WO2015076236A1 - 半導体接合用接着フィルム - Google Patents

半導体接合用接着フィルム Download PDF

Info

Publication number
WO2015076236A1
WO2015076236A1 PCT/JP2014/080442 JP2014080442W WO2015076236A1 WO 2015076236 A1 WO2015076236 A1 WO 2015076236A1 JP 2014080442 W JP2014080442 W JP 2014080442W WO 2015076236 A1 WO2015076236 A1 WO 2015076236A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive film
wafer
resin
semiconductor bonding
wiring pattern
Prior art date
Application number
PCT/JP2014/080442
Other languages
English (en)
French (fr)
Japanese (ja)
Inventor
さやか 脇岡
穣 末▲崎▼
江南 俊夫
幸平 竹田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2014557899A priority Critical patent/JP5799180B1/ja
Priority to CN201480056218.7A priority patent/CN105637623B/zh
Priority to KR1020167009767A priority patent/KR20160088291A/ko
Publication of WO2015076236A1 publication Critical patent/WO2015076236A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54453Marks applied to semiconductor devices or parts for use prior to dicing
    • H01L2223/5446Located in scribe lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0613Square or rectangular array
    • H01L2224/06134Square or rectangular array covering only portions of the surface to be connected
    • H01L2224/06136Covering only the central area of the surface to be connected, i.e. central arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area

Definitions

  • the present invention when dicing along a scribe line (dicing line) while being bonded to the wafer surface, peeling is unlikely to occur at the interface with the wafer, particularly at the interface with the wafer having an aluminum wiring pattern on the scribe line.
  • the present invention relates to an adhesive film for semiconductor bonding.
  • FIG. 1 is a top view schematically showing a region of the silicon wafer surface on which scribe lines are formed. As shown in FIG. 1, scribe lines 2 are formed in a lattice shape on the silicon wafer 1, and semiconductor chips 3 are obtained by dicing along the scribe lines 2.
  • the semiconductor chip 3 is provided with a plurality of protruding electrodes 4.
  • An object is to provide an adhesive film for semiconductor bonding.
  • the present invention is an adhesive film for semiconductor bonding to be bonded to a wafer with an aluminum wiring pattern, and (1) the storage elastic modulus at a frequency corresponding to the rotational speed of a dicing blade is 7.5 GPa or less, and / or (2)
  • the dispersion component ( ⁇ sd) in the surface free energy ⁇ of the surface to be bonded to the wafer with the aluminum wiring pattern, measured using two or more kinds of measuring reagents with known surface energy is 30 mJ / m 2 or more. It is an adhesive film.
  • the present invention is described in detail below.
  • the present inventors have (1) a storage elastic modulus at a frequency corresponding to the number of revolutions of a dicing blade and / or (2) a dispersion in surface free energy ⁇ of an adhesive film for semiconductor bonding to be bonded to a wafer with an aluminum wiring pattern.
  • the adhesive film for semiconductor bonding of the present invention is bonded to a wafer with an aluminum wiring pattern.
  • the wafer with the aluminum wiring pattern is not particularly limited, and examples thereof include a wafer made of a semiconductor such as silicon and gallium arsenide, in which scribe lines are formed in a lattice shape, and the aluminum wiring pattern exists on the scribe line. It is done.
  • a semiconductor chip is obtained by dicing such a wafer along a scribe line.
  • the obtained semiconductor chip is preferably provided with a plurality of protruding electrodes made of solder or the like.
  • the adhesive film for semiconductor bonding of the present invention comprises (1) a storage elastic modulus at a frequency corresponding to the number of revolutions of a dicing blade is 7.5 GPa or less, and / or (2) a measuring reagent having a known surface energy.
  • the dispersion component ( ⁇ sd) in the surface free energy ⁇ of the surface to be bonded to the wafer with the aluminum wiring pattern, measured using two or more types, is 30 mJ / m 2 or more.
  • the adhesive film for semiconductor bonding of the present invention may satisfy both of the above (1) and (2), or may satisfy only one of them.
  • the storage elastic modulus at a frequency corresponding to the number of revolutions of the dicing blade in (1) exceeds 7.5 GPa, it is used for semiconductor bonding at the interface with the wafer, particularly at the interface with the wafer where the aluminum wiring pattern exists on the scribe line.
  • the adhesive film is easily peeled off.
  • the storage elastic modulus is preferably 7.4 GPa or less, and more preferably 7.3 GPa or less.
  • the lower limit of the storage elastic modulus is not particularly limited, but dicing in a state where the semiconductor bonding adhesive film is bonded to the wafer surface, and thereafter, the semiconductor chip having the semiconductor bonding adhesive film bonded thereto is thermocompression bonded to a substrate or the like. In view of this, the preferable lower limit is 3.5 GPa, and the more preferable lower limit is 4.0 GPa. If the storage elastic modulus is less than 3.5 GPa, the machinability during dicing may be reduced.
  • the storage elastic modulus at a frequency corresponding to the number of revolutions of the dicing blade in (1) above is measured by frequency dispersion using a dynamic viscoelasticity measuring device (for example, DVA-200 manufactured by IT Measurement Control Co., Ltd.) It can be estimated by creating a master curve at a water temperature during dicing (for example, about 5 to 50 ° C.) and reading the storage elastic modulus at a specific frequency on the master curve.
  • a dynamic viscoelasticity measuring device for example, DVA-200 manufactured by IT Measurement Control Co., Ltd.
  • the frequency corresponding to the rotation speed of the dicing blade is a frequency corresponding to a general rotation speed (unit: rpm) of the dicing blade when performing blade typing with the semiconductor bonding adhesive film bonded to the wafer surface.
  • Unit: rpm a general rotation speed of the dicing blade when performing blade typing with the semiconductor bonding adhesive film bonded to the wafer surface.
  • Hz generally 10,000 to 60000 rpm (167 to 1000 Hz in terms of frequency), and preferably 20000 to 50000 rpm (333 to 833 Hz in terms of frequency).
  • the dispersion component (? Sd) is preferably from 32 mJ / m 2 or more, 35 mJ / m 2 or more is more preferable.
  • the upper limit of the dispersion component ( ⁇ sd) is not particularly limited, but dicing in the state where the adhesive film for semiconductor bonding is bonded to the wafer surface, or thereafter, the semiconductor chip having the adhesive film for semiconductor bonding is heated on the substrate or the like. In consideration of pressure bonding, the preferable upper limit is 55 mJ / m 2 , and the more preferable upper limit is 50 mJ / m 2 .
  • preferable lower limit is 0.01 mJ / m 2
  • a preferred upper limit is 5 mJ / m 2.
  • the polar component ( ⁇ sp) exceeds 0.01 mJ / m 2 or less than 5 mJ / m 2
  • the polarity difference between the adhesive film and aluminum for a semiconductor junction is increased, the interface with the wafer, particularly aluminum wiring on the scribe line
  • the semiconductor bonding adhesive film may be easily peeled off at the interface with the wafer on which the pattern exists.
  • a more preferable lower limit of the polar component ( ⁇ sp) is 0.02 mJ / m 2
  • a more preferable upper limit is 4 mJ / m 2 .
  • the surface free energy ⁇ can be obtained by the sum of the dispersion component ( ⁇ sd) and the polar component ( ⁇ sp).
  • the surface free energy ⁇ is not particularly limited, but a preferred lower limit is 30 mJ / m 2 and a preferred upper limit is 55 mJ / m 2 .
  • the adhesive film for semiconductor bonding may be easily peeled off at the interface with the wafer, particularly at the interface with the wafer having an aluminum wiring pattern on the scribe line.
  • a more preferred lower limit of the surface free energy ⁇ is 35 mJ / m 2, and more preferable upper limit is 50 mJ / m 2.
  • the surface free energy ⁇ , and the dispersion component ( ⁇ sd) and polar component ( ⁇ sp) in the surface free energy ⁇ are surfaces to be bonded to the wafer with an aluminum wiring pattern of the adhesive film for semiconductor bonding using a contact angle meter (
  • the contact angles of two or more kinds of measurement reagents with respect to the solid surface) are measured, and calculated from the obtained contact angles using a geometric average method.
  • the two or more kinds of measurement reagents are not particularly limited as long as the surface energy is known, and examples thereof include water, diiodomethane, bromonaphthalene, and ethylene glycol.
  • the surface free energy and the dispersion component ( ⁇ sd) and polar component ( ⁇ sp) in the surface free energy ⁇ are based on the following formulas (1) to (3). Can be calculated.
  • ⁇ H contact angle of water with solid surface
  • ⁇ I contact angle of diiodomethane with solid surface
  • the adhesive film for semiconductor bonding preferably contains a thermosetting resin, a thermosetting agent and a high molecular weight compound, and may contain an inorganic filler, an additive or the like as required.
  • the content of the liquid component at room temperature (25 ° C.) and the high molecular weight compound having a glass transition temperature (Tg) of 0 ° C. or less is 5 to 15% by weight, or the surface is treated with a silane coupling agent.
  • the liquid component at room temperature may be a thermosetting resin, a thermosetting agent, or a high molecular weight compound, and other components (for example, a diluent, a cup Ring agents, additives such as adhesion promoters, etc.) may be used.
  • thermosetting resin is not specifically limited,
  • cured by reaction such as addition polymerization, polycondensation, polyaddition, addition condensation, ring-opening polymerization
  • the thermosetting resin include urea resin, melamine resin, phenol resin, resorcinol resin, epoxy resin, acrylic resin, polyester resin, polyamide resin, polybenzimidazole resin, diallyl phthalate resin, xylene resin, alkyl -Benzene resin, epoxy acrylate resin, silicon resin, urethane resin and the like.
  • an epoxy resin and an acrylic resin are preferable from a viewpoint of ensuring the intensity
  • the epoxy resin is not particularly limited, and examples thereof include bisphenol type epoxy resins such as bisphenol A type, bisphenol F type, bisphenol AD type and bisphenol S type, novolac type epoxy resins such as phenol novolak type and cresol novolak type, and resorcinol type epoxy.
  • Resin aromatic epoxy resin such as trisphenolmethane triglycidyl ether, naphthalene type epoxy resin, fluorene type epoxy resin, dicyclopentadiene type epoxy resin, polyether modified epoxy resin, NBR modified epoxy resin, CTBN modified epoxy resin, and These hydrogenated products can be mentioned.
  • These epoxy resins may be used independently and may use 2 or more types together.
  • the epoxy resin may be an epoxy resin that is liquid at room temperature, or may be an epoxy resin that is solid at room temperature, or may be used in appropriate combination.
  • commercially available products include, for example, bisphenol A type epoxy resins such as EPICLON 840, 840-S, 850, 850-S, EXA-850CRP (above, manufactured by DIC), EPICLON 830, Bisphenol F type epoxy resins such as 830-S and EXA-830CRP (made by DIC), naphthalene type epoxy resins such as EPICLON HP-4032 and HP-4032D (made by DIC), EPICLON EXA-7015 (DIC) And hydrogenated bisphenol A type epoxy resin such as EX-252 (manufactured by Nagase ChemteX), and resorcinol type epoxy resin such as EX-201 (manufactured by Nagase ChemteX).
  • epoxy resins that are solid at room temperature
  • commercially available products include, for example, bisphenol A type epoxy resins such as EPICLON 860, 10550, 1055 (manufactured by DIC), and bisphenol S such as EPICLON EXA-1514 (manufactured by DIC).
  • Type epoxy resin naphthalene type epoxy resin such as EPICLON HP-4700, HP-4710, HP-4770 (manufactured by DIC), dicyclopentadiene type epoxy resin such as EPICLON HP-7200 series (made by DIC), EPICLON Examples thereof include cresol novolac type epoxy resins such as HP-5000 and EXA-9900 (manufactured by DIC).
  • thermosetting agent is not specifically limited, A conventionally well-known thermosetting agent can be suitably selected according to the said thermosetting resin.
  • the thermosetting agent may be, for example, an acid anhydride curing agent, a phenol curing agent, an amine curing agent, a latent curing agent such as dicyandiamide, or a cationic catalytic curing. Agents and the like. These thermosetting agents may be used independently and may use 2 or more types together. Of these, an acid anhydride curing agent is preferable because of excellent curing speed, physical properties of the cured product, and the like.
  • the content of the thermosetting agent is not particularly limited.
  • the content of the thermosetting agent is for semiconductor bonding.
  • the preferable lower limit with respect to the total amount of epoxy groups contained in the adhesive film is 60 equivalents, and the preferable upper limit is 110 equivalents.
  • the content is less than 60 equivalents, the adhesive film for semiconductor bonding may not be sufficiently cured. Even if the content exceeds 110 equivalents, it does not contribute particularly to the curability of the adhesive film for semiconductor bonding, and may cause voids due to volatilization of an excessive thermosetting agent.
  • the more preferable lower limit of the content is 70 equivalents, and the more preferable upper limit is 100 equivalents.
  • the adhesive film for semiconductor bonding of the present invention may further contain a curing accelerator for the purpose of adjusting the curing speed, the physical properties of the cured product, and the like.
  • the said hardening accelerator is not specifically limited, For example, an imidazole series hardening accelerator, a tertiary amine type hardening accelerator, etc. are mentioned. Of these, an imidazole curing accelerator is preferred because it is easy to control the reaction system for adjusting the curing speed and the physical properties of the cured product.
  • the imidazole curing accelerator is not particularly limited, and examples thereof include Fujicure 7000 (manufactured by T & K TOKA, liquid at room temperature (25 ° C.)), 1-cyanoethyl-2-phenylimidazole in which the 1-position of imidazole is protected with a cyanoethyl group, Imidazole-based curing accelerator with basicity protected with isocyanuric acid (trade name “2MA-OK”, manufactured by Shikoku Kasei Kogyo Co., Ltd., solid at room temperature (25 ° C.)), 2MZ, 2MZ-P, 2PZ, 2PZ-PW, 2P4MZ , C11Z-CNS, 2PZ-CNS, 2PZCNS-PW, 2MZ-A, 2MZA-PW, C11Z-A, 2E4MZ-A, 2MAOK-PW, 2PZ-OK, 2MZ-OK, 2PHZ, 2PHZ-PW
  • Content of the said hardening accelerator is not specifically limited,
  • the preferable minimum with respect to 100 weight part of thermosetting agents is 2 weight part, and a preferable upper limit is 50 weight part.
  • a preferable upper limit is 50 weight part.
  • the content is less than 2 parts by weight, heating for a long time at a high temperature may be required for thermosetting the adhesive film for semiconductor bonding.
  • the content exceeds 50 parts by weight, the storage stability of the adhesive film for semiconductor bonding may be insufficient, or voids may be caused by excessive volatilization of the curing accelerator.
  • a more preferred lower limit of the content is 3 parts by weight, and a more preferred upper limit is 30 parts by weight.
  • the high molecular weight compound is not particularly limited.
  • a high molecular weight compound having an epoxy group is preferable.
  • the cured product of the adhesive film for semiconductor bonding exhibits excellent flexibility. That is, the cured product of the adhesive film for semiconductor bonding is excellent in mechanical strength, heat resistance and moisture resistance derived from the epoxy resin as the thermosetting resin, and excellent in the high molecular weight compound having the epoxy group. Since it combines flexibility, it will be excellent in cold-heat cycle resistance, solder reflow resistance, dimensional stability, etc., and will exhibit high joint reliability and high conduction reliability.
  • the high molecular weight compound having an epoxy group is not particularly limited as long as it is a high molecular weight compound having an epoxy group at the terminal and / or side chain (pendant position).
  • an epoxy group-containing acrylic rubber, an epoxy group-containing butadiene rubber examples thereof include bisphenol type high molecular weight epoxy resin, epoxy group-containing phenoxy resin, epoxy group-containing acrylic resin, epoxy group-containing urethane resin, and epoxy group-containing polyester resin.
  • an epoxy group containing acrylic resin is preferable.
  • These high molecular weight compounds having an epoxy group may be used alone or in combination of two or more.
  • the preferred lower limit of the weight average molecular weight of the high molecular weight compound having the epoxy group is 10,000, and the preferred upper limit is 1,000,000. It is.
  • the weight average molecular weight is less than 10,000, the film forming property of the adhesive film for semiconductor bonding may be insufficient, or the flexibility of the cured product of the adhesive film for semiconductor bonding may not be sufficiently improved.
  • the weight average molecular weight exceeds 1,000,000, the high molecular weight compound may have a reduced solubility in a solvent and a handleability.
  • the preferable lower limit of the epoxy equivalent of the high molecular weight compound having the epoxy group is 200, and the preferable upper limit is 1000. If the epoxy equivalent is less than 200, the flexibility of the cured product of the adhesive film for semiconductor bonding may not be sufficiently improved. If the epoxy equivalent exceeds 1000, the mechanical strength or heat resistance of the cured product of the adhesive film for semiconductor bonding may be insufficient.
  • Content of the said high molecular weight compound in the adhesive film for semiconductor joining of this invention is not specifically limited,
  • the preferable minimum in the adhesive film for semiconductor joining of this invention is 3 weight%, and a preferable upper limit is 30 weight%. If the content is less than 3% by weight, sufficient reliability against thermal strain may not be obtained. When content exceeds 30 weight%, the heat resistance of the adhesive film for semiconductor joining may fall.
  • the adhesive film for semiconductor bonding of the present invention may further contain an inorganic filler.
  • an inorganic filler When an inorganic filler is contained, it is preferable to contain 20 to 60% by weight of an inorganic filler surface-treated with a silane coupling agent. When the content exceeds 60% by weight, the film-forming property of the adhesive film for semiconductor bonding becomes insufficient, the storage elastic modulus at a frequency corresponding to the number of rotations of the dicing blade increases, and it becomes easy to peel off during dicing. There are things to do.
  • the minimum of content of the said inorganic filler in the adhesive film for semiconductor joining of this invention is not specifically limited, From a viewpoint of ensuring the intensity
  • the inorganic filler is not particularly limited, and examples thereof include silica, alumina, aluminum nitride, boron nitride, silicon nitride, silicon carbide, magnesium oxide, and zinc oxide.
  • spherical silica is preferable because of excellent fluidity, and spherical silica surface-treated with a methylsilane coupling agent, a phenylsilane coupling agent, a vinylsilane coupling agent, a methacrylic silane coupling agent, or the like is more preferable.
  • spherical silica surface-treated with a phenylsilane coupling agent is preferable from the viewpoint of controlling the dispersion component ( ⁇ sd) in the surface free energy ⁇ .
  • the average particle diameter of the inorganic filler is not particularly limited, but is preferably about 0.01 to 1 ⁇ m from the viewpoint of transparency, fluidity, bonding reliability, etc. of the adhesive film for semiconductor bonding.
  • the said inorganic filler may be used independently, and may mix and use a multiple types of inorganic filler.
  • the adhesive film for semiconductor bonding of the present invention is further provided with an adhesive imparting agent such as a diluent, a thixotropy imparting agent, a solvent, an inorganic ion exchanger, a bleed inhibitor, and an imidazole silane coupling agent, as necessary.
  • an adhesive imparting agent such as a diluent, a thixotropy imparting agent, a solvent, an inorganic ion exchanger, a bleed inhibitor, and an imidazole silane coupling agent, as necessary.
  • Other additives such as an agent and a stress relaxation agent such as rubber particles may be contained.
  • the thickness of the adhesive film for semiconductor bonding of the present invention is not particularly limited, the preferable lower limit is 5 ⁇ m, the preferable upper limit is 60 ⁇ m, the more preferable lower limit is 10 ⁇ m, and the more preferable upper limit is 50 ⁇ m.
  • the method for producing the adhesive film for semiconductor bonding of the present invention is not particularly limited.
  • a predetermined amount of other additives are blended in a thermosetting resin, a thermosetting agent, and a high molecular weight compound as necessary.
  • examples thereof include a method of coating the obtained resin composition on a release film and drying it to produce a film.
  • the mixing method is not particularly limited, and examples thereof include a method using a homodisper, a universal mixer, a Banbury mixer, a kneader and the like.
  • the adhesive film for semiconductor bonding of the present invention is bonded to a wafer with an aluminum wiring pattern, and is diced along a scribe line (dicing line) while being bonded to the wafer surface. Thereby, the semiconductor chip which affixed the adhesive film for semiconductor joining of this invention is obtained. The obtained semiconductor chip is thermocompression bonded to a substrate or the like with the adhesive film for semiconductor bonding of the present invention.
  • the method for bonding the adhesive film for semiconductor bonding of the present invention to the wafer with an aluminum wiring pattern is not particularly limited, and examples thereof include laminating under normal pressure and vacuum laminating.
  • Air may be involved in lamination under normal pressure, but after bonding, heat in a pressurized atmosphere using a pressure curing oven (eg, PCO-083TA (manufactured by NTT Atvans Technology)).
  • a pressure curing oven eg, PCO-083TA (manufactured by NTT Atvans Technology)
  • the void may be removed.
  • the dicing method is not particularly limited, and examples thereof include conventionally known blade dicing.
  • Example 1 The materials listed in Table 1 were used. According to the composition shown in Table 2, each material was added to methyl ethyl ketone (MEK) as a solvent, and an adhesive solution was produced by stirring and mixing using a homodisper. The obtained adhesive solution was applied onto a release PET film using an applicator so that the thickness after drying was 20 ⁇ m, and dried to produce an adhesive film. Until use, the surface of the obtained adhesive layer was protected with a release PET film (protective film). Using a dynamic viscoelasticity measuring device (DVA-200 manufactured by IT Measurement & Control Co., Ltd.), the step temperature was raised in the temperature range of ⁇ 50 to 130 ° C., and the storage elastic modulus was measured in the frequency dispersion mode.
  • DVA-200 dynamic viscoelasticity measuring device manufactured by IT Measurement & Control Co., Ltd.
  • a contact angle meter KSV CAM200 manufactured by KSV Instruments
  • the contact angle of water and diiodomethane to the surface (solid surface) to be bonded to the wafer with the aluminum wiring pattern of the adhesive film was measured, and from the obtained contact angle.
  • the geometric mean method the surface free energy ⁇ , and the dispersion component ( ⁇ sd) and the polar component ( ⁇ sp) at the surface free energy ⁇ were calculated by the above formulas (1) to (3). 2 ⁇ L of water and 3 ⁇ L of diiodomethane were dropped, and the contact angle after 30 seconds of dropping was measured.
  • Examples 2-7, Comparative Examples 1-2 An adhesive film was obtained in the same manner as in Example 1 except that the composition shown in Table 2 was used.
  • FIG. 2 is a top view schematically illustrating an evaluation method of dicing evaluation using a wafer with an aluminum film.
  • a dicing blade ZH05-SD4800N1-70 manufactured by DISCO
  • a blade rotation speed 40000 rpm
  • a feed rate 20 mm / sec
  • the wafer 1 was diced.
  • the wafer cutting depth was set to 100 ⁇ m.
  • the intersection 6 of the wafer incision line is observed with a microscope at 25 locations, and the adhesive film in contact with the incision line is peeled off 4 points (substantially zero), 2 points (several locations), 0 points (occurrence of many) 3
  • a score was assigned at the level, and the total score was scored (0 to 100 pt).
  • a determination was made as follows. ⁇ : 0 to 30 pt ⁇ : 31-60 pt ⁇ : 61-90 pt A: 91-100 pt
  • Dicing evaluation using a wafer with an aluminum wiring pattern Dicing evaluation was performed using a wafer (12 inch size, thickness 100 ⁇ m) on which an aluminum wiring pattern was formed on a scribe line.
  • An adhesive film was bonded to the entire wafer surface using a vacuum laminator (ATM-812 manufactured by Takatori) at 80 ° C. and a vacuum of 100 Pa, and then a dicing blade (ZH05-SD4800N1-70 manufactured by DISCO) was used.
  • Dicing was performed by fully cutting the wafer along the scribe line at a water temperature of 23 ° C., a blade rotation speed of 40000 rpm, and a feed rate of 20 mm / sec. The presence or absence of peeling of the adhesive film was visually observed, and the case where there was a peeled portion was judged as x, and the case where there was no peeled portion was judged as ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Dicing (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
PCT/JP2014/080442 2013-11-19 2014-11-18 半導体接合用接着フィルム WO2015076236A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014557899A JP5799180B1 (ja) 2013-11-19 2014-11-18 半導体接合用接着フィルム
CN201480056218.7A CN105637623B (zh) 2013-11-19 2014-11-18 半导体接合用粘接膜
KR1020167009767A KR20160088291A (ko) 2013-11-19 2014-11-18 반도체 접합용 접착 필름

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013239080 2013-11-19
JP2013-239080 2013-11-19

Publications (1)

Publication Number Publication Date
WO2015076236A1 true WO2015076236A1 (ja) 2015-05-28

Family

ID=53179498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080442 WO2015076236A1 (ja) 2013-11-19 2014-11-18 半導体接合用接着フィルム

Country Status (5)

Country Link
JP (1) JP5799180B1 (ko)
KR (1) KR20160088291A (ko)
CN (1) CN105637623B (ko)
TW (1) TWI646165B (ko)
WO (1) WO2015076236A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038922A1 (ja) * 2015-09-01 2017-03-09 リンテック株式会社 粘着シート
WO2017047183A1 (ja) * 2015-09-16 2017-03-23 古河電気工業株式会社 半導体裏面用フィルム
KR20190118566A (ko) * 2017-02-28 2019-10-18 린텍 가부시키가이샤 점착 시트
JP2020178013A (ja) * 2019-04-17 2020-10-29 日東電工株式会社 ダイシングダイボンドフィルム
JP7447179B2 (ja) 2022-03-29 2024-03-11 リンテック株式会社 ガスバリア性積層体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7479243B2 (ja) 2020-08-14 2024-05-08 株式会社ディスコ チップの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148724A1 (ja) * 2006-06-23 2007-12-27 Hitachi Chemical Company, Ltd. 半導体デバイスの製造方法及び接着フィルム
JP2012059769A (ja) * 2010-09-06 2012-03-22 Nitto Denko Corp 半導体装置用フィルム、及び、半導体装置
JP2012177084A (ja) * 2011-01-31 2012-09-13 Dainippon Printing Co Ltd 耐熱仮着用の粘着剤組成物及び粘着テープ
JP2013209559A (ja) * 2012-03-30 2013-10-10 Furukawa Electric Co Ltd:The 紫外線硬化性半導体デバイス加工用粘着テープ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101140512B1 (ko) * 2007-03-01 2012-04-30 닛토덴코 가부시키가이샤 열경화형 다이본드 필름
JP2009124096A (ja) * 2007-10-23 2009-06-04 Hitachi Chem Co Ltd 粘接着シート
JP4939574B2 (ja) * 2008-08-28 2012-05-30 日東電工株式会社 熱硬化型ダイボンドフィルム
JP2010278334A (ja) 2009-05-29 2010-12-09 Elpida Memory Inc 半導体装置
JP5577640B2 (ja) 2009-07-24 2014-08-27 日立化成株式会社 半導体装置の製造方法
JP2012033637A (ja) * 2010-07-29 2012-02-16 Nitto Denko Corp ダイシングテープ一体型半導体裏面用フィルム及び半導体装置の製造方法
JP4865926B1 (ja) * 2011-06-24 2012-02-01 古河電気工業株式会社 ウェハ加工用テープ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148724A1 (ja) * 2006-06-23 2007-12-27 Hitachi Chemical Company, Ltd. 半導体デバイスの製造方法及び接着フィルム
JP2012059769A (ja) * 2010-09-06 2012-03-22 Nitto Denko Corp 半導体装置用フィルム、及び、半導体装置
JP2012177084A (ja) * 2011-01-31 2012-09-13 Dainippon Printing Co Ltd 耐熱仮着用の粘着剤組成物及び粘着テープ
JP2013209559A (ja) * 2012-03-30 2013-10-10 Furukawa Electric Co Ltd:The 紫外線硬化性半導体デバイス加工用粘着テープ

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038922A1 (ja) * 2015-09-01 2017-03-09 リンテック株式会社 粘着シート
JPWO2017038922A1 (ja) * 2015-09-01 2018-06-14 リンテック株式会社 粘着シート
WO2017047183A1 (ja) * 2015-09-16 2017-03-23 古河電気工業株式会社 半導体裏面用フィルム
JP2017059648A (ja) * 2015-09-16 2017-03-23 古河電気工業株式会社 半導体裏面用フィルム
KR20170048251A (ko) * 2015-09-16 2017-05-08 후루카와 덴키 고교 가부시키가이샤 반도체 이면용 필름
KR101870066B1 (ko) 2015-09-16 2018-06-22 후루카와 덴키 고교 가부시키가이샤 반도체 이면용 필름
KR20190118566A (ko) * 2017-02-28 2019-10-18 린텍 가부시키가이샤 점착 시트
KR102661574B1 (ko) 2017-02-28 2024-04-26 린텍 가부시키가이샤 점착 시트
JP2020178013A (ja) * 2019-04-17 2020-10-29 日東電工株式会社 ダイシングダイボンドフィルム
JP7447179B2 (ja) 2022-03-29 2024-03-11 リンテック株式会社 ガスバリア性積層体

Also Published As

Publication number Publication date
CN105637623B (zh) 2018-11-27
JP5799180B1 (ja) 2015-10-21
JPWO2015076236A1 (ja) 2017-03-16
KR20160088291A (ko) 2016-07-25
TW201525099A (zh) 2015-07-01
TWI646165B (zh) 2019-01-01
CN105637623A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
JP5799180B1 (ja) 半導体接合用接着フィルム
JP4922474B2 (ja) 半導体装置
JP5860231B2 (ja) 電子部品用接着剤
TWI629335B (zh) Semiconductor adhesive
JP2014091744A (ja) アンダーフィル組成物、半導体装置およびその製造方法
JP2007157758A (ja) 半導体用接着フィルム及びこれを用いた半導体装置
JP6438340B2 (ja) 半導体接合用接着フィルム及び半導体装置の製造方法
JP2009256466A (ja) 電子部品用接着剤
JP6460899B2 (ja) 半導体接合用接着剤
JP2008004751A (ja) 半導体装置の製造方法
JP2011192818A (ja) 半導体チップ接合用接着フィルム
WO2015107990A1 (ja) 接着組成物ならびにそれを有する接着フィルム、接着組成物付き基板、半導体装置およびその製造方法
JP5646021B2 (ja) 半導体パッケージ
JP5685030B2 (ja) 電子部品用接着剤
JP5989397B2 (ja) 半導体装置の製造方法及び半導体接合用接着剤
JP5914226B2 (ja) 半導体装置の製造方法及びフリップチップ実装用接着剤
JP2012057039A (ja) 電子部品用接着剤及び半導体装置の製造方法
JP2007184484A (ja) 半導体装置の製造方法
JP6460896B2 (ja) 半導体装置の製造方法
JP2016096305A (ja) 半導体接合用接着剤及び半導体接合用接着フィルム
JP5592820B2 (ja) 半導体チップ実装体の製造方法、積層シート及び半導体チップ実装体
JP2009185132A (ja) 電子部品用接着剤及び電子部品用接着剤の製造方法
JP2014068004A (ja) 半導体装置の製造方法
JP2014116503A (ja) 半導体装置の製造方法
JP2014103313A (ja) 半導体接合用フィルム状接着剤及び半導体装置の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014557899

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167009767

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14864818

Country of ref document: EP

Kind code of ref document: A1