクノサービス株式会社 エレベータ遠隔監視システム
GB2443818B (en) 2006-11-14 2011-12-21 Salton Hong Kong Ltd Water filtration and sterilisation device
US20080152782A1 (en) 2006-12-15 2008-06-26 Georgios Avgoustopoulos Waste treatment process
US20090107915A1 (en) 2007-03-12 2009-04-30 Its Engineered Systems, Inc. Treatment process and system for wastewater, process waters, and produced waters applications
JP4854603B2 (ja) 2007-06-18 2012-01-18 前澤工業株式会社 紫外線照射装置
US20090057239A1 (en) 2007-07-20 2009-03-05 Walker Robert E Method and apparatus for water distribution
US20090020172A1 (en) 2007-07-20 2009-01-22 Walker Robert E Method and Apparatus for Water Distribution
PL2205343T3 (pl) 2007-09-12 2013-12-31 Danisco Us Inc Filtracja z wewnętrzną kontrolą zanieczyszczeń
JP4832393B2 (ja) 2007-09-20 2011-12-07 月島環境エンジニアリング株式会社 膜を用いたポリグリセリンの分離方法及び分離装置
EP2215023A1 (en) 2007-10-15 2010-08-11 Seprotech Systems Incorporated An integrated water processing technology
US9266136B2 (en) 2007-10-24 2016-02-23 Michael Klicpera Apparatus for displaying, monitoring and/or controlling shower, bath or sink faucet water parameters with an audio or verbal annunciations or control means
US8347427B2 (en) 2007-10-24 2013-01-08 Michael Klicpera Water use monitoring apparatus
JP5176225B2 (ja) 2007-11-12 2013-04-03 スミダコーポレーション株式会社 回転型電磁発電機
JP2009153784A (ja) 2007-12-27 2009-07-16 Kaname Matsuda 消火水利位置特定装置
CN103408127B (zh) 2008-05-20 2016-06-01 北京汉青天朗水处理科技有限公司 一种污水处理装置
US8141584B1 (en) 2008-05-28 2012-03-27 East West Manufacturing Llc Water collection, storage, and distribution system
US8216455B1 (en) 2008-12-01 2012-07-10 O'brien Mackenzie Anne Water handling system
TWI428290B (zh) 2008-12-03 2014-03-01 Rainer Bauder 廢水處理系統以及方法(一)
AU2010234202B2 (en) 2009-04-09 2013-11-14 Saltworks Technologies Inc. Method and system for desalinating saltwater using concentration difference energy
JP2010253355A (ja) 2009-04-22 2010-11-11 Sumitomo Electric Ind Ltd 膜分離活性汚泥処理装置
US8480888B2 (en) 2009-06-08 2013-07-09 Karcher North America, Inc. Immediate cleaning and recirculation of cleaning fluid and method of using same
US9272931B2 (en) 2010-01-13 2016-03-01 Biofilter Systems, Llc System and process for removing nitrogen compounds and odors from wastewater and wastewater treatment system
US9409803B2 (en) 2010-01-29 2016-08-09 Robert Whiteman Systems and methods for reducing sludges produced by wastewater treatment facilities
JP2010120015A (ja) 2010-02-02 2010-06-03 Miura Co Ltd 膜濾過方法
JP5085675B2 (ja) 2010-03-12 2012-11-28 株式会社東芝 海水淡水化システム
JP2010188344A (ja) 2010-04-05 2010-09-02 Kobelco Eco-Solutions Co Ltd 海水淡水化方法および海水淡水化装置
US8702977B2 (en) 2010-05-20 2014-04-22 Piramal Enterprises Limited Water distribution system
JP5143209B2 (ja) 2010-10-27 2013-02-13 中国電力株式会社 中水利用管理システム
JP5300827B2 (ja) 2010-11-18 2013-09-25 株式会社東芝 生物学的廃水処理装置
FR2969593B1 (fr) * 2010-12-22 2014-08-29 IFP Energies Nouvelles Amelioration d'un procede de production d'hydrogene integre thermiquement par reformage d'une charge hydrocarbonee
JP5195939B2 (ja) 2011-01-11 2013-05-15 株式会社日立製作所 紫外線水処理装置およびその監視制御システム
US20130020266A1 (en) * 2011-02-28 2013-01-24 HTH Engineering & Equipment Company, LLC Method and apparatus for water jet moving bed filtration system
JP5367758B2 (ja) 2011-05-02 2013-12-11 株式会社東芝 温度応答性膜を用いた膜ろ過システム
US9682876B2 (en) 2011-05-13 2017-06-20 ProAct Services Corporation System and method for the treatment of wastewater
EP2718237A1 (en) 2011-06-13 2014-04-16 Praxair Technology, Inc. Control system for wastewater treatment plants with membrane bioreactors
US8806960B2 (en) 2011-07-09 2014-08-19 Andrew Polczynski Flow measuring device including segmented pipe section with a liner provided in the inner surface
JP5853479B2 (ja) 2011-08-05 2016-02-09 三浦工業株式会社 逆浸透膜分離装置
JP2013043153A (ja) 2011-08-26 2013-03-04 Hitachi Plant Technologies Ltd 海水淡水化システムおよび海水淡水化方法
US8852445B2 (en) 2011-10-28 2014-10-07 Alfa Laval Ashbrook Simon-Hartley, Inc Methods and apparatus for treating water and wastewater employing a cloth disk filter
JP2013188710A (ja) 2012-03-14 2013-09-26 Toshiba Corp 膜ろ過装置及び造水装置並びに膜ろ過装置の洗浄方法
US20130284679A1 (en) 2012-04-25 2013-10-31 Water Harvesting Solutions, Inc. (Wahaso) Greywater treatment and reuse system
US10909624B2 (en) 2012-05-02 2021-02-02 Aqua-Index Ltd. Fresh water price index based on water quality
JP6149858B2 (ja) 2012-05-22 2017-06-21 東レ株式会社 膜分離装置および膜分離装置の運転方法
CA2930234A1 (en) 2013-12-20 2015-06-25 Orbital Systems Ab A water hybrid device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251186A (ja) * 1994-03-17 1995-10-03 Hitachi Ltd 水処理システム
JP2006281159A (ja) * 2005-04-04 2006-10-19 Hitachi Ltd 水処理プラントの水処理方法及び水処理プラント

Also Published As

Publication number Publication date
JP5518245B1 (ja) 2014-06-11
JP2015108255A (ja) 2015-06-11
US10315930B2 (en) 2019-06-11
US20160289087A1 (en) 2016-10-06
MX2016006861A (es) 2016-08-19

Similar Documents

Publication Publication Date Title
Friedler et al. Comparative study of the microbial quality of greywater treated by three on-site treatment systems
JP5364863B1 (ja) 循環水利用システムの浄化装置
JP5563142B1 (ja) 循環水利用システム
JP5512032B1 (ja) 循環水利用システムの課金装置、循環水利用システム
Tchobanoglous et al. Decentralized wastewater management: challenges and opportunities for the twenty-first century
JP5567199B1 (ja) 循環水利用システム
JP5558621B1 (ja) 循環水利用システム
JP5364862B1 (ja) 循環水利用システムの課金装置
Hills et al. Water recycling at the Millennium Dome
Godskesen et al. LCA of drinking water supply
JP5518245B1 (ja) 循環水利用システム群の遠隔監視方法及び遠隔監視システム
JP5512033B1 (ja) 循環水利用システムの排出水監視装置、循環水利用システム
JP5518248B1 (ja) 循環水利用システムの塩濃度調整装置、循環水利用システム
JP5705936B2 (ja) 循環水利用システム
Ibrahim et al. Water resources management in Maldives with an emphasis on desalination
JP5518246B1 (ja) 循環水利用システム
Killion Design and Modeling of Infrastructure for Residential and Community Water Reuse
Khadse et al. Surveillance of the chemical and microbial quality of drinking water for safe water supply in an urban area
Milićević et al. DECENTRALIZED WASTEWATER TREATMENT-A SUSTAINABLE SOLUTION FOR PROTECTING WATER RESOURCES FROM POLLUTION
Wilcox et al. Water Reuse Trajectories
Worthen et al. UF membranes squeeze high performance and quality into small plant
Lewis ENG 470 Honours Thesis: Water system design for Wadjemup Conservation Centre expansion on Rottnest Island
Haque Prospect of in-house recycling of gray water
Chen A novel standardized assessment for the new end uses of recycled water schemes
Olugbenga INTEGRATED RISK MANAGEMENT IN THE IMPLEMENTATION OF DUAL GREY AND POTABLE WATER RETICULATION SYSTEMS IN SOUTH AFRICA.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867777

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15037601

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/006861

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: IDP00201603704

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14867777

Country of ref document: EP

Kind code of ref document: A1