WO2015080158A1 - ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板 - Google Patents

ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板 Download PDF

Info

Publication number
WO2015080158A1
WO2015080158A1 PCT/JP2014/081263 JP2014081263W WO2015080158A1 WO 2015080158 A1 WO2015080158 A1 WO 2015080158A1 JP 2014081263 W JP2014081263 W JP 2014081263W WO 2015080158 A1 WO2015080158 A1 WO 2015080158A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
polyimide precursor
chemical formula
mol
repeating unit
Prior art date
Application number
PCT/JP2014/081263
Other languages
English (en)
French (fr)
Inventor
卓也 岡
幸徳 小濱
久野 信治
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to KR1020167016430A priority Critical patent/KR102257869B1/ko
Priority to KR1020217015427A priority patent/KR102281153B1/ko
Priority to JP2015550965A priority patent/JP6485358B2/ja
Priority to CN201480064165.3A priority patent/CN105764991B/zh
Publication of WO2015080158A1 publication Critical patent/WO2015080158A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1082Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the present invention provides a solution composition (polyimide precursor composition) containing a polyimide precursor that provides a polyimide having a small thickness direction retardation (retardation), excellent mechanical properties, and excellent transparency. It relates to a manufacturing method.
  • the present invention also relates to a polyimide, a polyimide film, and a substrate that are excellent in transparency, have a small thickness direction retardation, and are excellent in mechanical properties.
  • Aromatic polyimide is essentially yellowish brown due to intramolecular conjugation and the formation of charge transfer complexes. For this reason, as a means to suppress coloration, for example, introduction of fluorine atoms into the molecule, imparting flexibility to the main chain, introduction of bulky groups as side chains, etc. inhibits intramolecular conjugation and charge transfer complex formation. Thus, a method for expressing transparency has been proposed.
  • Patent Documents 1 to 3 disclose highly translucent semi-alicyclic polyimides using aromatic tetracarboxylic dianhydride as a tetracarboxylic acid component and alicyclic diamine as a diamine component.
  • Patent Documents 4 to 7 disclose various highly translucent semi-alicyclic polyimides using an alicyclic tetracarboxylic dianhydride as a tetracarboxylic acid component and an aromatic diamine as a diamine component. Has been.
  • Non-Patent Document 1 discloses, as a tetracarboxylic acid component, norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic acid. Polyimides using acid dianhydrides are disclosed. Further, norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic dianhydride used here is 6 It is described that it contains various stereoisomers.
  • Patent Document 8 also discloses norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic acid as a tetracarboxylic acid component.
  • Polyimides using dianhydrides are disclosed.
  • Patent Document 9 discloses a polyimide formed by heating a coating solution obtained by blending a polyimide precursor (polyamic acid) with an imidazoline compound and / or an imidazole compound. More specifically, in Example 1, 2,4-dimethyl was added to a polyamic acid solution obtained from 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride and 4,4′-diaminobiphenyl ether. A solution to which imidazoline has been added is applied onto a substrate and heated at 200 ° C. for 1 hour to obtain an aromatic polyimide film having a thickness of 1000 mm (0.1 ⁇ m).
  • Example 2 a solution obtained by adding 2-ethylimidazoline and 1,2-dimethylimidazole to a solution of polyamic acid obtained from pyromellitic dianhydride and 4,4′-diaminobiphenyl ether was applied onto a substrate.
  • An aromatic polyimide film having a thickness of 800 mm (0.08 ⁇ m) is obtained by heating at 150 ° C. for 1 hour.
  • Patent Document 9 by adding an imidazoline-based compound and / or an imidazole-based compound, the remarkable brown coloration is avoided, and a liquid crystal display element with high light transmittance and excellent transparency can be obtained. It is described.
  • the light transmittance at a wavelength of 400 nm of the liquid crystal display element using the polyimide film (liquid crystal alignment film) of Example 1 is 82% (polyimide film thickness: 0.1 ⁇ m), and the polyimide film of Example 2 (liquid crystal alignment film).
  • the light transmittance at a wavelength of 400 nm of the liquid crystal display element using the above is 83% (polyimide film thickness: 0.08 ⁇ m), and this polyimide does not have sufficient transparency.
  • Patent Document 10 discloses a polyimide precursor resin and a curing accelerator for a polyimide precursor resin such as imidazole and N-methylimidazole dissolved in an organic polar solvent.
  • a method for forming a polyimide resin layer is disclosed, in which a polyimide precursor resin-containing solution is applied onto a substrate, followed by drying and imidization to complete the formation of a polyimide resin layer within a range of 280 to 380 ° C., It is described that the thermal expansion coefficient can be controlled to be low by using these curing accelerators.
  • Patent Document 10 also describes that a curing accelerator having a boiling point exceeding 120 ° C.
  • a boiling point not exceeding the upper limit temperature of heat treatment is preferably selected.
  • a curing accelerator having a boiling point of, for example, 400 ° C. or higher has a higher ratio of remaining in the polyimide resin layer after imidization and tends to affect the function of the polyimide resin layer.
  • the present invention has been made in view of the situation as described above, and is a polyimide having excellent transparency and having a smaller thickness direction retardation even with the same composition, or a thickness direction retardation being small and mechanical. It aims at providing the manufacturing method of the polyimide precursor composition (solution composition containing a polyimide precursor) from which the polyimide excellent also in the characteristic and also excellent in transparency is obtained, and a polyimide.
  • the present invention relates to the following items.
  • X 1 is a tetravalent group having an alicyclic structure
  • Y 1 is a divalent group having an aromatic ring
  • R 1 and R 2 are each independently hydrogen, C 1-6 Or an alkylsilyl group having 3 to 9 carbon atoms.
  • X 2 is a tetravalent group having an aromatic ring
  • Y 2 is a divalent group having an alicyclic structure
  • R 3 and R 4 are each independently hydrogen, 1 to 6 carbon atoms; Or an alkylsilyl group having 3 to 9 carbon atoms.
  • Item 2 The polyimide precursor composition according to item 1, wherein the polyimide obtained from the polyimide precursor composition has a light transmittance at a wavelength of 400 nm of a film having a thickness of 10 ⁇ m of 75% or more. 3. Item 3. The polyimide precursor composition according to item 1 or 2, wherein the content of the imidazole compound is 0.05 mol to 2 mol with respect to 1 mol of the repeating unit of the polyimide precursor. 4). Item 4. The polyimide precursor composition according to any one of Items 1 to 3, wherein the imidazole compound has a boiling point at 1 atm of less than 340 ° C. 5.
  • any one of Items 1 to 4 wherein the imidazole compound is any one of 1,2-dimethylimidazole, 1-methylimidazole, 2-methylimidazole, 2-phenylimidazole, imidazole, and benzimidazole.
  • a polyimide having excellent transparency and having a small thickness direction retardation even in the same composition or a polyimide having a small thickness direction retardation, excellent mechanical properties, and excellent transparency.
  • the obtained polyimide precursor composition solution composition containing a polyimide precursor
  • a method for producing polyimide can be provided.
  • the polyimide obtained from the polyimide precursor composition of the present invention is highly transparent and has a small thickness direction retardation, and has a low linear thermal expansion coefficient, facilitating the formation of fine circuits. And can be suitably used to form a substrate for display applications and the like. Moreover, the polyimide of this invention can be used suitably also in order to form the board
  • the polyimide precursor composition of the present invention includes a polyimide precursor containing at least one of the repeating unit represented by the chemical formula (1) or the repeating unit represented by the chemical formula (2), and an imidazole compound.
  • the content of the imidazole compound is less than 4 mol with respect to 1 mol of the repeating unit of the polyimide precursor.
  • the polyimide obtained from the polyimide precursor containing the repeating unit represented by the chemical formula (1) or the repeating unit represented by the chemical formula (2), that is, a semi-alicyclic polyimide has high transparency. .
  • the use of additives that can cause coloring is not preferred.
  • the imidazole compound to the polyimide precursor composition at a ratio of less than 4 mol, preferably 0.05 mol or more and 2 mol or less, with respect to 1 mol of the repeating unit of the polyimide precursor, high transparency is achieved.
  • a polyimide having a small thickness direction retardation can be obtained while keeping it.
  • a polyimide having a smaller thickness direction retardation can be obtained from a polyimide precursor having the same composition while maintaining high transparency.
  • an imidazole compound having a boiling point of less than 340 ° C. at 1 atmosphere is used, the transparency of the resulting polyimide may be further improved.
  • the polyimide precursor is imidized by heat treatment at a temperature exceeding 350 ° C., particularly preferably exceeding 400 ° C.
  • a highly transparent polyimide can be produced.
  • the maximum heating temperature of the heat treatment for imidization can be set to a high temperature exceeding 350 ° C., particularly preferably a high temperature exceeding 400 ° C., so that the mechanical properties of the resulting polyimide are improved. That is, according to the present invention, a polyimide having high transparency, small thickness direction retardation, and excellent mechanical properties can be obtained.
  • the polyimide precursor composition of the present invention includes a polyimide precursor containing at least one of the repeating unit represented by the chemical formula (1) or the repeating unit represented by the chemical formula (2).
  • X 1 in the chemical formula (1) is preferably a tetravalent group having an alicyclic structure having 4 to 40 carbon atoms, and Y 1 is a divalent having an aromatic ring having 6 to 40 carbon atoms. Are preferred.
  • Examples of the tetracarboxylic acid component that gives the repeating unit of the chemical formula (1) include 1,2,3,4-cyclobutanetetracarboxylic acid, isopropylidenediphenoxybisphthalic acid, cyclohexane-1,2,4,5- Tetracarboxylic acid, [1,1′-bi (cyclohexane)]-3,3 ′, 4,4′-tetracarboxylic acid, [1,1′-bi (cyclohexane)]-2,3,3 ′, 4 '-Tetracarboxylic acid, [1,1'-bi (cyclohexane)]-2,2', 3,3'-tetracarboxylic acid, 4,4'-methylenebis (cyclohexane-1,2-dicarboxylic acid), 4 , 4 '-(propane-2,2-diyl) bis (cyclohexane-1,2-dicarboxylic acid), 4,4'-oxybis (cyclohex
  • Examples of the diamine component that gives the repeating unit of the chemical formula (1) include p-phenylenediamine, m-phenylenediamine, benzidine, 3,3′-diamino-biphenyl, and 2,2′-bis (trifluoromethyl) benzidine.
  • the polyimide precursor containing at least one repeating unit represented by the chemical formula (1) can contain other repeating units other than the repeating unit represented by the chemical formula (1).
  • the tetracarboxylic acid component and diamine component that give other repeating units are not particularly limited, and any other known aromatic or aliphatic tetracarboxylic acids or known aromatic or aliphatic diamines can be used. .
  • Other tetracarboxylic acid components may be used alone or in combination of two or more.
  • Other diamine components may be used alone or in combination of two or more.
  • the content of other repeating units other than the repeating unit represented by the chemical formula (1) is preferably 30 mol% or less or less than 30 mol%, more preferably 20 mol% or less, based on all repeating units. More preferably, it is 10 mol% or less.
  • X 2 in the chemical formula (2) is preferably a tetravalent group having an aromatic ring having 6 to 40 carbon atoms
  • Y 2 is a divalent having an alicyclic structure having 4 to 40 carbon atoms.
  • tetracarboxylic acid component giving the repeating unit of the chemical formula (2) examples include 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane, 4- (2,5-dioxotetrahydrofuran-3- Yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic acid, pyromellitic acid, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid, 3,3 ′, 4,4′- Biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, 4,4′-oxydiphthalic acid, bis (3,4-dicarboxyphenyl) sulfone dianhydride, m-terphenyl-3, 4,3 ′, 4′-tetracarboxylic dianhydride, p-terphenyl-3,4,3 ′, 4′-
  • Examples of the diamine component that gives the repeating unit of the chemical formula (2) include 1,4-diaminocyclohexane, 1,4-diamino-2-methylcyclohexane, 1,4-diamino-2-ethylcyclohexane, 1, 4-diamino-2-n-propylcyclohexane, 1,4-diamino-2-isopropylcyclohexane, 1,4-diamino-2-n-butylcyclohexane, 1,4-diamino-2-isobutylcyclohexane, 1,4- Diamino-2-sec-butylcyclohexane, 1,4-diamino-2-tert-butylcyclohexane, 1,2-diaminocyclohexane, 1,3-diaminocyclobutane, 1,4-bis (aminomethyl) cyclohexane, 1 , 3-Bis
  • the polyimide precursor containing at least one type of repeating unit represented by the chemical formula (2) may contain other repeating units other than the repeating unit represented by the chemical formula (2).
  • the tetracarboxylic acid component and diamine component that give other repeating units are not particularly limited, and any other known aromatic or aliphatic tetracarboxylic acids or known aromatic or aliphatic diamines can be used. .
  • Other tetracarboxylic acid components may be used alone or in combination of two or more.
  • Other diamine components may be used alone or in combination of two or more.
  • the content of other repeating units other than the repeating unit represented by the chemical formula (2) is preferably 30 mol% or less or less than 30 mol%, more preferably 20 mol% or less, based on all repeating units. More preferably, it is 10 mol% or less.
  • the polyimide precursor may include at least one repeating unit represented by the chemical formula (1) and at least one repeating unit represented by the chemical formula (2). Also in that case, the content of other repeating units other than the repeating units represented by the chemical formulas (1) and (2) is preferably 30 mol% or less or less than 30 mol% with respect to all repeating units. More preferably, it is 20 mol% or less, More preferably, it is 10 mol% or less.
  • a polyimide precursor containing a repeating unit represented by the following chemical formula (1-1) is preferable, and the following chemical formula (1-2) and the following chemical formula (1-3)
  • the total content of the repeating units represented by the chemical formula (1-2) and the chemical formula (1-3) is 80 mol% or more based on the total repeating units.
  • a polyimide precursor is more preferable.
  • A is a divalent group having an aromatic ring
  • R 1 and R 2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or an alkylsilyl group having 3 to 9 carbon atoms. .
  • A is a divalent group having an aromatic ring
  • R 1 and R 2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or an alkylsilyl group having 3 to 9 carbon atoms. .
  • A is a divalent group having an aromatic ring
  • R 1 and R 2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or an alkylsilyl group having 3 to 9 carbon atoms. .
  • the chemical formula (1-1), the chemical formula (1-2), and the chemical formula (1-3) are either the 5-position or the 6-position of two norbornane rings (bicyclo [2.2.1] heptane).
  • the polyimide precursor is a repeating unit represented by the chemical formula (1-1) in which A is a group represented by the following chemical formula (1-A), more preferably A is represented by the following chemical formula (1-A). It is preferable that at least one repeating unit represented by the chemical formula (1-2) and / or the chemical formula (1-3), which is a group to be formed, is included.
  • m is an integer of 0 to 3
  • n is an integer of 0 to 3.
  • V, U, and T is independently selected from the group consisting of a hydrogen atom, a methyl group, and a trifluoromethyl group.
  • Z and W are each independently a direct bond, or one selected from the group consisting of groups represented by the formula: —NHCO—, —CONH—, —COO—, —OCO— Show.
  • the polyimide precursor is norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′- Tetracarboxylic acids and the like, more preferably trans-endo-endo-norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ '-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetra Carboxylic acids and / or cis-endo-endo-norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic acids (Tetracarboxylic acids, etc.
  • tetracarboxylic acids are tetracarboxylic acids, tetracarboxylic dianhydrides, tetracarboxylic silyl esters, tetracarboxylic acid esters, tetra A tetracarboxylic acid component containing a tetracarboxylic acid derivative such as rubonic acid chloride) and a diamine component having an aromatic ring, more preferably a chemical formula (1) wherein A is a group represented by the chemical formula (1-A) -1), a polyimide precursor obtained from a diamine component containing a diamine component giving a repeating unit of the chemical formula (1-2) or the chemical formula (1-3).
  • Examples of the tetracarboxylic acid component that gives the repeating unit of the chemical formula (1-1) include norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6,
  • One kind such as 6 ′′ -tetracarboxylic acid may be used alone, or a plurality of kinds may be used in combination.
  • Examples of the tetracarboxylic acid component that gives the repeating unit of the chemical formula (1-2) include trans-endo-endo-norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5, One type such as 5 ′′, 6,6 ′′ -tetracarboxylic acid may be used alone, or a plurality of types may be used in combination.
  • Examples of the tetracarboxylic acid component that gives the repeating unit of the chemical formula (1-3) include cis-endo-endo-norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5, One type such as 5 ′′, 6,6 ′′ -tetracarboxylic acid may be used alone, or a plurality of types may be used in combination.
  • a tetracarboxylic acid component (trans-endo-endo-norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-) that gives the repeating unit of the chemical formula (1-2) is used.
  • spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic acids, etc. may be used, and a tetra unit giving a repeating unit of the above chemical formula (1-3)
  • Carboxylic acid component cis-endo-endo-norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic acids, etc.
  • a tetracarboxylic acid component trans-endo-endo-norvo
  • nan-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic acid, etc. and the above chemical formula (1 -3) a tetracarboxylic acid component (cis-endo-endo-norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6
  • 6 ′′ -tetracarboxylic acids and the like may be used.
  • the polyimide precursor preferably has a total content of the repeating units represented by the chemical formulas (1-2) and (1-3) of 80 mol% or more based on the total repeating units, In addition, at least one repeating unit represented by the chemical formula (1-2) and the chemical formula (1-3) is included, and the total of the repeating units in all repeating units is preferably 80 mol% or more, more preferably Is preferably 90 mol% or more, more preferably 95 mol% or more, particularly preferably 99 mol% or more. Including at least one repeating unit represented by the chemical formula (1-2) and the chemical formula (1-3), and including the repeating unit in all repeating units in total, preferably 80 mol% or more, The resulting linear thermal expansion coefficient of the polyimide is reduced.
  • the diamine component giving the repeating unit of the chemical formula (1-1), the chemical formula (1-2), or the chemical formula (1-3) is one in which A is a group represented by the chemical formula (1-A) It is preferred to include a diamine that provides
  • the aromatic rings are each independently linked by a direct bond, an amide bond, or an ester bond.
  • the connection position of the aromatic rings is not particularly limited, but it may form a linear structure by bonding at the 4-position to the amino group or the connection group of the aromatic rings, and the resulting polyimide may have low linear thermal expansion.
  • a methyl group or a trifluoromethyl group may be substituted on the aromatic ring.
  • the substitution position is not particularly limited.
  • the diamine component that gives the repeating unit of the chemical formula (1-1), the chemical formula (1-2), or the chemical formula (1-3) in which A is the structure of the chemical formula (1-A) is not particularly limited.
  • the resulting polyimide has both high heat resistance and high transmittance.
  • these diamines may be used alone or in combination of two or more. Note that o-tolidine is not preferred because of its high risk.
  • diamine component that gives the repeating unit of the chemical formula (1-1), the chemical formula (1-2), or the chemical formula (1-3) a diamine that gives the structure of the chemical formula (1-A)
  • diamines other than the components can be used in combination.
  • Other aromatic or aliphatic diamines can be used as other diamine components.
  • Examples of other diamine components include 4,4′-oxydianiline, 3,4′-oxydianiline, 3,3′-oxydianiline, bis (4-aminophenyl) sulfide, p-methylenebis (phenylenediamine) ), 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 2,2-bis [4- ( 4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoropropane, bis (4-aminophenyl) sulfone, 3,3-bis ((aminophenoxy) phenyl) propane, 2 , 2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, bis (4- (4-aminophenoxy) diph Enyl) sulf
  • the polyimide precursor of the present invention has at least one repeating unit represented by the chemical formula (1-1) in which A is represented by the chemical formula (1-A), more preferably, A represents the chemical formula (1-A). At least one repeating unit of the chemical formula (1-2) represented by A) and / or A of the chemical formula (1-3) wherein A is represented by the chemical formula (1-A) It is preferable to include at least one repeating unit.
  • the diamine component that gives the repeating unit of the chemical formula (1-1), more preferably the repeating unit of the chemical formula (1-2) and the chemical formula (1-3), is represented by A being the chemical formula (1-A).
  • a diamine component that gives a structure of The repeating unit of the chemical formula (1-1), more preferably the diamine component giving A in the chemical formula (1-2) and the chemical formula (1-3) gives the structure of the chemical formula (1-A)
  • the heat resistance of the resulting polyimide is improved.
  • the polyimide precursor of the present invention contains the chemical formula (1-A) in 100 mol% of the diamine component that gives A in the chemical formula (1-1) or the chemical formula (1-2) and the chemical formula (1-3).
  • the ratio of the diamine components that give the structure is preferably 50 mol% or more, more preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, and particularly preferably 100 mol%. % Is preferred.
  • the chemical formula (1-1) in which A is the structure of the chemical formula (1-A), or the proportion of one or more repeating units of the chemical formula (1-2) and the chemical formula (1-3) are, in total, preferably 50 mol% or more, more preferably 70 mol in all repeating units represented by the chemical formula (1-1) or the chemical formula (1-2) and the chemical formula (1-3). % Or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, particularly preferably 100 mol%.
  • the proportion of the diamine component giving the structure of the chemical formula (1-A) is less than 50 mol%, the resulting polyimide may have a large linear thermal expansion coefficient.
  • % of the diamine component giving the structure of the chemical formula (1-A) is preferably 80 mol% or less, more preferably 90 mol% or less or less than 90 mol% in total.
  • other aromatic or aliphatic diamines such as 4,4′-oxydianiline are substituted with the chemical formula (1-1) or the repeating units of the chemical formula (1-2) and the chemical formula (1-3).
  • 100 mol% of the diamine component that gives the above preferably less than 20 mol%, more preferably 10 mol% or less, more preferably less than 10 mol%.
  • the polyimide precursor containing the repeating unit represented by the chemical formula (1-1) of the present invention has a chemical formula (1-1) in which A is represented by the chemical formula (1-A). It may be preferred to include at least two types of repeating units. In one embodiment, the polyimide precursor containing the repeating unit represented by the chemical formula (1-2) and / or the repeating unit represented by the chemical formula (1-3) of the present invention is such that A is represented by the chemical formula ( It may be preferable to include at least two types of repeating units represented by chemical formula (1-2) or chemical formula (1-2) represented by 1-A).
  • the diamine component that gives the repeating unit of the chemical formula (1-1), or the diamine component that gives the repeating unit of the chemical formula (1-2) and the chemical formula (1-3), the A represents the chemical formula ( It may be preferred to include at least two diamine components that give what is of structure 1-A).
  • the diamine component in which the diamine component giving A in the chemical formula (1-1) or A in the chemical formula (1-2) and the chemical formula (1-3) gives the structure of the chemical formula (1-A) By containing at least two kinds of components, the obtained polyimide can be balanced between high transparency and low linear thermal expansion (that is, a polyimide having high transparency and low linear thermal expansion coefficient can be obtained).
  • the polyimide precursor of the present invention may contain at least two repeating units of the chemical formula (1-2) in which A has the structure of the chemical formula (1-A). It may contain at least two repeating units of the chemical formula (1-3) having the structure of the chemical formula (1-A), and the chemical formula (A) is a structure of the chemical formula (1-A). It may include at least one repeating unit of 1-2) and at least one repeating unit of the chemical formula (1-3) in which A has the structure of the chemical formula (1-A).
  • the polyimide precursor of the present invention comprises: (I) A is m and / or n is 1 to 3, and Z and / or W are each independently any of —NHCO—, —CONH—, —COO—, or —OCO—.
  • (Ii) A is a structure of the chemical formula (1-A) in which m and n are 0, or the chemical formula in which m and / or n is 1 to 3, and Z and W are direct bonds
  • the repeating unit (I) is, for example, a repeating unit of the chemical formula (1-1) in which A is represented by any one of the following chemical formulas (D-1) to (D-3).
  • a unit is preferable, and a repeating unit of the above chemical formula (1-1) in which A is represented by any one of the following chemical formulas (D-1) to (D-2) is more preferable.
  • the diamine component giving the repeating unit of the chemical formula (1-1) in which A is represented by the following chemical formula (D-1) or (D-2) is 4,4′-diaminobenzanilide.
  • the diamine component that gives the repeating unit of the chemical formula (1-1) in which A is represented by the following chemical formula (D-3) is bis (4-aminophenyl) terephthalate, It can also be used in combination, or multiple types can be used in combination.
  • the repeating unit (II) for example, the repeating unit of the chemical formula (1-1) in which A is represented by any one of the following chemical formulas (D-4) to (D-6) A unit is preferable, and a repeating unit of the above chemical formula (1-1) in which A is represented by any one of the following chemical formulas (D-4) to (D-5) is more preferable.
  • the diamine component giving the repeating unit of the chemical formula (1-1) in which A is represented by the following chemical formula (D-4) is p-phenylenediamine, and A is represented by the following chemical formula (D-5).
  • the diamine component giving the repeating unit of the chemical formula (1-1) is 2,2′-bis (trifluoromethyl) benzidine, and A is represented by the following chemical formula (D-6)
  • the diamine component that gives the repeating unit of the above chemical formula (1-1) is m-tolidine, and these diamines may be used alone or in combination of two or more.
  • the ratio of one or more of the repeating units (I) is 30 mol% or more and 70 mol% or less in the total repeating units represented by the chemical formula (1-1). And the ratio of one or more repeating units (II) is preferably 30 mol% or more and 70 mol% or less in the total repeating units represented by the chemical formula (1-1).
  • the ratio of one or more units (I) is 40 mol% or more and 60 mol% or less in the total repeating units represented by the chemical formula (1-1), and one or more of the repeating units (II) It is particularly preferable that the ratio of the total is 40 mol% or more and 60 mol% or less in the total repeating units represented by the chemical formula (1-1).
  • the ratio of the repeating unit (I) is more preferably less than 60 mol% in the total repeating units represented by the chemical formula (1-1), and is preferably 50 mol% or less. It is more preferable that it is 40 mol% or less.
  • the repeating unit represented by the chemical formula (1-1) other than the repeating unit (I) and the repeating unit (II) (for example, A has a plurality of aromatic rings). In which all the aromatic rings are connected by an ether bond (—O—)), preferably less than 20 mol%, more preferably 10 mol in all repeating units represented by the chemical formula (1-1). %, Particularly preferably less than 10 mol% may be preferred.
  • the ratio of one or more of the repeating units (I) is 20 mol% or more and 80 mol% or less in total in all repeating units represented by the chemical formula (1-1).
  • the ratio of one or more repeating units (II) may be preferably 20 mol% or more and 80 mol% or less in total in all repeating units represented by the chemical formula (1-1).
  • the polyimide precursor comprising the chemical formula (1-1) of the present invention or the repeating unit of the chemical formula (1-2) and / or the chemical formula (1-3) is represented by the chemical formula (1- 1), or a diamine component that gives A in the chemical formula (1-2) and the chemical formula (1-3) (repeating unit of the chemical formula (1-1), or the chemical formula (1-2) and the chemical formula ( 1-3) the diamine component that gives the repeating unit) includes at least two types of diamine components that give the structure of formula (1-A), one of which is 4,4′-diaminobenzanilide. preferable.
  • the diamine component that gives A in the chemical formula (1-2) and the chemical formula (1-3) is at least two kinds of diamine components that give the structure of the chemical formula (1-A).
  • one of them is 4,4′-diaminobenzanilide, it is possible to obtain a polyimide having high heat resistance in addition to high transparency and low linear thermal expansion.
  • the polyimide precursor comprising the chemical formula (1-1) of the present invention or the repeating unit of the chemical formula (1-2) and / or the chemical formula (1-3) is represented by the chemical formula (1- 1), or a diamine component that gives A in the chemical formula (1-2) and the chemical formula (1-3) (repeating unit of the chemical formula (1-1), or the chemical formula (1-2) and the chemical formula ( 1-3) the diamine component giving the repeating unit) contains at least one selected from 2,2′-bis (trifluoromethyl) benzidine and p-phenylenediamine and 4,4′-diaminobenzanilide. Is particularly preferred.
  • a polyimide having both high transparency, low linear thermal expansion and heat resistance can be obtained.
  • the diamine component that gives the repeating unit of the chemical formula (1-2) and the chemical formula (1-3) preferably contains 4,4′-diaminobenzanilide in an amount of 20 mol% to 80 mol%, and , P-phenylenediamine and 2,2′-bis (trifluoromethyl) benzidine or both are preferably contained in an amount of 20 mol% or more and 80 mol% or less, more preferably 4,4′-diamino.
  • Benzanilide is contained in an amount of 30 mol% or more and 70 mol% or less, and either p-phenylenediamine or 2,2′-bis (trifluoromethyl) benzidine It is preferable that it is contained at 30 mol% or more and 70 mol% or less in one or both, particularly preferably 4,4′-diaminobenzanilide is contained at 40 mol% or more and 60 mol% or less, and p-phenylenediamine. And 2,2′-bis (trifluoromethyl) benzidine or both are more preferably contained in an amount of 40 mol% or more and 60 mol% or less.
  • 4,4′-diaminobenzanilide is 30 mol% or more and 70 mol%.
  • High transparency and low content can be achieved by including at least 30 mol% and not more than 70 mol% in either or both of p-phenylenediamine and 2,2′-bis (trifluoromethyl) benzidine.
  • a polyimide having both linear thermal expansion and heat resistance is obtained.
  • the diamine component that gives the repeating unit of the chemical formula (1-2) and the chemical formula (1-3) is more preferably less than 60 mol%, and less than 50 mol% of 4,4′-diaminobenzanilide. It is more preferable that it is contained at 40 mol% or less.
  • the polyimide precursor of the present invention may contain other repeating units other than the repeating unit represented by the chemical formula (1-1) or the chemical formula (1-2) and the chemical formula (1-3). .
  • aromatic or aliphatic tetracarboxylic acids can be used as the tetracarboxylic acid component that gives other repeating units.
  • bicyclo [2.2.1] heptane-2,3,5,6-tetracarboxylic acid bicyclo [2.2.2] octane-2,3,5,6-tetracarboxylic acid, ( 4arH, 8acH) -decahydro-1t, 4t: 5c, 8c-dimethanonaphthalene-2c, 3c, 6c, 7c-tetracarboxylic acid, (4arH, 8acH) -decahydro-1t, 4t: 5c, 8c-dimethanonaphthalene
  • Derivatives such as -2t, 3t, 6c, 7c-tetracarboxylic acid, and these acid dianhydrides are more preferred because the polyimide is easy to produce and the resulting polyimide has excellent heat resistance.
  • These acid dianhydrides may be used alone or in combination of two or more.
  • the diamine component that gives other repeating units may be a diamine component that gives the structure of the chemical formula (1-A).
  • A is a repeating unit of the chemical formula (1-1) having the structure of the chemical formula (1-A), or A is a structure of the chemical formula (1-A).
  • the diamine exemplified as the diamine component that gives the repeating unit of the chemical formula (1-2) and the chemical formula (1-3) can be used. These diamines may be used alone or in combination of two or more.
  • aromatic or aliphatic diamines can be used as the diamine component that gives other repeating units.
  • the synthesis method of norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic acids and the like is not particularly limited. Can be synthesized by the method described in Patent Document 8. As described in Non-Patent Document 1, some stereoisomers may be included depending on the synthesis method. Purification of norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ '-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic acid, etc. By doing so, the stereoisomers can be separated individually or several mixtures can be fractionated.
  • the isomers may be isolated and used for polymerization or the like, or the isomers may be used as a mixture in polymerization or the like.
  • R 1 and R 2 in the chemical formula (1) and R 3 and R 4 in the chemical formula (2) are each independently hydrogen, 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms. Or an alkylsilyl group having 3 to 9 carbon atoms.
  • R 1 and R 2 , R 3 and R 4 can change the type of functional group and the introduction rate of the functional group by the production method described later.
  • R 1 and R 2 , R 3 and R 4 are hydrogen, polyimide tends to be easily produced.
  • R 1 and R 2 , R 3 and R 4 are alkyl groups having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, the storage stability of the polyimide precursor tends to be excellent.
  • R 1 and R 2 , R 3 and R 4 are more preferably a methyl group or an ethyl group.
  • R 1 and R 2 , R 3 and R 4 are alkylsilyl groups having 3 to 9 carbon atoms, the solubility of the polyimide precursor tends to be excellent.
  • R 1 and R 2 , R 3 and R 4 are more preferably a trimethylsilyl group or a t-butyldimethylsilyl group.
  • R 1 and R 2 , R 3 and R 4 are each 25% or more, preferably 50% or more, more preferably More than 75% can be an alkyl group or an alkylsilyl group.
  • Polyimide precursors of the present invention the chemical structure R 1 and R 2, R 3 and R 4 take, 1) a polyamic acid (R 1 and R 2, R 3 and R 4 is hydrogen), 2) a polyamic acid ester (At least part of R 1 and R 2 , R 3 and R 4 is an alkyl group), 3) 4) Polyamic acid silyl ester (R 1 and R 2 , R 3 and R 4 are at least part of an alkylsilyl group) Can be classified. And the polyimide precursor of this invention can be easily manufactured with the following manufacturing methods for every classification. However, the manufacturing method of the polyimide precursor of this invention is not limited to the following manufacturing methods.
  • the polyimide precursor of the present invention comprises a tetracarboxylic dianhydride as a tetracarboxylic acid component and a diamine component in a solvent in an equimolar amount, preferably a molar ratio of the diamine component to the tetracarboxylic acid component
  • the number of moles of the component / the number of moles of the tetracarboxylic acid component] is preferably 0.90 to 1.10, more preferably 0.95 to 1.05, for example, imidization at a relatively low temperature of 120 ° C. or less. It can obtain suitably as a polyimide precursor solution composition by reacting, suppressing.
  • diamine is dissolved in an organic solvent, and tetracarboxylic dianhydride is gradually added to this solution while stirring, and 0 to 120 ° C., preferably 5 to 80 ° C.
  • a polyimide precursor is obtained by stirring for 1 to 72 hours in the range of ° C.
  • the order of addition of diamine and tetracarboxylic dianhydride in the above production method is preferable because the molecular weight of the polyimide precursor is likely to increase.
  • the molar ratio of the tetracarboxylic acid component and the diamine component is an excess of the diamine component, an amount of a carboxylic acid derivative substantially corresponding to the excess number of moles of the diamine component is added as necessary, The molar ratio of the components can be approximated to the equivalent.
  • a carboxylic acid derivative herein, a tetracarboxylic acid that does not substantially increase the viscosity of the polyimide precursor solution, that is, substantially does not participate in molecular chain extension, or a tricarboxylic acid that functions as a terminal terminator and its anhydride, Dicarboxylic acid and its anhydride are preferred.
  • a polyimide precursor can be easily obtained by dehydrating and condensing diester dicarboxylic acid and diamine using a phosphorus condensing agent or a carbodiimide condensing agent.
  • the polyimide precursor obtained by this method is stable, it can be purified by reprecipitation by adding a solvent such as water or alcohol.
  • silylating agent that does not contain chlorine as the silylating agent used here, because it is not necessary to purify the silylated diamine.
  • the silylating agent not containing a chlorine atom include N, O-bis (trimethylsilyl) trifluoroacetamide, N, O-bis (trimethylsilyl) acetamide, and hexamethyldisilazane.
  • N, O-bis (trimethylsilyl) acetamide and hexamethyldisilazane are particularly preferred because they do not contain fluorine atoms and are low in cost.
  • an amine catalyst such as pyridine, piperidine or triethylamine can be used to accelerate the reaction.
  • This catalyst can be used as it is as a polymerization catalyst for the polyimide precursor.
  • a polyimide precursor is obtained by mixing the polyamic acid solution obtained by the method 1) and a silylating agent and stirring at 0 to 120 ° C., preferably 5 to 80 ° C. for 1 to 72 hours.
  • the reaction is carried out at 80 ° C. or higher, the molecular weight varies depending on the temperature history at the time of polymerization, and imidization proceeds due to heat, so there is a possibility that the polyimide precursor cannot be produced stably.
  • silylating agent used here it is preferable to use a silylating agent not containing chlorine because it is not necessary to purify the silylated polyamic acid or the obtained polyimide.
  • examples of the silylating agent not containing a chlorine atom include N, O-bis (trimethylsilyl) trifluoroacetamide, N, O-bis (trimethylsilyl) acetamide, and hexamethyldisilazane.
  • N, O-bis (trimethylsilyl) acetamide and hexamethyldisilazane are particularly preferred because they do not contain fluorine atoms and are low in cost.
  • Any of the above production methods can be suitably carried out in an organic solvent, and as a result, a solution or solution composition containing a polyimide precursor can be easily obtained.
  • Solvents used in preparing the polyimide precursor are, for example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, dimethyl sulfoxide
  • An aprotic solvent such as N, N-dimethylacetamide is preferred, but any type of solvent can be used without any problem as long as the raw material monomer component and the polyimide precursor to be produced are dissolved.
  • the structure is not limited.
  • amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, ⁇ - Cyclic ester solvents such as methyl- ⁇ -butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as triethylene glycol, phenols such as m-cresol, p-cresol, 3-chlorophenol and 4-chlorophenol A system solvent, acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide and the like are preferably employed.
  • the logarithmic viscosity of the polyimide precursor is not particularly limited, but the logarithmic viscosity in an N, N-dimethylacetamide solution having a concentration of 0.5 g / dL at 30 ° C. is 0.2 dL / g or more, more preferably 0. .3 dL / g or more, particularly preferably 0.4 dL / g or more.
  • the logarithmic viscosity is 0.2 dL / g or more, the molecular weight of the polyimide precursor is high, and the mechanical strength and heat resistance of the resulting polyimide are excellent.
  • the polyimide precursor composition of the present invention includes a polyimide precursor and an imidazole compound, and may be prepared by adding an imidazole compound to a polyimide precursor solution or solution composition obtained by the above production method. it can. Moreover, a solvent may be removed or added as needed, and desired components other than an imidazole compound may be added. In addition, a tetracarboxylic acid component (tetracarboxylic dianhydride or the like), a diamine component, and an imidazole compound are added to a solvent, and the tetracarboxylic acid component and the diamine component are reacted in the presence of the imidazole compound.
  • the polyimide precursor composition solution composition containing a polyimide precursor and an imidazole compound
  • the polyimide precursor composition can also be obtained.
  • the imidazole compound used in the present invention is not particularly limited as long as it is a compound having an imidazole skeleton. By adding an imidazole compound, a polyimide having a small thickness direction retardation can be obtained.
  • a compound having a boiling point at 1 atm of less than 340 ° C. preferably 330 ° C. or less, more preferably 300 ° C. or less, particularly preferably 270 ° C. or less
  • the imidazole compound having a boiling point at 1 atm of less than 340 ° C. preferably 330 ° C. or less, more preferably 300 ° C. or less, particularly preferably 270 ° C. or less
  • a more transparent polyimide may be obtained. .
  • the imidazole compound used in the present invention is not particularly limited, and examples thereof include 1,2-dimethylimidazole, 1-methylimidazole, 2-methylimidazole, 2-phenylimidazole, imidazole, and benzimidazole.
  • 1,2-dimethylimidazole (boiling point at 1 atmosphere: 205 ° C.), 1-methylimidazole (boiling point at 1 atmosphere: 198 ° C.), 2-methylimidazole (boiling point at 1 atmosphere: 268 ° C.), imidazole (boiling point at 1 atmosphere) : 256 ° C.) and the like, and 1,2-dimethylimidazole and 1-methylimidazole are particularly preferable.
  • An imidazole compound may be used individually by 1 type, and can also be used in combination of multiple types.
  • the content of the imidazole compound in the polyimide precursor composition is less than 4 mol with respect to 1 mol of the repeating unit of the polyimide precursor.
  • the content of the imidazole compound is preferably 0.05 mol or more with respect to 1 mol of the repeating unit of the polyimide precursor, and is 2 mol or less with respect to 1 mol of the repeating unit of the polyimide precursor. preferable.
  • 1 mol of the repeating unit of the polyimide precursor corresponds to 1 mol of the tetracarboxylic acid component.
  • the polyimide precursor composition of the present invention usually contains a solvent.
  • the solvent used for the polyimide precursor composition of the present invention is not a problem as long as the polyimide precursor is dissolved, and the structure is not particularly limited.
  • solvents amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone , Cyclic ester solvents such as ⁇ -methyl- ⁇ -butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as triethylene glycol, m-cresol, p-cresol, 3-chlorophenol, 4-chlorophenol Phenol solvents such as acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl
  • the total amount of the tetracarboxylic acid component and the diamine component is 5% by mass or more, preferably 10% by mass or more, more preferably 15%, based on the total amount of the solvent, the tetracarboxylic acid component and the diamine component.
  • a ratio of not less than mass% is preferred.
  • the total amount of the tetracarboxylic acid component and the diamine component is 60% by mass or less, preferably 50% by mass or less, based on the total amount of the solvent, the tetracarboxylic acid component, and the diamine component. Is preferred.
  • This concentration is a concentration approximately approximate to the solid content concentration resulting from the polyimide precursor, but if this concentration is too low, it becomes difficult to control the film thickness of the polyimide film obtained, for example, when producing a polyimide film. Sometimes.
  • the viscosity (rotational viscosity) of the polyimide precursor composition is not particularly limited, but the rotational viscosity measured using an E-type rotational viscometer at a temperature of 25 ° C. and a shear rate of 20 sec ⁇ 1 is 0.01 to 1000 Pa ⁇ sec is preferable, and 0.1 to 100 Pa ⁇ sec is more preferable. Moreover, thixotropy can also be provided as needed.
  • the viscosity is in the above range, it is easy to handle when coating or forming a film, and the repelling is suppressed and the leveling property is excellent, so that a good film can be obtained.
  • the polyimide precursor composition of the present invention includes chemical imidizing agents (acid anhydrides such as acetic anhydride, amine compounds such as pyridine and isoquinoline), antioxidants, fillers (inorganic particles such as silica, etc.) as necessary. ), Dyes, pigments, coupling agents such as silane coupling agents, primers, flame retardants, antifoaming agents, leveling agents, rheology control agents (flow aids), release agents and the like.
  • chemical imidizing agents as acid anhydrides such as acetic anhydride, amine compounds such as pyridine and isoquinoline
  • antioxidants such as amine compounds such as pyridine and isoquinoline
  • fillers inorganic particles such as silica, etc.
  • the polyimide of the present invention can be obtained by imidizing the polyimide precursor composition of the present invention as described above (that is, dehydrating and ring-closing reaction of the polyimide precursor).
  • the imidization method is not particularly limited, and a known thermal imidation or chemical imidization method can be suitably applied.
  • the form of the polyimide obtained can mention suitably a film, the laminated body of a polyimide film and another base material, a coating film, powder, a bead, a molded object, a foam.
  • the polyimide precursor it is preferable to imidize the polyimide precursor by heat-treating the polyimide precursor composition at a maximum heating temperature exceeding 350 ° C.
  • the maximum heating temperature of the heat treatment for imidization is more preferably higher than 380 ° C, and particularly preferably higher than 400 ° C.
  • the mechanical properties of the resulting polyimide are improved.
  • the upper limit of the maximum heating temperature of heat processing is not specifically limited, Usually, 500 degrees C or less is preferable.
  • the polyimide precursor composition of the present invention is cast and applied on a substrate, and the polyimide precursor composition on the substrate is heated to a maximum heating temperature of 350 ° C., more preferably 380 ° C., particularly preferably 400.
  • a polyimide can be suitably manufactured by heat-processing at the temperature exceeding 0 degreeC and imidating a polyimide precursor.
  • the heating profile is not particularly limited and can be selected as appropriate. However, from the viewpoint of productivity, it is preferable that the heat treatment time is short.
  • the polyimide precursor composition of the present invention is cast and applied on a substrate, and preferably dried in a temperature range of 180 ° C. or less to form a polyimide precursor composition film on the substrate.
  • the maximum heating temperature exceeds 350 ° C., more preferably exceeds 380 ° C., and particularly preferably exceeds 400 ° C.
  • a polyimide can be suitably manufactured also by heat-processing at temperature and imidizing a polyimide precursor.
  • the polyimide obtained from the polyimide precursor composition of the present invention is not particularly limited, but the linear thermal expansion coefficient from 150 ° C. to 250 ° C. when formed into a film is preferably 60 ppm / K or less, More preferably, it is 50 ppm / K or less, More preferably, it is 45 ppm / K or less, More preferably, it is 40 ppm / K or less, Most preferably, it is 35 ppm / K or less.
  • the linear thermal expansion coefficient is large, the difference in the linear thermal expansion coefficient with a conductor such as metal is large, which may cause problems such as an increase in warpage when a circuit board is formed.
  • the polyimide obtained from the polyimide precursor composition of the present invention is not particularly limited, but preferably has a total light transmittance (average light transmittance of a wavelength of 380 nm to 780 nm) in a film having a thickness of 10 ⁇ m. May be 86% or more, more preferably 87% or more, and particularly preferably 88% or more. When used for a display application or the like, if the total light transmittance is low, it is necessary to strengthen the light source, which may cause a problem that energy is applied.
  • the polyimide film when a polyimide film such as a display application is used for an application where light is transmitted, it is desirable that the polyimide film has high transparency.
  • the polyimide (polyimide of the present invention) obtained from the polyimide precursor composition of the present invention is not particularly limited, but the light transmittance at a wavelength of 400 nm in a 10 ⁇ m thick film is preferably 75% or more, preferably 80%. Above, more preferably more than 80%, still more preferably 81% or more, particularly preferably 82% or more.
  • the film made of the polyimide obtained from the polyimide precursor composition of the present invention depends on the use, but the thickness of the film is preferably 0.1 ⁇ m to 250 ⁇ m, more preferably 1 ⁇ m to The thickness is 150 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m, particularly preferably 1 ⁇ m to 30 ⁇ m.
  • the polyimide film is used for light transmission, if the polyimide film is too thick, the light transmittance may be lowered.
  • the polyimide obtained from the polyimide precursor composition of the present invention is not particularly limited, but the 1% weight loss temperature, which is an index of heat resistance of the polyimide film, is preferably 395 ° C. or more, more preferably It can be 430 ° C. or higher, more preferably 440 ° C. or higher, and particularly preferably 470 ° C. or higher.
  • the 1% weight loss temperature which is an index of heat resistance of the polyimide film
  • the polyimide obtained from the polyimide precursor composition of the present invention is not particularly limited, but the thickness direction retardation of the polyimide film is preferably 1000 nm or less, more preferably 800 nm or less, and even more preferably 700 nm or less. Particularly preferably, it can be 600 nm or less. When the retardation in the thickness direction is large, there are cases where the color of transmitted light is not displayed correctly, the color is blurred, and the viewing angle is narrowed.
  • the polyimide obtained from the polyimide precursor composition of the present invention that is, the polyimide of the present invention has a small phase difference in the film thickness direction, and has excellent properties such as high transparency, bending resistance, and high heat resistance. Since it has a low coefficient of linear thermal expansion, it can be suitably used in applications such as a transparent substrate for display, a transparent substrate for touch panel, or a substrate for solar cell.
  • the polyimide precursor composition (varnish) of the present invention is cast on a substrate such as ceramic (glass, silicon, alumina, etc.), metal (copper, aluminum, stainless steel, etc.), heat resistant plastic film (polyimide film, etc.), etc.
  • a substrate such as ceramic (glass, silicon, alumina, etc.), metal (copper, aluminum, stainless steel, etc.), heat resistant plastic film (polyimide film, etc.), etc.
  • a vacuum in an inert gas such as nitrogen, or in the air, drying is performed in a temperature range of 20 to 180 ° C., preferably 20 to 150 ° C. using hot air or infrared rays.
  • the obtained polyimide precursor film is peeled off from the substrate or the polyimide precursor film from the substrate, and the end of the film is fixed, in vacuum, in an inert gas such as nitrogen,
  • the polyimide film is heated and imidized using hot air or infrared rays in the air, for example, at 200 to 500 ° C., preferably at a maximum heating temperature of over 350 ° C., more preferably over 380 ° C., and particularly preferably over 400 ° C. /
  • a substrate laminate or a polyimide film can be produced.
  • the thickness of the polyimide film here is preferably 1 to 250 ⁇ m, more preferably 1 to 150 ⁇ m, because of the transportability in the subsequent steps.
  • the imidization reaction of the polyimide precursor instead of the heat imidation by the heat treatment as described above, contains a dehydration cyclization reagent such as acetic anhydride in the presence of a tertiary amine such as pyridine or triethylamine. It is also possible to carry out by chemical treatment such as immersion in a solution. In addition, these dehydrating cyclization reagents are previously charged and stirred in a polyimide precursor composition (varnish), and cast and dried on a base material to obtain a partially imidized polyimide precursor. A polyimide film / base material laminate or a polyimide film can be obtained by further heat treatment as described above.
  • a dehydration cyclization reagent such as acetic anhydride in the presence of a tertiary amine such as pyridine or triethylamine. It is also possible to carry out by chemical treatment such as immersion in a solution.
  • these dehydrating cyclization reagents are previously charged
  • a flexible conductive substrate can be obtained by forming a conductive layer on one side or both sides of the polyimide film / base laminate or the polyimide film obtained in this way.
  • a flexible conductive substrate can be obtained, for example, by the following method. That is, as a first method, the polyimide film / substrate laminate is not peeled off from the substrate, and the surface of the polyimide film is sputtered, vapor-deposited, printed, etc. by a conductive substance (metal or metal oxide). A conductive layer of conductive layer / polyimide film / base material is produced. Then, if necessary, a transparent and flexible conductive substrate comprising the conductive layer / polyimide film laminate can be obtained by peeling the conductive layer / polyimide film laminate from the substrate.
  • a transparent and flexible conductive substrate comprising the conductive layer / polyimide film laminate can be obtained by peeling the conductive layer / polyimide film laminate from the substrate.
  • the polyimide film is peeled off from the substrate of the polyimide film / substrate laminate to obtain a polyimide film, and a conductive substance (metal or metal oxide, conductive organic substance, A conductive layer of conductive carbon, etc.) is formed in the same manner as in the first method, and is a transparent and flexible conductive layer comprising a conductive layer / polyimide film laminate and a conductive layer / polyimide film laminate / conductive layer.
  • a substrate can be obtained.
  • a gas barrier layer such as water vapor or oxygen, light adjustment by sputtering, vapor deposition or gel-sol method, etc.
  • An inorganic layer such as a layer may be formed.
  • the conductive layer is preferably formed with a circuit by a method such as a photolithography method, various printing methods, or an ink jet method.
  • the substrate of the present invention thus obtained has a circuit of a conductive layer on the surface of a polyimide film composed of the polyimide of the present invention, with a gas barrier layer or an inorganic layer as necessary.
  • This substrate is flexible, has excellent transparency, bendability, and heat resistance, and further has a very low linear thermal expansion coefficient and excellent solvent resistance, so that a fine circuit can be easily formed. Therefore, this board
  • a transistor inorganic transistor, organic transistor
  • a transistor is further formed on this substrate by vapor deposition, various printing methods, an ink jet method or the like to manufacture a flexible thin film transistor, and a liquid crystal element, an EL element, a photoelectric transistor for a display device are manufactured. It is suitably used as an element.
  • Linear thermal expansion coefficient (CTE) A polyimide film having a thickness of about 10 ⁇ m is cut into a strip having a width of 4 mm to form a test piece, and TMA / SS6100 (manufactured by SII Nano Technology Co., Ltd.) is used. The length between chucks is 15 mm, the load is 2 g, and the heating rate is 20 ° C. / The temperature was raised to 500 ° C. in minutes. The linear thermal expansion coefficient from 150 ° C. to 250 ° C. was determined from the obtained TMA curve.
  • a polyimide film having a film thickness of about 10 ⁇ m was used as a test piece, and the temperature was raised from 25 ° C. to 600 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen stream using a calorimeter measuring device (Q5000IR) manufactured by TA Instruments. From the obtained weight curve, a 1% weight loss temperature was determined.
  • Table 1-1 shows tetracarboxylic acid components used in Examples and Comparative Examples
  • Table 1-2 shows Examples and Comparative Examples
  • Table 1-3 Examples and Imidazole Imidazolines Used in Comparative Examples The structural formula of the compound is described.
  • Example 1 0.05 g (0.5 mmol) of 1,2-dimethylimidazole and 0.05 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 33.76 g of varnish A obtained in Synthesis Example 1 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish A) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, 0.05 mol of 1,2-dimethylimidazole is used per 1 mol of the repeating unit of the polyimide precursor.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 2 0.15 g (1.6 mmol) of 1,2-dimethylimidazole and 0.15 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 33.76 g of varnish A obtained in Synthesis Example 1 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish A) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, 1,6-dimethylimidazole is 0.16 mol per 1 mol of the repeating unit of the polyimide precursor.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 3 0.19 g (2.0 mmol) of 1,2-dimethylimidazole and 0.19 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 33.76 g of varnish A obtained in Synthesis Example 1 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish A) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, 1,2-dimethylimidazole is 0.2 mol per 1 mol of the repeating unit of the polyimide precursor.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 4 0.96 g (10.0 mmol) of 1,2-dimethylimidazole and 0.38 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 33.76 g of varnish A obtained in Synthesis Example 1 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish A) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the amount of 1,2-dimethylimidazole per 1.0 mol of the repeating unit of the polyimide precursor is 1.0 mol.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 5 1.92 g (20.0 mmol) of 1,2-dimethylimidazole and 0.38 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 33.76 g of varnish A obtained in Synthesis Example 1 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish A) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the amount of 1,2-dimethylimidazole relative to 1 mol of the repeating unit of the polyimide precursor is 2.0 mol.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 6 0.04 g (0.5 mmol) of 1-methylimidazole and 0.04 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 33.76 g of varnish A obtained in Synthesis Example 1 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish A) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, 1-methylimidazole is 0.05 mol per 1 mol of the repeating unit of the polyimide precursor.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 7 0.08 g (1.0 mmol) of 1-methylimidazole and 0.08 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 33.76 g of varnish A obtained in Synthesis Example 1 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish A) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, 1-methylimidazole is 0.1 mol per 1 mol of the repeating unit of the polyimide precursor.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 8 0.16 g (2.0 mmol) of 1-methylimidazole and 0.16 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 33.76 g of varnish A obtained in Synthesis Example 1 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish A) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, 1-methylimidazole is 0.2 mol per 1 mol of the repeating unit of the polyimide precursor.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 9 A uniform solution was obtained by adding 0.33 g (4.0 mmol) of 1-methylimidazole and 0.33 g of N-methyl-2-pyrrolidone to the reaction vessel. 33.76 g of varnish A obtained in Synthesis Example 1 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish A) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, 1-methylimidazole is 0.4 mol per 1 mol of the repeating unit of the polyimide precursor.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 10 0.16 g (2.0 mmol) of 2-methylimidazole and 0.16 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 33.76 g of varnish A obtained in Synthesis Example 1 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish A) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, 2-methylimidazole is 0.2 mol per 1 mol of the repeating unit of the polyimide precursor.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 11 0.14 g (2.0 mmol) of imidazole and 0.14 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 33.76 g of varnish A obtained in Synthesis Example 1 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish A) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, imidazole is 0.2 mol with respect to 1 mol of the repeating unit of the polyimide precursor.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 12 0.29 g (2.0 mmol) of 2-phenylimidazole and 0.29 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 33.76 g of varnish A obtained in Synthesis Example 1 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish A) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, 2-phenylimidazole is 0.2 mol per 1 mol of the repeating unit of the polyimide precursor.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 13 A uniform solution was obtained by adding 0.24 g (2.0 mmol) of benzimidazole and 0.24 g of N-methyl-2-pyrrolidone to the reaction vessel. 33.76 g of varnish A obtained in Synthesis Example 1 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish A) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. Calculating from the charged amount, benzimidazole is 0.2 mol per 1 mol of the repeating unit of the polyimide precursor.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 350 ° C. as it is, and thermally imidized.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 14 0.05 g (0.5 mmol) of 1,2-dimethylimidazole and 0.05 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution.
  • 35.39 g of varnish B obtained in Synthesis Example 2 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish B) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, 0.05 mol of 1,2-dimethylimidazole per 1 mol of the repeating unit of the polyimide precursor.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 15 0.10 g (1.0 mmol) of 1,2-dimethylimidazole and 0.10 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 35.39 g of varnish B obtained in Synthesis Example 2 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish B) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, 1,2-dimethylimidazole is 0.1 mol per 1 mol of the repeating unit of the polyimide precursor.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 16 0.19 g (2.0 mmol) of 1,2-dimethylimidazole and 0.19 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 35.39 g of varnish B obtained in Synthesis Example 2 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish B) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the amount of 1,2-dimethylimidazole is 0.2 mol with respect to 1 mol of the repeating unit of the polyimide precursor.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 17 0.16 g (2.0 mmol) of 1-methylimidazole and 0.16 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. 35.39 g of varnish B obtained in Synthesis Example 2 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish B) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, 1-methylimidazole is 0.2 mol per 1 mol of the repeating unit of the polyimide precursor.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 18 0.10 g (1.0 mmol) of 1,2-dimethylimidazole and 0.10 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. To the solution, 38.23 g of varnish C obtained in Synthesis Example 3 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish C) was added and stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, 1,2-dimethylimidazole is 0.1 mol per 1 mol of the repeating unit of the polyimide precursor.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 19 0.10 g (1.0 mmol) of 1,2-dimethylimidazole and 0.10 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. To the solution, 35.99 g of varnish D obtained in Synthesis Example 4 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish D) was added and stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, 1,2-dimethylimidazole is 0.1 mol per 1 mol of the repeating unit of the polyimide precursor.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 20 0.10 g (1.0 mmol) of 1,2-dimethylimidazole and 0.10 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution. To the solution was added 35.09 g of varnish E obtained in Synthesis Example 5 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish E), and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, 1,2-dimethylimidazole is 0.1 mol per 1 mol of the repeating unit of the polyimide precursor.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere (oxygen concentration 200 ppm or less) from room temperature to 410 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 21 0.19 g (2.0 mmol) of 1,2-dimethylimidazole and 0.19 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution.
  • 24.97 g of varnish F obtained in Synthesis Example 6 (10 mmol with respect to the molecular weight of the repeating unit of the polyimide precursor in varnish F) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the amount of 1,2-dimethylimidazole is 0.2 mol with respect to 1 mol of the repeating unit of the polyimide precursor.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 400 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 22 0.19 g (2.0 mmol) of 1,2-dimethylimidazole and 0.19 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution.
  • 37.04 g of varnish G obtained in Synthesis Example 7 (10 mmol with respect to the molecular weight of the polyimide precursor repeating unit in varnish G) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the amount of 1,2-dimethylimidazole is 0.2 mol with respect to 1 mol of the repeating unit of the polyimide precursor.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 350 ° C. as it is, and thermally imidized.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 23 0.19 g (2.0 mmol) of 1,2-dimethylimidazole and 0.19 g of N-methyl-2-pyrrolidone were added to the reaction vessel to obtain a uniform solution.
  • 33.53 g of varnish H obtained in Synthesis Example 8 (10 mmol with respect to the molecular weight of the polyimide precursor repeating unit in varnish H) was added to the solution, and the mixture was stirred at room temperature for 3 hours to obtain a uniform and viscous polyimide. A precursor solution was obtained. When calculated from the charged amount, the amount of 1,2-dimethylimidazole is 0.2 mol with respect to 1 mol of the repeating unit of the polyimide precursor.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 370 ° C. as it is, and thermally imidized to be colorless.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • polyimide precursors containing imidazole compounds (1,2-dimethylimidazole, 1-methylimidazole, 2-methylimidazole, 2-phenylimidazole, benzimidazole, or imidazole) are shown. It can be seen that the polyimide obtained from the body composition has a small thickness direction retardation (Examples 1 to 13 and Comparative Example 1, Examples 14 to 17 and Comparative Example 3, Example 18 and Comparative Example 9, Example) 19 and Comparative Example 10, Example 20 and Comparative Example 11, Example 21 and Comparative Example 12, Example 22 and Comparative Example 13, Example 23 and Comparative Example 14).
  • the polyimide obtained from the polyimide precursor composition of the present invention has excellent light transmittance, mechanical properties, and low linear thermal expansion coefficient in addition to a small thickness direction retardation.
  • the polyimide film of the present invention can be suitably used as a transparent substrate that is colorless and transparent and capable of forming a fine circuit, such as for display applications.
  • a polyimide having excellent transparency and having a smaller thickness direction retardation even in the same composition, or a polyimide having a small thickness direction retardation, excellent transparency, and excellent mechanical properties can be obtained.
  • a polyimide precursor composition solution composition containing a polyimide precursor
  • a method for producing polyimide can be provided.
  • the polyimide obtained from this polyimide precursor composition is highly transparent and has a small thickness direction retardation, and also has a low linear thermal expansion coefficient and facilitates the formation of fine circuits. It can be suitably used for forming substrates for touch panels, solar cells, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 本発明は、ポリイミド前駆体と、イミダゾール系化合物を含み、イミダゾール系化合物の含有量が、ポリイミド前駆体の繰り返し単位1モルに対して4モル未満であることを特徴とするポリイミド前駆体組成物に関する。

Description

ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
 本発明は、厚み方向位相差(レタデーション)が小さく、機械的特性にも優れ、さらに透明性にも優れるポリイミドが得られるポリイミド前駆体を含む溶液組成物(ポリイミド前駆体組成物)、及びポリイミドの製造方法に関する。また、本発明は、透明性に優れ、厚み方向位相差が小さく、機械的特性にも優れたポリイミド、ポリイミドフィルム、及び基板にも関する。
 近年、高度情報化社会の到来に伴い、光通信分野の光ファイバーや光導波路等、表示装置分野の液晶配向膜やカラーフィルター用保護膜等の光学材料の開発が進んでいる。特に表示装置分野で、ガラス基板の代替として軽量でフレキシブル性に優れたプラスチック基板の検討や、曲げたり丸めたりすることが可能なディスプレイの開発が盛んに行われている。このため、その様な用途に用いることができる、より高性能の光学材料が求められている。
 芳香族ポリイミドは、分子内共役や電荷移動錯体の形成により、本質的に黄褐色に着色する。このため着色を抑制する手段として、例えば分子内へのフッ素原子の導入、主鎖への屈曲性の付与、側鎖として嵩高い基の導入などによって、分子内共役や電荷移動錯体の形成を阻害して、透明性を発現させる方法が提案されている。
 また、原理的に電荷移動錯体を形成しない半脂環式または全脂環式ポリイミドを用いることにより透明性を発現させる方法も提案されている。
 例えば、特許文献1~3に、テトラカルボン酸成分として芳香族テトラカルボン酸二無水物、ジアミン成分として脂環式ジアミンを用いた、透明性が高い半脂環式ポリイミドが開示されている。
 また、例えば、特許文献4~7には、テトラカルボン酸成分として脂環式テトラカルボン酸二無水物、ジアミン成分として芳香族ジアミンを用いた種々の、透明性が高い半脂環式ポリイミドが開示されている。
 非特許文献1には、テトラカルボン酸成分として、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物を用いたポリイミドが開示されている。さらに、ここで用いているノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物は6種類の立体異性体を含んでいることが記載されている。特許文献8にも、テトラカルボン酸成分として、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物を用いたポリイミドが開示されている。
 しかしながら、用途によっては、特に表示装置などの分野においては、透明性が高いことに加え、厚み方向位相差を低下させることが望まれている。厚み方向位相差が大きいフィルムを透過することで、色が正しく表示されない、色のにじみや視野角が狭くなるといった問題が起こることがある。そのため、特に表示装置などの分野においては、厚み方向位相差が小さいポリイミドフィルムが求められている。
 一方、特許文献9には、ポリイミド前駆体(ポリアミド酸)にイミダゾリン系化合物および/またはイミダゾール系化合物を配合してなる塗液を加熱することによって形成されてなるポリイミドが開示されている。より具体的には、実施例1では、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物と4,4’-ジアミノビフェニルエーテルから得られるポリアミド酸の溶液に2,4-ジメチルイミダゾリンを加えた溶液を基板上に塗布し、200℃、1時間加熱して、膜厚1000Å(0.1μm)の芳香族ポリイミド皮膜を得ている。実施例2では、ピロメリット酸二無水物と4,4’-ジアミノビフェニルエーテルから得られるポリアミド酸の溶液に2-エチルイミダゾリンおよび1,2-ジメチルイミダゾールを加えた溶液を基板上に塗布し、150℃、1時間加熱して、膜厚800Å(0.08μm)の芳香族ポリイミド皮膜を得ている。特許文献9には、イミダゾリン系化合物および/またはイミダゾール系化合物の添加により茶褐色の著しい着色は免れることになり、光線透過率の高い透明性に優れた液晶表示素子を得ることが可能となった、と記載されている。しかしながら、実施例1のポリイミド皮膜(液晶配向膜)を用いた液晶表示素子の波長400nmの光透過率は82%(ポリイミド膜厚:0.1μm)、実施例2のポリイミド皮膜(液晶配向膜)を用いた液晶表示素子の波長400nmの光透過率は83%(ポリイミド膜厚:0.08μm)であり、このポリイミドは十分な透明性を有するものではない。
 また、透明性が低い芳香族ポリイミドの製造方法として、特許文献10には、ポリイミド前駆体樹脂、及び、イミダゾール、N-メチルイミダゾール等のポリイミド前駆体樹脂の硬化促進剤を有機極性溶媒に溶解したポリイミド前駆体樹脂含有溶液を基材上に塗布し、続く熱処理で乾燥及びイミド化によるポリイミド樹脂層の形成を280~380℃の範囲内で完結するポリイミド樹脂層の形成方法が開示されており、これらの硬化促進剤を使用することで、熱線膨張係数を低く制御できることが記載されている。特許文献10には、また、硬化促進剤は、その沸点が120℃を越えるものを使用することが好ましく、沸点が、熱処理の上限温度を超えないものを選択することが好ましいことが記載されており、沸点が、例えば400℃以上の硬化促進剤は、イミド化後のポリイミド樹脂層中に残存する割合が高くなり、ポリイミド樹脂層の機能に影響を与える傾向にあることが記載されている。
特開2003-192787号公報 特開2004-83814号公報 特開2008-308550号公報 特開2003-168800号公報 国際公開第2008/146637号 特開2002-69179号公報 特開2002-146021号公報 国際公開第2011/099518号 特開昭61-267030号公報 特開2008-115378号公報
高分子論文集,Vol.68,No.3,P.127-131(2011)
 本発明は、以上のような状況に鑑みてなされたものであり、透明性に優れるポリイミドであって、同一組成でも厚み方向位相差がより小さいポリイミド、または、厚み方向位相差が小さく、機械的特性にも優れ、さらに透明性にも優れたポリイミドが得られるポリイミド前駆体組成物(ポリイミド前駆体を含む溶液組成物)、及びポリイミドの製造方法を提供することを目的とする。
 本発明は、以下の各項に関する。
1. 下記化学式(1)で表される繰り返し単位、または下記化学式(2)で表される繰り返し単位を含むポリイミド前駆体と、
 イミダゾール系化合物を含み、
 イミダゾール系化合物の含有量が、ポリイミド前駆体の繰り返し単位1モルに対して4モル未満であることを特徴とするポリイミド前駆体組成物。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-I000004
(式中、Xは脂環構造を有する4価の基であり、Yは芳香族環を有する2価の基であり、R、Rはそれぞれ独立に水素、炭素数1~6のアルキル基、または炭素数3~9のアルキルシリル基である。)
Figure JPOXMLDOC01-appb-C000005
(式中、Xは芳香族環を有する4価の基であり、Yは脂環構造を有する2価の基であり、R、Rはそれぞれ独立に水素、炭素数1~6のアルキル基、または炭素数3~9のアルキルシリル基である。)
2. このポリイミド前駆体組成物から得られるポリイミドが、厚さ10μmのフィルムでの波長400nmの光透過率が75%以上であることを特徴とする前記項1に記載のポリイミド前駆体組成物。
3. 前記イミダゾール系化合物の含有量が、ポリイミド前駆体の繰り返し単位1モルに対して0.05モル以上2モル以下であることを特徴とする前記項1又は2に記載のポリイミド前駆体組成物。
4. 前記イミダゾール系化合物の1気圧における沸点が340℃未満であることを特徴とする前記項1~3のいずれかに記載のポリイミド前駆体組成物。
5. 前記イミダゾール系化合物が、1,2-ジメチルイミダゾール、1-メチルイミダゾール、2-メチルイミダゾール、2-フェニルイミダゾール、イミダゾール、またはベンゾイミダゾールのいずれかであることを特徴とする前記項1~4のいずれかに記載のポリイミド前駆体組成物。
6. 前記項1~5のいずれかに記載のポリイミド前駆体組成物を、最高加熱温度350℃超で加熱処理して、ポリイミド前駆体をイミド化することを特徴とするポリイミドの製造方法。
7. 前記項1~5のいずれかに記載のポリイミド前駆体組成物を基材上に塗布する工程と、
 基材上のポリイミド前駆体組成物を、最高加熱温度350℃超で加熱処理して、ポリイミド前駆体をイミド化する工程と
を有することを特徴とする前記項6に記載のポリイミドの製造方法。
8. 前記加熱処理の最高加熱温度が400℃を超えることを特徴とする前記項6又は7に記載のポリイミドの製造方法。
9. 前記項6~8のいずれかに記載の方法により製造されるポリイミド。
10. 厚さ10μmのフィルムでの波長400nmの光透過率が75%以上であることを特徴とする前記項9に記載のポリイミド。
11. 前記項6~8のいずれかに記載の方法により製造されるポリイミドフィルム。
12. 前記項9又は10に記載のポリイミド、又は前記項11に記載のポリイミドフィルムを含むことを特徴とするディスプレイ用、タッチパネル用、または太陽電池用の基板。
 本発明によって、透明性に優れるポリイミドであって、同一組成でも厚み方向位相差がより小さいポリイミド、または、厚み方向位相差が小さく、機械的特性にも優れ、さらに透明性にも優れたポリイミドが得られるポリイミド前駆体組成物(ポリイミド前駆体を含む溶液組成物)、及びポリイミドの製造方法を提供することができる。
 本発明のポリイミド前駆体組成物から得られるポリイミド(本発明のポリイミド)は、透明性が高く、且つ厚み方向位相差が小さく、また、低線熱膨張係数であって微細な回路の形成が容易であり、ディスプレイ用途などの基板を形成するために好適に用いることができる。また、本発明のポリイミドは、タッチパネル用、太陽電池用の基板を形成するためにも好適に用いることができる。
 本発明のポリイミド前駆体組成物は、前記化学式(1)で表される繰り返し単位、または前記化学式(2)で表される繰り返し単位の少なくとも1種を含むポリイミド前駆体と、イミダゾール系化合物を含み、イミダゾール系化合物の含有量は、ポリイミド前駆体の繰り返し単位1モルに対して4モル未満である。
 前記化学式(1)で表される繰り返し単位、または前記化学式(2)で表される繰り返し単位の少なくとも1種を含むポリイミド前駆体から得られるポリイミド、すなわち半脂環式ポリイミドは、透明性が高い。このような透明性が高いポリイミドの場合、着色の要因となりえる添加物の使用は好まれない。しかしながら、イミダゾール系化合物を、ポリイミド前駆体の繰り返し単位1モルに対して4モル未満、好ましくは0.05モル以上2モル以下の割合で、ポリイミド前駆体組成物に加えることにより、高い透明性を保ったまま、厚み方向位相差が小さいポリイミドが得られる。すなわち、本発明によれば、同一組成のポリイミド前駆体から、高い透明性を維持しながら、厚み方向位相差がより小さいポリイミドが得られる。また、1気圧における沸点が340℃未満であるイミダゾール系化合物を用いた場合、得られるポリイミドの透明性がさらに向上することがある。
 さらに、透明性が高いポリイミドを得るためには、ポリイミド前駆体を比較的低温度で加熱処理してイミド化を完了する方が好ましいと一般に考えられているが、本発明によれば、最高加熱温度が350℃を超える、特に好ましくは400℃を超える加熱処理によってポリイミド前駆体をイミド化しても、透明性が高いポリイミドを製造することができる。その結果、イミド化のための加熱処理の最高加熱温度を、350℃を超える高温、特に好ましくは400℃を超える高温とすることが可能になるので、得られるポリイミドの機械的特性が向上する。すなわち、本発明によれば、透明性が高く、厚み方向位相差が小さく、機械的特性にも優れたポリイミドが得られる。
 前記のとおり、本発明のポリイミド前駆体組成物は、前記化学式(1)で表される繰り返し単位、または前記化学式(2)で表される繰り返し単位の少なくとも1種を含むポリイミド前駆体を含む。
 前記化学式(1)中のXとしては、炭素数が4~40の脂環構造を有する4価の基が好ましく、Yとしては、炭素数が6~40の芳香族環を有する2価の基が好ましい。
 前記化学式(1)の繰り返し単位を与えるテトラカルボン酸成分としては、例えば、1,2,3,4-シクロブタンテトラカルボン酸、イソプロピリデンジフェノキシビスフタル酸、シクロヘキサン-1,2,4,5-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-3,3’,4,4’-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-2,3,3’,4’-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-2,2’,3,3’-テトラカルボン酸、4,4’-メチレンビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(プロパン-2,2-ジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-オキシビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-チオビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-スルホニルビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(ジメチルシランジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(テトラフルオロプロパン-2,2-ジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)、オクタヒドロペンタレン-1,3,4,6-テトラカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸、6-(カルボキシメチル)ビシクロ[2.2.1]ヘプタン-2,3,5-トリカルボン酸、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸、ビシクロ[2.2.2]オクタ-5-エン-2,3,7,8-テトラカルボン酸、トリシクロ[4.2.2.02,5]デカン-3,4,7,8-テトラカルボン酸、トリシクロ[4.2.2.02,5]デカ-7-エン-3,4,9,10-テトラカルボン酸、9-オキサトリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン5,5’’,6,6’’-テトラカルボン酸、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2c,3c,6c,7c-テトラカルボン酸、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2t,3t,6c,7c-テトラカルボン酸や、これらのテトラカルボン酸二無水物、テトラカルボン酸シリルエステル、テトラカルボン酸エステル、テトラカルボン酸クロライド等の誘導体が挙げられる。テトラカルボン酸成分は、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 前記化学式(1)の繰り返し単位を与えるジアミン成分としては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、ベンジジン、3,3'-ジアミノ-ビフェニル、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス(トリフルオロメチル)ベンジジン、m-トリジン、4,4’-ジアミノベンズアニリド、3,4’-ジアミノベンズアニリド、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-p-フェニレンビス(p-アミノベンズアミド)、4-アミノフェノキシ-4-ジアミノベンゾエート、ビス(4-アミノフェニル)テレフタレート、ビフェニル-4,4’-ジカルボン酸ビス(4-アミノフェニル)エステル、p-フェニレンビス(p-アミノベンゾエート)、ビス(4-アミノフェニル)-[1,1'-ビフェニル]-4,4'-ジカルボキシレート、[1,1'-ビフェニル]-4,4'-ジイル ビス(4-アミノベンゾエート)、4,4’-オキシジアニリン、3,4’-オキシジアニリン、3,3’-オキシジアニリン、p-メチレンビス(フェニレンジアミン)、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、ビス(4-アミノフェニル)スルホン、3,3'-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス((アミノフェノキシ)フェニル)プロパン、2,2’-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4-(4-アミノフェノキシ)ジフェニル)スルホン、ビス(4-(3-アミノフェノキシ)ジフェニル)スルホン、オクタフルオロベンジジン、3,3'-ジメトキシ-4,4'-ジアミノビフェニル、3,3'-ジクロロ-4,4'-ジアミノビフェニル、3,3'-ジフルオロ-4,4'-ジアミノビフェニル、2スルホンスルホン,4-ビス(4-アミノアニリノ)-6-アミノ-1,3,5-トリアジン、2,4-ビス(4-アミノアニリノ)-6-メチルアミノ-1,3,5-トリアジン、2,4-ビス(4-アミノアニリノ)-6-エチルアミノ-1,3,5-トリアジン、2,4-ビス(4-アミノアニリノ)-6-アニリノ-1,3,5-トリアジンが挙げられる。ジアミン成分は、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 この前記化学式(1)で表される繰り返し単位の少なくとも1種を含むポリイミド前駆体は、前記化学式(1)で表される繰り返し単位以外の、他の繰り返し単位を含むことができる。他の繰り返し単位を与えるテトラカルボン酸成分およびジアミン成分としては、特に限定されず、他の公知の芳香族または脂肪族テトラカルボン酸類、公知の芳香族または脂肪族ジアミン類いずれも使用することができる。他のテトラカルボン酸成分も、単独で使用してもよく、また複数種を組み合わせて使用することもできる。他のジアミン成分も、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 前記化学式(1)で表される繰り返し単位以外の、他の繰り返し単位の含有量は、全繰り返し単位に対して、好ましくは30モル%以下または30モル%未満、より好ましくは20モル%以下、さらに好ましくは10モル%以下であることが好ましい。
 前記化学式(2)中のXとしては、炭素数が6~40の芳香族環を有する4価の基が好ましく、Yとしては、炭素数が4~40の脂環構造を有する2価の基が好ましい。
 前記化学式(2)の繰り返し単位を与えるテトラカルボン酸成分としては、例えば、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸、ピロメリット酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、4,4’-オキシジフタル酸、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、m-ターフェニル-3,4,3’,4’-テトラカルボン酸二無水物、p-ターフェニル-3,4,3’,4’-テトラカルボン酸二無水物、ビスカルボキシフェニルジメチルシラン、ビスジカルボキシフェノキシジフェニルスルフィド、スルホニルジフタル酸や、これらのテトラカルボン酸二無水物、テトラカルボン酸シリルエステル、テトラカルボン酸エステル、テトラカルボン酸クロライド等の誘導体が挙げられる。テトラカルボン酸成分は、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 前記化学式(2)の繰り返し単位を与えるジアミン成分としては、例えば、1,4-ジアミノシクロへキサン、1,4-ジアミノ-2-メチルシクロヘキサン、1,4-ジアミノ-2-エチルシクロヘキサン、1,4-ジアミノ-2-n-プロピルシクロヘキサン、1,4-ジアミノ-2-イソプロピルシクロヘキサン、1,4-ジアミノ-2-n-ブチルシクロヘキサン、1,4-ジアミノ-2-イソブチルシクロヘキサン、1,4-ジアミノ-2―sec―ブチルシクロヘキサン、1,4-ジアミノ-2―tert―ブチルシクロヘキサン、1,2-ジアミノシクロへキサン、1,3-ジアミノシクロブタン、1,4-ビス(アミノメチル)シクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、ジアミノビシクロヘプタン、ジアミノメチルビシクロヘプタン、ジアミノオキシビシクロヘプタン、ジアミノメチルオキシビシクロヘプタン、イソホロンジアミン、ジアミノトリシクロデカン、ジアミノメチルトリシクロデカン、ビス(アミノシクロへキシル)メタン、ビス(アミノシクロヘキシル)イソプロピリデン6,6'-ビス(3-アミノフェノキシ)-3,3,3',3'-テトラメチル-1,1'-スピロビインダン、6,6'-ビス(4-アミノフェノキシ)-3,3,3',3'-テトラメチル-1,1'-スピロビインダンが挙げられる。ジアミン成分は、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 この前記化学式(2)で表される繰り返し単位の少なくとも1種を含むポリイミド前駆体は、前記化学式(2)で表される繰り返し単位以外の、他の繰り返し単位を含むことができる。他の繰り返し単位を与えるテトラカルボン酸成分およびジアミン成分としては、特に限定されず、他の公知の芳香族または脂肪族テトラカルボン酸類、公知の芳香族または脂肪族ジアミン類いずれも使用することができる。他のテトラカルボン酸成分も、単独で使用してもよく、また複数種を組み合わせて使用することもできる。他のジアミン成分も、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 前記化学式(2)で表される繰り返し単位以外の、他の繰り返し単位の含有量は、全繰り返し単位に対して、好ましくは30モル%以下または30モル%未満、より好ましくは20モル%以下、さらに好ましくは10モル%以下であることが好ましい。
 ポリイミド前駆体は、前記化学式(1)で表される繰り返し単位の少なくとも1種と前記化学式(2)で表される繰り返し単位の少なくとも1種とを含むものであってもよい。その場合も、前記化学式(1)及び(2)で表される繰り返し単位以外の、他の繰り返し単位の含有量は、全繰り返し単位に対して、好ましくは30モル%以下または30モル%未満、より好ましくは20モル%以下、さらに好ましくは10モル%以下であることが好ましい。
 ある実施態様においては、ポリイミド前駆体としては、例えば、下記化学式(1-1)で表される繰り返し単位を含むポリイミド前駆体が好ましく、下記化学式(1-2)及び下記化学式(1-3)で表される繰り返し単位を少なくとも1種含み、化学式(1-2)及び化学式(1-3)で表される繰り返し単位の合計含有量が、全繰り返し単位に対して、80モル%以上であるポリイミド前駆体がより好ましい。
Figure JPOXMLDOC01-appb-C000006
(式中、Aは芳香族環を有する2価の基であり、R、Rはそれぞれ独立に水素、炭素数1~6のアルキル基、または炭素数3~9のアルキルシリル基である。)
Figure JPOXMLDOC01-appb-C000007
(式中、Aは芳香族環を有する2価の基であり、R、Rはそれぞれ独立に水素、炭素数1~6のアルキル基、または炭素数3~9のアルキルシリル基である。)
Figure JPOXMLDOC01-appb-C000008
(式中、Aは芳香族環を有する2価の基であり、R、Rはそれぞれ独立に水素、炭素数1~6のアルキル基、または炭素数3~9のアルキルシリル基である。)
 ただし、前記化学式(1-1)、前記化学式(1-2)及び前記化学式(1-3)は、2つのノルボルナン環(ビシクロ[2.2.1]ヘプタン)の5位または6位の一方の酸基がアミノ基と反応してアミド結合(-CONH-)を形成しており、一方がアミド結合を形成していない-COORで表される基、または-COORで表される基であることを示す。すなわち、前記化学式(1-1)、前記化学式(1-2)及び前記化学式(1-3)には、4つの構造異性体、すなわち(i)5位に-COORで表される基を、6位に-CONH-で表される基を有し、5’’位に-COORで表される基を、6’’位に-CONH-A-で表される基を有するもの、(ii)6位に-COORで表される基を、5位に-CONH-で表される基を有し、5’’位に-COORで表される基を、6’’位に-CONH-A-で表される基を有するもの、(iii)5位に-COORで表される基を、6位に-CONH-で表される基を有し、6’’位に-COORで表される基を、5’’位に-CONH-A-で表される基を有するもの、(iv)6位に-COORで表される基を、5位に-CONH-で表される基を有し、6’’位に-COORで表される基を、5’’位に-CONH-A-で表される基を有するもの全てが含まれる。
 さらに、ポリイミド前駆体は、Aが下記化学式(1-A)で表される基である化学式(1-1)で表される繰り返し単位、より好ましくはAが下記化学式(1-A)で表される基である化学式(1-2)および/または化学式(1-3)で表される繰り返し単位を少なくとも1種含むことが好ましい。
Figure JPOXMLDOC01-appb-C000009
(式中、mは0~3の整数を、nは0~3の整数をそれぞれ独立に示す。V、U、Tはそれぞれ独立に水素原子、メチル基、トリフルオロメチル基よりなる群から選択される1種を示し、Z、Wはそれぞれ独立に直接結合、または 式:-NHCO-、-CONH-、-COO-、-OCO-で表される基よりなる群から選択される1種を示す。)
 換言すれば、ある実施態様においては、ポリイミド前駆体は、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸類等、より好ましくはtrans-endo-endo-ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸類等および/またはcis-endo-endo-ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸類等(テトラカルボン酸類等とは、テトラカルボン酸と、テトラカルボン酸二無水物、テトラカルボン酸シリルエステル、テトラカルボン酸エステル、テトラカルボン酸クロライド等のテトラカルボン酸誘導体を表す)を含むテトラカルボン酸成分と、芳香族環を有するジアミン成分、より好ましくはAが前記化学式(1-A)で表される基である化学式(1-1)、化学式(1-2)または化学式(1-3)の繰り返し単位を与えるジアミン成分を含むジアミン成分から得られるポリイミド前駆体である。
 前記化学式(1-1)の繰り返し単位を与えるテトラカルボン酸成分としては、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸類等の、1種を単独で使用してもよく、また複数種を組み合わせて使用することもできる。前記化学式(1-2)の繰り返し単位を与えるテトラカルボン酸成分としては、trans-endo-endo-ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸類等の、1種を単独で使用してもよく、複数種を組み合わせて使用することもできる。前記化学式(1-3)の繰り返し単位を与えるテトラカルボン酸成分としては、cis-endo-endo-ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸類等の、1種を単独で使用してもよく、複数種を組み合わせて使用することもできる。
 なお、より好ましい形態のポリイミド前駆体においては、前記化学式(1-2)の繰り返し単位を与えるテトラカルボン酸成分(trans-endo-endo-ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸類等)の1種以上のみを使用してもよく、前記化学式(1-3)の繰り返し単位を与えるテトラカルボン酸成分(cis-endo-endo-ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸類等)の1種以上のみを使用してもよく、前記化学式(1-2)の繰り返し単位を与えるテトラカルボン酸成分(trans-endo-endo-ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸類等)の1種以上と、前記化学式(1-3)の繰り返し単位を与えるテトラカルボン酸成分(cis-endo-endo-ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸類等)の1種以上の両方を使用してもよい。
 ポリイミド前駆体は、前記化学式(1-2)及び前記化学式(1-3)で表される繰り返し単位の合計含有量が、全繰り返し単位に対して、80モル%以上であることが好ましく、すなわち、前記化学式(1-2)及び前記化学式(1-3)で表される繰り返し単位を少なくとも1種含み、その繰り返し単位を全繰り返し単位中に、合計で、好ましくは80モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上、特に好ましくは99モル%以上含むことが好ましい。前記化学式(1-2)及び前記化学式(1-3)で表される繰り返し単位を少なくとも1種含み、その繰り返し単位を全繰り返し単位中に、合計で、好ましくは80モル%以上含むことで、得られるポリイミドの線熱膨張係数が小さくなる。
 前記化学式(1-1)、または前記化学式(1-2)、前記化学式(1-3)の繰り返し単位を与えるジアミン成分は、Aが前記化学式(1-A)で表される基であるものを与えるジアミンを含むことが好ましい。
 Aが前記化学式(1-A)の構造である化学式(1-1)、または化学式(1-2)、化学式(1-3)の繰り返し単位を与えるジアミン成分は、芳香環を有し、芳香環を複数有する場合は芳香環同士をそれぞれ独立に、直接結合、アミド結合、またはエステル結合で連結したものである。芳香環同士の連結位置は特に限定されないが、アミノ基もしくは芳香環同士の連結基に対して4位で結合することで直線的な構造となり、得られるポリイミドが低線熱膨張になることがある。また、芳香環にメチル基やトリフルオロメチル基が置換されていてもよい。なお、置換位置は特に限定されない。
 Aが前記化学式(1-A)の構造である化学式(1-1)、または化学式(1-2)、化学式(1-3)の繰り返し単位を与えるジアミン成分としては、特に限定するものではないが、例えば、p-フェニレンジアミン、m-フェニレンジアミン、ベンジジン、3,3’-ジアミノ-ビフェニル、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス(トリフルオロメチル)ベンジジン、m-トリジン、4,4’-ジアミノベンズアニリド、3,4’-ジアミノベンズアニリド、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-p-フェニレンビス(p-アミノベンズアミド)、4-アミノフェノキシ-4-ジアミノベンゾエート、ビス(4-アミノフェニル)テレフタレート、ビフェニル-4,4’-ジカルボン酸ビス(4-アミノフェニル)エステル、p-フェニレンビス(p-アミノベンゾエート)、ビス(4-アミノフェニル)-[1,1’-ビフェニル]-4,4’-ジカルボキシレート、[1,1’-ビフェニル]-4,4’-ジイルビス(4-アミノベンゾエート)等が挙げられ、単独で使用してもよく、また複数種を組み合わせて使用することもできる。これらのうち、p-フェニレンジアミン、m-トリジン、4,4’-ジアミノベンズアニリド、4-アミノフェノキシ-4-ジアミノベンゾエート、2,2’-ビス(トリフルオロメチル)ベンジジン、ベンジジン、N,N’-ビス(4-アミノフェニル)テレフタルアミド、ビフェニル-4,4’-ジカルボン酸ビス(4-アミノフェニル)エステルが好ましく、p-フェニレンジアミン、4,4’-ジアミノベンズアニリド、2,2’-ビス(トリフルオロメチル)ベンジジンがより好ましい。ジアミン成分として、p-フェニレンジアミン、4,4’-ジアミノベンズアニリド、2,2’-ビス(トリフルオロメチル)ベンジジンを使用することで、得られるポリイミドが高耐熱性と高透過率を両立する。これらのジアミンは、単独で使用してもよく、また複数種を組み合わせて使用することもできる。なお、o-トリジンは危険性が高いことから好ましくない。
 前記化学式(1-1)、または前記化学式(1-2)、前記化学式(1-3)の繰り返し単位を与えるジアミン成分としては、Aが前記化学式(1-A)の構造のものを与えるジアミン成分以外の、他のジアミンを併用することができる。他のジアミン成分としては、他の芳香族または脂肪族ジアミン類を使用することができる。他のジアミン成分として、例えば、4,4’-オキシジアニリン、3,4’-オキシジアニリン、3,3’-オキシジアニリン、ビス(4-アミノフェニル)スルフィド、p-メチレンビス(フェニレンジアミン)、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、ビス(4-アミノフェニル)スルホン、3,3-ビス((アミノフェノキシ)フェニル)プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4-(4-アミノフェノキシ)ジフェニル)スルホン、ビス(4-(3-アミノフェノキシ)ジフェニル)スルホン、オクタフルオロベンジジン、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジクロロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、9,9-ビス(4-アミノフェニル)フルオレン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、1,4-ジアミノシクロへキサン、1,4-ジアミノ-2-メチルシクロヘキサン、1,4-ジアミノ-2-エチルシクロヘキサン、1,4-ジアミノ-2-n-プロピルシクロヘキサン、1,4-ジアミノ-2-イソプロピルシクロヘキサン、1,4-ジアミノ-2-n-ブチルシクロヘキサン、1,4-ジアミノ-2-イソブチルシクロヘキサン、1,4-ジアミノ-2-sec-ブチルシクロヘキサン、1,4-ジアミノ-2-tert-ブチルシクロヘキサン、1,2-ジアミノシクロへキサン、1,4-ジアミノシクロへキサン、1,3-ジアミノシクロブタン、1,4-ビス(アミノメチル)シクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、ジアミノビシクロヘプタン、ジアミノメチルビシクロヘプタン、ジアミノオキシビシクロヘプタン、ジアミノメチルオキシビシクロヘプタン、イソホロンジアミン、ジアミノトリシクロデカン、ジアミノメチルトリシクロデカン、ビス(アミノシクロへキシル)メタン、ビス(アミノシクロヘキシル)イソプロピリデン6,6'-ビス(3-アミノフェノキシ)-3,3,3',3'-テトラメチル-1,1'-スピロビインダン、6,6'-ビス(4-アミノフェノキシ)-3,3,3',3'-テトラメチル-1,1'-スピロビインダン等やこれらの誘導体が挙げられ、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 本発明のポリイミド前駆体は、Aが前記化学式(1-A)で表されるものである前記化学式(1-1)の繰り返し単位を少なくとも1種、より好ましくは、Aが前記化学式(1-A)で表されるものである前記化学式(1-2)の繰り返し単位を少なくとも1種および/またはAが前記化学式(1-A)で表されるものである前記化学式(1-3)の繰り返し単位を少なくとも1種含むことが好ましい。換言すれば、前記化学式(1-1)の繰り返し単位、より好ましくは前記化学式(1-2)及び前記化学式(1-3)の繰り返し単位を与えるジアミン成分が、Aが前記化学式(1-A)の構造のものを与えるジアミン成分を含むことが好ましい。前記化学式(1-1)の繰り返し単位、より好ましくは前記化学式(1-2)及び前記化学式(1-3)中のAを与えるジアミン成分が前記化学式(1-A)の構造のものを与えるジアミン成分であることで、得られるポリイミドの耐熱性が向上する。
 本発明のポリイミド前駆体は、前記化学式(1-1)、または前記化学式(1-2)及び前記化学式(1-3)中のAを与えるジアミン成分100モル%中、前記化学式(1-A)の構造を与えるジアミン成分の割合が、合計で、好ましくは50モル%以上、より好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは100モル%であることが好ましい。換言すれば、Aが前記化学式(1-A)の構造である前記化学式(1-1)、または前記化学式(1-2)及び前記化学式(1-3)の繰り返し単位の1種以上の割合が、合計で、前記化学式(1-1)、または前記化学式(1-2)及び前記化学式(1-3)で表される全繰り返し単位中、好ましくは50モル%以上、より好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは100モル%であることが好ましい。前記化学式(1-A)の構造を与えるジアミン成分の割合が、50モル%より小さい場合、得られるポリイミドの線熱膨張係数が大きくなることがある。ある実施態様においては、得られるポリイミドの機械的特性の点から、前記化学式(1-1)、または前記化学式(1-2)及び前記化学式(1-3)中のAを与えるジアミン成分100モル%中、前記化学式(1-A)の構造を与えるジアミン成分の割合が、合計で、好ましくは80モル%以下、より好ましくは90モル%以下または90モル%未満であることが好ましいことがある。例えば、4,4’-オキシジアニリン等の他の芳香族または脂肪族ジアミン類を、前記化学式(1-1)、または前記化学式(1-2)及び前記化学式(1-3)の繰り返し単位を与えるジアミン成分100モル%中、好ましくは20モル%未満、より好ましくは10モル%以下、より好ましくは10モル%未満で使用することができる。
 ある実施態様においては、本発明の前記化学式(1-1)で表される繰り返し単位を含むポリイミド前駆体は、Aが前記化学式(1-A)で表されるものである化学式(1-1)の繰り返し単位を少なくとも2種含むことが好ましいことがある。ある実施態様においては、本発明の前記化学式(1-2)で表される繰り返し単位および/または前記化学式(1-3)で表される繰り返し単位を含むポリイミド前駆体は、Aが前記化学式(1-A)で表されるものである化学式(1-2)または化学式(1-2)の繰り返し単位を少なくとも2種含むことが好ましいことがある。換言すれば、前記化学式(1-1)の繰り返し単位を与えるジアミン成分、または、前記化学式(1-2)及び前記化学式(1-3)の繰り返し単位を与えるジアミン成分が、Aが前記化学式(1-A)の構造であるものを与えるジアミン成分を少なくとも2種含むことが好ましいことがある。前記化学式(1-1)中のA、または、前記化学式(1-2)及び前記化学式(1-3)中のAを与えるジアミン成分が前記化学式(1-A)の構造のものを与えるジアミン成分の少なくとも2種類を含むことで、得られるポリイミドの高透明性と低線熱膨張性のバランスが取れる(すなわち、透明性が高く、且つ、低線熱膨張係数であるポリイミドが得られる)。
 なお、本発明のポリイミド前駆体は、Aが前記化学式(1-A)の構造である前記化学式(1-2)の繰り返し単位を少なくとも2種含むものであってもよく、また、Aが前記化学式(1-A)の構造である前記化学式(1-3)の繰り返し単位を少なくとも2種含むものであってもよく、また、Aが前記化学式(1-A)の構造である前記化学式(1-2)の繰り返し単位を少なくとも1種と、Aが前記化学式(1-A)の構造である前記化学式(1-3)の繰り返し単位を少なくとも1種含むものであってもよい。
 ある実施態様においては、本発明のポリイミド前駆体は、
(i)Aが、mおよび/またはnが1~3であり、Zおよび/またはWが、それぞれ独立に、-NHCO-、-CONH-、-COO-、または-OCO-のいずれかである前記化学式(1-A)の構造である前記化学式(1-1)、好ましくは前記化学式(1-2)及び前記化学式(1-3)の繰り返し単位(I)を少なくとも1種含み、
(ii)Aが、mおよびnが0である前記化学式(1-A)の構造であるか、または、mおよび/またはnが1~3であり、ZおよびWが直接結合である前記化学式(1-A)の構造である前記化学式(1-1)、好ましくは前記化学式(1-2)及び前記化学式(1-3)の繰り返し単位(II)を少なくとも1種含むことがより好ましいことがある。
 この実施態様において、前記繰り返し単位(I)としては、例えば、Aが下記化学式(D-1)~(D-3)のいずれかで表されるものである前記化学式(1-1)の繰り返し単位が好ましく、Aが下記化学式(D-1)~(D-2)のいずれかで表されるものである前記化学式(1-1)の繰り返し単位がより好ましい。なお、Aが下記化学式(D-1)または下記化学式(D-2)で表されるものである前記化学式(1-1)の繰り返し単位を与えるジアミン成分は4,4’-ジアミノベンズアニリドであり、Aが下記化学式(D-3)で表されるものである前記化学式(1-1)の繰り返し単位を与えるジアミン成分はビス(4-アミノフェニル)テレフタレートであり、これらのジアミンは、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
Figure JPOXMLDOC01-appb-C000010
 この実施態様において、前記繰り返し単位(II)としては、例えば、Aが下記化学式(D-4)~(D-6)のいずれかで表されるものである前記化学式(1-1)の繰り返し単位が好ましく、Aが下記化学式(D-4)~(D-5)のいずれかで表されるものである前記化学式(1-1)の繰り返し単位がより好ましい。なお、Aが下記化学式(D-4)で表されるものである前記化学式(1-1)の繰り返し単位を与えるジアミン成分はp-フェニレンジアミンであり、Aが下記化学式(D-5)で表されるものである前記化学式(1-1)の繰り返し単位を与えるジアミン成分は2,2’-ビス(トリフルオロメチル)ベンジジンであり、Aが下記化学式(D-6)で表されるものである前記化学式(1-1)の繰り返し単位を与えるジアミン成分はm-トリジンであり、これらのジアミンは、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
Figure JPOXMLDOC01-appb-C000011
 この実施態様のポリイミド前駆体において、前記繰り返し単位(I)1種以上の割合が、合計で、前記化学式(1-1)で表される全繰り返し単位中、30モル%以上70モル%以下であり、前記繰り返し単位(II)1種以上の割合が、合計で、前記化学式(1-1)で表される全繰り返し単位中、30モル%以上70モル%以下であることが好ましく、前記繰り返し単位(I)1種以上の割合が、合計で、前記化学式(1-1)で表される全繰り返し単位中、40モル%以上60モル%以下であり、前記繰り返し単位(II)1種以上の割合が、合計で、前記化学式(1-1)で表される全繰り返し単位中、40モル%以上60モル%以下であることが特に好ましい。ある実施態様においては、前記繰り返し単位(I)の割合が、合計で、前記化学式(1-1)で表される全繰り返し単位中、60モル%未満であることがより好ましく、50モル%以下であることがより好ましく、40モル%以下であることが特に好ましい。また、ある実施態様においては、前記繰り返し単位(I)及び前記繰り返し単位(II)以外の、他の前記化学式(1-1)で表される繰り返し単位(例えば、Aが複数の芳香環を有し、芳香環同士がエーテル結合(-O-)で連結されているもの)を、前記化学式(1-1)で表される全繰り返し単位中、好ましくは20モル%未満、より好ましくは10モル%以下、特に好ましくは10モル%未満で含むことが好ましいことがある。さらに、ある実施態様においては、前記繰り返し単位(I)1種以上の割合が、合計で、前記化学式(1-1)で表される全繰り返し単位中、20モル%以上80モル%以下であり、前記繰り返し単位(II)1種以上の割合が、合計で、前記化学式(1-1)で表される全繰り返し単位中、20モル%以上80モル%以下であることが好ましいこともある。
 ある実施態様においては、本発明の前記化学式(1-1)、または前記化学式(1-2)および/または前記化学式(1-3)の繰り返し単位を含むポリイミド前駆体は、前記化学式(1-1)、または前記化学式(1-2)及び前記化学式(1-3)中のAを与えるジアミン成分(前記化学式(1-1)の繰り返し単位、または前記化学式(1-2)及び前記化学式(1-3)の繰り返し単位を与えるジアミン成分)が前記化学式(1-A)の構造を与えるジアミン成分の少なくとも2種類を含み、そのうちの1種が4,4’-ジアミノベンズアニリドであることが好ましい。前記化学式(1-1)、または前記化学式(1-2)及び前記化学式(1-3)中のAを与えるジアミン成分が前記化学式(1-A)の構造を与えるジアミン成分の少なくとも2種類を含み、そのうちの1種が4,4’-ジアミノベンズアニリドであることで、高透明性と低線熱膨張性に加え、高い耐熱性も兼ね備えたポリイミドが得られる。
 ある実施態様においては、本発明の前記化学式(1-1)、または前記化学式(1-2)および/または前記化学式(1-3)の繰り返し単位を含むポリイミド前駆体は、前記化学式(1-1)、または前記化学式(1-2)及び前記化学式(1-3)中のAを与えるジアミン成分(前記化学式(1-1)の繰り返し単位、または前記化学式(1-2)及び前記化学式(1-3)の繰り返し単位を与えるジアミン成分)が2,2’-ビス(トリフルオロメチル)ベンジジン及びp-フェニレンジアミンから選択される少なくとも1種類と、4,4’-ジアミノベンズアニリドを含むことが特に好ましい。これらのジアミン成分を組み合わせることで、高い透明性と低線熱膨張性、耐熱性を兼ね備えたポリイミドが得られる。
 この実施態様においては、前記化学式(1-1)、または前記化学式(1-2)及び前記化学式(1-3)中のAを与えるジアミン成分(前記化学式(1-1)の繰り返し単位、または前記化学式(1-2)及び前記化学式(1-3)の繰り返し単位を与えるジアミン成分)としては、好ましくは4,4’-ジアミノベンズアニリドを20モル%以上、80モル%以下で含み、且つ、p-フェニレンジアミンと2,2’-ビス(トリフルオロメチル)ベンジジンのどちらか一方、又は両方で20モル%以上、80モル%以下で含むことが好ましく、より好ましくは4,4’-ジアミノベンズアニリドを30モル%以上、70モル%以下で含み、且つ、p-フェニレンジアミンと2,2’-ビス(トリフルオロメチル)ベンジジンのどちらか一方、又は両方で30モル%以上、70モル%以下で含むことが好ましく、特に好ましくは4,4’-ジアミノベンズアニリドを40モル%以上、60モル%以下で含み、且つ、p-フェニレンジアミンと2,2’-ビス(トリフルオロメチル)ベンジジンのどちらか一方、又は両方で40モル%以上、60モル%以下で含むことがより好ましい。前記化学式(1-1)、または前記化学式(1-2)及び前記化学式(1-3)中のAを与えるジアミン成分として、4,4’-ジアミノベンズアニリドを30モル%以上、70モル%以下で含み、且つ、p-フェニレンジアミンと2,2’-ビス(トリフルオロメチル)ベンジジンのどちらか一方、又は両方で30モル%以上、70モル%以下で含むことにより、高い透明性と低線熱膨張性、耐熱性を兼ね備えたポリイミドが得られる。ある実施態様においては、前記化学式(1-1)、または前記化学式(1-2)及び前記化学式(1-3)中のAを与えるジアミン成分(前記化学式(1-1)の繰り返し単位、または前記化学式(1-2)及び前記化学式(1-3)の繰り返し単位を与えるジアミン成分)としては、4,4’-ジアミノベンズアニリドを60モル%未満で含むことがより好ましく、50モル%以下で含むことがより好ましく、40モル%以下で含むことが特に好ましい。
 本発明のポリイミド前駆体は、前記化学式(1-1)、または前記化学式(1-2)及び前記化学式(1-3)で表される繰り返し単位以外の、他の繰り返し単位を含むことができる。
 他の繰り返し単位を与えるテトラカルボン酸成分としては、他の芳香族または脂肪族テトラカルボン酸類を使用することができる。例えば、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸、ピロメリット酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、4,4’-オキシジフタル酸、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、m-ターフェニル-3,4,3’,4’-テトラカルボン酸二無水物、p-ターフェニル-3,4,3’,4’-テトラカルボン酸二無水物、ビスカルボキシフェニルジメチルシラン、ビスジカルボキシフェノキシジフェニルスルフィド、スルホニルジフタル酸、1,2,3,4-シクロブタンテトラカルボン酸、イソプロピリデンジフェノキシビスフタル酸、シクロヘキサン-1,2,4,5-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-3,3’,4,4’-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-2,3,3’,4’-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-2,2’,3,3’-テトラカルボン酸、4,4’-メチレンビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(プロパン-2,2-ジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-オキシビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-チオビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-スルホニルビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(ジメチルシランジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(テトラフルオロプロパン-2,2-ジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)、オクタヒドロペンタレン-1,3,4,6-テトラカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸、6-(カルボキシメチル)ビシクロ[2.2.1]ヘプタン-2,3,5-トリカルボン酸、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸、ビシクロ[2.2.2]オクタ-5-エン-2,3,7,8-テトラカルボン酸、トリシクロ[4.2.2.02,5]デカン-3,4,7,8-テトラカルボン酸、トリシクロ[4.2.2.02,5]デカ-7-エン-3,4,9,10-テトラカルボン酸、9-オキサトリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2c,3c,6c,7c-テトラカルボン酸、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2t,3t,6c,7c-テトラカルボン酸等の誘導体や、これらの酸二無水物が挙げられ、単独で使用してもよく、また複数種を組み合わせて使用することもできる。これらのうちでは、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2c,3c,6c,7c-テトラカルボン酸、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2t,3t,6c,7c-テトラカルボン酸等の誘導体や、これらの酸二無水物が、ポリイミドの製造が容易であり、得られるポリイミドの耐熱性に優れることからより好ましい。これらの酸二無水物は、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 また、前記化学式(1-2)および/または前記化学式(1-3)の繰り返し単位を含むポリイミド前駆体の場合、他の繰り返し単位を与えるテトラカルボン酸成分として、cis-endo-endo-ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸類等、及びtrans-endo-endo-ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸類等以外の、他のノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸類等(例えば、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物)の4種類の立体異性体を使用することもできる。
 他の繰り返し単位を与えるジアミン成分は、前記化学式(1-A)の構造を与えるジアミン成分であってもよい。換言すれば、他の繰り返し単位を与えるジアミン成分として、Aが前記化学式(1-A)の構造である前記化学式(1-1)の繰り返し単位、またはAが前記化学式(1-A)の構造である前記化学式(1-2)及び前記化学式(1-3)の繰り返し単位を与えるジアミン成分として例示したジアミンを使用することができる。これらのジアミンは、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 他の繰り返し単位を与えるジアミン成分としては、他の芳香族または脂肪族ジアミン類を使用することができる。例えば、4,4’-オキシジアニリン、3,4’-オキシジアニリン、3,3’-オキシジアニリン、ビス(4-アミノフェニル)スルフィド、p-メチレンビス(フェニレンジアミン)、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、ビス(4-アミノフェニル)スルホン、3,3-ビス((アミノフェノキシ)フェニル)プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4-(4-アミノフェノキシ)ジフェニル)スルホン、ビス(4-(3-アミノフェノキシ)ジフェニル)スルホン、オクタフルオロベンジジン、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジクロロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、9,9-ビス(4-アミノフェニル)フルオレン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、1,4-ジアミノシクロへキサン、1,4-ジアミノ-2-メチルシクロヘキサン、1,4-ジアミノ-2-エチルシクロヘキサン、1,4-ジアミノ-2-n-プロピルシクロヘキサン、1,4-ジアミノ-2-イソプロピルシクロヘキサン、1,4-ジアミノ-2-n-ブチルシクロヘキサン、1,4-ジアミノ-2-イソブチルシクロヘキサン、1,4-ジアミノ-2-sec-ブチルシクロヘキサン、1,4-ジアミノ-2-tert-ブチルシクロヘキサン、1,2-ジアミノシクロへキサン、1,4-ジアミノシクロへキサン、1,3-ジアミノシクロブタン、1,4-ビス(アミノメチル)シクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、ジアミノビシクロヘプタン、ジアミノメチルビシクロヘプタン、ジアミノオキシビシクロヘプタン、ジアミノメチルオキシビシクロヘプタン、イソホロンジアミン、ジアミノトリシクロデカン、ジアミノメチルトリシクロデカン、ビス(アミノシクロへキシル)メタン、ビス(アミノシクロヘキシル)イソプロピリデン6,6'-ビス(3-アミノフェノキシ)-3,3,3',3'-テトラメチル-1,1'-スピロビインダン、6,6'-ビス(4-アミノフェノキシ)-3,3,3',3'-テトラメチル-1,1'-スピロビインダン等やこれらの誘導体が挙げられ、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 なお、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸類等の合成方法は、特に限定されないが、特許文献8に記載の方法等で合成できる。非特許文献1に記載されているように、合成方法によっては立体異性体を数種類含むこともある。ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸類等、もしくは、その中間体をカラム等で精製することで、立体異性体をそれぞれ単独で、もしくは、数種の混合物を分取することが出来る。
 trans-endo-endo-ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸類等、及びcis-endo-endo-ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸類等の単独物、もしくはそれらの混合物についても、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸類等、もしくは、その中間体をカラム等で精製することで得られる。
 テトラカルボン酸成分及びジアミン成分が異性体を含む場合、その異性体を単離して重合等に使用してもよく、また、異性体を混合物のまま重合等に使用してもよい。
 本発明のポリイミド前駆体において、前記化学式(1)のR、R、前記化学式(2)のR、Rはそれぞれ独立に水素、炭素数1~6、好ましくは炭素数1~3のアルキル基、または炭素数3~9のアルキルシリル基のいずれかである。R及びR、R及びRは、後述する製造方法によって、その官能基の種類、及び、官能基の導入率を変化させることができる。
 R及びR、R及びRが水素である場合、ポリイミドの製造が容易である傾向がある。
 また、R及びR、R及びRが炭素数1~6、好ましくは炭素数1~3のアルキル基である場合、ポリイミド前駆体の保存安定性に優れる傾向がある。この場合、R及びR、R及びRはメチル基もしくはエチル基であることがより好ましい。
 更に、R及びR、R及びRが炭素数3~9のアルキルシリル基である場合、ポリイミド前駆体の溶解性が優れる傾向がある。この場合、R及びR、R及びRはトリメチルシリル基もしくはt-ブチルジメチルシリル基であることがより好ましい。
 官能基の導入率は、特に限定されないが、アルキル基もしくはアルキルシリル基を導入する場合、R及びR、R及びRはそれぞれ、25%以上、好ましくは50%以上、より好ましくは75%以上をアルキル基もしくはアルキルシリル基にすることができる。
 本発明のポリイミド前駆体は、R及びR、R及びRが取る化学構造によって、1)ポリアミド酸(R及びR、R及びRが水素)、2)ポリアミド酸エステル(R及びR、R及びRの少なくとも一部がアルキル基)、3)4)ポリアミド酸シリルエステル(R及びR、R及びRの少なくとも一部がアルキルシリル基)に分類することができる。そして、本発明のポリイミド前駆体は、この分類ごとに、以下の製造方法により容易に製造することができる。ただし、本発明のポリイミド前駆体の製造方法は、以下の製造方法に限定されるものではない。
1)ポリアミド酸
 本発明のポリイミド前駆体は、溶媒中でテトラカルボン酸成分としてのテトラカルボン酸二無水物とジアミン成分とを略等モル、好ましくはテトラカルボン酸成分に対するジアミン成分のモル比[ジアミン成分のモル数/テトラカルボン酸成分のモル数]が好ましくは0.90~1.10、より好ましくは0.95~1.05の割合で、例えば120℃以下の比較的低温度でイミド化を抑制しながら反応することによって、ポリイミド前駆体溶液組成物として好適に得ることができる。
 限定するものではないが、より具体的には、有機溶剤にジアミンを溶解し、この溶液に攪拌しながら、テトラカルボン酸二無水物を徐々に添加し、0~120℃、好ましくは5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。上記製造方法でのジアミンとテトラカルボン酸二無水物の添加順序は、ポリイミド前駆体の分子量が上がりやすいため、好ましい。また、上記製造方法のジアミンとテトラカルボン酸二無水物の添加順序を逆にすることも可能であり、析出物が低減することから、好ましい。
 また、テトラカルボン酸成分とジアミン成分のモル比がジアミン成分過剰である場合、必要に応じて、ジアミン成分の過剰モル数に略相当する量のカルボン酸誘導体を添加し、テトラカルボン酸成分とジアミン成分のモル比を略当量に近づけることができる。ここでのカルボン酸誘導体としては、実質的にポリイミド前駆体溶液の粘度を増加させない、つまり実質的に分子鎖延長に関与しないテトラカルボン酸、もしくは末端停止剤として機能するトリカルボン酸とその無水物、ジカルボン酸とその無水物などが好適である。
2)ポリアミド酸エステル
 テトラカルボン酸二無水物を任意のアルコールと反応させ、ジエステルジカルボン酸を得た後、塩素化試薬(チオニルクロライド、オキサリルクロライドなど)と反応させ、ジエステルジカルボン酸クロライドを得る。このジエステルジカルボン酸クロライドとジアミンを-20~120℃、好ましくは-5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。また、ジエステルジカルボン酸とジアミンを、リン系縮合剤や、カルボジイミド縮合剤などを用いて脱水縮合することでも、簡便にポリイミド前駆体が得られる。
 この方法で得られるポリイミド前駆体は、安定なため、水やアルコールなどの溶剤を加えて再沈殿などの精製を行うこともできる。
3)ポリアミド酸シリルエステル(間接法)
 あらかじめ、ジアミンとシリル化剤を反応させ、シリル化されたジアミンを得る。必要に応じて、蒸留等により、シリル化されたジアミンの精製を行う。そして、脱水された溶剤中にシリル化されたジアミンを溶解させておき、攪拌しながら、テトラカルボン酸二無水物を徐々に添加し、0~120℃、好ましくは5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。
 ここで用いるシリル化剤として、塩素を含有しないシリル化剤を用いることは、シリル化されたジアミンを精製する必要がないため、好適である。塩素原子を含まないシリル化剤としては、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが挙げられる。フッ素原子を含まず低コストであることから、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが特に好ましい。
 また、ジアミンのシリル化反応には、反応を促進するために、ピリジン、ピペリジン、トリエチルアミンなどのアミン系触媒を用いることができる。この触媒はポリイミド前駆体の重合触媒として、そのまま使用することができる。
4)ポリアミド酸シリルエステル(直接法)
 1)の方法で得られたポリアミド酸溶液とシリル化剤を混合し、0~120℃、好ましくは5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。
 ここで用いるシリル化剤として、塩素を含有しないシリル化剤を用いることは、シリル化されたポリアミド酸、もしくは、得られたポリイミドを精製する必要がないため、好適である。塩素原子を含まないシリル化剤としては、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが挙げられる。フッ素原子を含まず低コストであることから、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが特に好ましい。
 前記製造方法は、いずれも有機溶媒中で好適に行なうことができるので、その結果として、ポリイミド前駆体を含む溶液または溶液組成物を容易に得ることができる。
 ポリイミド前駆体を調製する際に使用する溶媒は、例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド等の非プロトン性溶媒が好ましく、特にN,N-ジメチルアセトアミドが好ましいが、原料モノマー成分と生成するポリイミド前駆体が溶解すれば、どんな種類の溶媒であっても問題はなく使用できるので、特にその構造には限定されない。溶媒として、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド溶媒、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン等の環状エステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、トリエチレングリコール等のグリコール系溶媒、m-クレゾール、p-クレゾール、3-クロロフェノール、4-クロロフェノール等のフェノール系溶媒、アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、ジメチルスルホキシドなどが好ましく採用される。さらに、その他の一般的な有機溶剤、即ちフェノール、o-クレゾール、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2-メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒なども使用できる。なお、溶媒は、複数種を組み合わせて使用することもできる。
 本発明において、ポリイミド前駆体の対数粘度は、特に限定されないが、30℃での濃度0.5g/dLのN,N-ジメチルアセトアミド溶液における対数粘度が0.2dL/g以上、より好ましくは0.3dL/g以上、特に好ましくは0.4dL/g以上であることが好ましい。対数粘度が0.2dL/g以上では、ポリイミド前駆体の分子量が高く、得られるポリイミドの機械強度や耐熱性に優れる。
 本発明のポリイミド前駆体組成物は、ポリイミド前駆体と、イミダゾール系化合物とを含むものであり、前記製造方法により得られるポリイミド前駆体溶液または溶液組成物にイミダゾール系化合物を加えて調製することができる。また、必要に応じて、溶媒を除去または加えてもよく、イミダゾール系化合物以外の所望の成分を添加してもよい。また、溶媒にテトラカルボン酸成分(テトラカルボン酸二無水物等)とジアミン成分とイミダゾール系化合物を加え、イミダゾール系化合物の存在下で、テトラカルボン酸成分とジアミン成分とを反応させて、本発明のポリイミド前駆体組成物(ポリイミド前駆体と、イミダゾール系化合物とを含む溶液組成物)を得ることもできる。
 本発明において用いるイミダゾール系化合物は、イミダゾール骨格を有する化合物であれば特に限定されない。イミダゾール系化合物を添加することによって、厚み方向位相差が小さいポリイミドが得られる。
 ある実施態様においては、イミダゾール系化合物として、1気圧における沸点が340℃未満、好ましくは330℃以下、より好ましくは300℃以下、特に好ましくは270℃以下の化合物を用いることが好ましい。1気圧における沸点が340℃未満、好ましくは330℃以下、より好ましくは300℃以下、特に好ましくは270℃以下のイミダゾール系化合物を添加することによって、より透明性が高いポリイミドが得られることがある。
 本発明において用いるイミダゾール系化合物としては、特に限定されないが、1,2-ジメチルイミダゾール、1-メチルイミダゾール、2-メチルイミダゾール、2-フェニルイミダゾール、イミダゾール、ベンゾイミダゾールなどが挙げられる。1,2-ジメチルイミダゾール(1気圧における沸点:205℃)、1-メチルイミダゾール(1気圧における沸点:198℃)、2-メチルイミダゾール(1気圧における沸点:268℃)、イミダゾール(1気圧における沸点:256℃)などが好ましく、1,2-ジメチルイミダゾール、1-メチルイミダゾールが特に好ましい。イミダゾール系化合物は、1種を単独で使用してもよく、複数種を組み合わせて使用することもできる。
 本発明において、ポリイミド前駆体組成物のイミダゾール系化合物の含有量は、ポリイミド前駆体の繰り返し単位1モルに対して4モル未満である。イミダゾール系化合物の含有量がポリイミド前駆体の繰り返し単位1モルに対して4モル以上になると、ポリイミド前駆体組成物の保存安定性が悪くなる。イミダゾール系化合物の含有量は、ポリイミド前駆体の繰り返し単位1モルに対して0.05モル以上であることが好ましく、また、ポリイミド前駆体の繰り返し単位1モルに対して2モル以下であることが好ましい。なお、ここで、ポリイミド前駆体の繰り返し単位1モルは、テトラカルボン酸成分1モルに対応する。
 本発明のポリイミド前駆体組成物は、通常、溶媒を含む。本発明のポリイミド前駆体組成物に用いる溶媒としては、ポリイミド前駆体が溶解すれば問題はなく、特にその構造は限定されない。溶媒として、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド溶媒、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン等の環状エステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、トリエチレングリコール等のグリコール系溶媒、m-クレゾール、p-クレゾール、3-クロロフェノール、4-クロロフェノール等のフェノール系溶媒、アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、ジメチルスルホキシドなどが好ましく採用される。さらに、その他の一般的な有機溶剤、即ちフェノール、o-クレゾール、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2-メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒なども使用できる。また、これらを複数種組み合わせて使用することもできる。なお、ポリイミド前駆体組成物の溶媒は、ポリイミド前駆体を調製する際に使用した溶媒をそのまま使用することができる。
 本発明において、テトラカルボン酸成分とジアミン成分との合計量は、溶媒とテトラカルボン酸成分とジアミン成分との合計量に対して、5質量%以上、好ましくは10質量%以上、より好ましくは15質量%以上の割合であることが好適である。なお、通常は、テトラカルボン酸成分とジアミン成分との合計量は、溶媒とテトラカルボン酸成分とジアミン成分との合計量に対して、60質量%以下、好ましくは50質量%以下であることが好適である。この濃度は、ポリイミド前駆体に起因する固形分濃度にほぼ近似される濃度であるが、この濃度が低すぎると、例えばポリイミドフィルムを製造する際に得られるポリイミドフィルムの膜厚の制御が難しくなることがある。
 本発明において、ポリイミド前駆体組成物の粘度(回転粘度)は、特に限定されないが、E型回転粘度計を用い、温度25℃、せん断速度20sec-1で測定した回転粘度が、0.01~1000Pa・secが好ましく、0.1~100Pa・secがより好ましい。また、必要に応じて、チキソ性を付与することもできる。上記範囲の粘度では、コーティングや製膜を行う際、ハンドリングしやすく、また、はじきが抑制され、レベリング性に優れるため、良好な被膜が得られる。
 本発明のポリイミド前駆体組成物は、必要に応じて、化学イミド化剤(無水酢酸などの酸無水物や、ピリジン、イソキノリンなどのアミン化合物)、酸化防止剤、フィラー(シリカ等の無機粒子など)、染料、顔料、シランカップリング剤などのカップリング剤、プライマー、難燃材、消泡剤、レベリング剤、レオロジーコントロール剤(流動補助剤)、剥離剤などを含有することができる。
 本発明のポリイミドは、前記のような本発明のポリイミド前駆体組成物をイミド化する(すなわち、ポリイミド前駆体を脱水閉環反応する)ことで得ることができる。イミド化の方法は特に限定されず、公知の熱イミド化、または化学イミド化の方法を好適に適用することができる。得られるポリイミドの形態は、フィルム、ポリイミドフィルムと他の基材との積層体、コーティング膜、粉末、ビーズ、成型体、発泡体などを好適に挙げることができる。
 本発明においては、ポリイミド前駆体組成物を、最高加熱温度350℃超で加熱処理して、ポリイミド前駆体をイミド化することが好ましい。イミド化のための加熱処理の最高加熱温度は、380℃を超えることがより好ましく、400℃を超えることが特に好ましい。イミド化のための加熱処理の最高加熱温度を、350℃を超える温度、より好ましくは380℃を超える温度、特に好ましくは400℃を超える温度とすることにより、得られるポリイミドの機械的特性が向上する。加熱処理の最高加熱温度の上限は特に限定されないが、通常、500℃以下が好ましい。
 例えば、本発明のポリイミド前駆体組成物を基材上に流延・塗布し、この基材上のポリイミド前駆体組成物を最高加熱温度350℃超、より好ましくは380℃超、特に好ましくは400℃を超える温度で加熱処理して、ポリイミド前駆体をイミド化することにより、ポリイミドを好適に製造することができる。なお、加熱プロファイルは特に限定されず、適宜選択することができるが、生産性の点からは、加熱処理する時間は短い方が好ましい。
 また、本発明のポリイミド前駆体組成物を基材上に流延・塗布し、好ましくは180℃以下の温度範囲で乾燥して、基材上にポリイミド前駆体組成物の膜を形成し、得られたポリイミド前駆体組成物の膜を基材上から剥離して、その膜の端部を固定した状態で、最高加熱温度350℃超、より好ましくは380℃超、特に好ましくは400℃を超える温度で加熱処理して、ポリイミド前駆体をイミド化することによっても、ポリイミドを好適に製造することができる。
 より具体的な本発明のポリイミド(ポリイミドフィルム/基材積層体、もしくはポリイミドフィルム)の製造方法の一例については、後述する。
 本発明のポリイミド前駆体組成物から得られるポリイミド(本発明のポリイミド)は、特に限定されないが、フィルムにしたときの150℃から250℃までの線熱膨張係数が、好ましくは60ppm/K以下、より好ましくは50ppm/K以下、さらに好ましくは45ppm/K以下、さらに好ましくは40ppm/K以下、特に好ましくは35ppm/K以下であることができる。線熱膨張係数が大きいと、金属などの導体との線熱膨張係数の差が大きく、回路基板を形成する際に反りが増大するなどの不具合が生じることがある。
 本発明のポリイミド前駆体組成物から得られるポリイミド(本発明のポリイミド)は、特に限定されないが、厚さ10μmのフィルムでの全光透過率(波長380nm~780nmの平均光透過率)が、好ましくは86%以上、より好ましくは87%以上、特に好ましくは88%以上であることができる。ディスプレイ用途等で使用する場合、全光透過率が低いと光源を強くする必要があり、エネルギーがかかるといった問題等を生じることがある。
 特にディスプレイ用途などのポリイミドフィルムを光が透過する用途に使用する場合、ポリイミドフィルムは透明性が高い方が望ましい。本発明のポリイミド前駆体組成物から得られるポリイミド(本発明のポリイミド)は、特に限定されないが、厚さ10μmのフィルムでの波長400nmにおける光透過率が、好ましくは75%以上、好ましくは80%以上、より好ましくは80%超、さらに好ましくは81%以上、特に好ましくは82%以上であることができる。
 なお、本発明のポリイミド前駆体組成物から得られるポリイミド(本発明のポリイミド)からなるフィルムは、用途にもよるが、フィルムの厚みとしては、好ましくは0.1μm~250μm、より好ましくは1μm~150μm、さらに好ましくは1μm~50μm、特に好ましくは1μm~30μmである。ポリイミドフィルムを光が透過する用途に使用する場合、ポリイミドフィルムが厚すぎると光透過率が低くなる恐れがある。
 本発明のポリイミド前駆体組成物から得られるポリイミド(本発明のポリイミド)は、特に限定されないが、ポリイミドフィルムの耐熱性の指標である1%重量減少温度が、好ましくは395℃以上、より好ましくは430℃以上、さらに好ましくは440℃以上、特に好ましくは470℃以上であることができる。ポリイミド上にトランジスタを形成する等で、ポリイミド上にガスバリア膜等を形成する場合、耐熱性が低いと、ポリイミドとバリア膜との間で、ポリイミドの分解に伴うアウトガスにより膨れが生じることがある。
 本発明のポリイミド前駆体組成物から得られるポリイミド(本発明のポリイミド)は、特に限定されないが、ポリイミドフィルムの厚み方向位相差が、好ましくは1000nm以下、より好ましくは800nm以下、さらに好ましくは700nm以下、特に好ましくは600nm以下であることができる。厚み方向の位相差が大きいと、透過光の色が正しく表示されない、色のにじみや視野角が狭くなるといった問題が起こることがある。
 本発明のポリイミド前駆体組成物から得られるポリイミド、すなわち本発明のポリイミドは、膜厚方向の位相差が小さく、高い透明性、折り曲げ耐性、高耐熱性などの優れた特性を有し、さらに極めて低い線熱膨張係数を有することから、ディスプレイ用透明基板、タッチパネル用透明基板、或いは太陽電池用基板の用途において、好適に用いることができる。
 以下では、本発明のポリイミド前駆体組成物を用いた、ポリイミドフィルム/基材積層体、もしくはポリイミドフィルムの製造方法の一例について述べる。ただし、以下の方法に限定されるものではない。
 例えばセラミック(ガラス、シリコン、アルミナなど)、金属(銅、アルミニウム、ステンレスなど)、耐熱プラスチックフィルム(ポリイミドフィルムなど)等の基材に、本発明のポリイミド前駆体組成物(ワニス)を流延し、真空中、窒素等の不活性ガス中、或いは空気中で、熱風もしくは赤外線を用いて、20~180℃、好ましくは20~150℃の温度範囲で乾燥する。次いで、得られたポリイミド前駆体フィルムを基材上で、もしくはポリイミド前駆体フィルムを基材上から剥離し、そのフィルムの端部を固定した状態で、真空中、窒素等の不活性ガス中、或いは空気中で、熱風もしくは赤外線を用い、例えば200~500℃、好ましくは最高加熱温度350℃超、より好ましくは380℃超、特に好ましくは400℃を超える温度で加熱イミド化することでポリイミドフィルム/基材積層体、もしくはポリイミドフィルムを製造することができる。なお、得られるポリイミドフィルムが酸化劣化するのを防ぐため、加熱イミド化は、真空中、或いは不活性ガス中で行うことが望ましい。ここでのポリイミドフィルム(ポリイミドフィルム/基材積層体の場合は、ポリイミドフィルム層)の厚さは、以後の工程の搬送性のため、好ましくは1~250μm、より好ましくは1~150μmである。
 また、ポリイミド前駆体のイミド化反応は、前記のような加熱処理による加熱イミド化に代えて、ポリイミド前駆体をピリジンやトリエチルアミン等の3級アミン存在下、無水酢酸等の脱水環化試薬を含有する溶液に浸漬するなどの化学的処理によって行うことも可能である。また、これらの脱水環化試薬をあらかじめ、ポリイミド前駆体組成物(ワニス)中に投入・攪拌し、それを基材上に流延・乾燥することで、部分的にイミド化したポリイミド前駆体を作製することもでき、これを更に前記のような加熱処理することで、ポリイミドフィルム/基材積層体、もしくはポリイミドフィルムを得ることができる。
 この様にして得られたポリイミドフィルム/基材積層体、もしくはポリイミドフィルムは、その片面もしくは両面に導電性層を形成することによって、フレキシブルな導電性基板を得ることができる。
 フレキシブルな導電性基板は、例えば次の方法によって得ることができる。すなわち、第一の方法としては、ポリイミドフィルム/基材積層体を基材からポリイミドフィルムを剥離せずに、そのポリイミドフィルム表面に、スパッタ、蒸着、印刷などによって、導電性物質(金属もしくは金属酸化物、導電性有機物、導電性炭素など)の導電層を形成させ、導電性層/ポリイミドフィルム/基材の導電性積層体を製造する。その後必要に応じて、基材より導電性層/ポリイミドフィルム積層体を剥離することによって、導電性層/ポリイミドフィルム積層体からなる透明でフレキシブルな導電性基板を得ることができる。
 第二の方法としては、ポリイミドフィルム/基材積層体の基材からポリイミドフィルムを剥離して、ポリイミドフィルムを得、そのポリイミドフィルム表面に、導電性物質(金属もしくは金属酸化物、導電性有機物、導電性炭素など)の導電層を、第一の方法と同様にして形成させ、導電性層/ポリイミドフィルム積層体、導電性層/ポリイミドフィルム積層体/導電性層からなる透明でフレキシブルな導電性基板を得ることができる。
 なお、第一、第二の方法において、必要に応じて、ポリイミドフィルムの表面に導電層を形成する前に、スパッタ、蒸着やゲル-ゾル法などによって、水蒸気、酸素などのガスバリヤ層、光調整層などの無機層を形成しても構わない。
 また、導電層は、フォトリソグラフィ法や各種印刷法、インクジェット法などの方法によって、回路が好適に形成される。
 このようにして得られる本発明の基板は、本発明のポリイミドによって構成されたポリイミドフィルムの表面に、必要に応じてガスバリヤ層や無機層を介し、導電層の回路を有するものである。この基板は、フレキシブルであり、高い透明性、折り曲げ性、耐熱性が優れ、さらに極めて低い線熱膨張係数や優れた耐溶剤性を併せ有するので微細な回路の形成が容易である。したがって、この基板は、ディスプレイ用、タッチパネル用、または太陽電池用の基板として好適に用いることができる。
 すなわち、この基板に、蒸着、各種印刷法、或いはインクジェット法などによって、さらにトランジスタ(無機トランジスタ、有機トランジスタ)が形成されてフレキシブル薄膜トランジスタが製造され、そして、表示デバイス用の液晶素子、EL素子、光電素子として好適に用いられる。
 以下、実施例及び比較例によって本発明を更に説明する。尚、本発明は以下の実施例に限定されるものではない。
 以下の各例において評価は次の方法で行った。
<ポリイミド前駆体溶液(ワニス)の評価>
 [保存安定性]
 23℃でワニスを保存し、3日後に流動性のある均一な状態であれば○、
3日後に白濁、もしくはゲル化していれば×とする。
<ポリイミドフィルムの評価>
 [400nm光透過率、全光透過率]
 紫外可視分光光度計/V-650DS(日本分光製)を用いて、膜厚約10μmのポリイミド膜の400nmにおける光透過率と、全光透過率(380nm~780nmにおける平均透過率)を測定した。測定した400nmにおける光透過率と、全光透過率を反射率を10%としてランベルト・ベール式を用いて、10μm厚の400nmにおける光透過率と、全光透過率を算出した。算出式を下記に示す。
 Log10((T+10)/100)=10/L×(Log10((T’+10)/100))
 Log10((T+10)/100)=10/L×(Log10((T’+10)/100))
:反射率を10%としたときの10μm厚のポリイミドフィルムの400nmにおける光透過率(%)
’:測定した400nmにおける光透過率(%)
:反射率を10%としたときの10μm厚のポリイミドフィルムの全光透過率(%)
’:測定した全光透過率(%)
L:測定したポリイミドフィルムの膜厚(μm)
 [弾性率、破断点伸度]
 膜厚約10μmのポリイミドフィルムをIEC450規格のダンベル形状に打ち抜いて試験片とし、ORIENTEC社製TENSILONを用いて、チャック間長30mm、引張速度2mm/分で、初期の弾性率、破断点伸度を測定した。
 [線熱膨張係数(CTE)]
 膜厚約10μmのポリイミドフィルムを幅4mmの短冊状に切り取って試験片とし、TMA/SS6100 (エスアイアイ・ナノテクノロジー株式会社製)を用い、チャック間長15mm、荷重2g、昇温速度20℃/分で500℃まで昇温した。得られたTMA曲線から、150℃から250℃までの線熱膨張係数を求めた。
 [1%重量減少温度]
 膜厚約10μmのポリイミドフィルムを試験片とし、TAインスツルメント社製 熱量計測定装置(Q5000IR)を用い、窒素気流中、昇温速度10℃/分で25℃から600℃まで昇温した。得られた重量曲線から、1%重量減少温度を求めた。
 [フィルムの厚み方向位相差(Rth)]
 膜厚10μmのポリイミドフィルムを試験片とし、王子計測器社製 位相差測定装置(KOBRA-WR)を用い、入射角を40°としてフィルムの位相差測定を行った。得られた位相差より、膜厚10μmのフィルムの厚み方向の位相差を求めた。
 以下の各例で使用した原材料の略称、純度等は、次のとおりである。
 [ジアミン成分]
tra-DACH:トランス-1,4-ジアミノシクロヘキサン〔純度:99.1%(GC分析)〕
DABAN: 4,4’-ジアミノベンズアニリド〔純度:99.90%(GC分析)〕
PPD: p-フェニレンジアミン〔純度:99.9%(GC分析)〕
4,4’-ODA: 4,4’-オキシジアニリン〔純度:99.9%(GC分析)〕
BAPB: 4,4’-ビス(4-アミノフェノキシ)ビフェニル〔純度:99.93%(HPLC分析)〕
 [テトラカルボン酸成分]
s-BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物〔純度99.9%(H-NMR分析)〕
a-BPDA:2,3,3’,4’-ビフェニルテトラカルボン酸二無水物〔純度99.6%(H-NMR分析)〕
PMDA-HS: 1R,2S,4S,5R-シクロヘキサンテトラカルボン酸二無水物〔純度:99.9%(GC分析)〕
CpODA-tee:trans-endo-endo-ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物
CpODA-cee:cis-endo-endo-ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物
CpODA:CpODA-teeとCpODA-ceeの混合物
PACDA:N,N’-(1,4-フェニレン)ビス(1,3-ジオキソオクタヒドロイソベンゾフラン-5-カルボキシアミド)
Figure JPOXMLDOC01-appb-T000012
 [溶媒]
NMP: N-メチル-2-ピロリドン
 表1-1に実施例、比較例で使用したテトラカルボン酸成分、表1-2に実施例、比較例で使用したジアミン成分、表1-3に実施例、比較例で使用したイミダゾール・イミダゾリン化合物の構造式を記す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 〔合成例1〕
 窒素ガスで置換した反応容器中にDABAN 90.91g(0.4モル)とPPD 64.88g(0.6モル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 16質量%となる量の2835.90gを加え、室温で1時間攪拌した。この溶液にCpODA 384.38g(1.0モル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液(ワニスA)を得た。
 〔合成例2〕
 窒素ガスで置換した反応容器中にDABAN 90.91g(0.4モル)とPPD 54.07g(0.5モル)とBAPB 36.84g(0.1モル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 16質量%となる量の2972.56gを加え、室温で1時間攪拌した。この溶液にCpODA 384.38g(1.0モル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液(ワニスB)を得た。
 〔合成例3〕
 窒素ガスで置換した反応容器中にDABAN 22.73g(0.100モル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 16質量%となる量の3211.16gを加え、室温で1時間攪拌した。この溶液にCpODA 38.44g(0.100モル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液(ワニスC)を得た。
 〔合成例4〕
 窒素ガスで置換した反応容器中にDABAN 15.91g(0.070モル)とPPD 3.24g(0.030モル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 16質量%となる量の302.35gを加え、室温で1時間攪拌した。この溶液にCpODA 38.44g(0.100モル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液(ワニスD)を得た。
 〔合成例5〕
 窒素ガスで置換した反応容器中にDABAN 11.36g(0.050モル)とPPD 4.34g(0.040モル)と4,4’-ODA 2.00g(0.010モル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 16質量%となる量の294.74gを加え、室温で1時間攪拌した。この溶液にCpODA 38.44g(0.100モル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液(ワニスE)を得た。
 〔合成例6〕
 窒素ガスで置換した反応容器中に4,4’-ODA 20.02g(0.100モル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 17質量%となる量の207.21gを加え、室温で1時間攪拌した。この溶液にPMDA-HS 22.41g(0.100ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液(ワニスF)を得た。
 〔合成例7〕
 窒素ガスで置換した反応容器中にDABAN 22.73g(0.100モル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の296.29gを加え、室温で1時間攪拌した。この溶液にPACDA 51.35g(0.100モル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液(ワニスG)を得た。
 〔合成例8〕
 窒素ガスで置換した反応容器中にtra-DACH 10.81g(0.100モル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 12質量%となる量の2950.64gを加え、室温で1時間攪拌した。この溶液にs-BPDA 28.69g(0.0975モル)とa-BPDA 0.74g(0.0025モル)を徐々に加えた。50℃で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液(ワニスH)を得た。
 〔実施例1〕
 1,2-ジメチルイミダゾール 0.05g(0.5ミリモル)とN-メチル-2-ピロリドン 0.05gを反応容器に加え均一な溶液を得た。その溶液に合成例1で得られたワニスA 33.76g(ワニスA中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対して、1,2-ジメチルイミダゾールは0.05モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例2〕
 1,2-ジメチルイミダゾール 0.15g(1.6ミリモル)とN-メチル-2-ピロリドン 0.15gを反応容器に加え均一な溶液を得た。その溶液に合成例1で得られたワニスA 33.76g(ワニスA中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対して、1,2-ジメチルイミダゾールは0.16モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例3〕
 1,2-ジメチルイミダゾール 0.19g(2.0ミリモル)とN-メチル-2-ピロリドン 0.19gを反応容器に加え均一な溶液を得た。その溶液に合成例1で得られたワニスA 33.76g(ワニスA中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対して、1,2-ジメチルイミダゾールは0.2モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例4〕
 1,2-ジメチルイミダゾール 0.96g(10.0ミリモル)とN-メチル-2-ピロリドン 0.38gを反応容器に加え均一な溶液を得た。その溶液に合成例1で得られたワニスA 33.76g(ワニスA中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する1,2-ジメチルイミダゾールは1.0モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例5〕
 1,2-ジメチルイミダゾール 1.92g(20.0ミリモル)とN-メチル-2-ピロリドン 0.38gを反応容器に加え均一な溶液を得た。その溶液に合成例1で得られたワニスA 33.76g(ワニスA中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する1,2-ジメチルイミダゾールは2.0モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例6〕
 1-メチルイミダゾール 0.04g(0.5ミリモル)とN-メチル-2-ピロリドン 0.04gを反応容器に加え均一な溶液を得た。その溶液に合成例1で得られたワニスA 33.76g(ワニスA中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する1-メチルイミダゾールは0.05モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例7〕
 1-メチルイミダゾール 0.08g(1.0ミリモル)とN-メチル-2-ピロリドン 0.08gを反応容器に加え均一な溶液を得た。その溶液に合成例1で得られたワニスA 33.76g(ワニスA中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する1-メチルイミダゾールは0.1モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例8〕
 1-メチルイミダゾール 0.16g(2.0ミリモル)とN-メチル-2-ピロリドン 0.16gを反応容器に加え均一な溶液を得た。その溶液に合成例1で得られたワニスA 33.76g(ワニスA中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する1-メチルイミダゾールは0.2モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例9〕
 1-メチルイミダゾール 0.33g(4.0ミリモル)とN-メチル-2-ピロリドン 0.33gを反応容器に加え均一な溶液を得た。その溶液に合成例1で得られたワニスA 33.76g(ワニスA中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する1-メチルイミダゾールは0.4モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例10〕
 2-メチルイミダゾール 0.16g(2.0ミリモル)とN-メチル-2-ピロリドン 0.16gを反応容器に加え均一な溶液を得た。その溶液に合成例1で得られたワニスA 33.76g(ワニスA中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する2-メチルイミダゾールは0.2モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例11〕
 イミダゾール 0.14g(2.0ミリモル)とN-メチル-2-ピロリドン 0.14gを反応容器に加え均一な溶液を得た。その溶液に合成例1で得られたワニスA 33.76g(ワニスA中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、イミダゾールは0.2モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例12〕
 2-フェニルイミダゾール 0.29g(2.0ミリモル)とN-メチル-2-ピロリドン 0.29gを反応容器に加え均一な溶液を得た。その溶液に合成例1で得られたワニスA 33.76g(ワニスA中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、2-フェニルイミダゾールは0.2モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例13〕
 ベンゾイミダゾール 0.24g(2.0ミリモル)とN-メチル-2-ピロリドン 0.24gを反応容器に加え均一な溶液を得た。その溶液に合成例1で得られたワニスA 33.76g(ワニスA中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、ベンゾイミダゾールは0.2モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔比較例1〕
 PTFE製メンブレンフィルターでろ過した合成例1で得られたワニスAをガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔比較例2〕
 1,2-ジメチルイミダゾール 1.92g(40.0ミリモル)とN-メチル-2-ピロリドン 0.38gを反応容器に加え均一な溶液を得た。その溶液に合成例1で得られたワニスA 33.76g(ワニスA中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、1,2-ジメチルイミダゾールは4.0モルである。得られたポリイミド前駆体溶液を23℃で保管すると、3日目までにポリイミド前駆体溶液がゲル化した。
 〔参考例1〕
 1,2-ジメチルイミダゾール 0.19g(2.0ミリモル)とN-メチル-2-ピロリドン 0.19gを反応容器に加え均一な溶液を得た。その溶液に合成例1で得られたワニスA 33.76g(ワニスA中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、1,2-ジメチルイミダゾールは0.2モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から350℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例14〕
 1,2-ジメチルイミダゾール 0.05g(0.5ミリモル)とN-メチル-2-ピロリドン 0.05gを反応容器に加え均一な溶液を得た。その溶液に合成例2で得られたワニスB 35.39g(ワニスB中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、1,2-ジメチルイミダゾールは0.05モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例15〕
 1,2-ジメチルイミダゾール 0.10g(1.0ミリモル)とN-メチル-2-ピロリドン 0.10gを反応容器に加え均一な溶液を得た。その溶液に合成例2で得られたワニスB 35.39g(ワニスB中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、1,2-ジメチルイミダゾールは0.1モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例16〕
 1,2-ジメチルイミダゾール 0.19g(2.0ミリモル)とN-メチル-2-ピロリドン 0.19gを反応容器に加え均一な溶液を得た。その溶液に合成例2で得られたワニスB 35.39g(ワニスB中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、1,2-ジメチルイミダゾールは0.2モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例17〕
 1-メチルイミダゾール 0.16g(2.0ミリモル)とN-メチル-2-ピロリドン 0.16gを反応容器に加え均一な溶液を得た。その溶液に合成例2で得られたワニスB 35.39g(ワニスB中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、1-メチルイミダゾールは0.2モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔比較例3〕
 PTFE製メンブレンフィルターでろ過した合成例2で得られたワニスBをガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔比較例4〕
 2-エチル-2-イミダゾリン 0.10g(1.0ミリモル)とN-メチル-2-ピロリドン 0.20gを反応容器に加え均一な溶液を得た。その溶液に合成例2で得られたワニスB 35.39g(ワニスB中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、2-エチル-2-イミダゾリンは0.1モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔比較例5〕
 2-エチル-2-イミダゾリン 0.20g(2.0ミリモル)とN-メチル-2-ピロリドン 0.40gを反応容器に加え均一な溶液を得た。その溶液に合成例2で得られたワニスB 35.39g(ワニスB中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加えるとワニスがゲル化した。そのまま室温で3時間攪拌しても、均一なポリイミド前駆体溶液を得られなかった。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、2-エチル-2-イミダゾリンは0.2モルである。
 〔比較例6〕
 2-エチル-2-イミダゾリン 0.49g(5.0ミリモル)とN-メチル-2-ピロリドン 0.98gを反応容器に加え均一な溶液を得た。その溶液に合成例2で得られたワニスB 35.39g(ワニスB中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加えるとワニスがゲル化した。そのまま室温で3時間攪拌しても、均一なポリイミド前駆体溶液を得られなかった。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、2-エチル-2-イミダゾリンは0.5モルである。
 〔比較例7〕
 2-メチル-2-イミダゾリン 0.25g(3.0ミリモル)とN-メチル-2-ピロリドン 0.25gを反応容器に加え均一な溶液を得た。その溶液に合成例2で得られたワニスB 35.39g(ワニスB中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、2-メチル-2-イミダゾリンは0.3モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔比較例8〕
 2-フェニルイミダゾリン 0.44g(3.0ミリモル)とN-メチル-2-ピロリドン 0.44gを反応容器に加え均一な溶液を得た。その溶液に合成例2で得られたワニスB 35.39g(ワニスB中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、2-フェニルイミダゾリンは0.3モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例18〕
 1,2-ジメチルイミダゾール 0.10g(1.0ミリモル)とN-メチル-2-ピロリドン 0.10gを反応容器に加え均一な溶液を得た。その溶液に合成例3で得られたワニスC 38.23g(ワニスC中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、1,2-ジメチルイミダゾールは0.1モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-3に示す。
 〔比較例9〕
 PTFE製メンブレンフィルターでろ過した合成例3で得られたワニスCをガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-3に示す。
 〔実施例19〕
 1,2-ジメチルイミダゾール 0.10g(1.0ミリモル)とN-メチル-2-ピロリドン 0.10gを反応容器に加え均一な溶液を得た。その溶液に合成例4で得られたワニスD 35.99g(ワニスD中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、1,2-ジメチルイミダゾールは0.1モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-3に示す。
 〔比較例10〕
 PTFE製メンブレンフィルターでろ過した合成例4で得られたワニスDをガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-3に示す。
 〔実施例20〕
 1,2-ジメチルイミダゾール 0.10g(1.0ミリモル)とN-メチル-2-ピロリドン 0.10gを反応容器に加え均一な溶液を得た。その溶液に合成例5で得られたワニスE 35.09g(ワニスE中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、1,2-ジメチルイミダゾールは0.1モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-3に示す。
 〔比較例11〕
 PTFE製メンブレンフィルターでろ過した合成例5で得られたワニスEをガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-3に示す。
 〔実施例21〕
 1,2-ジメチルイミダゾール 0.19g(2.0ミリモル)とN-メチル-2-ピロリドン 0.19gを反応容器に加え均一な溶液を得た。その溶液に合成例6で得られたワニスF 24.97g(ワニスF中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、1,2-ジメチルイミダゾールは0.2モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から400℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-3に示す。
 〔比較例12〕
 PTFE製メンブレンフィルターでろ過した合成例6で得られたワニスFをガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から400℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-3に示す。
 〔実施例22〕
 1,2-ジメチルイミダゾール 0.19g(2.0ミリモル)とN-メチル-2-ピロリドン 0.19gを反応容器に加え均一な溶液を得た。その溶液に合成例7で得られたワニスG 37.04g(ワニスG中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、1,2-ジメチルイミダゾールは0.2モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から350℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-3に示す。
 〔比較例13〕
 PTFE製メンブレンフィルターでろ過した合成例7で得られたワニスGをガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から350℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-3に示す。
 〔実施例23〕
 1,2-ジメチルイミダゾール 0.19g(2.0ミリモル)とN-メチル-2-ピロリドン 0.19gを反応容器に加え均一な溶液を得た。その溶液に合成例8で得られたワニスH 33.53g(ワニスH中のポリイミド前駆体の繰返しユニットの分子量に対して、10ミリモル)加え、室温で3時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。仕込み量から計算すると、ポリイミド前駆体の繰り返し単位1モルに対する、1,2-ジメチルイミダゾールは0.2モルである。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から370℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-3に示す。
 〔比較例14〕
 PTFE製メンブレンフィルターでろ過した合成例8で得られたワニスHをガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から370℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-3に示す。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 表2-1~2-3に示した結果から、イミダゾール系化合物(1,2-ジメチルイミダゾール、1-メチルイミダゾール、2-メチルイミダゾール、2-フェニルイミダゾール、ベンゾイミダゾール、またはイミダゾール)を含むポリイミド前駆体組成物から得られたポリイミドは、厚み方向位相差が小さいことが分かる(実施例1~13と比較例1、実施例14~17と比較例3、実施例18と比較例9、実施例19と比較例10、実施例20と比較例11、実施例21と比較例12、実施例22と比較例13、実施例23と比較例14)。また、1,2-ジメチルイミダゾール、1-メチルイミダゾール、2-メチルイミダゾール、またはイミダゾールを用いた場合には、透過率も向上していることが分かる(実施例1~11と比較例1、実施例14~17と比較例3、実施例18と比較例9、実施例19と比較例10、実施例20と比較例11、実施例21と比較例12、実施例22と比較例13、実施例23と比較例14)。さらに、イミダゾール系化合物の含有量が、ポリイミド前駆体の繰り返し単位1モルに対して4モル未満であると、保存安定性にも優れることが分かる(実施例1~13と比較例2)。また、機械的特性に関して、イミド化のための加熱処理の最高加熱温度を350℃を超えて410℃とすることで、破断点伸度が大きくなることが分かる(実施例3と参考例1)。
 前記のとおり、本発明のポリイミド前駆体組成物から得られたポリイミドは、厚み方向位相差が小さいことに加え、優れた光透過性、機械的特性、低線熱膨張係数を有しており。本発明のポリイミドフィルムは、ディスプレイ用途などの無色透明で微細な回路形成可能な透明基板として好適に用いることができる。
 本発明によって、透明性に優れるポリイミドであって、同一組成でも厚み方向位相差がより小さいポリイミド、または、厚み方向位相差が小さく、透明性に優れ、機械的特性にも優れたポリイミドが得られるポリイミド前駆体組成物(ポリイミド前駆体を含む溶液組成物)、及びポリイミドの製造方法を提供することができる。このポリイミド前駆体組成物から得られるポリイミドは、透明性が高く、且つ厚み方向位相差が小さく、また、低線熱膨張係数であって微細な回路の形成が容易であるので、特にディスプレイ用、タッチパネル用、太陽電池用などの基板を形成するために好適に用いることができる。

Claims (12)

  1.  下記化学式(1)で表される繰り返し単位、または下記化学式(2)で表される繰り返し単位を含むポリイミド前駆体と、
     イミダゾール系化合物を含み、
     イミダゾール系化合物の含有量が、ポリイミド前駆体の繰り返し単位1モルに対して4モル未満であることを特徴とするポリイミド前駆体組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは脂環構造を有する4価の基であり、Yは芳香族環を有する2価の基であり、R、Rはそれぞれ独立に水素、炭素数1~6のアルキル基、または炭素数3~9のアルキルシリル基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Xは芳香族環を有する4価の基であり、Yは脂環構造を有する2価の基であり、R、Rはそれぞれ独立に水素、炭素数1~6のアルキル基、または炭素数3~9のアルキルシリル基である。)
  2.  このポリイミド前駆体組成物から得られるポリイミドが、厚さ10μmのフィルムでの波長400nmの光透過率が75%以上であることを特徴とする請求項1に記載のポリイミド前駆体組成物。
  3.  前記イミダゾール系化合物の含有量が、ポリイミド前駆体の繰り返し単位1モルに対して0.05モル以上2モル以下であることを特徴とする請求項1又は2に記載のポリイミド前駆体組成物。
  4.  前記イミダゾール系化合物の1気圧における沸点が340℃未満であることを特徴とする請求項1~3のいずれかに記載のポリイミド前駆体組成物。
  5.  前記イミダゾール系化合物が、1,2-ジメチルイミダゾール、1-メチルイミダゾール、2-メチルイミダゾール、2-フェニルイミダゾール、イミダゾール、またはベンゾイミダゾールのいずれかであることを特徴とする請求項1~4のいずれかに記載のポリイミド前駆体組成物。
  6.  請求項1~5のいずれかに記載のポリイミド前駆体組成物を、最高加熱温度350℃超で加熱処理して、ポリイミド前駆体をイミド化することを特徴とするポリイミドの製造方法。
  7.  請求項1~5のいずれかに記載のポリイミド前駆体組成物を基材上に塗布する工程と、
     基材上のポリイミド前駆体組成物を、最高加熱温度350℃超で加熱処理して、ポリイミド前駆体をイミド化する工程と
    を有することを特徴とする請求項6に記載のポリイミドの製造方法。
  8.  前記加熱処理の最高加熱温度が400℃を超えることを特徴とする請求項6又は7に記載のポリイミドの製造方法。
  9.  請求項6~8のいずれかに記載の方法により製造されるポリイミド。
  10.  厚さ10μmのフィルムでの波長400nmの光透過率が75%以上であることを特徴とする請求項9に記載のポリイミド。
  11.  請求項6~8のいずれかに記載の方法により製造されるポリイミドフィルム。
  12.  請求項9又は10に記載のポリイミド、又は請求項11に記載のポリイミドフィルムを含むことを特徴とするディスプレイ用、タッチパネル用、または太陽電池用の基板。
PCT/JP2014/081263 2013-11-27 2014-11-26 ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板 WO2015080158A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167016430A KR102257869B1 (ko) 2013-11-27 2014-11-26 폴리이미드 전구체 조성물, 폴리이미드의 제조 방법, 폴리이미드, 폴리이미드 필름, 및 기판
KR1020217015427A KR102281153B1 (ko) 2013-11-27 2014-11-26 폴리이미드 전구체 조성물, 폴리이미드의 제조 방법, 폴리이미드, 폴리이미드 필름, 및 기판
JP2015550965A JP6485358B2 (ja) 2013-11-27 2014-11-26 ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
CN201480064165.3A CN105764991B (zh) 2013-11-27 2014-11-26 聚酰亚胺前体组合物、聚酰亚胺的制造方法、聚酰亚胺、聚酰亚胺膜和基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-245486 2013-11-27
JP2013245486 2013-11-27

Publications (1)

Publication Number Publication Date
WO2015080158A1 true WO2015080158A1 (ja) 2015-06-04

Family

ID=53199097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081263 WO2015080158A1 (ja) 2013-11-27 2014-11-26 ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板

Country Status (5)

Country Link
JP (2) JP6485358B2 (ja)
KR (2) KR102281153B1 (ja)
CN (2) CN105764991B (ja)
TW (1) TWI658069B (ja)
WO (1) WO2015080158A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017145A (ja) * 2014-07-09 2016-02-01 宇部興産株式会社 ポリイミド前駆体組成物、及びそれを用いた絶縁被覆層の製造方法
WO2016063993A1 (ja) * 2014-10-23 2016-04-28 宇部興産株式会社 ポリイミドフィルム、ポリイミド前駆体、及びポリイミド
WO2016199926A1 (ja) * 2015-06-12 2016-12-15 宇部興産株式会社 ポリイミド前駆体組成物、及びポリイミド組成物
WO2017010566A1 (ja) * 2015-07-16 2017-01-19 宇部興産株式会社 ポリアミック酸溶液組成物およびポリイミドフィルム
WO2017026448A1 (ja) * 2015-08-07 2017-02-16 東京応化工業株式会社 ポリイミド前駆体組成物
WO2017126409A1 (ja) * 2016-01-20 2017-07-27 Jxエネルギー株式会社 ポリイミドフィルムの製造方法、ポリイミドフィルム、ポリアミド酸溶液及び感光性組成物
JP2018122582A (ja) * 2017-02-03 2018-08-09 東京応化工業株式会社 積層体、フレキシブルデバイスおよび積層体の製造方法
US10696845B2 (en) 2015-03-27 2020-06-30 Tokyo Ohka Kogyo Co., Ltd. Energy-sensitive resin composition
EP3489285A4 (en) * 2016-07-22 2020-07-29 Mitsui Chemicals, Inc. MEDICAL FILM AND METHOD FOR THE PRODUCTION THEREOF, MEDICAL COATING COMPOSITION, MEDICAL DEVICE AND METHOD FOR THE PRODUCTION THEREOF
KR20210098376A (ko) 2020-01-31 2021-08-10 우베 고산 가부시키가이샤 폴리이미드 전구체 조성물 및 폴리이미드 필름/기재 적층체
JP2021123707A (ja) * 2020-01-31 2021-08-30 宇部興産株式会社 ポリイミド前駆体組成物およびポリイミドフィルム/基材積層体
JP2022007960A (ja) * 2020-01-31 2022-01-13 宇部興産株式会社 ポリイミド前駆体組成物およびポリイミドフィルム/基材積層体
JP2022066519A (ja) * 2016-09-30 2022-04-28 東京応化工業株式会社 樹脂組成物、硬化物の製造方法、及び硬化物
WO2022114136A1 (ja) * 2020-11-27 2022-06-02 宇部興産株式会社 ポリイミド前駆体組成物、ポリイミドフィルム、およびポリイミドフィルム/基材積層体
WO2023048121A1 (ja) * 2021-09-21 2023-03-30 Ube株式会社 ポリイミド前駆体組成物およびポリイミドフィルム
KR20230157950A (ko) 2021-03-17 2023-11-17 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 전구체 조성물

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180030693A (ko) * 2015-07-24 2018-03-23 스미또모 베이크라이트 가부시키가이샤 감광성 수지 조성물, 경화막, 보호막, 절연막 및 전자 장치
JP7215904B2 (ja) * 2016-10-27 2023-01-31 Ube株式会社 ポリイミドおよびそれを用いたフレキシブルデバイス
CN111465634B (zh) * 2017-12-15 2023-03-10 三菱瓦斯化学株式会社 聚酰亚胺树脂、聚酰亚胺清漆及聚酰亚胺薄膜
CN114621440A (zh) * 2018-12-18 2022-06-14 苏州予信天材新材料应用技术有限公司 一种耐高温型聚酰胺-聚醚酰亚胺增韧聚合物及其制备方法
JP7264264B2 (ja) * 2019-09-20 2023-04-25 Ube株式会社 ポリイミド前駆体組成物およびフレキシブル電子デバイスの製造方法
TWI715260B (zh) * 2019-10-22 2021-01-01 臺灣塑膠工業股份有限公司 具有雜環芳香基之二胺化合物的合成方法、聚醯胺酸感測膜及聚醯亞胺膜
KR102347589B1 (ko) * 2019-11-07 2022-01-10 피아이첨단소재 주식회사 저유전 폴리이미드 필름 및 그 제조방법
TWI775294B (zh) * 2020-01-31 2022-08-21 日商宇部興產股份有限公司 聚醯亞胺前驅體組合物及聚醯亞胺膜/基材積層體
WO2021261177A1 (ja) * 2020-06-23 2021-12-30 株式会社カネカ ポリアミド酸、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体、積層体の製造方法及び電子デバイス

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015426A (ja) * 1983-07-08 1985-01-26 Mitsubishi Chem Ind Ltd ポリアミド酸の化学閉環法
JPH09302225A (ja) * 1996-03-14 1997-11-25 Toshiba Corp ポリイミド前駆体組成物、ポリイミド膜の形成方法、電子部品および液晶素子
US6172127B1 (en) * 1997-09-12 2001-01-09 Korea Research Institute Of Chemical Technology Preparation of polyimide foam
US20090068482A1 (en) * 2005-01-21 2009-03-12 Tsuyoshi Bito Polyimide resin, polyimide film, and polyimide laminate
WO2013018904A1 (ja) * 2011-08-04 2013-02-07 日産化学工業株式会社 光配向処理法用の液晶配向剤、及びそれを用いた液晶配向膜
WO2013035806A1 (ja) * 2011-09-09 2013-03-14 宇部興産株式会社 ポリイミド前駆体水溶液組成物、及びポリイミド前駆体水溶液組成物の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223726A (ja) * 1983-06-02 1984-12-15 Mitsubishi Chem Ind Ltd ポリアミド酸の化学閉環法
JPS61267030A (ja) 1985-05-22 1986-11-26 Toray Ind Inc 液晶表示素子
JP2004115813A (ja) * 1996-03-14 2004-04-15 Toshiba Corp ポリイミド前駆体組成物、ポリイミド膜の形成方法、電子部品および液晶素子
JP2002069179A (ja) 2000-08-29 2002-03-08 Ube Ind Ltd 可溶性、透明なポリイミドおよびその製造法
JP4281241B2 (ja) * 2000-10-31 2009-06-17 宇部興産株式会社 ポリイミド粉末の製造法、ポリイミド粉末、ポリイミド粉末成形体およびその製造法
JP4461606B2 (ja) * 2000-10-31 2010-05-12 宇部興産株式会社 ポリイミド粉末の製法、ポリイミド粉末、ポリイミド粉末成形体およびその製法
JP2002146021A (ja) 2000-11-10 2002-05-22 Ube Ind Ltd 可溶性、透明なポリイミドおよびその製造法
US20020151234A1 (en) * 2001-02-05 2002-10-17 Ube Industries, Ltd. Water-soluble polyimide precursor, aqueous polyimide precursor solution, polyimide, impregnated material with polyimide binder, and laminate
JP2003168800A (ja) 2001-11-30 2003-06-13 Mitsubishi Gas Chem Co Inc 薄膜トランジスタ基板
JP3824533B2 (ja) 2001-12-28 2006-09-20 三井化学株式会社 無色透明ポリイミド
JP2004083814A (ja) 2002-08-29 2004-03-18 Mitsui Chemicals Inc 新規なポリアミド酸およびポリイミド
JP5417595B2 (ja) 2006-10-10 2014-02-19 新日鉄住金化学株式会社 ポリイミド樹脂層の形成方法
CN101674923B (zh) 2007-05-24 2013-01-09 三菱瓦斯化学株式会社 无色透明树脂薄膜的制备方法及制备装置
JP5270865B2 (ja) 2007-06-13 2013-08-21 三井化学株式会社 接着剤並びにその用途
CN104672449B (zh) 2010-02-09 2017-05-24 吉坤日矿日石能源株式会社 使用降冰片烷‑2‑螺‑α‑环烷酮‑α’‑螺‑2”‑降冰片烷‑5,5”,6,6”‑四羧酸二酐类得到的聚酰亚胺以及聚酰胺酸
KR101140626B1 (ko) * 2010-05-31 2012-05-02 가부시키가이샤 아리사와 세이사쿠쇼 폴리이미드 수지용 조성물 및 그 폴리이미드 수지용 조성물로 이루어지는 폴리이미드 수지
EP2594609B1 (en) * 2010-07-14 2017-01-11 Ube Industries, Ltd. Aqueous polyimide precursor solution composition and method for producing aqueous polyimide precursor solution composition
JP5845911B2 (ja) * 2012-01-13 2016-01-20 宇部興産株式会社 ポリイミド前駆体水溶液組成物、及びポリイミド前駆体水溶液組成物の製造方法
JP6156363B2 (ja) * 2012-03-28 2017-07-05 宇部興産株式会社 微細カーボン分散組成物およびこれを用いたポリイミド−微細カーボン複合体
CN103242657B (zh) * 2013-05-23 2015-11-25 江苏亚宝绝缘材料股份有限公司 一种聚酰亚胺薄膜制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015426A (ja) * 1983-07-08 1985-01-26 Mitsubishi Chem Ind Ltd ポリアミド酸の化学閉環法
JPH09302225A (ja) * 1996-03-14 1997-11-25 Toshiba Corp ポリイミド前駆体組成物、ポリイミド膜の形成方法、電子部品および液晶素子
US6172127B1 (en) * 1997-09-12 2001-01-09 Korea Research Institute Of Chemical Technology Preparation of polyimide foam
US20090068482A1 (en) * 2005-01-21 2009-03-12 Tsuyoshi Bito Polyimide resin, polyimide film, and polyimide laminate
WO2013018904A1 (ja) * 2011-08-04 2013-02-07 日産化学工業株式会社 光配向処理法用の液晶配向剤、及びそれを用いた液晶配向膜
WO2013035806A1 (ja) * 2011-09-09 2013-03-14 宇部興産株式会社 ポリイミド前駆体水溶液組成物、及びポリイミド前駆体水溶液組成物の製造方法

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017145A (ja) * 2014-07-09 2016-02-01 宇部興産株式会社 ポリイミド前駆体組成物、及びそれを用いた絶縁被覆層の製造方法
WO2016063993A1 (ja) * 2014-10-23 2016-04-28 宇部興産株式会社 ポリイミドフィルム、ポリイミド前駆体、及びポリイミド
US10696845B2 (en) 2015-03-27 2020-06-30 Tokyo Ohka Kogyo Co., Ltd. Energy-sensitive resin composition
WO2016199926A1 (ja) * 2015-06-12 2016-12-15 宇部興産株式会社 ポリイミド前駆体組成物、及びポリイミド組成物
TWI772260B (zh) * 2015-06-12 2022-08-01 日商宇部興產股份有限公司 聚醯亞胺前驅體組成物及聚醯亞胺組成物
CN107849352A (zh) * 2015-06-12 2018-03-27 宇部兴产株式会社 聚酰亚胺前体组合物和聚酰亚胺组合物
JPWO2016199926A1 (ja) * 2015-06-12 2018-04-05 宇部興産株式会社 ポリイミド前駆体組成物、及びポリイミド組成物
WO2017010566A1 (ja) * 2015-07-16 2017-01-19 宇部興産株式会社 ポリアミック酸溶液組成物およびポリイミドフィルム
KR102641711B1 (ko) 2015-07-16 2024-02-29 유비이 가부시키가이샤 폴리아미드산 용액 조성물 및 폴리이미드 필름
KR20180031004A (ko) * 2015-07-16 2018-03-27 우베 고산 가부시키가이샤 폴리아미드산 용액 조성물 및 폴리이미드 필름
JPWO2017010566A1 (ja) * 2015-07-16 2018-04-26 宇部興産株式会社 ポリアミック酸溶液組成物およびポリイミドフィルム
CN107922733B (zh) * 2015-08-07 2020-09-11 东京应化工业株式会社 聚酰亚胺前体组合物
JPWO2017026448A1 (ja) * 2015-08-07 2018-05-31 東京応化工業株式会社 ポリイミド前駆体組成物
WO2017026448A1 (ja) * 2015-08-07 2017-02-16 東京応化工業株式会社 ポリイミド前駆体組成物
CN107922733A (zh) * 2015-08-07 2018-04-17 东京应化工业株式会社 聚酰亚胺前体组合物
TWI708815B (zh) * 2015-08-07 2020-11-01 日商東京應化工業股份有限公司 聚醯亞胺前驅體組合物
US10954340B2 (en) 2015-08-07 2021-03-23 Tokyo Ohka Kogyo Co., Ltd. Polyimide precursor composition
US11136435B2 (en) 2016-01-20 2021-10-05 Eneos Corporation Method for producing polyimide film, polyimide film, polyamic acid solution, and photosensitive composition
CN108473698A (zh) * 2016-01-20 2018-08-31 Jxtg能源株式会社 聚酰亚胺薄膜的制造方法、聚酰亚胺薄膜、聚酰胺酸溶液及感光性组合物
JPWO2017126409A1 (ja) * 2016-01-20 2018-11-08 Jxtgエネルギー株式会社 ポリイミドフィルムの製造方法、ポリイミドフィルム、ポリアミド酸溶液及び感光性組成物
EP3406657A4 (en) * 2016-01-20 2019-11-06 Tokyo Ohka Kogyo Co., Ltd. PROCESS FOR PRODUCING POLYIMIDE FILM, POLYIMIDE FILM, POLYAMIDE ACID SOLUTION, AND PHOTOSENSITIVE COMPOSITION
WO2017126409A1 (ja) * 2016-01-20 2017-07-27 Jxエネルギー株式会社 ポリイミドフィルムの製造方法、ポリイミドフィルム、ポリアミド酸溶液及び感光性組成物
US11198280B2 (en) 2016-07-22 2021-12-14 Mitsui Chemicals, Inc. Medical film and method for producing same, medical coating composition, medical device and method for producing same
EP3489285A4 (en) * 2016-07-22 2020-07-29 Mitsui Chemicals, Inc. MEDICAL FILM AND METHOD FOR THE PRODUCTION THEREOF, MEDICAL COATING COMPOSITION, MEDICAL DEVICE AND METHOD FOR THE PRODUCTION THEREOF
JP7376630B2 (ja) 2016-09-30 2023-11-08 東京応化工業株式会社 樹脂組成物、硬化物の製造方法、及び硬化物
JP2022066519A (ja) * 2016-09-30 2022-04-28 東京応化工業株式会社 樹脂組成物、硬化物の製造方法、及び硬化物
JP2018122582A (ja) * 2017-02-03 2018-08-09 東京応化工業株式会社 積層体、フレキシブルデバイスおよび積層体の製造方法
JP7226460B2 (ja) 2020-01-31 2023-02-21 Ube株式会社 ポリイミド前駆体組成物およびポリイミドフィルム/基材積層体
KR20210098376A (ko) 2020-01-31 2021-08-10 우베 고산 가부시키가이샤 폴리이미드 전구체 조성물 및 폴리이미드 필름/기재 적층체
JP2021123707A (ja) * 2020-01-31 2021-08-30 宇部興産株式会社 ポリイミド前駆体組成物およびポリイミドフィルム/基材積層体
KR102562545B1 (ko) 2020-01-31 2023-08-03 유비이 가부시키가이샤 폴리이미드 전구체 조성물 및 폴리이미드 필름/기재 적층체
JP2022007960A (ja) * 2020-01-31 2022-01-13 宇部興産株式会社 ポリイミド前駆体組成物およびポリイミドフィルム/基材積層体
KR20230106702A (ko) 2020-11-27 2023-07-13 유비이 가부시키가이샤 폴리이미드 전구체 조성물, 폴리이미드 필름 및 폴리이미드 필름/기재 적층체
WO2022114136A1 (ja) * 2020-11-27 2022-06-02 宇部興産株式会社 ポリイミド前駆体組成物、ポリイミドフィルム、およびポリイミドフィルム/基材積層体
KR20230157950A (ko) 2021-03-17 2023-11-17 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 전구체 조성물
WO2023048121A1 (ja) * 2021-09-21 2023-03-30 Ube株式会社 ポリイミド前駆体組成物およびポリイミドフィルム

Also Published As

Publication number Publication date
TW201525026A (zh) 2015-07-01
KR102281153B1 (ko) 2021-07-22
JP6721070B2 (ja) 2020-07-08
KR20210063447A (ko) 2021-06-01
CN105764991A (zh) 2016-07-13
TWI658069B (zh) 2019-05-01
KR20160091936A (ko) 2016-08-03
JP2019108552A (ja) 2019-07-04
CN109535423A (zh) 2019-03-29
KR102257869B1 (ko) 2021-05-27
JPWO2015080158A1 (ja) 2017-03-16
JP6485358B2 (ja) 2019-03-20
CN105764991B (zh) 2018-10-26
CN109535423B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
JP6721070B2 (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
JP6531812B2 (ja) ポリイミド前駆体及びポリイミド
JP5978288B2 (ja) ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
JP6669074B2 (ja) ポリイミドフィルム、ポリイミド前駆体、及びポリイミド
JP6607193B2 (ja) ポリイミド前駆体、ポリイミド、及びポリイミドフィルム
JP6283954B2 (ja) ポリイミド前駆体、ポリイミド、ワニス、ポリイミドフィルム、及び基板
WO2015053312A1 (ja) ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
JP6627510B2 (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
JP6283953B2 (ja) ポリイミド前駆体、ポリイミド、ワニス、ポリイミドフィルム、および基板
JP7047852B2 (ja) ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
JP6461470B2 (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
JP6638744B2 (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
WO2015080156A1 (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865336

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015550965

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167016430

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14865336

Country of ref document: EP

Kind code of ref document: A1