WO2017126409A1 - ポリイミドフィルムの製造方法、ポリイミドフィルム、ポリアミド酸溶液及び感光性組成物 - Google Patents

ポリイミドフィルムの製造方法、ポリイミドフィルム、ポリアミド酸溶液及び感光性組成物 Download PDF

Info

Publication number
WO2017126409A1
WO2017126409A1 PCT/JP2017/000828 JP2017000828W WO2017126409A1 WO 2017126409 A1 WO2017126409 A1 WO 2017126409A1 JP 2017000828 W JP2017000828 W JP 2017000828W WO 2017126409 A1 WO2017126409 A1 WO 2017126409A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyamic acid
general formula
film
polyimide
Prior art date
Application number
PCT/JP2017/000828
Other languages
English (en)
French (fr)
Inventor
伸一 小松
国宏 野田
博樹 千坂
大 塩田
Original Assignee
Jxエネルギー株式会社
東京応化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxエネルギー株式会社, 東京応化工業株式会社 filed Critical Jxエネルギー株式会社
Priority to US16/070,401 priority Critical patent/US11136435B2/en
Priority to JP2017562535A priority patent/JP6847054B2/ja
Priority to CN201780007294.2A priority patent/CN108473698A/zh
Priority to KR1020187023389A priority patent/KR20180103120A/ko
Priority to EP17741289.7A priority patent/EP3406657A4/en
Publication of WO2017126409A1 publication Critical patent/WO2017126409A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1021Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2150/00Compositions for coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a method for producing a polyimide film, a polyimide film, a polyamic acid solution, and a photosensitive composition.
  • glass substrates have been used as substrates (for example, substrates for mobile devices such as smartphones and tablet terminals).
  • the glass substrate has a problem that it is broken by an impact, there has been a demand for the appearance of a light and flexible material having a sufficiently high light transmittance and a sufficiently high heat resistance.
  • aromatic polyimide for example, trade name “Kapton” manufactured by DuPont
  • aromatic polyimide is a polyimide having sufficient flexibility and high heat resistance, it exhibits a brown color and can be used for glass replacement applications and optical applications that require light transmission. It wasn't. Therefore, in recent years, development of an alicyclic polyimide having sufficient light transmittance that can be used for glass substitute applications and the like has been advanced.
  • Patent Document 1 As such an alicyclic polyimide, it has a specific general formula as described in, for example, International Publication No. 2011/099518 (Patent Document 1) as having sufficient light transmittance and high heat resistance. Polyimides having the repeating units described are known. In Patent Document 1, for example, after forming a polyamic acid solution, a coating film made of the polyamic acid solution is formed, and the coating film is cured to form a polyimide film. (See Example 7 of Patent Document 1).
  • the surface smoothness of the film should be of a higher level (surface).
  • a polyimide film is used for an organic EL substrate, if the surface roughness is large, a problem may occur that the electrodes are short-circuited and do not emit light. More desirable. From such a viewpoint, compared with the case of using a conventional method for producing a polyimide film, a polyimide film that can more efficiently produce a film having a higher level of surface smoothness. The advent of manufacturing methods is desired.
  • the present invention has been made in view of the above-described problems of the prior art, and a method for producing a polyimide film, which can efficiently produce a film having a higher level of surface smoothness, and a method for producing the same
  • An object of the present invention is to provide a polyimide film obtained by using a polyamic acid, a polyamic acid solution that can be suitably used for the production of the polyimide film, and a photosensitive composition containing the polyamic acid solution.
  • the inventors when using a known method for producing a polyimide film, the inventors basically have a high viscosity of a polyamic acid solution (resin solution: varnish). By forming the solution, the workability at the time of application of the solution (varnish) is further improved, and it becomes possible to more efficiently produce a film having a higher level of surface smoothness.
  • a polyamic acid solution (resin solution: varnish).
  • the present inventors use a large amount of solvent from the beginning in the preparation of the polyamic acid solution in order to reduce the viscosity of the polyamic acid solution (resin solution: varnish), and in the presence of a large amount of solvent, Attempts were made to react the compound, but when the polyamic acid solution obtained in this way was used as it was, there were cases where cracks occurred in the film obtained by imidizing the polyamic acid, and the polyimide film From the viewpoint of efficiently forming the film, it was not always sufficient. Thus, when a low-viscosity polyamic acid solution is simply prepared using a large amount of solvent, it may be difficult to obtain a uniform film (film without cracks) having sufficient mechanical strength. Yes, the polyimide film could not always be produced efficiently.
  • a polyamic acid solution having a viscosity of 5 to 150 cps is obtained, and then a compound represented by the following general formula (4) is added to the polyamic acid solution to form a polyimide forming mixed solution. Then, after forming a film made of the polyimide forming mixed solution, the polyamic acid in the film is imidized to use a sufficiently low-viscosity polyamic acid solution having a viscosity of 5 to 150 cps.
  • the present invention was completed by finding out that it is possible to efficiently form a film made of polyimide by imidizing it, and that the resulting film can have a higher level of surface smoothness. It came to do.
  • the method for producing the polyimide film of the present invention comprises a solvent and the following general formula (1):
  • R 1 , R 2 and R 3 each independently represents one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluorine atom, and n is 0 to An integer of 12 is shown.
  • R 10 represents an aryl group having 6 to 50 carbon atoms.
  • a raw material mixed solution containing 15% by mass or less of the total content of the tetracarboxylic dianhydride and the aromatic diamine and the raw material mixed solution In the reaction, the tetracarboxylic dianhydride and the aromatic diamine are reacted to form the following general formula (3):
  • R 1, R 2, R 3 are each independently a hydrogen atom, represents one selected from the group consisting of alkyl groups and fluorine atoms having 1 to 10 carbon atoms, R 10 is Represents an aryl group having 6 to 50 carbon atoms, and n represents an integer of 0 to 12.
  • a step of obtaining a polyamic acid solution having a viscosity of 5 to 150 cps by forming a polyamic acid having a repeating unit represented by:
  • R 11 represents one selected from the group consisting of a hydrogen atom and an alkyl group
  • R 12 represents an aromatic group which may have a substituent
  • R 13 represents a substituent.
  • m represents an integer of 0 to 3.
  • R 1, R 2, R 3 are each independently a hydrogen atom, represents one selected from the group consisting of alkyl groups and fluorine atoms having 1 to 10 carbon atoms, R 10 is Represents an aryl group having 6 to 50 carbon atoms, and n represents an integer of 0 to 12.
  • the polyimide film of the present invention is obtained by the above-described method for producing a polyimide film of the present invention.
  • the polyamic acid solution of the present invention includes a solvent, A polyamic acid having a repeating unit represented by the general formula (3); A compound represented by the above general formula (4); And a viscosity of 5 to 150 cps.
  • the photosensitive composition of the present invention contains the polyamic acid solution of the present invention and a photosensitizer.
  • a method for producing a polyimide film capable of efficiently producing a film having a higher level of surface smoothness, a polyimide film obtained using the production method It is possible to provide a polyamic acid solution that can be suitably used for production, and a photosensitive composition containing the polyamic acid solution.
  • FIG. 2 is a graph showing an IR spectrum of polyimide obtained in Example 1.
  • FIG. 6 is a graph showing an IR spectrum of polyimide obtained in Example 4.
  • 6 is a graph showing an IR spectrum of the polyimide obtained in Example 5.
  • 6 is a graph showing an IR spectrum of the polyimide obtained in Example 6.
  • 6 is a graph showing an IR spectrum of polyimide obtained in Example 7.
  • 10 is a graph showing an IR spectrum of polyimide obtained in Example 8.
  • the method for producing a polyimide film of the present invention comprises a solvent, a tetracarboxylic dianhydride represented by the general formula (1), and an aromatic diamine represented by the general formula (2), and And preparing a raw material mixture in which the total content of the tetracarboxylic dianhydride and the aromatic diamine is 15% by mass or less, and in the raw material mixture, the tetracarboxylic dianhydride and the aromatic
  • a film (polyimide film) made of polyimide having a repeating unit represented by the general formula (5) is formed by forming a film made of the mixed
  • step of obtaining the polyamic acid solution is sometimes simply referred to as “first step”
  • step of obtaining the polyimide forming mixture is sometimes simply referred to as “second step”.
  • process of obtaining a film consisting of is sometimes simply referred to as the “third process”.
  • the step of obtaining the polyamic acid solution according to the present invention comprises a solvent, a tetracarboxylic dianhydride represented by the general formula (1), and an aromatic diamine represented by the general formula (2).
  • the solvent used in the first step is not particularly limited as long as it can be used for the preparation of polyamic acid, and the tetracarboxylic dianhydride represented by the above general formula (1) It is preferable that it is an organic solvent which can melt
  • the organic solvent suitable as the solvent used in the first step include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, ⁇ -butyrolactone, and propylene.
  • Aprotic polar solvents such as carbonate, tetramethylurea (tetramethylurea), 1,3-dimethyl-2-imidazolidinone, hexamethylphosphoric triamide, pyridine; m-cresol, xylenol, phenol, halogenated phenol Phenol solvents such as tetrahydrofuran, dioxane, cellosolve, ether solvents such as glyme, diglyme and propylene glycol monomethyl ether acetate; aromatic solvents such as benzene, toluene and xylene; cyclopentanone Ketone solvents such as cyclohexanone; acetonitrile, nitrile solvents such as benzonitrile and the like.
  • solvents include tetramethylurea (tetramethylurea), N-methyl-2-pyrrolidone, N, N-dimethylacetamide, ⁇ -butyrolactone, 1,3- Dimethyl-2-imidazolidinone is preferred, and tetramethylurea (tetramethylurea), ⁇ -butyrolactone, and 1,3-dimethyl-2-imidazolidinone are more preferred.
  • Such solvents may be used alone or in combination of two or more.
  • the tetracarboxylic dianhydride used in the first step is a compound (compound) represented by the general formula (1) (in the general formula (1), R 1 , R 2 , R 3 represents each independently one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and a fluorine atom, and n represents an integer of 0 to 12.
  • the alkyl group that can be selected as R 1 , R 2 , or R 3 in the general formula (1) is an alkyl group having 1 to 10 carbon atoms.
  • the number of carbon atoms of the alkyl group that can be selected as R 1 , R 2 , or R 3 is preferably 1 to 6, more preferably 1 to 5, and more preferably 1 to 4. Is more preferable, and 1 to 3 is particularly preferable.
  • such an alkyl group that can be selected as R 1 , R 2 , or R 3 may be linear or branched.
  • such an alkyl group is more preferably a methyl group or an ethyl group.
  • R 1 , R 2 and R 3 in the general formula (1) are each independently more preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and each independently a hydrogen atom or a methyl group More preferably an ethyl group, an n-propyl group or an isopropyl group, and particularly preferably a hydrogen atom or a methyl group. Moreover, it is especially preferable that several R ⁇ 1 >, R ⁇ 2 >, R ⁇ 3 > in such a formula is the same thing.
  • n represents an integer of 0 to 12.
  • the upper limit value of the numerical value range of n in the general formula (1) is more preferably 5 and particularly preferably 3.
  • the lower limit of the numerical range of n in the general formula (1) is more preferably 1, and particularly preferably 2.
  • n in the general formula (1) is particularly preferably an integer of 2 to 3.
  • the method for producing the tetracarboxylic dianhydride represented by the general formula (1) is not particularly limited, and a known method (for example, Example 2 of International Publication No. 2011/099518 or The method described in Example 4) can be appropriately employed.
  • the aromatic diamine used in the first step is a compound (compound) represented by the general formula (2) (in the general formula (2), R 10 has 6 to 50 carbon atoms). Represents an aryl group).
  • the aryl group that can be selected as R 10 in the general formula (2) has 6 to 50 carbon atoms, and the aryl group preferably has 6 to 40 carbon atoms, It is more preferably 6 to 30, and further preferably 12 to 20.
  • R 15 represents one selected from the group consisting of a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, and a trifluoromethyl group.
  • Q represents a formula: —O—, —S—, —CO—, —CONH—, —SO 2 —, —C (CF 3 ) 2 —, —C (CH 3 ) 2 —, —CH 2 —, —O—C 6 H 4- C (CH 3 ) 2 —C 6 H 4 —O—, —O—C 6 H 4 —C (CF 3 ) 2 —C 6 H 4 —O—, —O—C 6 H 4 —SO 2 —C 6 H 4 —O—, —C (CH 3 ) 2 —C 6 H 4 —C (CH 3 ) 2 —, —O—C 6 H 4 —C 6 H 4 —O—, and —O A group
  • each R a independently represents any one of an alkyl group having 1 to 10 carbon atoms, a phenyl group, and a tolyl group, and y represents an integer of 1 to 18) 1 type selected from the group consisting of groups represented by: ] It is preferable that it is at least 1 sort (s) of group represented by these.
  • R 15 in the general formula (8) is more preferably a hydrogen atom, a fluorine atom, a methyl group, or an ethyl group, and particularly preferably a hydrogen atom, from the viewpoint of the heat resistance of the resulting polyimide.
  • R a in the general formula (10) that can be selected as Q in the general formula (9) is independently any one of an alkyl group having 1 to 10 carbon atoms, a phenyl group, and a tolyl group. It is.
  • Such Ra is preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, a phenyl group, or a tolyl group, more preferably a methyl group or an ethyl group, and even more preferably a methyl group.
  • y represents an integer of 1 to 15 (more preferably 3 to 12, more preferably 5 to 10).
  • R 10 in the general formula (2) is a group represented by the formula (9)
  • Q in the formula (9) is a group represented by the general formula (10).
  • the group diamine for example, the following formula (11):
  • Me represents a methyl group.
  • silicone-based aromatic diamine for example, both terminal amino-modified siloxanes can be suitably used.
  • Specific examples of such both-terminal amino-modified siloxane include amino-modified silicone oils manufactured by Shin-Etsu Chemical Co., Ltd. (for example, PAM-E, KF-8010, X-22-161A, X-22-161B, KF-8012).
  • dimethylsiloxane type diamine manufactured by Gelest for example, DMS-A11, DMS-A12, DMS-A15, DMS-A21, DMS-A31) DMS-A32, DMS-A32R, DMS-A35, etc.
  • Q in the general formula (9) is a group represented by the formula: —CONH—, —O—C 6 H 4 —O—, —O—, —C (CH 3 ) 2 —, —CH 2 —, — A group represented by O—C 6 H 4 —C 6 H 4 —O— or —O—C 6 H 4 —C (CH 3 ) 2 —C 6 H 4 —O—, a 9,9′-fluorenylidene group
  • the group represented by the formula: —CONH—, —O—C 6 H 4 —O—, —O—C 6 H 4 —C 6 H 4 —O— or —O— is particularly preferred.
  • a group represented by —CONH—, —O—C 6 H 4 —O— or —O— is most preferred.
  • Q in the general formula (9) is preferably a group represented by the general formula (10), and is preferably a group represented by the formula: —CONH—.
  • Examples of the aromatic diamine represented by the general formula (2) include 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylmethane, 4,4′-diaminodiphenylethane, and 3,3′-.
  • aromatic diamines 4,4′-diaminobenzanilide, p-diaminobenzene, 2,2′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4 '-Diaminobiphenyl, 4,4'-bis (4-aminophenoxy) biphenyl, 9,9'-bis (4-aminophenyl) fluorene, 2,2'-bis (trifluoromethyl) -4,4'- Diaminobiphenyl, 2,2-bis (4-aminophenoxyphenyl) hexafluoropropane, and 4,4′-diaminodiphenyl ether are preferable, and 4,4′-diaminobenzanilide, p-diaminobenzene, 4,4′-bis ( 4-aminophenoxy) biphenyl is more preferable, and 4,4′-diaminobenzanilide and p-diaminobenz
  • the raw material mixed liquid concerning this invention contains the said solvent, the tetracarboxylic dianhydride represented by the said General formula (1), and the aromatic diamine represented by the said General formula (2). And the total content (mass% in a liquid mixture) of the said tetracarboxylic dianhydride and the said aromatic diamine is a 15 mass% or less thing. When the total content of the tetracarboxylic dianhydride and the aromatic diamine exceeds the upper limit, the reaction between the tetracarboxylic dianhydride and the aromatic diamine is performed in the raw material mixture.
  • the viscosity of the solution becomes high, and a polyamic acid solution having a viscosity of 5 to 150 cps cannot be obtained.
  • the total content of the tetracarboxylic dianhydride and the aromatic diamine is 3 to 15% by mass. It is preferably 5 to 12% by mass. If the total content of the tetracarboxylic dianhydride and the aromatic diamine is less than the lower limit, a large amount of solvent is required and the physical properties of the polyimide film tend to be lowered.
  • the content ratio of the tetracarboxylic dianhydride and the aromatic diamine in the raw material mixture is 0 in terms of a molar ratio ([the tetracarboxylic dianhydride]: [the aromatic diamine]). .75: 1.5 to 1.5: 0.75 is preferable, and 0.9: 1.1 to 1.1: 0.9 is more preferable.
  • the ratio of the tetracarboxylic dianhydride and the aromatic diamine in the raw material mixture is not particularly limited, but the tetracarboxylic dianhydride is equivalent to 1 equivalent of the amino group of the aromatic diamine.
  • the anhydride acid anhydride group is preferably 0.5 to 2 equivalents, more preferably 0.7 to 1.2 equivalents.
  • Examples of other tetracarboxylic dianhydrides other than the tetracarboxylic dianhydride represented by the general formula (1) include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1, 2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 3,5,6 -Tricarboxynorbornane-2-acetic acid dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydro-2,5 -Dioxo-3-furanyl) -naphtho [1,2-c] -furan-1,3-dione, 1,3,3a, 4,5,9b-hexahydro-5-methyl-5- (te
  • heptadec -4,5,11,13- aliphatic such as tetracarboxylic acid dianhydride or an alicyclic tetracarboxylic acid dianhydride; pyromellitic dianhydride, 3,3 ', 4, 4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenylsulfone tetracarboxylic dianhydride, 1,4,5,8-naphthalene tetracarboxylic dianhydride, 2,3, 6,7-naphthalenetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride, 3,3 ′, 4,4′-dimethyldiphenylsilanetetracarboxylic dianhydride 3,3 ′, 4,4′-tetraphenylsilanetetracarboxylic dianhydride 3,
  • the polyimide obtained contains another repeating unit with the repeating unit represented by the general formula (5).
  • the amount used is such that the resulting polyimide can have sufficient transparency. It is preferable to change appropriately within the range.
  • the tetracarboxylic dianhydride and the aromatic diamine are reacted in the raw material mixture to form a polyamic acid having a repeating unit represented by the general formula (3). To do.
  • the reaction temperature at the time of reacting the tetracarboxylic dianhydride and the aromatic diamine may be appropriately adjusted to a temperature at which these compounds can be reacted, and is not particularly limited.
  • the temperature is set to ⁇ 50 ° C., more preferably 10 to 40 ° C., and still more preferably 20 to 30 ° C.
  • a method capable of performing a polymerization reaction of the tetracarboxylic dianhydride and the aromatic diamine can be appropriately used.
  • a method capable of performing a polymerization reaction of the tetracarboxylic dianhydride and the aromatic diamine can be appropriately used.
  • the tetracarboxylic dianhydride is added, and then A method of reacting at the reaction temperature for 0.5 to 24 hours (more preferably 1 to 15 hours, still more preferably 2 to 10 hours) may be employed.
  • a stirring method is not particularly limited, and a known method (for example, a method using a known stirring device) can be appropriately used.
  • the raw material mixing is performed from the viewpoint of sufficiently forming polyamic acid in the raw material mixture.
  • the solution is subjected to a temperature condition of 0 to 50 ° C. (more preferably 10 to 40 ° C., more preferably 20 to 30 ° C.) for 0.5 to 24 hours (more preferably 1 to 15 hours, still more preferably 2 to 10 hours). ) It is preferable to react the tetracarboxylic dianhydride and the aromatic diamine in the raw material mixture by stirring.
  • the polyamic acid which has a repeating unit represented by the said General formula (3) can be formed by making the said tetracarboxylic dianhydride and the said aromatic diamine react.
  • R 1, R 2, R 3 and n in the general formula (3) is, R 1, respectively in the general formula (1), R 2, R is 3 and the same as the n (respectively general formula (1) be R 1, R 2, R 3 and n as defined in), it is also the same as R 1, R 2, R 3 and n in the general formula (1) as its preferred .
  • R 10 in the general formula (3) is (the same meaning as R 10 in the general formula (2)) is similar to the R 10 in the general formula (2), others that suitable The same as R 10 in the general formula (2).
  • the polycarboxylic acid is formed in the raw material mixture by reacting the tetracarboxylic dianhydride and the aromatic diamine in the raw material mixture, and the viscosity is 5 to 5.
  • a polyamic acid solution of 150 cps (centipoise) is obtained.
  • the viscosity of such a polyamic acid solution is more preferably 10 to 100 cps, and particularly preferably 20 to 50 cps.
  • the polyamic acid solution is preferably stored at a low storage temperature.
  • the storage temperature of such a polyamic acid solution is preferably -80 ° C to -1 ° C, more preferably -40 ° C to -5 ° C, and particularly preferably -20 ° C to -10 ° C.
  • the storage period of the polyamic acid solution at such a storage temperature depends on the storage temperature to be employed, and cannot be generally specified, but is preferably 1 day to 2 years, and is preferably 1 week to 2 weeks. One year is more desirable, and one month to half a year is particularly preferable. Note that the storage period is preferably short in consideration of storage effort, economy, and the like.
  • the conditions of the storage temperature and the storage period of the polyamic acid solution are adopted. It is preferable to store it.
  • the viscosity of the polyamic acid solution can be measured as follows. That is, the viscosity of the polyamic acid solution is a RE-85L viscometer manufactured by Toki Sangyo Co., Ltd., and a 1 ° 34 ′ ⁇ R24 standard cone rotor installed as a cone rotor is used as a viscosity measuring device. To measure. In addition, when measuring the viscosity of the polyamic acid solution, a viscosity meter calibration standard solution JS20 (standard solution for viscosity meter calibration in accordance with JIS Z8809 (issued in 2011)) manufactured by Nippon Grease Co., Ltd. was used before the measurement.
  • JS20 standard solution for viscosity meter calibration in accordance with JIS Z8809 (issued in 2011)
  • the viscosity measuring device (the viscometer) is calibrated under a temperature condition of 25 ° C. Then, using the viscosity measuring apparatus (viscosimeter) after calibration, the polyamic acid is subjected to a temperature condition of 25 ° C. and a rotational speed of the cone rotor in a range of 0.5 to 100 rpm. Measure the viscosity of the solution.
  • a value measured by adopting the measurement method as described above is adopted.
  • a method for measuring such a viscosity a method based on JIS Z8803 (issued in 2011) is adopted.
  • the method for measuring the viscosity is a method suitably used for the measurement of a solution having a low viscosity (viscosity of 1215 cps or less), the viscosity is outside the range (5 to 150 cps) of the polyamic acid solution according to the present invention.
  • the viscosity of a solution having such a high viscosity for example, 352.3 to 70460 cps
  • the type of cone rotor or the type of standard solution for viscometer calibration may be changed.
  • the content (concentration) of polyamic acid in the solution is preferably 15% by mass or less, more preferably 3 to 15% by mass, More preferably, it is 5 to 12% by mass.
  • the concentration of the polyamic acid solution is the total content of the tetracarboxylic dianhydride and the aromatic diamine in the raw material solution (mass in the mixed solution). %) Within the above range can be easily achieved.
  • the step of obtaining the polyimide forming mixed solution according to the present invention is a step (second step) of adding the compound represented by the general formula (4) to the polyamic acid solution to obtain a polyimide forming mixed solution.
  • the compound represented by the general formula (4) is sometimes simply referred to as “imidazole compound”.
  • R 11 is selected from the group consisting of a hydrogen atom and an alkyl group.
  • R 12 represents an aromatic group which may have a substituent
  • R 13 represents an alkylene group which may have a substituent
  • R 14 each independently represents a halogen atom, 1 type selected from the group consisting of hydroxyl group, mercapto group, sulfide group, silyl group, silanol group, nitro group, nitroso group, sulfonate group, phosphino group, phosphinyl group, phosphonate group and organic group
  • m is 0 to Represents an integer of 3.
  • R 11 in the general formula (4) is a hydrogen atom or an alkyl group as described above.
  • the alkyl group may be a linear alkyl group or a branched alkyl group.
  • the number of carbon atoms of the alkyl group that can be selected as R 11 is not particularly limited, but is preferably 1 to 20, preferably 1 to 10, and more preferably 1 to 5. .
  • alkyl groups suitable as R 11 in the general formula (4) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert- Butyl group, n-pentyl group, isopentyl group, tert-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, 2-ethyl-n-hexyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-
  • a methyl group and an ethyl group are preferable, and a methyl group is more preferable.
  • R 12 in the general formula (4) is an aromatic group which may have a substituent.
  • the aromatic group which may have such a substituent may be an aromatic hydrocarbon group which may have a substituent, and further an aromatic which may have a substituent. It may be a heterocyclic group.
  • the kind of the aromatic hydrocarbon group that can be used as such an aromatic group is such that the effects of the imidazole compound (e.g., an effect as an accelerator for high molecular weight and an effect as an accelerator for imidization) are impaired.
  • an aromatic hydrocarbon group may be a monocyclic aromatic group, may be formed by condensation of two or more aromatic hydrocarbon groups, or may be two or more aromatic groups.
  • the hydrocarbon group may be formed by a single bond.
  • a phenyl group, a naphthyl group, a biphenylyl group, an anthryl group, and a phenanthrenyl group are preferable.
  • the kind of the aromatic heterocyclic group that can be used as the aromatic group is not particularly limited as long as the effect of the imidazole compound is not impaired.
  • Such an aromatic heterocyclic group may be a monocyclic group or a polycyclic group.
  • a pyridyl group, a furyl group, a thienyl group, an imidazolyl group, a pyrazolyl group, an oxazolyl group, a thiazolyl group, an isoxazolyl group, an isothiazolyl group, a benzoxazolyl group, a benzothiazolyl group, and a benzoimidazolyl group are preferable.
  • Such an aromatic group may have a halogen atom, a hydroxyl group , Mercapto group, sulfide group, silyl group, silanol group, nitro group, nitroso group, sulfino group, sulfo group, sulfonate group, phosphino group, phosphinyl group, phosphono group, phosphonate group, amino group, ammonio group, and organic group Can be mentioned.
  • the plurality of substituents may be the same or different.
  • the substituent of the aromatic group is an organic group
  • examples of the organic group include an alkyl group, an alkenyl group, a cycloalkyl group, a cycloalkenyl group, an aryl group, and an aralkyl group.
  • Such an organic group may contain a bond or substituent other than a hydrocarbon group such as a hetero atom in the organic group.
  • the organic group may be linear, branched or cyclic. This organic group is usually monovalent, but can be a divalent or higher organic group when a cyclic structure is formed.
  • the two substituents bonded on the adjacent carbon atom may be bonded to form a cyclic structure.
  • a cyclic structure include an aliphatic hydrocarbon ring and an aliphatic ring containing a hetero atom.
  • the bond contained in the organic group is not particularly limited as long as the effect of the imidazole compound is not impaired.
  • a bond containing a hetero atom such as an oxygen atom, a nitrogen atom, or a silicon atom may be included.
  • the bond containing a hetero atom that the organic group may have is represented by the above general formula.
  • the type of substituent other than the hydrocarbon group is the effect of the imidazole compound.
  • substituents other than hydrocarbon groups include halogen atoms, hydroxyl groups, mercapto groups, sulfide groups, cyano groups, isocyano groups, cyanato groups, isocyanato groups, thiocyanato groups, isothiocyanato groups, silyl groups, silanol groups.
  • the hydrogen atom contained in the substituent may be substituted with a hydrocarbon group. Further, the hydrocarbon group contained in the substituent may be linear, branched, or cyclic.
  • Examples of the substituent that the aromatic group (for example, a phenyl group, a polycyclic aromatic hydrocarbon group, or an aromatic heterocyclic group) has include an alkyl group having 1 to 12 carbon atoms and an aryl group having 1 to 12 carbon atoms.
  • an alkoxy group having 1 to 12 carbon atoms, an aryloxy group having 1 to 12 carbon atoms, an arylamino group having 1 to 12 carbon atoms, and a halogen atom are preferable.
  • the compound represented by the general formula (4) (imidazole compound) can be synthesized inexpensively and easily, and the solubility of the imidazole compound in water or an organic solvent is high. From the viewpoint of being good, a phenyl group which may have a substituent, a furyl group which may have a substituent, and a thienyl group which may have a substituent are preferable.
  • R 13 in the general formula (4) is an alkylene group which may have a substituent.
  • the substituent that the alkylene group may have is not particularly limited as long as it does not inhibit the effect of the imidazole compound. Specific examples of the substituent that such an alkylene group may have include a hydroxyl group, an alkoxy group, an amino group, a cyano group, and a halogen atom.
  • the alkylene group may be a linear alkylene group or a branched alkylene group, and is preferably a linear alkylene group.
  • the number of carbon atoms of such an alkylene group is not particularly limited, but is preferably 1 to 20, preferably 1 to 10, and more preferably 1 to 5. The number of carbon atoms of such an alkylene group does not include the carbon atom of the substituent that is bonded to the alkylene group.
  • the alkoxy group as a substituent bonded to such an alkylene group may be a linear alkoxy group or a branched alkoxy group.
  • the number of carbon atoms of the alkoxy group as a substituent bonded to such an alkylene group is not particularly limited, but is preferably 1 to 10, more preferably 1 to 6, and particularly preferably 1 to 3.
  • the amino group as a substituent bonded to the alkylene group may be a monoalkylamino group or a dialkylamino group.
  • the alkyl group contained in such a monoalkylamino group or dialkylamino group may be a linear alkyl group or a branched alkyl group.
  • the number of carbon atoms of the alkyl group contained in such a monoalkylamino group or dialkylamino group is not particularly limited, but is preferably 1 to 10, more preferably 1 to 6, and particularly preferably 1 to 3.
  • alkylene group suitable as R 13 in the general formula (4) include a methylene group, an ethane-1,2-diyl group, an n-propane-1,3-diyl group, and an n-propane- 2,2-diyl group, n-butane-1,4-diyl group, n-pentane-1,5-diyl group, n-hexane-1,6-diyl group, n-heptane-1,7-diyl group N-octane-1,8-diyl group, n-nonane-1,9-diyl group, n-decane-1,10-diyl group, n-undecane-1,11-diyl group, n-dodecane-1 , 12-diyl group, n-tridecane-1,13-diyl group, n-tetradecane-1,14-d
  • R 14 in the general formula (4) is a halogen atom, a hydroxyl group, a mercapto group, a sulfide group, a silyl group, a silanol group, a nitro group, a nitroso group, a sulfonate group, a phosphino group, a phosphinyl group, a phosphonate group, or an organic group.
  • m is an integer from 0 to 3. When m is an integer of 2 to 3, the plurality of R 14 may be the same or different.
  • R 14 in the general formula (4) is an organic group
  • the organic group is the same as the organic group described as the substituent for the aromatic group in R 12 in the formula (4).
  • R 14 in the general formula (4) is an organic group
  • the organic group is preferably an alkyl group, an aromatic hydrocarbon group, or an aromatic heterocyclic group.
  • the alkyl group is preferably a linear or branched alkyl group having 1 to 8 carbon atoms, and includes a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. More preferred.
  • R 14 is an aromatic hydrocarbon group
  • the aromatic hydrocarbon group is preferably a phenyl group, a naphthyl group, a biphenylyl group, an anthryl group, or a phenanthrenyl group, and more preferably a phenyl group or a naphthyl group.
  • a phenyl group is particularly preferred.
  • R 14 is an aromatic heterocyclic group
  • examples of the aromatic heterocyclic group include pyridyl group, furyl group, thienyl group, imidazolyl group, pyrazolyl group, oxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, A benzoxazolyl group, a benzothiazolyl group, and a benzimidazolyl group are preferable, and a furyl group and a thienyl group are more preferable.
  • R 14 in the general formula (4) is an alkyl group
  • the bonding position of the alkyl group on the imidazole ring is preferably any of the 2-position, 4-position, and 5-position, and more preferably the 2-position.
  • R 14 in the general formula (4) is an aromatic hydrocarbon group or an aromatic heterocyclic group
  • the bonding position of these groups on imidazole is preferably the 2-position.
  • n in the general formula (4) is an integer of 0 to 3.
  • the value of m is more preferably an integer from 0 to 2.
  • R 11, R 13, R 14 and m are the same as R 11, R 13, R 14 and m respectively above general formula (4) in, R 20, R 21 , R 22 , R 23 and R 24 are each independently a hydrogen atom, halogen atom, hydroxyl group, mercapto group, sulfide group, silyl group, silanol group, nitro group, nitroso group, sulfino group, sulfo group, sulfonate group, A phosphino group, a phosphinyl group, a phosphono group, a phosphonate group, an amino group, an ammonio group or an organic group, provided that at least one of R 20 , R 21 , R 22 , R 23 and R 24 is a group other than a hydrogen atom; .) A compound represented by the general formula (4-1) is more preferable, and a compound in which R 13 is a methylene group is more preferable.
  • R 20 , R 21 , R 22 , R 23 and R 24 in the general formula (4-1) are organic groups
  • the organic group has R 12 in the general formula (4) as a substituent. It is the same as the organic group.
  • R 20 , R 21 , R 22 , R 23 and R 24 are preferably hydrogen atoms.
  • R 20 , R 21 , R 22 , R 23 and R 24 in the formula is represented by the formula: —O—R 30
  • R 30 is A substituent represented by a hydrogen atom or an organic group (hereinafter, such a substituent represented by the formula: —O—R 30 is sometimes simply referred to as “substituent (A)”).
  • R 24 is particularly preferably the substituent (A).
  • R 20 , R 21 , R 22 and R 23 are preferably hydrogen atoms.
  • R 30 in the substituent (A) is an organic group
  • the organic group is the same as the organic group described as the substituent for the aromatic group in R 12 in the general formula (4).
  • R 30 in such a substituent (A) is preferably an alkyl group, more preferably an alkyl group having 1 to 8 carbon atoms, particularly preferably an alkyl group having 1 to 3 carbon atoms, and most preferably a methyl group. preferable.
  • R 11, R 14 and m are the same as R 11, R 14 and m respectively above general formula (4) in, R 31, R 32, R 33, R 34 and R 35 are each independently a hydrogen atom, hydroxyl group, mercapto group, sulfide group, silyl group, silanol group, nitro group, nitroso group, sulfino group, sulfo group, sulfonate group, phosphino group, phosphinyl group, phosphono group A group, a phosphonato group, an amino group, an ammonio group, or an organic group, provided that at least one of R 31 , R 32 , R 33 , R 34, and R 35 is a group other than a hydrogen atom.)
  • the compound represented by these is preferable.
  • R 31 , R 32 , R 33 , R 34 and R 35 is the substituent (A) (formula: —O—R). Group represented by 30 ), and R 35 is particularly preferably the substituent (A).
  • R 35 is the substituent (A) (formula: a group represented by —O—R 30 )
  • R 31 , R 32 , R 33 and R 34 are preferably hydrogen atoms.
  • the method for synthesizing the imidazole compound represented by the general formula (4) is not particularly limited. For example, by reacting a halogen-containing carboxylic acid derivative represented by the following general formula (I) and an imidazole compound represented by the following general formula (II) according to a conventional method, imidazolylation is carried out. A compound (imidazole compound) represented by the formula (4) can be synthesized.
  • R 11, R 12, R 14 and m are the same as R 11, R 12, R 14 and m respectively above general formula (4).
  • an imidazole compound can also be synthesized by a method using a Michael addition reaction described below.
  • R 11 and R 12 are each the same as R 11 and R 12 in the general formula (4).
  • R 12, R 14 and m are the same as R 12, R 14 and m respectively above general formula (4).
  • R 12 is the same as R 12 in the general formula (4).
  • a Michael addition reaction occurs between the 3-substituted acrylic acid represented by the general formula (V) and the imidazole compound represented by the general formula (II), and the general formula (4-3) Is produced.
  • the compound (imidazole compound) represented by the general formula (4) used in the second step has been described.
  • such an imidazole compound is added to the polyamic acid solution, A mixed liquid for polyimide formation is prepared.
  • the total content of the imidazole compound and the polyamic acid in the obtained polyimide forming mixed liquid is 20% by mass or less ( The amount is preferably 15% by mass or less, more preferably 12 to 5% by mass.
  • the amount of the compound represented by the general formula (4) is preferably 1 to 60 parts by mass, preferably 10 to 40 parts by mass with respect to 100 parts by mass of the polyamic acid. Is more preferable.
  • the compound represented by the general formula (4) is added to the polyamic acid solution (the method for adding the imidazole compound is not particularly limited, and the imidazole compound powder (solid content) is added to the polyamic acid solution.
  • a solution in which the imidazole compound is dissolved in a solvent preferably similar to the solvent used in the polyamic acid solution
  • the polyamic acid is prepared in advance, and the polyamic acid is prepared.
  • a method may be employed in which the imidazole compound is added to the polyamic acid solution by adding the solution to the solution.
  • the polyamic acid solution and the imidazole compound are added. Each of the two solutions is prepared, and these two solutions are mixed to form a polyimide-forming mixed solution. Imide film may be formed.
  • the compound (imidazole compound) represented by the general formula (4) is added to the polyamic acid solution (polyamic acid solution obtained by the first step).
  • the viscosity of the mixed liquid for polyimide formation in the stage after the addition and before proceeding with the reaction of high molecular weight and imidization basically depends on the viscosity of the polyamic acid solution.
  • a film preferably a coating film
  • the polyimide forming mixture (the polyamic acid solution containing the imidazole compound) in this way, if it is necessary to store the solution, in the polyimide forming mixture during storage It is preferable to store the polyamic acid solution at a low storage temperature from the viewpoint of suppressing the increase in the molecular weight of the polyamic acid and maintaining the viscosity of the polyimide forming mixture at 5 to 150 cps.
  • the storage temperature of such a polyimide forming mixture is preferably ⁇ 80 ° C. to ⁇ 10 ° C., more preferably ⁇ 40 ° C. to ⁇ 15 ° C., and particularly preferably ⁇ 20 ° C.
  • the storage period of the polyimide forming liquid mixture depends on the storage temperature and cannot be generally specified, but it is preferably 0.5 days to 1 year, and 1 day to half a year. More preferably, it is particularly preferably 1 week to 3 months.
  • the polyimide forming liquid mixture further includes an adhesion improver for a substrate (inorganic substrate such as glass, metal, metal oxide, etc.) to which the polyimide forming liquid mixture is applied. That is, it is preferable that such a mixed liquid for forming a polyimide is composed of a composition further containing the adhesion improver.
  • an adhesion improver for example, when a laser peeling process is performed to peel a film from a glass substrate after forming a polyimide film (when using a so-called laser lift-off method), a laser peeling process is performed. In the previous stage, it is possible to develop a sufficiently high adhesion to the glass substrate in the polyimide film.
  • the film is processed for use in various situations before the laser peeling treatment (other layers are added). It is possible to sufficiently suppress the occurrence of breakage due to peeling of the film from the substrate, for example, when processing such as laminating. On the other hand, even if the adhesion to the glass substrate is improved by such an adhesion improver, the obtained polyimide film can be efficiently peeled from the glass substrate by a so-called laser lift-off method.
  • any adhesive can be used as long as it can improve the adhesion to a substrate (inorganic substrate such as glass, metal, metal oxide) to which the polyimide-forming mixed solution is applied,
  • a substrate inorganic substrate such as glass, metal, metal oxide
  • silane coupling agents, siloxane resins, and polysilanes are preferable, silane coupling agents and siloxane resins are more preferable, and silane coupling agents are particularly preferable.
  • Such an adhesion improver is not particularly limited, and commercially available products may be used as appropriate.
  • such a silane coupling agent is not particularly limited.
  • the content of the adhesion improver is 0.01 to 50 with respect to 100 parts by mass of the polyamic acid forming the polyamic acid solution.
  • the amount is preferably part by mass, more preferably 0.1 to 10 parts by mass, and still more preferably 0.5 to 5 parts by mass.
  • Step of obtaining a film made of polyimide (third step)>
  • the process of obtaining the film which consists of a polyimide concerning this invention forms the film
  • a third step there is no particular limitation on the method for forming the film composed of the polyimide-forming mixed solution, and a known method can be appropriately used.
  • a film in this case, a coating film
  • a method for forming a film (in this case, a coating film) by using a base material for supporting the film and applying the mixed liquid for polyimide formation on the supporting base material can be mentioned.
  • the base material for applying such a polyimide-forming mixed solution (the base material for supporting the film when the film is formed), and the shape of the target substrate film made of polyimide is not limited.
  • a base material for example, a glass plate or a metal plate
  • a known material that can be used for forming a substrate film made of a polymer can be used as appropriate.
  • the method for applying the polyimide-forming mixed solution on the substrate is not particularly limited.
  • spin coating for example, spin coating, spray coating, dip coating, dropping, gravure printing, screen printing, letterpress
  • Known methods such as a printing method, a die coating method, a slit coating method, a curtain coating method, and an ink jet method can be appropriately employed.
  • the thickness of the polyimide-forming mixed solution film formed on the substrate is preferably 0.1 to 200 ⁇ m after curing, and preferably 1 to 100 ⁇ m. More preferably.
  • a treatment for removing the solvent by heating after forming the film of the polyimide forming mixed solution.
  • a method for such solvent removal treatment is not particularly limited, but it is preferable to remove the solvent at a heating temperature of 0 to 150 ° C. (more preferably 20 to 80 ° C.).
  • the atmosphere during heating can be under air, but an inert gas atmosphere (for example, a nitrogen atmosphere) is preferable.
  • the pressure condition in such solvent removal treatment is preferably 1 to 760 mmHg.
  • the method for imidizing the polyamic acid in such a film is not particularly limited, and a known method can be appropriately employed. It is possible to increase the molecular weight of the polyamic acid and the ring-closing dehydration reaction (imidation reaction) using the compound represented by the general formula (4) as a catalyst more efficiently. It is preferable to employ a method of imidizing by treatment.
  • the temperature condition of the heat treatment is 150 to 450 ° C. (more preferably 200 to 400 ° C., more preferably 250 to 380 ° C., particularly The temperature is preferably 280 to 350 ° C.
  • the heating time is preferably 0.1 to 10 hours, and more preferably 0.5 to 5 hours.
  • the atmospheric conditions during the heat treatment include an inert gas atmosphere (for example, a nitrogen atmosphere) from the viewpoint of suppressing coloring and deterioration of physical properties due to oxygen.
  • an inert gas atmosphere for example, a nitrogen atmosphere
  • a low acid concentration atmosphere atmosphere having an oxygen concentration of 1 to 300 ppm
  • heat treatment under air can be performed at 250 ° C. or less and by addition of an antioxidant or the like.
  • heating can be performed in a high oxygen concentration atmosphere (oxygen concentration: an atmosphere of more than 300 ppm and 10000 ppm or less) as long as coloring by oxygen can be suppressed. Processing may be performed.
  • a high oxygen concentration atmosphere oxygen concentration: more than 300 ppm and not more than 10,000 ppm
  • 2,2-bis (4-aminophenyl) -hexafluoro is used as the aromatic diamine.
  • Fluorine diamines such as propane, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 2,2-bis (4-aminophenoxyphenyl) hexafluoropropane, and 3,3'-diamino It is preferable to use a sulfone diamine of diphenylsulfone or 4,4′-diaminodiphenylsulfone.
  • R 1, R 2, R 3 and n in the general formula (5) is, R 1, respectively in the general formula (1), R 2, R is 3 and the same as the n (respectively general formula (1) be R 1, R 2, R 3 and n as defined in), it is also the same as R 1, R 2, R 3 and n in the general formula (1) as its preferred .
  • R 10 in the general formula (5) is (the same meaning as R 10 in the general formula (2)) is similar to the R 10 in the general formula (2), others that suitable The same as R 10 in the general formula (2).
  • the polyimide forming such a film preferably has a 5% weight loss temperature of 350 ° C. or higher, more preferably 450 to 550 ° C.
  • a 5% weight reduction temperature is obtained by using a thermogravimetric analyzer (for example, trade name “TG / DTA220” manufactured by SII Nano Technology Co., Ltd.) as a measuring device, and scanning temperature in a nitrogen gas atmosphere. Is set to 30 ° C. to 550 ° C., and the temperature rising rate is 10 ° C./min.
  • the temperature can be determined by measuring the temperature at which the weight of the sample used is reduced by 5%. In the measurement, it is preferable to use the mass of the sample as 1.0 mg to 10 mg (more preferably 1.5 mg to 4.0 mg). By setting the mass of the sample within the above range, the same value can be measured for the same polyimide even if the mass of the sample is changed.
  • the polyimide forming such a film preferably has a glass transition temperature of 200 ° C. or higher, more preferably 250 ° C. to 500 ° C., and particularly preferably 300 ° C. to 450 ° C.
  • the glass transition temperature of such a polyimide is measured using a thermomechanical analyzer (for example, trade name “TMA8311” manufactured by Rigaku) as a measuring device, under a temperature increase rate of 5 ° C./min under a nitrogen atmosphere.
  • TMA8311 trade name “TMA8311” manufactured by Rigaku
  • a value obtained by scanning between 30 ° C. and 550 ° C. in the penetration mode (measured value by a so-called penetration (needle insertion) method) can be adopted.
  • the following softening temperatures can be measured simultaneously under the same measurement conditions as the glass transition temperature (when a glass transition temperature is detected, a peak appears before the softening temperature).
  • such a polyimide preferably has a softening temperature of 300 ° C. or higher, more preferably 350 to 550 ° C.
  • a softening temperature can be measured by a penetration mode using a thermomechanical analyzer (trade name “TMA8311” manufactured by Rigaku) (can be measured by a so-called penetration method).
  • a measuring method of such a softening temperature for example, a film made of polyimide having a size of 5 mm in length, 5 mm in width, and 13 ⁇ m in thickness is prepared as a measurement sample, and a thermomechanical analyzer (manufactured by Rigaku) is used as a measuring device.
  • a transparent quartz pin (tip diameter: tip diameter) was applied to the film under a temperature range of 30 ° C. to 550 ° C. under a nitrogen atmosphere under a temperature rising rate of 5 ° C./min.
  • the number average molecular weight (Mn) of such a polyimide is preferably 1000 to 100,000 in terms of polystyrene.
  • the weight average molecular weight (Mw) of such a polyimide is preferably 1,000 to 500,000 in terms of polystyrene.
  • the molecular weight distribution (Mw / Mn) of such a polyimide is preferably 1.1 to 5.0.
  • the molecular weight (Mw or Mn) and molecular weight distribution (Mw / Mn) of such a polyimide can be obtained by converting measured data with polystyrene using gel permeation chromatography as a measuring device.
  • the molecular weight is estimated based on the viscosity of the polyamic acid used for the production of the polyimide, and the polyimide according to the application is selected. May be used.
  • the total light transmittance is 80% or more (more preferably 85% or more, particularly preferably 87% or more).
  • such a polyimide is more preferably one having a haze (turbidity) of 5 to 0 (more preferably 4 to 0, particularly preferably 3 to 0) from the viewpoint of obtaining higher transparency.
  • such a polyimide is more preferably one having a yellowness (YI) of 5 to 0 (more preferably 4 to 0, particularly preferably 3 to 0) from the viewpoint of obtaining higher transparency. .
  • Such total light transmittance, haze (turbidity), and yellowness (YI) can be easily achieved by appropriately selecting the type of polyimide.
  • Such total light transmittance, haze (turbidity) and yellowness (YI) are measured by using a product name “Haze Meter NDH-5000” manufactured by Nippon Denshoku Industries Co., Ltd. or Nippon Denshoku Industries Co., Ltd. Using a product name “Spectral Color Meter SD6000” manufactured by the company (Nippon Denshoku Industries Co., Ltd., product name “Haze Meter NDH-5000”), total light transmittance and haze were measured.
  • the value measured by using a film made of polyimide having a thickness of 5 to 20 ⁇ m as a sample for measurement can be adopted.
  • the total light transmittance, haze (turbidity), and yellowness (YI) are the same because the thickness is sufficiently thin and does not affect the measured value if the film is made of polyimide having a thickness of 5 to 20 ⁇ m.
  • the same value can be measured from the polyimide. Therefore, what is necessary is just to utilize the film which has the thickness of the said range for the measurement of a total light transmittance, haze (turbidity), and yellowness (YI).
  • the vertical and horizontal sizes of the measurement sample may be any size that can be arranged at the measurement site of the measurement apparatus, and the vertical and horizontal sizes may be appropriately changed.
  • Such total light transmittance is obtained by measuring in accordance with JIS K7361-1 (issued in 1997), and haze (turbidity) is measured in accordance with JIS K7136 (issued in 2000).
  • the yellowness (YI) is obtained by performing measurement in accordance with ASTM E313-05 (issued in 2005).
  • such a polyimide preferably has a linear expansion coefficient of 0 to 100 ppm / K, more preferably 5 to 60 ppm / K, and still more preferably 10 to 30 ppm / K.
  • a linear expansion coefficient exceeds the upper limit, peeling tends to occur due to thermal history when combined with a metal or an inorganic material having a linear expansion coefficient range of 5 to 20 ppm / K.
  • thermomechanical analyzer (trade name “TMA8310” manufactured by Rigaku) as a measurement device, under a nitrogen atmosphere, a tensile mode (49 mN), By adopting the temperature rising rate of 5 ° C./min, the change in the length of the sample in the longitudinal direction from 50 ° C. to 200 ° C. is measured, and the length per 1 ° C. in the temperature range of 50 ° C. to 200 ° C. The value obtained by calculating the average value of the changes in is adopted.
  • the compound represented by the general formula (4) is used while using a sufficiently low-viscosity polyamic acid solution.
  • the compound represented by the above general formula (4) functions like a catalyst, and is sufficiently coated with a substrate, and when sufficiently dried, the polyamic acid has a sufficiently high molecular weight and a ring-closing dehydration reaction (imidation reaction). It is possible not only to progress the imidization reaction without causing cracks in the resulting film, but it is sufficiently low for film production.
  • the polyamic acid solution of a certain degree can be used, so that it is possible to maintain uniform coating properties derived from low viscosity, and the surface can be smoothed at a higher level. I guess.
  • Polyimide film of the present invention The polyimide film of the present invention is obtained by the above-described method for producing a polyimide film of the present invention.
  • the polyimide film of this invention is a film which consists of a polyimide which has the repeating unit represented by the said General formula (5) obtained by the manufacturing method of the polyimide film of the said invention.
  • the polyimide which forms such a film is the same as what was demonstrated in the manufacturing method of the polyimide film of the said invention.
  • R 1, R 2, R 3 and n in the general formula (5) is similar to the R 1, R 2, R 3 and n in the general formula (1), respectively, as their preferred Is the same as R 1 , R 2 , R 3 and n in the general formula (1).
  • R 10 in the general formula (5) is the same as the R 10 in the general formula (2), also similar to the R 10 in the general formula (2) as its preferred is there.
  • Such a polyimide film is obtained by the above-described method for producing a polyimide film of the present invention, it becomes a film having a high level of surface smoothness.
  • a polyimide film preferably has a surface arithmetic average roughness Ra of 0.01 to 2.0 nm, more preferably 0.1 to 1.5 nm, and more preferably 0.5 to What is 1.0 nm is particularly preferable.
  • Ra arithmetic average roughness
  • a method of measuring arithmetic mean roughness (Ra) is obtained by obtaining ten points of arithmetic mean roughness under conditions of Z measurement magnification: 50000 and X feed rate: 0.2 mm / s.
  • a measuring device for arithmetic average roughness (Ra: unit nm) for example, a high-precision fine shape measuring instrument “trade name: SUREFCORDER ET 4000A” manufactured by Kosaka Laboratory Ltd. is used. Can do.
  • the form of such a polyimide film should just be a film form, and is not restrict
  • the thickness of the polyimide film of the present invention is not particularly limited, but is preferably 0.1 to 200 ⁇ m, and more preferably 1 to 100 ⁇ m.
  • such a polyimide film is made of, for example, a film for a flexible wiring board (FPC board), FCCL, because the polyimide forming the film becomes an alicyclic polyimide having sufficiently high transparency and heat resistance.
  • the polyimide film of the present invention has sufficiently high surface smoothness, it is particularly used in applications where surface smoothness is required, such as organic EL element substrates (organic EL element substrates). If the surface has a high level of smoothness, it is possible to suppress the occurrence of a short circuit between the electrode provided on the substrate and the other electrode to a high degree. Is preferably used for a high-definition display substrate, a medical high-definition display substrate, a transparent display substrate, a signage display substrate, and the like.
  • the polyimide film of the present invention has been described above.
  • the polyamic acid solution (the solution containing the polyamic acid solution of the present invention as a preferred embodiment thereof) will be described.
  • the polyamic acid solution contains a solvent and a polyamic acid having a repeating unit represented by the general formula (3), and has a viscosity of 5 to 150 cps.
  • the solvent and the polyamic acid in the polyamic acid solution are the same as those described in the method for producing the polyimide film of the present invention (the preferred ones are also the same). Furthermore, the viscosity of such a polyamic acid solution is the same as the viscosity of the polyamic acid solution described in the method for producing a polyimide film of the present invention (the preferred range thereof is also the same). Thus, the polyamic acid solution is the same as the polyamic acid solution described as being obtained by the first step of the method for producing a polyimide film of the present invention.
  • such a polyamic acid solution contains the solvent, the tetracarboxylic dianhydride represented by the general formula (1), and the aromatic diamine represented by the general formula (2).
  • a polyamic acid solution having a viscosity of 5 to 150 cps obtained by reacting with an aromatic diamine to form a polyamic acid having a repeating unit represented by the general formula (3) is preferable.
  • the characteristics (for example, the content of the polyamic acid, etc.) of such a polyamic acid solution are the same as those described in the first step of the method for producing a polyimide film of the present invention.
  • a polyamic acid solution one further containing a compound represented by the general formula (4) is preferable. That is, as such a polyamic acid solution, a solvent, a polyamic acid having a repeating unit represented by the general formula (3), and a compound (imidazole compound) represented by the general formula (4) are included.
  • the polyamic acid solution of the present invention which contains and has a viscosity of 5 to 150 cps is more preferable.
  • Such a polyamic acid solution can be used to efficiently produce a polyimide film having a sufficiently smooth surface by adding and using the compound represented by the general formula (4) (imidazole compound). It is. Therefore, such a polyamic acid solution is particularly useful as a raw material solution (resin solution: varnish) for producing a polyimide film used for various applications.
  • such a polyamic acid solution has a low viscosity, it can be suitably used as a raw material solution for producing a polyimide film, and can also be suitably used for other applications.
  • Applications for which such a polyamic acid solution can be suitably used are not limited to a raw material solution for producing a polyimide film.
  • the polyamic acid solution is a raw material solution for a photosensitive composition. Etc. are also useful.
  • Examples of the photosensitive composition that can suitably use such a polyamic acid solution include those obtained by adding a photosensitizer to the polyamic acid solution. Such a photosensitive composition will be described later.
  • the polyamic acid solution of the present invention contains a compound represented by the general formula (4).
  • the polyamic acid solution containing the compound represented by the general formula (4) the “polyimide-forming mixed liquid (in addition, described above) described in the polyimide production method of the present invention described above is used.
  • the polyimide-forming mixed solution is preferably the same as “a preferred embodiment of the polyamic acid solution”).
  • a photosensitive composition comprises the above-described polyamic acid solution (containing a solvent and a polyamic acid having a repeating unit represented by the general formula (3) and having a viscosity of 5 to 150 cps), a photosensitive composition. Agent.
  • the photosensitive composition containing such a polyamic acid solution and a photosensitizing agent those further containing a compound represented by the general formula (4) are preferable.
  • the compound represented by the general formula (4) is also an accelerator for increasing the molecular weight.
  • the photosensitive composition is represented by the polyamic acid solution of the present invention (solvent, polyamic acid having a repeating unit represented by the general formula (3), and the general formula (4).
  • a photosensitive composition of the present invention comprising a compound having a viscosity of 5 to 150 cps and a photosensitive agent.
  • the photosensitive composition may be either a positive type or a negative type.
  • a photosensitive composition becomes a positive photosensitive composition if, for example, a photosensitive agent having a function of increasing the solubility of a light irradiated portion in a developer is used as the photosensitive agent. If a photosensitive agent having a function of reducing the solubility of the developed portion in the developer is used, a negative photosensitive composition can be obtained.
  • preferred embodiments of the positive-type and negative-type photosensitive compositions will be described separately, but the photosensitive composition of the present invention is not limited thereto.
  • ⁇ Positive photosensitive composition As a suitable example of such a positive photosensitive composition, (A) the polyamic acid solution (containing a solvent and a polyamic acid having a repeating unit represented by the general formula (3), and In which the viscosity is 5 to 150 cps) and (B) a photoacid generator.
  • the polyamic acid solution is (C) a compound represented by the general formula (4) It is more preferable that it contains.
  • the (A) polyamic acid solution and (C) the compound represented by the general formula (4) in such a positive photosensitive composition are the same as those already described above.
  • the (B) photoacid generator suitably used for the positive photosensitive composition may be any so-called photosensitizer, such as a quinonediazide group-containing compound, an aryldiazonium salt, a diaryliodonium salt, A conventionally well-known thing is mentioned, such as a triarylsulfonium salt.
  • quinonediazide group-containing compounds include orthoquinonediazide compounds and diazonaphthoquinone compounds.
  • fully esterified products and partial esters of phenolic compounds also referred to as phenolic hydroxyl group-containing compounds
  • naphthoquinonediazidesulfonic acid compounds Orthoquinonediazide sulfonyl chlorides and hydroxyquinone, amino compounds and the like are subjected to a condensation reaction in the presence of a dehydrochlorinating agent.
  • orthoquinonediazide sulfonyl chlorides examples include benzoquinone-1,2-diazide-4-sulfonyl chloride, 1-naphthoquinone-2-diazide-5-sulfonyl chloride (hereinafter referred to as 5-naphthoquinonediazide sulfonic acid chloride).
  • 1-naphthoquinone-2-diazide-4-sulfonyl chloride hereinafter sometimes referred to as 4-naphthoquinone diazide sulfonic acid chloride).
  • hydroxy compound examples include hydroquinone, resorcinol, pyrogallol, bisphenol A, 4,4 ′-[1- [4- [1-methyl-1- (4-hydroxyphenyl) ethyl] phenyl] ethylidene] bisphenol, Bis (4-hydroxyphenyl) methane, 2,2-bis (4-hydroxyphenyl) hexafluoropropane, 2,3,4-trihydroxybenzophenone, 2,3,4,4′-tetrahydroxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, 2,3,4,2', 3'-pentahydroxybenzophenone, 2,3,4,3 ', 4', 5'-hexahydroxybenzophenone, bis (2, 3,4-trihydroxyphenyl) methane, bis (2,3,4-trihydroxyphenyl) Nyl) propane, 4b, 5,9b, 10-tetrahydro-1,3,6,8-tetrahydroxy-5,10-di
  • amino compound examples include p-phenylenediamine, m-phenylenediamine, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, 4,4′- Diaminodiphenyl sulfide, o-aminophenol, m-aminophenol, p-aminophenol, 3,3′-diamino-4,4′-dihydroxybiphenyl, 4,4′-diamino-3,3′-dihydroxybiphenyl, bis (3-amino-4-hydroxyphenyl) propane, bis (4-amino-3-hydroxyphenyl) propane, bis (3-amino-4-hydroxyphenyl) sulfone, bis (4-amino-3-hydroxyphenyl) sulfone Bis (3-amino-4-hydroxyphenyl) Hexafluoropropane
  • NQD1 An ester compound obtained by the reaction of acid chloride, 4,4 ′-[1- [4- [1-methyl-1- (4-hydroxyphenyl) ethyl] phenyl] ethylidene] bisphenol and 5- It is preferable to mix with an ester compound (hereinafter referred to as (NQD2)) obtained by reaction with naphthoquinonediazidesulfonic acid chloride.
  • the mixing ratio (NQD1: NQD2) is preferably 99: 1 to 0.5: 99.5, more preferably 95: 5 to 1:99, and 90:10 to 3:97 is more preferable.
  • a thermal crosslinking agent for such a positive photosensitive composition, a thermal crosslinking agent, a silicon-containing compound, a non-polymerizable binder polymer, a solvent, an elastomer, a dissolution accelerator, a dissolution inhibitor, a surfactant, or a leveling agent is optionally added.
  • other components such as a thermal acid generator can be contained.
  • Such a thermal cross-linking agent is not particularly limited except that it is a compound that cross-links or polymerizes in the heat treatment step after development, but is a compound having a methylol group, an alkoxymethyl group, an epoxy group, or a vinyl ether group in the molecule. Preferably there is.
  • 1,2-benzenedimethanol, 1,3-benzenedimethanol, 1,4-benzenedimethanol, 1,3,5-benzenetrimethanol, 4,4-biphenyldimethanol, 2,6-pyridinedimethanol Compounds having a methylol group such as methanol, 2,6-bis (hydroxymethyl) -p-cresol, 4,4′-methylenebis (2,6-dialkoxymethylphenol); 1,4-bis (methoxymethyl) benzene 1,3-bis (methoxymethyl) benzene, 4,4′-bis (methoxymethyl) biphenyl, 3,4′-bis (methoxymethyl) biphenyl, 3,3′-bis (methoxymethyl) biphenyl, 2, Alkoxy compounds such as methyl 6-naphthalenedicarboxylate and 4,4′-methylenebis (2,6-dimethoxymethylphenol)
  • methylol melamine compounds such as hexamethylol melamine and he
  • the silicon-containing compound examples include a silicon-containing resin, a silicon-containing resin precursor, and a silane coupling agent.
  • a silane coupling agent is preferable, and 1- (2pyridyl) -3- [3- More preferred are ureido group-containing silane coupling agents such as (trimethoxysilyl) propyl] urea and 1- (3pyridyl) -3- [3- (triethoxysilyl) propyl] urea.
  • the preferred content ratio of each component in the positive photosensitive composition is as follows.
  • the content of the polyamic acid solution is preferably such that the resin content in (A) is 50% by mass or more, based on the total solid content of the positive photosensitive composition, and is 60 to 90% by mass. More preferably.
  • the content of the (B) photoacid generator is preferably 3 to 50 parts by mass, more preferably 5 to 30 parts by mass with respect to 100 parts by mass of the resin content in the (A) polyamic acid solution from the viewpoint of sensitivity and the like. preferable.
  • the content of the compound represented by the general formula (4) is preferably 0.5 to 60 parts by mass with respect to 100 parts by mass of the resin component in (A) the polyamic acid solution, and 1 to 40 parts by mass. Part is more preferred.
  • the positive photosensitive composition contains a thermal crosslinking agent
  • the content thereof is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the resin component of the (A) polyamic acid solution.
  • the positive photosensitive composition contains a silane compound
  • the content thereof is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the resin component of the (A) polyamic acid solution. More preferably, the content is ⁇ 10 parts by mass.
  • the solid content concentration of the positive photosensitive composition is preferably 30% by mass or less, more preferably 1 to 20% by mass, and further preferably 5 to 15% by mass.
  • the polyamic acid solution (containing a solvent and a polyamic acid having a repeating unit represented by the general formula (3), and having a viscosity And (D) a photobase generator.
  • the polyamic acid solution contains (C) a compound represented by the general formula (4). It is more preferable.
  • Such a (D) photobase generator is used as a so-called photosensitizer and generates a base upon exposure.
  • Examples of such a photobase generator include those conventionally known.
  • Such a negative photosensitive composition may contain other components similar to those of the positive photosensitive composition as required.
  • suitable content ratios of the respective components in such a negative photosensitive composition are as follows.
  • the content of the polyamic acid solution is such that the resin content in (A) is preferably 50% by mass or more based on the total solid content of the negative photosensitive composition, and is 60 to 90% by mass. More preferably.
  • the content of the photobase generator is preferably from 0.1 to 50 parts by mass, preferably from 0.5 to 30 parts per 100 parts by mass of the resin content in the polyamic acid solution, from the viewpoint of sensitivity and the like. Part by mass is more preferable.
  • the content of the compound represented by the general formula (4) is preferably 0.5 to 60 parts by mass with respect to 100 parts by mass of the resin component in (A) the polyamic acid solution, and 1 to 40 parts by mass. Part is more preferred.
  • the content thereof is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the resin component in (A) the polyamic acid solution. More preferably, it is 1 to 10 parts by mass.
  • the solid content concentration of such a negative photosensitive composition is preferably 30% by mass or less, more preferably 1 to 20% by mass, and further preferably 5 to 15% by mass.
  • a photosensitive composition of the present invention depending on the type of photosensitive agent used (type of photosensitive composition), a well-known exposure method or a well-known developing method is appropriately adopted to form a pattern. can do.
  • the manufacturing method of the pattern using such a photosensitive composition of this invention is demonstrated easily below.
  • a method for producing such a pattern includes a photosensitive composition film forming step in which the photosensitive composition of the present invention is applied onto a substrate and dried to form a photosensitive composition film. An exposure step of exposing the photosensitive composition film; A development step of developing the exposed photosensitive resin film to obtain a pattern; It is preferable that the method includes: In addition, in the manufacturing method of such a pattern, when the photosensitive composition of the said this invention is a positive type, it is preferable to have the heat processing process for hardening the said pattern further. In the method for producing a pattern, when the photosensitive composition of the present invention is of a negative type, heat treatment may be performed simultaneously with exposure or before the development process after exposure.
  • Such a photosensitive composition film forming step is not particularly limited, and a method similar to the third step (step of obtaining a film made of polyimide) of the polyimide film production method of the present invention can be employed. .
  • examples of radiation used for exposure include ultraviolet rays, electron beams, and laser beams emitted from low-pressure mercury lamps, high-pressure mercury lamps, metal halide lamps, g-line steppers, i-line steppers, and the like. What is necessary is just to set an exposure amount suitably with the light source to be used, the film thickness of a coating film, etc.
  • examples of the developing method in the developing step include a shower developing method, a spray developing method, an immersion developing method, and a paddle developing method.
  • the developer an alkali developer is preferable, and an aqueous solution containing one or more alkali compounds selected from inorganic alkali compounds and organic alkali compounds can be used.
  • the concentration of the alkali compound in the developer is, for example, about 1 to 10% by mass.
  • aromatic diamines As such aromatic diamines, commercially available products (DABAN: manufactured by Nippon Pure Chemicals Co., Ltd., 4,4′-DDE: manufactured by Tokyo Chemical Industry Co., Ltd., PPD: manufactured by Aldrich Co., Ltd., TFMB: Wakayama Seika Kogyo Co., Ltd.) Company-made, HFBAPP: Wakayama Seika Kogyo Co., Ltd.) was used.
  • DABAN manufactured by Nippon Pure Chemicals Co., Ltd.
  • 4,4′-DDE manufactured by Tokyo Chemical Industry Co., Ltd.
  • PPD manufactured by Aldrich Co., Ltd.
  • TFMB Wakayama Seika Kogyo Co., Ltd.
  • HFBAPP Wakayama Seika Kogyo Co., Ltd.
  • Identification of the molecular structure of the polyimide obtained in each example and each comparative example was performed by infrared absorption spectrum measurement (IR measurement).
  • IR measurement an IR measuring instrument (trade name “FT / IR-4100” manufactured by JASCO Corporation) was used as a measuring apparatus.
  • the viscosity (unit: cps) of the polyamic acid solutions obtained in Examples 1 to 5 and Comparative Examples 2 to 3 was measured as follows. That is, first, as an apparatus for measuring viscosity, a RE-85L viscometer manufactured by Toki Sangyo Co., Ltd., having a 1 ° 34 ′ ⁇ R24 standard cone rotor as a cone rotor was prepared.
  • the viscosity measuring device under the temperature condition of 25 ° C. ( The viscometer was calibrated.
  • the viscosity measuring apparatus viscosimeter
  • the polyamide rotor is subjected to a temperature condition of 25 ° C. and a rotational speed of the cone rotor in a range of 0.5 to 100 rpm.
  • the viscosity of the acid solution was measured.
  • the method for measuring the viscosity of the polyamic acid solution was a method based on JIS Z8803 (issued in 2011).
  • the viscosity of the polyamic acid solution formed in Comparative Example 1 was measured as follows. That is, since the polyamic acid solution formed in Comparative Example 1 was higher in viscosity than the polyamic acid solutions obtained in other examples and the like, a viscosity measuring method suitable for the viscosity of the high-viscosity solution was used. In order to adopt, an optional cone rotor of 3 ° ⁇ R7.7 is used instead of the standard cone rotor, and the standard solution JS20 (JIS Z8809 for viscosity meter calibration manufactured by Nippon Grease Co., Ltd.) is used for calibration before the measurement.
  • JIS Z8809 for viscosity meter calibration manufactured by Nippon Grease Co., Ltd.
  • Td 5% 5% weight loss temperature
  • the 5% weight loss temperature of the polyimides obtained in each Example and each Comparative Example was prepared by preparing a 5 mg sample and placing it in an aluminum sample pan.
  • a thermogravimetric analyzer (SII Nanotechnology) was used as a measuring device.
  • TG / DTA220 a scanning temperature was set from 30 ° C. to 550 ° C. under a nitrogen gas atmosphere, and heating was performed at a temperature rising rate of 10 ° C./min. It was determined by measuring the temperature at which the weight of the sample decreased by 5%.
  • the linear expansion coefficient (unit: ppm / K) of the polyimide obtained in each example and each comparative example is prepared by using a polyimide film having a size of 20 mm in length, 5 mm in width, and 13 ⁇ m in thickness as a measurement sample, and heat as a measurement device.
  • a mechanical analyzer (trade name “TMA8310”, manufactured by Rigaku)
  • TMA8310 a tension mode (49 mN) under a nitrogen atmosphere and a temperature rising rate of 5 ° C./min
  • the change in length of the sample was measured, and the average value of the change in length per 1 ° C. in the temperature range of 50 ° C. to 200 ° C. was measured.
  • the total light transmittance and haze were measured with a trade name “Haze Meter NDH-5000” manufactured by Nippon Denshoku Industries Co., Ltd., and the yellowness was measured with a trade name “Spectral Color Meter SD6000” manufactured by Nippon Denshoku Industries Co., Ltd. It was measured. Further, the total light transmittance is obtained by performing a measurement in accordance with JIS K7361-1 (issued in 1997), and the haze (turbidity) is obtained by performing a measurement in accordance with JIS K7136 (issued in 2000). The chromaticity (YI) was determined by performing measurement according to ASTM E313-05 (issued in 2005).
  • the softening temperature of the polyimide produced in each example and each comparative example was measured as follows. That is, a film made of polyimide having a size of 5 mm in length, 5 mm in width and 13 ⁇ m in thickness was prepared as a measurement sample, and a thermomechanical analyzer (trade name “TMA8311” manufactured by Rigaku) was used as a measurement device in a nitrogen atmosphere. Measured by inserting a transparent quartz pin (tip diameter: 0.5 mm) into the film under conditions of a temperature rising rate of 5 ° C./min and a temperature range of 30 ° C. to 550 ° C. (so-called penetration method) By measurement). In such measurement, the softening temperature was calculated based on the measurement data in accordance with the method described in JIS K 7196 (1991) except that the measurement sample was used.
  • the glass transition temperature (Tg) of the polyimide produced in each example and each comparative example was measured at the same time under the same conditions as the softening point measurement as follows (if the glass transition temperature is lower than the softening point, glass is used). Because the transition temperature is observed). That is, a film made of polyimide having a size of 5 mm in length, 5 mm in width and 13 ⁇ m in thickness was prepared as a measurement sample, and a thermomechanical analyzer (trade name “TMA8311” manufactured by Rigaku) was used as a measurement device in a nitrogen atmosphere.
  • a tetracarboxylic dianhydride represented by the formula (norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic acid Anhydride: CpODA) was prepared.
  • a compound represented by the formula (imidazole compound) was synthesized as follows. That is, first, the following general formula (14):
  • Example 1 Step of obtaining a polyamic acid solution> First, a 30 ml three-necked flask was heated with a heat gun and sufficiently dried. Next, the atmosphere gas in the three-necked flask that was sufficiently dried was replaced with nitrogen, and the inside of the three-necked flask was changed to a nitrogen atmosphere. Next, after introducing 0.2045 g (0.90 mmol: Nippon Pure Chemical Industries, Ltd .: DABAN), which is an aromatic diamine, 4,4′-diaminobenzanilide into the three-necked flask, tetramethylurea was further added as a solvent. By adding 5.24 g and stirring, a solution in which the aromatic diamine (DABAN) was dissolved in the solvent was obtained.
  • DABAN aromatic diamine
  • the obtained raw material mixture was stirred at room temperature (25 ° C.) for 4 hours under a nitrogen atmosphere to react the aromatic diamine (DABAN) with the tetracarboxylic dianhydride (CpODA), A polyamic acid was formed to obtain a polyamic acid solution.
  • the concentration of the polyamic acid in the obtained polyamic acid solution was 9.5% by mass, as is apparent from the amount of raw material charged.
  • the viscosity [cps (centipoise)] of the polyamic acid solution (polyamic acid concentration: 9.5% by mass) thus obtained was 15 cps.
  • the properties (viscosity) and the like of such a polyamic acid solution are shown in Table 1.
  • ⁇ Third step Step of obtaining a film made of polyimide>
  • the polyimide-forming mixture coating solution
  • the polyamic acid solution polyamic acid concentration: 9.5% by mass
  • the polyimide-forming mixed solution was made into a glass substrate made of alkali-free glass (trade name “Eagle XG” manufactured by Corning, length: 100 mm, width 100 mm, thickness 0 .7 mm) was spin-coated so that the thickness of the heat-cured film was 13 ⁇ m, and a coating film was formed on the glass substrate.
  • the glass substrate on which the coating film was formed was placed on a hot plate at 60 ° C. and allowed to stand for 2 hours, thereby evaporating and removing the solvent from the coating film (solvent removal treatment).
  • the glass substrate on which the coating film after the solvent removal treatment is formed is put into an inert oven in which nitrogen flows at a flow rate of 3 L / min, and a temperature condition of 25 ° C. in a nitrogen atmosphere in the inert oven. For 0.5 hour, and then heated at 135 ° C. for 0.5 hour, and further heated at 250 ° C. for 1 hour to imidize the polyamic acid to form the coating film. Curing was performed to form a polyimide film on the glass substrate.
  • the polyimide film was peeled from the glass substrate by immersing the glass substrate in which the film which consists of this polyimide was formed in 90 degreeC hot water, and the polyimide film was obtained.
  • the evaluation results of the properties of the polyimide film thus obtained are shown in Table 1.
  • FIG. 1 shows a graph of an IR spectrum obtained at the time of infrared absorption spectrum measurement (IR measurement) for identification of such a molecular structure.
  • IR measurement infrared absorption spectrum measurement
  • Example 2 In the first step (step of obtaining a polyamic acid solution), the stirring time of the raw material mixture when reacting the aromatic diamine (DABAN) and the tetracarboxylic dianhydride (CpODA) is 4 to 5 hours.
  • a polyimide film was obtained in the same manner as in Example 1 except for changing to.
  • the viscosity of the polyamic acid solution was 17 cps.
  • the evaluation results of the properties of the polyimide film thus obtained are shown in Table 1. Using the film thus obtained, the molecular structure of the compound forming the film was identified, and as a result of IR measurement, C ⁇ O stretching vibration of imide carbonyl was observed at 1698 cm ⁇ 1. The film was confirmed to be a film made of polyimide.
  • Example 3 In the first step (step of obtaining a polyamic acid solution), the amount of tetramethylurea as a solvent is changed from 5.24 g to 4.03 g, and the aromatic diamine (DABAN) and the tetracarboxylic acid dicarboxylic acid are added. The stirring time of the raw material mixture when reacting with anhydride (CpODA) was changed from 4 hours to 10 hours, and in the second step, the imidazole compound obtained in Synthesis Example 2 (above) was added to the polyamic acid solution.
  • DABAN aromatic diamine
  • CpODA tetracarboxylic acid dicarboxylic acid
  • the imidazole compound obtained in Synthesis Example 2 with respect to 1.22 g of tetramethylurea 0.165 g of the imidazole compound represented by the formula (1) was dissolved at a temperature of 60 ° C., and the solution of the imidazole compound was returned to room temperature (25 ° C.). Liquid advance prepared in advance, except that such a solution was added to the polyamic acid solution to obtain a polyimide film in the same manner as in Example 1.
  • the total content ratio of the aromatic diamine (DABAN) and the tetracarboxylic dianhydride (CpODA) in the obtained raw material mixture is 12% by mass, and the polyamic acid
  • the concentration of the polyamic acid in the solution was 12% by mass as apparent from the amount of raw material charged.
  • the viscosity of the polyamic acid solution was 46 cps.
  • the evaluation results of the properties of the polyimide film thus obtained are shown in Table 1. Using the film thus obtained, the molecular structure of the compound forming the film was identified, and as a result of IR measurement, C ⁇ O stretching vibration of imide carbonyl was observed at 1698 cm ⁇ 1. The film was confirmed to be a film made of polyimide.
  • FIG. 2 shows a graph of an IR spectrum obtained during infrared absorption spectrum measurement (IR measurement) for identifying such a molecular structure.
  • IR measurement infrared absorption spectrum measurement
  • Example 5 In the first step (step of obtaining a polyamic acid solution), instead of using 0.2045 g (0.90 mmol: Nippon Pure Chemical Industries, Ltd .: DABAN) alone as an aromatic diamine, 4,4′-diaminobenzanilide, As aromatic diamine, 0.1636 g (0.72 mmol: manufactured by Nippon Pure Chemicals Co., Ltd .: DABAN) and 0.0361 g (0.18 mmol: manufactured by Tokyo Chemical Industry Co., Ltd .: 4) as 4,4′-diaminobenzanilide.
  • 0.2045 g (0.90 mmol: Nippon Pure Chemical Industries, Ltd .: DABAN
  • aromatic diamine 0.1636 g (0.72 mmol: manufactured by Nippon Pure Chemicals Co., Ltd .: DABAN
  • 0.0361 g 0.18 mmol: manufactured by Tokyo Chemical Industry Co., Ltd .: 4′-diaminobenzanilide.
  • the total content ratio of the aromatic diamine (a mixture of DABAN and 4,4′-DDE) and the tetracarboxylic dianhydride (CpODA) in the obtained raw material mixture is 9
  • the concentration of the polyamic acid in the polyamic acid solution was 9.5% by mass, as is clear from the amount of raw material charged.
  • the viscosity of the polyamic acid solution was 35 cps.
  • the evaluation results of the properties of the polyimide film thus obtained are shown in Table 1.
  • the molecular structure of the compound which forms a film was identified using the film obtained in this way.
  • FIG. 3 shows a graph of an IR spectrum obtained during infrared absorption spectrum measurement (IR measurement) for identifying such a molecular structure.
  • IR measurement infrared absorption spectrum measurement
  • a polyimide film was obtained in the same manner as in Example 1 except that the time was changed from 4 hours to 10 hours.
  • the total content ratio of the aromatic diamine (a mixture of DABAN and TFMB) and the tetracarboxylic dianhydride (CpODA) in the obtained raw material mixture is 9.5% by mass.
  • the concentration of the polyamic acid in the polyamic acid solution was 9.5% by mass as apparent from the amount of raw material charged.
  • the viscosity of the polyamic acid solution was 29 cps.
  • Table 1 The evaluation results of the properties of the polyimide film thus obtained are shown in Table 1.
  • FIG. 4 shows a graph of the IR spectrum obtained in the infrared absorption spectrum measurement (IR measurement) for identifying such a molecular structure.
  • IR measurement infrared absorption spectrum measurement
  • the total content ratio of the aromatic diamine (a mixture of DABAN and TFMB) and the tetracarboxylic dianhydride (CpODA) in the obtained raw material mixture is 9.5% by mass.
  • the concentration of the polyamic acid in the polyamic acid solution was 9.5% by mass as apparent from the amount of raw material charged.
  • the viscosity of the polyamic acid solution was 28 cps.
  • the evaluation results of the properties of the polyimide film thus obtained are shown in Table 1.
  • the molecular structure of the compound which forms a film was identified using the film obtained in this way.
  • FIG. 5 shows a graph of the IR spectrum obtained in the infrared absorption spectrum measurement (IR measurement) for identifying such a molecular structure.
  • IR measurement infrared absorption spectrum measurement
  • Example 8 In the second step (step of obtaining a polyimide forming mixed solution), an imidazole compound (imidazole compound represented by the general formula (13)) is dissolved in a polyamic acid solution, and then a silane coupling agent (3 -Aminopropyltriethoxysilane: A polyimide film was obtained in the same manner as in Example 1 except that 0.0055 g of a trade name “KBE-903” manufactured by Shin-Etsu Chemical Co., Ltd. was added.
  • the silane coupling agent is an additive (adhesion improver) for improving the adhesion between the glass and the polyimide film.
  • the viscosity of the obtained polyamic acid solution was 15 cps.
  • the evaluation results of the properties of the polyimide film thus obtained are shown in Table 1.
  • the molecular structure of the compound which forms a film was identified using the film obtained in this way.
  • FIG. 6 shows a graph of an IR spectrum obtained during infrared absorption spectrum measurement (IR measurement) for identifying such a molecular structure.
  • IR measurement infrared absorption spectrum measurement
  • the obtained mixed liquid for polyimide formation was heated on the surface of a glass substrate made of alkali-free glass (trade name “Eagle XG” manufactured by Corning, length: 100 mm, width 100 mm, thickness 0.7 mm).
  • Spin coating was performed so that the thickness of the cured film was 13 ⁇ m, and a coating film was formed on the glass substrate.
  • the glass substrate on which the coating film was formed was placed on a hot plate at 60 ° C. and allowed to stand for 2 hours, thereby evaporating and removing the solvent from the coating film (solvent removal treatment).
  • the glass substrate on which the coating film after the solvent removal treatment is formed is put into an inert oven in which nitrogen flows at a flow rate of 3 L / min, and a temperature condition of 25 ° C. in a nitrogen atmosphere in the inert oven.
  • an inert oven in which nitrogen flows at a flow rate of 3 L / min, and a temperature condition of 25 ° C. in a nitrogen atmosphere in the inert oven.
  • Curing was performed to form a polyimide film on the glass substrate.
  • the polyimide film was peeled from the glass substrate by immersing the glass substrate in which the film which consists of this polyimide was formed in 90 degreeC hot water, and the polyimide film was obtained.
  • the evaluation results of the properties of the polyimide film thus obtained are shown in Table 1.
  • the molecular structure of the compound forming the film was identified, and as a result of IR measurement, C ⁇ O stretching vibration of imide carbonyl was observed at 1698 cm ⁇ 1.
  • the film was confirmed to be a film made of polyimide.
  • Comparative Example 2 A polyimide film was obtained in the same manner as in Comparative Example 1 except that the amount of tetramethylurea as a solvent was changed from 2.88 g to 5.24 g.
  • the total content ratio of the aromatic diamine (DABAN) and the tetracarboxylic dianhydride (CpODA) in the obtained raw material mixture is 9.5% by mass, and polyimide formation
  • the total content of the polyamic acid and the imidazole compound in the mixed solution (coating solution) for use was 12% by mass.
  • the viscosity of such a mixed liquid for polyimide formation was 258 cps.
  • Table 1 The evaluation results of the properties of the polyimide film thus obtained are shown in Table 1.
  • the molecular structure of the compound forming the film was identified, and as a result of IR measurement, C ⁇ O stretching vibration of imide carbonyl was observed at 1698 cm ⁇ 1.
  • the film was confirmed to be a film made of polyimide.
  • the obtained raw material mixture was stirred at room temperature (25 ° C.) for 10 hours under a nitrogen atmosphere to react the aromatic diamine (DABAN) with the tetracarboxylic dianhydride (CpODA), A polyamic acid was formed to obtain a polyamic acid solution.
  • concentration of the polyamic acid in the obtained polyamic acid solution was 12% by mass as apparent from the amount of raw materials charged.
  • the viscosity [cps (centipoise)] of the polyamic acid solution (polyamic acid concentration: 12% by mass) thus obtained was 46 cps.
  • the properties (viscosity) of such a polyamic acid solution are shown in Table 1.
  • Such a polyamic acid solution (polyamic acid concentration: 12% by mass) is used as it is, and the polyamic acid solution is used as a glass substrate made of alkali-free glass (trade name “Eagle XG” manufactured by Corning, length: 100 mm, width 100 mm, thickness 0.7 mm) was spin-coated so that the thickness of the heat-cured film was 13 ⁇ m, and a coating film was formed on the glass substrate. Thereafter, the glass substrate on which the coating film was formed was placed on a hot plate at 60 ° C. and allowed to stand for 2 hours, thereby evaporating and removing the solvent from the coating film (solvent removal treatment).
  • solvent removal treatment solvent removal treatment
  • the glass substrate on which the coating film after the solvent removal treatment is formed is put into an inert oven in which nitrogen flows at a flow rate of 3 L / min, and a temperature condition of 25 ° C. in a nitrogen atmosphere in the inert oven. For 0.5 hour, and then heated at 135 ° C. for 0.5 hour, and further heated at 250 ° C. for 1 hour to imidize the polyamic acid to form the coating film. The film was cured and a film made of polyimide was formed on the glass substrate, but the film was cracked.
  • the surface roughness (arithmetic average roughness) of the obtained polyimide film was obtained in all cases (Examples 1 to 8) when the method for producing a polyimide film of the present invention was used.
  • Ra was 2.0 nm or less, and it was found that the surface of the resulting polyimide film had a very high level of smoothness.
  • the 5% weight reduction temperature (Td 5%) of the obtained polyimide film is 350 ° C. or more. While confirming that it has sufficient heat resistance, the total light transmittance was 80% or more, and it was confirmed that it had sufficient transparency. From these results, it was found that the polyimide films of the present invention (Examples 1 to 8) are particularly useful for various applications where surface smoothness is required.
  • Comparative Examples 1 and 2 in which the imidazole compound obtained in Synthesis Example 2 (imidazole compound represented by the above general formula (13)) was added to the raw material mixture for preparing the polyamic acid.
  • the viscosity of the coating liquid stage where the polyamic acid was formed
  • the surface smoothness can be obtained by adding the imidazole compound represented by the general formula (13) in the stage after the formation of the polyamic acid. It has been found that a higher polyimide film can be produced.
  • the obtained polyimide film is cracked, and even if a sufficiently low-viscosity polyamic acid solution is obtained, it is represented by the general formula (13). It was found that it was difficult to form a film having sufficient mechanical strength when the imidazole compound was not added, that is, it was difficult to form a film.
  • Example 3 and Comparative Example 3 are compared, since the presence or absence of the use of the imidazole compound represented by the general formula (13) is different, the imidazole compound represented by the general formula (13) is It was found that a sufficiently uniform polyimide film (a film having a sufficient mechanical strength without cracks) can be efficiently produced from a low-viscosity polyamic acid solution by using it.
  • Example 9 to 12 Preparation of photosensitive composition
  • Each component shown in Table 2 (each component represented by an abbreviation such as PAA-1 in the table) was dissolved in tetramethylurea to prepare a photosensitive composition having a polyamic acid concentration of 10% by mass.
  • the numbers in parentheses are parts by mass.
  • the abbreviations shown in Table 2 indicate the following components, respectively.
  • PAA-1 Polyamic acid obtained in the same manner as in the first step of Example 1 (solid content)
  • PAA-2 Polyamic acid obtained in the same manner as in the first step of Example 5 (solid content)
  • I-1 Compound represented by the general formula (13)
  • PAC-1 Compound represented by the following formula (P-1) However, in the formula, Q contains a substituent represented by the following formula (Q-1) and a hydrogen atom in a ratio of 9: 1 (molar ratio).
  • PAC-2 a compound represented by the above formula (P-1). However, in the formula, Q contains a substituent represented by the following formula (Q-2) and a hydrogen atom in a ratio of 9: 1 (molar ratio).
  • each composition film respectively, through a mask exposure in an ultra-high pressure mercury lamp (EXM-1066-E01: Oak Co., in a range of energy dose 100 ⁇ 1000mJ / cm 2 100mJ / cm every 2 meter 10
  • the pattern was formed by using 2.38 mass% TMAH (tetramethylammonium hydroxide) and developing until the exposed portions were dissolved.
  • TMAH tetramethylammonium hydroxide
  • each film after pattern formation was heated at 150 ° C. for 1 hour in a nitrogen atmosphere, and further heated at 250 ° C. for 1 hour.
  • a cured pattern film having a thickness of about 13 ⁇ m was obtained from each photosensitive composition described in Table 2.
  • a polyimide film manufacturing method capable of efficiently manufacturing a film having a higher level of surface smoothness, and a polyimide obtained by using the manufacturing method It becomes possible to provide a polyamic acid solution that can be suitably used for producing the film, the polyimide film, and a photosensitive composition containing the polyamic acid solution. Moreover, according to the photosensitive composition of this invention, it is also possible to manufacture a pattern cured film efficiently.
  • the method for producing a polyimide film of the present invention can be used for applications that require high surface smoothness (for example, organic EL element substrates, flexible organic EL element substrates, organic EL element TFT substrates, organic EL element elements).
  • the color filter substrate, the touch panel substrate of the organic EL element, the substrate for high-definition display for medical use, etc.) are particularly useful as a method for producing a polyimide film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Materials For Photolithography (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

溶媒と、特定の一般式で表されるテトラカルボン酸二無水物と、特定の一般式で表される芳香族ジアミンとを含有し、且つ、前記テトラカルボン酸二無水物と前記芳香族ジアミンとの合計の含有量が15質量%以下である原料混合液を準備し、該原料混合液中において前記テトラカルボン酸二無水物と前記芳香族ジアミンとを反応させて特定の一般式で表される繰り返し単位を有するポリアミド酸を形成することにより、粘度が5~150cpsであるポリアミド酸溶液を得る工程と、前記ポリアミド酸溶液に、特定の一般式で表される化合物を添加してポリイミド形成用混合液を得る工程と、前記ポリイミド形成用混合液からなる膜を形成し、該膜中の前記ポリアミド酸をイミド化することにより、特定の一般式で表されるポリイミドからなるフィルムを得る工程と、を含む、ポリイミドフィルムの製造方法。

Description

ポリイミドフィルムの製造方法、ポリイミドフィルム、ポリアミド酸溶液及び感光性組成物
 本発明は、ポリイミドフィルムの製造方法、ポリイミドフィルム、ポリアミド酸溶液並びに感光性組成物に関する。
 従来より様々な分野において、基板(例えばスマートフォンやタブレット端末等のモバイル機器の基板等)としてガラス基板が用いられてきた。しかしながら、ガラス基板は衝撃によって割れるといった問題があることから、光透過性が十分に高く、十分に高度な耐熱性を有するとともに、軽くて柔軟な素材の出現が求められてきた。そして、このようなガラス代替用途等に用いる素材としては、高度な耐熱性を有し、且つ、軽くて柔軟なポリイミドが着目されている。
 このようなポリイミドとしては、例えば、芳香族ポリイミド(例えば、DuPont社製の商品名「カプトン」)が知られている。しかしながら、このような芳香族ポリイミドは、十分な柔軟性と高度な耐熱性とを有するポリイミドではあるものの、褐色を呈し、光透過性が必要とされるガラス代替用途や光学用途等に使用できるものではなかった。そのため、近年では、ガラス代替用途等に使用可能な十分な光透過性を有する脂環式ポリイミドの開発が進められてきた。
 このような脂環式ポリイミドとしては、十分な光透過性と高度な耐熱性とを有するものとして、例えば、国際公開第2011/099518号(特許文献1)に記載のような特定の一般式で記載される繰り返し単位を有するポリイミドが知られている。なお、上記特許文献1においては、例えば、ポリアミド酸の溶液を形成した後、そのポリアミド酸の溶液からなる塗膜を形成し、該塗膜を硬化せしめてポリイミドからなるフィルムを形成する方法を開示されている(特許文献1の実施例7等参照)。
国際公開第2011/099518号
 このようなポリイミドからなるフィルムの分野においては、そのフィルムを様々な用途に応用することが試みられており、その用途等によってはフィルムの表面の平滑性をより高度な水準のものすること(表面粗さをより高度な水準で小さなものとすること)が望まれる場合もある。特にポリイミドフィルムを有機ELの基板に使用する場合には、表面粗さが大きいと、それに起因して電極同士が短絡し発光しないという問題が生じ得るため、フィルムの表面の平滑性をより高度なものとすることがより望ましい。このような観点から、従来のポリイミドフィルムの製造方法を利用した場合と比較して、より高度な水準の表面の平滑性を有するフィルムをより効率よく製造することが可能となるようなポリイミドフィルムの製造方法の出現が望まれている。
 本発明は、前記従来技術の有する課題に鑑みてなされたものであり、より高度な水準の表面の平滑性を有するフィルムを効率よく製造することを可能とするポリイミドフィルムの製造方法、その製造方法を利用して得られるポリイミドフィルム、前記ポリイミドフィルムの製造に好適に利用可能なポリアミド酸溶液、並びに、そのポリアミド酸溶液を含む感光性組成物を提供することを目的とする。
 本発明者らは、先ず、公知のポリイミドフィルムの製造方法を利用した場合、得られるポリアミド酸の溶液(樹脂溶液:ワニス)の粘度が基本的に高いものとなることから、低粘度のポリアミド酸の溶液を形成することで、その溶液(ワニス)の塗工時の作業性がより向上し、これによりより高度な水準の表面の平滑性を有するフィルムをより効率よく製造することが可能となるのではないかと推察して、先ず、ポリアミド酸の溶液(樹脂溶液:ワニス)の粘度を十分に低減させることを試みた。なお、高粘度のポリアミド酸の溶液が形成された場合には、低粘度の溶液しか利用できないような塗工装置を利用することもできないため、ワニスを様々な塗工装置に適用可能とするといった観点からも、十分に低粘度のポリアミド酸の溶液を形成することが望まれる。しかしながら、公知のポリイミドの製造方法を採用してポリアミド酸を調製した場合、粘度が基本的に数千cps程度~数万cps程度となるような高粘度のポリアミド酸溶液(ワニス)が得られ、これに溶媒を更に添加して粘度の低下を試みても、5~150cpsとなるような十分に低粘度のポリアミド酸の溶液を形成することは困難であった。
 そこで、本発明者らは、ポリアミド酸の溶液(樹脂溶液:ワニス)の粘度を低減させるために、ポリアミド酸の溶液の調製時に、当初より多量の溶媒を用い、多量の溶媒の存在下において原料化合物を反応させることも試みたが、このようにして得られたポリアミド酸溶液をそのまま利用した場合、ポリアミド酸をイミド化して得られるフィルムにクラックが入る等といった問題が生じる場合もあり、ポリイミドフィルムを効率よく形成するといった観点では必ずしも十分なものではなかった。このように、単純に多量の溶媒を用いて低粘度のポリアミド酸溶液を調製した場合には、十分な機械的強度を有する均一なフィルム(クラックのないフィルム)を得ることが困難となる場合もあり、ポリイミドフィルムを必ずしも効率よく製造できなかった。
 このように、従来公知のポリイミドの製造方法をそのまま採用した後、ポリアミド酸溶液に溶媒を添加したり、ポリアミド酸の調製時に使用する溶媒の量を変更するだけでは、十分に低粘度のポリアミド酸溶液を形成し、それを利用して表面の平滑性の水準が高いポリイミドフィルムを効率よく形成することは困難であった。
 このような知見に基づいて、本発明者らが前記目的を達成すべく、更に鋭意研究を重ねたところ、溶媒と、下記一般式(1)で表される特定のテトラカルボン酸二無水物と、下記一般式(2)で表される特定の芳香族ジアミンとを含有し、且つ、前記テトラカルボン酸二無水物と前記芳香族ジアミンとの合計の含有量が15質量%以下である原料混合液を準備し、次いで、該原料混合液中において前記テトラカルボン酸二無水物と前記芳香族ジアミンとを反応させて下記一般式(3)で表される特定の繰り返し単位を有するポリアミド酸を形成することにより粘度が5~150cpsであるポリアミド酸溶液を得て、その後、かかるポリアミド酸溶液に下記一般式(4)で表される化合物を添加してポリイミド形成用混合液を形成し、次いで、そのポリイミド形成用混合液からなる膜を形成した後、該膜中の前記ポリアミド酸をイミド化することにより、粘度が5~150cpsとなるような十分に低粘度のポリアミド酸の溶液を利用しつつ、これをイミド化してポリイミドからなるフィルムを効率よく形成でき、しかも得られるフィルムをより高度な水準の表面の平滑性を有するものとすることが可能となることを見出して、本発明を完成するに至った。
 すなわち、本発明のポリイミドフィルムの製造方法は、溶媒と、下記一般式(1):
Figure JPOXMLDOC01-appb-C000008
[式(1)中、R、R、Rは、それぞれ独立に水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは0~12の整数を示す。]
で表されるテトラカルボン酸二無水物と、下記一般式(2):
Figure JPOXMLDOC01-appb-C000009
[式(2)中、R10は炭素数6~50のアリール基を示す。]
で表される芳香族ジアミンとを含有し、且つ、前記テトラカルボン酸二無水物と前記芳香族ジアミンとの合計の含有量が15質量%以下である原料混合液を準備し、該原料混合液中において前記テトラカルボン酸二無水物と前記芳香族ジアミンとを反応させて下記一般式(3):
Figure JPOXMLDOC01-appb-C000010
[式(3)中、R、R、Rは、それぞれ独立に、水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、R10は炭素数6~50のアリール基を示し、nは0~12の整数を示す。]
で表される繰り返し単位を有するポリアミド酸を形成することにより、粘度が5~150cpsであるポリアミド酸溶液を得る工程と、
 前記ポリアミド酸溶液に、下記一般式(4):
Figure JPOXMLDOC01-appb-C000011
[式(4)中、R11は水素原子及びアルキル基よりなる群から選択される1種を示し、R12は置換基を有してもよい芳香族基を示し、R13は置換基を有してもよいアルキレン基を示し、R14はそれぞれ独立にハロゲン原子、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホナト基及び有機基よりなる群から選択される1種を示し、mは0~3の整数を示す。]
で表される化合物を添加してポリイミド形成用混合液を得る工程と、
 前記ポリイミド形成用混合液からなる膜を形成し、該膜中の前記ポリアミド酸をイミド化することにより、下記一般式(5):
Figure JPOXMLDOC01-appb-C000012
[式(5)中、R、R、Rは、それぞれ独立に、水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、R10は炭素数6~50のアリール基を示し、nは0~12の整数を示す。]
で表される繰り返し単位を有するポリイミドからなるフィルム(ポリイミドフィルム)を得る工程と、
を含む方法である。
 また、本発明のポリイミドフィルムは、上記本発明のポリイミドフィルムの製造方法により得られるものである。
 また、本発明のポリアミド酸溶液は、溶媒と、
 上記一般式(3)で表される繰り返し単位を有するポリアミド酸と、
 上記一般式(4)で表される化合物と、
を含有し、且つ、粘度が5~150cpsであるものである。
 また、本発明の感光性組成物は、上記本発明のポリアミド酸溶液と、感光剤とを含むものである。
 本発明によれば、より高度な水準の表面の平滑性を有するフィルムを効率よく製造することを可能とするポリイミドフィルムの製造方法、その製造方法を利用して得られるポリイミドフィルム、前記ポリイミドフィルムの製造に好適に利用可能なポリアミド酸溶液、並びに、そのポリアミド酸溶液を含む感光性組成物を提供することが可能となる。
実施例1で得られたポリイミドのIRスペクトルを示すグラフである。 実施例4で得られたポリイミドのIRスペクトルを示すグラフである。 実施例5で得られたポリイミドのIRスペクトルを示すグラフである。 実施例6で得られたポリイミドのIRスペクトルを示すグラフである。 実施例7で得られたポリイミドのIRスペクトルを示すグラフである。 実施例8で得られたポリイミドのIRスペクトルを示すグラフである。
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 [本発明のポリイミドフィルムの製造方法]
 本発明のポリイミドフィルムの製造方法は、溶媒と、上記一般式(1)で表されるテトラカルボン酸二無水物と、上記一般式(2)で表される芳香族ジアミンとを含有し、且つ、前記テトラカルボン酸二無水物と前記芳香族ジアミンとの合計の含有量が15質量%以下である原料混合液を準備し、該原料混合液中において前記テトラカルボン酸二無水物と前記芳香族ジアミンとを反応させて上記一般式(3)で表される繰り返し単位を有するポリアミド酸を形成することにより、粘度が5~150cpsであるポリアミド酸溶液を得る工程と、
 前記ポリアミド酸溶液に、上記一般式(4)で表される化合物を添加してポリイミド形成用混合液を得る工程と、
 前記ポリイミド形成用混合液からなる膜を形成し、該膜中の前記ポリアミド酸をイミド化することにより、上記一般式(5)で表される繰り返し単位を有するポリイミドからなるフィルム(ポリイミドフィルム)を得る工程と、
を含む方法である。以下、上記本発明のポリイミドフィルムの製造方法の各工程を分けて説明する。なお、以下において、便宜上、上記ポリアミド酸溶液を得る工程を、場合により単に「第一工程」と称し、上記ポリイミド形成用混合液を得る工程を、場合により単に「第二工程」と称し、ポリイミドからなるフィルムを得る工程を、場合により単に「第三工程」と称する。
 <ポリアミド酸溶液を得る工程(第一工程)>
 本発明にかかるポリアミド酸溶液を得る工程は、溶媒と、前記一般式(1)で表されるテトラカルボン酸二無水物と、前記一般式(2)で表される芳香族ジアミンとを含有し、且つ、前記テトラカルボン酸二無水物と前記芳香族ジアミンとの合計の含有量が15質量%以下である原料混合液を準備し、該原料混合液中において前記テトラカルボン酸二無水物と前記芳香族ジアミンとを反応させて前記一般式(3)で表される繰り返し単位を有するポリアミド酸を形成することにより、粘度が5~150cpsであるポリアミド酸溶液を得る工程(第一工程)である。
 このような第一工程に用いる溶媒としては、ポリアミド酸の調製に用いることが可能なものであればよく、特に制限されないが、上記一般式(1)で表されるテトラカルボン酸二無水物と上記一般式(2)で表される芳香族ジアミンとの両者を溶解することが可能な有機溶媒であることが好ましい。このような第一工程に用いる溶媒として好適な前記有機溶媒としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、γ-ブチロラクトン、プロピレンカーボネート、テトラメチル尿素(テトラメチルウレア)、1,3-ジメチル-2-イミダゾリジノン、ヘキサメチルホスホリックトリアミド、ピリジンなどの非プロトン系極性溶媒;m-クレゾール、キシレノール、フェノール、ハロゲン化フェノールなどのフェノール系溶媒;テトラハイドロフラン、ジオキサン、セロソルブ、グライム、ジグライム、プロピレングリコールモノメチルエーテルアセテートなどのエーテル系溶媒;ベンゼン、トルエン、キシレンなどの芳香族系溶媒;シクロペンタノンやシクロヘキサノン等のケトン系溶媒;アセトニトリル、ベンゾニトリル等のニトリル系溶媒などが挙げられる。
 また、このような溶媒としては、溶解性や安全性の観点から、テトラメチル尿素(テトラメチルウレア)、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、γ-ブチロラクトン、1,3-ジメチル-2-イミダゾリジノンが好ましく、テトラメチル尿素(テトラメチルウレア)、γ-ブチロラクトン、1,3-ジメチル-2-イミダゾリジノンがより好ましい。このような溶媒は、1種を単独であるいは2種以上を混合して使用してもよい。
 また、上記第一工程に用いる前記テトラカルボン酸二無水物は、上記一般式(1)で表されるもの(化合物)である(なお、上記一般式(1)中、R、R、Rは、それぞれ独立に水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは0~12の整数を示す。)。
 このような一般式(1)中のR、R、Rとして選択され得るアルキル基は、炭素数が1~10のアルキル基である。また、このようなR、R、Rとして選択され得るアルキル基の炭素数としては、1~6であることが好ましく、1~5であることがより好ましく、1~4であることが更に好ましく、1~3であることが特に好ましい。また、このようなR、R、Rとして選択され得るアルキル基は直鎖状であっても分岐鎖状であってもよい。更に、このようなアルキル基としては、メチル基、エチル基がより好ましい。
 前記一般式(1)中のR、R、Rとしては、それぞれ独立に、水素原子又は炭素数1~10のアルキル基であることがより好ましく、それぞれ独立に、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基であることがより好ましく、水素原子又はメチル基であることが特に好ましい。また、このような式中の複数のR、R、Rは、同一のものであることが特に好ましい。
 また、前記一般式(1)中のnは0~12の整数を示す。また、このような一般式(1)中のnの数値範囲の上限値は、5であることがより好ましく、3であることが特に好ましい。また、このような一般式(1)中のnの数値範囲の下限値は、1であることがより好ましく、2であることが特に好ましい。このように、一般式(1)中のnとしては、2~3の整数であることが特に好ましい。
 このような一般式(1)で表されるテトラカルボン酸二無水物を製造するための方法としては、特に制限されず、公知の方法(例えば、国際公開第2011/099518号の実施例2や実施例4に記載の方法等)を適宜採用することができる。
 また、上記第一工程に用いる前記芳香族ジアミンは、上記一般式(2)で表されるもの(化合物)である(なお、上記一般式(2)中、R10は炭素数6~50のアリール基を示す。)。
 このような一般式(2)中のR10として選択され得るアリール基は、炭素数が6~50のものであるが、このようなアリール基の炭素数は6~40であることが好ましく、6~30であることがより好ましく、12~20であることが更に好ましい。
 また、前記一般式(2)中のR10としては、下記一般式(6)~(9):
Figure JPOXMLDOC01-appb-C000013
[式(8)中、R15は、水素原子、フッ素原子、メチル基、エチル基及びトリフルオロメチル基よりなる群から選択される1種を示し、式(9)中、Qは、式:-O-、-S-、-CO-、-CONH-、-SO-、-C(CF-、-C(CH-、-CH-、-O-C-C(CH-C-O-、-O-C-C(CF-C-O-、-O-C-SO-C-O-、-C(CH-C-C(CH-、-O-C-C-O-、及び、-O-C-O-で表される基、9,9’-フルオレニリデン基、並びに、下記一般式(10):
Figure JPOXMLDOC01-appb-C000014
(式(10)中、Raはそれぞれ独立に炭素数1~10のアルキル基、フェニル基及びトリル基のうちのいずれか1種を示し、yは1~18の整数を示す。)
で表される基からなる群から選択される1種を示す。]
で表される基のうちの少なくとも1種であることが好ましい。
 このような一般式(8)中のR15としては、得られるポリイミドの耐熱性の観点から、水素原子、フッ素原子、メチル基又はエチル基がより好ましく、水素原子が特に好ましい。
 また、上記一般式(9)中のQとして選択され得る上記一般式(10)中のRaはそれぞれ独立に炭素数1~10のアルキル基、フェニル基及びトリル基のうちのいずれか1種である。このようなRaとしては、メチル基、エチル基、プロピル基、イソプロピル基、フェニル基、トリル基であることが好ましく、メチル基、エチル基であることがより好ましく、メチル基が更に好ましい。
 また、上記一般式(10)中のyは1~15(より好ましくは3~12、更に好ましくは5~10)の整数を示す。
 なお、上記一般式(2)中のR10が式(9)で表される基であり、且つ、該式(9)中のQが上記一般式(10)で表される基である芳香族ジアミンの好適な一例としては、例えば、下記式(11):
Figure JPOXMLDOC01-appb-C000015
[式(11)中、Meはメチル基であることを示す。]
で表される化合物(シリコーン系の芳香族ジアミン)等が挙げられる。このようなシリコーン系の芳香族ジアミン化合物としては、例えば、両末端アミノ変性シロキサンなどを好適に使用可能である。そのような両末端アミノ変性シロキサンの具体例としては、信越化学工業株式会社製アミノ変性シリコーンオイル(例えば、PAM-E、KF-8010、X-22-161A、X-22-161B、KF-8012、KF-8008、X-22-1660B-3、X-22-9409等)、Gelest社製ジメチルシロキサン型ジアミン(例えば、DMS-A11、DMS-A12、DMS-A15、DMS-A21、DMS-A31、DMS-A32、DMS-A32R、DMS-A35等)等を挙げることができる。
 また、上記一般式(9)中のQとしては、式:-CONH-、-O-C-O-、-O-、-C(CH-、-CH-、-O-C-C-O-又は-O-C-C(CH-C-O-で表される基、9,9’-フルオレニリデン基が好ましく、式:-CONH-、-O-C-O-、-O-C-C-O-又は-O-で表される基が特に好ましく、式:-CONH-、-O-C-O-又は-O-で表される基が最も好ましい。さらに、上記一般式(9)中のQとしては、上記一般式(10)で表される基であることが好ましく、式:-CONH-で表される基が好ましい。
 また、このような一般式(2)で表される芳香族ジアミンとしては、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエタン、3,3’-ジアミノジフェニルエタン、4,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、2,2-ビス(4-アミノフェノキシフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル{別名:2,2’-ビス(トリフルオロメチル)ベンジジン}、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、9,9-ビス(4-アミノフェニル)フルオレン、p-ジアミノベンゼン、m-ジアミノベンゼン、o-ジアミノベンゼン、4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ジメチルビフェニル、4,4’-ジアミノ-3,3’-ジメチルビフェニル,3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、3,4’-ジアミノビフェニル、2,6-ジアミノナフタレン、1,4-ジアミノナフタレン、1,5-ジアミノナフタレン、4,4’-[1,3-フェニレンビス(1-メチル-エチリデン)]ビスアニリン、4,4’-[1,4-フェニレンビス(1-メチル-エチリデン)]ビスアニリン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ジアミノベンズアニリド、3,4’-ジアミノベンズアニリド、9,9’-ビス(4-アミノフェニル)フルオレン、o-トリジンスルホン、2,3,5,6-テトラメチル-1,4-フェニレンジアミン、3,3’,5,5’-テトラメチルベンジジン、1,5-ビス(4-アミノフェノキシ)ペンタン、2,2-ビス(4-アミノフェノキシフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ハイドロキシフェニル)-ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-メチルフェニル)-ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)-ヘキサフルオロプロパン等が挙げられる。なお、このような芳香族ジアミンの中でも、4,4’-ジアミノベンズアニリド、p-ジアミノベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、9,9’-ビス(4-アミノフェニル)フルオレン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2-ビス(4-アミノフェノキシフェニル)ヘキサフルオロプロパン、4,4’-ジアミノジフェニルエーテルが好ましく、4,4’-ジアミノベンズアニリド、p-ジアミノベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニルがより好ましく、4,4’-ジアミノベンズアニリド、p-ジアミノベンゼンが更に好ましい。また、このような芳香族ジアミンは1種を単独で用いてもよく、あるいは、2種以上を組み合わせて用いてもよい。
 また、本発明にかかる原料混合液は、前記溶媒と、前記一般式(1)で表されるテトラカルボン酸二無水物と、前記一般式(2)で表される芳香族ジアミンとを含有し、且つ、前記テトラカルボン酸二無水物と前記芳香族ジアミンとの合計の含有量(混合液中の質量%)が15質量%以下のものである。このような前記テトラカルボン酸二無水物と前記芳香族ジアミンとの合計の含有量が前記上限を超えると、前記原料混合液中において前記テトラカルボン酸二無水物と前記芳香族ジアミンとの反応を進めてポリアミド酸の溶液を調製した場合に、該溶液の粘度が高くなってしまい、粘度が5~150cpsであるポリアミド酸溶液を得ることができなくなる。また、より効率よく、粘度が5~150cpsであるポリアミド酸溶液を得るとの観点からは、前記テトラカルボン酸二無水物と前記芳香族ジアミンとの合計の含有量は、3~15質量%であることが好ましく、5~12質量%であることがより好ましい。なお、前記テトラカルボン酸二無水物と前記芳香族ジアミンとの合計の含有量が前記下限未満では多量の溶媒を必要とするとともに、ポリイミドフィルムの物性が低下する傾向にある。
 また、このような原料混合液中における前記テトラカルボン酸二無水物と前記芳香族ジアミンとの含有比率は、モル比([前記テトラカルボン酸二無水物]:[前記芳香族ジアミン])で0.75:1.5~1.5:0.75であることが好ましく、0.9:1.1~1.1:0.9であることがより好ましい。
 また、前記原料混合液中における前記テトラカルボン酸二無水物と前記芳香族ジアミンとの使用割合は、特に制限されないが、前記芳香族ジアミンが有するアミノ基1当量に対して、前記テトラカルボン酸二無水物の酸無水物基を0.5~2当量とすることが好ましく、0.7~1.2当量とすることがより好ましい。
 なお、このような原料混合液においては、本発明の効果を損なわない限りにおいて、目的とするポリイミドフィルムの設計に応じて、上記一般式(1)で表されるテトラカルボン酸二無水物とともに、他のテトラカルボン酸二無水物を含有させてもよい。このような上記一般式(1)で表されるテトラカルボン酸二無水物以外の他のテトラカルボン酸二無水物としては、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、3,5,6-トリカルボキシノルボルナン-2-酢酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]-フラン-1,3-ジオン、1,3,3a,4,5,9b-ヘキサヒドロ-5-メチル-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]-フラン-1,3-ジオン、1,3,3a,4,5,9b-ヘキサヒドロ-8-メチル-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]-フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物、ビシクロ[2.2.2]-オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸二無水物、(4H,8H)-デカハイドロ-1,4:5,8-ジメタノナフタレン-2,3,6,7-テトラカルボン酸二無水物(別名:テトラシクロ[4.4.0.12,5.17,10]ドデカ-3,4,8,9-テトラカルボン酸二無水物)、ペンタシクロ[9.2.1.14,7.02,10.03,8]-ペンタデカン-5,6,12,13-テトラカルボン酸二無水物、ヘキサシクロ[6.6.1.13,6.110,13.02,7.09,14]ヘプタデカ-4,5,11,13-テトラカルボン酸二無水物などの脂肪族または脂環式テトラカルボン酸二無水物;ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジメチルジフェニルシランテトラカルボン酸二無水物、3,3’,4,4’-テトラフェニルシランテトラカルボン酸二無水物、1,2,3,4-フランテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’-パーフルオロイソプロピリデンジフタル酸二無水物、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、p-フェニレン-ビス(トリフェニルフタル酸)二無水物、m-フェニレン-ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルエーテル二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルメタン二無水物などの芳香族テトラカルボン酸二無水物等が挙げられる。なお、このような他のテトラカルボン酸二無水物を用いた場合には、得られるポリイミドが前記一般式(5)で表される繰り返し単位とともに他の繰り返し単位を含むものとなる。また、このような他のテトラカルボン酸二無水物として、芳香族テトラカルボン酸二無水物を使用する場合は、その使用量は得られるポリイミドが十分な透明性を有することが可能となるような範囲内で適宜変更することが好ましい。
 また、第一工程においては、前記原料混合液中において前記テトラカルボン酸二無水物と前記芳香族ジアミンとを反応させて、前記一般式(3)で表される繰り返し単位を有するポリアミド酸を形成する。
 このように、前記テトラカルボン酸二無水物と前記芳香族ジアミンとを反応させる際の反応温度は、これらの化合物を反応させることが可能な温度に適宜調整すればよく、特に制限されないが、0~50℃とすることが好ましく、10~40℃とすることがより好ましく、20~30℃とすることが更に好ましい。
 また、前記テトラカルボン酸二無水物と前記芳香族ジアミンとを反応させる方法としては、前記テトラカルボン酸二無水物と前記芳香族ジアミンの重合反応を行うことが可能な方法を適宜利用でき、特に制限されず、例えば、大気圧、窒素、ヘリウム、アルゴン等の不活性雰囲気の条件下において、芳香族ジアミン類を溶媒に溶解させた後、前記テトラカルボン酸二無水物を添加し、その後、前記反応温度において0.5~24時間(より好ましくは1~15時間、更に好ましくは2~10時間)反応させる方法を採用してもよい。
 また、前記テトラカルボン酸二無水物と前記芳香族ジアミンとを反応させる際には、効率よく反応を進行せしめるといった観点から、前記原料混合液を撹拌することが好ましい。このような撹拌の方法は特に制限されず、公知の方法(例えば、公知の撹拌装置を利用する方法等)を適宜利用することができる。
 このように、前記原料混合液中において前記テトラカルボン酸二無水物と前記芳香族ジアミンとを反応させる際には、前記原料混合液中にポリアミド酸を十分に形成するといった観点から、前記原料混合液を0~50℃(より好ましくは10~40℃、更に好ましくは20~30℃)の温度条件下において0.5~24時間(より好ましくは1~15時間、更に好ましくは2~10時間)撹拌することにより、前記原料混合液中において前記テトラカルボン酸二無水物と前記芳香族ジアミンとを反応させることが好ましい。
 このようにして、前記テトラカルボン酸二無水物と前記芳香族ジアミンとを反応させることにより、上記一般式(3)で表される繰り返し単位を有するポリアミド酸を形成することができる。なお、上記一般式(3)中のR、R、R及びnは、それぞれ一般式(1)中のR、R、R及びnと同様のものであり(それぞれ一般式(1)中のR、R、R及びnと同義であり)、その好適なものも上記一般式(1)中のR、R、R及びnと同様のものである。また、上記一般式(3)中のR10は上記一般式(2)中のR10と同様のものであり(一般式(2)中のR10と同義であり)、その好適なものも上記一般式(2)中のR10と同様のものである。なお、このようなポリアミド酸としては、上記一般式(3)で表される繰り返し単位を主として含有するもの(より好ましくは上記一般式(3)で表される繰り返し単位の含有量が全繰り返し単位に対して90~100モル%であること)が好ましい。
 また、本発明においては、前記原料混合液中において前記テトラカルボン酸二無水物と前記芳香族ジアミンとを反応させることにより、前記原料混合液中において前記ポリアミド酸を形成して、粘度が5~150cps(センチポイズ)であるポリアミド酸溶液を得る。また、このようなポリアミド酸溶液の粘度としては、10~100cpsであることがより好ましく、20~50cpsであることが特に好ましい。
 なお、このようにして粘度が5~150cps(センチポイズ)であるポリアミド酸溶液を形成した後において、該溶液を保管する必要がある場合には、保管時の前記ポリアミド酸溶液中のポリアミド酸の高分子量化を抑制して、粘度を5~150cpsに保持するといった観点から、前記ポリアミド酸溶液を低温の保管温度で保管することが好ましい。このようなポリアミド酸溶液の保管温度としては、-80℃~-1℃が望ましく、-40℃~-5℃がさらに望ましく、-20℃~-10℃が特に好ましい。このような保管温度での前記ポリアミド酸溶液の保管期間は、採用する保管温度にも左右されるものであり、一概には言えないが、1日~2年であることが望ましく、1週間~1年であることがさらに望ましく、1ケ月~半年であることが特に好ましい。なお、保存の手間や経済性等を考慮すれば保存期間は短いことが好ましい。また、前記原料混合液を準備した後、ポリアミド酸溶液を形成する前に、前記原料混合液を保管する必要がある場合においても、前記ポリアミド酸溶液の前記保管温度及び前記保管期間の条件を採用して保管することが好ましい。
 本発明において、前記ポリアミド酸溶液の粘度は、以下のようにして測定することができる。すなわち、前記ポリアミド酸溶液の粘度は、東機産業株式会社製のRE-85L形粘度計に、コーンロータとして1°34’×R24の標準コーンロータを設置したものを粘度の測定装置として利用して測定する。また、前記ポリアミド酸溶液の粘度の測定に際しては、その測定前に日本グリース株式会社製の粘度計校正用標準液JS20(JIS Z8809(2011年発行)に準拠した粘度計校正用標準液)を用いて、25℃の温度条件下において前記粘度の測定装置(前記粘度計)の校正を行う。そして、前記校正後の粘度の測定装置(粘度計)を利用して、25℃の温度条件下において、前記コーンロータの回転速度を0.5~100rpmの範囲とする条件下において、前記ポリアミド酸溶液の粘度を測定する。前記ポリアミド酸溶液の粘度としては、上述のような測定方法を採用して測定される値を採用する。このような粘度の測定方法は、JIS Z8803(2011年発行)に準拠した方法を採用する。なお、かかる粘度の測定方法は、低粘度(1215cps以下の粘度)の溶液の測定に好適に利用される方法であるため、本発明にかかるポリアミド酸溶液の粘度の範囲(5~150cps)外となるような高粘度(例えば352.3~70460cps)の溶液の粘度を確認する場合には、コーンロータの種類や粘度計校正用標準液の種類を変更してもよい。
 また、第一工程において得られる前記ポリアミド酸溶液においては、その溶液中のポリアミド酸の含有量(濃度)が15質量%以下であることが好ましく、3~15質量%であることがより好ましく、5~12質量%であることが更に好ましい。なお、このようなポリアミド酸溶液の濃度(溶液中のポリアミド酸の含有量)は、原料溶液中の前記テトラカルボン酸二無水物と前記芳香族ジアミンとの合計の含有量(混合液中の質量%)を前記範囲内に調整することで容易に達成することができる。
 <ポリイミド形成用混合液を得る工程(第二工程)>
 本発明にかかるポリイミド形成用混合液を得る工程は、前記ポリアミド酸溶液に、上記一般式(4)で表される化合物を添加してポリイミド形成用混合液を得る工程(第二工程)である。なお、以下において、便宜上、上記一般式(4)で表される化合物を場合により単に「イミダゾール系化合物」と称する。
 以下、先ず、第二工程に用いる一般式(4)で表される化合物(イミダゾール系化合物)について説明する(なお、上記一般式(4)中、R11は水素原子及びアルキル基よりなる群から選択される1種を示し、R12は置換基を有してもよい芳香族基を示し、R13は置換基を有してもよいアルキレン基を示し、R14はそれぞれ独立にハロゲン原子、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホナト基及び有機基よりなる群から選択される1種を示し、mは0~3の整数を示す。)。
 このような第二工程に用いるイミダゾール系化合物に関し、上記一般式(4)中のR11は、上述のように、水素原子又はアルキル基である。このような一般式(4)中のR11がアルキル基である場合、当該アルキル基は、直鎖アルキル基であっても、分岐鎖アルキル基であってもよい。また、このようなR11として選択され得るアルキル基の炭素原子数は特に限定されないが、1~20であることが好ましく、1~10であることが好ましく、1~5であることがより好ましい。
 上記一般式(4)中のR11として好適なアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチル-n-ヘキシル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、及びn-イコシル基が挙げられる。
 このようなR11の中でも、メチル基、エチル基が好ましく、メチル基がより好ましい。
 上記一般式(4)中のR12は、置換基を有してもよい芳香族基である。なお、このような置換基を有してもよい芳香族基は、置換基を有してもよい芳香族炭化水素基であってもよく、更には、置換基を有してもよい芳香族複素環基であってもよい。
 このような芳香族基として利用し得る前記芳香族炭化水素基の種類は、前記イミダゾール系化合物の効果(高分子量化の促進剤としての効果やイミド化の促進剤としての効果等)が損なわれない限り、特に限定されるものではない。このような芳香族炭化水素基は、単環式の芳香族基であってもよく、2以上の芳香族炭化水素基が縮合して形成されたものであってもよく、2以上の芳香族炭化水素基が単結合により結合して形成されたものであってもよい。このような芳香族炭化水素基としては、フェニル基、ナフチル基、ビフェニリル基、アンスリル基、フェナンスレニル基が好ましい。また、前記芳香族基として利用し得る前記芳香族複素環基の種類は、前記イミダゾール系化合物の効果が損なわれない限り、特に限定されるものではない。このような芳香族複素環基は、単環式基であってもよく、多環式基であってもよい。芳香族複素環基としては、ピリジル基、フリル基、チエニル基、イミダゾリル基、ピラゾリル基、オキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、及びベンゾイミダゾリル基が好ましい。
 このような芳香族基(前記芳香族炭化水素基(フェニル基や多環芳香族炭化水素基等)や前記芳香族複素環基等)が有してもよい置換基としては、ハロゲン原子、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、スルフィノ基、スルホ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、アミノ基、アンモニオ基、及び有機基が挙げられる。このような芳香族基が複数の置換基を有する場合、当該複数の置換基は、同一であっても異なっていてもよい。
 前記芳香族基が有する置換基が有機基である場合、かかる有機基としては、アルキル基、アルケニル基、シクロアルキル基、シクロアルケニル基、アリール基、及びアラルキル基等が挙げられる。このような有機基は、該有機基中にヘテロ原子等の炭化水素基以外の結合や置換基を含んでいてもよい。また、この有機基は、直鎖状、分岐鎖状、環状のいずれでもよい。この有機基は、通常は1価であるが、環状構造を形成する場合等には、2価以上の有機基となり得る。
 前記芳香族基が隣接する炭素原子上に置換基を有する場合、隣接する炭素原子上に結合する2つの置換基はそれが結合して環状構造を形成してもよい。このような環状構造としては、脂肪族炭化水素環や、ヘテロ原子を含む脂肪族環が挙げられる。
 前記芳香族基が有する置換基が有機基である場合に、当該有機基に含まれる結合は、前記イミダゾール系化合物の効果が損なわれない限り、特に限定されるものではなく、かかる有機基は、酸素原子、窒素原子、珪素原子等のヘテロ原子を含む結合を含んでいてもよい。このようなヘテロ原子を含む結合の具体例としては、エーテル結合、チオエーテル結合、カルボニル結合、チオカルボニル結合、エステル結合、アミド結合、ウレタン結合、イミノ結合(-N=C(-R)-、-C(=NR)-:Rは水素原子又は有機基を示す)、カーボネート結合、スルホニル結合、スルフィニル結合、アゾ結合等が挙げられる。
 また、前記芳香族基が有する置換基が有機基であり且つかかる有機基がヘテロ原子を含む結合を有する場合に、前記有機基が有してもよいヘテロ原子を含む結合としては、上記一般式(4)で表される化合物の耐熱性の観点から、エーテル結合、チオエーテル結合、カルボニル結合、チオカルボニル結合、エステル結合、アミド結合、アミノ結合(-NR-:Rは水素原子又は1価の有機基を示す)ウレタン結合、イミノ結合(-N=C(-R)-、-C(=NR)-:Rは水素原子又は1価の有機基を示す)、カーボネート結合、スルホニル結合、スルフィニル結合が好ましい。
 前記芳香族基が有する置換基が前記有機基であり、且つ、前記有機基が炭化水素基以外の置換基である場合、かかる炭化水素基以外の置換基の種類は、前記イミダゾール系化合物の効果を阻害しないものであればよく、特に限定されない。このような炭化水素基以外の置換基の具体例としては、ハロゲン原子、水酸基、メルカプト基、スルフィド基、シアノ基、イソシアノ基、シアナト基、イソシアナト基、チオシアナト基、イソチオシアナト基、シリル基、シラノール基、アルコキシ基、アルコキシカルボニル基、アミノ基、モノアルキルアミノ基、ジアルキルアルミ基、モノアリールアミノ基、ジアリールアミノ基、カルバモイル基、チオカルバモイル基、ニトロ基、ニトロソ基、カルボキシラート基、アシル基、アシルオキシ基、スルフィノ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホナト基、アルキルエーテル基、アルケニルエーテル基、アルキルチオエーテル基、アルケニルチオエーテル基、アリールエーテル基、アリールチオエーテル基等が挙げられる。上記置換基に含まれる水素原子は、炭化水素基によって置換されていてもよい。また、上記置換基に含まれる炭化水素基は、直鎖状、分岐鎖状、及び環状のいずれでもよい。
 前記芳香族基(例えば、フェニル基、多環芳香族炭化水素基、又は芳香族複素環基)が有する置換基としては、炭素原子数1~12のアルキル基、炭素原子数1~12のアリール基、炭素原子数1~12のアルコキシ基、炭素原子数1~12のアリールオキシ基、炭素原子数1~12のアリールアミノ基、及びハロゲン原子が好ましい。
 上記一般式(4)中のR12としては、上記一般式(4)で表される化合物(イミダゾール系化合物)を安価且つ容易に合成でき、該イミダゾール系化合物の水や有機溶剤に対する溶解性が良好であるといった観点から、置換基を有してもよいフェニル基、置換基を有してもよいフリル基、置換基を有してもよいチエニル基が好ましい。
 上記一般式(4)中のR13は、置換基を有してもよいアルキレン基である。アルキレン基が有していてもよい置換基は、前記イミダゾール系化合物の効果を阻害しない範囲であればよく、特に限定されない。このようなアルキレン基が有していてもよい置換基の具体例としては、水酸基、アルコキシ基、アミノ基、シアノ基、及びハロゲン原子等が挙げられる。前記アルキレン基は、直鎖アルキレン基であっても、分岐鎖アルキレン基であってもよく、直鎖アルキレン基が好ましい。このようなアルキレン基の炭素原子数は特に限定されないが、1~20が好ましく、1~10が好ましく、1~5がより好ましい。なお、このようなアルキレン基の炭素原子数には、アルキレン基に結合する置換基の炭素原子を含まない。
 このようなアルキレン基に結合する置換基としてのアルコキシ基は、直鎖アルコキシ基であっても、分岐鎖アルコキシ基であってもよい。このようなアルキレン基に結合する置換基としてのアルコキシ基の炭素原子数は特に限定されないが、1~10が好ましく、1~6がより好ましく、1~3が特に好ましい。
 また、前記アルキレン基に結合する置換基としてのアミノ基は、モノアルキルアミノ基又はジアルキルアミノ基であってもよい。このようなモノアルキルアミノ基又はジアルキルアミノ基に含まれるアルキル基は、直鎖アルキル基であっても分岐鎖アルキル基であってもよい。このようなモノアルキルアミノ基又はジアルキルアミノ基に含まれるアルキル基の炭素原子数は特に限定されないが、1~10が好ましく、1~6がより好ましく、1~3が特に好ましい。
 また、上記一般式(4)中のR13として好適なアルキレン基の具体例としては、メチレン基、エタン-1,2-ジイル基、n-プロパン-1,3-ジイル基、n-プロパン-2,2-ジイル基、n-ブタン-1,4-ジイル基、n-ペンタン-1,5-ジイル基、n-ヘキサン-1,6-ジイル基、n-ヘプタン-1,7-ジイル基、n-オクタン-1,8-ジイル基、n-ノナン-1,9-ジイル基、n-デカン-1,10-ジイル基、n-ウンデカン-1,11-ジイル基、n-ドデカン-1,12-ジイル基、n-トリデカン-1,13-ジイル基、n-テトラデカン-1,14-ジイル基、n-ペンタデカン-1,15-ジイル基、n-ヘキサデカン-1,16-ジイル基、n-ヘプタデカン-1,17-ジイル基、n-オクタデカン-1,18-ジイル基、n-ノナデカン-1,19-ジイル基、及びn-イコサン-1,20-ジイル基が挙げられる。
 上記一般式(4)中のR14は、ハロゲン原子、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホナト基、又は有機基であり、mは0~3の整数である。mが2~3の整数である場合、複数のR14は、それぞれ同一であっても異なっていてもよい。
 上記一般式(4)中のR14が有機基である場合、当該有機基は、式(4)中のR12において芳香族基の置換基として説明した有機基と同様のものである。
 上記一般式(4)中のR14が有機基である場合、かかる有機基としては、アルキル基、芳香族炭化水素基、及び芳香族複素環基が好ましい。R14がアルキル基である場合、かかるアルキル基としては、炭素原子数1~8の直鎖状又は分岐鎖状のアルキル基が好ましく、メチル基、エチル基、n-プロピル基、及びイソプロピル基がより好ましい。また、R14が芳香族炭化水素基である場合、かかる芳香族炭化水素基としては、フェニル基、ナフチル基、ビフェニリル基、アンスリル基、及びフェナンスレニル基が好ましく、フェニル基、及びナフチル基がより好ましく、フェニル基が特に好ましい。更に、R14が芳香族複素環基である場合、かかる芳香族複素環基としては、ピリジル基、フリル基、チエニル基、イミダゾリル基、ピラゾリル基、オキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、及びベンゾイミダゾリル基が好ましく、フリル基、及びチエニル基がより好ましい。
 上記一般式(4)中のR14がアルキル基である場合、アルキル基のイミダゾール環上での結合位置は、2位、4位、5位のいずれも好ましく、2位がより好ましい。上記一般式(4)中のR14が芳香族炭化水素基及び芳香族複素環基である場合、これらの基のイミダゾール上での結合位置は、2位が好ましい。
 さらに、上記一般式(4)中のmは0~3の整数である。このようなmの値としては、0~2の整数であることがより好ましい。
 このような一般式(4)で表される化合物(イミダゾール系化合物)の中では、下記一般式(4-1):
Figure JPOXMLDOC01-appb-C000016
(式(4-1)中、R11、R13、R14及びmは、それぞれ上記一般式(4)中のR11、R13、R14及びmと同様であり、R20、R21、R22、R23及びR24は、それぞれ独立に、水素原子、ハロゲン原子、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、スルフィノ基、スルホ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、アミノ基、アンモニオ基又は有機基であり、ただし、R20、R21、R22、R23及びR24のうち少なくとも1つは水素原子以外の基である。)
で表される化合物が好ましく、上記一般式(4-1)で表され、且つ、式中のR13がメチレン基である化合物がより好ましい。
 上記一般式(4-1)中のR20、R21、R22、R23及びR24が有機基である場合、当該有機基は、上記一般式(4)におけるR12が置換基として有する有機基と同様のものである。上記一般式(4-1)中のR20、R21、R22、R23及びR24は、水素原子であるのが好ましい。
 上記一般式(4-1)で表される化合物においては、式中のR20、R21、R22、R23及びR24のうち少なくとも1つが、式:-O-R30(R30は水素原子又は有機基である。)で表される置換基(このような式:-O-R30で表される置換基を、以下、場合により単に「置換基(A)」と称する。)であることが好ましく、R24が前記置換基(A)であることが特に好ましい。また、R24が前記置換基(A)である上記一般式(4-1)で表される化合物においては、R20、R21、R22及びR23が水素原子であることが好ましい。
 前記置換基(A)中のR30が有機基である場合、該有機基は、上記一般式(4)におけるR12において芳香族基の置換基として説明した有機基と同様のものである。このような置換基(A)中のR30としては、アルキル基が好ましく、炭素原子数1~8のアルキル基がより好ましく、炭素原子数1~3のアルキル基が特に好ましく、メチル基が最も好ましい。
 このような一般式(4-1)で表される化合物の中では、下記一般式(4-1-1):
Figure JPOXMLDOC01-appb-C000017
(式(4-1-1)中、R11、R14及びmは、それぞれ上記一般式(4)中のR11、R14及びmと同様であり、R31、R32、R33、R34及びR35は、それぞれ独立に、水素原子、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、スルフィノ基、スルホ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、アミノ基、アンモニオ基、又は有機基であり、ただし、R31、R32、R33、R34及びR35のうち少なくとも1つは水素原子以外の基である。)
で表される化合物が好ましい。
 上記一般式(4-1-1)で表される化合物においては、R31、R32、R33、R34及びR35のうち少なくとも1つが前記置換基(A)(式:-O-R30で表される基)であることが好ましく、R35が前記置換基(A)であることが特に好ましい。また、R35が前記置換基(A)(式:-O-R30で表される基)である場合、R31、R32、R33及びR34は水素原子であることが好ましい。
 上記一般式(4)で表されるイミダゾール系化合物の合成方法は特に限定されない。例えば、下記一般式(I)で表されるハロゲン含有カルボン酸誘導体と、下記一般式(II)で表されるイミダゾール系化合物とを、常法に従って反応させてイミダゾリル化を行うことによって、上記一般式(4)で表される化合物(イミダゾール系化合物)を合成することができる。
Figure JPOXMLDOC01-appb-C000018
(式(I)及び式(II)中、R11、R12、R13、R14及びmは、それぞれ上記一般式(4)中のR11、R12、R13、R14及びmと同様のものである。なお、式(I)において、Halはハロゲン原子を示す。)
 また、上記一般式(4)で表される化合物(イミダゾール系化合物)が、上記一般式(4)で表され、且つ、式中のR13がメチレン基である化合物である場合、すなわち、前記イミダゾール系化合物が下記一般式(4-2):
Figure JPOXMLDOC01-appb-C000019
(式(4-2)中、R11、R12、R14及びmは、それぞれ上記一般式(4)中のR11、R12、R14及びmと同様である。)
で表される化合物である場合、以下に説明するMichael付加反応による方法によっても、イミダゾール系化合物を合成することができる。
 具体的には、例えば、下記一般式(III):
Figure JPOXMLDOC01-appb-C000020
(式(III)中、R11及びR12は、それぞれ上記一般式(4)中のR11及びR12と同様である。)
で表される3-置換アクリル酸誘導体と、上記一般式(II)で表されるイミダゾール系化合物とを溶媒中で混合してMichael付加反応を生じさせることによって、上記一般式(4-2)で表されるイミダゾール系化合物が得られる。
 また、下記一般式(IV)で表される、イミダゾリル基を含む3-置換アクリル酸誘導体を、水を含む溶媒中に加えることによって、下記一般式(4-3)で表されるイミダゾール系化合物が得られる。
Figure JPOXMLDOC01-appb-C000021
(式(IV)及び式(4-3)中、R12、R14及びmは、それぞれ上記一般式(4)中のR12、R14及びmと同様である。)
 この場合、上記一般式(IV)で表される3-置換アクリル酸誘導体の加水分解により、上記一般式(II)で表されるイミダゾール系化合物と、下記一般式(V):
Figure JPOXMLDOC01-appb-C000022
(式(V)中、R12は上記一般式(4)中のR12と同様である。)
で表される3-置換アクリル酸とが生成する。そして、上記一般式(V)で表される3-置換アクリル酸と、上記一般式(II)で表されるイミダゾール系化合物との間でMichael付加反応が生じ、上記一般式(4-3)で表されるイミダゾール系化合物が生成される。
 なお、上記一般式(4)で表されるイミダゾール系化合物の好適な具体例としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000023
 以上、第二工程に用いる一般式(4)で表される化合物(イミダゾール系化合物)について説明したが、第二工程においては、このようなイミダゾール系化合物を、前記ポリアミド酸溶液に添加して、ポリイミド形成用混合液を調製する。
 このような一般式(4)で表される化合物(イミダゾール系化合物)の添加量としては、得られるポリイミド形成用混合液におけるイミダゾール系化合物とポリアミド酸との合計の含有量が20質量%以下(より好ましくは15質量%以下、更に好ましくは12~5質量%)となるような量とすることが好ましい。
 また、一般式(4)で表される化合物(イミダゾール系化合物)の添加量としては、ポリアミド酸100質量部に対して1~60質量部であることが好ましく、10~40質量部であることがより好ましい。
 また、前記ポリアミド酸溶液に一般式(4)で表される化合物(イミダゾール系化合物を添加する方法としては、特に制限されず、前記ポリアミド酸溶液に前記イミダゾール系化合物の粉末(固形分)を添加する方法を採用してもよく、あるいは、予め溶媒(前記ポリアミド酸溶液に用いる溶媒と同様のものが好ましい。)中に前記イミダゾール系化合物を溶解させた溶解液を調製しておき、前記ポリアミド酸溶液に前記溶解液を添加することで、前記ポリアミド酸溶液に前記イミダゾール系化合物を添加する方法を採用してもよい。このように、本発明においては、前記ポリアミド酸溶液と、前記イミダゾール系化合物を溶解させた溶解液とをそれぞれ準備しておき、これら2液を混ぜてポリイミド形成用混合液として、これを用いてポリイミドフィルムを形成してもよい。
 なお、本発明においては、上述のように、ポリアミド酸の溶液(前記第一工程により得られたポリアミド酸溶液)に対して、一般式(4)で表される化合物(イミダゾール系化合物を添加するため、添加後、高分子量化やイミド化の反応を進行させる前の段階におけるポリイミド形成用混合液の粘度は、基本的に、前記ポリアミド酸溶液の粘度に依存したものとなるため、ポリイミド形成用混合液(いわゆる塗工液として利用可能である。)の粘度を十分に低い状態に維持しながら、膜(好ましくは塗膜)を形成でき、作業性が十分に高く、しかも膜形成時の膜表面の平滑性の向上をより効率よく図ることが可能である。
 このようにしてポリイミド形成用混合液(前記イミダゾール系化合物を含有する前記ポリアミド酸溶液)を形成した後において、該溶液を保管する必要がある場合には、保管時の前記ポリイミド形成用混合液中のポリアミド酸の高分子量化を抑制して、前記ポリイミド形成用混合液の粘度を5~150cpsに保持するといった観点から、前記ポリアミド酸溶液を低温の保管温度で保管することが好ましい。このようなポリイミド形成用混合液の保管温度としては、-80℃~-10℃が望ましく、-40℃~-15℃がさらに望ましく、-20℃であることが特に好ましい。また、前記ポリイミド形成用混合液の保管期間は、保管温度にも左右されるものであり、一概には言えないが、0.5日~1年とすることが望ましく、1日~半年とすることがさらに望ましく、1週間~3ヶ月とすることが特に好ましい。
 さらに、前記ポリイミド形成用混合液は、前記ポリイミド形成用混合液を塗工する基板(ガラス、金属、金属酸化物等の無機基板)に対する密着性向上剤を更に含むことが好ましい。すなわち、このようなポリイミド形成用混合液は、前記密着性向上剤を更に含む組成物からなることが好ましい。このような密着性向上剤を含有することで、例えば、ポリイミドフィルムを形成後にガラス基板からフィルムを剥離するためにレーザー剥離処理を施す場合(いわゆるレーザリフトオフ法を利用する場合)に、レーザ剥離処理前の段階においては、ポリイミドフィルムにガラス基板に対する十分に高度な密着性を発現させることが可能であるため、レーザ剥離処理前の状態において各種用途に用いるためにフィルムに加工等(他の層を積層する加工等)を施す場合等に、フィルムの基板からの剥がれによる破損が生じることを十分に抑制することができる。一方、このような密着性向上剤によりガラス基板に対する密着性を向上させても、得られるポリイミドフィルムは、いわゆるレーザリフトオフ法により、ガラス基板から効率よく剥離することができる。
 このような密着性向上剤としては、前記ポリイミド形成用混合液を塗工する基板(ガラス、金属、金属酸化物等の無機基板)に対する密着性を向上させることが可能なものであればよく、特に制限されるものではないが、シランカップリング剤、シロキサン樹脂、ポリシランが好ましく、シランカップリング剤、シロキサン樹脂がより好ましく、シランカップリング剤が特に好ましい。このような密着性向上剤としては特に制限されず、市販品を適宜利用してもよい。
 また、このようなシランカップリング剤としては、特に限定されないが、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、n-ブチルトリメトキシシラン、n-ブチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジエトキシシラン、〔(3-エチル-3-オキセタニル)メトキシ〕プロピルトリメトキシシラン、〔(3-エチル-3-オキセタニル)メトキシ〕プロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物、N-t-ブチル-3-(3-トリメトキシシリルプロピル)コハク酸イミド、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシランのベンズアルデヒド型ケチミン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-アミノプロピルトリエトキシシランとフタル酸無水物の付加物等が挙げられる。このようなシランカップリング剤は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 また、前記ポリイミド形成用混合液に対して、密着性向上剤を含有させる場合、前記密着性向上剤の含有量は、ポリアミド酸溶液を形成するポリアミド酸100質量部に対して0.01~50質量部であることが好ましく、0.1~10質量部であることがより好ましく、0.5~5質量部であることが更に好ましい。
 <ポリイミドからなるフィルムを得る工程(第三工程)>
 本発明にかかるポリイミドからなるフィルムを得る工程は、前記ポリイミド形成用混合液からなる膜を形成し、該膜中の前記ポリアミド酸をイミド化することにより、上記一般式(5)で表される繰り返し単位を有するポリイミドからなるフィルムを得る工程(第三工程)である。
 このような第三工程において、前記ポリイミド形成用混合液からなる膜を形成する方法としては特に制限されず、公知の方法を適宜利用することができ、例えば、前記膜を形成した際に、その膜支持するための基材を用い、該支持基材上に前記ポリイミド形成用混合液を塗布して膜(この場合は塗膜)を形成する方法を挙げることができる。
 このようなポリイミド形成用混合液を塗布するための基材(前記膜を形成した際に、その膜支持するための基材)としては特に制限されず、目的とするポリイミドからなる基板フィルムの形状等に応じて、重合体からなる基板フィルムの形成に用いることが可能な公知の材料からなる基材(例えば、ガラス板や金属板)を適宜用いることができる。
 また、前記基材上に前記ポリイミド形成用混合液を塗布する方法としては特に限定されず、例えば、スピンコート法、スプレーコート法、ディップコート法、滴下法、グラビア印刷法、スクリーン印刷法、凸版印刷法、ダイコート法、スリットコート法、カーテンコート法、インクジェット法等の公知の方法を適宜採用することができる。
 また、基材上に形成される前記ポリイミド形成用混合液の膜の厚みとしては、硬化後の膜の厚みが0.1~200μmとなるようにすることが好ましく、1~100μmとなるようにすることがより好ましい。
 さらに、前記ポリイミド形成用混合液の膜を形成した後には、加熱して溶媒を除去する処理(溶媒除去処理)を施すことが好ましい。このような溶媒除去処理の方法としては特に制限されないが、加熱温度を0~150℃(より好ましくは20~80℃)として溶媒を除去することが好ましい。また、このような溶媒除去処理の方法において、加熱時の雰囲気は、空気下においても可能だが、不活性ガス雰囲気(例えば窒素雰囲気)とすることが好ましい。また、より効率よく乾燥を行うという観点から、このような溶媒除去処理における圧力の条件としては、1~760mmHgであることが好ましい。このような溶媒除去処理により、前記ポリアミド酸をフィルム状などの形態として単離でき、その後に加熱処理を施すこと等も可能となる。
 また、このような膜(溶媒除去処理後の膜であってもよい。)中のポリアミド酸をイミド化する方法としては、特に制限されず、公知の方法を適宜採用することができるが、加熱によって前記一般式(4)で表される化合物を触媒としたポリアミド酸の高分子量化と閉環脱水反応(イミド化の反応)をより効率よく進行させることが可能となることから、前記膜に加熱処理を施してイミド化する方法を採用することが好ましい。このように、前記膜に加熱処理を施してイミド化する方法を採用する場合、加熱処理の温度条件は、150~450℃(より好ましくは200~400℃、更に好ましくは250~380℃、特に好ましくは280~350℃)とすることが好ましい。また、このような加熱処理を施す際に、加熱時間は0.1~10時間とすることが好ましく、0.5~5時間とすることがより好ましい。
 また、前記膜に加熱処理を施してイミド化する方法を採用する場合、加熱処理の際の雰囲気条件としては、酸素による着色や物性低下を抑制するといった観点から、不活性ガス雰囲気(例えば窒素雰囲気、低酸濃度雰囲気(酸素濃度が1~300ppmの雰囲気))とすることが好ましいが、250℃以下かつ、酸化防止剤の添加等によって空気下での加熱処理も可能となる。
 また、前記膜に加熱処理を施してイミド化する方法を採用する場合、酸素による着色を抑制することが可能であれば、高酸素濃度雰囲気(酸素濃度:300ppm超10000ppm以下の雰囲気)下において加熱処理を施してもよい。なお、高酸素濃度雰囲気(酸素濃度:300ppm超10000ppm以下の雰囲気)下、加熱処理によってイミド化するには、前記芳香族ジアミンとして、例えば、2,2-ビス(4-アミノフェニル)-ヘキサフルオロプロパン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2-ビス(4-アミノフェノキシフェニル)ヘキサフルオロプロパン等のフッ素系ジアミンや、3,3‘-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホンのスルホン系ジアミンを使用することが好ましい。
 このようにして、前記膜に加熱処理を施してイミド化することにより、前記膜中のポリアミド酸を効率よく脱水閉環することが可能となり、これにより効率よくポリアミド酸をイミド化してポリイミドを形成することが可能となる。そして、このようにして加熱処理を施してポリイミドを形成することで前記膜を加熱硬化することもでき、これにより、ポリイミドからなるフィルムをより効率よく得ることが可能である。
 このようにして、上記一般式(5)で表される繰り返し単位を有するポリイミドからなるフィルムを形成することができる。なお、上記一般式(5)中のR、R、R及びnは、それぞれ一般式(1)中のR、R、R及びnと同様のものであり(それぞれ一般式(1)中のR、R、R及びnと同義であり)、その好適なものも上記一般式(1)中のR、R、R及びnと同様のものである。また、上記一般式(5)中のR10は上記一般式(2)中のR10と同様のものであり(一般式(2)中のR10と同義であり)、その好適なものも上記一般式(2)中のR10と同様のものである。また、このようなポリイミドとしては、上記一般式(5)で表される繰り返し単位を主として含有するもの(より好ましくは上記一般式(5)で表される繰り返し単位の含有量が全繰り返し単位に対して90~100モル%であること)が好ましい。このようにして得られるポリイミドからなるフィルムは、後述の本発明のポリイミドフィルムと同様のものである。
 このようなフィルムを形成するポリイミドとしては、5%重量減少温度が350℃以上のものが好ましく、450~550℃のものがより好ましい。なお、このような5%重量減少温度は、測定装置として熱重量分析装置(例えばエスアイアイ・ナノテクノロジー株式会社製の商品名「TG/DTA220」)を使用して、窒素ガス雰囲気下、走査温度を30℃から550℃に設定し、昇温速度10℃/min.の条件で昇温して、用いた試料の重量が5%減少する温度を測定することにより求めることができる。なお、測定に際しては、試料の質量を1.0mg~10mg(より好ましくは1.5mg~4.0mg)として利用することが好ましい。前記試料の質量を前記範囲とすることで、仮に試料の質量を変えて測定しても、同一のポリイミドに対しては同一の値を測定できる。
 また、このようなフィルムを形成するポリイミドとしては、ガラス転移温度が200℃以上であることが好ましく、250℃~500℃であることが更に好ましく、300℃~450℃とすることが特に好ましい。このようなポリイミドのガラス転移温度は、測定装置として熱機械的分析装置(例えば、リガク製の商品名「TMA8311」)を使用し、昇温速度:5℃/分の条件で、窒素雰囲気下、ペネトレーションモードにより30℃から550℃の間を走査することにより求められる値(いわゆるペネトレーション(針入れ)法による測定値)を採用することができる。なお、以下の軟化温度はガラス転移温度と同一の測定条件で同時測定が可能である(ガラス転移温度が検出される場合は軟化温度の前にピークが出現する)。
 また、このようなポリイミドとしては、軟化温度が300℃以上のものが好ましく、350~550℃のものがより好ましい。なお、このような軟化温度は、熱機械的分析装置(リガク製の商品名「TMA8311」)を使用して、ペネトレーションモードにより測定することができる(いわゆるペネトレーション(針入れ)法により測定できる)。なお、このような軟化温度の測定方法としては、例えば、測定試料として縦5mm、横5mm、厚み13μmの大きさのポリイミドからなるフィルムを準備し、測定装置として熱機械的分析装置(リガク製の商品名「TMA8311」)を用いて、窒素雰囲気下、昇温速度5℃/分の条件を採用して、30℃~550℃の温度範囲の条件でフィルムに透明石英製ピン(先端の直径:0.5mm)を針入れすることにより測定する方法(いわゆるペネトレーション(針入れ)法)を採用してもよい。
 さらに、このようなポリイミドの数平均分子量(Mn)としては、ポリスチレン換算で1000~100000であることが好ましい。また、このようなポリイミドの重量平均分子量(Mw)としては、ポリスチレン換算で1000~500000であることが好ましい。さらに、このようなポリイミドの分子量分布(Mw/Mn)は1.1~5.0であることが好ましい。なお、このようなポリイミドの分子量(Mw又はMn)や分子量の分布(Mw/Mn)は、測定装置としてゲルパーミエーションクロマトグラフィーを用い、測定したデータをポリスチレンで換算して求めることができる。なお、このようなポリイミドにおいては、分子量の測定が困難な場合には、そのポリイミドの製造に用いるポリアミド酸の粘度に基づいて、分子量等を類推して、用途等に応じたポリイミドを選別して使用してもよい。
 また、このようなポリイミドとしては、より高度な透明性を得るといった観点から、全光線透過率が80%以上(更に好ましくは85%以上、特に好ましくは87%以上)であるものがより好ましい。また、このようなポリイミドとしては、より高度な透明性を得るといった観点から、ヘイズ(濁度)が5~0(更に好ましくは4~0、特に好ましくは3~0)であるものがより好ましい。さらに、このようなポリイミドとしては、より高度な透明性を得るといった観点から、黄色度(YI)が5~0(更に好ましくは4~0、特に好ましくは3~0)であるものがより好ましい。このような全光線透過率、ヘイズ(濁度)及び黄色度(YI)は、ポリイミドの種類等を適宜選択することにより容易に達成することができる。なお、このような全光線透過率、ヘイズ(濁度)及び黄色度(YI)は、測定装置として、日本電色工業株式会社製の商品名「ヘーズメーターNDH-5000」又は日本電色工業株式会社製の商品名「分光色彩計SD6000」を用いて(日本電色工業株式会社製の商品名「ヘーズメーターNDH-5000」で全光線透過率とヘイズとを測定し、日本電色工業株式会社製の商品名「分光色彩計SD6000」で黄色度を測定する。)、厚みが5~20μmのポリイミドからなるフィルムを測定用の試料として用いて測定した値を採用することができる。なお、全光線透過率、ヘイズ(濁度)及び黄色度(YI)は、厚みが5~20μmのポリイミドからなるフィルムであれば、厚みが十分に薄く、測定値に影響がでないことから、同一のポリイミドからは同一の値を測定できる。そのため、全光線透過率、ヘイズ(濁度)及び黄色度(YI)の測定には、前記範囲の厚みを有するフィルムを利用すればよい。また、測定試料の縦、横の大きさは、前記測定装置の測定部位に配置できるサイズであればよく、縦、横の大きさは適宜変更してもよい。なお、このような全光線透過率は、JIS K7361-1(1997年発行)に準拠した測定を行うことにより求め、ヘイズ(濁度)は、JIS K7136(2000年発行)に準拠した測定を行うことにより求め、黄色度(YI)はASTM E313-05(2005年発行)に準拠した測定を行うことにより求める。
 また、このようなポリイミドは、線膨張係数が0~100ppm/Kであることが好ましく、5~60ppm/Kであることがより好ましく、10~30ppm/Kであることが更に好ましい。このような線膨張係数が前記上限を超えると、線膨張係数の範囲が5~20ppm/Kである金属や無機物と組合せて複合化した場合に熱履歴で剥がれが生じやすくなる傾向にある。このようなポリイミドの線膨張係数の測定方法としては、縦20mm、横5mmの大きさのポリイミドフィルム(かかるフィルムの厚みは測定値に影響するものではないため特に制限されるものではないが、10~30μmとすることが好ましい。)を形成して測定試料とし、測定装置として熱機械的分析装置(リガク製の商品名「TMA8310」)を利用して、窒素雰囲気下、引張りモード(49mN)、昇温速度5℃/分の条件を採用して、50℃~200℃における前記試料の縦方向の長さの変化を測定して、50℃~200℃の温度範囲における1℃あたりの長さの変化の平均値を求めることにより得られる値を採用する。
 なお、上記第一工程~第三工程を含む本発明のポリイミドフィルムの製造方法によって、より高度な水準の表面の平滑性を有するフィルムを効率よく製造することが可能となる理由は必ずしも定かではないが、本発明のポリイミドフィルムの製造方法においては、十分に低粘度のポリアミド酸溶液を利用しながらも、上記一般式(4)で表される化合物を利用しているため、イミド化の際に上記一般式(4)で表される化合物が触媒のように機能して、基板上に塗工、乾燥時に基板上で十分にポリアミド酸の高分子量化と閉環脱水反応(イミド化の反応)が進行することが可能となり、これにより得られるフィルムにクラック等が生じることがなく十分にイミド化の反応を進行させることが可能であるばかりか、フィルムの製造に十分に低粘度のポリアミド酸溶液を利用できることから、低粘度に由来する均一塗工性を保持することが可能となり、更に高い水準で表面を平滑なものとすることが可能となるものと本発明者らは推察する。
 以上、本発明のポリイミドフィルムの製造方法について説明したが、以下、本発明のポリイミドフィルムについて説明する。
 [本発明のポリイミドフィルム]
 本発明のポリイミドフィルムは、上記本発明のポリイミドフィルムの製造方法により得られるものである。
 このように、本発明のポリイミドフィルムは、上記本発明のポリイミドフィルムの製造方法により得られる、上記一般式(5)で表される繰り返し単位を有するポリイミドからなるフィルムである。なお、このようなフィルムを形成するポリイミドは、上記本発明のポリイミドフィルムの製造方法において説明したものと同様のものである。また、上記一般式(5)中のR、R、R及びnはそれぞれ一般式(1)中のR、R、R及びnと同様のものであり、その好適なものも上記一般式(1)中のR、R、R及びnと同様のものである。また、上記一般式(5)中のR10は上記一般式(2)中のR10と同様のものであり、その好適なものも上記一般式(2)中のR10と同様のものである。
 このようなポリイミドフィルムは、上記本発明のポリイミドフィルムの製造方法により得られるものであることから、高度な水準の表面の平滑性を有するフィルムとなる。そして、このようなポリイミドフィルムとしては、表面の算術平均粗さRaが0.01~2.0nmであるものがより好ましく、0.1~1.5nmであるものが更に好ましく、0.5~1.0nmであるものが特に好ましい。このようなポリイミドフィルムの表面の算術平均粗さ(Ra:単位nm)の値としては、以下に記載の「JIS B0601(1994年発行)」に準拠した測定方法により求められる値を採用する。すなわち、このような算術平均粗さ(Ra:単位nm)の測定方法としては、JIS B0601(1994年発行)に準拠して、測定幅:500μm、Xピッチ:0.30μm、Yピッチ:2μm、Z測定倍率:50000、X送り速さ:0.2mm/sの条件で十点の算術平均粗さを求めることにより、算術平均粗さ(Ra)を測定する方法を採用する。なお、このような測定に際して、算術平均粗さ(Ra:単位nm)の測定装置としては、例えば、株式会社小坂研究所製の高精度微細形状測定機「商品名:SUREFCORDER ET 4000A」を用いることができる。
 また、このようなポリイミドフィルムの形態は、フィルム状であればよく、特に制限されず、各種形状(円盤状、円筒状(フィルムを筒状に加工したもの)等)に適宜設計することができ、上記本発明のポリイミド溶液を用いて製造した場合には、より容易に、その設計を変更することも可能である。
 さらに、本発明のポリイミドフィルムの厚みは特に制限されないが、0.1~200μmであることが好ましく、1~100μmであることがより好ましい。
 また、このようなポリイミドフィルムは、フィルムを形成するポリイミドが十分に高度な透明性と耐熱性とを有する脂環式のポリイミドとなることから、例えば、フレキシブル配線基板用フィルム(FPC基板)、FCCL基板、耐熱絶縁テープ、電線エナメル、半導体の保護コーティング剤、液晶配向膜、有機EL用透明導電性フィルム、有機EL用TFT基板、カラーフィルター用基板、タッチパネル用基板、カバーガラス代替フィルム、フレキシブル基板フィルム、フレキシブル透明導電性フィルム、有機薄膜型太陽電池用透明導電性フィルム、色素増感型太陽電池用透明導電性フィルム、フレキシブルガスバリアフィルム、タッチパネル用フィルム、複写機用シームレスポリイミドベルト(いわゆる転写ベルト)、透明電極基板(有機EL用透明電極基板、太陽電池用透明電極基板、電子ペーパーの透明電極基板等)、層間絶縁膜、センサー基板、イメージセンサーの基板、発光ダイオード(LED)の反射板(LED照明の反射板:LED反射板)、LED照明用のカバー、LED反射板照明用カバー、カバーレイフィルム、高延性複合体基板、半導体向けレジスト、リチウムイオンバッテリー、有機メモリ用基板、有機トランジスタ用基板、有機半導体用基板、カラーフィルタ基材、フロントフィルム、等の用途に用いる材料等として適宜好適に利用することができる。そして、本発明のポリイミドフィルムは、その表面の平滑性が十分に高度なものであるため、特に表面の平滑性が要求されるような用途、例えば、有機EL素子の基板(有機EL素子の基板の表面の平滑性が高いと、基板上に設けた電極ともう一つの電極との間で短絡(ショート)が発生することをより高度に抑制することができる。そのため、有機EL素子の基板においては、より高い水準の平滑な表面を有するフィルムが好適に用いられる。)、高精細ディスプレイ用基板、医療用高精細ディスプレイ用基板、透明ディスプレイ用基板、サイネージ用ディスプレイ基板等に特に有用である。
 以上、本発明のポリイミドフィルムについて説明したが、以下、ポリアミド酸溶液(本発明のポリアミド酸溶液を、その好適な一実施形態として含む溶液)について説明する。
 [ポリアミド酸溶液]
 ポリアミド酸溶液は、溶媒と、上記一般式(3)で表される繰り返し単位を有するポリアミド酸とを含有し、且つ、粘度が5~150cpsであるものである。
 このようなポリアミド酸溶液中の前記溶媒および前記ポリアミド酸は、それぞれ上記本発明のポリイミドフィルムの製造方法において説明したものと同様のものである(その好適なものも同様である。)。さらに、このようなポリアミド酸溶液の粘度は、上記本発明のポリイミドフィルムの製造方法において説明したポリアミド酸溶液の粘度と同様である(その好適な範囲も同様である。)。このように、ポリアミド酸溶液は、上記本発明のポリイミドフィルムの製造方法の第一工程により得られるものとして説明したポリアミド酸溶液と同様のものである。
 このようなポリアミド酸溶液の製造方法としては、上記本発明のポリイミドフィルムの製造方法の第一工程により得られたものであることが好ましい。すなわち、このようなポリアミド酸溶液としては、前記溶媒と、前記一般式(1)で表されるテトラカルボン酸二無水物と、前記一般式(2)で表される芳香族ジアミンとを含有し、且つ、前記テトラカルボン酸二無水物と前記芳香族ジアミンとの合計の含有量が15質量%以下である原料混合液を準備し、該原料混合液中において前記テトラカルボン酸二無水物と前記芳香族ジアミンとを反応させて前記一般式(3)で表される繰り返し単位を有するポリアミド酸を形成することにより得られる、粘度が5~150cpsのポリアミド酸溶液であることが好ましい。また、このようなポリアミド酸溶液の特性(例えば、ポリアミド酸の含有量等)は、上記本発明のポリイミドフィルムの製造方法の第一工程において説明したものと同様である。
 また、このようなポリアミド酸溶液としては、前記一般式(4)で表される化合物を更に含んでいるものが好ましい。すなわち、このようなポリアミド酸溶液としては、溶媒と、上記一般式(3)で表される繰り返し単位を有するポリアミド酸と、前記一般式(4)で表される化合物(イミダゾール系化合物)とを含有し、且つ、粘度が5~150cpsである本発明のポリアミド酸溶液がより好ましい。
 このようなポリアミド酸溶液は、これに前記一般式(4)で表される化合物(イミダゾール系化合物)を添加して用いることで、表面が十分に平滑なポリイミドフィルムを効率よく製造することが可能である。そのため、このようなポリアミド酸溶液は、各種用途に用いるポリイミドフィルムの製造用の原料溶液(樹脂溶液:ワニス)として特に有用である。
 また、このようなポリアミド酸溶液は、低粘度であるため、ポリイミドフィルムの製造用の原料溶液に好適に利用することができるばかりか、他の用途にも好適に利用することができる。このようなポリアミド酸溶液を好適に利用することが可能な用途としては、ポリイミドフィルムの製造用の原料溶液に制限されるものではなく、例えば、前記ポリアミド酸溶液は感光性組成物用の原料溶液等としても有用である。このようなポリアミド酸溶液を好適に利用することが可能な、感光性組成物としては、例えば、前記ポリアミド酸溶液に感光剤を添加したものが挙げられる。なお、このような感光性組成物については後述する。
 また、本発明のポリアミド酸溶液は、前記一般式(4)で表される化合物を含んでいるものである。このような一般式(4)で表される化合物を含むポリアミド酸溶液(上記本発明のポリアミド酸溶液)としては、前述の本発明のポリイミドの製造方法において説明した「ポリイミド形成用混合液(なお、前記ポリイミド形成用混合液は、ポリアミド酸溶液の好適な一実施形態といえる。)」と同様のものであることが好ましい。
 以上、ポリアミド酸溶液等について説明したが、以下、感光性組成物について説明する。
 [感光性組成物]
 感光性組成物は、上述のポリアミド酸溶液(溶媒と、上記一般式(3)で表される繰り返し単位を有するポリアミド酸とを含有し、且つ、粘度が5~150cpsであるもの)と、感光剤とを含むものである。
 このようなポリアミド酸溶液と感光剤とを含む、感光性組成物としては、前記一般式(4)で表される化合物を更に含んでいるものが好ましい。このような一般式(4)で表される化合物を更に含んでいる形態の感光性組成物を用いた場合、前記一般式(4)で表される化合物が高分子量化の促進剤でもあるため、低粘度(低分子量)のポリアミド酸溶液を感光性組成物用の原料溶液として用いても、良好な硬化膜又は硬化パターンを得ることができる。このように、前記感光性組成物としては、上記本発明のポリアミド酸溶液(溶媒と、上記一般式(3)で表される繰り返し単位を有するポリアミド酸と、前記一般式(4)で表される化合物とを含有し、且つ、粘度が5~150cpsであるもの)と、感光剤とを含む本発明の感光性組成物が好ましい。
 また、前記感光性組成物は、ポジ型又はネガ型のいずれであってもよい。このような感光性組成物は、前記感光剤として、例えば、光照射した部分の現像液への可溶性を増大させる機能を有する感光剤を用いればポジ型の感光性組成物となり、他方、光照射した部分の現像液への可溶性を減少させる機能を有する感光剤を用いればネガ型の感光性組成物となる。以下、ポジ型、ネガ型の各感光性組成物の好適な実施形態について分けて説明するが、本発明の感光性組成物は、これに限定されるものではない。
 <ポジ型の感光性組成物>
 このようなポジ型の感光性組成物の好適な一例としては、(A)前記ポリアミド酸溶液(溶媒と、上記一般式(3)で表される繰り返し単位を有するポリアミド酸とを含有し、且つ、粘度が5~150cpsであるもの)と、(B)光酸発生剤とを含むものが挙げられ、この場合、前記ポリアミド酸溶液が、(C)前記一般式(4)で表される化合物を含んでいるものであることがより好ましい。このようなポジ型の感光性組成物における(A)前記ポリアミド酸溶液や(C)前記一般式(4)で表される化合物は、上記において既に説明したものと同様である。
 また、ポジ型の感光性組成物に好適に用いられる(B)光酸発生剤は、いわゆる感光剤として用いられるものであればよく、例えば、キノンジアジド基含有化合物、アリールジアゾニウム塩、ジアリールヨードニウム塩、トリアリールスルホニウム塩等、従来公知のものが挙げられる。このようなキノンジアジド基含有化合物としては、オルトキノンジアジド化合物、ジアゾナフトキノン化合物が挙げられ、例えば、フェノール化合物(フェノール性水酸基含有化合物ともいう)と、ナフトキノンジアジドスルホン酸化合物と、の完全エステル化物や部分エステル化物;オルトキノンジアジドスルホニルクロリド類と、ヒドロキシ化合物やアミノ化合物等とを脱塩酸剤の存在下で縮合反応させるオルトキノンジアジド化合物が挙げられる。
 このようなオルトキノンジアジドスルホニルクロリド類としては、例えば、ベンゾキノン-1,2-ジアジド-4-スルホニルクロリド、1-ナフトキノン-2-ジアジド-5-スルホニルクロリド(以下、5-ナフトキノンジアジドスルホン酸クロリド、ということがある)、1-ナフトキノン-2-ジアジド-4-スルホニルクロリド(以下、4-ナフトキノンジアジドスルホン酸クロリド、ということがある)等が挙げられる。
 また、前記ヒドロキシ化合物としては、例えば、ヒドロキノン、レゾルシノール、ピロガロール、ビスフェノールA、4,4’-[1-[4-[1-メチルー1-(4-ヒドロキシフェニル)エチル]フェニル]エチリデン]ビスフェノール、ビス(4-ヒドロキシフェニル)メタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,3,4-トリヒドロキシベンゾフェノン、2,3,4,4’-テトラヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,3,4,2’,3’-ペンタヒドロキシベンゾフェノン、2,3,4,3’,4’,5’-ヘキサヒドロキシベンゾフェノン、ビス(2,3,4-トリヒドロキシフェニル)メタン、ビス(2,3,4-トリヒドロキシフェニル)プロパン、4b,5,9b,10-テトラヒドロ-1,3,6,8-テトラヒドロキシ-5,10-ジメチルインデノ[2,1-a]インデン、トリス(4-ヒドロキシフェニル)メタン、トリス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-[4-{1-(4-ヒドロキシフェニル)-1-メチルエチル}フェニル]エタン等が挙げられる。
 さらに、前記アミノ化合物としては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、o-アミノフェノール、m-アミノフェノール、p-アミノフェノール、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(4-アミノ-3-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(4-アミノ-3-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4-アミノ-3-ヒドロキシフェニル)ヘキサフルオロプロパン等が挙げられる。
 このようなキノンジアジド基含有化合物として好適なオルトキノンジアジド化合物の中でも(上記の組み合わせの中でも)、1,1-ビス(4-ヒドロキシフェニル)-1-[4-{1-(4-ヒドロキシフェニル)-1-メチルエチル}フェニル]エタンと、1-ナフトキノン-2-ジアジド-5-スルホニルクロリドとの反応により得られるエステル化合物、4,4’-[1-[4-[1-メチル-1-(4-ヒドロキシフェニル)エチル]フェニル]エチリデン]ビスフェノールと4-ナフトキノンジアジドスルホン酸クロリド又は5-ナフトキノンジアジドスルホン酸クロリドとの反応により得られるエステル化合物、が好ましく、これらは混合して用いてもよい。このように、上記エステル化合物を混合して用いる場合、4,4’-[1-[4-[1-メチルー1-(4-ヒドロキシフェニル)エチル]フェニル]エチリデン]ビスフェノールと4-ナフトキノンジアジドスルホン酸クロリドの反応により得られるエステル化合物(以下(NQD1))と、4,4’-[1-[4-[1-メチルー1-(4-ヒドロキシフェニル)エチル]フェニル]エチリデン]ビスフェノールと5-ナフトキノンジアジドスルホン酸クロリドとの反応により得られるエステル化合物(以下(NQD2))とを混合することが好ましい。この場合の混合比(NQD1:NQD2)は、硬化処理後の特性の点で、99:1~0.5:99.5が好ましく、95:5~1:99がより好ましく、90:10~3:97がさらに好ましい。
 このようなポジ型の感光性組成物には、その他必要に応じ、熱架橋剤、ケイ素含有化合物、非重合性バインダーポリマー、溶剤、エラストマー、溶解促進剤、溶解阻害剤、界面活性剤又はレベリング剤、熱酸発生剤等のその他の成分を含有することができる。
 このような熱架橋剤は、現像後の加熱処理する工程において架橋又は重合する化合物である以外に特に制限はないが、分子内にメチロール基、アルコキシメチル基、エポキシ基又はビニルエーテル基を有する化合物であることが好ましい。例えば、1,2-ベンゼンジメタノール、1,3-ベンゼンジメタノール、1,4-ベンゼンジメタノール、1,3,5-ベンゼントリメタノール、4,4-ビフェニルジメタノール、2,6-ピリジンジメタノール、2,6-ビス(ヒドロキシメチル)-p-クレゾール、4,4‘-メチレンビス(2,6-ジアルコキシメチルフェノール)等のメチロール基を有する化合物;1,4-ビス(メトキシメチル)ベンゼン、1,3-ビス(メトキシメチル)ベンゼン、4,4’-ビス(メトキシメチル)ビフェニル、3,4’-ビス(メトキシメチル)ビフェニル、3,3’-ビス(メトキシメチル)ビフェニル、2,6-ナフタレンジカルボン酸メチル、4,4’-メチレンビス(2,6-ジメトキシメチルフェノール)等のアルコキシメチル基を有する化合物;ヘキサメチロールメラミン、ヘキサブタノールメラミン等のメチロールメラミン化合物、ヘキサメトキシメラミン等のアルコキシメラミン化合物、テトラメトキシメチルグリコールウリル等のアルコキシメチルグリコールウリル化合物、メチロールベンゾグアナミン化合物、ジメチロールエチレンウレア等のメチロールウレア化合物;ジシアノアニリン、ジシアノフェノール、シアノフェニルスルホン酸等からのシアノ化合物;1,4-フェニレンジイソシアナート、3,3‘-ジメチルジフェニルメタン-4,4’-ジイソシアナート等のイソシアナート化合物;エチレングリコールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、イソシアヌル酸トリグリシジル、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン系エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック樹脂型エポキシ樹脂等のエポキシ基含有化合物;N,N’-1,3-フェニレンジマレイミド、N,N’-メチレンジマレイミド等のマレイミド化合物等が挙げられるがこれらに限定されない。これら熱架橋剤は1種又は2種以上を組み合わせて使用することができる。
 また、前記ケイ素含有化合物としては、ケイ素含有樹脂、ケイ素含有樹脂前駆体、及びシランカップリング剤等が挙げられ、中でも、シランカップリング剤が好ましく、1-(2ピリジル)-3-[3-(トリメトキシシリル)プロピル]尿素、1-(3ピリジル)-3-[3-(トリエトキシシリル)プロピル]尿素等のウレイド基含有シランカップリング剤がより好ましい。
 また、ポジ型の感光性組成物における各成分の好適な含有割合については以下のとおりである。(A)前記ポリアミド酸溶液の含有量は、(A)における樹脂分が、ポジ型の感光性組成物の固形分全体に対して50質量%以上であることが好ましく、60~90質量%であることがより好ましい。(B)光酸発生剤の含有量は、感度等の点から、(A)前記ポリアミド酸溶液中の樹脂分100質量部に対して3~50質量部が好ましく、5~30質量部がより好ましい。(C)前記一般式(4)で表される化合物の含有量は、(A)前記ポリアミド酸溶液中の樹脂分100質量部に対して0.5~60質量部が好ましく、1~40質量部がより好ましい。
 また、ポジ型の感光性組成物が熱架橋剤を含む場合、その含有量としては、(A)ポリアミド酸溶液の樹脂分100質量部に対して1~50質量部が好ましい。また、ポジ型の感光性組成物がシラン化合物を含む場合、その含有量は、(A)ポリアミド酸溶液の樹脂分100質量部に対して0.1~20質量部とすることが好ましく、1~10質量部とすることがさらに好ましい。
 また、前記ポジ型の感光性組成物の固形分濃度は、好ましくは30質量%以下であり、より好ましくは1~20質量%であり、さらに好ましくは5~15質量%である。
 <ネガ型の感光性組成物>
 前記ネガ型の感光性組成物の好適な一例としては、(A)前記ポリアミド酸溶液(溶媒と、上記一般式(3)で表される繰り返し単位を有するポリアミド酸とを含有し、且つ、粘度が5~150cpsであるもの)と、(D)光塩基発生剤とを含むものが挙げられ、この場合、前記ポリアミド酸溶液が(C)前記一般式(4)で表される化合物を含むものであることがより好ましい。
 このようなネガ型の感光性組成物における(A)前記ポリアミド酸溶液(溶媒と、上記一般式(3)で表される繰り返し単位を有するポリアミド酸とを含有し、且つ、粘度が5~150cpsであるもの)や(C)前記一般式(4)で表される化合物は、上記において既に説明したものと同様である。
 このような(D)光塩基発生剤は、いわゆる感光剤として用いられるものであり、露光により塩基を発生するものである。このような光塩基発生剤としては従来公知のものが挙げられ、例えば、(E)-3-(4-メトキシフェニル)-1‐(1H‐イミダゾール-1‐イル)-2-プロペン-1-オン、(E)-1-(1H‐イミダゾール-1-イル)-3-フェニル-2-プロペン-1-オン等の光の作用により分解してイミダゾール系化合物を発生させることができる化合物;(E)-2-(ヒドロキシイミノ)-1-(4-(フェニルチオ)フェニル)-2-o-トルイルエタノン、(E)-2-(アセトキシイミノ)-1-(9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル)-2-(o-トルイル)エタノン等のオキシムエステル化合物等が挙げられる。
 このようなネガ型の感光性組成物は、その他必要に応じ、上記ポジ型感光性組成物と同様のその他の成分を含有させることができる。
 また、このようなネガ型の感光性組成物における各成分の好適な含有割合については以下のとおりである。(A)前記ポリアミド酸溶液の含有量は、(A)における樹脂分が、ネガ型の感光性組成物の固形分全体に対して50質量%以上であることが好ましく、60~90質量%であることがより好ましい。(D)光塩基発生剤の含有量は、感度等の点から、(A)前記ポリアミド酸溶液中の樹脂分100質量部に対して0.1~50質量部が好ましく、0.5~30質量部がより好ましい。(C)前記一般式(4)で表される化合物の含有量は、(A)前記ポリアミド酸溶液中の樹脂分100質量部に対して0.5~60質量部が好ましく、1~40質量部がより好ましい。
 また、ネガ型の感光性組成物がシラン化合物を含む場合、その含有量は、(A)前記ポリアミド酸溶液中の樹脂分100質量部に対して0.1~20質量部とすることが好ましく、1~10質量部とすることがさらに好ましい。
 さらに、このようなネガ型の感光性組成物の固形分濃度は、好ましくは30質量%以下であり、より好ましくは1~20質量%であり、さらに好ましくは5~15質量%である。
 このような本発明の感光性組成物によれば、用いる感光剤の種類(感光性組成物の種類)に応じて、公知の露光方法や、公知の現像方法を適宜採用して、パターン形成をすることができる。なお、このような本発明の感光性組成物を用いたパターンの製造方法を以下において簡単に説明する。
 <感光性組成物によるパターンの製造方法>
 このようなパターンの製造方法は、上記本発明の感光性組成物を基板上に塗布し乾燥して感光性組成物膜を形成する感光性組成物膜形成工程と、
 前記感光性組成物膜を露光する露光工程と、
 前記露光後の感光性樹脂膜を現像してパターンを得る現像工程と、
を含む方法であることが好ましい。なお、このようなパターンの製造方法において、上記本発明の感光性組成物がポジ型のものである場合には、さらに前記パターンを硬化するための加熱処理工程を有することが好ましい。また、前記パターンの製造方法において、上記本発明の感光性組成物がネガ型のものである場合には、露光と同時、又は露光後現像工程前に加熱処理をしてもよい。
 このような感光性組成物膜形成工程は、特に限定されず、上記本発明のポリイミドフィルムの製造方法の前記第三工程(ポリイミドからなるフィルムを得る工程)と同様の方法を採用することができる。
 また、前記露光工程において、露光に用いられる放射線としては、例えば、低圧水銀灯、高圧水銀灯、メタルハライドランプ、g線ステッパー、i線ステッパー等から放射される紫外線、電子線、レーザー光線等が挙げられる。露光量は、使用する光源や塗膜の膜厚等によって適宜設定すればよい。
 また、前記現像工程における現像方法としては、例えば、シャワー現像法、スプレー現像法、浸漬現像法、パドル現像法等が挙げられる。現像液としては、アルカリ現像液が好ましく、無機アルカリ化合物及び有機アルカリ化合物から選択される1種以上のアルカリ化合物を含有する水溶液を用いることができる。現像液中のアルカリ化合物の濃度は、例えば、1~10質量%程度である。
 さらに、加熱処理工程を含む場合の加熱条件は、前記第三工程における加熱処理と同様に適宜設定すればよい。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 先ず、各実施例、各比較例において用いた芳香族ジアミンの略称等を以下に示す。
Figure JPOXMLDOC01-appb-C000024
 なお、このような芳香族ジアミンとしてはいずれも市販品(DABAN:日本純良薬品株式会社製、4,4’-DDE:東京化成株式会社製、PPD:アルドリッチ社製、TFMB:和歌山精化工業株式会社製、HFBAPP:和歌山精化工業株式会社製)を利用した。
 次に、各実施例、各比較例において得られたポリイミドの特性の評価方法について説明する。
 <分子構造の同定>
 各実施例や各比較例で得られたポリイミドの分子構造の同定は、赤外吸収スペクトル測定(IR測定)により行った。なお、IR測定には、測定装置として、IR測定機(日本分光株式会社製の商品名「FT/IR-4100」)を用いた。
 <ポリアミド酸溶液の粘度の測定方法>
 実施例1~5及び比較例2~3で得られたポリアミド酸溶液の粘度(単位:cps)は、以下のようにして測定した。すなわち、先ず、粘度の測定装置として、東機産業株式会社製のRE-85L形粘度計にコーンロータとして1°34’×R24の標準コーンロータを設置したものを準備した。次いで、日本グリース株式会社製の粘度計校正用標準液JS20(JIS Z8809(2011年発行)に準拠した粘度計校正用標準液)を用いて、25℃の温度条件下において前記粘度の測定装置(前記粘度計)の校正を行った。次に、前記校正後の粘度の測定装置(粘度計)を利用して、25℃の温度条件下において、前記コーンロータの回転速度を0.5~100rpmの範囲とする条件下において、前記ポリアミド酸溶液の粘度を測定した。このように、ポリアミド酸溶液の粘度の測定方法は、JIS Z8803(2011年発行)に準拠した方法とした。
 なお、比較例1において形成されたポリアミド酸溶液の粘度は、以下のようにして測定した。すなわち、比較例1において形成されたポリアミド酸溶液は他の実施例等で得られたポリアミド酸溶液と比較して粘性が高かったことから、高粘度の溶液の粘度に適した粘度の測定方法を採用すべく、前記標準コーンロータの代わりに3°×R7.7のオプションのコーンロータを用い、且つ、前記測定前の校正に際して日本グリース株式会社製の粘度計校正用標準液JS20(JIS Z8809(2011年発行)に準拠した粘度計校正用標準液)を用いる代わりに日本グリース株式会社製の粘度計校正用標準液JS14000を用いた以外は、実施例1~5及び比較例2~3で得られたポリアミド酸溶液の粘度の測定方法と同様の方法を採用して粘度を測定した。
 <算術平均粗さ(Ra:単位nm)の測定方法>
 各実施例及び各比較例で得られたポリイミドフィルムの表面の算術平均粗さ(Ra:単位nm)は、以下に記載の測定方法により測定した。すなわち、このような算術平均粗さ(Ra:単位nm)の測定方法としては、測定装置として株式会社小坂研究所製の高精度微細形状測定機「商品名:SUREFCORDER ET 4000A」を用い、JIS B0601(1994年発行)に準拠して、測定幅:500μm、Xピッチ:0.30μm、Yピッチ:2μm、Z測定倍率:50000、X送り速さ:0.2mm/sの条件で十点の算術平均粗さ(Ra:単位nm)を求める方法を採用した。なお、算術平均粗さの測定面は、ポリイミドフィルムの製造時にガラス基板の表面に接していない側のフィルムの表面とした。なお、算術平均粗さは、表1中、表面粗さとして記載する。
 <5%重量減少温度(Td5%)の測定>
 各実施例や各比較例で得られたポリイミドの5%重量減少温度は、それぞれ5mgの試料を準備し、これをアルミ製サンプルパンに入れ、測定装置として熱重量分析装置(エスアイアイ・ナノテクノロジー株式会社製の商品名「TG/DTA220」)を使用して、窒素ガス雰囲気下、走査温度を30℃から550℃に設定し、昇温速度10℃/分の条件で加熱して、用いた試料の重量が5%減少する温度を測定することにより求めた。
 <線膨張係数(CTE)の測定>
 各実施例や各比較例で得られたポリイミドの線膨張係数(単位:ppm/K)は、縦20mm、横5mm、厚み13μmの大きさのポリイミドフィルムを測定試料として準備し、測定装置として熱機械的分析装置(リガク製の商品名「TMA8310」)を利用して、窒素雰囲気下、引張りモード(49mN)、昇温速度5℃/分の条件を採用して、50℃~200℃における前記試料の長さの変化を測定して、50℃~200℃の温度範囲における1℃あたりの長さの変化の平均値を求めることにより測定した。
 <全光線透過率、ヘイズ(濁度)及び黄色度(YI)の測定>
 全光線透過率の値(単位:%)、ヘイズ(濁度:HAZE)及び黄色度(YI)は、各実施例及び各比較例で製造したポリイミド(フィルム形状のポリイミド)をそのまま測定用の試料として用い、測定装置として日本電色工業株式会社製の商品名「ヘーズメーターNDH-5000」又は日本電色工業株式会社製の商品名「分光色彩計SD6000」を用いて、それぞれ測定を行うことにより求めた。なお、日本電色工業株式会社製の商品名「ヘーズメーターNDH-5000」で全光線透過率とヘイズを測定し、日本電色工業株式会社製の商品名「分光色彩計SD6000」で黄色度を測定した。また、全光線透過率は、JIS K7361-1(1997年発行)に準拠した測定を行うことにより求め、ヘイズ(濁度)は、JIS K7136(2000年発行)に準拠した測定を行うことにより求め、色度(YI)はASTM E313-05(2005年発行)に準拠した測定を行うことにより求めた。
 <軟化温度(軟化点)の測定>
 各実施例及び各比較例で製造したポリイミドの軟化温度は以下のようにして測定した。すなわち、測定試料として縦5mm、横5mm、厚み13μmの大きさのポリイミドからなるフィルムを準備し、測定装置として熱機械的分析装置(リガク製の商品名「TMA8311」)を用いて、窒素雰囲気下、昇温速度5℃/分、30℃~550℃の温度範囲の条件でフィルムに透明石英製ピン(先端の直径φ0.5mm)を針入れすることにより測定した(いわゆるペネトレーション(針入れ)法による測定)。このような測定に際しては、上記測定試料を利用する以外は、JIS K 7196(1991年)に記載の方法に準拠して、測定データに基づいて軟化温度を計算した。
 <ガラス転移温度の測定>
 各実施例及び各比較例で製造したポリイミドのガラス転移温度(Tg)は以下のようにして、軟化点測定と同じ条件で同時に測定した(ガラス転移温度が軟化点よりも低温にある場合はガラス転移温度が観測されるため)。すなわち、測定試料として縦5mm、横5mm、厚み13μmの大きさのポリイミドからなるフィルムを準備し、測定装置として熱機械的分析装置(リガク製の商品名「TMA8311」)を用いて、窒素雰囲気下、昇温速度5℃/分、30℃~550℃の温度範囲の条件でフィルムに透明石英製ピン(先端の直径φ0.5mm)を針入れすることにより測定した(いわゆるペネトレーション(針入れ)法による測定)。なお、表1においては、軟化温度までガラス転移温度が測定されなかったものについては結果を非検出(N.D.)と示す。
 (合成例1:テトラカルボン酸二無水物の合成)
 国際公開第2011/099518号の合成例1、実施例1及び実施例2に記載された方法に準拠して、下記一般式(12):
Figure JPOXMLDOC01-appb-C000025
で表されるテトラカルボン酸二無水物(ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物:CpODA)を準備した。
 (合成例2:イミダゾール系化合物の合成)
 下記一般式(13):
Figure JPOXMLDOC01-appb-C000026
で表される化合物(イミダゾール系化合物)を以下のようにして合成した。すなわち、先ず、下記一般式(14):
Figure JPOXMLDOC01-appb-C000027
で表される桂皮酸誘導体30gをメタノール200gに溶解させて溶液を得た後、その溶液中に水酸化カリウム7gを更に添加して、メタノール溶液を得た。次いで、前記メタノール溶液を40℃で撹拌した。次に、前記メタノール溶液からメタノールを留去し、得られた残渣を水200gに懸濁させて、懸濁液を調製した。その後、得られた懸濁液にテトラヒドロフラン200gを混合、撹拌した後、水相を分液した。その後、このように分液して得られた水相を形成していた液体に対して、氷冷下、塩酸4gを添加し、撹拌した後、更に酢酸エチル100gを混合し、撹拌して、混合液を調製した。次に、このようにして得られた混合液を静置した後、油相を分取した。次いで、油相から目的物を晶析させ、析出物を回収して、上記一般式(13)で表されるイミダゾール系化合物を得た。
 なお、このようにして得られたイミダゾール系化合物に対して、H-NMR測定を行ったところ、その結果は以下の通りであった。
H-NMR(DMSO):11.724(s,1H),7.838(s,1H),7.340(d,2H,J=4.3Hz),7.321(d,1H,J=7.2Hz),6.893(d,2H,J=4.3Hz),6.876(d,1H,J=6.1Hz),5.695(dd,1H,J=4.3Hz,3.2Hz),3.720(s,3H),3.250(m,2H)
 このようなH-NMR測定の結果から、合成例2で得られたイミダゾール系化合物は、確かに上記一般式(13)で表される構造を有するものであることが分かった。
 (実施例1)
 〈第一工程:ポリアミド酸溶液を得る工程〉
 先ず、30mlの三口フラスコをヒートガンで加熱して十分に乾燥させた。次に、十分に乾燥させた前記三口フラスコ内の雰囲気ガスを窒素で置換して、前記三口フラスコ内を窒素雰囲気とした。次いで、前記三口フラスコ内に芳香族ジアミンである4,4’-ジアミノベンズアニリド0.2045g(0.90mmol:日本純良薬品株式会社製:DABAN)を導入した後、更に、溶媒としてテトラメチルウレアを5.24g添加して撹拌することにより、前記溶媒中に前記芳香族ジアミン(DABAN)を溶解させた溶解液を得た。
 次に、前記溶解液を含有する三口フラスコ内に、窒素雰囲気下、合成例1で得られたテトラカルボン酸二無水物(前記一般式(12)で表される化合物:CpODA)を0.3459g(0.90mmol)添加することにより、前記溶媒と、前記芳香族ジアミン(DABAN)と、前記テトラカルボン酸二無水物(CpODA)とを含有し且つ前記芳香族ジアミン(DABAN)と前記テトラカルボン酸二無水物(CpODA)との合計の含有比率が9.5質量%となる原料混合液を準備した。
 次いで、得られた原料混合液を、窒素雰囲気下、室温(25℃)で4時間撹拌して、前記芳香族ジアミン(DABAN)と前記テトラカルボン酸二無水物(CpODA)とを反応せしめて、ポリアミド酸を形成せしめ、ポリアミド酸溶液を得た。なお、得られたポリアミド酸溶液のポリアミド酸の濃度は、原料の仕込み量からも明らかなように9.5質量%であった。また、このようにして得られたポリアミド酸溶液(ポリアミド酸の濃度:9.5質量%)の粘度[cps(センチポイズ)]は15cpsであった。このようなポリアミド酸溶液の特性(粘度)等を表1に示す。
 〈第二工程:ポリイミド形成用混合液を得る工程〉
 上記第一工程で得られた、粘度が15cpsのポリアミド酸溶液(ポリアミド酸の濃度:9.5質量%)に対して、合成例2で得られたイミダゾール系化合物(上記一般式(13)で表されるイミダゾール系化合物)の粉末を0.165g添加し、強撹拌させることで溶解させて、前記溶媒と前記ポリアミド酸と前記イミダゾール系化合物とを含むポリイミド形成用混合液(塗工液)を調製した。なお、このようにして得られたポリイミド形成用混合液においては、前記ポリアミド酸と前記イミダゾール系化合物(上記一般式(13)で表される化合物)との合計の含有量が12質量%であった。なお、ポリイミド形成用混合液(塗工液)の粘度を表1に示す。
 〈第三工程:ポリイミドからなるフィルムを得る工程〉
 上記第二工程において、前記ポリアミド酸溶液(ポリアミド酸の濃度:9.5質量%)に前記イミダゾール系化合物を溶解させてポリイミド形成用混合液(塗工液)を調製した後から120分以内に(前記イミダゾール系化合物の溶解後60分以内に)、前記ポリイミド形成用混合液を、無アルカリガラスからなるガラス基板(コーニング社製の商品名「イーグルXG」、縦:100mm、横100mm、厚み0.7mm)の表面上に、加熱硬化後の膜の厚みが13μmとなるようにスピンコートし、前記ガラス基板上に塗膜を形成した。その後、前記塗膜の形成されたガラス基板を60℃のホットプレート上に載せて2時間静置することにより、前記塗膜から溶媒を蒸発させて除去した(溶媒除去処理)。次いで、前記溶媒除去処理後の前記塗膜の形成されたガラス基板を、3L/分の流量で窒素が流れているイナートオーブンに投入し、イナートオーブン内で、窒素雰囲気下、25℃の温度条件で0.5時間静置した後、135℃の温度条件で0.5時間加熱し、更に250℃の温度条件で1時間加熱して、前記ポリアミド酸をイミド化することにより、前記塗膜を硬化せしめ、前記ガラス基板上にポリイミドからなるフィルムを形成した。その後、かかるポリイミドからなるフィルムが形成されたガラス基板を90℃のお湯に浸漬することにより、ガラス基板からポリイミドフィルムを剥離して、ポリイミドフィルムを得た。このようにして得られたポリイミドフィルムの特性の評価結果を表1に示す。
 なお、このようにして得られたフィルムを用いて、フィルムを形成する化合物の分子構造の同定を行った。このような分子構造の同定のための赤外吸収スペクトル測定(IR測定)の際に得られたIRスペクトルのグラフを図1に示す。図1に示す結果からも明らかなように、実施例1においては、IRスペクトルのグラフにおいてイミドカルボニルのC=O伸縮振動が1698cm-1に観察されたことから、該フィルムは確かにポリイミドからなるフィルムであることが確認された。
 (実施例2)
 前記第一工程(ポリアミド酸溶液を得る工程)において、前記芳香族ジアミン(DABAN)と前記テトラカルボン酸二無水物(CpODA)とを反応せしめる際の原料混合液の撹拌時間を4時間から5時間に変更した以外は、実施例1と同様にしてポリイミドフィルムを得た。なお、ポリアミド酸溶液の粘度は17cpsであった。このようにして得られたポリイミドフィルムの特性の評価結果を表1に示す。なお、このようにして得られたフィルムを用いて、フィルムを形成する化合物の分子構造の同定を行ったところ、IR測定においてイミドカルボニルのC=O伸縮振動が1698cm-1に観察されたことから、該フィルムは確かにポリイミドからなるフィルムであることが確認された。
 (実施例3)
 前記第一工程(ポリアミド酸溶液を得る工程)において、溶媒としてのテトラメチルウレアの添加量を5.24gから4.03gに変更し、且つ、前記芳香族ジアミン(DABAN)と前記テトラカルボン酸二無水物(CpODA)とを反応せしめる際の原料混合液の撹拌時間を4時間から10時間に変更し、更に、第二工程において、ポリアミド酸溶液に合成例2で得られたイミダゾール系化合物(上記一般式(13)で表されるイミダゾール系化合物)の粉末を0.165g添加する代わりに、テトラメチルウレア1.22gに対して合成例2で得られたイミダゾール系化合物(上記一般式(13)で表されるイミダゾール系化合物)の粉末0.165gを60℃の温度条件で溶解し、室温(25℃)に戻したイミダゾール系化合物の溶解液を予め準備しておき、かかる溶解液を前記ポリアミド酸溶液に添加した以外は、実施例1と同様にしてポリイミドフィルムを得た。なお、かかる方法においては、得られた原料混合液中の前記芳香族ジアミン(DABAN)と前記テトラカルボン酸二無水物(CpODA)との合計の含有比率は12質量%であり、また、ポリアミド酸溶液中のポリアミド酸の濃度は、原料の仕込み量からも明らかなように12質量%であった。また、ポリアミド酸溶液の粘度は46cpsであった。このようにして得られたポリイミドフィルムの特性の評価結果を表1に示す。なお、このようにして得られたフィルムを用いて、フィルムを形成する化合物の分子構造の同定を行ったところ、IR測定においてイミドカルボニルのC=O伸縮振動が1698cm-1に観察されたことから、該フィルムは確かにポリイミドからなるフィルムであることが確認された。
 (実施例4)
 前記第一工程(ポリアミド酸溶液を得る工程)において、芳香族ジアミンとして4,4’-ジアミノベンズアニリド0.2045g(0.90mmol:日本純良薬品株式会社製:DABAN)を単独で用いる代わりに、芳香族ジアミンとして4,4’-ジアミノベンズアニリド0.1636g(0.72mmol:日本純良薬品株式会社製:DABAN)とp-フェニレンジアミン0.0195g(0.18mmol:アルドリッチ社製:PPD)との混合物(モル比[DABAN]:[PPD]=8:2)を用い、溶媒としてのテトラメチルウレアの添加量を5.24gから5.04gに変更し、且つ、前記芳香族ジアミンと前記テトラカルボン酸二無水物とを反応せしめる際の原料混合液の撹拌時間を4時間から10時間に変更した以外は、実施例1と同様にしてポリイミドフィルムを得た。なお、かかる方法においては、得られた原料混合液中の前記芳香族ジアミン(DABAN及びPPDの混合物)と前記テトラカルボン酸二無水物(CpODA)との合計の含有比率は9.5質量%であり、また、ポリアミド酸溶液中のポリアミド酸の濃度は、原料の仕込み量からも明らかなように9.5質量%であった。さらに、ポリアミド酸溶液の粘度は24cpsであった。このようにして得られたポリイミドフィルムの特性の評価結果を表1に示す。なお、このようにして得られたフィルムを用いて、フィルムを形成する化合物の分子構造の同定を行った。このような分子構造の同定のための赤外吸収スペクトル測定(IR測定)の際に得られたIRスペクトルのグラフを図2に示す。図2に示す結果からも明らかなように、実施例4においては、IRスペクトルのグラフにおいてイミドカルボニルのC=O伸縮振動が1698cm-1に観察されたことから、該フィルムは確かにポリイミドからなるフィルムであることが確認された。
 (実施例5)
 前記第一工程(ポリアミド酸溶液を得る工程)において、芳香族ジアミンとして4,4’-ジアミノベンズアニリド0.2045g(0.90mmol:日本純良薬品株式会社製:DABAN)を単独で用いる代わりに、芳香族ジアミンとして4,4’-ジアミノベンズアニリド0.1636g(0.72mmol:日本純良薬品株式会社製:DABAN)と4,4’-ジアミノジフェニルエーテル0.0361g(0.18mmol:東京化成製:4,4’-DDE)との混合物(モル比[DABAN]:[4,4’-DDE]=8:2)を用い、溶媒としてのテトラメチルウレアの添加量を5.24gから5.20gに変更し、且つ、前記芳香族ジアミンと前記テトラカルボン酸二無水物とを反応せしめる際の原料混合液の撹拌時間を4時間から10時間に変更した以外は、実施例1と同様にしてポリイミドフィルムを得た。なお、かかる方法においては、得られた原料混合液中の前記芳香族ジアミン(DABAN及び4,4’-DDEの混合物)と前記テトラカルボン酸二無水物(CpODA)との合計の含有比率は9.5質量%であり、ポリアミド酸溶液中のポリアミド酸の濃度は、原料の仕込み量からも明らかなように9.5質量%であった。また、ポリアミド酸溶液の粘度は35cpsであった。このようにして得られたポリイミドフィルムの特性の評価結果を表1に示す。なお、このようにして得られたフィルムを用いて、フィルムを形成する化合物の分子構造の同定を行った。このような分子構造の同定のための赤外吸収スペクトル測定(IR測定)の際に得られたIRスペクトルのグラフを図3に示す。図3に示す結果からも明らかなように、実施例5においては、IRスペクトルのグラフにおいてイミドカルボニルのC=O伸縮振動が1698cm-1に観察されたことから、該フィルムは確かにポリイミドからなるフィルムであることが確認された。
 (実施例6)
 前記第一工程(ポリアミド酸溶液を得る工程)において、芳香族ジアミンとして4,4’-ジアミノベンズアニリド0.2045g(0.90mmol:日本純良薬品株式会社製:DABAN)を単独で用いる代わりに、芳香族ジアミンとして4,4’-ジアミノベンズアニリド0.1636g(0.72mmol:日本純良薬品株式会社製:DABAN)と2,2’-ビス(トリフルオロメチル)ベンジジン0.0576g(0.18mmol:和歌山精化工業株式会社製:TFMB)との混合物(モル比[DABAN]:[TFMB]=8:2)を用い、溶媒としてのテトラメチルウレアの添加量を5.24gから5.40gに変更し、且つ、前記芳香族ジアミンと前記テトラカルボン酸二無水物とを反応せしめる際の原料混合液の撹拌時間を4時間から10時間に変更した以外は、実施例1と同様にしてポリイミドフィルムを得た。なお、かかる方法においては、得られた原料混合液中の前記芳香族ジアミン(DABAN及びTFMBの混合物)と前記テトラカルボン酸二無水物(CpODA)との合計の含有比率は9.5質量%であり、ポリアミド酸溶液中のポリアミド酸の濃度は、原料の仕込み量からも明らかなように9.5質量%であった。また、ポリアミド酸溶液の粘度は29cpsであった。このようにして得られたポリイミドフィルムの特性の評価結果を表1に示す。なお、このようにして得られたフィルムを用いて、フィルムを形成する化合物の分子構造の同定を行った。このような分子構造の同定のための赤外吸収スペクトル測定(IR測定)の際に得られたIRスペクトルのグラフを図4に示す。図4に示す結果からも明らかなように、実施例6においては、IRスペクトルのグラフにおいてイミドカルボニルのC=O伸縮振動が1700cm-1に観察されたことから、該フィルムは確かにポリイミドからなるフィルムであることが確認された。
 (実施例7)
 前記第一工程(ポリアミド酸溶液を得る工程)において、芳香族ジアミンとして4,4’-ジアミノベンズアニリド0.2045g(0.90mmol:日本純良薬品株式会社製:DABAN)を単独で用いる代わりに、芳香族ジアミンとして4,4’-ジアミノベンズアニリド0.1636g(0.72mmol:日本純良薬品株式会社製:DABAN)と2,2’-ビス{4-(4-アミノフェノキシ)フェニル}ヘキサフルオロプロパン0.0933g(0.18mmol:和歌山精化工業株式会社製:HFBAPP)との混合物(モル比[DABAN]:[HFBAPP]=8:2)を用い、溶媒としてのテトラメチルウレアの添加量を5.24gから5.74gに変更し、且つ、前記芳香族ジアミンと前記テトラカルボン酸二無水物とを反応せしめる際の原料混合液の撹拌時間を4時間から10時間に変更した以外は、実施例1と同様にしてポリイミドフィルムを得た。なお、かかる方法においては、得られた原料混合液中の前記芳香族ジアミン(DABAN及びTFMBの混合物)と前記テトラカルボン酸二無水物(CpODA)との合計の含有比率は9.5質量%であり、ポリアミド酸溶液中のポリアミド酸の濃度は、原料の仕込み量からも明らかなように9.5質量%であった。また、ポリアミド酸溶液の粘度は28cpsであった。このようにして得られたポリイミドフィルムの特性の評価結果を表1に示す。なお、このようにして得られたフィルムを用いて、フィルムを形成する化合物の分子構造の同定を行った。このような分子構造の同定のための赤外吸収スペクトル測定(IR測定)の際に得られたIRスペクトルのグラフを図5に示す。図5に示す結果からも明らかなように、実施例7においては、IRスペクトルのグラフにおいてイミドカルボニルのC=O伸縮振動が1699cm-1に観察されたことから、該フィルムは確かにポリイミドからなるフィルムであることが確認された。
 (実施例8)
 前記第二工程(ポリイミド形成用混合液を得る工程)において、イミダゾール系化合物(上記一般式(13)で表されるイミダゾール系化合物)をポリアミド酸溶液に溶解させた後に、シランカップリング剤(3-アミノプロピルトリエトキシシラン:信越化学工業株式会社製の商品名「KBE-903」)を0.0055g添加した以外は、実施例1と同様にしてポリイミドフィルムを得た。なお、前記シランカップリング剤は、ガラスとポリイミドフィルムの密着性を向上させるための添加剤(密着性向上剤)である。また、かかる方法においては、得られたポリアミド酸溶液の粘度は15cpsであった。このようにして得られたポリイミドフィルムの特性の評価結果を表1に示す。なお、このようにして得られたフィルムを用いて、フィルムを形成する化合物の分子構造の同定を行った。このような分子構造の同定のための赤外吸収スペクトル測定(IR測定)の際に得られたIRスペクトルのグラフを図6に示す。図6に示す結果からも明らかなように、実施例8においては、IRスペクトルのグラフにおいてイミドカルボニルのC=O伸縮振動が1698cm-1に観察されたことから、該フィルムは確かにポリイミドからなるフィルムであることが確認された。
 (比較例1)
 先ず、30mlの三口フラスコをヒートガンで加熱して十分に乾燥させた。次に、十分に乾燥させた前記三口フラスコ内の雰囲気ガスを窒素で置換して、前記三口フラスコ内を窒素雰囲気とした。次いで、前記三口フラスコ内に芳香族ジアミンである4,4’-ジアミノベンズアニリド0.2045g(0.90mmol:日本純良薬品株式会社製:DABAN)を導入した後、更に、溶媒としてテトラメチルウレアを2.88g添加して撹拌することにより、前記溶媒中に前記芳香族ジアミン(DABAN)を溶解させた溶解液を得た。
 次に、前記溶解液を含有する三口フラスコ内に、窒素雰囲気下、合成例1で得られたテトラカルボン酸二無水物(前記一般式(12)で表される化合物:CpODA)を0.3459g(0.90mmol)添加することにより、前記溶媒と、前記芳香族ジアミン(DABAN)と、前記テトラカルボン酸二無水物(CpODA)とを含有し且つ前記芳香族ジアミン(DABAN)と前記テトラカルボン酸二無水物(CpODA)との合計の含有比率が16質量%となる原料混合液を準備した。
 このようにして原料混合液を準備した後10分以内に、原料混合液中に合成例2で得られたイミダゾール系化合物(上記一般式(13)で表されるイミダゾール系化合物)を0.165g添加し、窒素雰囲気下、室温(25℃)で10時間撹拌して、前記芳香族ジアミン(DABAN)と前記テトラカルボン酸二無水物(CpODA)とを反応せしめ、ポリアミド酸とイミダゾール系化合物とを含有するポリイミド形成用の混合液(塗工液)を得た。なお、このようなポリイミド形成用の混合液の粘度を確認したところ、粘度は3622cpsであった。また、このようなポリイミド形成用の混合液中のポリアミド酸とイミダゾール系化合物との合計の含有量は20質量%であった。
 次いで、得られたポリイミド形成用の混合液を、無アルカリガラスからなるガラス基板(コーニング社製の商品名「イーグルXG」、縦:100mm、横100mm、厚み0.7mm)の表面上に、加熱硬化後の膜の厚みが13μmとなるようにスピンコートし、前記ガラス基板上に塗膜を形成した。その後、前記塗膜の形成されたガラス基板を60℃のホットプレート上に載せて2時間静置することにより、前記塗膜から溶媒を蒸発させて除去した(溶媒除去処理)。次いで、前記溶媒除去処理後の前記塗膜の形成されたガラス基板を、3L/分の流量で窒素が流れているイナートオーブンに投入し、イナートオーブン内で、窒素雰囲気下、25℃の温度条件で0.5時間静置した後、135℃の温度条件で0.5時間加熱し、更に250℃の温度条件で1時間加熱して、前記ポリアミド酸をイミド化することにより、前記塗膜を硬化せしめ、前記ガラス基板上にポリイミドからなるフィルムを形成した。その後、かかるポリイミドからなるフィルムが形成されたガラス基板を90℃のお湯に浸漬することにより、ガラス基板からポリイミドフィルムを剥離して、ポリイミドフィルムを得た。このようにして得られたポリイミドフィルムの特性の評価結果を表1に示す。なお、このようにして得られたフィルムを用いて、フィルムを形成する化合物の分子構造の同定を行ったところ、IR測定においてイミドカルボニルのC=O伸縮振動が1698cm-1に観察されたことから、該フィルムは確かにポリイミドからなるフィルムであることが確認された。
 (比較例2)
 溶媒としてのテトラメチルウレアの添加量を2.88gから5.24gに変更した以外は、比較例1と同様にしてポリイミドフィルムを得た。なお、かかる方法においては、得られた原料混合液中の前記芳香族ジアミン(DABAN)と前記テトラカルボン酸二無水物(CpODA)との合計の含有比率は9.5質量%であり、ポリイミド形成用の混合液(塗工液)中のポリアミド酸とイミダゾール系化合物との合計の含有量は12質量%であった。また、このようなポリイミド形成用の混合液の粘度は258cpsであった。このようにして得られたポリイミドフィルムの特性の評価結果を表1に示す。なお、このようにして得られたフィルムを用いて、フィルムを形成する化合物の分子構造の同定を行ったところ、IR測定においてイミドカルボニルのC=O伸縮振動が1698cm-1に観察されたことから、該フィルムは確かにポリイミドからなるフィルムであることが確認された。
 (比較例3)
 先ず、30mlの三口フラスコをヒートガンで加熱して十分に乾燥させた。次に、十分に乾燥させた前記三口フラスコ内の雰囲気ガスを窒素で置換して、前記三口フラスコ内を窒素雰囲気とした。次いで、前記三口フラスコ内に芳香族ジアミンである4,4’-ジアミノベンズアニリド0.2045g(0.90mmol:日本純良薬品株式会社製:DABAN)を導入した後、更に、溶媒としてのテトラメチルウレアを4.04g添加して撹拌することにより、前記溶媒中に前記芳香族ジアミン(DABAN)を溶解させた溶解液を得た。
 次に、前記溶解液を含有する三口フラスコ内に、窒素雰囲気下、合成例1で得られたテトラカルボン酸二無水物(前記一般式(12)で表される化合物:CpODA)を0.3459g(0.90mmol)添加することにより、前記溶媒と、前記芳香族ジアミン(DABAN)と、前記テトラカルボン酸二無水物(CpODA)とを含有し且つ前記芳香族ジアミン(DABAN)と前記テトラカルボン酸二無水物(CpODA)との合計の含有比率が12質量%となる原料混合液を準備した。
 次いで、得られた原料混合液を、窒素雰囲気下、室温(25℃)で10時間撹拌して、前記芳香族ジアミン(DABAN)と前記テトラカルボン酸二無水物(CpODA)とを反応せしめて、ポリアミド酸を形成せしめ、ポリアミド酸溶液を得た。なお、得られたポリアミド酸溶液のポリアミド酸の濃度は、原料の仕込み量からも明らかなように12質量%であった。なお、このようにして得られたポリアミド酸溶液(ポリアミド酸の濃度:12質量%)の粘度[cps(センチポイズ)]は46cpsであった。このようなポリアミド酸溶液の特性(粘度)を表1に示す。
 このようなポリアミド酸溶液(ポリアミド酸の濃度:12質量%)をそのまま用い、該ポリアミド酸溶液を、無アルカリガラスからなるガラス基板(コーニング社製の商品名「イーグルXG」、縦:100mm、横100mm、厚み0.7mm)の表面上に、加熱硬化後の膜の厚みが13μmとなるようにスピンコートし、前記ガラス基板上に塗膜を形成した。その後、前記塗膜の形成されたガラス基板を60℃のホットプレート上に載せて2時間静置することにより、前記塗膜から溶媒を蒸発させて除去した(溶媒除去処理)。次いで、前記溶媒除去処理後の前記塗膜の形成されたガラス基板を、3L/分の流量で窒素が流れているイナートオーブンに投入し、イナートオーブン内で、窒素雰囲気下、25℃の温度条件で0.5時間静置した後、135℃の温度条件で0.5時間加熱し、更に250℃の温度条件で1時間加熱して、前記ポリアミド酸をイミド化することにより、前記塗膜を硬化せしめ、前記ガラス基板上にポリイミドからなるフィルムを形成したが、クラックの入ったフィルムとなった。そして、かかるポリイミドからなるフィルム(クラックあり)が形成されたガラス基板を90℃のお湯に浸漬することにより、ガラス基板からポリイミドフィルムを剥離して、ポリイミドフィルム(クラックフィルム)を得た。このようにして得られたポリイミドフィルムの特性の評価結果を表1に示す。なお、各実施例及び比較例で得られたフィルムのクラックの有無も併せて表1に示す。
Figure JPOXMLDOC01-appb-T000028
 表1に示す結果からも明らかなように、本発明のポリイミドフィルムの製造方法を利用した場合(実施例1~8)においてはいずれも、得られたポリイミドフィルムの表面粗さ(算術平均粗さRa)が2.0nm以下となっており、得られるポリイミドフィルムの表面が非常に高度な水準の平滑性を有することが分かった。なお、本発明のポリイミドフィルムの製造方法を利用した場合(実施例1~8)においてはいずれも、得られたポリイミドフィルムの5%重量減少温度(Td5%)が350℃以上となっており、十分な耐熱性を有するものであることが確認されるとともに、全光線透過率が80%以上となっており、十分な透明性を有することが確認された。このような結果から、本発明のポリイミドフィルム(実施例1~8)は、表面の平滑性が要求されるような各種用途に特に有用であることが分かった。
 一方、ポリアミド酸を調製するための原料混合液に対して、合成例2で得られたイミダゾール系化合物(上記一般式(13)で表されるイミダゾール系化合物)を添加した、比較例1~2に記載のポリイミドフィルムの製造方法においては、塗工液(ポリアミド酸が形成された段階)の粘度が258cps以上となっていた。このような結果と各実施例での結果とを併せ勘案すると、ポリアミド酸が形成された後の段階で上記一般式(13)で表されるイミダゾール系化合物を添加することで、表面の平滑性がより高いポリイミドフィルムを製造できることが分かった。このような結果について、比較例2に関しては、ポリアミド酸の製造時に上記一般式(13)で表されるイミダゾール系化合物を添加したため、ポリアミド酸が形成された後に添加したものよりも高分子量化が進行し、塗工液の粘度が上昇してしまい、また、比較例1に関しては、ポリアミド酸の製造時に上記一般式(13)で表されるイミダゾール系化合物を添加し、しかも原料の濃度が16質量%と高い値であったことから、塗工液の粘度が更に上昇してしまい、その粘度の上昇に起因して、塗膜を形成する際に塗工液の流動性、均一塗工性、レべリング性の点で低粘度品よりも不利となって、膜の表面の平滑性を実施例のような高い水準のものとすることまではできなかったものと本発明者らは推察する。
 また、比較例3の結果からも明らかなように、得られたポリイミドフィルムにはクラックが入ってしまい、十分に低粘度のポリアミド酸溶液が得られても、上記一般式(13)で表されるイミダゾール系化合物を添加しなかった場合には、十分な機械的強度を有するフィルムを形成することは困難であること、すなわち、フィルム化が困難であることが分かった。なお、実施例3と比較例3とを比較すると、上記一般式(13)で表されるイミダゾール系化合物の使用の有無が異なることから、上記一般式(13)で表されるイミダゾール系化合物を利用することで、低粘度のポリアミド酸溶液から、十分に均一なポリイミドフィルム(クラックのない十分な機械的強度を有するフィルム)を効率よく製造できることが分かった。
 このような結果から、本発明のポリイミドフィルムの製造方法(実施例1~8)によれば、クラックのない均一なフィルムを形成でき、表面の平滑性がより高度なポリイミドフィルムを効率よく製造できることが分かった。
 (実施例9~12:感光性組成物の調製)
 表2に記載の各成分(表中においてPAA-1等の略称により表される各成分)をテトラメチル尿素に溶解してポリアミド酸濃度10質量%の感光性組成物をそれぞれ調製した。表2中、かっこ内の数値は質量部である。また、表2に示す略称はそれぞれ以下の成分を示す。
Figure JPOXMLDOC01-appb-T000029
[表2中の略称について]
・PAA-1:実施例1の第1工程と同様にして得られたポリアミド酸(固形分)
・PAA-2:実施例5の第1工程と同様にして得られたポリアミド酸(固形分)
・I-1:一般式(13)で表される化合物
・PAC-1:下記式(P-1)で表される化合物。ただし、式中Qは下記式(Q-1)で表される置換基と水素原子を9:1(モル比)の割合で含む。
Figure JPOXMLDOC01-appb-C000030
・PAC-2:上記式(P-1)で表される化合物。ただし、式中Qは下記式(Q-2)で表される置換基と水素原子を9:1(モル比)の割合で含む。
Figure JPOXMLDOC01-appb-C000031
・Si-1:(HOCHCHN(CHSi(OCHCHCH
・Si-2:HNCONH(CHSi(OCHCHCH
<パターン硬化膜の製造>
 表2に記載の組成の各感光性組成物を、それぞれシリコンウエハ上にスピンコートして、80℃で乾燥し、組成物膜を得た。次いで、各組成物膜に対して、それぞれ、マスクを介して超高圧水銀灯で露光(EXM-1066-E01:オーク社製、エネルギー線量100~1000mJ/cmの範囲で100mJ/cmごと計10点)し、2.38質量%TMAH(水酸化テトラメチルアンモニウム)を用い、それぞれ露光部分が溶解するまで現像してパターン形成を行った。次に、パターン形成後の各膜について、窒素雰囲気下で150℃1時間加熱した後、さらに250℃で1時間加熱した。これにより、表2に記載の各感光性組成物から、厚さ約13μmのパターン硬化膜をそれぞれ得た。
 以上説明したように、本発明によれば、より高度な水準の表面の平滑性を有するフィルムを効率よく製造することを可能とするポリイミドフィルムの製造方法、その製造方法を利用して得られるポリイミドフィルム、前記ポリイミドフィルムの製造に好適に利用可能なポリアミド酸溶液、並びに、そのポリアミド酸溶液を含む感光性組成物を提供することが可能となる。また、本発明の感光性組成物によれば、パターン硬化膜を効率よく製造することも可能である。
 したがって、本発明のポリイミドフィルムの製造方法は、表面の高度な平滑性が要求されるような用途(例えば有機EL素子の基板、フレキシブル有機EL素子の基板、有機EL素子のTFT基板、有機EL素子のカラーフィルター基板、有機EL素子のタッチパネル基板、医療用等の高精細ディスプレイ用基板等)に用いるポリイミドフィルムを製造するための方法等として特に有用である。

Claims (7)

  1.  溶媒と、下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R、R、Rは、それぞれ独立に水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは0~12の整数を示す。]
    で表されるテトラカルボン酸二無水物と、下記一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、R10は炭素数6~50のアリール基を示す。]
    で表される芳香族ジアミンとを含有し、且つ、前記テトラカルボン酸二無水物と前記芳香族ジアミンとの合計の含有量が15質量%以下である原料混合液を準備し、該原料混合液中において前記テトラカルボン酸二無水物と前記芳香族ジアミンとを反応させて下記一般式(3):
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、R、R、Rは、それぞれ独立に、水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、R10は炭素数6~50のアリール基を示し、nは0~12の整数を示す。]
    で表される繰り返し単位を有するポリアミド酸を形成することにより、粘度が5~150cpsであるポリアミド酸溶液を得る工程と、
     前記ポリアミド酸溶液に、下記一般式(4):
    Figure JPOXMLDOC01-appb-C000004
    [式(4)中、R11は水素原子及びアルキル基よりなる群から選択される1種を示し、R12は置換基を有してもよい芳香族基を示し、R13は置換基を有してもよいアルキレン基を示し、R14はそれぞれ独立にハロゲン原子、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホナト基及び有機基よりなる群から選択される1種を示し、mは0~3の整数を示す。]
    で表される化合物を添加してポリイミド形成用混合液を得る工程と、
     前記ポリイミド形成用混合液からなる膜を形成し、該膜中の前記ポリアミド酸をイミド化することにより、下記一般式(5):
    Figure JPOXMLDOC01-appb-C000005
    [式(5)中、R、R、Rは、それぞれ独立に、水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、R10は炭素数6~50のアリール基を示し、nは0~12の整数を示す。]
    で表される繰り返し単位を有するポリイミドからなるフィルムを得る工程と、
    を含むポリイミドフィルムの製造方法。
  2.  前記ポリアミド酸溶液の粘度が10~100cpsである、請求項1に記載のポリイミドフィルムの製造方法。
  3.  前記原料混合液を0~50℃の温度条件下において0.5~24時間撹拌することにより、前記原料混合液中において前記テトラカルボン酸二無水物と前記芳香族ジアミンとを反応させる、請求項1又は2に記載のポリイミドフィルムの製造方法。
  4.  請求項1~3のうちのいずれか一項に記載のポリイミドフィルムの製造方法により得られるものである、ポリイミドフィルム。
  5.  前記ポリイミドフィルムの表面の算術平均粗さRaが0.01~2.0nmである、請求項4に記載のポリイミドフィルム。
  6.  溶媒と、
     下記一般式(3):
    Figure JPOXMLDOC01-appb-C000006
    [式(3)中、R、R、Rは、それぞれ独立に、水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、R10は炭素数6~50のアリール基を示し、nは0~12の整数を示す。]
    で表される繰り返し単位を有するポリアミド酸と、
     下記一般式(4):
    Figure JPOXMLDOC01-appb-C000007
    [式(4)中、R11は水素原子及びアルキル基よりなる群から選択される1種を示し、R12は置換基を有してもよい芳香族基を示し、R13は置換基を有してもよいアルキレン基を示し、R14はそれぞれ独立にハロゲン原子、水酸基、メルカプト基、スルフィド基、シリル基、シラノール基、ニトロ基、ニトロソ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホナト基及び有機基よりなる群から選択される1種を示し、mは0~3の整数を示す。]
    で表される化合物と、
    を含有し、且つ、粘度が5~150cpsである、ポリアミド酸溶液。
  7.  請求項6に記載のポリアミド酸溶液と、感光剤とを含む、感光性組成物。
PCT/JP2017/000828 2016-01-20 2017-01-12 ポリイミドフィルムの製造方法、ポリイミドフィルム、ポリアミド酸溶液及び感光性組成物 WO2017126409A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/070,401 US11136435B2 (en) 2016-01-20 2017-01-12 Method for producing polyimide film, polyimide film, polyamic acid solution, and photosensitive composition
JP2017562535A JP6847054B2 (ja) 2016-01-20 2017-01-12 ポリイミドフィルムの製造方法、ポリイミドフィルム、ポリアミド酸溶液及び感光性組成物
CN201780007294.2A CN108473698A (zh) 2016-01-20 2017-01-12 聚酰亚胺薄膜的制造方法、聚酰亚胺薄膜、聚酰胺酸溶液及感光性组合物
KR1020187023389A KR20180103120A (ko) 2016-01-20 2017-01-12 폴리이미드 필름의 제조 방법, 폴리이미드 필름, 폴리아미드산 용액 및 감광성 조성물
EP17741289.7A EP3406657A4 (en) 2016-01-20 2017-01-12 PROCESS FOR PRODUCING POLYIMIDE FILM, POLYIMIDE FILM, POLYAMIDE ACID SOLUTION, AND PHOTOSENSITIVE COMPOSITION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-009030 2016-01-20
JP2016009030 2016-01-20

Publications (1)

Publication Number Publication Date
WO2017126409A1 true WO2017126409A1 (ja) 2017-07-27

Family

ID=59361652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000828 WO2017126409A1 (ja) 2016-01-20 2017-01-12 ポリイミドフィルムの製造方法、ポリイミドフィルム、ポリアミド酸溶液及び感光性組成物

Country Status (7)

Country Link
US (1) US11136435B2 (ja)
EP (1) EP3406657A4 (ja)
JP (1) JP6847054B2 (ja)
KR (1) KR20180103120A (ja)
CN (1) CN108473698A (ja)
TW (1) TWI731027B (ja)
WO (1) WO2017126409A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018045230A (ja) * 2016-09-13 2018-03-22 東京応化工業株式会社 感光性樹脂組成物、ポリアミド樹脂、ポリアミド樹脂の製造方法、化合物、化合物の製造方法、硬化膜の製造方法、及び硬化膜
JPWO2017026448A1 (ja) * 2015-08-07 2018-05-31 東京応化工業株式会社 ポリイミド前駆体組成物
WO2018143314A1 (ja) * 2017-02-03 2018-08-09 東京応化工業株式会社 ポリイミド前駆体組成物
JP2019195991A (ja) * 2018-05-08 2019-11-14 住友化学株式会社 積層体およびその製造方法
JP2020034888A (ja) * 2018-08-28 2020-03-05 国立大学法人横浜国立大学 感光性樹脂組成物及び微細パターンの製造方法
WO2020152974A1 (ja) 2019-01-22 2020-07-30 三菱瓦斯化学株式会社 ポリアミド樹脂、組成物および成形品
WO2021117703A1 (ja) 2019-12-11 2021-06-17 三菱瓦斯化学株式会社 ポリアミドの製造方法
WO2021241472A1 (ja) 2020-05-29 2021-12-02 三菱瓦斯化学株式会社 ポリアミド樹脂、ポリアミド樹脂組成物および成形品
WO2021241471A1 (ja) 2020-05-29 2021-12-02 三菱瓦斯化学株式会社 ポリアミド樹脂、ポリアミド樹脂組成物および成形品
WO2022031303A1 (en) * 2020-08-07 2022-02-10 Zymergen Inc. Process for polyimide synthesis and polyimides made therefrom
WO2022038865A1 (ja) 2020-08-20 2022-02-24 三菱瓦斯化学株式会社 ポリアミド樹脂
WO2022038864A1 (ja) 2020-08-20 2022-02-24 三菱瓦斯化学株式会社 ポリアミド樹脂
WO2022195979A1 (ja) 2021-03-15 2022-09-22 三菱瓦斯化学株式会社 ポリアミド樹脂

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3275940B1 (en) * 2015-03-27 2019-12-18 Tokyo Ohka Kogyo Co., Ltd. Energy-sensitive resin composition
US20170327654A1 (en) * 2016-05-10 2017-11-16 Sumitomo Chemical Company, Limited Optical film and optical member using optical film
JP7076939B2 (ja) 2016-07-19 2022-05-30 株式会社ジャパンディスプレイ 光配向膜用ワニス及び液晶表示装置
KR102631701B1 (ko) * 2021-11-30 2024-02-01 피아이첨단소재 주식회사 접착성이 개선된 저유전 폴리이미드 필름 및 이의 제조방법
KR20230081283A (ko) * 2021-11-30 2023-06-07 피아이첨단소재 주식회사 폴리아믹산 조성물 및 이로부터 제조되는 폴리이미드 필름
CN115558436B (zh) * 2022-10-18 2023-08-01 昆山雅森电子材料科技有限公司 一种高性能聚酰亚胺屏蔽膜及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080158A1 (ja) * 2013-11-27 2015-06-04 宇部興産株式会社 ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
WO2016158679A1 (ja) * 2015-03-27 2016-10-06 東京応化工業株式会社 感エネルギー性樹脂組成物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2535341B1 (en) 2010-02-09 2015-08-26 JX Nippon Oil & Energy Corporation Norbornane-2-spiro- a-cycloalkanone-a '-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic dianhydride, norbornane-2-spiro- a-cycloalkanone-a '-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid and ester thereof, method for producing norbornane-2-spiro- a-cycloalkanone-a '-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic dianhydride, polyimide obtained using same, and method for producing polyimide
US9768328B2 (en) * 2011-08-08 2017-09-19 Jx Nippon Oil & Energy Corporation Transparent film, transparent electro-conductive laminate, and touch panel, solar cell, and display device using the same
JP5845911B2 (ja) 2012-01-13 2016-01-20 宇部興産株式会社 ポリイミド前駆体水溶液組成物、及びポリイミド前駆体水溶液組成物の製造方法
JP6120661B2 (ja) 2012-05-10 2017-04-26 日本合成化学工業株式会社 アニオン硬化性化合物用硬化剤、硬化性組成物、硬化物、及び新規イミダゾール系化合物
JP6087655B2 (ja) 2013-02-18 2017-03-01 東京応化工業株式会社 現像液、及び感光性樹脂組成物の現像処理方法
JP6723698B2 (ja) * 2015-07-23 2020-07-15 東京応化工業株式会社 微粒子含有組成物
US10954340B2 (en) * 2015-08-07 2021-03-23 Tokyo Ohka Kogyo Co., Ltd. Polyimide precursor composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080158A1 (ja) * 2013-11-27 2015-06-04 宇部興産株式会社 ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
WO2016158679A1 (ja) * 2015-03-27 2016-10-06 東京応化工業株式会社 感エネルギー性樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3406657A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017026448A1 (ja) * 2015-08-07 2018-05-31 東京応化工業株式会社 ポリイミド前駆体組成物
JP2018045230A (ja) * 2016-09-13 2018-03-22 東京応化工業株式会社 感光性樹脂組成物、ポリアミド樹脂、ポリアミド樹脂の製造方法、化合物、化合物の製造方法、硬化膜の製造方法、及び硬化膜
WO2018143314A1 (ja) * 2017-02-03 2018-08-09 東京応化工業株式会社 ポリイミド前駆体組成物
JP2019195991A (ja) * 2018-05-08 2019-11-14 住友化学株式会社 積層体およびその製造方法
JP2020034888A (ja) * 2018-08-28 2020-03-05 国立大学法人横浜国立大学 感光性樹脂組成物及び微細パターンの製造方法
WO2020152974A1 (ja) 2019-01-22 2020-07-30 三菱瓦斯化学株式会社 ポリアミド樹脂、組成物および成形品
WO2021117703A1 (ja) 2019-12-11 2021-06-17 三菱瓦斯化学株式会社 ポリアミドの製造方法
WO2021241472A1 (ja) 2020-05-29 2021-12-02 三菱瓦斯化学株式会社 ポリアミド樹脂、ポリアミド樹脂組成物および成形品
WO2021241471A1 (ja) 2020-05-29 2021-12-02 三菱瓦斯化学株式会社 ポリアミド樹脂、ポリアミド樹脂組成物および成形品
WO2022031303A1 (en) * 2020-08-07 2022-02-10 Zymergen Inc. Process for polyimide synthesis and polyimides made therefrom
WO2022038865A1 (ja) 2020-08-20 2022-02-24 三菱瓦斯化学株式会社 ポリアミド樹脂
WO2022038864A1 (ja) 2020-08-20 2022-02-24 三菱瓦斯化学株式会社 ポリアミド樹脂
WO2022195979A1 (ja) 2021-03-15 2022-09-22 三菱瓦斯化学株式会社 ポリアミド樹脂

Also Published As

Publication number Publication date
EP3406657A4 (en) 2019-11-06
US11136435B2 (en) 2021-10-05
KR20180103120A (ko) 2018-09-18
JP6847054B2 (ja) 2021-03-24
TWI731027B (zh) 2021-06-21
JPWO2017126409A1 (ja) 2018-11-08
US20190062503A1 (en) 2019-02-28
CN108473698A (zh) 2018-08-31
EP3406657A1 (en) 2018-11-28
TW201739790A (zh) 2017-11-16

Similar Documents

Publication Publication Date Title
JP6847054B2 (ja) ポリイミドフィルムの製造方法、ポリイミドフィルム、ポリアミド酸溶液及び感光性組成物
JP6819292B2 (ja) ディスプレイ基板用樹脂組成物、並びに、それを用いた耐熱性樹脂フィルム、有機elディスプレイ基板及び有機elディスプレイの製造方法
US8257901B2 (en) Polyimide-based polymers, copolymers thereof and positive type photoresist compositions comprising the same
JP5488772B1 (ja) ポリアミド酸樹脂組成物、これを用いたポリイミドフィルムおよびその製造方法
KR101910220B1 (ko) 감광성 수지 조성물, 그 수지 조성물을 사용한 패턴 경화막의 제조 방법 및 전자 부품
JP5477527B2 (ja) 末端官能基含有ポリイミドを含むポジ型感光性樹脂組成物
JP6241557B2 (ja) 樹脂組成物、樹脂の製造方法、樹脂組成物の製造方法、樹脂膜の製造方法および電子デバイスの製造方法
WO2016158679A1 (ja) 感エネルギー性樹脂組成物
WO2007034604A1 (ja) ネガ型感光性樹脂組成物、パターン形成方法及び電子部品
JP2011123278A (ja) ポリイミド系光硬化性樹脂組成物、パターン形成方法及び基板保護用皮膜
JPWO2003011974A1 (ja) ポリアミック酸樹脂組成物
JP2019077871A (ja) 耐熱性樹脂膜およびその製造方法、加熱炉ならびに画像表示装置の製造方法
WO2016084694A1 (ja) 樹脂および感光性樹脂組成物
JP5054158B2 (ja) ポジティブ型感光性組成物
JPWO2014045434A1 (ja) ポジ型感光性樹脂組成物
JP2012203359A (ja) ネガ型感光性樹脂組成物、パターン形成方法及び電子部品
TW201945849A (zh) 感光性樹脂組成物、感光性樹脂薄膜,及圖型形成方法
JP2007199606A (ja) 感光性樹脂組成物及びそれを用いた半導体装置の製造方法
US20060183880A1 (en) Photosensitive resin and a method of preparing the same
JP5636680B2 (ja) ポジ型感光性樹脂組成物、パターン硬化膜の製造方法及び電子部品
JP2021155466A (ja) 樹脂組成物、硬化膜、硬化膜の製造方法、有機el表示装置
JP5439640B2 (ja) アルカリ現像可能なネガ型感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
JP5732722B2 (ja) ポジ型感光性樹脂組成物、パターン硬化膜の製造方法及び電子部品
JP2019032489A (ja) 感光性樹脂組成物、ドライフィルム、硬化物、プリント配線板および半導体素子
JP2021085977A (ja) 感光性ポリイミド樹脂組成物、パターン形成方法及び半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741289

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017562535

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187023389

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187023389

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2017741289

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017741289

Country of ref document: EP

Effective date: 20180820