WO2016199926A1 - ポリイミド前駆体組成物、及びポリイミド組成物 - Google Patents

ポリイミド前駆体組成物、及びポリイミド組成物 Download PDF

Info

Publication number
WO2016199926A1
WO2016199926A1 PCT/JP2016/067453 JP2016067453W WO2016199926A1 WO 2016199926 A1 WO2016199926 A1 WO 2016199926A1 JP 2016067453 W JP2016067453 W JP 2016067453W WO 2016199926 A1 WO2016199926 A1 WO 2016199926A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
polyimide precursor
group
film
aromatic ring
Prior art date
Application number
PCT/JP2016/067453
Other languages
English (en)
French (fr)
Inventor
卓也 岡
幸徳 小濱
亮一 高澤
久野 信治
健 川岸
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to KR1020187000676A priority Critical patent/KR20180018667A/ko
Priority to CN201680044684.2A priority patent/CN107849352B/zh
Priority to JP2017523736A priority patent/JP6919564B2/ja
Priority to US15/735,287 priority patent/US20180171077A1/en
Publication of WO2016199926A1 publication Critical patent/WO2016199926A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/145Organic substrates, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/4985Flexible insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1292Multistep manufacturing methods using liquid deposition, e.g. printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2206Oxides; Hydroxides of metals of calcium, strontium or barium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/262Alkali metal carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0108Transparent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide

Definitions

  • the present invention relates to a polyimide composition having a small retardation in the thickness direction and in-plane direction (retardation) and excellent in characteristics such as transparency, mechanical characteristics, and heat resistance, and a precursor composition thereof.
  • the present invention also relates to a polyimide film, a substrate, and the like that have a small retardation in the thickness direction and in-plane direction, and are excellent in properties such as transparency, mechanical properties, and heat resistance.
  • Aromatic polyimide is essentially yellowish brown due to intramolecular conjugation and the formation of charge transfer complexes. For this reason, as a means to suppress coloration, for example, introduction of fluorine atoms into the molecule, imparting flexibility to the main chain, introduction of bulky groups as side chains, etc. inhibits intramolecular conjugation and charge transfer complex formation. And the method of expressing transparency is proposed (for example, patent document 1).
  • Patent Documents 2 to 5 a method for expressing transparency by using a semi-alicyclic or fully alicyclic polyimide that does not form a charge transfer complex in principle has been proposed (for example, Patent Documents 2 to 5).
  • Patent Document 6 discloses a transparent polymer resin having orientation birefringence generated by the orientation of the bond chain (specifically, polystyrene, polyphenylene oxide, polycarbonate, polyvinyl chloride, polymethyl methacrylate, polyethylene terephthalate, polyethylene). ) And strontium carbonate fine particles produced by a specific production method dispersed in the polymer resin, and the strontium carbonate fine particles are oriented birefringence of the polymer resin in the polymer resin.
  • Non-birefringent optical resin materials are disclosed that are statistically oriented to reduce More specifically, in the non-birefringent optical resin material described in Patent Document 6, by adding fine particles of strontium carbonate, which is a needle-like crystal, to the polymer film, Strontium fine particles are statistically oriented along the direction of hot stretching. Alternatively, rod-like crystal particles of strontium carbonate are added to the polymer pellets, and the polymer pellets are used in an injection molding method or an extrusion molding method, and the strontium carbonate particles are oriented by the flow during polymer melting.
  • strontium carbonate which is a needle-like crystal
  • Patent Documents 7 and 8 disclose fine particles of strontium carbonate having orientation birefringence that are used to reduce birefringence by being dispersed in a polymer resin having birefringence.
  • Patent Document 9 5% by weight or more of a dispersant (specifically, a phosphate ester dispersant) is added to the fine particles having optical anisotropy (specifically, fine particles of strontium carbonate), and a solvent.
  • a transparent polymer specifically, polycarbonate, N-methylmaleimide / isobutene copolymer
  • a method for producing an optical film that forms a film is disclosed.
  • Patent Document 10 discloses a method for producing a retardation film, wherein a retardation film is obtained by stretching a thermoplastic polymer film containing polyimide having a specific structure.
  • the present invention provides a polyimide composition that can be easily produced, has a small retardation in the thickness direction and in-plane direction, and is excellent in transparency, mechanical properties, heat resistance, and the like, and a precursor composition thereof. With the goal.
  • the present invention also provides a varnish that provides a polyimide composition that has a small retardation in the thickness direction and in-plane direction, and is excellent in transparency, mechanical properties, heat resistance, and the like, as well as in the thickness direction and in-plane direction.
  • Another object of the present invention is to provide a polyimide film and a substrate that have a small phase difference and are excellent in transparency, mechanical properties, heat resistance, and the like.
  • a polyimide precursor composition comprising a polyimide precursor (A1) and fine particles (B) having optical anisotropy.
  • the said polyimide precursor (A1) contains at least 1 sort (s) of the repeating unit represented by following Chemical formula (1),
  • item 1 characterized by the above-mentioned.
  • X 1 is a tetravalent group having an aromatic ring or alicyclic structure
  • Y 1 is a divalent group having an aromatic ring or alicyclic structure
  • R 1 and R 2 are each independently And hydrogen, an alkyl group having 1 to 6 carbon atoms, or an alkylsilyl group having 3 to 9 carbon atoms.
  • the content of the repeating unit represented by the chemical formula (1) in which X 1 is a tetravalent group having an alicyclic structure and Y 1 is a divalent group having an alicyclic structure is based on the total repeating units.
  • the polyimide precursor composition according to item 2 wherein X 1 in chemical formula (1) is a tetravalent group having an aromatic ring, and Y 1 is a divalent group having an aromatic ring. object. 5. 3. The polyimide precursor composition according to item 2, wherein X 1 in chemical formula (1) is a tetravalent group having an alicyclic structure, and Y 1 is a divalent group having an aromatic ring. object. 6). 3. The polyimide precursor composition according to item 2, wherein X 1 in chemical formula (1) is a tetravalent group having an aromatic ring, and Y 1 is a divalent group having an alicyclic structure. object. 7). Item 7. The polyimide precursor composition according to any one of Items 1 to 6, wherein the fine particle (B) having optical anisotropy is strontium carbonate.
  • a polyimide composition comprising polyimide (A2) and fine particles (B) having optical anisotropy.
  • a polyimide composition comprising polyimide (A2) and fine particles (B) having optical anisotropy.
  • the polyimide composition according to item 8 wherein the polyimide (A2) contains at least one repeating unit represented by the following chemical formula (7).
  • Item 10 A polyimide film comprising the polyimide composition obtained from the polyimide precursor composition according to any one of Items 1 to 7 or the polyimide composition according to any one of Items 8 to 9.
  • Item 12 Item 12. A polyimide film laminate comprising the polyimide film of Item 11 and at least one glass layer. 13 12. A polyimide film laminate comprising the polyimide film according to item 11 and at least one gas barrier layer. 14 12. A polyimide film laminate comprising the polyimide film according to item 11 and at least one thin film transistor. 15. Item 14. The polyimide film laminate according to Item 12 or 13, comprising the polyimide film according to Item 11 and at least one conductive layer.
  • a varnish comprising a polyimide precursor (A1) or polyimide (A2), fine particles (B) having optical anisotropy, and a solvent.
  • a polyimide composition obtained by using the varnish according to Item 16.
  • Item 10 A display or a touch panel comprising the polyimide composition obtained from the polyimide precursor composition according to any one of Items 1 to 7 or the polyimide composition according to any one of Items 8 to 9. Or a film for a solar cell (eg, a substrate).
  • a display device or a sensor device comprising the polyimide composition obtained from the polyimide precursor composition according to any one of Items 1 to 7, or the polyimide composition according to any one of Items 8 to 9. , Photoelectric conversion device, or optical device.
  • X 3 is a tetravalent group having an aromatic ring or alicyclic structure
  • Y 3 is a divalent group having an aromatic ring or alicyclic structure.
  • a carboxyl group in the formula ( -COOH) may form a salt with the base. 22.
  • X 3 is a tetravalent group having an aromatic ring or alicyclic structure
  • Y 3 is a divalent group having an aromatic ring or alicyclic structure.
  • a carboxyl group in the formula ( -COOH) may form a salt with the base.
  • a polyimide composition that can be easily produced, has a small retardation in the thickness direction and in-plane direction, and is excellent in transparency, mechanical properties, heat resistance, and the like, and a precursor composition thereof. Can do.
  • a varnish (polyimide precursor solution composition, polyimide solution composition) can be obtained that has a small retardation in the thickness direction and in-plane direction and is excellent in transparency, mechanical properties, heat resistance, and the like.
  • the present invention it is possible to provide a polyimide film and a substrate that have a small retardation in the thickness direction and in-plane direction and are excellent in transparency, mechanical properties, heat resistance, and the like. Since the polyimide composition obtained from the polyimide precursor composition of the present invention or the polyimide composition of the present invention has excellent characteristics, it is suitable for forming substrates for displays, touch panels, solar cells and the like. Can be used.
  • the polyimide composition obtained from the polyimide precursor composition of the present invention or the polyimide composition of the present invention can also be suitably used for substrate applications in other devices (such as semiconductor devices), and various displays and the like.
  • the display device, the sensor device such as a touch panel, the photoelectric conversion device such as a solar cell, and other optical devices can be suitably used for a cover film and a color filter.
  • needle-shaped or rod-shaped fine particles having optical anisotropy such as strontium carbonate are obtained by heat-stretching a polyimide composition film or by melting the polyimide composition and performing injection molding or extrusion molding. Even if it is not oriented in one direction, that is, without special fine particle orientation treatment, it is simply optical anisotropy in the varnish (ie, polyimide precursor solution composition, polyimide solution composition) used in the production of the polyimide composition. In addition to the in-plane retardation, the retardation in the thickness direction can be easily reduced.
  • fine particles having optical anisotropy can be efficiently produced without performing a special operation such as stretching. It can be oriented and a good quality optical film can be easily manufactured.
  • a polyimide precursor composition containing a polyimide precursor (polyamic acid) and fine particles having optical anisotropy is imidized, water molecules are desorbed during the imidation reaction, and molecular chain alignment proceeds. It is possible to orient the fine particles having anisotropy more effectively and better.
  • the thickness direction and in-plane direction retardation of the resulting polyimide composition can be reduced, but in the case of the polyimide precursor having the above composition, the effect Is large and preferable.
  • the polyimide film / substrate laminate or the polyimide film of the present invention is suitable using, for example, the aforementioned polyimide precursor composition and the aforementioned polyimide composition (for example, a composition of a solution in which polyimide is dissolved) as a raw material. Is obtained.
  • a surface-treated fine particle powder having optical anisotropy that can be suitably used for a polyimide composition and a precursor composition thereof, fine particles having optical anisotropy, and a solvent.
  • a fine particle dispersion can be provided.
  • the polyimide precursor composition of the present invention includes a polyimide precursor (A1) and fine particles (B) having optical anisotropy.
  • the polyimide precursor (A1) includes, for example, at least one repeating unit represented by the following chemical formula (1).
  • X 1 is a tetravalent group having an aromatic ring or alicyclic structure
  • Y 1 is a divalent group having an aromatic ring or alicyclic structure
  • R 1 and R 2 are each independently And hydrogen, an alkyl group having 1 to 6 carbon atoms, or an alkylsilyl group having 3 to 9 carbon atoms.
  • the polyimide precursor (A1) may be partially imidized polyamic acid or the like including a repeating unit having an imide structure in which imidization has partially progressed.
  • the polyimide composition of the present invention contains polyimide (A2) and fine particles (B) having optical anisotropy.
  • a polyimide (A2) contains at least 1 sort (s) of the repeating unit represented, for example by following Chemical formula (7).
  • the polyimide precursor (A1) used for the polyimide precursor composition of the present invention the polyimide (A2) used for the polyimide composition of the present invention, the polyimide precursor composition of the present invention, and the polyimide composition of the present invention.
  • the fine particles (B) having optical anisotropy used in the above will be described in detail.
  • the polyimide precursor (A1) includes, for example, at least one repeating unit represented by the chemical formula (1).
  • X 1 in the chemical formula (1) of the polyimide precursor (A1) is a tetravalent group having an aromatic ring
  • Y 1 is preferably a divalent group having an aromatic ring
  • X 1 in the chemical formula (1) of the polyimide precursor (A1) is a tetravalent group having an aromatic ring
  • Y 1 is preferably a divalent group having an aromatic ring.
  • X 1 is a tetravalent group having an alicyclic structure
  • Y 1 is a divalent group having an aromatic ring. It is preferable.
  • X 1 is a tetravalent group having an alicyclic structure and Y 1 is a divalent having an alicyclic structure from the viewpoint of the properties of the resulting polyimide composition, for example, transparency, mechanical properties, or heat resistance.
  • the content of the repeating unit represented by the chemical formula (1) as a group is preferably 50 mol% or less, more preferably 30 mol% or less or less than 30 mol%, more preferably 10 mol% based on all repeating units. It is preferable that it is below mol%.
  • the polyimide precursor (A1) is a repeating formula (1) wherein X 1 is a tetravalent group having an aromatic ring and Y 1 is a divalent group having an aromatic ring.
  • the total content of one or more units is preferably 50 mol% or more, more preferably 70 mol% or more, more preferably 80 mol% or more, and still more preferably 90 mol% or more, based on all repeating units. Particularly preferred is 100 mol%.
  • the polyimide precursor (A1) preferably contains a fluorine atom.
  • the polyimide precursor (A1) is an aromatic compound in which X 1 is a tetravalent group having an aromatic ring containing a fluorine atom and / or Y 1 contains a fluorine atom. It is preferable that 1 type or more of the repeating unit of said Chemical formula (1) which is a bivalent group which has a ring is included.
  • the polyimide precursor (A1) is a repeating compound represented by the chemical formula (1) in which X 1 is a tetravalent group having an alicyclic structure and Y 1 is a divalent group having an aromatic ring.
  • the total content of one or more units is preferably 50 mol% or more, more preferably 70 mol% or more, more preferably 80 mol% or more, and still more preferably 90 mol% or more, based on all repeating units. Particularly preferred is 100 mol%.
  • the polyimide precursor (A1) is a repeating group represented by the chemical formula (1) in which X 1 is a tetravalent group having an aromatic ring and Y 1 is a divalent group having an alicyclic structure.
  • the total content of one or more units is preferably 50 mol% or more, more preferably 70 mol% or more, more preferably 80 mol% or more, and still more preferably 90 mol% or more, based on all repeating units. Particularly preferred is 100 mol%.
  • the tetravalent group having an aromatic ring of X 1 is preferably a tetravalent group having an aromatic ring having 6 to 40 carbon atoms.
  • Examples of the tetravalent group having an aromatic ring include the following.
  • Z 1 is a direct bond or the following divalent group:
  • Z 2 in the formula is a divalent organic group.
  • Z 2 include an aliphatic hydrocarbon group having 2 to 24 carbon atoms and an aromatic hydrocarbon group having 6 to 24 carbon atoms.
  • the tetravalent group having an aromatic ring the following are particularly preferred since both the high heat resistance and high transparency of the resulting polyimide composition can be achieved.
  • Z 1 is a direct bond or a hexafluoroisopropylidene bond.
  • Z 1 is more preferably a direct bond.
  • Examples of the tetracarboxylic acid component that gives a repeating unit of the chemical formula (1) in which X 1 is a tetravalent group having an aromatic ring include 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic acid, pyromellitic acid, 3,3 ′, 4,4′-benzophenonetetra Carboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, 4,4′-oxydiphthalic acid, bis (3,4-dicarboxyphenyl) ) Sulfone, m-terphenyl-3,4,3 ′, 4′-tetracarboxylic acid, p
  • Examples of the tetracarboxylic acid component that gives a repeating unit of the chemical formula (1) in which X 1 is a tetravalent group having an aromatic ring containing a fluorine atom include 2,2-bis (3,4-dicarboxyphenyl).
  • Derivatives such as hexafluoropropane, tetracarboxylic dianhydrides, tetracarboxylic acid silyl esters, tetracarboxylic acid esters, and tetracarboxylic acid chlorides thereof.
  • a tetracarboxylic acid component may be used independently and can also be used in combination of multiple types.
  • the tetravalent group having an alicyclic structure of X 1 is preferably a tetravalent group having an alicyclic structure having 4 to 40 carbon atoms, more preferably at least one aliphatic 4- to 12-membered ring, more preferably an aliphatic group. More preferably, it has a 4-membered ring or an aliphatic 6-membered ring.
  • the tetravalent group having an alicyclic structure of X 1 has both heat resistance and transparency, and therefore has at least one aliphatic 6-membered ring in the chemical structure and has an aromatic ring. Preferably not.
  • the 6-membered ring may be a bridged ring type in which the carbon atoms constituting the ring (inside the 6-membered ring) are bonded to form a ring.
  • X 1 (a tetravalent group having an alicyclic structure) having a highly symmetrical 6-membered ring structure enables dense packing of polymer chains, and the solvent resistance, heat resistance, and mechanical strength of polyimide. It is preferable because it is excellent. Further, in X 1 (a tetravalent group having an alicyclic structure), a plurality of 6-membered rings are composed of two or more common carbon atoms, and a carbon atom in which the 6-membered rings constitute the ring Bonding each other to form a ring is more preferable because good heat resistance, solvent resistance, and low linear expansion coefficient of polyimide can be easily achieved.
  • Preferred examples of the tetravalent group having an aliphatic 4-membered ring or an aliphatic 6-membered ring include the following.
  • R 31 to R 36 are each independently a direct bond or a divalent organic group.
  • R 41 to R 47 are each independently represented by the formula: —CH 2 —, —CH ⁇ CH—, 1 type selected from the group consisting of groups represented by —CH 2 CH 2 —, —O—, and —S—.
  • R 31 , R 32 , R 33 , R 34 , R 35 , R 36 specifically, a direct bond, an aliphatic hydrocarbon group having 1 to 6 carbon atoms, or an oxygen atom (—O— ), A sulfur atom (—S—), a carbonyl bond, an ester bond, and an amide bond.
  • the polyimide obtained can have both high heat resistance, high transparency, and a low linear thermal expansion coefficient.
  • Examples of the tetracarboxylic acid component that gives a repeating unit of the chemical formula (1) in which X 1 is a tetravalent group having an alicyclic structure include 1,2,3,4-cyclobutanetetracarboxylic acid, isopropylidenediphenoxybis Phthalic acid, cyclohexane-1,2,4,5-tetracarboxylic acid, [1,1'-bi (cyclohexane)]-3,3 ', 4,4'-tetracarboxylic acid, [1,1'-bi (Cyclohexane)]-2,3,3 ′, 4′-tetracarboxylic acid, [1,1′-bi (cyclohexane)]-2,2 ′, 3,3′-tetracarboxylic acid, 4,4′- Methylenebis (cyclohexane-1,2-dicarboxylic acid), 4,4 '-(propane-2,2-diyl) bis (cyclohex
  • the divalent group having an aromatic ring of Y 1 is preferably a divalent group having an aromatic ring having 6 to 40 carbon atoms, more preferably 6 to 20 carbon atoms.
  • Examples of the divalent group having an aromatic ring include the following.
  • W 1 is a direct bond or a divalent organic group
  • n 11 to n 13 each independently represents an integer of 0 to 4
  • R 51 , R 52 and R 53 are each independently And an alkyl group having 1 to 6 carbon atoms, a halogen group, a hydroxyl group, a carboxyl group, or a trifluoromethyl group.
  • W 1 include a divalent group represented by the following formula (5) and a divalent group represented by the following formula (6).
  • R 61 to R 68 in the formula (6) each independently represent any of the divalent groups represented by the formula (5).
  • W 1 is a direct bond, or a formula: —NHCO—, —CONH—, —COO—, —OCO—. It is especially preferable that it is 1 type selected from the group which consists of group represented by these.
  • W 1 is a group in which R 61 to R 68 are a direct bond, or one selected from the group consisting of groups represented by the formula: —NHCO—, —CONH—, —COO—, —OCO—. It is also particularly preferable that it is any of the divalent groups represented by the formula (5).
  • Examples of the diamine component that gives a repeating unit of the chemical formula (1) in which Y 1 is a divalent group having an aromatic ring include p-phenylenediamine, m-phenylenediamine, benzidine, and 3,3′-diamino-biphenyl.
  • Examples of the diamine component that gives the repeating unit of the chemical formula (1) in which Y 1 is a divalent group having an aromatic ring containing a fluorine atom include 2,2′-bis (trifluoromethyl) benzidine, 3, 3′-bis (trifluoromethyl) benzidine, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoropropane, 2,2 ′ -Bis (3-amino-4-hydroxyphenyl) hexafluoropropane.
  • a diamine component may be used independently and can also be used in combination of multiple types.
  • the divalent group having an alicyclic structure of Y 1 is preferably a divalent group having an alicyclic structure having 4 to 40 carbon atoms, more preferably at least one aliphatic 4- to 12-membered ring, more preferably an aliphatic group. More preferably, it has a 6-membered ring.
  • divalent group having an alicyclic structure examples include the following.
  • V 1 and V 2 are each independently a direct bond or a divalent organic group
  • n 21 to n 26 each independently represents an integer of 0 to 4
  • R 81 to R 86 Are each independently an alkyl group having 1 to 6 carbon atoms, a halogen group, a hydroxyl group, a carboxyl group, or a trifluoromethyl group
  • R 91 , R 92 , and R 93 are each independently represented by the formula: —CH 2 —, (This is one selected from the group consisting of groups represented by —CH ⁇ CH—, —CH 2 CH 2 —, —O—, and —S—.)
  • V 1 and V 2 include a divalent group represented by the formula (5).
  • the divalent group having an alicyclic structure the following are particularly preferable because the polyimide obtained can have both high heat resistance and low linear thermal expansion coefficient.
  • divalent groups having an alicyclic structure the following are preferable.
  • Examples of the diamine component that gives the repeating unit of the chemical formula (1) in which Y 1 is a divalent group having an alicyclic structure include 1,4-diaminocyclohexane, 1,4-diamino-2-methylcyclohexane, 1,4-diamino-2-ethylcyclohexane, 1,4-diamino-2-n-propylcyclohexane, 1,4-diamino-2-isopropylcyclohexane, 1,4-diamino-2-n-butylcyclohexane, 1, 4-diamino-2-isobutylcyclohexane, 1,4-diamino-2-sec-butylcyclohexane, 1,4-diamino-2-tert-butylcyclohexane, 1,2-diaminocyclohexane, 1,3-diaminocyclobutane 1,4-bis (
  • the polyimide precursor (A1) containing at least one repeating unit represented by the chemical formula (1) can contain other repeating units other than the repeating unit represented by the chemical formula (1).
  • the tetracarboxylic acid component and diamine component that give other repeating units are not particularly limited, and any other known aliphatic tetracarboxylic acids or known aliphatic diamines can be used.
  • Other tetracarboxylic acid components may be used alone or in combination of two or more.
  • Other diamine components may be used alone or in combination of two or more.
  • the content of other repeating units other than the repeating unit represented by the chemical formula (1) is preferably 30 mol% or less or less than 30 mol%, more preferably 20 mol% or less, based on all repeating units. More preferably, it is 10 mol% or less.
  • R 1 and R 2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, or an alkyl group having 3 to 9 carbon atoms.
  • One of the silyl groups When R 1 and R 2 are hydrogen, polyimide tends to be easily produced.
  • R 1 and R 2 can change the type of functional group and the introduction rate of the functional group by the production method described later.
  • the polyimide precursor (A1) according to the present invention (polyimide precursor containing at least one repeating unit represented by the chemical formula (1)) has a chemical structure taken by R 1 and R 2 .
  • the polyimide precursor (A1) of this invention can be easily manufactured with the following manufacturing methods for every classification.
  • the manufacturing method of the polyimide precursor (A1) of this invention is not limited to the following manufacturing methods.
  • the polyimide precursor (A1) of the present invention comprises a tetracarboxylic dianhydride as a tetracarboxylic acid component and a diamine component in a solvent in an approximately equimolar amount, preferably a molar amount of the diamine component relative to the tetracarboxylic acid component.
  • the ratio [number of moles of diamine component / number of moles of tetracarboxylic acid component] is preferably 0.90 to 1.10, more preferably 0.95 to 1.05, for example, a relatively low temperature of 120 ° C. or less. It can obtain suitably as a polyimide precursor solution composition by reacting, suppressing imidation.
  • diamine is dissolved in an organic solvent or water, and tetracarboxylic dianhydride is gradually added to this solution while stirring, and 0 to 120 ° C., preferably 5
  • a polyimide precursor is obtained by stirring for 1 to 72 hours in a range of ⁇ 80 ° C.
  • the reaction is carried out at 80 ° C. or higher, the molecular weight varies depending on the temperature history at the time of polymerization, and imidization proceeds due to heat, so there is a possibility that the polyimide precursor cannot be produced stably.
  • the order of addition of diamine and tetracarboxylic dianhydride in the above production method is preferable because the molecular weight of the polyimide precursor is likely to increase.
  • an imidazole such as 1,2-dimethylimidazole or a base such as triethylamine is preferably 0.8 times equivalent to the carboxyl group of the resulting polyamic acid (polyimide precursor). It is preferable to add in the above amount.
  • a polyimide precursor can be easily obtained by dehydrating and condensing diester dicarboxylic acid and diamine using a phosphorus condensing agent or a carbodiimide condensing agent.
  • the polyimide precursor obtained by this method is stable, it can be purified by reprecipitation by adding a solvent such as water or alcohol.
  • a polyimide precursor is obtained by mixing the polyamic acid solution obtained by the method 1) and a silylating agent and stirring at 0 to 120 ° C., preferably 5 to 80 ° C. for 1 to 72 hours.
  • the reaction is carried out at 80 ° C. or higher, the molecular weight varies depending on the temperature history at the time of polymerization, and imidization proceeds due to heat, so there is a possibility that the polyimide precursor cannot be produced stably.
  • silylating agent not containing chlorine As the silylating agent used in the method 3) and the method 4) does not require purification of the silylated polyamic acid or the resulting polyimide, Is preferred.
  • the silylating agent not containing a chlorine atom include N, O-bis (trimethylsilyl) trifluoroacetamide, N, O-bis (trimethylsilyl) acetamide, and hexamethyldisilazane.
  • N, O-bis (trimethylsilyl) acetamide and hexamethyldisilazane are particularly preferred because they do not contain fluorine atoms and are low in cost.
  • an amine-based catalyst such as pyridine, piperidine, triethylamine or the like can be used to accelerate the reaction.
  • This catalyst can be used as it is as a polymerization catalyst for the polyimide precursor.
  • the solvent (C) used for preparing the polyimide precursor (A1) is water, for example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl.
  • An aprotic solvent such as -2-imidazolidinone and dimethyl sulfoxide is preferable, and any type of solvent can be used without any problem as long as the raw material monomer component and the resulting polyimide precursor are dissolved. It is not limited to.
  • amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone , Cyclic ester solvents such as ⁇ -methyl- ⁇ -butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as triethylene glycol, m-cresol, p-cresol, 3-chlorophenol, 4-chlorophenol Phenol solvents such as acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide and the like are preferably employed.
  • the logarithmic viscosity of the polyimide precursor (A1) is not particularly limited, but the logarithmic viscosity in an N, N-dimethylacetamide solution at a concentration of 0.5 g / dL at 30 ° C. is 0.2 dL / g or more, more preferably 0. It is preferably 3 dL / g or more, particularly preferably 0.4 dL / g or more.
  • the logarithmic viscosity is 0.2 dL / g or more, the molecular weight of the polyimide precursor is high, and the mechanical strength and heat resistance of the resulting polyimide are excellent.
  • the polyimide (A2) is not particularly limited, but is obtained from the polyimide precursor (A1) and includes, for example, at least one repeating unit represented by the chemical formula (7).
  • Chemical formula (7) corresponds to chemical formula (1), with X 1 corresponding to X 2 and Y 1 corresponding to Y 2 .
  • Examples of X 2 and Y 2 in the chemical formula (7) include the same as X 1 and Y 1 in the chemical formula (1), and preferable ones are also the same.
  • X 2 in chemical formula (7) of polyimide (A2) is a tetravalent group having an aromatic ring
  • Y 2 has an aromatic ring because it is excellent in heat resistance. It is preferably a valent group.
  • X 2 is a tetravalent group having an alicyclic structure
  • Y 2 is a divalent group having an aromatic ring.
  • X 2 is a tetravalent group having an aromatic ring
  • Y 2 is a divalent group having an alicyclic structure.
  • polyimide (A2) preferably contains fluorine atoms.
  • a polyimide obtained from an aromatic tetracarboxylic acid component and an aromatic diamine or a polyimide obtained from an alicyclic tetracarboxylic acid component and an aromatic diamine, or an aromatic tetracarboxylic acid component and an alicyclic
  • a polyimide obtained from diamine is preferred.
  • the tetracarboxylic acid component includes tetracarboxylic acid and tetracarboxylic acid derivatives such as tetracarboxylic dianhydride, tetracarboxylic acid silyl ester, tetracarboxylic acid ester, and tetracarboxylic acid chloride.
  • X 2 is a tetravalent group having an alicyclic structure
  • Y 2 is a divalent group having an alicyclic structure.
  • the content of the repeating unit represented by the chemical formula (7) is preferably 50 mol% or less, more preferably 30 mol% or less or less than 30 mol%, more preferably 10 mol%, based on all repeating units. The following is preferable.
  • the polyimide (A2) is a repeating unit of the chemical formula (7) in which X 2 is a tetravalent group having an aromatic ring and Y 2 is a divalent group having an aromatic ring.
  • the total content of one or more is preferably 50 mol% or more, more preferably 70 mol% or more, more preferably 80 mol% or more, and even more preferably 90 mol% or more, particularly with respect to all repeating units. Preferably it is 100 mol%.
  • the polyimide (A2) preferably contains a fluorine atom.
  • the polyimide (A2) is an aromatic ring in which X 2 is a tetravalent group having a fluorine atom-containing aromatic ring and / or Y 2 is a fluorine atom-containing repeating unit. It is preferable that 1 type or more of the repeating unit of the said Chemical formula (7) which is a bivalent group to have is included.
  • the polyimide (A2) is a repeating unit of the chemical formula (7) in which X 2 is a tetravalent group having an alicyclic structure and Y 2 is a divalent group having an aromatic ring.
  • the total content of one or more is preferably 50 mol% or more, more preferably 70 mol% or more, more preferably 80 mol% or more, and even more preferably 90 mol% or more, particularly with respect to all repeating units. Preferably it is 100 mol%.
  • the polyimide (A2) is a repeating unit of the chemical formula (7) in which X 2 is a tetravalent group having an aromatic ring and Y 2 is a divalent group having an alicyclic structure.
  • the total content of one or more is preferably 50 mol% or more, more preferably 70 mol% or more, more preferably 80 mol% or more, and even more preferably 90 mol% or more, particularly with respect to all repeating units. Preferably it is 100 mol%.
  • the polyimide (A2) containing at least one repeating unit represented by the chemical formula (7) may contain one or more other repeating units other than the repeating unit represented by the chemical formula (7).
  • the content of other repeating units other than the repeating unit represented by the chemical formula (7) is preferably 30 mol% or less or less than 30 mol%, more preferably 20 mol% or less, based on all repeating units. More preferably, it is 10 mol% or less.
  • the polyimide (A2) of the present invention can be produced by imidizing the polyimide precursor (A1) of the present invention (that is, subjecting the polyimide precursor (A1) to a dehydration ring-closing reaction).
  • the imidization method is not particularly limited, and a known thermal imidation or chemical imidization method can be suitably applied.
  • a manufacturing method of a polyimide (A2) it mentions later as a manufacturing method of the polyimide composition of this invention.
  • Fine particles having optical anisotropy can be used without any particular limitation as long as they have optical anisotropy.
  • the fine particles (B) having optical anisotropy are preferably carbonates, for example. More specifically, the fine particles (B) having optical anisotropy are preferably one or more fine particles selected from the group consisting of strontium carbonate, calcium carbonate, magnesium carbonate, cobalt carbonate, and manganese carbonate. More preferably, it is strontium carbonate.
  • Examples of the carbonate form include aragonite, calcite, vaterite, and amorphous.
  • the fine particle (B) having optical anisotropy preferably has an anisotropic shape such as a needle shape or a rod shape, more preferably a fine needle shape or a rod shape carbonate, It is particularly preferable to use fine needle-like or rod-like strontium carbonate.
  • the fine particles (B) having optical anisotropy preferably have an average aspect ratio of 1.5 or more, more preferably 2 or more, and particularly preferably 2.2 or more.
  • the upper limit of the average aspect ratio is not particularly limited, but is generally about 5.
  • the aspect ratio is indicated by the ratio (length / diameter) between the length and diameter of the fine particles (B).
  • the fine particles (B) having optical anisotropy preferably have an average length of the major axis of 100 nm or less, more preferably 70 nm or less, from the viewpoint of transparency of the resulting polyimide composition. Particularly preferred is 40 nm.
  • the content of acicular particles having a major axis length of 200 nm or more is preferably 5% or less on a number basis, and preferably 3% or less. More preferably, it is more preferably 1% or less, and particularly preferably 0%.
  • the fine particles (B) having optical anisotropy such as strontium carbonate fine particles may be surface-treated with a surface treatment agent.
  • fine particles (B) having optical anisotropy that are surface-treated with a surface treatment agent described in JP-A-2014-80360, that is, the surface of the particles are polyoxyalkylene in the side chain.
  • Fine particles (B) having optical anisotropy treated with a polycarboxylic acid having a group or an anhydride thereof and an amine having a polyoxyalkylene group and a hydrocarbon group can be preferably used.
  • the fine particles (B) having an arbitrary optical anisotropy are not limited to the needle-shaped strontium carbonate particles having a specific shape, and are subjected to surface treatment by the method described in Japanese Patent Application Laid-Open No. 2014-80360.
  • Fine particles (B) having an optical anisotropy that has been surface-treated with the surface treating agent described in Japanese Patent Publication No. Gazette.
  • the surface treatment agent for the fine particles (B) having optical anisotropy preferably has a carboxylic acid as a functional group, and particularly preferably a polyamic acid.
  • the fine particle powder having optical anisotropy that is surface-treated with the polyamic acid of the present invention will be described in detail.
  • the fine particles (B) having optical anisotropy such as strontium carbonate fine particles used are surface-treated with a polyamic acid (A3) containing a repeating unit represented by the following chemical formula (8). It is preferably a fine particle powder having optical anisotropy.
  • X 3 is a tetravalent group having an aromatic ring or alicyclic structure
  • Y 3 is a divalent group having an aromatic ring or alicyclic structure.
  • a carboxyl group in the formula ( -COOH) may form a salt with the base.
  • the polyamic acid (A3) containing the repeating unit represented by the chemical formula (8) here is not particularly limited, but is a polyimide precursor (A1) which is a polyamic acid (R 1 in the chemical formula (1)).
  • R 2 is preferably a polyimide precursor containing a repeating unit represented by the chemical formula (1) wherein hydrogen is hydrogen.
  • Chemical formula (8) corresponds to chemical formula (1), with X 1 corresponding to X 3 and Y 1 corresponding to Y 3 .
  • Examples of X 3 and Y 3 in the chemical formula (8) include the same as X 1 and Y 1 in the chemical formula (1), and preferable ones are also the same.
  • Examples of the base that forms a salt with the carboxyl group of the chemical formula (8) include amines, alkali metal hydroxides, alkaline earth metal hydroxides, and the like. In view of volatilization by subsequent heat treatment or the like, amines are preferable, tertiary amines are more preferable, and tertiary amines having a ring structure are particularly preferable. Furthermore, since it is effective as a catalyst for imidation, pyridine and imidazole derivatives are preferable, and imidazole derivatives are more preferable.
  • the fine particle powder having optical anisotropy surface-treated with the polyamic acid (A3) containing the repeating unit represented by the chemical formula (3) can be obtained, for example, as follows.
  • a tetracarboxylic dianhydride as a tetracarboxylic acid component and a diamine component are approximately equimolar in a solvent.
  • the molar ratio of the diamine component to the tetracarboxylic acid component is preferably 0.90 to 1.10, more preferably 0.95 to 1.05.
  • a solution of polyamic acid (polyamic acid) (A3) is obtained.
  • the total amount of the tetracarboxylic acid component and the diamine component is 5% by mass or more, preferably 10% by mass or more, more preferably 15% by mass or more with respect to the total amount of the solvent, the tetracarboxylic acid component and the diamine component. A proportion is preferred.
  • the total amount of the tetracarboxylic acid component and the diamine component is 60% by mass or less, preferably 50% by mass or less, based on the total amount of the solvent, the tetracarboxylic acid component, and the diamine component. Is preferred.
  • the solvent used in preparing the polyamic acid (A3) solution is not particularly limited as long as the polyamic acid (A3) dissolves, and any type of solvent can be used without any problem.
  • the solvent used here include the same ones as the solvent (C) used in preparing the polyimide precursor (A1). For reasons described later, it is preferable to use water as the solvent. .
  • the fine particle (B) having optical anisotropy or a dispersion (slurry) thereof and the resulting solution of polyamic acid (A3) are, for example, at 0 to 120 ° C. for 0.1 to 72 hours.
  • a dispersion liquid (slurry) in which fine particles (B) having optical anisotropy surface-treated with polyamic acid are dispersed is obtained.
  • the addition amount of the polyamic acid (A3) is 0 with respect to 100 parts by weight of the fine particles (B) having optical anisotropy.
  • the amount of polyamic acid (A3) added is preferably 50 parts by weight or less, based on 100 parts by weight of fine particles (B) having optical anisotropy. Is preferably 30 parts by weight or less, more preferably 25 parts by weight or less, and particularly preferably 15 parts by weight or less.
  • the method of adding and dispersing the solution of polyamic acid (A3) to the fine particles (B) having optical anisotropy is not particularly limited, and any known dispersion method can be suitably applied.
  • the solvent of the dispersion is not particularly limited as long as the polyamic acid (A3) is dissolved, and any type of solvent can be used without any problem. it can.
  • the solvent for the dispersion include the same solvent as used for preparing the polyimide precursor (A1) (same as the solvent for the polyamic acid solution), but use water as the solvent. Is preferred.
  • the solvent of the dispersion liquid of the fine particles (B) having optical anisotropy may be the same as or different from the solvent of the polyamic acid (A3) solution.
  • the solvent used here that is, the solvent of the solution of the polyamic acid (A3) and the solvent of the dispersion liquid of the fine particles (B) having optical anisotropy are both water
  • the surface treatment is performed with the polyamic acid (A3). Since the produced fine particles (B) having optical anisotropy are obtained as a slurry of water in production, operations such as solvent replacement can be simplified, which is preferable.
  • an ordinary general dispersant may be used in combination. It is preferable to use only polyamic acid (A3) as a dispersant from the viewpoint of transparency of the polyimide composition to be obtained.
  • a dispersion (slurry) in which fine particles (B) having optical anisotropy are dispersed in a solution of polyamic acid (A3), that is, a repeating unit represented by the chemical formula (8) is included.
  • the fine particle dispersion of the present invention containing the polyamic acid (A3), fine particles (B) having optical anisotropy, and a solvent is used as it is for the production of a polyimide precursor composition or a polyimide composition without drying. You can also.
  • the dispersion of fine particles (B) having optical anisotropy used has a polyamic acid (A3) containing a repeating unit represented by the chemical formula (8) and an optical anisotropy.
  • a fine particle dispersion containing fine particles (B) having a solvent and a solvent is preferable.
  • polyamic acid (A3) polyamic acid (A3) containing a repeating unit represented by the chemical formula (8) mentioned as the surface treating agent for the fine particles (B) having optical anisotropy is preferable.
  • This fine particle dispersion of the present invention prepared a solution of polyamic acid (A3) in the same manner as the method for producing fine particle powder (B) having optical anisotropy surface-treated with the polyamic acid (A3).
  • the fine particles (B) having optical anisotropy or a dispersion liquid (slurry) thereof and the obtained polyamic acid (A3) solution can be mixed.
  • a dispersion liquid in which a fine particle powder (B) having optical anisotropy surface-treated with the isolated polyamic acid (A3) is dispersed in a solvent is also an optically different solution containing polyamic acid (A3) as a dispersant. It becomes the fine particle dispersion of the present invention of the fine particles (B) having anisotropy.
  • the method for dispersing the fine particles (B) having optical anisotropy in a solvent is not particularly limited, and any known dispersion method can be suitably applied.
  • the content of polyamic acid in the fine particle dispersion of the present invention is not particularly limited, but is 0.5 to 50 parts by weight, more preferably 1 to 100 parts by weight with respect to 100 parts by weight of the fine particles (B) having optical anisotropy.
  • the amount is preferably 30 parts by weight, more preferably 3 to 25 parts by weight, and particularly preferably 5 to 15 parts by weight.
  • the polyimide precursor composition of the present invention including the polyimide precursor (A1) and the fine particles (B) having optical anisotropy, and the polyimide (A2) and the optical anisotropy.
  • the polyimide composition of the present invention containing the fine particles (B) having properties will be described in detail.
  • the polyimide precursor composition of the present invention contains at least one polyimide precursor (A1) and at least one fine particle (B) having optical anisotropy.
  • the polyimide composition of the present invention comprises at least one type of polyimide (A2) and at least one type of fine particles (B) having optical anisotropy.
  • the content of the polyimide precursor composition of the present invention and the fine particles (B) having optical anisotropy of the polyimide composition of the present invention is not particularly limited, but the polymer of the polyimide precursor (A1) or polyimide (A2)
  • the amount is preferably 1 part by weight or more, more preferably 5 parts by weight or more, still more preferably 10 parts by weight or more, and particularly preferably 20 parts by weight or more with respect to 100 parts by weight of the solid content. If it is this range, the phase difference (retardation) of the thickness direction and in-plane direction of the polyimide composition obtained will fall sufficiently.
  • the content of the polyimide precursor composition of the present invention and the fine particles (B) having optical anisotropy of the polyimide composition of the present invention are not particularly limited, but the polyimide precursor (A1) or the polyimide (A2).
  • the polymer solid content is preferably 60 parts by weight or less, more preferably 40 parts by weight or less, still more preferably 20 parts by weight or less with respect to 100 parts by weight of the polymer solid content. If it is this range, the polyimide composition obtained will be excellent in characteristics, such as heat resistance and transparency.
  • the content of the polyimide precursor composition of the present invention and the fine particles (B) having optical anisotropy of the polyimide composition of the present invention can be determined by a known composition analysis method. Moreover, the content can also be calculated
  • the polyimide precursor composition of the present invention usually contains a polyimide precursor (A1), fine particles (B) having optical anisotropy, and a solvent (C).
  • the polyimide composition of the present invention contains polyimide (A2), fine particles (B) having optical anisotropy, and a solvent (C).
  • it is preferable that the polyimide (A2) is soluble in the solvent (C).
  • the polyimide precursor composition containing the polyimide precursor (A1) or polyimide (A2), the fine particles (B) having optical anisotropy, and the solvent (C), or the polyimide composition is also referred to as the varnish of the present invention. .
  • the solvent (C) used for the varnish of the present invention containing the polyimide precursor (polyimide precursor composition of the present invention)
  • the structure is not particularly limited.
  • the solvent (C) used for the varnish of the present invention containing polyimide (polyimide varnish)
  • the structure is not particularly limited.
  • amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, Cyclic ester solvents such as ⁇ -caprolactone and ⁇ -methyl- ⁇ -butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as triethylene glycol, m-cresol, p-cresol, 3-chlorophenol, 4 -Phenol solvents such as chlorophenol, acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide and the like are preferably used.
  • the solvent of the varnish of this invention is the solvent (dispersion medium) of the dispersion liquid of the solvent used when preparing a polyimide precursor (A1) or a polyimide (A2), and the microparticles
  • the total amount of the tetracarboxylic acid component and the diamine component is 5% by mass or more, preferably 10% by mass or more, more preferably based on the total amount of the solvent, the tetracarboxylic acid component and the diamine component. Is preferably 15% by mass or more.
  • the total amount of the tetracarboxylic acid component and the diamine component is 60% by mass or less, preferably 50% by mass or less, based on the total amount of the solvent, the tetracarboxylic acid component, and the diamine component. Is preferred.
  • This concentration is a concentration that is approximately approximate to the solid content concentration resulting from the polyimide precursor or polyimide, but if this concentration is too low, for example, a polyimide film is produced. Control of the film thickness of the polyimide film obtained may be difficult.
  • the logarithmic viscosity of the polyimide precursor is not particularly limited, but the logarithmic viscosity in an N, N-dimethylacetamide solution at a concentration of 0.5 g / dL at 30 ° C. is 0.2 dL / g. Above, more preferably 0.3 dL / g or more, particularly preferably 0.4 dL / g or more.
  • the logarithmic viscosity is 0.2 dL / g or more, the molecular weight of the polyimide precursor is high, and the mechanical strength and heat resistance of the resulting polyimide are excellent.
  • the logarithmic viscosity of the polyimide is not particularly limited, but the logarithmic viscosity in an N, N-dimethylacetamide solution having a concentration of 0.5 g / dL at 30 ° C. is more preferably 0.2 dL / g or more. Is preferably 0.4 dL / g or more, particularly preferably 0.5 dL / g or more. When the logarithmic viscosity is 0.2 dL / g or more, the resulting polyimide has excellent mechanical strength and heat resistance.
  • the viscosity (rotational viscosity) of the varnish of the present invention is not particularly limited, but the rotational viscosity measured using an E-type rotational viscometer at a temperature of 25 ° C. and a shear rate of 20 sec ⁇ 1 is preferably 0.01 to 1000 Pa ⁇ sec. 0.1 to 100 Pa ⁇ sec is more preferable. Moreover, thixotropy can also be provided as needed. When the viscosity is in the above range, it is easy to handle when coating or forming a film, and the repelling is suppressed and the leveling property is excellent, so that a good film can be obtained.
  • the varnish containing the polyimide precursor of the present invention may contain a chemical imidizing agent (an acid anhydride such as acetic anhydride or an amine compound such as pyridine or isoquinoline), an antioxidant, or a filler (inorganic particles such as silica) as necessary. Etc.), dyes, pigments, coupling agents such as silane coupling agents, primers, flame retardants, antifoaming agents, leveling agents, rheology control agents (flow aids), release agents and the like.
  • a chemical imidizing agent an acid anhydride such as acetic anhydride or an amine compound such as pyridine or isoquinoline
  • an antioxidant such as pyridine or isoquinoline
  • a filler inorganic particles such as silica
  • the varnish containing the polyimide of the present invention may be prepared by using an antioxidant, a filler (inorganic particles such as silica), a dye, a pigment, a coupling agent such as a silane coupling agent, a primer, a flame retardant, and an antifoam as necessary.
  • a filler inorganic particles such as silica
  • a dye such as silica
  • a pigment such as a silane coupling agent
  • a primer such as a primer, a flame retardant, and an antifoam
  • an antifoam as necessary.
  • the polyimide precursor composition of the present invention which is a varnish of the present invention, includes fine particles (B) having optical anisotropy in the polyimide precursor solution or solution composition obtained by the method for producing the polyimide precursor (A1). ) Or a dispersion of fine particles (B) having optical anisotropy, and mixing them.
  • fine particles (B) having optical anisotropy in the polyimide precursor solution or solution composition obtained by the method for producing the polyimide precursor (A1).
  • a dispersion of fine particles (B) having optical anisotropy and mixing them.
  • a tetracarboxylic acid component tetracarboxylic dianhydride, etc.
  • diamine component are added to a solvent to further improve the dispersibility of the fine particles (B) having optical anisotropy.
  • the polyimide precursor composition of the present invention by reacting the tetracarboxylic acid component and the diamine component in the presence of the fine particles (B) having the fine particles.
  • the fine particles (B) having optical anisotropy to be used are preferably those that have been surface-treated with a surface treatment agent such as polyamic acid containing a repeating unit represented by the chemical formula (8).
  • a solvent may be removed or added as needed, and desired components other than the fine particles (B) having optical anisotropy may be added.
  • the varnish of the present invention containing polyimide (a composition containing polyimide (A2), fine particles (B) having optical anisotropy and a solvent) is obtained by changing the polyimide precursor in the varnish from the polyimide precursor composition of the present invention. It can be prepared by imidizing (that is, dehydrating and ring-closing reaction of a polyimide precursor).
  • the imidization method is not particularly limited, and a known thermal imidation or chemical imidization method can be suitably applied.
  • fine particles (B) having optical anisotropy or A dispersion liquid of fine particles (B) having optical anisotropy can be added and mixed to prepare a varnish containing the polyimide of the present invention.
  • the fine particles (B) having optical anisotropy may have been surface-treated with a surface treatment agent such as polyamic acid containing a repeating unit represented by the chemical formula (8).
  • a solvent may be removed or added as needed, and desired components other than the fine particles (B) having optical anisotropy may be added.
  • the solution or solution composition of the polyimide precursor (A1) obtained by the above method is used.
  • the solution or solution composition containing the polyimide (A2) can be obtained by stirring at 80 to 230 ° C., preferably 120 to 200 ° C. for 1 to 24 hours.
  • bubbling may be performed, or imidization may be performed by adding an azeotropic solvent such as toluene.
  • the obtained polyimide solution is dropped in a poor solvent such as water or methanol, re-precipitated, dried, and dissolved again in a solvent that can be dissolved, and this polyimide solution is used to obtain the polyimide solution.
  • a varnish containing polyimide can also be prepared.
  • a solvent (dispersion medium) of a dispersion liquid of fine particles (B) having optical anisotropy used for production of the varnish of the present invention which is the varnish of the present invention or the varnish of the present invention containing polyimide.
  • the polyimide precursor or polyimide dissolves, it is not particularly limited, and any type of solvent can be used without any problem.
  • the solvent for the dispersion liquid of the fine particles (B) having optical anisotropy include the same solvents as those used for preparing the polyimide precursor (A1).
  • the solvent of the dispersion liquid of the fine particles (B) having optical anisotropy may be the same as or different from the solvent of the polyimide precursor solution or the polyimide solution.
  • a solvent can also be used in combination of multiple types.
  • the dispersion liquid of the fine particles (B) having optical anisotropy is one or more kinds in order to efficiently disperse the fine particles (B) having optical anisotropy in a solvent to obtain a stable fine particle dispersion. It may contain a dispersant.
  • the dispersant is not particularly limited, but a dispersant having a carboxylic acid as a functional group is preferable, and a polyamic acid is particularly preferable.
  • the polyamic acid is preferably a polyamic acid containing a repeating unit represented by the chemical formula (8) mentioned as the surface treating agent for the fine particles (B) having optical anisotropy. That is, a fine particle dispersion (fine particle dispersion of the present invention) containing a polyamic acid (A3) containing a repeating unit represented by the chemical formula (8), fine particles (B) having optical anisotropy, and a solvent. And can be suitably used as a dispersion of fine particles (B) having optical anisotropy.
  • the content of polyamic acid is not particularly limited, but is 100 parts by weight of fine particles (B) having optical anisotropy.
  • the amount is preferably 0.5 to 50 parts by weight, more preferably 1 to 30 parts by weight, still more preferably 3 to 25 parts by weight.
  • the content of the fine particles (B) having optical anisotropy in the polyimide composition is such that the polyimide converted from the polyamic acid as the dispersant is also polyimide ( A2) is included and calculated.
  • the surface treatment agent for acicular strontium carbonate fine powder described in JP-A-2014-80360 that is, a polycarboxylic acid having a polyoxyalkylene group in the side chain or an anhydride thereof, and a polyoxy An amine having an alkylene group and a hydrocarbon group can also be suitably used as a dispersant for the dispersion of fine particles (B) having optical anisotropy.
  • the addition amount of polycarboxylic acid or its anhydride and the addition amount of amine are preferably those described in JP-A-2014-80360.
  • a commonly used dispersant may not be used from the viewpoint of transparency of the obtained polyimide composition.
  • the amount of the commonly used dispersant other than polyamic acid is not particularly limited, but is usually 10 parts by weight or less with respect to 100 parts by weight of fine particles (B) having optical anisotropy. Preferably there is.
  • the method for dispersing the fine particles (B) having optical anisotropy in a solvent is not particularly limited, and any known dispersion method can be suitably applied.
  • the dispersion for example, it is preferable to use a ball mill, a jet mill, a bead mill, an impeller disperser, a thin film swirl mixer, or the like.
  • the method of mixing the polyimide precursor solution or the polyimide solution and the dispersion of the fine particles (B) having optical anisotropy is not particularly limited, and any known mixing method can be suitably applied.
  • the polyimide composition of the present invention includes polyimide (A2) and fine particles (B) having optical anisotropy, and includes a polyimide precursor (A1) and fine particles (B) having optical anisotropy. It can be obtained from the polyimide precursor composition of the present invention. More specifically, the polyimide precursor composition of the present invention is obtained by heating the polyimide precursor composition of the present invention to imidize the polyimide precursor (that is, dehydrating and ring-closing the polyimide precursor). Can do.
  • the imidization method is not particularly limited, and a known thermal imidation or chemical imidization method can be suitably applied.
  • the polyimide precursor composition of the present invention (polyimide precursor varnish) is cast on a substrate, and the polyimide precursor composition on this substrate is, for example, 100 to 500 ° C., preferably 200 to 500 ° C. More preferably, a polyimide composition such as a polyimide film can be suitably produced by heat treatment at a temperature of about 250 to 450 ° C. to remove the solvent and imidize the polyimide precursor.
  • a heating profile is not specifically limited, It can select suitably.
  • the polyimide precursor composition of the present invention (polyimide precursor varnish) is cast on a substrate, and preferably dried in a temperature range of 180 ° C. or less to form a film of the polyimide precursor composition on the substrate.
  • the polyimide precursor composition film thus obtained is peeled off from the substrate, and the end of the film is fixed, or the end of the film is not fixed, for example, at 100 to 500 ° C.
  • a polyimide composition such as a polyimide film can be suitably produced by heat-treating at a temperature of preferably about 200 to 500 ° C., more preferably about 250 to 450 ° C. to imidize the polyimide precursor. .
  • the polyimide composition of the present invention such as a polyimide film (polyimide composition not containing a solvent) comprises the varnish of the present invention containing polyimide (polyimide (A2), fine particles (B) having optical anisotropy, and a solvent. It can also be obtained by removing the solvent by heating or the like.
  • the varnish of the present invention containing polyimide is cast on a substrate, and the solvent is removed by heat treatment at a temperature of, for example, 80 to 500 ° C., preferably 100 to 500 ° C., more preferably 150 to 450 ° C.
  • a temperature of, for example, 80 to 500 ° C., preferably 100 to 500 ° C., more preferably 150 to 450 ° C.
  • polyimide compositions such as a polyimide film, can be manufactured suitably.
  • the heating profile is not particularly limited and can be selected as appropriate.
  • a needle-like material having optical anisotropy such as strontium carbonate is obtained by hot-stretching a polyimide composition film, or by melting and injecting the polyimide composition and performing injection molding or extrusion molding.
  • the varnish (polyimide precursor solution composition, polyimide solution composition) may be optically different from the varnish (polyimide precursor solution composition, polyimide solution composition) as in the above production method without aligning rod-shaped fine particles in one direction, that is, without special fine particle alignment treatment. By adding the fine particles having directionality, not only the in-plane direction retardation but also the thickness direction retardation can be easily reduced.
  • the form of the polyimide composition (fine particle-containing polyimide having optical anisotropy) of the present invention is preferably a film, a laminate of a polyimide film and another substrate, a coating film, powder, beads, a molded body, a foamed body, etc. Can be listed.
  • the polyimide composition obtained from the polyimide precursor composition of the present invention and the polyimide composition of the present invention are not particularly limited, but are 100 ° C. when formed into a film having a thickness of 5 ⁇ m to 250 ⁇ m, preferably a film having a thickness of 10 ⁇ m.
  • the linear thermal expansion coefficient from 1 to 250 ° C. can be preferably 60 ppm / K or less, more preferably 50 ppm / K or less. When the linear thermal expansion coefficient is large, the difference in the linear thermal expansion coefficient with a conductor such as metal is large, which may cause problems such as an increase in warpage when a circuit board is formed.
  • the polyimide composition obtained from the polyimide precursor composition of the present invention and the polyimide composition of the present invention are not particularly limited, but the total light transmittance in a film having a thickness of 5 ⁇ m to 250 ⁇ m, preferably a film having a thickness of 10 ⁇ m.
  • the (average light transmittance at a wavelength of 380 nm to 780 nm) is preferably 68% or more, more preferably 70% or more, more preferably 75% or more, and particularly preferably 80% or more.
  • the polyimide composition obtained from the polyimide precursor composition of the present invention and the polyimide composition of the present invention are not particularly limited, but the 5% weight reduction temperature, which is an index of heat resistance of the polyimide film, is preferably 400 ° C. or higher. More preferably, it is 430 degreeC or more, More preferably, it is 450 degreeC or more.
  • the 5% weight reduction temperature which is an index of heat resistance of the polyimide film
  • the polyimide composition obtained from the polyimide precursor composition of the present invention and the polyimide composition of the present invention are not particularly limited, but the thickness of the polyimide film is a film having a thickness of 5 ⁇ m to 250 ⁇ m, preferably a film having a thickness of 10 ⁇ m.
  • the directional phase difference is preferably 1000 nm or less, more preferably 800 nm or less, still more preferably 700 nm or less, and particularly preferably 680 nm or less.
  • the thickness direction retardation of the polyimide film is preferably 75 nm or less.
  • the in-plane retardation of the polyimide film is preferably 100 nm or less, more preferably 50 nm or less, still more preferably 10 nm or less, and even more preferably 5 nm or less.
  • the in-plane retardation of the polyimide film may be preferably 4 nm or less, more preferably 3 nm or less.
  • the polyimide composition obtained from the polyimide precursor composition of the present invention or the film comprising the polyimide composition of the present invention depends on the use, but the thickness of the film is preferably 0.1 ⁇ m to 250 ⁇ m, more The thickness is preferably 1 ⁇ m to 150 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m, and particularly preferably 1 ⁇ m to 30 ⁇ m.
  • the polyimide film is used for light transmission, if the polyimide film is too thick, the light transmittance may be lowered.
  • the polyimide composition obtained from the polyimide precursor composition of the present invention and the polyimide composition of the present invention are used, for example, in applications of a transparent substrate for display, a transparent substrate for touch panel, or a substrate for solar cell, and other optical components. It can be suitably used in applications of substrates for devices and semiconductor devices.
  • the varnish (polyimide precursor composition) of the present invention is cast on a substrate such as ceramic (glass, silicon, alumina, etc.), metal (copper, aluminum, stainless steel, etc.), heat-resistant plastic film (polyimide film, etc.), etc.
  • a substrate such as ceramic (glass, silicon, alumina, etc.), metal (copper, aluminum, stainless steel, etc.), heat-resistant plastic film (polyimide film, etc.), etc.
  • a vacuum in an inert gas such as nitrogen, or in the air, drying is performed in a temperature range of 20 to 180 ° C., preferably 20 to 150 ° C. using hot air or infrared rays.
  • a polyimide film / substrate laminate or a polyimide film can be produced by heating imidization in air using hot air or infrared rays, for example, at a temperature of about 200 to 500 ° C., more preferably about 250 to 450 ° C. it can.
  • the thickness of the polyimide film here is preferably 1 to 250 ⁇ m, more preferably 1 to 150 ⁇ m, because of the transportability in the subsequent steps.
  • the imidization reaction of the polyimide precursor instead of the heat imidation by the heat treatment as described above, contains a dehydration cyclization reagent such as acetic anhydride in the presence of a tertiary amine such as pyridine or triethylamine. It is also possible to carry out by chemical treatment such as immersion in a solution. In addition, these dehydration cyclization reagents are previously charged and stirred in a varnish (polyimide precursor composition), and then cast onto a substrate and dried to obtain a partially imidized polyimide precursor. A polyimide film / base material laminate or a polyimide film can be obtained by further heat treatment as described above.
  • a dehydration cyclization reagent such as acetic anhydride in the presence of a tertiary amine such as pyridine or triethylamine. It is also possible to carry out by chemical treatment such as immersion in a solution.
  • these dehydration cyclization reagents are previously charged and
  • a flexible conductive substrate can be obtained by forming a conductive layer on one side or both sides of the polyimide film / base laminate or the polyimide film obtained in this way.
  • a flexible conductive substrate can be obtained, for example, by the following method. That is, as a first method, the polyimide film / substrate laminate is not peeled off from the substrate, and the surface of the polyimide film is sputtered, vapor-deposited, printed, etc. by a conductive substance (metal or metal oxide). A conductive layer of conductive layer / polyimide film / base material is produced. Then, if necessary, a transparent and flexible conductive substrate comprising the conductive layer / polyimide film laminate can be obtained by peeling the conductive layer / polyimide film laminate from the substrate.
  • a transparent and flexible conductive substrate comprising the conductive layer / polyimide film laminate can be obtained by peeling the conductive layer / polyimide film laminate from the substrate.
  • the polyimide film is peeled off from the substrate of the polyimide film / substrate laminate to obtain a polyimide film, and a conductive substance (metal or metal oxide, conductive organic substance, A conductive layer of conductive carbon, etc.) is formed in the same manner as in the first method, and a transparent and flexible conductive layer comprising a conductive layer / polyimide film laminate or a conductive layer / polyimide film / conductive layer laminate.
  • a conductive substrate can be obtained.
  • a gas barrier layer such as water vapor or oxygen, light adjustment by sputtering, vapor deposition or gel-sol method, etc.
  • An inorganic layer such as a layer may be formed.
  • the gas barrier layer is not limited as long as it has a lower permeability of oxygen and / or water vapor or the like than the polyimide film, for example, an inorganic layer, an organic layer, or an inorganic / organic hybrid layer, preferably Inorganic oxide films such as silicon oxide, aluminum oxide, silicon carbide, silicon oxycarbide, silicon carbonitride, silicon nitride, and silicon nitride oxide.
  • the gas barrier layer may be composed of only one kind of composition or may be a film in which two or more kinds of compositions are mixed.
  • the conductive layer is preferably formed with a circuit by a method such as a photolithography method, various printing methods, or an ink jet method.
  • substrate of this invention obtained is a gas barrier layer as needed on the surface of the polyimide composition comprised by the polyimide composition obtained from the polyimide precursor composition of this invention, or the polyimide composition of this invention. And a circuit of a conductive layer through an inorganic layer.
  • substrate is flexible and can be used suitably as a board
  • vapor deposition, various printing methods, ink jet methods, and the like are further used for transistors (here, materials used for semiconductors include oxides such as amorphous silicon, low-temperature polysilicon, ZnO, SnO, and IGZO).
  • a flexible thin film transistor is manufactured, and is suitably used as a liquid crystal element, an EL element, or a photoelectric element for a display device.
  • the polyimide film laminated body which has a polyimide film and at least 1 layer of glass layer is obtained in a manufacturing process.
  • a gas barrier layer is formed, a polyimide film laminate having a polyimide film and at least one gas barrier layer (for example, an inorganic layer, an organic layer, or an inorganic / organic hybrid layer having a lower oxygen permeability than the polyimide film) Is obtained in the manufacturing process.
  • gas barrier layer for example, an inorganic layer, an organic layer, or an inorganic / organic hybrid layer having a lower oxygen permeability than the polyimide film
  • a laminate in which a thin film transistor (inorganic transistor or organic transistor) is formed that is, a polyimide film, a polyimide film laminate having at least one thin film transistor, and a laminate in which a conductive layer is formed, that is, a polyimide film
  • a polyimide film laminate having at least one conductive layer is also an embodiment of the polyimide film laminate of the present invention.
  • the polyimide composition obtained from the polyimide precursor composition of the present invention and the polyimide composition of the present invention are also, for example, an organic EL display, a liquid crystal display, an electrophoretic display, a plasma display, a plasma addressed liquid crystal display, and an inorganic EL display. It can also be suitably used for display devices such as field emission displays or surface electric field displays, sensor devices such as touch panels, photoelectric conversion devices such as solar cells, optical devices such as optical waveguides, and other semiconductor devices.
  • Total light transmittance Using a UV-visible spectrophotometer / V-650DS (manufactured by JASCO Corporation), the light transmittance at a total light transmittance (average transmittance at 380 nm to 780 nm) of a 10 ⁇ m-thick polyimide film was measured.
  • Linear thermal expansion coefficient (CTE) A polyimide film is cut into a strip of 4 mm in width to make a test piece, and TMA / SS6100 (manufactured by SII Nano Technology Co., Ltd.) is used. The temperature rose. The linear thermal expansion coefficient from 100 ° C. to 250 ° C. was determined from the obtained TMA curve.
  • strontium carbonate dispersion (1) As a strontium carbonate dispersion (1), a dispersion (solvent: NMP) using strontium carbonate described in JP-A-2014-80360 was prepared. In the dispersion (1), the content of strontium carbonate was 10% by mass, the average major axis was 36.7 nm, the average aspect ratio was 2.3, and the content of particles having a major axis of 200 nm or more was 0%.
  • Strontium carbonate dispersion (2) Strontium carbonate was dispersed in NMP by a known dispersion method without using a dispersant.
  • the content of strontium carbonate was 10% by mass
  • the average major axis was 36.7 nm
  • the average aspect ratio was 2.3
  • the content of particles having a major axis of 200 nm or more was 0%.
  • Strontium carbonate dispersion (3) As a strontium carbonate dispersion (3), a dispersion (solvent: water) using strontium carbonate described in JP-A No. 2014-80360 was prepared. In the dispersion (3) (water slurry), the content of strontium carbonate: 5.5% by mass, the average major axis was 31.7 nm, the average aspect ratio was 2.4, and the content of particles having a major axis of 200 nm or more was 0%.
  • the average major axis, average aspect ratio, and the content ratio (number basis) of particles having a major axis of 200 nm or more were determined from the SEM image by image analysis.
  • Example S-1 In a reaction vessel purged with nitrogen gas, 9.09 g (0.04 mol) of DABAN, 5.41 g (0.05 mol) of PPD and 3.68 g (0.01 mol) of BAPB were placed, and N-methyl-2- Pyrrolidone was added in an amount of 509.58 g so that the total monomer weight (total of diamine component and carboxylic acid component) was 10% by mass and stirred at room temperature for 1 hour. To this solution, 38.44 g (0.10 mol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor (polyamic acid) solution.
  • Example S-2 Into a reaction vessel substituted with nitrogen gas, 11.42 g (0.100 mol) of 1,4-tra-DACH was charged, and water was added, so that the total monomer mass (total of diamine component and carboxylic acid component) was 15% by mass. An amount of 231.37 g was added and stirred at room temperature for 1 hour. To this solution, 21.15 g (0.220 mol) of 1,2-dimethylimidazole was added and stirred at room temperature for 1 hour. To this solution, 28.67 g (0.0975 mol) of s-BPDA and 0.74 g (0.0025 mol) of a-BPDA were gradually added.
  • Table 1-1 shows the structural formulas of the tetracarboxylic acid components used in Examples and Comparative Examples
  • Table 1-2 shows the structural formulas of diamine components used in Examples and Comparative Examples.
  • Example 1 In a reaction vessel purged with nitrogen gas, 0.91 g (0.004 mol) of DABAN, 0.54 g (0.005 mol) of PPD and 0.37 g (0.001 mol) of BAPB were placed, and N-methyl-2- Pyrrolidone was added in an amount of 24.13 g so that the total monomer weight (total of diamine component and carboxylic acid component) was 19% by mass, and the mixture was stirred at room temperature for 1 hour. To this solution, 3.84 g (0.010 mol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution. To the obtained polyimide precursor solution, 5.66 g of strontium carbonate dispersion (1) was added and stirred at room temperature for 1 hour.
  • a polyimide precursor solution is applied to a glass substrate and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 410 ° C. as it is to imidize the material in a colorless transparent polyimide film / glass laminate. Got the body. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 2 In a reaction vessel substituted with nitrogen gas, 2.83 g of the strontium carbonate dispersion (1) and 25.08 g of N-methyl-2-pyrrolidone were added and stirred at room temperature for 1 hour. To this solution, 0.91 g (0.004 mol) of DABAN, 0.54 g (0.005 mol) of PPD and 0.37 g (0.001 mol) of BAPB were added and stirred at room temperature for 1 hour. To this solution, 3.84 g (0.010 mol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a viscous polyimide precursor solution.
  • a polyimide precursor solution is applied to a glass substrate and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 410 ° C. as it is to imidize the material in a colorless transparent polyimide film / glass laminate. Got the body. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 3 11.32 g of the strontium carbonate dispersion (1) and 17.44 g of N-methyl-2-pyrrolidone were added to the reaction vessel substituted with nitrogen gas, and the mixture was stirred at room temperature for 1 hour. To this solution, 0.91 g (0.004 mol) of DABAN, 0.54 g (0.005 mol) of PPD and 0.37 g (0.001 mol) of BAPB were added and stirred at room temperature for 1 hour. To this solution, 3.84 g (0.010 mol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a viscous polyimide precursor solution.
  • a polyimide precursor solution is applied to a glass substrate and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 410 ° C. as it is to imidize the material in a colorless transparent polyimide film / glass laminate. Got the body. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 4 28.3 g of strontium carbonate dispersion (1) and 2.16 g of N-methyl-2-pyrrolidone were added to the reaction vessel substituted with nitrogen gas, and the mixture was stirred at room temperature for 1 hour. To this solution, 0.91 g (0.004 mol) of DABAN, 0.54 g (0.005 mol) of PPD and 0.37 g (0.001 mol) of BAPB were added and stirred at room temperature for 1 hour. To this solution, 3.84 g (0.010 mol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a viscous polyimide precursor solution.
  • a polyimide precursor solution is applied to a glass substrate and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 410 ° C. as it is to imidize the material in a colorless transparent polyimide film / glass laminate. Got the body. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 5 In a reaction vessel substituted with nitrogen gas, 2.83 g of the strontium carbonate dispersion (2) and 25.08 g of N-methyl-2-pyrrolidone were added and stirred at room temperature for 1 hour. To this solution, 0.91 g (0.004 mol) of DABAN, 0.54 g (0.005 mol) of PPD and 0.37 g (0.001 mol) of BAPB were added and stirred at room temperature for 1 hour. To this solution, 3.84 g (0.010 mol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a viscous polyimide precursor solution.
  • a polyimide precursor solution is applied to a glass substrate and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 410 ° C. as it is to imidize the material in a colorless transparent polyimide film / glass laminate. Got the body. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 6 In a reaction vessel purged with nitrogen gas, 0.91 g (0.004 mol) of DABAN, 0.54 g (0.005 mol) of PPD and 0.37 g (0.001 mol) of BAPB were placed, and N-methyl-2- Pyrrolidone was added in an amount of 24.13 g so that the total monomer weight (total of diamine component and carboxylic acid component) was 19% by mass, and the mixture was stirred at room temperature for 1 hour. To this solution, 3.84 g (0.010 mol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution. To the obtained polyimide precursor solution, 7.08 g of strontium carbonate dispersion (4) was added and stirred at room temperature for 1 hour.
  • a polyimide precursor solution is applied to a glass substrate and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 410 ° C. as it is to imidize the material in a colorless transparent polyimide film / glass laminate. Got the body. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 7 In a reaction vessel purged with nitrogen gas, 7.08 g of the strontium carbonate dispersion (4) and 24.13 g of N-methyl-2-pyrrolidone were added and stirred at room temperature for 1 hour. To this solution, 0.91 g (0.004 mol) of DABAN, 0.54 g (0.005 mol) of PPD and 0.37 g (0.001 mol) of BAPB were added and stirred at room temperature for 1 hour. To this solution, 3.84 g (0.010 mol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a viscous polyimide precursor solution.
  • a polyimide precursor solution is applied to a glass substrate and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 410 ° C. as it is to imidize the material in a colorless transparent polyimide film / glass laminate. Got the body. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • a polyimide precursor solution is applied to a glass substrate and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 410 ° C. as it is to imidize the material in a colorless transparent polyimide film / glass laminate. Got the body. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 8 In a reaction vessel substituted with nitrogen gas, 5.1 g of strontium carbonate dispersion (5), 18.54 g of water and 2.11 g (0.0220 mol) of 1,2-dimethylimidazole were added, and the mixture was stirred at room temperature for 1 hour. To this solution, 1.14 g (0.0100 mol) of 1,4-tra-DACH was added and stirred at room temperature for 1 hour. To this solution, 2.87 g (0.00975 mol) of s-BPDA and 0.07 g (0.00025 mol) of a-BPDA were gradually added. The mixture was stirred at room temperature for 12 hours to obtain a viscous polyimide precursor solution.
  • a polyimide precursor solution is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 350 ° C. as it is, and thermally imidized to form a colorless transparent polyimide film / glass laminate. Got the body. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • a polyimide precursor solution is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 350 ° C. as it is, and thermally imidized to form a colorless transparent polyimide film / glass laminate. Got the body. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 9 In a reaction vessel substituted with nitrogen gas, 20.02 g (0.100 mol) of 4,4′-ODA was put, N, N-dimethylacetamide was charged, and the total monomer mass (total of diamine component and carboxylic acid component) was 207.21 g of an amount of 17% by mass was added and stirred at room temperature for 1 hour. To this solution, 22.41 g (0.100 mmol) of PMDA-HS was gradually added. Stir at room temperature for 12 hours. 30 g of toluene was added to this solution and heated at 180 ° C. for 8 hours to perform imidization. This solution was re-precipitated in a large amount of water, filtered and dried.
  • a polyimide solution is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 350 ° C. as it is to thermally imidize a colorless transparent polyimide film / glass laminate. Obtained. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 10 In a reaction vessel substituted with nitrogen gas, 20.02 g (0.100 mol) of 4,4′-ODA was put, N, N-dimethylacetamide was charged, and the total monomer mass (total of diamine component and carboxylic acid component) was 207.21 g of an amount of 17% by mass was added and stirred at room temperature for 1 hour. To this solution, 22.41 g (0.100 mmol) of PMDA-HS was gradually added. Stir at room temperature for 12 hours. 30 g of toluene was added to this solution and heated at 180 ° C. for 8 hours to perform imidization. This solution was re-precipitated in a large amount of water, filtered and dried.
  • a polyimide solution is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 350 ° C. as it is to thermally imidize a colorless transparent polyimide film / glass laminate. Obtained. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • a polyimide solution is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 350 ° C. as it is to thermally imidize a colorless transparent polyimide film / glass laminate. Obtained. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 11 7.20 g of the strontium carbonate dispersion (1) and 22.30 g of N-methyl-2-pyrrolidone were added to the reaction vessel substituted with nitrogen gas, and the mixture was stirred at room temperature for 1 hour. 3.20 g (0.010 mol) of TFMB was placed in a reaction vessel substituted with nitrogen gas, and stirred at room temperature for 1 hour. To this solution, 0.88 g (0.0030 mol) of s-BPDA and 6FDA 3.11 (0.0070 mol) were gradually added. Stir at room temperature for 12 hours. To this solution, 0.96 g (0.010 mol) of 1,2-dimethylimidazole was added and stirred at room temperature for 1 hour to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide precursor solution is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 350 ° C. as it is, and thermally imidized to form a colorless transparent polyimide film / glass laminate. Got the body. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • a polyimide precursor solution is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 350 ° C. as it is, and thermally imidized to form a colorless transparent polyimide film / glass laminate. Got the body. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 12 In a reaction vessel substituted with nitrogen gas, 2.13 g of strontium carbonate dispersion (1) and 31.24 g of N-methyl-2-pyrrolidone were added and stirred at room temperature for 1 hour. To this solution, 2.12 g (0.01 mol) of m-TD was added and stirred at room temperature for 1 hour. To this solution, 0.38 g (0.001 mol) of CpODA and 1.76 g (0.009 mol) of CBDA were gradually added. Stir at room temperature for 12 hours. To this solution, 0.10 g (0.001 mol) of 1,2-dimethylimidazole was added and stirred at room temperature for 1 hour to obtain a viscous polyimide precursor solution.
  • the polyimide precursor solution was applied to a glass substrate so that the final film thickness was about 80 ⁇ m, and pre-dried on a hot plate at 80 ° C.
  • the obtained film was peeled off from the glass substrate, and only the upper and lower sides were fixed to the pin tenter, and heated from room temperature to 260 ° C. in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) to thermally imidize, and colorless.
  • a transparent polyimide film was obtained.
  • the film thickness of the obtained polyimide film was about 80 ⁇ m.
  • the polyimide precursor solution was applied to a glass substrate so that the final film thickness was about 80 ⁇ m, and pre-dried on a hot plate at 80 ° C.
  • the obtained film was peeled off from the glass substrate, and only the upper and lower sides were fixed to the pin tenter, and heated from room temperature to 260 ° C. in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) to thermally imidize, and colorless.
  • a transparent polyimide film was obtained.
  • the film thickness of the obtained polyimide film was about 80 ⁇ m.
  • a polyimide composition that can be easily produced, has a small retardation in the thickness direction and in-plane direction, and is excellent in transparency, mechanical properties, heat resistance, and the like, and a precursor composition thereof. Can do.
  • This polyimide composition is excellent in transparency, mechanical properties, heat resistance, and the like, and has a small retardation in the thickness direction and in-plane direction, so that it forms substrates for displays, touch panels, solar cells and the like. Therefore, it can be used suitably.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Organic Insulating Materials (AREA)

Abstract

本発明は、ポリイミド前駆体と光学異方性を有する微粒子とを含むポリイミド前駆体組成物、及び、ポリイミドと光学異方性を有する微粒子とを含むポリイミド組成物に関する。

Description

ポリイミド前駆体組成物、及びポリイミド組成物
 本発明は、厚み方向及び面内方向の位相差(レタデーション)が小さく、透明性、機械的特性、または耐熱性等の特性にも優れるポリイミド組成物、及びその前駆体組成物に関する。また、本発明は、厚み方向及び面内方向の位相差が小さく、透明性、機械的特性、または耐熱性等の特性にも優れるポリイミドフィルム、及び基板等にも関する。
 近年、高度情報化社会の到来に伴い、光通信分野の光ファイバーや光導波路等、表示装置分野の液晶配向膜やカラーフィルター用保護膜等の光学材料の開発が進んでいる。特に表示装置分野で、ガラス基板の代替として軽量でフレキシブル性に優れたプラスチック基板の検討や、曲げたり丸めたりすることが可能なディスプレイの開発が盛んに行われている。このため、その様な用途に用いることができる、より高性能の光学材料が求められている。
 芳香族ポリイミドは、分子内共役や電荷移動錯体の形成により、本質的に黄褐色に着色する。このため着色を抑制する手段として、例えば分子内へのフッ素原子の導入、主鎖への屈曲性の付与、側鎖として嵩高い基の導入などによって、分子内共役や電荷移動錯体の形成を阻害して、透明性を発現させる方法が提案されている(例えば、特許文献1)。
 また、原理的に電荷移動錯体を形成しない半脂環式または全脂環式ポリイミドを用いることにより透明性を発現させる方法も提案されている(例えば、特許文献2~5)。
 しかしながら、用途によっては、特に表示装置などの分野においては、透明性が高いことに加え、厚み方向及び面内方向の位相差(レタデーション)を低下させることが望まれている。位相差が大きいフィルムを透過することで、色が正しく表示されない、色のにじみや視野角が狭くなるといった問題が起こることがある。そのため、特に表示装置などの分野においては、位相差が小さいポリイミドフィルムが求められている。
 一方、特許文献6には、結合鎖の配向によって生じた配向複屈折性を有する透明な高分子樹脂(具体的には、ポリスチレン、ポリフェニレンオキサイド、ポリカーボネート、ポリビニルクロライド、ポリメチルメタクリレート、ポリエチレンテレフタレート、ポリエチレン)と、前記高分子樹脂中に分散した、特定の製造方法によって製造された炭酸ストロンチウムの微粒子とを含み、前記炭酸ストロンチウムの微粒子は、前記高分子樹脂内で前記高分子樹脂の配向複屈折性を減殺するように統計的に配向している、非複屈折性光学樹脂材料が開示されている。より具体的には、特許文献6に記載されている非複屈折性光学樹脂材料では、ポリマーフィルム中に針状結晶である炭酸ストロンチウムの微粒子を添加し、ポリマーフィルムを熱延伸することにより、炭酸ストロンチウムの微粒子を熱延伸方向に沿って統計的に配向させている。あるいは、ポリマーペレット中に炭酸ストロンチウムの棒状結晶微粒子を添加し、このポリマーペレットを射出成形法や押出成形法に使用し、ポリマー溶融時の流動によって炭酸ストロンチウムの微粒子を配向させている。
 特許文献7、特許文献8には、複屈折性を有する高分子樹脂に分散させて複屈折性を低減させるために用いられる、配向複屈折性を有する炭酸ストロンチウムの微粒子が開示されている。
 また、特許文献9には、光学異方性を有する微粒子(具体的には、炭酸ストロンチウム微粒子)に対し分散剤(具体的には、リン酸エステル分散剤)5重量%以上を添加し、溶媒中に分散させた微粒子分散液に透明性高分子(具体的には、ポリカーボネート、N-メチルマレイミド・イソブテン共重合体)を溶解し、得られた微粒子分散高分子溶液を溶液流延法により成膜し、フィルム化する光学フィルムの製造方法が開示されている。
 特許文献10には、特定の構造を有するポリイミドを含んでなる熱可塑性高分子フィルムを延伸し、位相差フィルムを得ることを特徴とする位相差フィルムの製造方法が開示されている。
特表2010-538103号公報 特開2012-41529号公報 国際公開第2014/046064号 特開2009-286706号公報 特開2014-92775号公報 特開2004-35347号公報 特開2006-21987号公報 特開2014-80360号公報 特開2007-140011号公報 特開2006-3715号公報
 本発明は、容易に製造可能で、厚み方向及び面内方向の位相差が小さく、透明性、機械的特性、または耐熱性等にも優れるポリイミド組成物、及びその前駆体組成物を提供することを目的とする。また、本発明は、厚み方向及び面内方向の位相差が小さく、透明性、機械的特性、または耐熱性等にも優れるポリイミド組成物が得られるワニス、並びに、厚み方向及び面内方向の位相差が小さく、透明性、機械的特性、または耐熱性等にも優れるポリイミドフィルム、及び基板を提供することも目的とする。
 本発明は、以下の各項に関する。
1. ポリイミド前駆体(A1)と、光学異方性を有する微粒子(B)とを含むことを特徴とするポリイミド前駆体組成物。
2. 前記ポリイミド前駆体(A1)が、下記化学式(1)で表される繰り返し単位の少なくとも1種を含むことを特徴とする前記項1に記載のポリイミド前駆体組成物。
Figure JPOXMLDOC01-appb-C000005
 
(式中、Xは芳香族環または脂環構造を有する4価の基であり、Yは芳香族環または脂環構造を有する2価の基であり、R、Rはそれぞれ独立に水素、炭素数1~6のアルキル基、または炭素数3~9のアルキルシリル基である。)
3. Xが脂環構造を有する4価の基であり、Yが脂環構造を有する2価の基である化学式(1)で表される繰り返し単位の含有量が、全繰り返し単位に対して、50モル%以下であることを特徴とする前記項2に記載のポリイミド前駆体組成物。
4. 化学式(1)中のXが芳香族環を有する4価の基であり、Yが芳香族環を有する2価の基であることを特徴とする前記項2に記載のポリイミド前駆体組成物。
5. 化学式(1)中のXが脂環構造を有する4価の基であり、Yが芳香族環を有する2価の基であることを特徴とする前記項2に記載のポリイミド前駆体組成物。
6. 化学式(1)中のXが芳香族環を有する4価の基であり、Yが脂環構造を有する2価の基であることを特徴とする前記項2に記載のポリイミド前駆体組成物。
7. 前記光学異方性を有する微粒子(B)が、炭酸ストロンチウムであることを特徴とする前記項1~6のいずれかに記載のポリイミド前駆体組成物。
8. ポリイミド(A2)と、光学異方性を有する微粒子(B)とを含むことを特徴とするポリイミド組成物。
9. 前記ポリイミド(A2)が、下記化学式(7)で表される繰り返し単位の少なくとも1種を含むことを特徴とする前記項8に記載のポリイミド組成物。
Figure JPOXMLDOC01-appb-C000006
 
(式中、Xは芳香族環または脂環構造を有する4価の基であり、Yは芳香族環または脂環構造を有する2価の基である。)
10. 前記項1~7のいずれかに記載のポリイミド前駆体組成物から得られることを特徴とするポリイミド組成物。
11. 前記項1~7のいずれかに記載のポリイミド前駆体組成物から得られるポリイミド組成物、又は前記項8~9のいずれかに記載のポリイミド組成物からなることを特徴とするポリイミドフィルム。
12. 前記項11記載のポリイミドフィルムと、少なくとも1層のガラス層を有することを特徴とするポリイミドフィルム積層体。
13. 前記項11記載のポリイミドフィルムと、少なくとも1層のガスバリヤ層を有することを特徴とするポリイミドフィルム積層体。
14. 前記項11記載のポリイミドフィルムと、少なくとも1層の薄膜トランジスタを有することを特徴とするポリイミドフィルム積層体。
15. 前記項11記載のポリイミドフィルムと、少なくとも1層の導電層を有すること特徴とする前記項12または13に記載のポリイミドフィルム積層体。
16. ポリイミド前駆体(A1)又はポリイミド(A2)と、光学異方性を有する微粒子(B)と、溶媒とを含むことを特徴とするワニス。
17. 前記項16に記載のワニスを用いて得られたことを特徴とするポリイミド組成物。
18. 前記項16に記載のワニスを用いて得られたことを特徴とするポリイミドフィルム。
19. 前記項1~7のいずれかに記載のポリイミド前駆体組成物から得られるポリイミド組成物、又は前記項8~9のいずれかに記載のポリイミド組成物を含むことを特徴とするディスプレイ用、タッチパネル用、または太陽電池用のフィルム(例えば、基板など)。
20. 前記項1~7のいずれかに記載のポリイミド前駆体組成物から得られるポリイミド組成物、又は前記項8~9のいずれかに記載のポリイミド組成物を含むことを特徴とする表示デバイス、センサーデバイス、光電変換デバイス、または光学デバイス。
21. 下記化学式(8)で表される繰り返し単位を含むポリアミック酸(A3)で表面処理された光学異方性を有する微粒子粉末。
Figure JPOXMLDOC01-appb-C000007
 
(式中、Xは芳香族環または脂環構造を有する4価の基であり、Yは芳香族環または脂環構造を有する2価の基である。ただし、式中のカルボキシル基(-COOH)は、塩基と塩を形成していてもよい。)
22. 下記化学式(8)で表される繰り返し単位を含むポリアミック酸(A3)と、光学異方性を有する微粒子(B)と、溶媒(C)とを含む微粒子分散液。
Figure JPOXMLDOC01-appb-C000008
 
(式中、Xは芳香族環または脂環構造を有する4価の基であり、Yは芳香族環または脂環構造を有する2価の基である。ただし、式中のカルボキシル基(-COOH)は、塩基と塩を形成していてもよい。)
 本発明によって、容易に製造可能で、厚み方向及び面内方向の位相差が小さく、透明性、機械的特性、または耐熱性等にも優れるポリイミド組成物、及びその前駆体組成物を提供することができる。
 また、本発明によって、厚み方向及び面内方向の位相差が小さく、透明性、機械的特性、または耐熱性等にも優れるポリイミド組成物が得られるワニス(ポリイミド前駆体溶液組成物、ポリイミド溶液組成物)を提供することができる。
 さらに、本発明によって、厚み方向及び面内方向の位相差が小さく、透明性、機械的特性、または耐熱性等にも優れるポリイミドフィルム、及び基板を提供することができる。本発明のポリイミド前駆体組成物から得られるポリイミド組成物、または本発明のポリイミド組成物は、優れた特性を有するため、ディスプレイ用、タッチパネル用、太陽電池用などの基板を形成するために好適に用いることができる。本発明のポリイミド前駆体組成物から得られるポリイミド組成物、または本発明のポリイミド組成物は、その他のデバイス(半導体装置など)においても、基板用途に好適に用いることができ、さらに、各種ディスプレイ等の表示デバイス、タッチパネル等のセンサーデバイス、太陽電池等の光電変換デバイスや、その他の光学デバイス等において、基板以外に、カバーフィルム、カラーフィルター用途等にも好適に用いることができる。
 本発明においては、ポリイミド組成物のフィルムを熱延伸する、あるいは、ポリイミド組成物を溶融して射出成形や押出成形すること等により炭酸ストロンチウム等の光学異方性を有する針状または棒状の微粒子を一方向に配向させなくても、すなわち、特別な微粒子の配向処理なしで、単に、ポリイミド組成物の製造に用いるワニス(すなわち、ポリイミド前駆体溶液組成物、ポリイミド溶液組成物)に光学異方性を有する微粒子を添加することで、容易に、面内方向の位相差のみならず、厚み方向の位相差も低下させることができる。また、延伸、射出成形法や押出成形法では、ポリマーの延伸や成型等外部応力によってポリマー分子とともに炭酸ストロンチウム等の光学異方性を有する微粒子を配向させているが、このような成形加工では、厳密にポリマーの流動性を制御することや、均一なポリマー流動を実現することが困難なため、ポリマー分子、及び光学異方性を有する微粒子の配向を厳密に制御することが難しく、良質な光学フィルムを得ることが困難である。これに対して、特に前記化学式(1)で表される繰り返し単位の少なくとも1種を、好ましくは全繰り返し単位に対して70モル%以上含むポリイミド前駆体、前記化学式(7)で表される繰り返し単位の少なくとも1種を、好ましくは全繰り返し単位に対して70モル%以上含むポリイミドを用いる本発明においては、延伸等の特別な操作をすることなく、光学異方性を有する微粒子を効率的に配向させることができ、良質な光学フィルムを容易に製造できる。特にポリイミド前駆体(ポリアミック酸)と光学異方性を有する微粒子とを含むポリイミド前駆体組成物をイミド化する場合、イミド化反応時に水分子が脱離し、分子鎖配向が進み、それに伴い、光学異方性を有する微粒子をより効果的に、より良好に配向させることが可能である。そのため、上記以外のポリイミド前駆体をイミド化する場合でも、得られるポリイミド組成物の厚み方向及び面内方向の位相差を低下させることができるが、上記の組成のポリイミド前駆体の場合、その効果が大きく、好ましい。
 本発明のポリイミドフィルム/基材積層体、もしくはポリイミドフィルムは、例えば前述のポリイミド前駆体組成物、及び前述のポリイミド組成物(例えば、ポリイミドが溶解している溶液の組成物)を原料として、好適に得られる。
 また、本発明によって、ポリイミド組成物、及びその前駆体組成物に好適に用いることができる表面処理された光学異方性を有する微粒子粉末、および、光学異方性を有する微粒子と、溶媒とを含む微粒子分散液を提供することができる。
 本発明のポリイミド前駆体組成物は、ポリイミド前駆体(A1)と、光学異方性を有する微粒子(B)とを含む。ポリイミド前駆体(A1)は、例えば、下記化学式(1)で表される繰り返し単位の少なくとも1種を含むものである。
Figure JPOXMLDOC01-appb-C000009
 
(式中、Xは芳香族環または脂環構造を有する4価の基であり、Yは芳香族環または脂環構造を有する2価の基であり、R、Rはそれぞれ独立に水素、炭素数1~6のアルキル基、または炭素数3~9のアルキルシリル基である。)
 ただし、ポリイミド前駆体(A1)は、イミド化が一部進行した、イミド構造の繰り返し単位を含む、部分イミド化ポリアミド酸等であってもよい。
 本発明のポリイミド組成物は、ポリイミド(A2)と、光学異方性を有する微粒子(B)とを含む。ポリイミド(A2)は、例えば、下記化学式(7)で表される繰り返し単位の少なくとも1種を含むものである。
Figure JPOXMLDOC01-appb-C000010
 
(式中、Xは芳香族環または脂環構造を有する4価の基であり、Yは芳香族環または脂環構造を有する2価の基である。)
 以下、本発明のポリイミド前駆体組成物に用いるポリイミド前駆体(A1)、本発明のポリイミド組成物に用いるポリイミド(A2)、並びに、本発明のポリイミド前駆体組成物、及び本発明のポリイミド組成物に用いる光学異方性を有する微粒子(B)について詳細に説明する。
 <ポリイミド前駆体(A1)>
 ポリイミド前駆体(A1)は、例えば、前記化学式(1)で表される繰り返し単位の少なくとも1種を含むものである。
 特に限定されるわけではないが、得られるポリイミド組成物が耐熱性に優れるため、ポリイミド前駆体(A1)の化学式(1)中のXが芳香族環を有する4価の基であり、Yが芳香族環を有する2価の基であることが好ましい。また、得られるポリイミド組成物が耐熱性に優れると同時に透明性に優れるため、Xが脂環構造を有する4価の基であり、Yが芳香族環を有する2価の基であることが好ましい。また、得られるポリイミド組成物が耐熱性に優れると同時に寸法安定性に優れるため、Xが芳香族環を有する4価の基であり、Yが脂環構造を有する2価の基であることが好ましい。
 得られるポリイミド組成物の特性、例えば、透明性、機械的特性、または耐熱性等の点から、Xが脂環構造を有する4価の基であり、Yが脂環構造を有する2価の基である化学式(1)で表される繰り返し単位の含有量は、全繰り返し単位に対して、好ましくは50モル%以下、より好ましくは30モル%以下または30モル%未満、より好ましくは10モル%以下であることが好ましい。
 ある実施態様においては、ポリイミド前駆体(A1)は、Xが芳香族環を有する4価の基であり、Yが芳香族環を有する2価の基である前記化学式(1)の繰り返し単位の1種以上の含有量が、合計で、全繰り返し単位に対して、好ましくは50モル%以上、より好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは100モル%であることが好ましい。この実施態様において、特に高透明性のポリイミド組成物が求められる場合は、ポリイミド前駆体(A1)はフッ素原子を含有することが好ましい。すなわち、ポリイミド前駆体(A1)は、Xがフッ素原子を含有する芳香族環を有する4価の基である前記化学式(1)の繰り返し単位および/またはYがフッ素原子を含有する芳香族環を有する2価の基である前記化学式(1)の繰り返し単位の1種以上を含むことが好ましい。
 ある実施態様においては、ポリイミド前駆体(A1)は、Xが脂環構造を有する4価の基であり、Yが芳香族環を有する2価の基である前記化学式(1)の繰り返し単位の1種以上の含有量が、合計で、全繰り返し単位に対して、好ましくは50モル%以上、より好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは100モル%であることが好ましい。
 ある実施態様においては、ポリイミド前駆体(A1)は、Xが芳香族環を有する4価の基であり、Yが脂環構造を有する2価の基である前記化学式(1)の繰り返し単位の1種以上の含有量が、合計で、全繰り返し単位に対して、好ましくは50モル%以上、より好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは100モル%であることが好ましい。
 Xの芳香族環を有する4価の基としては、炭素数が6~40の芳香族環を有する4価の基が好ましい。
 芳香族環を有する4価の基としては、例えば、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000011
 
(式中、Zは直接結合、または、下記の2価の基:
Figure JPOXMLDOC01-appb-C000012
 
のいずれかである。ただし、式中のZは、2価の有機基である。)
 Zとしては、具体的には、炭素数2~24の脂肪族炭化水素基、炭素数6~24の芳香族炭化水素基が挙げられる。
 芳香族環を有する4価の基としては、得られるポリイミド組成物の高耐熱性と高透明性を両立できるので、下記のものが特に好ましい。
Figure JPOXMLDOC01-appb-C000013
 
(式中、Zは直接結合、または、へキサフルオロイソプロピリデン結合である。)
 ここで、得られるポリイミド組成物の高耐熱性、高透明性、低線熱膨張係数を両立できるので、Zは直接結合であることがより好ましい。
 Xが芳香族環を有する4価の基である化学式(1)の繰り返し単位を与えるテトラカルボン酸成分としては、例えば、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸、ピロメリット酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、4,4’-オキシジフタル酸、ビス(3,4-ジカルボキシフェニル)スルホン、m-ターフェニル-3,4,3’,4’-テトラカルボン酸、p-ターフェニル-3,4,3’,4’-テトラカルボン酸、ビスカルボキシフェニルジメチルシラン、ビスジカルボキシフェノキシジフェニルスルフィド、スルホニルジフタル酸や、これらのテトラカルボン酸二無水物、テトラカルボン酸シリルエステル、テトラカルボン酸エステル、テトラカルボン酸クロライド等の誘導体が挙げられる。Xがフッ素原子を含有する芳香族環を有する4価の基である化学式(1)の繰り返し単位を与えるテトラカルボン酸成分としては、例えば、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパンや、これのテトラカルボン酸二無水物、テトラカルボン酸シリルエステル、テトラカルボン酸エステル、テトラカルボン酸クロライド等の誘導体が挙げられる。テトラカルボン酸成分は、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 Xの脂環構造を有する4価の基としては、炭素数が4~40の脂環構造を有する4価の基が好ましく、少なくとも一つの脂肪族4~12員環、より好ましくは脂肪族4員環または脂肪族6員環を有することがより好ましい。
 さらに、Xの脂環構造を有する4価の基としては、耐熱性と透明性を両立できることから、化学構造中に少なくとも一つの脂肪族6員環を有し、且つ、芳香族環を有さないことが好ましい。X(脂環構造を有する4価の基)中の6員環は複数であってよく、複数の6員環が二つ以上の共通の炭素原子によって構成されていても構わない。また、6員環は、環を構成する(6員環の内部の)炭素原子同士が結合して更に環を形成した架橋環型であっても構わない。
 X(脂環構造を有する4価の基)は、対称性が高い6員環構造を有するものが、高分子鎖の密なパッキングが可能となり、ポリイミドの耐溶剤性、耐熱性、機械強度に優れるため好ましい。さらに、X(脂環構造を有する4価の基)においては、複数の6員環が二つ以上の共通の炭素原子によって構成されていること、及び6員環が環を構成する炭素原子同士が結合して更に環を形成していることが、ポリイミドの良好な耐熱性、耐溶剤性、低線膨張係数を達成し易いのでより好ましい。
 好ましい脂肪族4員環または脂肪族6員環を有する4価の基としては、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000014
 
(式中、R31~R36は、それぞれ独立に直接結合、または、2価の有機基である。R41~R47は、それぞれ独立に 式:-CH-、-CH=CH-、-CHCH-、-O-、-S-で表される基よりなる群から選択される1種を示す。)
 R31、R32、R33、R34、R35、R36としては、具体的には、直接結合、または、炭素数1~6の脂肪族炭化水素基、または、酸素原子(-O-)、硫黄原子(-S-)、カルボニル結合、エステル結合、アミド結合が挙げられる。
 脂環構造を有する4価の基としては、得られるポリイミドの高耐熱性、高透明性、低線熱膨張係数を両立できるので、下記のものが特に好ましい。
Figure JPOXMLDOC01-appb-C000015
 
 Xが脂環構造を有する4価の基である化学式(1)の繰り返し単位を与えるテトラカルボン酸成分としては、例えば、1,2,3,4-シクロブタンテトラカルボン酸、イソプロピリデンジフェノキシビスフタル酸、シクロヘキサン-1,2,4,5-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-3,3’,4,4’-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-2,3,3’,4’-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-2,2’,3,3’-テトラカルボン酸、4,4’-メチレンビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(プロパン-2,2-ジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-オキシビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-チオビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-スルホニルビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(ジメチルシランジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(テトラフルオロプロパン-2,2-ジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)、オクタヒドロペンタレン-1,3,4,6-テトラカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸、6-(カルボキシメチル)ビシクロ[2.2.1]ヘプタン-2,3,5-トリカルボン酸、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸、ビシクロ[2.2.2]オクタ-5-エン-2,3,7,8-テトラカルボン酸、トリシクロ[4.2.2.02,5]デカン-3,4,7,8-テトラカルボン酸、トリシクロ[4.2.2.02,5]デカ-7-エン-3,4,9,10-テトラカルボン酸、9-オキサトリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン5,5’’,6,6’’-テトラカルボン酸、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2c,3c,6c,7c-テトラカルボン酸、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2t,3t,6c,7c-テトラカルボン酸や、これらのテトラカルボン酸二無水物、テトラカルボン酸シリルエステル、テトラカルボン酸エステル、テトラカルボン酸クロライド等の誘導体が挙げられる。テトラカルボン酸成分は、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 Yの芳香族環を有する2価の基としては、炭素数が6~40、更に好ましくは炭素数が6~20の芳香族環を有する2価の基が好ましい。
 芳香族環を有する2価の基としては、例えば、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000016
 
(式中、Wは直接結合、または、2価の有機基であり、n11~n13は、それぞれ独立に0~4の整数を表し、R51、R52、R53は、それぞれ独立に炭素数1~6のアルキル基、ハロゲン基、水酸基、カルボキシル基、またはトリフルオロメチル基である。)
 Wとしては、具体的には、下記の式(5)で表される2価の基、下記の式(6)で表される2価の基が挙げられる。
Figure JPOXMLDOC01-appb-C000017
 
(式(6)中のR61~R68は、それぞれ独立に前記式(5)で表される2価の基のいずれかを表す。)
 ここで、得られるポリイミドの高耐熱性、高透明性、低線熱膨張係数を両立できるので、Wは、直接結合、または 式:-NHCO-、-CONH-、-COO-、-OCO-で表される基よりなる群から選択される1種であることが特に好ましい。また、Wが、R61~R68が直接結合、または 式:-NHCO-、-CONH-、-COO-、-OCO-で表される基よりなる群から選択される1種である前記式(5)で表される2価の基のいずれかであることも特に好ましい。
 Yが芳香族環を有する2価の基である化学式(1)の繰り返し単位を与えるジアミン成分としては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、ベンジジン、3,3’-ジアミノ-ビフェニル、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス(トリフルオロメチル)ベンジジン、m-トリジン、4,4’-ジアミノベンズアニリド、3,4’-ジアミノベンズアニリド、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-p-フェニレンビス(p-アミノベンズアミド)、4-アミノフェノキシ-4-ジアミノベンゾエート、ビス(4-アミノフェニル)テレフタレート、ビフェニル-4,4’-ジカルボン酸ビス(4-アミノフェニル)エステル、p-フェニレンビス(p-アミノベンゾエート)、ビス(4-アミノフェニル)-[1,1’-ビフェニル]-4,4’-ジカルボキシレート、[1,1’-ビフェニル]-4,4’-ジイル ビス(4-アミノベンゾエート)、4,4’-オキシジアニリン、3,4’-オキシジアニリン、3,3’-オキシジアニリン、p-メチレンビス(フェニレンジアミン)、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、ビス(4-アミノフェニル)スルホン、3,3’-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス((アミノフェノキシ)フェニル)プロパン、2,2’-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4-(4-アミノフェノキシ)ジフェニル)スルホン、ビス(4-(3-アミノフェノキシ)ジフェニル)スルホン、オクタフルオロベンジジン、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジクロロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、2,4-ビス(4-アミノアニリノ)-6-アミノ-1,3,5-トリアジン、2,4-ビス(4-アミノアニリノ)-6-メチルアミノ-1,3,5-トリアジン、2,4-ビス(4-アミノアニリノ)-6-エチルアミノ-1,3,5-トリアジン、2,4-ビス(4-アミノアニリノ)-6-アニリノ-1,3,5-トリアジンが挙げられる。Yがフッ素原子を含有する芳香族環を有する2価の基である化学式(1)の繰り返し単位を与えるジアミン成分としては、例えば、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス(トリフルオロメチル)ベンジジン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンが挙げられる。ジアミン成分は、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 Yの脂環構造を有する2価の基としては、炭素数が4~40の脂環構造を有する2価の基が好ましく、少なくとも一つの脂肪族4~12員環、より好ましくは脂肪族6員環を有することが更に好ましい。
 脂環構造を有する2価の基としては、例えば、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000018
 
(式中、V、Vは、それぞれ独立に直接結合、または、2価の有機基であり、n21~n26は、それぞれ独立に0~4の整数を表し、R81~R86は、それぞれ独立に炭素数1~6のアルキル基、ハロゲン基、水酸基、カルボキシル基、またはトリフルオロメチル基であり、R91、R92、R93は、それぞれ独立に 式:-CH-、-CH=CH-、-CHCH-、-O-、-S-で表される基よりなる群から選択される1種である。)
 V、Vとしては、具体的には、前記の式(5)で表される2価の基が挙げられる。
 脂環構造を有する2価の基としては、得られるポリイミドの高耐熱性、低線熱膨張係数を両立できるので、下記のものが特に好ましい。
Figure JPOXMLDOC01-appb-C000019
 
 脂環構造を有する2価の基としては、中でも、下記のものが好ましい。
Figure JPOXMLDOC01-appb-C000020
 
 Yが脂環構造を有する2価の基である化学式(1)の繰り返し単位を与えるジアミン成分としては、例えば、1,4-ジアミノシクロへキサン、1,4-ジアミノ-2-メチルシクロヘキサン、1,4-ジアミノ-2-エチルシクロヘキサン、1,4-ジアミノ-2-n-プロピルシクロヘキサン、1,4-ジアミノ-2-イソプロピルシクロヘキサン、1,4-ジアミノ-2-n-ブチルシクロヘキサン、1,4-ジアミノ-2-イソブチルシクロヘキサン、1,4-ジアミノ-2-sec-ブチルシクロヘキサン、1,4-ジアミノ-2-tert-ブチルシクロヘキサン、1,2-ジアミノシクロへキサン、1,3-ジアミノシクロブタン、1,4-ビス(アミノメチル)シクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、ジアミノビシクロヘプタン、ジアミノメチルビシクロヘプタン、ジアミノオキシビシクロヘプタン、ジアミノメチルオキシビシクロヘプタン、イソホロンジアミン、ジアミノトリシクロデカン、ジアミノメチルトリシクロデカン、ビス(アミノシクロへキシル)メタン、ビス(アミノシクロヘキシル)イソプロピリデン、6,6’-ビス(3-アミノフェノキシ)-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン、6,6’-ビス(4-アミノフェノキシ)-3,3,3’,3’-テトラメチル-1,1’-スピロビインダンが挙げられる。ジアミン成分は、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 前記化学式(1)で表される繰り返し単位の少なくとも1種を含むポリイミド前駆体(A1)は、前記化学式(1)で表される繰り返し単位以外の、他の繰り返し単位を含むことができる。
 他の繰り返し単位を与えるテトラカルボン酸成分およびジアミン成分としては、特に限定されず、他の公知の脂肪族テトラカルボン酸類、公知の脂肪族ジアミン類いずれも使用することができる。他のテトラカルボン酸成分も、単独で使用してもよく、また複数種を組み合わせて使用することもできる。他のジアミン成分も、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 前記化学式(1)で表される繰り返し単位以外の、他の繰り返し単位の含有量は、全繰り返し単位に対して、好ましくは30モル%以下または30モル%未満、より好ましくは20モル%以下、さらに好ましくは10モル%以下であることが好ましい。
 ポリイミド前駆体(A1)の前記化学式(1)において、R、Rはそれぞれ独立に水素、炭素数1~6、好ましくは炭素数1~3のアルキル基、または炭素数3~9のアルキルシリル基のいずれかである。R及びRが水素である場合、ポリイミドの製造が容易である傾向がある。
 R及びRは、後述する製造方法によって、その官能基の種類、及び、官能基の導入率を変化させることができる。
 本発明のポリイミド前駆体(A1)(前記化学式(1)で表される繰り返し単位の少なくとも1種を含むポリイミド前駆体)は、R及びRが取る化学構造によって、
1)ポリアミド酸(R及びRが水素)、
2)ポリアミド酸エステル(R及びRの少なくとも一部がアルキル基)、
3)4)ポリアミド酸シリルエステル(R及びRの少なくとも一部がアルキルシリル基)、
に分類することができる。そして、本発明のポリイミド前駆体(A1)は、この分類ごとに、以下の製造方法により容易に製造することができる。ただし、本発明のポリイミド前駆体(A1)の製造方法は、以下の製造方法に限定されるものではない。
1)ポリアミド酸
 本発明のポリイミド前駆体(A1)は、溶媒中でテトラカルボン酸成分としてのテトラカルボン酸二無水物とジアミン成分とを略等モル、好ましくはテトラカルボン酸成分に対するジアミン成分のモル比[ジアミン成分のモル数/テトラカルボン酸成分のモル数]が好ましくは0.90~1.10、より好ましくは0.95~1.05の割合で、例えば120℃以下の比較的低温度でイミド化を抑制しながら反応することによって、ポリイミド前駆体溶液組成物として好適に得ることができる。
 限定するものではないが、より具体的には、有機溶剤または水にジアミンを溶解し、この溶液に攪拌しながら、テトラカルボン酸二無水物を徐々に添加し、0~120℃、好ましくは5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。上記製造方法でのジアミンとテトラカルボン酸二無水物の添加順序は、ポリイミド前駆体の分子量が上がりやすいため、好ましい。また、上記製造方法のジアミンとテトラカルボン酸二無水物の添加順序を逆にすることも可能であり、析出物が低減することから、好ましい。溶媒として水を使用する場合は、1,2-ジメチルイミダゾール等のイミダゾール類、あるいはトリエチルアミン等の塩基を、生成するポリアミック酸(ポリイミド前駆体)のカルボキシル基に対して、好ましくは0.8倍当量以上の量で、添加することが好ましい。
2)ポリアミド酸エステル
 テトラカルボン酸二無水物を任意のアルコールと反応させ、ジエステルジカルボン酸を得た後、塩素化試薬(チオニルクロライド、オキサリルクロライドなど)と反応させ、ジエステルジカルボン酸クロライドを得る。このジエステルジカルボン酸クロライドとジアミンを-20~120℃、好ましくは-5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。また、ジエステルジカルボン酸とジアミンを、リン系縮合剤や、カルボジイミド縮合剤などを用いて脱水縮合することでも、簡便にポリイミド前駆体が得られる。
 この方法で得られるポリイミド前駆体は、安定なため、水やアルコールなどの溶剤を加えて再沈殿などの精製を行うこともできる。
3)ポリアミド酸シリルエステル(間接法)
 あらかじめ、ジアミンとシリル化剤を反応させ、シリル化されたジアミンを得る。必要に応じて、蒸留等により、シリル化されたジアミンの精製を行う。そして、脱水された溶剤中にシリル化されたジアミンを溶解させておき、攪拌しながら、テトラカルボン酸二無水物を徐々に添加し、0~120℃、好ましくは5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。
4)ポリアミド酸シリルエステル(直接法)
 1)の方法で得られたポリアミド酸溶液とシリル化剤を混合し、0~120℃、好ましくは5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。
 3)の方法、及び4)の方法で用いるシリル化剤として、塩素を含有しないシリル化剤を用いることは、シリル化されたポリアミド酸、もしくは、得られたポリイミドを精製する必要がないため、好適である。塩素原子を含まないシリル化剤としては、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが挙げられる。フッ素原子を含まず低コストであることから、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが特に好ましい。
 また、3)の方法のジアミンのシリル化反応には、反応を促進するために、ピリジン、ピペリジン、トリエチルアミンなどのアミン系触媒を用いることができる。この触媒はポリイミド前駆体の重合触媒として、そのまま使用することができる。
 ポリイミド前駆体(A1)を調製する際に使用する溶媒(C)は、水や、例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド等の非プロトン性溶媒が好ましく、原料モノマー成分と生成するポリイミド前駆体が溶解すれば、どんな種類の溶媒であっても問題はなく使用できるので、特にその構造には限定されない。溶媒として、水や、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド溶媒、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン等の環状エステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、トリエチレングリコール等のグリコール系溶媒、m-クレゾール、p-クレゾール、3-クロロフェノール、4-クロロフェノール等のフェノール系溶媒、アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、ジメチルスルホキシドなどが好ましく採用される。さらに、その他の一般的な有機溶剤、即ちフェノール、o-クレゾール、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2-メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒なども使用できる。なお、溶媒は、複数種を組み合わせて使用することもできる。
 ポリイミド前駆体(A1)の対数粘度は、特に限定されないが、30℃での濃度0.5g/dLのN,N-ジメチルアセトアミド溶液における対数粘度が0.2dL/g以上、より好ましくは0.3dL/g以上、特に好ましくは0.4dL/g以上であることが好ましい。対数粘度が0.2dL/g以上では、ポリイミド前駆体の分子量が高く、得られるポリイミドの機械強度や耐熱性に優れる。
 <ポリイミド(A2)>
 ポリイミド(A2)は、特に限定されるわけではないが、ポリイミド前駆体(A1)から得られ、例えば、前記化学式(7)で表される繰り返し単位の少なくとも1種を含むものである。
 化学式(7)は化学式(1)に対応するもので、XはXに対応し、YはYに対応する。化学式(7)中のX、Yとしては、化学式(1)中のX、Yと同様のものが挙げられ、好ましいものも同様である。
 特に限定されるわけではないが、耐熱性に優れるため、ポリイミド(A2)の化学式(7)中のXが芳香族環を有する4価の基であり、Yが芳香族環を有する2価の基であることが好ましい。また、耐熱性に優れると同時に透明性に優れるため、Xが脂環構造を有する4価の基であり、Yが芳香族環を有する2価の基であることが好ましい。また、耐熱性に優れると同時に寸法安定性に優れるため、Xが芳香族環を有する4価の基であり、Yが脂環構造を有する2価の基であることが好ましい。
 厚み方向及び面内方向の位相差が小さく、且つ、透明性、機械的特性、または耐熱性等の特性にも優れるポリイミド組成物を得るためには、ポリイミド(A2)は、好ましくはフッ素原子を含有する、芳香族テトラカルボン酸成分と芳香族ジアミンとから得られるポリイミド、または、脂環式テトラカルボン酸成分と芳香族ジアミンとから得られるポリイミド、または、芳香族テトラカルボン酸成分と脂環式ジアミンとから得られるポリイミドであることが好ましい。なお、テトラカルボン酸成分には、テトラカルボン酸と、テトラカルボン酸二無水物、テトラカルボン酸シリルエステル、テトラカルボン酸エステル、テトラカルボン酸クロライド等のテトラカルボン酸誘導体が含まれる。
 ポリイミド組成物の特性、例えば、透明性、機械的特性、または耐熱性等の点から、Xが脂環構造を有する4価の基であり、Yが脂環構造を有する2価の基である化学式(7)で表される繰り返し単位の含有量は、全繰り返し単位に対して、好ましくは50モル%以下、より好ましくは30モル%以下または30モル%未満、より好ましくは10モル%以下であることが好ましい。
 ある実施態様においては、ポリイミド(A2)は、Xが芳香族環を有する4価の基であり、Yが芳香族環を有する2価の基である前記化学式(7)の繰り返し単位の1種以上の含有量が、合計で、全繰り返し単位に対して、好ましくは50モル%以上、より好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは100モル%であることが好ましい。この実施態様において、特に高透明性が求められる場合は、ポリイミド(A2)はフッ素原子を含有することが好ましい。すなわち、ポリイミド(A2)は、Xがフッ素原子を含有する芳香族環を有する4価の基である前記化学式(7)の繰り返し単位および/またはYがフッ素原子を含有する芳香族環を有する2価の基である前記化学式(7)の繰り返し単位の1種以上を含むことが好ましい。
 ある実施態様においては、ポリイミド(A2)は、Xが脂環構造を有する4価の基であり、Yが芳香族環を有する2価の基である前記化学式(7)の繰り返し単位の1種以上の含有量が、合計で、全繰り返し単位に対して、好ましくは50モル%以上、より好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは100モル%であることが好ましい。
 ある実施態様においては、ポリイミド(A2)は、Xが芳香族環を有する4価の基であり、Yが脂環構造を有する2価の基である前記化学式(7)の繰り返し単位の1種以上の含有量が、合計で、全繰り返し単位に対して、好ましくは50モル%以上、より好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは100モル%であることが好ましい。
 前記化学式(7)で表される繰り返し単位の少なくとも1種を含むポリイミド(A2)は、前記化学式(7)で表される繰り返し単位以外の、他の繰り返し単位1種以上を含むことができる。
 前記化学式(7)で表される繰り返し単位以外の、他の繰り返し単位の含有量は、全繰り返し単位に対して、好ましくは30モル%以下または30モル%未満、より好ましくは20モル%以下、さらに好ましくは10モル%以下であることが好ましい。
 本発明のポリイミド(A2)は、本発明のポリイミド前駆体(A1)をイミド化する(すなわち、ポリイミド前駆体(A1)を脱水閉環反応する)ことで製造することができる。イミド化の方法は特に限定されず、公知の熱イミド化、または化学イミド化の方法を好適に適用することができる。ポリイミド(A2)の製造方法については、本発明のポリイミド組成物の製造方法として後述する。
 <光学異方性を有する微粒子(B)>
 光学異方性を有する微粒子(B)は、光学異方性を有するものであれば特に限定されず使用することができる。
 光学異方性を有する微粒子(B)は、例えば、炭酸塩であることが好ましい。より具体的には、光学異方性を有する微粒子(B)は、炭酸ストロンチウム、炭酸カルシウム、炭酸マグネシウム、炭酸コバルト、炭酸マンガンよりなる群から選択される1種以上の微粒子であることが好ましく、炭酸ストロンチウムであることがより好ましい。
 炭酸塩の形態(結晶構造)としては、アラゴナイト、カルサイト、バテライト、及びアモルファスなどが挙げられる。
 本発明においては、光学異方性を有する微粒子(B)は、針状または棒状などの異方性の形状を有することが好ましく、微細な針状または棒状の炭酸塩であることがより好ましく、微細な針状または棒状の炭酸ストロンチウムであることが特に好ましい。
 光学異方性を有する微粒子(B)は、平均アスペクト比が1.5以上であることが好ましく、2以上であることがより好ましく、2.2以上であることが特に好ましい。平均アスペクト比の上限は、特に限定されないが、一般に5程度である。なお、アスペクト比は、微粒子(B)の長さと直径との比(長さ/径)で示される。
 光学異方性を有する微粒子(B)は、得られるポリイミド組成物の透明性等の点から、長径の平均長さが100nm以下であることが好ましく、70nm以下であることがより好ましく、30~40nmであることが特に好ましい。
 本発明において、光学異方性を有する微粒子(B)は、長径の長さが200nm以上の針状粒子の含有率が個数基準で5%以下であることが好ましく、3%以下であることがより好ましく、1%以下であることがより好ましく、0%であることが特に好ましい。
 炭酸ストロンチウム微粒子等の光学異方性を有する微粒子(B)は、表面処理剤で表面処理されているものであってもよい。
 本発明においては、例えば、特開2014-80360号公報に記載の表面処理剤で表面処理されている光学異方性を有する微粒子(B)、すなわち、粒子の表面が、側鎖にポリオキシアルキレン基を有するポリカルボン酸もしくはその無水物と、ポリオキシアルキレン基及び炭化水素基を有するアミンとで処理されている光学異方性を有する微粒子(B)を好適に使用することができる。なお、特定の形状の針状炭酸ストロンチウム粒子に限らず、任意の光学異方性を有する微粒子(B)を特開2014-80360号公報に記載の方法により表面処理して、特開2014-80360号公報に記載の表面処理剤で表面処理されている光学異方性を有する微粒子(B)を得ることができる。ただし、特開2014-80360号公報に記載の特定の形状の針状炭酸ストロンチウム粒子を表面処理したものが特に好ましい。
 ある実施態様においては、光学異方性を有する微粒子(B)の表面処理剤は、官能基としてカルボン酸を有することが好ましく、ポリアミック酸であることが特に好ましい。以下、本発明のポリアミック酸で表面処理されている光学異方性を有する微粒子粉末について詳細に説明する。
 <ポリアミック酸で表面処理された光学異方性を有する微粒子粉末>
 本発明のある実施態様においては、用いる炭酸ストロンチウム微粒子等の光学異方性を有する微粒子(B)は、下記化学式(8)で表される繰り返し単位を含むポリアミック酸(A3)で表面処理されている光学異方性を有する微粒子粉末であることが好ましい。
Figure JPOXMLDOC01-appb-C000021
 
(式中、Xは芳香族環または脂環構造を有する4価の基であり、Yは芳香族環または脂環構造を有する2価の基である。ただし、式中のカルボキシル基(-COOH)は、塩基と塩を形成していてもよい。)
 ここでの化学式(8)で表される繰り返し単位を含むポリアミック酸(A3)は、特に限定されるわけではないが、ポリアミド酸であるポリイミド前駆体(A1)(化学式(1)中のR及びRが水素である前記化学式(1)で表される繰り返し単位を含むポリイミド前駆体)であることが好ましい。化学式(8)は化学式(1)に対応するもので、XはXに対応し、YはYに対応する。化学式(8)中のX、Yとしては、化学式(1)中のX、Yと同様のものが挙げられ、好ましいものも同様である。
 化学式(8)のカルボキシル基と塩を形成する塩基としては、例えば、アミン類、アルカリ金属水酸化物、アルカリ土類金属水酸化物等が挙げられる。その後の熱処理等で揮発することから、アミン類が好ましく、3級アミンがより好ましく、環構造を有する3級アミンが特に好ましい。さらに、イミド化の触媒として効果があることから、ピリジン、イミダゾール誘導体が好ましく、イミダゾール誘導体がより好ましい。
 前記化学式(3)で表される繰り返し単位を含むポリアミック酸(A3)で表面処理された光学異方性を有する微粒子粉末は、例えば、以下のようにして得ることができる。
 まず、ポリイミド前駆体(A1)の製造方法の「1)ポリアミド酸」の製造方法と同様にして、溶媒中でテトラカルボン酸成分としてのテトラカルボン酸二無水物とジアミン成分とを略等モル、好ましくはテトラカルボン酸成分に対するジアミン成分のモル比[ジアミン成分のモル数/テトラカルボン酸成分のモル数]が好ましくは0.90~1.10、より好ましくは0.95~1.05の割合で、例えば120℃以下の比較的低温度でイミド化を抑制しながら反応することによって、ポリアミック酸(ポリアミド酸)(A3)の溶液を得る。テトラカルボン酸成分とジアミン成分との合計量は、溶媒とテトラカルボン酸成分とジアミン成分との合計量に対して、5質量%以上、好ましくは10質量%以上、より好ましくは15質量%以上の割合であることが好適である。なお、通常は、テトラカルボン酸成分とジアミン成分との合計量は、溶媒とテトラカルボン酸成分とジアミン成分との合計量に対して、60質量%以下、好ましくは50質量%以下であることが好適である。
 ここでポリアミック酸(A3)の溶液を調製する際に使用する溶媒としては、ポリアミック酸(A3)が溶解すれば特に限定されず、どんな種類の溶媒であっても問題なく使用できる。ここで使用する溶媒としては、例えば、前記のポリイミド前駆体(A1)を調製する際に使用する溶媒(C)と同じものが挙げられるが、後記の理由から、溶剤として水を用いることが好ましい。
 次に、光学異方性を有する微粒子(B)、またはその分散液(スラリー)と、得られたポリアミック酸(A3)の溶液とを、例えば、0~120℃で、0.1~72時間混合して、ポリアミック酸で表面処理された光学異方性を有する微粒子(B)が分散した分散液(スラリー)を得る。特に限定されないが、光学異方性を有する微粒子(B)の分散性に優れるため、ポリアミック酸(A3)の添加量は、光学異方性を有する微粒子(B)100重量部に対して、0.5重量部以上、好ましくは1重量部以上、より好ましくは3重量部以上、特に好ましくは5重量部以上が好ましい。一方、分散時ポリアミック酸の加水分解等が最小限となるため、ポリアミック酸(A3)の添加量は、光学異方性を有する微粒子(B)100重量部に対して、50重量部以下、好ましくは30重量部以下、より好ましくは25重量部以下、特に好ましくは15重量部以下が好ましい。光学異方性を有する微粒子(B)へ、ポリアミック酸(A3)の溶液を加え、分散させる方法は、特に限定されず、公知の分散方法いずれも好適に適用することができる。
 光学異方性を有する微粒子(B)の分散液を用いる場合、その分散液の溶媒としては、ポリアミック酸(A3)が溶解すれば特に限定されず、どんな種類の溶媒であっても問題なく使用できる。分散液の溶媒としては、例えば、前記のポリイミド前駆体(A1)を調製する際に使用する溶媒と同じもの(ポリアミック酸の溶液の溶媒と同じもの)が挙げられるが、溶剤として水を用いることが好ましい。なお、光学異方性を有する微粒子(B)の分散液の溶媒は、ポリアミック酸(A3)の溶液の溶媒と同じであっても、異なっていてもよい。
 ここで使用する溶媒、すなわちポリアミック酸(A3)の溶液の溶媒と光学異方性を有する微粒子(B)の分散液の溶媒の双方の溶媒は水であれば、ポリアミック酸(A3)で表面処理された光学異方性を有する微粒子(B)は製造上で水のスラリーとして得られるため、溶媒置換等の操作が簡略化できることから、好ましい。
 ここで、光学異方性を有する微粒子(B)を溶媒、またはポリアミック酸(A3)の溶液中で効率よく分散するために通常の一般的な分散剤を併用してもよいが、通常、得られるポリイミド組成物の透明性等の点から、分散剤として、ポリアミック酸(A3)のみを使用することが好ましい。
 このようにしてポリアミック酸(A3)の溶液に光学異方性を有する微粒子(B)を混合・分散させて表面処理を行った後、公知の方法で乾燥することにより、例えば、分散液(スラリー)を空気、窒素または真空中で、50~120℃、0.1~12時間、加熱して乾燥することにより、ポリアミック酸(A3)で表面処理されている光学異方性を有する微粒子粉末を得ることができる。
 また、本発明においては、ポリアミック酸(A3)の溶液に光学異方性を有する微粒子(B)を分散させた分散液(スラリー)、すなわち、前記化学式(8)で表される繰り返し単位を含むポリアミック酸(A3)と光学異方性を有する微粒子(B)と溶媒とを含む本発明の微粒子分散液を、乾燥させることなく、そのまま、ポリイミド前駆体組成物またはポリイミド組成物の製造に使用することもできる。
 <ポリアミック酸と、光学異方性を有する微粒子と、溶媒とを含む微粒子分散液>
 本発明のある実施態様においては、用いる光学異方性を有する微粒子(B)の分散液は、前記化学式(8)で表される繰り返し単位を含むポリアミック酸(A3)と、光学異方性を有する微粒子(B)と、溶媒とを含む微粒子分散液であることが好ましい。
 ポリアミック酸(A3)としては、光学異方性を有する微粒子(B)の表面処理剤として挙げた前記化学式(8)で表される繰り返し単位を含むポリアミック酸(A3)が好ましい。
 この本発明の微粒子分散液は、前記のポリアミック酸(A3)で表面処理されている光学異方性を有する微粒子粉末(B)の製造方法と同様にして、ポリアミック酸(A3)の溶液を調製し、光学異方性を有する微粒子(B)またはその分散液(スラリー)と、得られたポリアミック酸(A3)の溶液とを混合することで得ることができる。
 また、単離した前記のポリアミック酸(A3)で表面処理された光学異方性を有する微粒子粉末(B)を溶媒に分散させた分散液も、分散剤としてポリアミック酸(A3)を含む光学異方性を有する微粒子(B)の本発明の微粒子分散液となる。光学異方性を有する微粒子(B)を溶媒に分散させる方法は、特に限定されず、公知の分散方法いずれも好適に適用することができる。
 この本発明の微粒子分散液のポリアミック酸の含有量は、特に限定されないが、光学異方性を有する微粒子(B)100重量部に対して、0.5~50重量部、より好ましくは1~30重量部、更に好ましくは3~25重量部、特に好ましくは5~15重量部であることが好適である。
 次に、前記のポリイミド前駆体(A1)と前記の光学異方性を有する微粒子(B)とを含む本発明のポリイミド前駆体組成物、及び、前記のポリイミド(A2)と前記の光学異方性を有する微粒子(B)とを含む本発明のポリイミド組成物について詳細に説明する。
 <ポリイミド前駆体組成物、及びポリイミド組成物>
 本発明のポリイミド前駆体組成物は、少なくとも1種のポリイミド前駆体(A1)と、少なくとも1種の光学異方性を有する微粒子(B)とを含むものである。本発明のポリイミド組成物は、少なくとも1種のポリイミド(A2)と、少なくとも1種の光学異方性を有する微粒子(B)とを含むものである。ポリイミドに光学異方性を有する微粒子(B)を加えることにより、ポリイミド本来の特性を保ちつつ、厚み方向及び面内方向の位相差を低下させることができる。
 本発明のポリイミド前駆体組成物、及び本発明のポリイミド組成物の光学異方性を有する微粒子(B)の含有量は、特に限定されないが、ポリイミド前駆体(A1)またはポリイミド(A2)のポリマー固形分 100重量部に対して、好ましくは1重量部以上、より好ましくは5重量部以上、更に好ましくは10重量部以上、特に好ましくは20重量部以上である。この範囲であれば、得られるポリイミド組成物の厚み方向及び面内方向の位相差(レタデーション)が十分に低下する。一方、本発明のポリイミド前駆体組成物、及び本発明のポリイミド組成物の光学異方性を有する微粒子(B)の含有量は、特に限定されないが、ポリイミド前駆体(A1)またはポリイミド(A2)のポリマー固形分 100重量部に対して、好ましくは60重量部以下、より好ましくは40重量部以下、更に好ましくは20重量部以下である。この範囲であれば、得られるポリイミド組成物が耐熱性や透明性等の特性に優れる。
 なお、本発明のポリイミド前駆体組成物、及び本発明のポリイミド組成物の光学異方性を有する微粒子(B)の含有量は、公知の組成分析方法より求めることができる。また、製造過程の光学異方性を有する微粒子(B)の添加量から、その含有量を求めることもできる。
 本発明のポリイミド前駆体組成物は、通常、ポリイミド前駆体(A1)と、光学異方性を有する微粒子(B)と、溶媒(C)とを含む。また、ある実施態様においては、本発明のポリイミド組成物は、ポリイミド(A2)と、光学異方性を有する微粒子(B)と、溶媒(C)とを含む。この実施態様においては、ポリイミド(A2)が溶媒(C)に可溶であることが好ましい。ポリイミド前駆体(A1)またはポリイミド(A2)と、光学異方性を有する微粒子(B)と、溶媒(C)とを含むポリイミド前駆体組成物、またはポリイミド組成物を、本発明のワニスとも言う。
 ポリイミド前駆体を含む本発明のワニス(本発明のポリイミド前駆体組成物)に用いる溶媒(C)としては、ポリイミド前駆体が溶解すれば問題はなく、特にその構造は限定されない。一方、ポリイミドを含む本発明のワニス(ポリイミドのワニス)に用いる溶媒(C)としては、ポリイミドが溶解すれば問題はなく、特にその構造は限定されない。溶媒として、水や、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド溶媒、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン等の環状エステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、トリエチレングリコール等のグリコール系溶媒、m-クレゾール、p-クレゾール、3-クロロフェノール、4-クロロフェノール等のフェノール系溶媒、アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、ジメチルスルホキシドなどが好ましく採用される。さらに、その他の一般的な有機溶剤、即ちフェノール、o-クレゾール、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2-メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒なども使用できる。また、これらを複数種組み合わせて使用することもできる。なお、本発明のワニスの溶媒は、ポリイミド前駆体(A1)またはポリイミド(A2)を調製する際に使用した溶媒、及び光学異方性を有する微粒子(B)の分散液の溶媒(分散媒)をそのまま使用することができる。
 本発明のワニスにおいて、テトラカルボン酸成分とジアミン成分との合計量は、溶媒とテトラカルボン酸成分とジアミン成分との合計量に対して、5質量%以上、好ましくは10質量%以上、より好ましくは15質量%以上の割合であることが好適である。なお、通常は、テトラカルボン酸成分とジアミン成分との合計量は、溶媒とテトラカルボン酸成分とジアミン成分との合計量に対して、60質量%以下、好ましくは50質量%以下であることが好適である。この濃度(テトラカルボン酸成分とジアミン成分との合計量)は、ポリイミド前駆体またはポリイミドに起因する固形分濃度にほぼ近似される濃度であるが、この濃度が低すぎると、例えばポリイミドフィルムを製造する際に得られるポリイミドフィルムの膜厚の制御が難しくなることがある。
 本発明のポリイミド前駆体のワニスにおいて、ポリイミド前駆体の対数粘度は、特に限定されないが、30℃での濃度0.5g/dLのN,N-ジメチルアセトアミド溶液における対数粘度が0.2dL/g以上、より好ましくは0.3dL/g以上、特に好ましくは0.4dL/g以上であることが好ましい。対数粘度が0.2dL/g以上では、ポリイミド前駆体の分子量が高く、得られるポリイミドの機械強度や耐熱性に優れる。
 本発明のポリイミドのワニスにおいて、ポリイミドの対数粘度は、特に限定されないが、30℃での濃度0.5g/dLのN,N-ジメチルアセトアミド溶液における対数粘度が0.2dL/g以上、より好ましくは0.4dL/g以上、特に好ましくは0.5dL/g以上であることが好ましい。対数粘度が0.2dL/g以上では、得られるポリイミドの機械強度や耐熱性に優れる。
 本発明のワニスの粘度(回転粘度)は、特に限定されないが、E型回転粘度計を用い、温度25℃、せん断速度20sec-1で測定した回転粘度が、0.01~1000Pa・secが好ましく、0.1~100Pa・secがより好ましい。また、必要に応じて、チキソ性を付与することもできる。上記範囲の粘度では、コーティングや製膜を行う際、ハンドリングしやすく、また、はじきが抑制され、レベリング性に優れるため、良好な被膜が得られる。
 本発明のポリイミド前駆体を含むワニスは、必要に応じて、化学イミド化剤(無水酢酸などの酸無水物や、ピリジン、イソキノリンなどのアミン化合物)、酸化防止剤、フィラー(シリカ等の無機粒子など)、染料、顔料、シランカップリング剤などのカップリング剤、プライマー、難燃材、消泡剤、レベリング剤、レオロジーコントロール剤(流動補助剤)、剥離剤などを含有することができる。
 本発明のポリイミドを含むワニスは、必要に応じて、酸化防止剤、フィラー(シリカ等の無機粒子など)、染料、顔料、シランカップリング剤などのカップリング剤、プライマー、難燃材、消泡剤、レベリング剤、レオロジーコントロール剤(流動補助剤)、剥離剤などを含有することができる。
 本発明のワニスである本発明のポリイミド前駆体組成物は、前記のポリイミド前駆体(A1)の製造方法により得られたポリイミド前駆体溶液または溶液組成物に、光学異方性を有する微粒子(B)または光学異方性を有する微粒子(B)の分散液を加えて混合することで調製することができる。特に限定されるわけではないが、光学異方性を有する微粒子(B)の分散性に優れるため、溶媒にテトラカルボン酸成分(テトラカルボン酸二無水物等)とジアミン成分を加え、さらに光学異方性を有する微粒子(B)または光学異方性を有する微粒子(B)の分散液を加えて混合し、溶媒中に光学異方性を有する微粒子(B)を分散させ、光学異方性を有する微粒子(B)の存在下で、テトラカルボン酸成分とジアミン成分とを反応させて、本発明のポリイミド前駆体組成物を調製することも好ましい。さらに、用いる光学異方性を有する微粒子(B)は、例えば、前記化学式(8)で表される繰り返し単位を含むポリアミック酸等の表面処理剤で表面処理されたものが好ましい。また、必要に応じて、溶媒を除去または加えてもよく、光学異方性を有する微粒子(B)以外の所望の成分を添加してもよい。
 ポリイミドを含む本発明のワニス(ポリイミド(A2)と光学異方性を有する微粒子(B)と溶媒とを含む組成物)は、本発明のポリイミド前駆体組成物から、ワニス中のポリイミド前駆体をイミド化する(すなわち、ポリイミド前駆体を脱水閉環反応する)ことで調製することができる。イミド化の方法は特に限定されず、公知の熱イミド化、または化学イミド化の方法を好適に適用することができる。また、溶媒中でテトラカルボン酸成分(テトラカルボン酸二無水物等)とジアミン成分とを反応させてポリイミド溶液または溶液組成物を得た後、これに光学異方性を有する微粒子(B)または光学異方性を有する微粒子(B)の分散液を加えて混合して、本発明のポリイミドを含むワニスを調製することもできる。この場合も、光学異方性を有する微粒子(B)は、例えば、前記化学式(8)で表される繰り返し単位を含むポリアミック酸等の表面処理剤で表面処理されたものであってもよい。また、必要に応じて、溶媒を除去または加えてもよく、光学異方性を有する微粒子(B)以外の所望の成分を添加してもよい。
 本発明のポリイミド(A2)を含むワニスの製造方法において、限定するものではないが、例えば、熱イミド化の場合、前記の方法で得られたポリイミド前駆体(A1)の溶液または溶液組成物を80~230℃、好ましくは120~200℃の範囲で1~24時間攪拌することで、ポリイミド(A2)を含む溶液または溶液組成物が得られる。イミド化に伴い生成される水などの副生物を除去するために、バブリングを行ったり、トルエンなどの共沸溶媒を添加してイミド化を行ってもよい。また、得られたポリイミド溶液を水やメタノールなどの貧溶媒に滴下し、再沈殿、乾燥させ、再び溶解可能な溶媒に溶解させることでもポリイミド溶液が得られ、このポリイミド溶液を用いて本発明のポリイミドを含むワニスを調製することもできる。
 本発明のワニスである本発明のポリイミド前駆体組成物、または、ポリイミドを含む本発明のワニスの製造に使用する光学異方性を有する微粒子(B)の分散液の溶媒(分散媒)としては、ポリイミド前駆体またはポリイミドが溶解すれば特に限定されず、どんな種類の溶媒であっても問題なく使用できる。光学異方性を有する微粒子(B)の分散液の溶媒としては、例えば、前記のポリイミド前駆体(A1)を調製する際に使用する溶媒と同じものが挙げられる。なお、光学異方性を有する微粒子(B)の分散液の溶媒は、ポリイミド前駆体溶液またはポリイミド溶液の溶媒と同じであっても異なっていてもよい。また、溶媒は、複数種を組み合わせて使用することもできる。
 光学異方性を有する微粒子(B)の分散液は、光学異方性を有する微粒子(B)を溶媒中で効率よく分散し、安定的な微粒子分散液とするために1種または複数種の分散剤を含むものであってもよい。
 前述のように、分散剤としては、特に限定されないが、官能基としてカルボン酸を有するものが好ましく、ポリアミック酸であることが特に好ましい。ポリアミック酸としては、光学異方性を有する微粒子(B)の表面処理剤として挙げた前記化学式(8)で表される繰り返し単位を含むポリアミック酸が好ましい。すなわち、前記化学式(8)で表される繰り返し単位を含むポリアミック酸(A3)と、光学異方性を有する微粒子(B)と、溶媒とを含む微粒子分散液(本発明の微粒子分散液)を、光学異方性を有する微粒子(B)の分散液として好適に用いることができる。
 光学異方性を有する微粒子(B)の分散液が分散剤としてポリアミック酸を含む場合、ポリアミック酸の含有量は、特に限定されないが、光学異方性を有する微粒子(B)100重量部に対して、0.5~50重量部、より好ましくは1~30重量部、更に好ましくは3~25重量部であることが好適である。なお、この分散剤としてのポリアミック酸もポリイミドに転化するため、前記のポリイミド組成物の光学異方性を有する微粒子(B)の含有量は、分散剤としてのポリアミック酸から転化したポリイミドもポリイミド(A2)として含めて算出される。
 また、前述のように、特開2014-80360号公報に記載の針状炭酸ストロンチウム微粉末の表面処理剤、すなわち、側鎖にポリオキシアルキレン基を有するポリカルボン酸もしくはその無水物と、ポリオキシアルキレン基及び炭化水素基を有するアミンも、光学異方性を有する微粒子(B)の分散液の分散剤として好適に用いることができる。なお、本発明においても、ポリカルボン酸もしくはその無水物の添加量、及びアミンの添加量は、特開2014-80360号公報に記載の量が好ましい。
 その他の一般的な分散剤を用いることもできるが、本発明のある実施態様においては、得られるポリイミド組成物の透明性等の点から、一般的に使用されている分散剤は使用しないことが好ましい。なお、ポリアミック酸等以外の一般的に使用されている分散剤の添加量は、特に限定されないが、通常、光学異方性を有する微粒子(B)100重量部に対して、10重量部以下であることが好ましい。
 光学異方性を有する微粒子(B)を溶媒に分散させる方法は、特に限定されず、公知の分散方法いずれも好適に適用することができる。分散には、例えば、ボールミル、ジェットミル、ビーズミル、インペラー分散機、薄膜旋回ミキサー等を用いることが好ましい。また、ポリイミド前駆体溶液またはポリイミド溶液と光学異方性を有する微粒子(B)の分散液を混合する方法も、特に限定されず、公知の混合方法いずれも好適に適用することができる。
 本発明のポリイミド組成物は、ポリイミド(A2)と光学異方性を有する微粒子(B)とを含むものであり、ポリイミド前駆体(A1)と光学異方性を有する微粒子(B)とを含む本発明のポリイミド前駆体組成物から得ることができる。より具体的には、本発明のポリイミド前駆体組成物を加熱等して、ポリイミド前駆体をイミド化する(すなわち、ポリイミド前駆体を脱水閉環反応する)ことで本発明のポリイミド組成物を得ることができる。イミド化の方法は特に限定されず、公知の熱イミド化、または化学イミド化の方法を好適に適用することができる。
 例えば、本発明のポリイミド前駆体組成物(ポリイミド前駆体のワニス)を基材上に流延し、この基材上のポリイミド前駆体組成物を、例えば100~500℃、好ましくは200~500℃、より好ましくは250~450℃程度の温度で加熱処理して、溶媒を除去、ポリイミド前駆体をイミド化することにより、ポリイミドフィルム等のポリイミド組成物を好適に製造することができる。なお、加熱プロファイルは特に限定されず、適宜選択することができる。
 また、本発明のポリイミド前駆体組成物(ポリイミド前駆体のワニス)を基材上に流延し、好ましくは180℃以下の温度範囲で乾燥して、基材上にポリイミド前駆体組成物の膜を形成し、得られたポリイミド前駆体組成物の膜を基材上から剥離して、その膜の端部を固定した状態で、あるいは膜の端部を固定せずに、例えば100~500℃、好ましくは200~500℃、より好ましくは250~450℃程度の温度で加熱処理して、ポリイミド前駆体をイミド化することによっても、ポリイミドフィルム等のポリイミド組成物を好適に製造することができる。
 また、ポリイミドフィルム等の本発明のポリイミド組成物(溶媒を含まないポリイミド組成物)は、ポリイミドを含む本発明のワニス(ポリイミド(A2)と光学異方性を有する微粒子(B)と溶媒とを含む組成物)を加熱等して、溶媒を除去することでも得ることができる。
 例えば、ポリイミドを含む本発明のワニスを基材上に流延し、例えば80~500℃、好ましくは100~500℃、より好ましくは150~450℃程度の温度で加熱処理して、溶媒を除去することにより、ポリイミドフィルム等のポリイミド組成物を好適に製造することができる。なお、この場合も、加熱プロファイルは特に限定されず、適宜選択することができる。
 より具体的な本発明のポリイミド組成物(ポリイミドフィルム/基材積層体、もしくはポリイミドフィルム)の製造方法の一例については、後述する。
 本発明においては、前述のように、ポリイミド組成物のフィルムを熱延伸する、あるいは、ポリイミド組成物を溶融して射出成形や押出成形すること等により炭酸ストロンチウム等の光学異方性を有する針状または棒状の微粒子を一方向に配向させなくても、すなわち、特別な微粒子の配向処理なしで、上記の製造方法のように、ワニス(ポリイミド前駆体溶液組成物、ポリイミド溶液組成物)に光学異方性を有する微粒子を添加することで、容易に、面内方向の位相差のみならず、厚み方向の位相差も低下させることができる。
 本発明のポリイミド組成物(光学異方性を有する微粒子含有ポリイミド)の形態は、フィルム、ポリイミドフィルムと他の基材との積層体、コーティング膜、粉末、ビーズ、成型体、発泡体などを好適に挙げることができる。
 本発明のポリイミド前駆体組成物から得られるポリイミド組成物、及び本発明のポリイミド組成物は、特に限定されないが、厚さ5μm~250μmのフィルム、好ましくは厚さ10μmのフィルムにしたときの100℃から250℃までの線熱膨張係数が、好ましくは60ppm/K以下、より好ましくは50ppm/K以下であることができる。線熱膨張係数が大きいと、金属などの導体との線熱膨張係数の差が大きく、回路基板を形成する際に反りが増大するなどの不具合が生じることがある。
 本発明のポリイミド前駆体組成物から得られるポリイミド組成物、及び本発明のポリイミド組成物は、特に限定されないが、厚さ5μm~250μmのフィルム、好ましくは厚さ10μmのフィルムでの全光透過率(波長380nm~780nmの平均光透過率)が、好ましくは68%以上、より好ましくは70%以上、より好ましくは75%以上、特に好ましくは80%以上であることができる。ディスプレイ用途等で使用する場合、全光透過率が低いと光源を強くする必要があり、エネルギーがかかるといった問題等を生じることがある。
 本発明のポリイミド前駆体組成物から得られるポリイミド組成物、及び本発明のポリイミド組成物は、特に限定されないが、ポリイミドフィルムの耐熱性の指標である5%重量減少温度が、好ましくは400℃以上、より好ましくは430℃以上、さらに好ましくは450℃以上であることができる。ポリイミド上にトランジスタを形成する等で、ポリイミド上にガスバリア膜等を形成する場合、耐熱性が低いと、ポリイミドとバリア膜との間で、ポリイミドの分解に伴うアウトガスにより膨れが生じることがある。
 本発明のポリイミド前駆体組成物から得られるポリイミド組成物、及び本発明のポリイミド組成物は、特に限定されないが、厚さ5μm~250μmのフィルム、好ましくは厚さ10μmのフィルムでのポリイミドフィルムの厚み方向位相差が、好ましくは1000nm以下、より好ましくは800nm以下、さらに好ましくは700nm以下、特に好ましくは680nm以下であることができる。光学フィルムの中でも特に高性能が求められる用途では、ポリイミドフィルムの厚み方向位相差が、好ましくは75nm以下であることが好ましい場合がある。厚み方向の位相差が大きいと、透過光の色が正しく表示されない、色のにじみや視野角が狭くなるといった問題が起こることがある。ポリイミドフィルムの面内方向位相差は、好ましくは100nm以下、より好ましくは50nm以下、さらに好ましくは10nm以下、さらに好ましくは5nm以下であることができる。光学フィルムの中でも特に高性能が求められる用途では、ポリイミドフィルムの面内方向位相差が、好ましくは4nm以下、より好ましくは3nm以下であることが好ましい場合がある。
 なお、本発明のポリイミド前駆体組成物から得られるポリイミド組成物、または本発明のポリイミド組成物からなるフィルムは、用途にもよるが、フィルムの厚みとしては、好ましくは0.1μm~250μm、より好ましくは1μm~150μm、さらに好ましくは1μm~50μm、特に好ましくは1μm~30μmである。ポリイミドフィルムを光が透過する用途に使用する場合、ポリイミドフィルムが厚すぎると光透過率が低くなる恐れがある。
 本発明のポリイミド前駆体組成物から得られるポリイミド組成物、及び本発明のポリイミド組成物は、例えば、ディスプレイ用透明基板、タッチパネル用透明基板、或いは太陽電池用基板の用途において、また、その他の光学デバイスや半導体装置用の基板の用途において、好適に用いることができる。
 以下では、本発明のポリイミド前駆体組成物(ポリイミド前駆体のワニス)を用いた、ポリイミドフィルム/基材積層体、もしくはポリイミドフィルムの製造方法の一例について述べる。ただし、以下の方法に限定されるものではない。
 例えばセラミック(ガラス、シリコン、アルミナなど)、金属(銅、アルミニウム、ステンレスなど)、耐熱プラスチックフィルム(ポリイミドフィルムなど)等の基材に、本発明のワニス(ポリイミド前駆体組成物)を流延し、真空中、窒素等の不活性ガス中、或いは空気中で、熱風もしくは赤外線を用いて、20~180℃、好ましくは20~150℃の温度範囲で乾燥する。次いで、得られたポリイミド前駆体フィルムを基材上で、もしくはポリイミド前駆体フィルムを基材上から剥離し、そのフィルムの端部を固定した状態で、真空中、窒素等の不活性ガス中、或いは空気中で、熱風もしくは赤外線を用い、例えば200~500℃、より好ましくは250~450℃程度の温度で加熱イミド化することでポリイミドフィルム/基材積層体、もしくはポリイミドフィルムを製造することができる。なお、得られるポリイミドフィルムが酸化劣化するのを防ぐため、加熱イミド化は、真空中、或いは不活性ガス中で行うことが望ましい。加熱イミド化の温度が高すぎなければ空気中で行なっても差し支えない。ここでのポリイミドフィルム(ポリイミドフィルム/基材積層体の場合は、ポリイミドフィルム層)の厚さは、以後の工程の搬送性のため、好ましくは1~250μm、より好ましくは1~150μmである。
 また、ポリイミド前駆体のイミド化反応は、前記のような加熱処理による加熱イミド化に代えて、ポリイミド前駆体をピリジンやトリエチルアミン等の3級アミン存在下、無水酢酸等の脱水環化試薬を含有する溶液に浸漬するなどの化学的処理によって行うことも可能である。また、これらの脱水環化試薬をあらかじめ、ワニス(ポリイミド前駆体組成物)中に投入・攪拌し、それを基材上に流延・乾燥することで、部分的にイミド化したポリイミド前駆体を作製することもでき、これを更に前記のような加熱処理することで、ポリイミドフィルム/基材積層体、もしくはポリイミドフィルムを得ることができる。
 この様にして得られたポリイミドフィルム/基材積層体、もしくはポリイミドフィルムは、その片面もしくは両面に導電性層を形成することによって、フレキシブルな導電性基板を得ることができる。
 フレキシブルな導電性基板は、例えば次の方法によって得ることができる。すなわち、第一の方法としては、ポリイミドフィルム/基材積層体を基材からポリイミドフィルムを剥離せずに、そのポリイミドフィルム表面に、スパッタ、蒸着、印刷などによって、導電性物質(金属もしくは金属酸化物、導電性有機物、導電性炭素など)の導電層を形成させ、導電性層/ポリイミドフィルム/基材の導電性積層体を製造する。その後必要に応じて、基材より導電性層/ポリイミドフィルム積層体を剥離することによって、導電性層/ポリイミドフィルム積層体からなる透明でフレキシブルな導電性基板を得ることができる。
 第二の方法としては、ポリイミドフィルム/基材積層体の基材からポリイミドフィルムを剥離して、ポリイミドフィルムを得、そのポリイミドフィルム表面に、導電性物質(金属もしくは金属酸化物、導電性有機物、導電性炭素など)の導電層を、第一の方法と同様にして形成させ、導電性層/ポリイミドフィルム積層体、または導電性層/ポリイミドフィルム/導電性層積層体からなる透明でフレキシブルな導電性基板を得ることができる。
 なお、第一、第二の方法において、必要に応じて、ポリイミドフィルムの表面に導電層を形成する前に、スパッタ、蒸着やゲル-ゾル法などによって、水蒸気、酸素などのガスバリヤ層、光調整層などの無機層を形成しても構わない。ここで、ガスバリヤ層は、例えば、ポリイミドフィルムより酸素および/または水蒸気等の透過度が小さい層であれば限定されず、例えば、無機層、有機層、または無機/有機ハイブリット層であり、好ましくは、酸化珪素、酸化アルミニウム、炭化珪素、酸化炭化珪素、炭化窒化珪素、窒化珪素、窒化酸化珪素等の無機酸化物膜である。ガスバリヤ層は、1種類の組成のみで構成されてもよいし、2種類以上の組成を混合させた膜であってもよい。
 また、導電層は、フォトリソグラフィ法や各種印刷法、インクジェット法などの方法によって、回路が好適に形成される。
 このようにして得られる本発明の基板は、本発明のポリイミド前駆体組成物から得られるポリイミド組成物、または本発明のポリイミド組成物によって構成されたポリイミドフィルムの表面に、必要に応じてガスバリヤ層や無機層を介し、導電層の回路を有するものである。この基板は、フレキシブルであり、例えば、ディスプレイ用、タッチパネル用、または太陽電池用の基板として好適に用いることができる。
 すなわち、この基板に、蒸着、各種印刷法、或いはインクジェット法などによって、さらにトランジスタ(ここで半導体に使用される材料としては、例えば、アモルファスシリコン、低温ポリシリコン、ZnO、SnO、IGZO等の酸化物半導体や、有機半導体が挙げられる。)が形成されてフレキシブル薄膜トランジスタが製造され、そして、表示デバイス用の液晶素子、EL素子、光電素子として好適に用いられる。
 なお、上記の製造方法において、基材としてガラスを用いた場合、ポリイミドフィルムと、少なくとも1層のガラス層を有するポリイミドフィルム積層体が、製造工程において得られる。また、ガスバリヤ層を形成した場合は、ポリイミドフィルムと、少なくとも1層のガスバリヤ層(例えば、ポリイミドフィルムより酸素透過度が小さい無機層、有機層、または無機/有機ハイブリット層)を有するポリイミドフィルム積層体が、製造工程において得られる。これらの積層体は、本発明のポリイミドフィルム積層体の一形態である。また、薄膜トランジスタ(無機トランジスタ、または有機トランジスタ)を形成した積層体、すなわち、ポリイミドフィルムと、少なくとも1層の薄膜トランジスタを有するポリイミドフィルム積層体、及び、導電層を形成した積層体、すなわち、ポリイミドフィルムと、少なくとも1層の導電層を有するポリイミドフィルム積層体も、本発明のポリイミドフィルム積層体の一形態である。
 本発明のポリイミド前駆体組成物から得られるポリイミド組成物、及び本発明のポリイミド組成物は、また、例えば、有機ELディスプレイ、液晶ディスプレイ、電気泳動ディスプレイ、プラズマディスプレイ、プラズマアドレス液晶ディスプレイ、無機ELディスプレイ、電界放出ディスプレイ、又は表面電界ディスプレイ等の表示デバイス、タッチパネル等のセンサーデバイス、太陽電池等の光電変換デバイス、光導波路等の光学デバイスや、その他半導体装置にも好適に用いることができる。
 以下、実施例及び比較例によって本発明を更に説明する。尚、本発明は以下の実施例に限定されるものではない。
 以下の各例において評価は次の方法で行った。
<ポリイミドフィルムの評価>
 [フィルムの面内方向位相差(R)、厚み方向位相差(Rth)]
 膜厚10μmのポリイミドフィルムを試験片とし、王子計測器社製 位相差測定装置(KOBRA-WR)を用い、R、Rthを測定した。Rth入射角を40°としてフィルムの位相差測定を行った。得られた位相差より、膜厚10μmのフィルムの厚み方向の位相差を求めた。
[全光線透過率]
 紫外可視分光光度計/V-650DS(日本分光製)を用いて、膜厚10μmのポリイミドフィルムの全光透過率(380nm~780nmにおける平均透過率)における光透過率を測定した。
 [引張弾性率、破断点伸度、破断点強度]
 ポリイミドフィルムをIEC-540(S)規格のダンベル形状に打ち抜いて試験片(幅:4mm)とし、ORIENTEC社製TENSILONを用いて、チャック間長30mm、引張速度2mm/分で、初期の引張弾性率、破断点伸度、破断点強度を測定した。
 [線熱膨張係数(CTE)]
 ポリイミドフィルムを幅4mmの短冊状に切り取って試験片とし、TMA/SS6100 (エスアイアイ・ナノテクノロジー株式会社製)を用い、チャック間長15mm、荷重2g、昇温速度20℃/分で500℃まで昇温した。得られたTMA曲線から、100℃から250℃までの線熱膨張係数を求めた。
 [5%重量減少温度]
 ポリイミドフィルムを試験片とし、TAインスツルメント社製 熱重量測定装置(Q5000IR)を用い、窒素気流中、昇温速度10℃/分で25℃から600℃まで昇温した。得られた重量曲線から、5%重量減少温度を求めた。
 以下の各例で使用した原材料の略称、純度等は、次のとおりである。
[ジアミン成分]
BAPB: 4,4’-ビス(4-アミノフェノキシ)ビフェニル〔純度:99.93%(HPLC分析)〕
PPD: p-フェニレンジアミン〔純度:99.9%(GC分析)〕
DABAN: 4,4’-ジアミノベンズアニリド〔純度:99.90%(GC分析)〕
1,4-tra-DACH:トランス-1,4-ジアミノシクロヘキサン〔純度:99.1%(GC分析)〕
4,4’-ODA: 4,4’-オキシジアニリン〔純度:99.9%(GC分析)〕
TFMB: 2,2’-ビス(トリフルオロメチル)ベンジジン〔純度:99.83%(GC分析)〕
m-TD: 2,2’-ジメチル-4,4’-ジアミノビフェニル〔純度:99.85%(GC分析)〕
[テトラカルボン酸成分]
CpODA: ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物
s-BPDA: 3,3’,4,4’-ビフェニルテトラカルボン酸二無水物〔純度99.9%(H-NMR分析)〕
a-BPDA: 2,3,3’,4’-ビフェニルテトラカルボン酸二無水物〔純度99.6%(H-NMR分析)〕
H-PMDA: 1R,2S,4S,5R-シクロヘキサンテトラカルボン酸二無水物〔純度:99.9%(GC分析)〕
6FDA: 4,4’-(2,2-ヘキサフルオロイソプロピレン)ジフタル酸二無水物〔純度:99.77%(H-NMR分析)〕
CBDA: 1,2,3,4-シクロブタンテトラカルボン酸二無水物〔純度:99.9%(GC分析)〕
 [溶媒]
NMP: N-メチル-2-ピロリドン
水: 純水
[炭酸ストロンチウム分散液]
 炭酸ストロンチウム分散液(1): 炭酸ストロンチウム分散液(1)として、特開2014-80360号公報に記載の炭酸ストロンチウムを用いた分散液(溶媒:NMP)を用意した。分散液(1)は、炭酸ストロンチウムの含有量:10質量%、平均長径36.7nm、平均アスペクト比2.3、長径200nm以上の粒子の含有率 0%であった。
 炭酸ストロンチウム分散液(2): 炭酸ストロンチウムを、分散剤を使用せず、公知の分散方法にてNMPに分散した。分散液(2)は、炭酸ストロンチウムの含有量:10質量%、平均長径36.7nm、平均アスペクト比2.3、長径200nm以上の粒子の含有率 0%であった。
 炭酸ストロンチウム分散液(3): 炭酸ストロンチウム分散液(3)として、特開2014-80360号公報に記載の炭酸ストロンチウムを用いた分散液(溶媒:水)を用意した。分散液(3)(水スラリー)は、炭酸ストロンチウムの含有量:5.5質量%、平均長径31.7nm、平均アスペクト比2.4、長径200nm以上の粒子の含有率0%であった。
 なお、炭酸ストロンチウムの平均長径、平均アスペクト比、長径200nm以上の粒子の含有率(個数基準)は、SEM像より画像解析により求めた。
 〔実施例S-1〕
 窒素ガスで置換した反応容器中にDABAN 9.09g(0.04モル)とPPD 5.41g(0.05モル)とBAPB 3.68g(0.01モル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 10質量%となる量の509.58gを加え、室温で1時間攪拌した。この溶液にCpODA 38.44g(0.10モル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体(ポリアミック酸)溶液を得た。得られたポリイミド前駆体溶液 10gと炭酸ストロンチウム分散液(2) 40gをフリッチュ社の遊星型ボールミル(プレミアムラインP-7)を用いて、0.3mmのZrO 50gを用いて、90分間処理し、炭酸ストロンチウム分散液(4)を得た。
 〔実施例S-2〕
 窒素ガスで置換した反応容器中に1,4-tra-DACH 11.42g(0.100モル)を入れ、水を仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 15質量%となる量の231.37gを加え、室温で1時間攪拌した。この溶液に1,2-ジメチルイミダゾール 21.15g(0.220モル)を加え、室温で1時間攪拌した。この溶液にs-BPDA 28.67g(0.0975モル)とa-BPDA 0.74g(0.0025モル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体(ポリアミック酸)溶液を得た。得られたポリイミド前駆体溶液 15gを分散剤として使用し、炭酸ストロンチウム分散液(3) 300gを分散させ、炭酸ストロンチウム分散液(5)(粒子径D50 79nm、D90 130nm、レーザ回折粒度分布測定装置測定)を得た。
 表1-1に実施例、比較例で使用したテトラカルボン酸成分、表1-2に実施例、比較例で使用したジアミン成分の構造式を記す。
Figure JPOXMLDOC01-appb-T000022
 
Figure JPOXMLDOC01-appb-T000023
 
 〔実施例1〕
 窒素ガスで置換した反応容器中にDABAN 0.91g(0.004モル)とPPD 0.54g(0.005モル)とBAPB 0.37g(0.001モル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 19質量%となる量の24.13gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(0.010モル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体溶液に炭酸ストロンチウム分散液(1) 5.66gを加え、室温で1時間攪拌した。
 ポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例2〕
 窒素ガスで置換した反応容器中に炭酸ストロンチウム分散液(1) 2.83gとN-メチル-2-ピロリドン 25.08gを加え、室温で1時間攪拌した。この溶液にDABAN 0.91g(0.004モル)とPPD 0.54g(0.005モル)とBAPB 0.37g(0.001モル)を入れ、室温で1時間攪拌した。この溶液にCpODA 3.84g(0.010モル)を徐々に加えた。室温で12時間撹拌し、粘稠なポリイミド前駆体溶液を得た。
 ポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例3〕
 窒素ガスで置換した反応容器中に炭酸ストロンチウム分散液(1) 11.32gとN-メチル-2-ピロリドン 17.44gを加え、室温で1時間攪拌した。この溶液にDABAN 0.91g(0.004モル)とPPD 0.54g(0.005モル)とBAPB 0.37g(0.001モル)を入れ、室温で1時間攪拌した。この溶液にCpODA 3.84g(0.010モル)を徐々に加えた。室温で12時間撹拌し、粘稠なポリイミド前駆体溶液を得た。
 ポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
〔実施例4〕
 窒素ガスで置換した反応容器中に炭酸ストロンチウム分散液(1) 28.3gとN-メチル-2-ピロリドン 2.16gを加え、室温で1時間攪拌した。この溶液にDABAN 0.91g(0.004モル)とPPD 0.54g(0.005モル)とBAPB 0.37g(0.001モル)を入れ、室温で1時間攪拌した。この溶液にCpODA 3.84g(0.010モル)を徐々に加えた。室温で12時間撹拌し、粘稠なポリイミド前駆体溶液を得た。
 ポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例5〕
 窒素ガスで置換した反応容器中に炭酸ストロンチウム分散液(2) 2.83gとN-メチル-2-ピロリドン 25.08gを加え、室温で1時間攪拌した。この溶液にDABAN 0.91g(0.004モル)とPPD 0.54g(0.005モル)とBAPB 0.37g(0.001モル)を入れ、室温で1時間攪拌した。この溶液にCpODA 3.84g(0.010モル)を徐々に加えた。室温で12時間撹拌し、粘稠なポリイミド前駆体溶液を得た。
 ポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例6〕
 窒素ガスで置換した反応容器中にDABAN 0.91g(0.004モル)とPPD 0.54g(0.005モル)とBAPB 0.37g(0.001モル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 19質量%となる量の24.13gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(0.010モル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体溶液に炭酸ストロンチウム分散液(4)を 7.08gを加え、室温で1時間攪拌した。
 ポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例7〕
 窒素ガスで置換した反応容器中に炭酸ストロンチウム分散液(4) 7.08gとN-メチル-2-ピロリドン 24.13gを加え、室温で1時間攪拌した。この溶液にDABAN 0.91g(0.004モル)とPPD 0.54g(0.005モル)とBAPB 0.37g(0.001モル)を入れ、室温で1時間攪拌した。この溶液にCpODA 3.84g(0.010モル)を徐々に加えた。室温で12時間撹拌し、粘稠なポリイミド前駆体溶液を得た。
 ポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔比較例1〕
 窒素ガスで置換した反応容器中にDABAN 0.91g(0.004モル)とPPD 0.54g(0.005モル)とBAPB 0.37g(0.001モル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 19質量%となる量の24.13gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(0.010モル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 ポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から410℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
〔実施例8〕
 窒素ガスで置換した反応容器中に炭酸ストロンチウム分散液(5) 5.1gと水 18.54g と1,2-ジメチルイミダゾール 2.11g(0.0220モル)を加え、室温で1時間攪拌した。この溶液に1,4-tra-DACH 1.14g(0.0100モル)を入れ、室温で1時間攪拌した。この溶液にs-BPDA 2.87g(0.00975モル)とa-BPDA 0.07g(0.00025モル)を徐々に加えた。室温で12時間撹拌し、粘稠なポリイミド前駆体溶液を得た。
 ポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から350℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔比較例2〕
 窒素ガスで置換した反応容器中に1,4-tra-DACH 11.42g(0.100モル)を入れ、水を仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 15質量%となる量の231.37gを加え、室温で1時間攪拌した。この溶液に1,2-ジメチルイミダゾール 21.15g(0.220モル)を加え、室温で1時間攪拌した。この溶液にs-BPDA 28.67g(0.0975モル)とa-BPDA 0.74g(0.0025モル)を徐々に加えた。50℃で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 ポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から350℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例9〕
 窒素ガスで置換した反応容器中に4,4’-ODA 20.02g(0.100モル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 17質量%となる量の207.21gを加え、室温で1時間攪拌した。この溶液にPMDA-HS 22.41g(0.100ミリモル)を徐々に加えた。室温で12時間撹拌した。この溶液にトルエン30g加え、180℃で8時間加熱し、イミド化を行った。この溶液を大量の水に再沈殿させ、ろ過、乾燥した。得られた固体(ポリイミド) 10gをN-メチル-2-ピロリドン 40gに加え、室温で3時間攪拌し、均一で粘稠なポリイミド溶液を得た。この溶液に炭酸ストロンチウム分散液(2) 5.0gを加え、室温で1時間攪拌し、ポリイミド溶液を得た。
 ポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から350℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例10〕
 窒素ガスで置換した反応容器中に4,4’-ODA 20.02g(0.100モル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 17質量%となる量の207.21gを加え、室温で1時間攪拌した。この溶液にPMDA-HS 22.41g(0.100ミリモル)を徐々に加えた。室温で12時間撹拌した。この溶液にトルエン30g加え、180℃で8時間加熱し、イミド化を行った。この溶液を大量の水に再沈殿させ、ろ過、乾燥した。得られた固体(ポリイミド) 10gをN-メチル-2-ピロリドン 25gに加え、室温で3時間攪拌し、均一で粘稠なポリイミド溶液を得た。この溶液に炭酸ストロンチウム分散液(2) 20.0gを加え、室温で1時間攪拌し、ポリイミド溶液を得た。
 ポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から350℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔比較例3〕
 窒素ガスで置換した反応容器中に4,4’-ODA 20.02g(0.100モル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 17質量%となる量の207.21gを加え、室温で1時間攪拌した。この溶液にPMDA-HS 22.41g(0.100ミリモル)を徐々に加えた。室温で12時間撹拌した。この溶液にトルエン30g加え、180℃で8時間加熱し、イミド化を行った。この溶液を大量の水に再沈殿させ、ろ過、乾燥した。得られた固体(ポリイミド) 10gをN-メチル-2-ピロリドン 40gに加え、室温で3時間攪拌し、均一で粘稠なポリイミド溶液を得た。
 ポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から350℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例11〕
  窒素ガスで置換した反応容器中に炭酸ストロンチウム分散液(1) 7.20gとN-メチル-2-ピロリドン 22.30gを加え、室温で1時間攪拌した。窒素ガスで置換した反応容器中にTFMB 3.20g(0.010モル)を入れ、室温で1時間攪拌した。この溶液にs-BPDA 0.88g(0.0030モル)と6FDA 3.11(0.0070モル)を徐々に加えた。室温で12時間撹拌した。この溶液に1,2-ジメチルイミダゾール 0.96g(0.010モル)を加え、室温で1時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 ポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から350℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔比較例4〕
 窒素ガスで置換した反応容器中にTFMB 32.02g(0.100モル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の287.79gを加え、室温で1時間攪拌した。この溶液にs-BPDA 8.83g(0.030モル)と6FDA 31.10(0.070モル)を徐々に加えた。室温で12時間撹拌した。この溶液に1,2-ジメチルイミダゾール 0.96g(0.010モル)を加え、室温で1時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 ポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から350℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例12〕
 窒素ガスで置換した反応容器中に炭酸ストロンチウム分散液(1) 2.13gとN-メチル-2-ピロリドン 31.24gを加え、室温で1時間攪拌した。この溶液にm-TD 2.12g(0.01モル)を入れ、室温で1時間攪拌した。この溶液にCpODA 0.38g(0.001モル)とCBDA 1.76g(0.009モル)を徐々に加えた。室温で12時間撹拌した。この溶液に1,2-ジメチルイミダゾール 0.10g(0.001モル)を加え、室温で1時間攪拌し、粘稠なポリイミド前駆体溶液を得た。
 ポリイミド前駆体溶液を最終的な膜厚が約80umになるようにガラス基板に塗布し、80℃のホットプレート上で予備乾燥を行った。得られたフィルムをガラス基板上から剥離し、ピンテンターに上下の2辺のみ固定し、窒素雰囲気下(酸素濃度200ppm以下)、で室温から260℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルムを得た。得られたポリイミドフィルムの膜厚は約80μmであった。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔比較例5〕
 窒素ガスで置換した反応容器中にm-TD 2.12g(0.010モル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 12質量%となる量の31.24gを加え、室温で1時間攪拌した。この溶液にCBDA 1.76g(0.009モル)とCpODA 0.38g(0.001モル)を徐々に加えた。室温で12時間撹拌した。この溶液に、1,2-ジメチルイミダゾール 0.1g(0.001モル)を加え、室温で1時間攪拌し均一で粘稠なポリイミド前駆体溶液を得た。
 ポリイミド前駆体溶液を最終的な膜厚が約80umになるようにガラス基板に塗布し、80℃のホットプレート上で予備乾燥を行った。得られたフィルムをガラス基板上から剥離し、ピンテンターに上下の2辺のみ固定し、窒素雰囲気下(酸素濃度200ppm以下)、で室温から260℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルムを得た。得られたポリイミドフィルムの膜厚は約80μmであった。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
 
 本発明によって、容易に製造可能で、厚み方向及び面内方向の位相差が小さく、透明性、機械的特性、または耐熱性等にも優れるポリイミド組成物、及びその前駆体組成物を提供することができる。このポリイミド組成物は、透明性、機械的特性、または耐熱性等に優れ、且つ厚み方向及び面内方向の位相差が小さいので、特にディスプレイ用、タッチパネル用、太陽電池用などの基板を形成するために好適に用いることができる。
 

Claims (19)

  1.  ポリイミド前駆体(A1)と、光学異方性を有する微粒子(B)とを含むことを特徴とするポリイミド前駆体組成物。
  2.  前記ポリイミド前駆体(A1)が、下記化学式(1)で表される繰り返し単位の少なくとも1種を含むことを特徴とする請求項1に記載のポリイミド前駆体組成物。
    Figure JPOXMLDOC01-appb-C000001
     
    (式中、Xは芳香族環または脂環構造を有する4価の基であり、Yは芳香族環または脂環構造を有する2価の基であり、R、Rはそれぞれ独立に水素、炭素数1~6のアルキル基、または炭素数3~9のアルキルシリル基である。)
  3.  Xが脂環構造を有する4価の基であり、Yが脂環構造を有する2価の基である化学式(1)で表される繰り返し単位の含有量が、全繰り返し単位に対して、50モル%以下であることを特徴とする請求項2に記載のポリイミド前駆体組成物。
  4.  化学式(1)中のXが芳香族環を有する4価の基であり、Yが芳香族環を有する2価の基であることを特徴とする請求項2に記載のポリイミド前駆体組成物。
  5.  化学式(1)中のXが脂環構造を有する4価の基であり、Yが芳香族環を有する2価の基であることを特徴とする請求項2に記載のポリイミド前駆体組成物。
  6.  化学式(1)中のXが芳香族環を有する4価の基であり、Yが脂環構造を有する2価の基であることを特徴とする請求項2に記載のポリイミド前駆体組成物。
  7.  前記光学異方性を有する微粒子(B)が、炭酸ストロンチウムであることを特徴とする請求項1~6のいずれかに記載のポリイミド前駆体組成物。
  8.  ポリイミド(A2)と、光学異方性を有する微粒子(B)とを含むことを特徴とするポリイミド組成物。
  9.  前記ポリイミド(A2)が、下記化学式(7)で表される繰り返し単位の少なくとも1種を含むことを特徴とする請求項8に記載のポリイミド組成物。
    Figure JPOXMLDOC01-appb-C000002
     
    (式中、Xは芳香族環または脂環構造を有する4価の基であり、Yは芳香族環または脂環構造を有する2価の基である。)
  10.  請求項1~7のいずれかに記載のポリイミド前駆体組成物から得られることを特徴とするポリイミド組成物。
  11.  請求項1~7のいずれかに記載のポリイミド前駆体組成物から得られるポリイミド組成物、又は請求項8~9のいずれかに記載のポリイミド組成物からなることを特徴とするポリイミドフィルム。
  12.  請求項11記載のポリイミドフィルムと、少なくとも1層のガラス層を有することを特徴とするポリイミドフィルム積層体。
  13.  請求項11記載のポリイミドフィルムと、少なくとも1層のガスバリヤ層を有することを特徴とするポリイミドフィルム積層体。
  14.  請求項11記載のポリイミドフィルムと、少なくとも1層の薄膜トランジスタを有することを特徴とするポリイミドフィルム積層体。
  15.  請求項11記載のポリイミドフィルムと、少なくとも1層の導電層を有すること特徴とする請求項12または13に記載のポリイミドフィルム積層体。
  16.  請求項1~7のいずれかに記載のポリイミド前駆体組成物から得られるポリイミド組成物、又は請求項8~9のいずれかに記載のポリイミド組成物を含むことを特徴とするディスプレイ用、タッチパネル用、または太陽電池用のフィルム。
  17.  請求項1~7のいずれかに記載のポリイミド前駆体組成物から得られるポリイミド組成物、又は請求項8~9のいずれかに記載のポリイミド組成物を含むことを特徴とする表示デバイス、センサーデバイス、光電変換デバイス、または光学デバイス。
  18.  下記化学式(8)で表される繰り返し単位を含むポリアミック酸(A3)で表面処理された光学異方性を有する微粒子粉末。
    Figure JPOXMLDOC01-appb-C000003
     
    (式中、Xは芳香族環または脂環構造を有する4価の基であり、Yは芳香族環または脂環構造を有する2価の基である。ただし、式中のカルボキシル基(-COOH)は、塩基と塩を形成していてもよい。)
  19.  下記化学式(8)で表される繰り返し単位を含むポリアミック酸(A3)と、光学異方性を有する微粒子(B)と、溶媒(C)とを含む微粒子分散液。
    Figure JPOXMLDOC01-appb-C000004
     
    (式中、Xは芳香族環または脂環構造を有する4価の基であり、Yは芳香族環または脂環構造を有する2価の基である。ただし、式中のカルボキシル基(-COOH)は、塩基と塩を形成していてもよい。)
     
PCT/JP2016/067453 2015-06-12 2016-06-10 ポリイミド前駆体組成物、及びポリイミド組成物 WO2016199926A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187000676A KR20180018667A (ko) 2015-06-12 2016-06-10 폴리이미드 전구체 조성물 및 폴리이미드 조성물
CN201680044684.2A CN107849352B (zh) 2015-06-12 2016-06-10 聚酰亚胺前体组合物和聚酰亚胺组合物
JP2017523736A JP6919564B2 (ja) 2015-06-12 2016-06-10 ポリイミド前駆体組成物、及びポリイミド組成物
US15/735,287 US20180171077A1 (en) 2015-06-12 2016-06-10 Polyimide precursor composition and polyimide composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015119719 2015-06-12
JP2015-119719 2015-06-12

Publications (1)

Publication Number Publication Date
WO2016199926A1 true WO2016199926A1 (ja) 2016-12-15

Family

ID=57503249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067453 WO2016199926A1 (ja) 2015-06-12 2016-06-10 ポリイミド前駆体組成物、及びポリイミド組成物

Country Status (6)

Country Link
US (1) US20180171077A1 (ja)
JP (1) JP6919564B2 (ja)
KR (1) KR20180018667A (ja)
CN (1) CN107849352B (ja)
TW (1) TWI772260B (ja)
WO (1) WO2016199926A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150377A1 (ja) * 2016-03-03 2017-09-08 大日本印刷株式会社 ポリイミドフィルム、ポリイミドフィルムの製造方法、及びポリイミド前駆体樹脂組成物
JP2018158535A (ja) * 2017-03-23 2018-10-11 宇部興産株式会社 ポリイミドフィルムとハードコート層とを含む積層体
WO2018190179A1 (ja) * 2017-04-10 2018-10-18 大日本印刷株式会社 ポリイミドフィルム、積層体、及びディスプレイ用表面材
JP2019027623A (ja) * 2017-07-26 2019-02-21 株式会社Screenホールディングス 加熱装置および加熱方法
JP2019045804A (ja) * 2017-09-06 2019-03-22 大日本印刷株式会社 ポリイミドフィルム、光学フィルムおよび画像表示装置
CN110198972A (zh) * 2017-11-03 2019-09-03 株式会社Lg化学 用于显示器基底的聚酰亚胺膜
WO2019198709A1 (ja) * 2018-04-10 2019-10-17 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6672667B2 (ja) * 2015-09-24 2020-03-25 富士ゼロックス株式会社 ポリイミド前駆体組成物、ポリイミド前駆体組成物の製造方法、及びポリイミド成形体の製造方法。
TWI609897B (zh) * 2017-02-15 2018-01-01 律勝科技股份有限公司 聚醯亞胺樹脂及其製造方法與薄膜
KR102147342B1 (ko) * 2019-09-30 2020-08-24 에스케이이노베이션 주식회사 폴리이미드계 필름 및 이를 이용한 윈도우 커버 필름
WO2022133722A1 (zh) * 2020-12-22 2022-06-30 宁波长阳科技股份有限公司 聚酰亚胺材料及其制备方法和应用
CN114213790A (zh) * 2021-12-31 2022-03-22 南京清研新材料研究院有限公司 一种光配向聚酰亚胺组合物及其制备工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315541A (ja) * 2002-04-23 2003-11-06 Nitto Denko Corp 複屈折性フィルムの製造方法、光学補償偏光板及び表示装置
JP2004035347A (ja) * 2002-07-04 2004-02-05 Japan Science & Technology Corp 炭酸ストロンチウムの製造方法、非複屈折性光学樹脂材料並びに光学素子
JP2007140011A (ja) * 2005-11-17 2007-06-07 Tosoh Corp 光学フィルムの製造方法
JP2008274043A (ja) * 2007-04-26 2008-11-13 Asahi Kasei Corp 膜及びその製造方法
JP2008280404A (ja) * 2007-05-09 2008-11-20 Fujifilm Corp 組成物、フィルム、及びレターデーション制御剤
WO2011129311A1 (ja) * 2010-04-12 2011-10-20 日東電工株式会社 粒子、粒子分散液、粒子分散樹脂組成物、その製造方法、樹脂成形体、その製造方法、触媒粒子、触媒液、触媒組成物、触媒成形体、チタン錯体、酸化チタン粒子およびその製造方法
WO2015080158A1 (ja) * 2013-11-27 2015-06-04 宇部興産株式会社 ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180350A (ja) * 1997-09-12 1999-03-26 Hitachi Chem Co Ltd 光部品用ポリイミド及びこれを用いた光部品
JP2000080271A (ja) * 1998-09-04 2000-03-21 Unitika Ltd 誘電体ペースト及びそれから得られる誘電体膜
JP4813013B2 (ja) * 2003-11-25 2011-11-09 東ソー株式会社 ディスプレイ用光学フィルム
JP2008101176A (ja) * 2005-11-10 2008-05-01 Fujifilm Corp 組成物及び該組成物からなるフィルム、偏光板保護フィルム、光学補償フィルムならびに液晶表示装置
JP2008003358A (ja) * 2006-06-23 2008-01-10 Konica Minolta Holdings Inc 光学フィルムの製造方法、光学フィルム及び光学素子
TWI491649B (zh) * 2007-04-13 2015-07-11 Ube Industries Polyimide film with smoothness
JP2008280403A (ja) * 2007-05-09 2008-11-20 Fujifilm Corp 組成物及び該組成物からなるフィルム、偏光板保護フィルム、光学補償フィルムならびに液晶表示装置
TWI435902B (zh) * 2007-08-20 2014-05-01 Kolon Inc 聚亞醯胺膜
WO2009069688A1 (ja) * 2007-11-30 2009-06-04 Mitsui Chemicals, Inc. ポリイミド系複合材料およびそのフィルム
JP6058250B2 (ja) * 2010-04-12 2017-01-11 日東電工株式会社 粒子分散樹脂組成物、粒子分散樹脂成形体およびそれらの製造方法
JP2013182053A (ja) * 2012-02-29 2013-09-12 Tosoh Corp 位相差フィルムの製造方法
US9067799B2 (en) * 2012-09-28 2015-06-30 Ube Material Industries, Ltd. Acicular strontium carbonate fine powder treated with a combination of compounds containing a polyoxyalkylene group

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315541A (ja) * 2002-04-23 2003-11-06 Nitto Denko Corp 複屈折性フィルムの製造方法、光学補償偏光板及び表示装置
JP2004035347A (ja) * 2002-07-04 2004-02-05 Japan Science & Technology Corp 炭酸ストロンチウムの製造方法、非複屈折性光学樹脂材料並びに光学素子
JP2007140011A (ja) * 2005-11-17 2007-06-07 Tosoh Corp 光学フィルムの製造方法
JP2008274043A (ja) * 2007-04-26 2008-11-13 Asahi Kasei Corp 膜及びその製造方法
JP2008280404A (ja) * 2007-05-09 2008-11-20 Fujifilm Corp 組成物、フィルム、及びレターデーション制御剤
WO2011129311A1 (ja) * 2010-04-12 2011-10-20 日東電工株式会社 粒子、粒子分散液、粒子分散樹脂組成物、その製造方法、樹脂成形体、その製造方法、触媒粒子、触媒液、触媒組成物、触媒成形体、チタン錯体、酸化チタン粒子およびその製造方法
WO2015080158A1 (ja) * 2013-11-27 2015-06-04 宇部興産株式会社 ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHIKI MATSUOKA: "Ekisho Display Muke Kobunshi Zairyo no Saishin Doko -Isosa Film o Chushin to shite", KOGYO ZAIRYO, vol. 56, no. 4, April 2008 (2008-04-01), pages 3 3 - 36 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017150377A1 (ja) * 2016-03-03 2018-12-27 大日本印刷株式会社 ポリイミドフィルム、ポリイミドフィルムの製造方法、及びポリイミド前駆体樹脂組成物
WO2017150377A1 (ja) * 2016-03-03 2017-09-08 大日本印刷株式会社 ポリイミドフィルム、ポリイミドフィルムの製造方法、及びポリイミド前駆体樹脂組成物
JP2018158535A (ja) * 2017-03-23 2018-10-11 宇部興産株式会社 ポリイミドフィルムとハードコート層とを含む積層体
JP7088173B2 (ja) 2017-04-10 2022-06-21 大日本印刷株式会社 フレキシブルディスプレイ用表面材
WO2018190179A1 (ja) * 2017-04-10 2018-10-18 大日本印刷株式会社 ポリイミドフィルム、積層体、及びディスプレイ用表面材
JPWO2018190179A1 (ja) * 2017-04-10 2020-05-14 大日本印刷株式会社 ポリイミドフィルム、積層体、及びディスプレイ用表面材
JP2019027623A (ja) * 2017-07-26 2019-02-21 株式会社Screenホールディングス 加熱装置および加熱方法
JP2019045804A (ja) * 2017-09-06 2019-03-22 大日本印刷株式会社 ポリイミドフィルム、光学フィルムおよび画像表示装置
JP7196384B2 (ja) 2017-09-06 2022-12-27 大日本印刷株式会社 ポリイミドフィルム、光学フィルムおよび画像表示装置
CN110198972A (zh) * 2017-11-03 2019-09-03 株式会社Lg化学 用于显示器基底的聚酰亚胺膜
CN110198972B (zh) * 2017-11-03 2021-12-21 株式会社Lg化学 用于显示器基底的聚酰亚胺膜
US11873371B2 (en) 2017-11-03 2024-01-16 Lg Chem, Ltd. Polyimide film for display substrate
JPWO2019198709A1 (ja) * 2018-04-10 2021-04-15 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2019198709A1 (ja) * 2018-04-10 2019-10-17 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7371621B2 (ja) 2018-04-10 2023-10-31 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム

Also Published As

Publication number Publication date
TW201710321A (zh) 2017-03-16
CN107849352A (zh) 2018-03-27
CN107849352B (zh) 2021-05-28
US20180171077A1 (en) 2018-06-21
JP6919564B2 (ja) 2021-08-18
KR20180018667A (ko) 2018-02-21
TWI772260B (zh) 2022-08-01
JPWO2016199926A1 (ja) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6531812B2 (ja) ポリイミド前駆体及びポリイミド
JP6919564B2 (ja) ポリイミド前駆体組成物、及びポリイミド組成物
JP6358358B2 (ja) ポリイミド材料およびその製造方法
KR102073449B1 (ko) 폴리이미드 전구체, 폴리이미드, 폴리이미드 필름, 바니시, 및 기판
JP6485358B2 (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
JP6283954B2 (ja) ポリイミド前駆体、ポリイミド、ワニス、ポリイミドフィルム、及び基板
JP6607193B2 (ja) ポリイミド前駆体、ポリイミド、及びポリイミドフィルム
KR102076877B1 (ko) 폴리이미드 전구체, 폴리이미드, 바니시, 폴리이미드 필름, 및 기판
KR20170072929A (ko) 폴리이미드 필름, 폴리이미드 전구체 및 폴리이미드
JP7047852B2 (ja) ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807631

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017523736

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15735287

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187000676

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16807631

Country of ref document: EP

Kind code of ref document: A1