WO2015060293A1 - シリコンウェーハ用研磨液組成物 - Google Patents

シリコンウェーハ用研磨液組成物 Download PDF

Info

Publication number
WO2015060293A1
WO2015060293A1 PCT/JP2014/077924 JP2014077924W WO2015060293A1 WO 2015060293 A1 WO2015060293 A1 WO 2015060293A1 JP 2014077924 W JP2014077924 W JP 2014077924W WO 2015060293 A1 WO2015060293 A1 WO 2015060293A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon wafer
polishing
water
mass
soluble polymer
Prior art date
Application number
PCT/JP2014/077924
Other languages
English (en)
French (fr)
Inventor
内田洋平
西田一博
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN201480057685.1A priority Critical patent/CN105659357B/zh
Priority to EP14856663.1A priority patent/EP3062337A4/en
Priority to KR1020167008351A priority patent/KR101728646B1/ko
Publication of WO2015060293A1 publication Critical patent/WO2015060293A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Definitions

  • the present invention relates to a polishing composition for a silicon wafer, a method for producing a semiconductor substrate using the same, and a method for polishing a silicon wafer.
  • Polishing of silicon wafers is performed in multiple stages for the purpose of improving the quality of silicon wafers.
  • the final polishing performed at the final stage of polishing is a surface defect such as particles, scratches, pits, etc. (LPD) due to suppression of surface roughness (haze) and improvement of wettability (hydrophilization) of the silicon wafer surface after polishing. This is done to reduce defects).
  • LPD surface defect
  • haze surface roughness
  • hydrophilization hydrophilization
  • a polishing liquid composition used for finish polishing a polishing liquid composition for chemical mechanical polishing containing colloidal silica and an alkali compound is known. Further, as a polishing composition for the purpose of improving the haze level, a polishing composition for chemical mechanical polishing containing colloidal silica, hydroxyethyl cellulose (HEC) and polyethylene oxide (PEO) is known (patent). Reference 1).
  • a polishing composition intended to reduce the number of surface defects the concentration of either sodium ions or acetate ions in the polishing composition is obtained by ion exchange of an aqueous polyvinyl alcohol solution.
  • a polishing liquid composition having a thickness of 10 ppb or less is known (Patent Document 2).
  • a polishing composition for improving swell and / or haze a chain hydrocarbon polymer having a long carbon chain structure and a hydroxy lower alkoxy group as a side chain (for example, ethylene oxide-added polyvinyl alcohol)
  • a polishing liquid composition containing Patent Document 3
  • a polishing liquid composition used for planarizing the surface of a semiconductor wafer having a step a polishing liquid composition containing polyvinyl alcohol as a step eliminating agent is known (Patent Document 4).
  • JP 2004-128089 A JP 2008-53414 A Japanese Patent Laid-Open No. 11-140427 WO2011 / 093223
  • polishing liquid composition using HEC uses cellulose, which is a natural product of HEC, water-insoluble matter derived from cellulose is included, and the water-insoluble matter serves as a nucleus and silica particles tend to aggregate.
  • the presence of silica particle aggregates and the water-insoluble matter itself may cause an increase in surface defects (LPD).
  • polishing compositions described in Patent Documents 2 to 4 also sufficiently reduce the surface roughness (haze) and surface defects (LPD) of silicon wafers when polishing using these polishing composition. Can not.
  • a silicon wafer polishing liquid composition and a silicon wafer polishing liquid composition that can achieve both reduction in surface roughness (haze) and reduction in surface defects (LPD) of a silicon wafer are used.
  • a method for manufacturing a semiconductor substrate and a method for polishing a silicon wafer are provided.
  • the polishing composition for a silicon wafer of the present invention contains the following components A to C.
  • Component A Silica particles
  • Component B Nitrogen-containing basic compound
  • Component C The content of silica particles in the polishing composition for water-soluble polymer silicon wafer is 0.01 to 0.5% by mass
  • the water-soluble polymer (component C) includes a structural unit represented by the following general formula (1), and in the water-soluble polymer, the ratio of the number of oxygen atoms derived from a hydroxyl group to the number of oxygen atoms derived from a polyoxyalkylene ( The number of oxygen atoms derived from a hydroxyl group / the number of oxygen atoms derived from polyoxyalkylene) is from 0.8 to 10.
  • R 1 is a methylene group (—CH 2 —) or a bond
  • R 2 , R 3 , R 4 , and R 5 are each independently H (hydrogen atom) ), —OH (hydroxyl group), —CH 2 OH, or polyvinyl alcohol, but R 2 , R 3 , R 4 , and R 5 are all simultaneously H (hydrogen atom), —OH (hydroxyl group), or — It does not become CH 2 OH.
  • the silicon wafer polishing method of the present invention includes a polishing step of polishing the silicon wafer using the silicon wafer polishing composition of the present invention.
  • the method for producing a semiconductor substrate of the present invention includes a polishing step of polishing a silicon wafer using the polishing composition for a silicon wafer of the present invention.
  • the silicon wafer polishing liquid composition and the said silicon wafer polishing liquid composition which can make reduction of the surface roughness (haze) and the reduction
  • a silicon wafer polishing method and a semiconductor substrate manufacturing method can be provided.
  • the content of silica particles in the polishing composition for silicon wafer when the content of silica particles in the polishing composition for silicon wafer is 0.01 to 0.50% by mass, it contains a structural unit represented by the following general formula (1) and is derived from a hydroxyl group.
  • a water-soluble polymer having a ratio of the number of oxygen atoms to the number of oxygen atoms derived from polyoxyalkylene (number of oxygen atoms derived from hydroxyl group / number of oxygen atoms derived from polyoxyalkylene) of 0.8 to 10 is a polishing composition for silicon wafers.
  • polishing liquid composition By reducing the surface roughness (haze) on the surface (polished surface) of a silicon wafer polished with the polishing liquid composition, it is contained in the product (hereinafter sometimes abbreviated as “polishing liquid composition”). And the knowledge that both surface defect (LPD) reduction can be achieved.
  • R 1 is a methylene group (—CH 2 —) or a bond
  • R 2 , R 3 , R 4 , and R 5 are each independently H (hydrogen atom) ), —OH (hydroxyl group), —CH 2 OH, or polyvinyl alcohol, but R 2 , R 3 , R 4 , and R 5 are all simultaneously H (hydrogen atom), —OH (hydroxyl group), or — It does not become CH 2 OH.
  • the water-soluble polymer (component C) contained in the polishing composition contains an alkyleneoxy group that interacts with the silicon wafer in the main chain of one molecule, and a hydroxyl group that is a site that interacts with the silicon wafer in the side chain. Including. Therefore, the water-soluble polymer (component C) is adsorbed on the surface of the silicon wafer to suppress the corrosion of the silicon wafer surface by the nitrogen-containing basic compound, that is, increase in surface roughness (haze), and good wettability. This suppresses the adhesion of particles to the silicon wafer surface, which is thought to be caused by drying of the silicon wafer surface.
  • the wettability of the silicon wafer surface is improved by adsorbing the water-soluble polymer (component C) to the silicon wafer surface, so the polishing uniformity of the silicon wafer surface is improved, and therefore the surface roughness (haze) is reduced. Reduced.
  • the water-soluble polymer (component C) does not contain water-insoluble matter derived from raw materials as contained in HEC, if the water-soluble polymer (component C) is used instead of HEC, the water-insoluble matter itself There is no increase in surface defects (LPD) due to the presence of.
  • both reduction in surface roughness (haze) and reduction in surface defects (LPD) of the silicon wafer are realized. Estimated.
  • the present invention is not limited to these estimations.
  • the polishing composition of the present invention contains silica particles as an abrasive.
  • Specific examples of the silica particles include colloidal silica and fumed silica. Colloidal silica is more preferable from the viewpoint of improving the surface smoothness of the silicon wafer.
  • the usage form of the silica particles is preferably a slurry from the viewpoint of operability.
  • colloidal silica is obtained from a hydrolyzate of alkoxysilane from the viewpoint of preventing contamination of the silicon wafer by alkali metal or alkaline earth metal. It is preferable that Silica particles obtained from the hydrolyzate of alkoxysilane can be produced by a conventionally known method.
  • the average primary particle size of the silica particles contained in the polishing composition of the present invention is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 15 nm or more, and even more preferably 30 nm or more from the viewpoint of ensuring the polishing rate. .
  • the average primary particle diameter of the silica particles is preferably 50 nm or less, preferably 45 nm or less, from the viewpoint of ensuring the polishing rate, reducing the surface roughness (haze) of the silicon wafer, and reducing surface defects (LPD). More preferred is 40 nm or less.
  • the average primary particle diameter is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 15 nm or more, and even more preferably 30 nm or more, from the viewpoint of ensuring the polishing rate.
  • the average primary particle diameter of colloidal silica is preferably 50 nm or less, preferably 45 nm or less, from the viewpoint of ensuring the polishing rate, reducing the surface roughness (haze) of the silicon wafer and reducing surface defects (LPD). More preferred is 40 nm or less.
  • the average primary particle diameter of the silica particles is calculated using a specific surface area S (m 2 / g) calculated by a BET (nitrogen adsorption) method.
  • a specific surface area can be measured by the method as described in an Example, for example.
  • the degree of association of the silica particles is preferably 3.0 or less, from the viewpoints of ensuring the polishing rate and reducing the surface roughness (haze) of the silicon wafer and reducing the surface defects (LPD), and preferably 1.1 to 3 0.0 is more preferable, 1.8 to 2.5 is more preferable, and 2.0 to 2.3 is still more preferable.
  • the shape of the silica particles is preferably a so-called spherical type and a so-called mayu type.
  • the degree of association is 3.0 or less from the viewpoint of ensuring the polishing rate and reducing both the surface roughness (haze) of the silicon wafer and the reduction of surface defects (LPD).
  • 1.1 to 3.0 is more preferable
  • 1.8 to 2.5 is still more preferable
  • 2.0 to 2.3 is even more preferable.
  • the association degree of silica particles is a coefficient representing the shape of silica particles, and is calculated by the following formula.
  • the average secondary particle diameter is a value measured by a dynamic light scattering method, and can be measured using, for example, the apparatus described in the examples.
  • Degree of association average secondary particle size / average primary particle size
  • the method for adjusting the degree of association of the silica particles is not particularly limited.
  • JP-A-6-254383, JP-A-11-214338, JP-A-11-60232, JP-A-2005-060217, A method described in JP-A-2005-060219 or the like can be employed.
  • the content of the silica particles contained in the polishing liquid composition of the present invention is 0.01% by mass or more and preferably 0.07% by mass or more in terms of SiO 2 from the viewpoint of securing the polishing rate of the silicon wafer. 0.10% by mass or more is more preferable. Further, the content of the silica particles contained in the polishing composition of the present invention is 0.50% by mass or less from the viewpoint of coexistence of reduction in surface roughness (haze) of silicon wafer and reduction in surface defects (LPD). 0.30 mass% or less is preferable, and 0.20 mass% or less is more preferable.
  • the polishing composition of the present invention is from the viewpoint of improving the storage stability of the polishing composition, ensuring the polishing rate, and reducing the surface roughness (haze) of the silicon wafer and reducing surface defects (LPD).
  • the water-soluble basic compound is at least one nitrogen-containing basic compound selected from amine compounds and ammonium compounds.
  • water-soluble means having a solubility of 2 g / 100 ml or more in water
  • water-soluble basic compound means a compound that shows basicity when dissolved in water. .
  • Examples of the at least one nitrogen-containing basic compound selected from amine compounds and ammonium compounds include ammonia, ammonium hydroxide, ammonium carbonate, ammonium hydrogen carbonate, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, Monoethanolamine, diethanolamine, triethanolamine, N-methylethanolamine, N-methyl-N, N-diethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, N, N-dibutylethanol Amine, N- ( ⁇ -aminoethyl) ethanolamine, monoisopropanolamine, diisopropanolamine, triisopropanolamine, ethylenediamine, hexamethylenedia Down, piperazine hexahydrate, anhydrous piperazine, 1- (2-aminoethyl) piperazine, N- methylpiperazine, diethylenetriamine, and tetramethylammoni
  • nitrogen-containing basic compounds may be used as a mixture of two or more.
  • the nitrogen-containing basic compound that can be contained in the polishing liquid composition of the present invention both the reduction of the surface roughness (haze) of the silicon wafer and the reduction of surface defects (LPD), the storage stability of the polishing liquid composition Ammonia is more preferable from the viewpoint of improving the property and ensuring the polishing rate.
  • the content of the nitrogen-containing basic compound contained in the polishing liquid composition of the present invention is such that the surface roughness (haze) of the silicon wafer is reduced and the surface defects (LPD) are reduced, and the polishing liquid composition is stored. From the viewpoint of improving stability and ensuring the polishing rate, 0.001% by mass or more is preferable, 0.005% by mass or more is more preferable, 0.007% by mass or more is further preferable, and 0.010% by mass or more is preferable. Even more preferred is 0.012% by weight or more. Further, the content of the nitrogen-containing basic compound is preferably 0.1% by mass or less from the viewpoint of coexistence of reduction of the surface roughness (haze) of the silicon wafer and reduction of surface defects (LPD), and 0.05% by mass. % Or less is more preferable, 0.025 mass% or less is further preferable, 0.018 mass% or less is further more preferable, and 0.014 mass% or less is still more preferable.
  • the polishing composition of the present invention is a water-soluble composition containing a structural unit represented by the following general formula (1) from the viewpoint of coexistence of reduction in surface roughness (haze) of silicon wafer and reduction in surface defects (LPD). Contains polymer (component C).
  • water-soluble means having a solubility of 2 g / 100 ml or more in water.
  • R 1 is a methylene group (—CH 2 —) or a bond
  • R 2 , R 3 , R 4 , and R 5 are each independently H (hydrogen atom) ), —OH (hydroxyl group), —CH 2 OH, or polyvinyl alcohol, but R 2 , R 3 , R 4 , and R 5 are all simultaneously H (hydrogen atom), —OH (hydroxyl group), or — It does not become CH 2 OH.
  • the ratio of the number of oxygen atoms derived from hydroxyl groups to the number of oxygen atoms derived from polyoxyalkylenes (number of oxygen atoms derived from hydroxyl groups / number of oxygen atoms derived from polyoxyalkylenes) From the viewpoint of achieving both reduction in surface roughness (haze) and reduction in surface defects (LPD), it is 0.8 or more, preferably 1.2 or more, more preferably 1.5 or more, and 1.8 or more. Further preferred.
  • the ratio (number of oxygen atoms derived from hydroxyl group / number of oxygen atoms derived from polyoxyalkylene) is 10 or less from the viewpoint of simplicity of synthesis of the water-soluble polymer, but preferably 8.0 or less, and 7 Is preferably 0.0 or less, and more preferably 6.0 or less.
  • R 2 , R 3 , R 4 and R 5 are each independently H (hydrogen atom), —OH (from the viewpoint of reducing the surface roughness and surface defects of the silicon wafer. Hydroxyl group), —CH 2 OH, or polyvinyl alcohol, but any three of R 2 , R 3 , R 4 , and R 5 are H (hydrogen atom), and the remaining one is —OH (hydroxyl group). Or, it is preferably —CH 2 OH, or at least one of R 2 , R 3 , R 4 and R 5 is polyvinyl alcohol, and the rest is H (hydrogen atom).
  • the water-soluble polymer (component C) is a structural unit I represented by the following formula (2) from the viewpoint of coexistence of reduction in surface roughness (haze) and surface defect (LPD) of a silicon wafer,
  • R 1 is a bond
  • R 2 , R 3 , R 4 , and R 5 are each independently H (hydrogen Atom) or polyvinyl alcohol
  • R 2 , R 3 , R 4 , and R 5 are all selected from the structural unit III that is not simultaneously H (hydrogen atom), —OH (hydroxyl group), or —CH 2 OH.
  • It preferably includes at least one structural unit, more preferably includes structural unit I, structural unit II, or structural unit III, and includes polyglycidol, polyguidol derivative, polyglycerin, polyglycerin derivative, and polyvinyl alcohol.
  • Chain and chain It is preferable that it is at least one selected from the group consisting of livinyl alcohol / polyethylene glycol / graft copolymer.
  • polygusidol derivatives examples include poly (1-methylglycidol), poly (1-ethylglycidol), poly (1-propylglycidol), poly (1-dimethylglycidol), poly (1-diethylglycidol), and poly (1-diglycol).
  • polyglycerin derivatives include polyglycerin stearate, polyglycerin laurate, polyglycerin oleate, polyglycerin caprate, carboxylic acid-added polyglycerin, amidated polyglycerin, succinylated polyglycerin, and carbamoylated polyglycerin.
  • the ratio (number of oxygen atoms derived from hydroxyl group / number of oxygen atoms derived from polyoxyalkylene) in polyvinyl alcohol / polyethylene glycol graft copolymer with polyvinyl alcohol as the side chain and polyethylene glycol as the main chain is the result of analysis by NMR Is preferably 0.8 or more, more preferably 1.2 or more, and even more preferably 1.5 or more, from the viewpoint of both reduction of the surface roughness (haze) of the silicon wafer and reduction of surface defects (LPD).
  • the ratio (number of oxygen atoms derived from hydroxyl group / number of oxygen atoms derived from polyoxyalkylene) is preferably 10 or less, more preferably 8.0 or less, from the viewpoint of the simplicity of the synthesis of the graft copolymer. 0 or less is more preferable, and 6.0 or less is even more preferable.
  • the polyvinyl alcohol / polyethylene glycol / graft copolymer includes the structural unit III and a structural unit IV derived from ethylene glycol.
  • the arrangement of these structural units may be block or random.
  • the preferred weight average molecular weight of the water-soluble polymer (component C) depends on the type as follows from the viewpoint of the reduction of the surface roughness (haze) of the silicon wafer and the reduction of surface defects (LPD). Different.
  • the weight average molecular weight of the water-soluble polymer (component C) is reduced in surface roughness (haze) of the silicon wafer and surface defects ( LPD) is preferably 3000 or more, more preferably 10,000 or more, still more preferably 20,000 or more, still more preferably 30,000 or more, and preferably 150,000 or less from the viewpoint of improving the polishing rate. 120,000 or less is more preferable, 100,000 or less is still more preferable, and 80,000 or less is still more preferable.
  • the weight average molecular weight of the water-soluble polymer (component C) is reduced in surface roughness (haze) of silicon wafers and surface defects.
  • (LPD) reduction 500 or more is preferable, 1000 or more is more preferable, 1500 or more is further preferable, 2000 or more is even more preferable, and 50,000 or less is preferable and 40,000 is preferable from the viewpoint of improving the polishing rate.
  • the following is more preferable, 30,000 or less is still more preferable, 20,000 or less is still more preferable, 10,000 or less is still more preferable, and 5000 or less is still more preferable.
  • the weight average molecular weight of the water-soluble polymer (component C) reduces the surface roughness (haze) of the silicon wafer. And 10,000 or more, more preferably 12,000 or more, still more preferably 15,000 or more, and even more preferably 30,000 or more, which improves the polishing rate. From the viewpoint, it is preferably 400,000 or less, more preferably 300,000 or less, still more preferably 150,000 or less, still more preferably 120,000 or less, still more preferably 100,000 or less, and even more preferably 80,000 or less.
  • the content of the water-soluble polymer (component C) contained in the polishing composition of the present invention is 0 from the viewpoint of coexistence of reduction of the surface roughness (haze) of silicon wafer and reduction of surface defects (LPD). 0.001% by mass or more is preferable, 0.002% by mass or more is more preferable, 0.004% by mass or more is further preferable, and 0.007% by mass or more is even more preferable. Further, the content of the water-soluble polymer (component C) contained in the polishing liquid composition of the present invention is from the viewpoint of coexistence of reduction of the surface roughness (haze) and reduction of surface defects (LPD) of the silicon wafer. 0.1 mass% or less is preferable, 0.05 mass% or less is more preferable, 0.035 mass% or less is further preferable, and 0.030 mass% or less is still more preferable.
  • the content of the silica particles (component A) and the water-soluble polymer (the ratio of the content of component C (mass% of component A / mass% of component C)) contained in the polishing liquid composition of the present invention improves the polishing rate.
  • 1 or more is preferable, 3 or more is more preferable, and 5 or more is more preferable, and the ratio (mass% of component A / mass% of component C) is the surface roughness (haze) of the silicon wafer.
  • 38 or less is preferable, 30 or less is more preferable, 25 or less is further preferable, and 20 or less is even more preferable.
  • aqueous medium (component D) examples of the aqueous medium (component D) contained in the polishing composition of the present invention include water such as ion-exchanged water and ultrapure water, or a mixed medium of water and a solvent.
  • a miscible solvent for example, an alcohol such as ethanol
  • the aqueous medium ion-exchanged water or ultrapure water is more preferable, and ultrapure water is more preferable.
  • the aqueous medium (component D) is a mixed medium of water and a solvent
  • the ratio of water to the entire mixed medium as component D is not particularly limited, but is 95% by mass from the viewpoint of economy. The above is preferable, 98 mass% or more is more preferable, and substantially 100 mass% is still more preferable.
  • the content of the aqueous medium in the polishing liquid composition of the present invention is not particularly limited, and may be the remainder of components A to C and optional components described later.
  • the pH at 25 ° C. of the polishing composition of the present invention is preferably 8.0 or more, more preferably 9.0 or more, still more preferably 9.5 or more, from the viewpoint of ensuring the polishing rate. 0 or less is preferable, 11.5 or less is more preferable, and 11.0 or less is still more preferable. Adjustment of pH can be performed by adding a nitrogen-containing basic compound (component B) and / or a pH adjuster as needed.
  • the pH at 25 ° C. can be measured using a pH meter (Toa Denpa Kogyo Co., Ltd., HM-30G), and is a value one minute after the electrode is immersed in the polishing composition.
  • a water-soluble polymer compound (component E) other than the water-soluble polymer compound (component C), a pH adjuster, and a preservative are added as long as the effects of the present invention are not hindered.
  • Alcohols, chelating agents, anionic surfactants, and at least one optional component selected from nonionic surfactants may be included.
  • Water-soluble polymer compound (component E) In the polishing composition of the present invention, from the viewpoint of coexistence of reduction of surface roughness (haze) of silicon wafer and reduction of surface defects (LPD), water-soluble high-molecular compounds other than the water-soluble polymer compound (component C) are used. A molecular compound (component E) may be contained.
  • This water-soluble polymer compound (component E) is a polymer compound having a hydrophilic group, and the weight average molecular weight of the water-soluble polymer compound (component E) is to ensure the polishing rate and reduce the surface defects of the silicon wafer. From a viewpoint, 10,000 or more are preferable and 100,000 or more are more preferable.
  • Examples of the monomer that is a supply source constituting the component E include monomers having a water-soluble group such as an amide group, a hydroxyl group, a carboxyl group, a carboxylic acid ester group, and a sulfonic acid group.
  • Examples of such a water-soluble polymer compound (component E) include polyamide, poly (N-acylalkylenimine), cellulose derivatives, polyvinyl alcohol, polyethylene oxide and the like.
  • Examples of the polyamide include polyvinyl pyrrolidone, polyacrylamide, polyoxazoline, polydimethylacrylamide, polydiethylacrylamide, polyisopropylacrylamide, polyhydroxyethylacrylamide and the like.
  • poly (N-acylalkylenimine) examples include poly (N-acetylethyleneimine), poly (N-propionylethyleneimine), poly (N-caproylethyleneimine), poly (N-benzoylethyleneimine), poly (N N-nonadezoylethyleneimine), poly (N-acetylpropyleneimine), poly (N-butionylethyleneimine) and the like.
  • cellulose derivative examples include carboxymethyl cellulose, hydroxyethyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, hydroxyethyl ethyl cellulose, and carboxymethyl ethyl cellulose.
  • These water-soluble polymer compounds may be used in a mixture of two or more at any ratio.
  • pH adjuster examples include acidic compounds.
  • the acidic compound include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid, and organic acids such as acetic acid, oxalic acid, succinic acid, glycolic acid, malic acid, citric acid and benzoic acid.
  • preservatives examples include benzalkonium chloride, benzethonium chloride, 1,2-benzisothiazolin-3-one, (5-chloro-) 2-methyl-4-isothiazolin-3-one, hydrogen peroxide, or hypochlorite Examples include acid salts.
  • Alcohols examples include methanol, ethanol, propanol, butanol, isopropyl alcohol, 2-methyl-2-propanool, ethylene glycol, propylene glycol, polyethylene glycol, glycerin and the like.
  • the alcohol content in the polishing composition of the present invention is preferably 0.1% by mass to 5% by mass.
  • Chelating agents include: ethylenediaminetetraacetic acid, sodium ethylenediaminetetraacetate, nitrilotriacetic acid, sodium nitrilotriacetate, ammonium nitrilotriacetate, hydroxyethylethylenediaminetriacetic acid, sodium hydroxyethylethylenediaminetriacetate, triethylenetetraminehexaacetic acid, triethylenetetramine Examples include sodium hexaacetate.
  • the content of the chelating agent in the polishing composition of the present invention is preferably 0.01 to 1% by mass.
  • anionic surfactant examples include fatty acid soaps, carboxylates such as alkyl ether carboxylates, sulfonates such as alkylbenzene sulfonates and alkylnaphthalene sulfonates, higher alcohol sulfates, alkyl ether sulfates. And sulfate ester salts such as alkyl phosphate esters and the like.
  • Nonionic surfactants include polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbit fatty acid ester, polyoxyethylene glycerin fatty acid ester, polyoxyethylene fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl phenyl ether, Examples include polyethylene glycol types such as oxyalkylene (hardened) castor oil, polyhydric alcohol types such as sucrose fatty acid esters and alkylglycosides, and fatty acid alkanolamides.
  • the polishing liquid composition of this invention is preserve
  • the concentrate may be used after appropriately diluted with the above-mentioned aqueous medium as necessary.
  • the concentration factor is not particularly limited as long as the concentration at the time of polishing after dilution can be secured, but it is preferably 2 times or more, more preferably 10 times or more, from the viewpoint of further reducing the production and transportation costs.
  • the ratio is more preferably double or more, still more preferably 30 or more, more preferably 100 or less, more preferably 80 or less, still more preferably 60 or less, and even more preferably 50 or less.
  • the content of silica particles (component A) in the concentrated liquid is preferably 2% by mass or more from the viewpoint of reducing production and transportation costs in terms of SiO 2. 4 mass% or more is more preferable, and 6 mass% or more is still more preferable.
  • the content of silica particles in the concentrate is preferably 40% by mass or less, more preferably 35% by mass or less, still more preferably 20% by mass or less, and further preferably 15% by mass or less from the viewpoint of improving storage stability. Even more preferred is 9% by weight or less.
  • the content of the nitrogen-containing basic compound (component B) in the concentrated liquid is preferably 0.02% by mass or more from the viewpoint of reducing production and transportation costs. 0.05 mass% or more is more preferable, and 0.1 mass% or more is still more preferable. Further, the content of the nitrogen-containing basic compound (component B) in the concentrate is preferably 5% by mass or less, more preferably 2% by mass or less, and still more preferably 1% by mass or less from the viewpoint of improving storage stability. .
  • the content of the water-soluble polymer compound (component C) in the concentrated liquid is preferably 0.005% by mass or more from the viewpoint of reducing production and transportation costs. 0.01 mass% or more is more preferable, 0.02 mass% or more is further preferable, 0.05 mass% or more is still more preferable, and 0.1 mass% or more is still more preferable. Further, the content of the water-soluble polymer compound (component C) in the concentrate is preferably 5% by mass or less, more preferably 3% by mass or less, and further preferably 2% by mass or less from the viewpoint of improving storage stability. Preferably, 1.5 mass% or less is still more preferable.
  • the pH of the concentrated liquid at 25 ° C. is preferably 8.0 or higher, more preferably 9.0 or higher, and even more preferably 9.5 or higher. 12.0 or less is preferable, 11.5 or less is more preferable, and 11.0 or less is still more preferable.
  • silica particles component A
  • nitrogen-containing basic compound component B
  • water-soluble polymer compound component C
  • It can be prepared by mixing an aqueous medium (component D) and optional components as required.
  • Silica particles can be dispersed in an aqueous medium using, for example, a stirrer such as a homomixer, a homogenizer, an ultrasonic disperser, a wet ball mill, or a bead mill.
  • a stirrer such as a homomixer, a homogenizer, an ultrasonic disperser, a wet ball mill, or a bead mill.
  • coarse particles generated by aggregation of silica particles or the like are contained in an aqueous medium, it is preferable to remove the coarse particles by centrifugation or filtration using a filter.
  • the dispersion of the silica particles in the aqueous medium is preferably performed in the presence of a water-soluble polymer compound (component C).
  • a silicon wafer polishing additive composition containing a water-soluble polymer compound (component C) and an aqueous medium (component D)
  • the silicon wafer polishing additive composition silica particles
  • a mixture of the silicon wafer polishing additive composition and silica particles is preferably diluted with an aqueous medium (component D).
  • the polishing composition of the present invention is used, for example, in a silicon wafer polishing method including a polishing step for polishing a silicon wafer and a polishing step for polishing a silicon wafer in the process of manufacturing a semiconductor substrate.
  • a lapping (rough polishing) process for planarizing a silicon wafer obtained by slicing a silicon single crystal ingot into a thin disk shape, and etching the lapped silicon wafer Thereafter, there is a finish polishing step for mirror-finishing the silicon wafer surface.
  • the polishing composition of the present invention is more preferably used in the above-described finish polishing step.
  • the semiconductor substrate manufacturing method and the silicon wafer polishing method may include a dilution step of diluting the polishing composition (concentrate) of the present invention before the polishing step of polishing the silicon wafer.
  • An aqueous medium (component D) may be used as the diluent.
  • the concentrated solution diluted in the dilution step is, for example, from 2 to 40% by mass of component A, 0.02 to 5% by mass of component B, and component C from the viewpoint of reducing manufacturing and transportation costs and improving storage stability. Is preferably contained in an amount of 0.005 to 5% by mass.
  • the present invention further discloses the following ⁇ 1> to ⁇ 15>.
  • the ratio of the number of oxygen atoms derived from hydroxyl groups to the number of oxygen atoms derived from polyoxyalkylenes (number of oxygen atoms derived from hydroxyl groups / number of oxygen atoms derived from polyoxyalkylenes) in the water-soluble polymer containing units is 0.8.
  • R 1 is a methylene group (—CH 2 —) or a bond
  • R 2 , R 3 , R 4 , and R 5 are each independently H (hydrogen atom) ), —OH (hydroxyl group), —CH 2 OH, or polyvinyl alcohol, but R 2 , R 3 , R 4 , and R 5 are all simultaneously H (hydrogen atom), —OH (hydroxyl group), or — It does not become CH 2 OH.
  • the water-soluble polymer is a polyvinyl alcohol / polyethylene glycol / graft copolymer in which the polyvinyl alcohol / polyethylene glycol / graft copolymer has polyvinyl alcohol as a side chain and polyethylene glycol as a main chain.
  • the polishing liquid composition for silicon wafers is a polyvinyl alcohol / polyethylene glycol / graft copolymer in which the polyvinyl alcohol / polyethylene glycol / graft copolymer has polyvinyl alcohol as a side chain and polyethylene glycol as a main chain.
  • the weight average molecular weight of the polyvinyl alcohol / polyethylene glycol / graft copolymer is preferably 10,000 or more, more preferably 12,000 or more, still more preferably 15,000 or more, still more preferably 30,000 or more, 400,000 or less is preferred, 300,000 or less is more preferred, 150,000 or less is more preferred, 120,000 or less is even more preferred, 100,000 or less is even more preferred, and 80,000 or less is even more preferred, ⁇ 2> or ⁇ 3>
  • the weight average molecular weight of the polyglycidol and the polyguidol derivative is preferably 3,000 or more, more preferably 10,000 or more, further preferably 20,000 or more, still more preferably 30,000 or more, preferably 150,000 or less, 120,000
  • the weight average molecular weight of the polyglycerol and the polyglycerol derivative is preferably 500 or more, more preferably 1000 or more, further preferably 1500 or more, still more preferably 2000 or more, preferably 50,000 or less, and preferably 40,000 or less. More preferably, 30,000 or less is more preferable, 20,000 or less is still more preferable, 10,000 or less is still more preferable, 5000 or less is still more preferable, The polishing composition for silicon wafers as described in said ⁇ 7>.
  • the mass ratio of the silica particles to the water-soluble polymer (the mass of the silica particles / the mass of the water-soluble polymer) is preferably 1 or more, more preferably 3 or more, and still more preferably 5 or more, 38
  • the ratio (number of oxygen atoms derived from hydroxyl group / number of oxygen atoms derived from polyoxyalkylene) is 0.8 or more, preferably 1.2 or more, more preferably 1.5 or more, and 1.8 or more.
  • the polishing composition for a silicon wafer according to any one of ⁇ 1> to ⁇ 9>.
  • the content of silica particles contained in the silicon wafer polishing composition is 0.01% by mass or more, preferably 0.07% by mass or more, and 0.10% by mass or more in terms of SiO 2.
  • the content of the water-soluble polymer (component C) contained in the silicon wafer polishing composition is preferably 0.001% by mass or more, more preferably 0.002% by mass or more, and 0.004. % By mass or more is more preferable, 0.007% by mass or more is further more preferable, 0.1% by mass or less is preferable, 0.05% by mass or less is more preferable, 0.035% by mass or less is further preferable, and 0.030%.
  • a polishing method comprising a polishing step of polishing a silicon wafer using the silicon wafer polishing composition according to any one of ⁇ 1> to ⁇ 12>.
  • a method for producing a semiconductor substrate comprising a polishing step of polishing a silicon wafer using the polishing composition for a silicon wafer according to any one of ⁇ 1> to ⁇ 12>.
  • Polymer ANo.2 Polyglycerol (trade name: Polyglycerol X, weight average molecular weight 3000, manufactured by Daicel)
  • Polymer ANo.3 10 g of polyethylene glycol (weight average molecular weight 2000, Wako Pure Chemical Industries) was introduced into the polymerization vessel and heated to 80 ° C. with stirring under a gentle nitrogen flow. While stirring polyethylene glycol and maintaining at 80 ° C., 36 g of vinyl acetate was dropped into the polymerization vessel over 3 hours, and at the same time, a solution in which 0.14 g of tert-butyl perpivalate was added to 5 g of methanol was similarly added. The solution was dropped into the polymerization vessel over 3 hours. After these additions were complete, the mixture was stirred at 80 ° C. for 2 hours. After cooling, the obtained polymer was dissolved in 100 ml of methanol.
  • freeze-drying was performed to obtain a polyvinyl alcohol / polyethylene glycol / graft copolymer having a ratio of the degree of polymerization of PEG and PVA of 1 to 1.8, which was a colorless powder and calculated from the analysis result by NMR.
  • Polymer A No. 4 10 g of polyethylene glycol (weight average molecular weight 1000, Wako Pure Chemical Industries) was introduced into a polymerization vessel and heated to 80 ° C. with stirring under a gentle nitrogen flow. While stirring polyethylene glycol and maintaining at 80 ° C., 60 g of vinyl acetate was dropped into the polymerization vessel over 3 hours, and at the same time, a solution obtained by adding 0.24 g of tert-butyl perpivalate to 5 g of methanol was similarly added. The solution was dropped into the polymerization vessel over 3 hours. After these additions were complete, the mixture was stirred at 80 ° C. for 2 hours. After cooling, the obtained polymer was dissolved in 100 ml of methanol.
  • Polymer A No. 5 10 g of polyethylene glycol (weight average molecular weight 1000, Wako Pure Chemical Industries) was introduced into a polymerization vessel and heated to 80 ° C. with stirring under a gentle nitrogen flow. While stirring polyethylene glycol at 80 ° C., 140 g of vinyl acetate was dropped into the polymerization vessel over 3 hours, and at the same time, a solution of 0.56 g of tert-butyl perpivalate in 5 g of methanol was similarly added. The solution was dropped into the polymerization vessel over 3 hours. After these additions were complete, the mixture was stirred at 80 ° C. for 2 hours. After cooling, the obtained polymer was dissolved in 100 ml of methanol.
  • freeze-drying was performed to obtain a polyvinyl alcohol / polyethylene glycol / graft copolymer having a ratio of the degree of polymerization of PEG and PVA calculated from NMR of 1 to 7 as a colorless powder.
  • Polymer ANo.6 Polyvinyl alcohol / polyethylene glycol graft copolymer (trade name: Kollicoat IR, weight average molecular weight 26500, manufactured by BASF)
  • Polymer A No. 7 10 g of polyethylene glycol (weight average molecular weight 6000, Wako Pure Chemical Industries) was introduced into the polymerization vessel and heated to 80 ° C. with stirring under a gentle nitrogen flow. While stirring polyethylene glycol and maintaining at 80 ° C., 86 g of vinyl acetate was dropped into the polymerization vessel over 3 hours, and at the same time, a solution in which 0.34 g of tert-butyl perpivalate was added to 5 g of methanol was similarly added. The solution was dropped into the polymerization vessel over 3 hours. After these additions were complete, the mixture was stirred at 80 ° C. for 2 hours. After cooling, the obtained polymer was dissolved in 100 ml of methanol.
  • freeze-drying was performed to obtain a polyvinyl alcohol / polyethylene glycol / graft copolymer having a colorless powder and a ratio of the degree of polymerization of PEG and PVA calculated from NMR of 1 to 4.3.
  • Polymer A No. 8 10 g of polyethylene glycol (weight average molecular weight 20000, Wako Pure Chemical Industries) was introduced into a polymerization vessel and heated to 80 ° C. with stirring under a gentle nitrogen flow. While stirring polyethylene glycol and maintaining at 80 ° C., 22 g of vinyl acetate was dropped into the polymerization vessel over 3 hours, and at the same time, a solution obtained by adding 0.09 g of tert-butyl perpivalate to 5 g of methanol was similarly added. The solution was dropped into the polymerization vessel over 3 hours. After these additions were complete, the mixture was stirred at 80 ° C. for 2 hours. After cooling, the obtained polymer was dissolved in 100 ml of methanol.
  • Polymer A No. 9 10 g of polyethylene glycol (weight average molecular weight 20000, Wako Pure Chemical Industries) was introduced into a polymerization vessel and heated to 80 ° C. with stirring under a gentle nitrogen flow. While stirring polyethylene glycol and maintaining at 80 ° C., 60 g of vinyl acetate was dropped into the polymerization vessel over 3 hours, and at the same time, a solution obtained by adding 0.24 g of tert-butyl perpivalate to 5 g of methanol was similarly added. The solution was dropped into the polymerization vessel over 3 hours. After these additions were complete, the mixture was stirred at 80 ° C. for 2 hours. After cooling, the obtained polymer was dissolved in 100 ml of methanol.
  • Polymer ANo.10 10 g of polyethylene glycol (weight average molecular weight 20000, Wako Pure Chemical Industries) was introduced into a polymerization vessel and heated to 80 ° C. with stirring under a gentle nitrogen flow. While stirring polyethylene glycol and maintaining at 80 ° C., 80 g of vinyl acetate was dropped into the polymerization vessel over 3 hours, and at the same time, a solution obtained by adding 0.32 g of tert-butyl perpivalate to 5 g of methanol was similarly added. The solution was dropped into the polymerization vessel over 3 hours. After these additions were complete, the mixture was stirred at 80 ° C. for 2 hours. After cooling, the obtained polymer was dissolved in 100 ml of methanol.
  • Polymer ANo.11 10 g of polyethylene glycol (weight average molecular weight 20000, Wako Pure Chemical Industries) was introduced into a polymerization vessel and heated to 80 ° C. with stirring under a gentle nitrogen flow. While stirring polyethylene glycol at 80 ° C., 156 g of vinyl acetate was dropped into the polymerization vessel over 3 hours, and at the same time, a solution of 0.62 g of tert-butyl perpivalate in 5 g of methanol was similarly added. The solution was dropped into the polymerization vessel over 3 hours. After these additions were complete, the mixture was stirred at 80 ° C. for 2 hours. After cooling, the obtained polymer was dissolved in 100 ml of methanol.
  • Polymer A No.12 10 g of polyethylene glycol (weight average molecular weight 40000, Wako Pure Chemical Industries) was introduced into the polymerization vessel and heated to 80 ° C. with stirring under a gentle stream of nitrogen. While stirring polyethylene glycol and maintaining at 80 ° C., 80 g of vinyl acetate was dropped into the polymerization vessel over 3 hours, and at the same time, a solution obtained by adding 0.32 g of tert-butyl perpivalate to 5 g of methanol was similarly added. The solution was dropped into the polymerization vessel over 3 hours. After these additions were complete, the mixture was stirred at 80 ° C. for 2 hours. After cooling, the obtained polymer was dissolved in 100 ml of methanol.
  • Polymer ANo.13 10 g of polyethylene glycol (weight average molecular weight 80000, Meisei Chemical Industries) was introduced into a polymerization vessel and heated to 80 ° C. with stirring under a gentle nitrogen flow. While stirring polyethylene glycol and maintaining at 80 ° C., 80 g of vinyl acetate was dropped into the polymerization vessel over 3 hours, and at the same time, a solution obtained by adding 0.32 g of tert-butyl perpivalate to 5 g of methanol was similarly added. The solution was dropped into the polymerization vessel over 3 hours. After these additions were complete, the mixture was stirred at 80 ° C. for 2 hours. After cooling, the obtained polymer was dissolved in 100 ml of methanol.
  • Polymer A No.14 20 g of polyethylene glycol (weight average molecular weight 6000, Wako Pure Chemical Industries) was introduced into a polymerization vessel and heated to 80 ° C. with stirring under a gentle nitrogen flow. While stirring polyethylene glycol and maintaining at 80 ° C., 20 g of vinyl acetate was dropped into the polymerization vessel over 3 hours, and at the same time, a solution obtained by adding 0.08 g of tert-butyl perpivalate to 1 g of methanol was similarly added. The solution was dropped into the polymerization vessel over 3 hours. After these additions were complete, the mixture was stirred at 80 ° C. for 2 hours. After cooling, the obtained polymer was dissolved in 100 ml of methanol.
  • freeze-drying was performed to obtain a polyvinyl alcohol / polyethylene glycol / graft copolymer having a ratio of the degree of polymerization of PEG and PVA calculated from NMR of 1 to 0.5 as a colorless powder.
  • Polymer A No.15 20 g of polyethylene glycol (weight average molecular weight 80000, Meisei Chemical Industries) was introduced into the polymerization vessel and heated to 80 ° C. with stirring under a gentle stream of nitrogen. While stirring polyethylene glycol and maintaining at 80 ° C., 20 g of vinyl acetate was dropped into the polymerization vessel over 3 hours, and at the same time, a solution obtained by adding 0.08 g of tert-butyl perpivalate to 1 g of methanol was similarly added. The solution was dropped into the polymerization vessel over 3 hours. After these additions were complete, the mixture was stirred at 80 ° C. for 2 hours. After cooling, the obtained polymer was dissolved in 100 ml of methanol.
  • freeze-drying was performed to obtain a polyvinyl alcohol / polyethylene glycol / graft copolymer having a ratio of the degree of polymerization of PEG and PVA calculated from NMR of 1 to 0.5 as a colorless powder.
  • Polymer ANo. 1 is polyglycidol; in the general formula (1), R 1 is a bond, R 2 , R 3 , and R 4 are H (hydrogen atom), and R 5 is —CH 2 OH. It is.
  • Polymer ANo. 2 is polyglycerin, and in the formula (1), R 1 is a methylene group (—CH 2 —), R 2 is —OH (hydroxyl group), R 3 , R 4 , and R 5 Is H (hydrogen atom).
  • Polymer ANo. 3 to 15 are polyvinyl alcohol / polyethylene glycol / graft copolymers having polyethylene glycol as the main chain and polyvinyl alcohol as the side chain.
  • the ratio (number of oxygen atoms derived from hydroxyl group / number of oxygen atoms derived from polyoxyalkylene) was calculated using these values.
  • the ratio (the number of oxygen atoms derived from a hydroxyl group / the number of oxygen atoms derived from a polyoxyalkylene) is approximately 1 due to its structure.
  • the specific surface area of the abrasive is subjected to the following [pretreatment], and then approximately 0.1 g of a measurement sample is accurately weighed to 4 digits after the decimal point in a measurement cell, and immediately under the measurement at a specific temperature of 110 ° C. for 30 minutes. After drying, the surface area was measured by a nitrogen adsorption method (BET method) using a specific surface area measuring device (Micromeritic automatic specific surface area measuring device Flowsorb III 2305, manufactured by Shimadzu Corporation).
  • Preprocessing (A) The slurry-like abrasive is adjusted to pH 2.5 ⁇ 0.1 with an aqueous nitric acid solution. (B) A slurry-like abrasive adjusted to pH 2.5 ⁇ 0.1 is placed in a petri dish and dried in a hot air dryer at 150 ° C. for 1 hour. (C) After drying, the obtained sample is finely ground in an agate mortar. (D) The pulverized sample is suspended in ion exchange water at 40 ° C. and filtered through a membrane filter having a pore size of 1 ⁇ m. (E) The filtrate on the filter is washed 5 times with 20 g of ion exchange water (40 ° C.).
  • the average secondary particle diameter (nm) of the abrasive is such that the abrasive is added to ion-exchanged water so that the concentration of the abrasive is 0.25% by mass, and then the obtained aqueous solution is disposable sizing cuvette (polystyrene 10 mm).
  • the cell was measured up to a height of 10 mm from the bottom and measured using a dynamic light scattering method (device name: Zetasizer Nano ZS, manufactured by Sysmex Corporation).
  • polishing liquid composition Silica particles (colloidal silica, average primary particle size 35 nm, average secondary particle size 70 nm, association degree 2), water-soluble polymer (polymer A), 28% by mass ammonia water (Kishida Chemical) (Special grade reagent), ion-exchanged water, and polymer B as required are stirred and mixed, and the polishing liquid compositions of Examples 1 to 17 and Comparative Examples 1 to 11 (both are concentrated solutions, pH 10.6 ⁇ ). 0.1 (25 ° C.)). The remainder excluding silica particles, water-soluble polymer (polymer A), ammonia, and polymer B is ion-exchanged water.
  • content of each component in Table 1 is a value about the polishing liquid composition obtained by diluting the concentrated liquid 40 times, and content of the silica particles is a SiO 2 equivalent concentration.
  • polishing composition (pH 10.6 ⁇ 0.1 (25 ° C)) obtained by diluting the polishing composition (concentrated solution) 40 times with ion-exchanged water is filtered immediately before polishing (compact cartridge filter). Filtered with MCP-LX-C10S Advantech Co., Ltd. and under the following polishing conditions, the following silicon wafer (silicon single-sided mirror wafer with a diameter of 200 mm (conduction type: P, crystal orientation: 100, resistivity 0.1 ⁇ ⁇ cm) Before the final polishing, the silicon wafer was subjected to rough polishing in advance using a commercially available polishing liquid composition. The rough polishing was finished and the final polishing was performed. The surface roughness (haze) of the provided silicon wafer was 2.680 ppm, which was measured using the Surfscan SP1-DLS (trade name) manufactured by KLA Tencor. It is a value in the oblique incident channel (DWO).
  • Polishing machine Single-sided 8-inch polishing machine GRIND-X SPP600s (manufactured by Okamoto) Polishing pad: Suede pad (Toray Cortex, Asker hardness 64, thickness 1.37mm, nap length 450um, opening diameter 60um) Silicon wafer polishing pressure: 100 g / cm 2 Surface plate rotation speed: 60 rpm Polishing time: 5 minutes Supply rate of polishing liquid composition: 150 g / cm 2 Polishing liquid composition temperature: 23 ° C. Carrier rotation speed: 60rpm
  • the silicon wafer was subjected to ozone cleaning and dilute hydrofluoric acid cleaning as follows.
  • ozone cleaning an aqueous solution containing 20 ppm ozone was sprayed from a nozzle toward the center of a silicon wafer rotating at 600 rpm at a flow rate of 1 L / min for 3 minutes. At this time, the temperature of the ozone water was normal temperature.
  • dilute hydrofluoric acid cleaning was performed.
  • dilute hydrofluoric acid cleaning an aqueous solution containing 0.5% by mass of ammonium hydrogen fluoride (special grade: Nacalai Tex Co., Ltd.) was sprayed from a nozzle toward the center of a silicon wafer rotating at 600 rpm at a flow rate of 1 L / min for 6 seconds.
  • the above ozone cleaning and dilute hydrofluoric acid cleaning were performed as a set, for a total of 2 sets, and finally spin drying was performed. In the spin drying, the silicon wafer was rotated at 1500 rpm.
  • a particle size measuring apparatus used for measuring the dispersed particle size a particle size distribution measuring instrument “Zetasizer Nano ZS” manufactured by Sysmex Corporation based on the principle of the photon correlation method (dynamic light scattering method) was used.
  • 1.2 mL of the polishing liquid composition was sampled into a Disposable Sizing Cuvette (polystyrene 10 mm cell) as a measurement liquid, and placed in a measurement unit, and the volume median particle diameter (D50) was measured as a dispersed particle diameter.
  • D50 volume median particle diameter
  • a silicon wafer cut to 40 ⁇ 40 mm square was immersed in a 1% by mass dilute hydrofluoric acid aqueous solution for 2 minutes to remove the oxide film, and then instantaneously immersed in ion-exchanged water, rinsed, and air blow dried.
  • the silicon wafer was placed in a plastic container, and 20 g of the polishing composition was added to the plastic container and the lid was covered.
  • the silicon wafer was immersed in the polishing composition at 40 ° C. for 24 hours, then immersed in ion-exchanged water, rinsed, and air blow dried.
  • the amount of weight loss before and after immersion of the air blow dried silicon wafer in the polishing composition was defined as the amount of corrosion.
  • the polishing liquid composition of the present invention is useful as a polishing liquid composition used in various semiconductor substrate manufacturing processes, and is particularly useful as a polishing liquid composition for finish polishing of silicon wafers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

本発明のシリコンウェーハ用研磨液組成物は、シリカ粒子を0.01~0.5質量%と、含窒素塩基性化合物と、水溶性高分子とを含み、水溶性高分子は、下記一般式(1)で表される構成単位を含み、水溶性高分子において、水酸基由来の酸素原子数とポリオキシアルキレン由来の酸素原子数の比(水酸基由来の酸素原子数/ポリオキシアルキレン由来の酸素原子数)が、0.8~10である。水溶性高分子は、好ましくは、ポリグリシドール、ポリグシドール誘導体、ポリグリセリン、ポリグリセリン誘導体、ポリビニルアルコールを側鎖とするポリビニルアルコール・ポリエチレングリコール・グラフトコポリマーからなる群から選ばれる少なくとも1種である。

Description

シリコンウェーハ用研磨液組成物
 本発明はシリコンウェーハ用研磨液組成物及びこれを用いた半導体基板の製造方法並びにシリコンウェーハの研磨方法に関する。
 近年、半導体メモリの高記録容量化に対する要求の高まりから半導体装置のデザインルールは微細化が進んでいる。このため半導体装置の製造過程で行われるフォトリソグラフィーにおいて焦点深度は浅くなり、シリコンウェーハ(ベアウェーハ)の欠陥低減や平滑性に対する要求はますます厳しくなっている。
 シリコンウェーハの品質を向上する目的で、シリコンウェーハの研磨は多段階で行われている。特に研磨の最終段階で行われる仕上げ研磨は、表面粗さ(ヘイズ)の抑制と研磨後のシリコンウェーハ表面のぬれ性向上(親水化)によるパーティクルやスクラッチ、ピット等の表面欠陥(LPD:Light point defects)の抑制とを目的として行われている。
 仕上げ研磨に用いられる研磨液組成物としては、コロイダルシリカ、及びアルカリ化合物を含む化学的機械研磨用の研磨液組成物が知られている。さらにヘイズレベルを改善することを目的とした研磨液組成物として、コロイダルシリカ、ヒドロキシエチルセルロース(HEC)及びポリエチレンオキサイド(PEO)を含む化学的機械研磨用の研磨液組成物が知られている(特許文献1)。
 一方、表面欠陥(LPD)の数を低減することを目的とした研磨液組成物として、ポリビニルアルコール水溶液をイオン交換することで、研磨液組成物中のナトリウムイオン及び酢酸イオンのいずれか一方の濃度を10ppb以下とした研磨液組成物が知られている(特許文献2)。また、うねり及び/又はヘイズ改善を目的とした研磨液組成物として、炭素長鎖構造を有し側鎖としてヒドロキシ低級アルコキシ基を有する鎖状炭化水素系高分子(例えば、エチレンオキサイド付加ポリビニルアルコール)を含有する研磨液組成物が知られている(特許文献3)。また、段差を有する半導体ウエーハの表面の平坦化に使用される研磨液組成物として、段差解消剤としてポリビニルアルコール類を含む研磨液組成物が知られている(特許文献4)。
特開2004―128089号公報 特開2008―53414号公報 特開平11-140427号公報 WO2011/093223
 しかし、HECを用いる研磨液組成物は、HECが天然物であるセルロースを原料としているため、セルロース由来の水不溶物が含まれ、当該水不溶物が核となってシリカ粒子が凝集しやすい。そして、シリカ粒子の凝集体や当該水不溶物自体の存在によって、表面欠陥(LPD)の増大を生じさせる場合がある。
 また、特許文献2~4に記載の研磨液組成物についても、これらの研磨液組成物を用いた研磨では、シリコンウェーハの表面粗さ(ヘイズ)と表面欠陥(LPD)の低減を十分に両立できない。
 そこで、本発明では、シリコンウェーハの、表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減とを両立できる、シリコンウェーハ用研磨液組成物、及び当該シリコンウェーハ用研磨液組成物を用いた半導体基板の製造方法、並びにシリコンウェーハの研磨方法を提供する。
 本発明のシリコンウェーハ用研磨液組成物は、下記成分A~成分Cを含有する。
(成分A)シリカ粒子
(成分B)含窒素塩基性化合物
(成分C)水溶性高分子
シリコンウェーハ用研磨液組成物におけるシリカ粒子の含有量は0.01~0.5質量%であり、前記水溶性高分子(成分C)は、下記一般式(1)で表される構成単位を含み、前記水溶性高分子において、水酸基由来の酸素原子数とポリオキシアルキレン由来の酸素原子数の比(水酸基由来の酸素原子数/ポリオキシアルキレン由来の酸素原子数)が、0.8~10である。
Figure JPOXMLDOC01-appb-C000002
但し、上記一般式(1)中、R1は、メチレン基(―CH2―)又は結合手であり、R2、R3、R4、R5は、それぞれ独立して、H(水素原子)、―OH(水酸基)、―CH2OH、又はポリビニルアルコールであるが、R2、R3、R4、R5が各々すべて同時にはH(水素原子)、―OH(水酸基)、又は―CH2OHとはならない。
 本発明のシリコンウェーハの研磨方法は、本発明のシリコンウェーハ用研磨液組成物を用いてシリコンウェーハを研磨する研磨工程を含む。
 本発明の半導体基板の製造方法は、本発明のシリコンウェーハ用研磨液組成物を用いてシリコンウェーハを研磨する研磨工程を含む。
 本発明によれば、シリコンウェーハの、表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減とを両立できる、シリコンウェーハ用研磨液組成物、及び当該シリコンウェーハ用研磨液組成物を用いたシリコンウェーハの研磨方法、並びに半導体基板の製造方法を提供できる。
 本発明では、シリコンウェーハ用研磨液組成物におけるシリカ粒子の含有量が0.01~0.50質量%である場合に、下記一般式(1)で表される構成単位を含み、水酸基由来の酸素原子数とポリオキシアルキレン由来の酸素原子数の比(水酸基由来の酸素原子数/ポリオキシアルキレン由来の酸素原子数)が、0.8~10の水溶性高分子がシリコンウェーハ用研磨液組成物(以下、「研磨液組成物」と略称する場合もある。)に含まれることにより、研磨液組成物で研磨されたシリコンウェーハの表面(研磨面)における、表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減とを両立できる、という知見に基づく。
Figure JPOXMLDOC01-appb-C000003
但し、上記一般式(1)中、R1は、メチレン基(―CH2―)又は結合手であり、R2、R3、R4、R5は、それぞれ独立して、H(水素原子)、―OH(水酸基)、―CH2OH、又はポリビニルアルコールであるが、R2、R3、R4、R5が各々すべて同時にはH(水素原子)、―OH(水酸基)、又は―CH2OHとはならない。
 本発明の研磨液組成物で研磨されたシリコンウェーハの表面(研磨面)における、表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減とを両立できるという、本発明の効果の発現機構の詳細は明らかではないが、以下のように推定している。
 研磨液組成物に含まれる水溶性高分子(成分C)は一分子中の主鎖に、シリコンウェーハと相互作用するアルキレンオキシ基を含み、側鎖にシリコンウェーハと相互作用する部位である水酸基を含む。そのため、水溶性高分子(成分C)がシリコンウェーハ表面に吸着して、含窒素塩基性化合物によるシリコンウェーハ表面の腐食、即ち、表面粗さ(ヘイズ)の上昇を抑制するとともに、良好なぬれ性を発現してシリコンウェーハ表面の乾燥により生じると考えられるシリコンウェーハ表面へのパーティクルの付着を抑制する。また、水溶性高分子(成分C)がシリコンウェーハ表面に吸着することによってシリコンウェーハ表面の濡れ性が向上するので、シリコンウェーハ表面の研磨の均一性が向上し、故に表面粗さ(ヘイズ)が低減される。
 また、水溶性高分子(成分C)は、HECに含まれるような原料由来の水不溶物を含まないので、水溶性高分子(成分C)をHECに代えて用いれば、当該水不溶物自体の存在に起因する表面欠陥(LPD)の増大は生じない。
 このように、本発明では、前記水溶性高分子(成分C)を含むことにより、シリコンウェーハの、表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減との両立が実現されているものと推定している。但し、本発明はこれらの推定に限定されるものではない。
 [シリカ粒子(成分A)]
 本発明の研磨液組成物には、研磨材としてシリカ粒子が含まれる。シリカ粒子の具体例としては、コロイダルシリカ、フュームドシリカ等が挙げられるが、シリコンウェーハの表面平滑性を向上させる観点から、コロイダルシリカがより好ましい。
 シリカ粒子の使用形態としては、操作性の観点からスラリー状が好ましい。本発明の研磨液組成物に含まれる研磨材がコロイダルシリカである場合、アルカリ金属やアルカリ土類金属等によるシリコンウェーハの汚染を防止する観点から、コロイダルシリカは、アルコキシシランの加水分解物から得たものであることが好ましい。アルコキシシランの加水分解物から得られるシリカ粒子は、従来から公知の方法によって作製できる。
 本発明の研磨液組成物に含まれるシリカ粒子の平均一次粒子径は、研磨速度の確保の観点から、5nm以上が好ましく、10nm以上がより好ましく、15nm以上が更に好ましく、30nm以上が更により好ましい。また、シリカ粒子の平均一次粒子径は、研磨速度の確保と、シリコンウェーハの表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、50nm以下が好ましく、45nm以下がより好ましく、40nm以下が更に好ましい。
 特に、シリカ粒子としてコロイダルシリカを用いた場合には、平均一次粒子径は、研磨速度の確保の観点から、5nm以上が好ましく、10nm以上がより好ましく、15nm以上が更に好ましく、30nm以上が更により好ましい。また、コロイダルシリカの平均一次粒子径は、研磨速度の確保と、シリコンウェーハの表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、50nm以下が好ましく、45nm以下がより好ましく、40nm以下が更に好ましい。
 シリカ粒子の平均一次粒子径は、BET(窒素吸着)法によって算出される比表面積S(m2/g)を用いて算出される。比表面積は、例えば、実施例に記載の方法により測定できる。
 シリカ粒子の会合度は、研磨速度の確保、及びシリコンウェーハの表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、3.0以下が好ましく、1.1~3.0がより好ましく、1.8~2.5が更に好ましく、2.0~2.3が更により好ましい。シリカ粒子の形状はいわゆる球型といわゆるマユ型であることが好ましい。シリカ粒子がコロイダルシリカである場合、その会合度は、研磨速度の確保、及びシリコンウェーハの表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、3.0以下が好ましく、1.1~3.0がより好ましく、1.8~2.5が更に好ましく、2.0~2.3が更により好ましい。
 シリカ粒子の会合度とは、シリカ粒子の形状を表す係数であり、下記式により算出される。平均二次粒子径は、動的光散乱法によって測定される値であり、例えば、実施例に記載の装置を用いて測定できる。
会合度=平均二次粒子径/平均一次粒子径
 シリカ粒子の会合度の調整方法としては、特に限定されないが、例えば、特開平6-254383号公報、特開平11-214338号公報、特開平11-60232号公報、特開2005-060217号公報、特開2005-060219号公報等に記載の方法を採用することができる。
 本発明の研磨液組成物に含まれるシリカ粒子の含有量は、シリコンウェーハの研磨速度の確保の観点から、SiO2換算で、0.01質量%以上であり、0.07質量%以上が好ましく、0.10質量%以上がより好ましい。また、本発明の研磨液組成物に含まれるシリカ粒子の含有量は、シリコンウェーハの表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、0.50質量%以下であり、0.30質量%以下が好ましく、0.20質量%以下がより好ましい。
 [含窒素塩基性化合物(成分B)]
 本発明の研磨液組成物は、研磨液組成物の保存安定性の向上、研磨速度の確保、及びシリコンウェーハの表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、水溶性の塩基性化合物を含有する。水溶性の塩基性化合物としては、アミン化合物及びアンモニウム化合物から選ばれる少なくとも1種類以上の含窒素塩基性化合物である。ここで、「水溶性」とは、水に対して2g/100ml以上の溶解度を有することをいい、「水溶性の塩基性化合物」とは、水に溶解したとき、塩基性を示す化合物をいう。
 アミン化合物及びアンモニウム化合物から選ばれる少なくとも1種類以上の含窒素塩基性化合物としては、例えば、アンモニア、水酸化アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N一メチルエタノールアミン、N-メチル-N,N一ジエタノ-ルアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、N,N-ジブチルエタノールアミン、N-(β-アミノエチル)エタノ-ルアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、エチレンジアミン、ヘキサメチレンジアミン、ピペラジン・六水和物、無水ピペラジン、1-(2-アミノエチル)ピペラジン、N-メチルピペラジン、ジエチレントリアミン、及び水酸化テトラメチルアンモニウムが挙げられる。これらの含窒素塩基性化合物は2種以上を混合して用いてもよい。本発明の研磨液組成物に含まれ得る含窒素塩基性化合物としては、シリコンウェーハの表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点、研磨液組成物の保存安定性の向上、及び、研磨速度の確保の観点からアンモニアがより好ましい。
 本発明の研磨液組成物に含まれる含窒素塩基性化合物の含有量は、シリコンウェーハの表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点、研磨液組成物の保存安定性の向上、及び研磨速度の確保の観点から、0.001質量%以上が好ましく、0.005質量%以上がより好ましく、0.007質量%以上が更に好ましく、0.010質量%以上が更により好ましく、0.012質量%以上が更により好ましい。また、含窒素塩基性化合物の含有量は、シリコンウェーハの表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、0.1質量%以下が好ましく、0.05質量%以下がより好ましく、0.025質量%以下が更に好ましく、0.018質量%以下が更により好ましく、0.014質量%以下が更により好ましい。
 [水溶性高分子(成分C)]
 本発明の研磨液組成物は、シリコンウェーハの表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、下記一般式(1)で表される構成単位を含む水溶性高分子(成分C)を含む。ここで、「水溶性」とは、水に対して2g/100ml以上の溶解度を有することをいう。
Figure JPOXMLDOC01-appb-C000004
但し、上記一般式(1)中、R1は、メチレン基(―CH2―)又は結合手であり、R2、R3、R4、R5は、それぞれ独立して、H(水素原子)、―OH(水酸基)、―CH2OH、又はポリビニルアルコールであるが、R2、R3、R4、R5が各々すべて同時にはH(水素原子)、―OH(水酸基)、又は―CH2OHとはならない。
 前記水溶性高分子(成分C)において、水酸基由来の酸素原子数とポリオキシアルキレン由来の酸素原子数の比(水酸基由来の酸素原子数/ポリオキシアルキレン由来の酸素原子数)は、シリコンウェーハの表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、0.8以上であるが、1.2以上が好ましく、1.5以上がより好ましく、1.8以上が更に好ましい。また、前記比(水酸基由来の酸素原子数/ポリオキシアルキレン由来の酸素原子数)は、水溶性高分子の合成の簡便性の観点から、10以下であるが、8.0以下が好ましく、7.0以下がより好ましく、6.0以下が更に好ましい。
 上記一般式(1)中、R2、R3、R4、R5は、シリコンウェーハの表面粗さ及び表面欠陥の低減の観点から、それぞれ独立して、H(水素原子)、―OH(水酸基)、―CH2OH、又はポリビニルアルコールであるが、R2、R3、R4、R5のうちのいずれか3つがH(水素原子)であり、残りの1つが―OH(水酸基)又は―CH2OHであるか、R2、R3、R4、R5の少なくとも1つがポリビニルアルコールであり、残りがH(水素原子)であると好ましい。
 前記水溶性高分子(成分C)は、シリコンウェーハの表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、下記式(2)で表される構成単位I、下記式(3)で表される構成単位II、及び前記一般式(1)中、R1が結合手であり、R2、R3、R4、R5が、それぞれ独立して、H(水素原子)又はポリビニルアルコールであり、R2、R3、R4、R5が各々すべて同時にはH(水素原子)、―OH(水酸基)、又は―CH2OHとはならない構成単位IIIから選ばれる少なくとも1種の構成単位を含んでいると好ましく、構成単位I、構成単位II、又は構成単位IIIを含んでいるとより好ましく、ポリグリシドール、ポリグシドール誘導体、ポリグリセリン、ポリグリセリン誘導体、ポリビニルアルコールを側鎖とするポリビニルアルコール・ポリエチレングリコール・グラフトコポリマーからなる群から選ばれる少なくとも1種であると好ましい。
Figure JPOXMLDOC01-appb-C000005
 ポリグシドール誘導体としては、ポリ(1-メチルグリシドール)、ポリ(1-エチルグリシドール)、ポリ(1-プロピルグリシドール)、ポリ(1-ジメチルグリシドール)、ポリ(1-ジエチルグリシドール)、ポリ(1-ジプロピルグリシドール)、ポリ(3-フェニルグリシドール)が挙げられる。ポリグリセリン誘導体としては、ポリグリセリンステアレート、ポリグリセリンラウレート、ポリグリセリンオレート、ポリグリセリンカプレート、カルボン酸付加ポリグリセリン、アミド化ポリグリセリン、サクシニル化ポリグリセリン、カルバモイル化ポリグリセリンが挙げられる。
 ポリビニルアルコールを側鎖とし、ポリエチレングリコールを主鎖とする、ポリビニルアルコール・ポリエチレングリコール・グラフトコポリマーにおける、比(水酸基由来の酸素原子数/ポリオキシアルキレン有来の酸素原子数)は、NMRによる分析結果に基づくと、シリコンウェーハの表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、0.8以上が好ましく、1.2以上がより好ましく、1.5以上が更に好ましく、1.8以上が更により好ましい。
 また、前記比(水酸基由来の酸素原子数/ポリオキシアルキレン由来の酸素原子数)は、前記グラフトコポリマーの合成の簡便性の観点から、10以下が好ましく、8.0以下がより好ましく、7.0以下が更に好ましく、6.0以下が更により好ましい。
 前記ポリビニルアルコール・ポリエチレングリコール・グラフトコポリマーは、前記構成単位IIIと、エチレングリコールに由来する構成単位IVとを含むが、これらの構成単位の配列は、ブロックでもランダムでもよい。
 前記水溶性高分子(成分C)の好ましい重量平均分子量は、シリコンウェーハの表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、下記の通り、その種類に応じて異なる。
 前記水溶性高分子(成分C)が、ポリグリシドール又はポリグシドール誘導体である場合、前記水溶性高分子(成分C)の重量平均分子量は、シリコンウェーハの表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、3000以上が好ましく、1万以上がより好ましく、2万以上が更に好ましく、3万以上が更により好ましく、研磨速度向上の観点から、15万以下が好ましく、12万以下がより好ましく、10万以下が更に好ましく、8万以下が更により好ましい。
 前記水溶性高分子(成分C)が、ポリグリセリン又はポリグリセリン誘導体である場合、前記水溶性高分子(成分C)の重量平均分子量は、シリコンウェーハの表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、500以上が好ましく、1000以上がより好ましく、1500以上が更に好ましく、2000以上が更により好ましく、研磨速度向上の観点から、5万以下が好ましく、4万以下がより好ましく、3万以下が更に好ましく、2万以下が更により好ましく、1万以下が更により好ましく、5000以下が更により好ましい。
 前記水溶性高分子(成分C)が、前記ポリビニルアルコール・ポリエチレングリコール・グラフトコポリマーである場合、前記水溶性高分子(成分C)の重量平均分子量は、シリコンウェーハの表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、1万以上が好ましく、1.2万以上がより好ましく、1.5万以上が更に好ましく、3万以上が更により好ましく、研磨速度向上の観点から、40万以下が好ましく、30万以下がより好ましく、15万以下が更に好ましく、12万以下が更により好ましく、10万以下が更により好ましく、8万以下が更により好ましい。
 本発明の研磨液組成物に含まれる前記水溶性高分子(成分C)の含有量は、シリコンウェーハの表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、0.001質量%以上が好ましく、0.002質量%以上がより好ましく、0.004質量%以上が更に好ましく、0.007質量%以上が更により好ましい。また、本発明の研磨液組成物に含まれる前記水溶性高分子(成分C)の含有量は、シリコンウェーハの表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、0.1質量%以下が好ましく、0.05質量%以下がより好ましく、0.035質量%以下が更に好ましく、0.030質量%以下が更により好ましい。
 本発明の研磨液組成物に含まれるシリカ粒子(成分A)の含有量と水溶性高分子(成分Cの含有量の比(成分Aの質量%/成分Cの質量%)は、研磨速度向上の観点から、1以上が好ましく、3以上がより好ましく、5以上が更に好ましい。また、前記比(成分Aの質量%/成分Cの質量%)は、シリコンウェーハの表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、38以下が好ましく、30以下がより好ましく、25以下が更に好ましく、20以下が更により好ましい。
 [水系媒体(成分D)]
 本発明の研磨液組成物に含まれる水系媒体(成分D)としては、イオン交換水や超純水等の水、又は水と溶媒との混合媒体等が挙げられ、上記溶媒としては、水と混合可能な溶媒(例えば、エタノール等のアルコール)が好ましい。水系媒体としては、なかでも、イオン交換水又は超純水がより好ましく、超純水が更に好ましい。水系媒体(成分D)が、水と溶媒との混合媒体である場合、成分Dである混合媒体全体に対する水の割合は、特に限定されるわけではないが、経済性の観点から、95質量%以上が好ましく、98質量%以上がより好ましく、実質的に100質量%が更に好ましい。
 本発明の研磨液組成物における水系媒体の含有量は、特に限定されるわけではなく、成分A~C及び後述する任意成分の残余であってよい。
 本発明の研磨液組成物の25℃におけるpHは、研磨速度の確保の観点から、8.0以上が好ましく、9.0以上がより好ましく、9.5以上が更に好しく、また、12.0以下が好ましく、11.5以下がより好ましく、11.0以下が更に好ましい。pHの調整は、必要に応じて、含窒素塩基性化合物(成分B)及び/又はpH調整剤を適宜添加して行うことができる。ここで、25℃におけるpHは、pHメータ(東亜電波工業株式会社、HM-30G)を用いて測定でき、電極の研磨液組成物への浸漬後1分後の数値である。
 [任意成分(助剤)]
 本発明の研磨液組成物には、本発明の効果が妨げられない範囲で、更に、水溶性高分子化合物(成分C)以外の水溶性高分子化合物(成分E)、pH調整剤、防腐剤、アルコール類、キレート剤、アニオン性界面活性剤、及びノニオン性界面活性剤から選ばれる少なくとも1種の任意成分が含まれてもよい。
 [水溶性高分子化合物(成分E)]
 本発明の研磨液組成物には、シリコンウェーハの表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、更に水溶性高分子化合物(成分C)以外の水溶性高分子化合物(成分E)を含有してもよい。この水溶性高分子化合物(成分E)は、親水基を有する高分子化合物であり、水溶性高分子化合物(成分E)の重量平均分子量は、研磨速度の確保、シリコンウェーハの表面欠陥の低減の観点から、10,000以上が好ましく、100,000以上がより好ましい。上記成分Eを構成する供給源である単量体としては、例えば、アミド基、水酸基、カルボキシル基、カルボン酸エステル基、スルホン酸基等の水溶性基を有する単量体が挙げられる。このような水溶性高分子化合物(成分E)としては、ポリアミド、ポリ(N-アシルアルキレンイミン)、セルロース誘導体、ポリビニルアルコール、ポリエチレンオキサイド等が例示できる。ポリアミドとしては、ポリビニルピロリドン、ポリアクリルアミド、ポリオキサゾリン、ポリジメチルアクリルアミド、ポリジエチルアクリルアミド、ポリイソプロピルアクリルアミド、ポリヒドロキシエチルアクリルアミド等が挙げられる。ポリ(N-アシルアルキレンイミン)としては、ポリ(N-アセチルエチレンイミン)、ポリ(N-プロピオニルエチレンイミン)、ポリ(N-カプロイルエチレンイミン)、ポリ(N-ベンゾイルエチレンイミン)、ポリ(N-ノナデゾイルエチレンイミン)、ポリ(N-アセチルプロピレンイミン)、ポリ(N-ブチオニルエチレンイミン)等があげられる。セルロース誘導体としては、カルボキシメチルセルロ-ス、ヒドロキシエチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルエチルセルロース、及びカルボキシメチルエチルセルロース等が挙げられる。これらの水溶性高分子化合物は任意の割合で2種以上を混合して用いてもよい。
 [pH調整剤]
 pH調整剤としては、酸性化合物等が挙げられる。酸性化合物としては、硫酸、塩酸、硝酸又はリン酸等の無機酸、酢酸、シュウ酸、コハク酸、グリコール酸、リンゴ酸、クエン酸又は安息香酸等の有機酸等が挙げられる。
 [防腐剤]
 防腐剤としては、ベンザルコニウムクロライド、ベンゼトニウムクロライド、1,2-ベンズイソチアゾリン-3-オン、(5-クロロ-)2-メチル-4-イソチアゾリン-3-オン、過酸化水素、又は次亜塩素酸塩等が挙げられる。
 [アルコール類]
 アルコール類としては、メタノール、エタノール、プロパノール、ブタノール、イソプロピルアルコール、2-メチル-2-プロパノオール、エチレングリコール、プロピレングリコール、ポリエチレングリコール、グリセリン等が挙げられる。本発明の研磨液組成物におけるアルコール類の含有量は、0.1質量%~5質量%が好ましい。
 [キレート剤]
 キレート剤としては、エチレンジアミン四酢酸、エチレンジアミン四酢酸ナトリウム、ニトリロ三酢酸、ニトリロ三酢酸ナトリウム、ニトリロ三酢酸アンモニウム、ヒドロキシエチルエチレンジアミン三酢酸、ヒドロキシエチルエチレンジアミン三酢酸ナトリウム、トリエチレンテトラミン六酢酸、トリエチレンテトラミン六酢酸ナトリウム等が挙げられる。本発明の研磨液組成物におけるキレート剤の含有量は、0.01~1質量%が好ましい。
 [アニオン性界面活性剤]
 アニオン性界面活性剤としては、例えば、脂肪酸石鹸、アルキルエーテルカルボン酸塩等のカルボン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩等のスルホン酸塩、高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩等の硫酸エステル塩、アルキルリン酸エステル等のリン酸エステル塩などが挙げられる。
 [非イオン性界面活性剤]
 非イオン性界面活性剤としては、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビット脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシアルキレン(硬化)ヒマシ油等のポリエチレングリコール型と、ショ糖脂肪酸エステル、アルキルグリコシド等の多価アルコール型及び脂肪酸アルカノールアミド等が挙げられる。
 尚、上記において説明した各成分の含有量は、使用時における含有量であるが、本発明の研磨液組成物は、その保存安定性が損なわれない範囲で濃縮された状態で保存及び供給されてもよい。この場合、製造及び輸送コストを更に低くできる点で好ましい。濃縮液は、必要に応じて前述の水系媒体で適宜希釈して使用すればよい。濃縮倍率としては、希釈した後の研磨時の濃度を確保できれば、特に限定するものではないが、製造及び輸送コストを更に低くできる観点から、2倍以上が好ましく、10倍以上がより好ましく、20倍以上が更に好ましく、30倍以上が更により好ましく、また、100倍以下が好ましく、80倍以下がより好ましく、60倍以下が更に好ましく、50倍以下が更により好ましい。
 本発明の研磨液組成物が上記濃縮液である場合、濃縮液におけるシリカ粒子(成分A)の含有量は、SiO2換算で、製造及び輸送コストを低くする観点から、2質量%以上が好ましく、4質量%以上がより好ましく、6質量%以上が更に好ましい。また、濃縮液中におけるシリカ粒子の含有量は、保存安定性を向上させる観点から、40質量%以下が好ましく、35質量%以下がより好ましく、20質量%以下が更に好ましく、15質量%以下が更により好ましく、9質量%以下が更により好ましい。
 本発明の研磨液組成物が上記濃縮液である場合、濃縮液における含窒素塩基性化合物(成分B)の含有量は、製造及び輸送コストを低くする観点から、0.02質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましい。また、濃縮液中における含窒素塩基性化合物(成分B)の含有量は、保存安定性の向上の観点から5質量%以下が好ましく、2質量%以下がより好ましく、1質量%以下が更に好ましい。
 本発明の研磨液組成物が上記濃縮液である場合、濃縮液における水溶性高分子化合物(成分C)の含有量は、製造及び輸送コストを低くする観点から、0.005質量%以上が好ましく、0.01質量%以上がより好ましく、0.02質量%以上が更に好ましく、0.05質量%以上が更により好ましく、0.1質量%以上が更により好ましい。また、濃縮液中における水溶性高分子化合物(成分C)の含有量は、保存安定性の向上の観点から、5質量%以下が好ましく、3質量%以下がより好ましく、2質量%以下が更に好ましく、1.5質量%以下が更により好ましい。
 本発明の研磨液組成物が上記濃縮液である場合、上記濃縮液の25℃におけるpHは、8.0以上が好ましく、9.0以上がより好ましく、9.5以上が更に好しく、また、12.0以下が好ましく、11.5以下がより好ましく、11.0以下が更に好ましい。
 次に、本発明の研磨液組成物の製造方法の一例について説明する。
 本発明の研磨液組成物の製造方法の一例は、何ら制限されず、例えば、シリカ粒子(成分A)と、含窒素塩基性化合物(成分B)と、水溶性高分子化合物(成分C)と、水系媒体(成分D)と、必要に応じて任意成分とを混合することによって調製できる。
 シリカ粒子の水系媒体への分散は、例えば、ホモミキサー、ホモジナイザー、超音波分散機、湿式ボールミル、又はビーズミル等の撹拌機等を用いて行うことができる。シリカ粒子の凝集等により生じた粗大粒子が水系媒体中に含まれる場合、遠心分離やフィルターを用いたろ過等により、当該粗大粒子を除去すると好ましい。シリカ粒子の水系媒体への分散は、水溶性高分子化合物(成分C)の存在下で行うと好ましい。具体的には、水溶性高分子化合物(成分C)と水系媒体(成分D)とを含むシリコンウェーハ研磨用添加剤組成物を調製した後、当該シリコンウェーハ研磨用添加剤組成物とシリカ粒子とを混合し、次いで、必要に応じて、シリコンウェーハ研磨用添加剤組成物とシリカ粒子の混合物を水系媒体(成分D)で希釈すると好ましい。
 本発明の研磨液組成物は、例えば、半導体基板の製造過程における、シリコンウェーハを研磨する研磨工程や、シリコンウェーハを研磨する研磨工程を含むシリコンウェーハの研磨方法に用いられる。
 前記シリコンウェーハを研磨する研磨工程には、シリコン単結晶インゴットを薄円板状にスライスすることにより得られたシリコンウェーハを平面化するラッピング(粗研磨)工程と、ラッピングされたシリコンウェーハをエッチングした後、シリコンウェーハ表面を鏡面化する仕上げ研磨工程とがある。本発明の研磨液組成物は、上記仕上げ研磨工程で用いられるとより好ましい。
 前記半導体基板の製造方法や前記シリコンウェーハの研磨方法では、シリコンウェーハを研磨する研磨工程の前に、本発明の研磨液組成物(濃縮液)を希釈する希釈工程を含んでいてもよい。希釈媒には、水系媒体(成分D)を用いればよい。
 前記希釈工程で希釈される濃縮液は、製造及び輸送コスト低減、保存安定性の向上の観点から、例えば、成分Aを2~40質量%、成分Bを0.02~5質量%、成分Cを0.005~5質量%含んでいると好ましい。
 本発明は、さらに以下<1>~<15>を開示する。
<1> シリカ粒子を0.01~0.5質量%と、含窒素塩基性化合物と、水溶性高分子とを含み、前記水溶性高分子は、下記一般式(1)で表される構成単位を含み、前記水溶性高分子において、水酸基由来の酸素原子数とポリオキシアルキレン由来の酸素原子数の比(水酸基由来の酸素原子数/ポリオキシアルキレン由来の酸素原子数)が、0.8~10である、シリコンウェーハ用研磨液組成物。
Figure JPOXMLDOC01-appb-C000006
但し、上記一般式(1)中、R1は、メチレン基(―CH2―)又は結合手であり、R2、R3、R4、R5は、それぞれ独立して、H(水素原子)、―OH(水酸基)、―CH2OH、又はポリビニルアルコールであるが、R2、R3、R4、R5が各々すべて同時にはH(水素原子)、―OH(水酸基)、又は―CH2OHとはならない。
<2> 前記水溶性高分子が、ポリビニルアルコール・ポリエチレングリコール・グラフトコポリマーである、前記<1>に記載のシリコンウェーハ用研磨液組成物。
<3> 前記水溶性高分子が、前記ポリビニルアルコール・ポリエチレングリコール・グラフトコポリマーが、ポリビニルアルコールを側鎖とし、ポリエチレングリコールを主鎖とする、ポリビニルアルコール・ポリエチレングリコール・グラフトコポリマーである、前記<1>又は<2>に記載のシリコンウェーハ用研磨液組成物。
<4> 前記ポリビニルアルコール・ポリエチレングリコール・グラフトコポリマーの重量平均分子量は、1万以上が好ましく、1.2万以上がより好ましく、1.5万以上が更に好ましく、3万以上が更により好ましく、40万以下が好ましく、30万以下がより好ましく、15万以下が更に好ましく、12万以下が更により好ましく、10万以下が更により好ましく、8万以下が更により好ましい、前記<2>又は<3>に記載のシリコンウェーハ用研磨液組成物。
<5> 前記水溶性高分子が、ポリグリシドール及び/又はポリグシドール誘導体である、前記<1>に記載のシリコンウェーハ用研磨液組成物。
<6> 前記ポリグリシドール及びポリグシドール誘導体の重量平均分子量は、3000以上が好ましく、1万以上がより好ましく、2万以上が更に好ましく、3万以上が更により好ましく、15万以下が好ましく、12万以下がより好ましく、10万以下が更に好ましく、8万以下が更により好ましい、前記<5>に記載のシリコンウェーハ用研磨液組成物。
<7> 前記水溶性高分子が、ポリグリセリン及び/又はポリグリセリン誘導体である、前記<1>に記載のシリコンウェーハ用研磨液組成物。
<8> 前記ポリグリセリン及びポリグリセリン誘導体の重量平均分子量は、500以上が好ましく、1000以上がより好ましく、1500以上が更に好ましく、2000以上が更により好ましく、5万以下が好ましく、4万以下がより好ましく、3万以下が更に好ましく、2万以下が更により好ましく、1万以下が更により好ましく、5000以下が更により好ましい、前記<7>に記載のシリコンウェーハ用研磨液組成物。
<9> 前記シリカ粒子と前記水溶性高分子の質量比(前記シリカ粒子の質量/前記水溶性高分子の質量)は、1以上が好ましく、3以上がより好ましく、5以上が更に好ましく、38以下が好ましく、30以下がより好ましく、25以下が更に好ましく、20以下が更により好ましい、<1>~<8>のいずれかに記載のシリコンウェーハ用研磨液組成物。
<10> 前記比(水酸基由来の酸素原子数/ポリオキシアルキレン由来の酸素原子数)が、0.8以上であり、1.2以上が好ましく、1.5以上がより好ましく、1.8以上が更に好ましく、10以下であり、8.0以下が好ましく、7.0以下がより好ましく、6.0以下が更に好ましい。前記<1>~<9>のいずれかに記載のシリコンウェーハ用研磨液組成物。
<11> 前記シリコンウェーハ用研磨液組成物に含まれるシリカ粒子の含有量は、SiO2換算で、0.01質量%以上であり、0.07質量%以上が好ましく、0.10質量%以上がより好ましく、0.50質量%以下であり、0.30質量%以下が好ましく、0.20質量%以下がより好ましい、前記<1>~<10>のいずれかに記載のシリコンウェーハ用研磨液組成物。
<12> 前記シリコンウェーハ用研磨液組成物に含まれる前記水溶性高分子(成分C)の含有量は、0.001質量%以上が好ましく、0.002質量%以上がより好ましく、0.004質量%以上が更に好ましく、0.007質量%以上が更により好ましく、0.1質量%以下が好ましく、0.05質量%以下がより好ましく、0.035質量%以下が更に好ましく、0.030質量%以下が更により好ましい、前記<1>~<11>のいずれかに記載のシリコンウェーハ用研磨液組成物。
<13> 前記<1>~<12>のいずれかに記載のシリコンウェーハ用研磨液組成物を用いてシリコンウェーハを研磨する研磨工程を含む研磨方法。
<14> 前記<1>~<12>のいずれかに記載のシリコンウェーハ用研磨液組成物を用いてシリコンウェーハを研磨する研磨工程を含む、半導体基板の製造方法。
<15> シリコンウェーハの研磨における前記<1>~<12>のいずれかに記載のシリコンウェーハ用研磨液組成物の使用。
 下記の実施例1~17及び比較例1~11で用いた表1の水溶性高分子(ポリマーA)及びポリマーB詳細は下記のとおりである。
 (ポリマーANo.1)
 Sm(TMHD)3(和光純薬工業)を0.73g秤量し、窒素置換後ジオキサン30mlを添加して60℃でSm(TMHD)3を溶解させた。放冷後、得られた溶液に、撹拌しながら、MAOトルエン溶液(東ソー・ファインケム)0.44mlを滴下し、更に15分撹拌し、触媒溶液を得た。次に、グリシドール(和光純薬工業)23mlを、23mlのジオキサンに溶解させ、これを前記触媒溶液に添加した後、100℃で3時間反応させた。さらに触媒溶液にエタノール10ml添加した後、得られた沈殿物を濾取した。次いで、沈殿物に対してイソプロピルアルコールで浸漬洗浄を行った後、減圧乾燥させ、粗ポリグリシドールを得た。得られた粗ポリグリシドール10gをイオン交換水に溶解させ、更にヒノキチオール0.1gを加えて70℃で30分撹拌した。得られた沈殿物を濾別した後、濾別によって得られた水溶液を、ヘキサンで洗浄し、濃縮した後、イソプロピルアルコールにより浸漬洗浄、減圧乾燥を行って、再沈殿を行った。沈殿物の乾燥後、それを少量のイオン交換水に再度溶解させ、次いで凍結乾燥して、無色透明な固体(ポリグリシドール)を得た。
 (ポリマーANo.2)
 ポリグリセリン(商品名:ポリグリセリンX、重量平均分子量3000、ダイセル社製)
 (ポリマーANo.3)
 ポリエチレングリコール(重量平均分子量2000、和光純薬工業)10gを、重合容器に導入し、穏やかな窒素流の下で攪拌しながら80℃まで加熱した。ポリエチレングリコールを攪拌して80℃に保持しながら、酢酸ビニル36gを3時間かけて重合容器内に滴下し、それと同時に、tert-ブチルペルピバレート0.14gをメタノール5gに加えた溶液を、同様に、3時間かけて重合容器内に滴下した。これらの添加が終了した後、80℃で混合物を2時間攪拌した。冷却後、得られたポリマーをメタノール100mlに溶解させた。加水分解するために、30℃において濃度10質量%のメタノール性水酸化ナトリウム溶液を15ml、重合容器内に添加した。約40分後、濃度10質量%の酢酸を22.5ml、重合容器内に添加することによって反応を停止させた。得られた溶液を減圧蒸留して溶液からメタノールを除去した。次に、得られた溶液について3日間透析(ヴィスキングチューブ、分画分子量12,000~14,000、日本メディカルサイエンス)を行った。その後凍結乾燥を行い、無色の粉末で、NMRよる分析結果から算出したPEGとPVAの重合度の比が1対1.8のポリビニルアルコール・ポリエチレングリコール・グラフトコポリマーを得た。
 (ポリマーANo.4)
 ポリエチレングリコール(重量平均分子量1000、和光純薬工業)10gを、重合容器に導入し、穏やかな窒素流の下で攪拌しながら80℃ まで加熱した。ポリエチレングリコールを攪拌して80℃ に保持しながら、酢酸ビニル60gを3時間かけて重合容器内に滴下し、それと同時に、tert-ブチルペルピバレート0.24gをメタノール5gに加えた溶液を、同様に、3時間かけて重合容器内に滴下した。これらの添加が終了した後、80℃で混合物を2時間攪拌した。冷却後、得られたポリマーをメタノール100mlに溶解させた。加水分解するために、30℃において濃度10質量%のメタノール性水酸化ナトリウム溶液を15ml、重合容器内に添加した。約40分後、濃度10質量%の酢酸を22.5ml、重合容器内に添加することによって反応を停止させた。得られた溶液を減圧蒸留して溶液からメタノールを除去した。次に、得られた溶液について3日間透析(ヴィスキングチューブ、分画分子量12,000~14,000、日本メディカルサイエンス)を行った。その後凍結乾燥を行い、無色の粉末で、NMRより算出したPEGとPVAの重合度の比が1対3のポリビニルアルコール・ポリエチレングリコール・グラフトコポリマーを得た。
 (ポリマーANo.5)
 ポリエチレングリコール(重量平均分子量1000、和光純薬工業)10gを、重合容器に導入し、穏やかな窒素流の下で攪拌しながら80℃ まで加熱した。ポリエチレングリコールを攪拌して80℃ に保持しながら、酢酸ビニル140gを3時間かけて重合容器内に滴下し、それと同時に、tert-ブチルペルピバレート0.56gをメタノール5gに加えた溶液を、同様に、3時間かけて重合容器内に滴下した。これらの添加が終了した後、80℃で混合物を2時間攪拌した。冷却後、得られたポリマーをメタノール100mlに溶解させた。加水分解するために、30℃において濃度10質量%のメタノール性水酸化ナトリウム溶液を15ml、重合容器内に添加した。約40分後、濃度10質量%の酢酸を22.5ml、重合容器内に添加することによって反応を停止させた。得られた溶液を減圧蒸留して溶液からメタノールを除去した。次に、得られた溶液について3日間透析(ヴィスキングチューブ、分画分子量12,000~14,000、日本メディカルサイエンス)を行った。その後凍結乾燥を行い、無色の粉末で、NMRより算出したPEGとPVAの重合度の比が1対7のポリビニルアルコール・ポリエチレングリコール・グラフトコポリマーを得た。
 (ポリマーANo.6)
 ポリビニルアルコール・ポリエチレングリコール・グラフトコポリマー(商品名:Kollicoat IR、重量平均分子量26500、BASF社製)
 (ポリマーANo.7)
 ポリエチレングリコール(重量平均分子量6000、和光純薬工業)10gを、重合容器に導入し、穏やかな窒素流の下で攪拌しながら80℃ まで加熱した。ポリエチレングリコールを攪拌して80℃ に保持しながら、酢酸ビニル86gを3時間かけて重合容器内に滴下し、それと同時に、tert-ブチルペルピバレート0.34gをメタノール5gに加えた溶液を、同様に、3時間かけて重合容器内に滴下した。これらの添加が終了した後、80℃で混合物を2時間攪拌した。冷却後、得られたポリマーをメタノール100mlに溶解させた。加水分解するために、30℃において濃度10質量%のメタノール性水酸化ナトリウム溶液を15ml、重合容器内に添加した。約40分後、濃度10質量%の酢酸を22.5ml、重合容器内に添加することによって反応を停止させた。得られた溶液を減圧蒸留して溶液からメタノールを除去した。次に、得られた溶液について3日間透析(ヴィスキングチューブ、分画分子量12,000~14,000、日本メディカルサイエンス)を行った。その後凍結乾燥を行い、無色の粉末で、NMRより算出したPEGとPVAの重合度の比が1対4.3のポリビニルアルコール・ポリエチレングリコール・グラフトコポリマーを得た。
(ポリマーANo.8)
 ポリエチレングリコール(重量平均分子量20000、和光純薬工業)10gを、重合容器に導入し、穏やかな窒素流の下で攪拌しながら80℃まで加熱した。ポリエチレングリコールを攪拌して80℃ に保持しながら、酢酸ビニル22gを3時間かけて重合容器内に滴下し、それと同時に、tert-ブチルペルピバレート0.09gをメタノール5gに加えた溶液を、同様に、3時間かけて重合容器内に滴下した。これらの添加が終了した後、80℃で混合物を2時間攪拌した。冷却後、得られたポリマーをメタノール100mlに溶解させた。加水分解するために、30℃において濃度10質量%のメタノール性水酸化ナトリウム溶液を15ml、重合容器内に添加した。約40分後、濃度10質量%の酢酸を22.5ml、重合容器内に添加することによって反応を停止させた。得られた溶液を減圧蒸留して溶液からメタノールを除去した。次に、得られた溶液について3日間透析(ヴィスキングチューブ、分画分子量12,000~14,000、日本メディカルサイエンス)を行った。その後凍結乾燥を行い、無色の粉末で、NMRより算出したPEGとPVAの重合度の比が1対1.1のポリビニルアルコール・ポリエチレングリコール・グラフトコポリマーを得た。
 (ポリマーANo.9)
 ポリエチレングリコール(重量平均分子量20000、和光純薬工業)10gを、重合容器に導入し、穏やかな窒素流の下で攪拌しながら80℃ まで加熱した。ポリエチレングリコールを攪拌して80℃ に保持しながら、酢酸ビニル60gを3時間かけて重合容器内に滴下し、それと同時に、tert-ブチルペルピバレート0.24gをメタノール5gに加えた溶液を、同様に、3時間かけて重合容器内に滴下した。これらの添加が終了した後、80℃で混合物を2時間攪拌した。冷却後、得られたポリマーをメタノール100mlに溶解させた。加水分解するために、30℃において濃度10質量%のメタノール性水酸化ナトリウム溶液を15ml、重合容器内に添加した。約40分後、濃度10質量%の酢酸を22.5ml、重合容器内に添加することによって反応を停止させた。得られた溶液を減圧蒸留して溶液からメタノールを除去した。次に、得られた溶液について3日間透析(ヴィスキングチューブ、分画分子量12,000~14,000、日本メディカルサイエンス)を行った。その後凍結乾燥を行い、無色の粉末で、NMRより算出したPEGとPVAの重合度の比が1対3のポリビニルアルコール・ポリエチレングリコール・グラフトコポリマーを得た。
 (ポリマーANo.10)
 ポリエチレングリコール(重量平均分子量20000、和光純薬工業)10gを、重合容器に導入し、穏やかな窒素流の下で攪拌しながら80℃ まで加熱した。ポリエチレングリコールを攪拌して80℃ に保持しながら、酢酸ビニル80gを3時間かけて重合容器内に滴下し、それと同時に、tert-ブチルペルピバレート0.32gをメタノール5gに加えた溶液を、同様に、3時間かけて重合容器内に滴下した。これらの添加が終了した後、80℃で混合物を2時間攪拌した。冷却後、得られたポリマーをメタノール100mlに溶解させた。加水分解するために、30℃において濃度10質量%のメタノール性水酸化ナトリウム溶液を15ml、重合容器内に添加した。約40分後、濃度10質量%の酢酸を22.5ml、重合容器内に添加することによって反応を停止させた。得られた溶液を減圧蒸留して溶液からメタノールを除去した。次に、得られた溶液について3日間透析(ヴィスキングチューブ、分画分子量12,000~14,000、日本メディカルサイエンス)を行った。その後凍結乾燥を行い、無色の粉末で、NMRより算出したPEGとPVAの重合度の比が1対4のポリビニルアルコール・ポリエチレングリコール・グラフトコポリマーを得た。
 (ポリマーANo.11)
 ポリエチレングリコール(重量平均分子量20000、和光純薬工業)10gを、重合容器に導入し、穏やかな窒素流の下で攪拌しながら80℃ まで加熱した。ポリエチレングリコールを攪拌して80℃ に保持しながら、酢酸ビニル156gを3時間かけて重合容器内に滴下し、それと同時に、tert-ブチルペルピバレート0.62gをメタノール5gに加えた溶液を、同様に、3時間かけて重合容器内に滴下した。これらの添加が終了した後、80℃で混合物を2時間攪拌した。冷却後、得られたポリマーをメタノール100mlに溶解させた。加水分解するために、30℃において濃度10質量%のメタノール性水酸化ナトリウム溶液を15ml、重合容器内に添加した。約40分後、濃度10質量%の酢酸を22.5ml、重合容器内に添加することによって反応を停止させた。得られた溶液を減圧蒸留して溶液からメタノールを除去した。次に、得られた溶液について3日間透析(ヴィスキングチューブ、分画分子量12,000~14,000、日本メディカルサイエンス)を行った。その後凍結乾燥を行い、無色の粉末で、NMRより算出したPEGとPVAの重合度の比が1対7.8のポリビニルアルコール・ポリエチレングリコール・グラフトコポリマーを得た。
 (ポリマーANo.12)
 ポリエチレングリコール(重量平均分子量40000、和光純薬工業)10gを、重合容器に導入し、穏やかな窒素流の下で攪拌しながら80℃ まで加熱した。ポリエチレングリコールを攪拌して80℃ に保持しながら、酢酸ビニル80gを3時間かけて重合容器内に滴下し、それと同時に、tert-ブチルペルピバレート0.32gをメタノール5gに加えた溶液を、同様に、3時間かけて重合容器内に滴下した。これらの添加が終了した後、80℃で混合物を2時間攪拌した。冷却後、得られたポリマーをメタノール100mlに溶解させた。加水分解するために、30℃において濃度10質量%のメタノール性水酸化ナトリウム溶液を15ml、重合容器内に添加した。約40分後、濃度10質量%の酢酸を22.5ml、重合容器内に添加することによって反応を停止させた。得られた溶液を減圧蒸留して溶液からメタノールを除去した。次に、得られた溶液について3日間透析(ヴィスキングチューブ、分画分子量12,000~14,000、日本メディカルサイエンス)を行った。その後凍結乾燥を行い、無色の粉末で、NMRより算出したPEGとPVAの重合度の比が1対4のポリビニルアルコール・ポリエチレングリコール・グラフトコポリマーを得た。
 (ポリマーANo.13)
 ポリエチレングリコール(重量平均分子量80000、明成化学工業)10gを、重合容器に導入し、穏やかな窒素流の下で攪拌しながら80℃ まで加熱した。ポリエチレングリコールを攪拌して80℃ に保持しながら、酢酸ビニル80gを3時間かけて重合容器内に滴下し、それと同時に、tert-ブチルペルピバレート0.32gをメタノール5gに加えた溶液を、同様に、3時間かけて重合容器内に滴下した。これらの添加が終了した後、80℃で混合物を2時間攪拌した。冷却後、得られたポリマーをメタノール100mlに溶解させた。加水分解するために、30℃において濃度10質量%のメタノール性水酸化ナトリウム溶液を15ml、重合容器内に添加した。約40分後、濃度10質量%の酢酸を22.5ml、重合容器内に添加することによって反応を停止させた。得られた溶液を減圧蒸留して溶液からメタノールを除去した。次に、得られた溶液について3日間透析(ヴィスキングチューブ、分画分子量12,000~14,000、日本メディカルサイエンス)を行った。その後凍結乾燥を行い、無色の粉末で、NMRより算出したPEGとPVAの重合度の比が1対4のポリビニルアルコール・ポリエチレングリコール・グラフトコポリマーを得た。
 (ポリマーANo.14)
 ポリエチレングリコール(重量平均分子量6000、和光純薬工業)20gを、重合容器に導入し、穏やかな窒素流の下で攪拌しながら80℃ まで加熱した。ポリエチレングリコールを攪拌して80℃に保持しながら、酢酸ビニル20gを3時間かけて重合容器内に滴下し、それと同時に、tert-ブチルペルピバレート0.08gをメタノール1gに加えた溶液を、同様に、3時間かけて重合容器内に滴下した。これらの添加が終了した後、80℃で混合物を2時間攪拌した。冷却後、得られたポリマーをメタノール100mlに溶解させた。加水分解するために、30℃において濃度10質量%のメタノール性水酸化ナトリウム溶液を15ml、重合容器内に添加した。約40分後、濃度10質量%の酢酸を22.5ml、重合容器内に添加することによって反応を停止させた。得られた溶液を減圧蒸留して溶液からメタノールを除去した。次に、得られた溶液について3日間透析(ヴィスキングチューブ、分画分子量12,000~14,000、日本メディカルサイエンス)を行った。その後凍結乾燥を行い、無色の粉末で、NMRより算出したPEGとPVAの重合度の比が1対0.5のポリビニルアルコール・ポリエチレングリコール・グラフトコポリマーを得た。
 (ポリマーANo.15)
 ポリエチレングリコール(重量平均分子量80000、明成化学工業)20gを、重合容器に導入し、穏やかな窒素流の下で攪拌しながら80℃ まで加熱した。ポリエチレングリコールを攪拌して80℃に保持しながら、酢酸ビニル20gを3時間かけて重合容器内に滴下し、それと同時に、tert-ブチルペルピバレート0.08gをメタノール1gに加えた溶液を、同様に、3時間かけて重合容器内に滴下した。これらの添加が終了した後、80℃で混合物を2時間攪拌した。冷却後、得られたポリマーをメタノール100mlに溶解させた。加水分解するために、30℃において濃度10質量%のメタノール性水酸化ナトリウム溶液を15ml、重合容器内に添加した。約40分後、濃度10質量%の酢酸を22.5ml、重合容器内に添加することによって反応を停止させた。得られた溶液を減圧蒸留して溶液からメタノールを除去した。次に、得られた溶液について3日間透析(ヴィスキングチューブ、分画分子量12,000~14,000、日本メディカルサイエンス)を行った。その後凍結乾燥を行い、無色の粉末で、NMRより算出したPEGとPVAの重合度の比が1対0.5のポリビニルアルコール・ポリエチレングリコール・グラフトコポリマーを得た。
 (ポリマーANo.16)
 ヒドロキシエチルセルロース(商品名CF-V、重量平均分子量80万、住友精化社製)
 (ポリマーANo.17)
 ヒドロキシエチルセルロース(商品名SE400、重量平均分子量25万、ダイセル社製)
 (ポリマーANo.18、ポリマーB)
 ポリエチレングリコール(重量平均分子量6000:和光純薬社製)
 (ポリマーANo.19)
 ポリビニルアルコール(商品名:PVA105、重量平均分子量43000、クラレ社製)
 ポリマーANo.1は、ポリグリシドールであり、前記一般式(1)中、R1は結合手であり、R2、R3、及びR4はH(水素原子)であり、及びR5は―CH2OHである。
 ポリマーANo.2は、ポリグリセリンであり、前記式(1)中、R1は、メチレン基(―CH2―)であり、R2は―OH(水酸基)であり、R3、R4、及びR5はH(水素原子)である。
 ポリマーANo.3~15は、ポリエチレングリコールを主鎖とし、ポリビニルアルコールを側鎖とする、ポリビニルアルコール・ポリエチレングリコール・グラフトコポリマーである。ポリマーANo.3~15は、前記一般式(1)中、R1が結合手であり、R2、R3、R4、R5が、それぞれ独立して、H(水素原子)又はポリビニルアルコールであり、R2、R3、R4、R5が同時に水素原子とはならない構成単位IIIとエチレングリコールに由来する構成単位IVとを含む。
 〈ポリマーAの溶解度〉
 上記ポリマーANo.1~19の、20℃の水に対する溶解度は、いずれも2g/100ml以上であった。
 〈重合平均分子量の測定〉
 ポリマーANo.1~19の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法を下記の条件で適用して得たクロマトグラム中のピークに基づき算出した。
装置:HLC-8320 GPC(東ソー株式会社、検出器一体型)
カラム:GMPWXL+GMPWXL(アニオン)
溶離液:0.2Mリン酸バッファー/CH3CN=9/1
流量:0.5ml/min
カラム温度:40℃
検出器:RI 検出器
標準物質:ポリエチレングリコール
 <比(水酸基由来の酸素原子数/ポリオキシアルキレン由来の酸素原子数)>
 ポリマーAがポリビニルアルコール・ポリエチレングリコール・グラフトコポリマーである場合、比(水酸基由来の酸素原子数/ポリオキシアルキレン由来の酸素原子数)は1HNMRによって算出した。具体的には、ポリマー主鎖のアルキレンオキシド部位のエチレンの積分比からポリオキシアルキレン由来の酸素原子数を算出し、側鎖のポリビニルアルコール部位のエチレンの積分比から水酸基由来の酸素原子数を算出し、これらの値をもって比(水酸基由来の酸素原子数/ポリオキシアルキレン由来の酸素原子数)を算出した。ポリマーAが、ポリグリシドール及びポリグリセリンの場合は、その構造から、比(水酸基由来の酸素原子数/ポリオキシアルキレン由来の酸素原子数)はほぼ1となる。
 <研磨材(シリカ粒子)の平均一次粒子径>
 研磨材の平均一次粒子径(nm)は、BET(窒素吸着)法によって算出される比表面積S(m2/g)を用いて下記式で算出した。
平均一次粒子径(nm)=2727/S
 研磨材の比表面積は、下記の[前処理]をした後、測定サンプル約0.1gを測定セルに小数点以下4桁まで精量し、比表面積の測定直前に110℃の雰囲気下で30分間乾燥した後、比表面積測定装置(マイクロメリティック自動比表面積測定装置 フローソーブIII2305、島津製作所製)を用いて窒素吸着法(BET法)により測定した。
 [前処理]
(a)スラリー状の研磨材を硝酸水溶液でpH2.5±0.1に調整する。
(b)pH2.5±0.1に調整されたスラリー状の研磨材をシャーレにとり150℃の熱風乾燥機内で1時間乾燥させる。
(c)乾燥後、得られた試料をメノウ乳鉢で細かく粉砕する。
(d)粉砕された試料を40℃のイオン交換水に懸濁させ、孔径1μmのメンブランフィルターで濾過する。
(e)フィルター上の濾過物を20gのイオン交換水(40℃)で5回洗浄する。
(f)濾過物が付着したフィルターをシャーレにとり、110℃の雰囲気下で4時間乾燥させる。
(g)乾燥した濾過物(砥粒)をフィルター屑が混入しないようにとり、乳鉢で細かく粉砕して測定サンプルを得た。
 <研磨材(シリカ粒子)の平均二次粒子径>
 研磨材の平均二次粒子径(nm)は、研磨材の濃度が0.25質量%となるように研磨材をイオン交換水に添加した後、得られた水溶液をDisposable Sizing Cuvette(ポリスチレン製 10mmセル)に下底からの高さ10mmまで入れ、動的光散乱法(装置名:ゼータサイザーNano ZS、シスメックス(株)製)を用いて測定した。
 (1)研磨液組成物の調製
 シリカ粒子(コロイダルシリカ、平均一次粒子径35nm、平均二次粒子径70nm、会合度2)、水溶性高分子(ポリマーA)、28質量%アンモニア水(キシダ化学(株)試薬特級)、イオン交換水、必要に応じてポリマーBを攪拌混合して、実施例1~17、及び比較例1~11の研磨液組成物(いずれも濃縮液、pH10.6±0.1(25℃))を得た。シリカ粒子、水溶性高分子(ポリマーA)、アンモニア、及びポリマーBを除いた残余はイオン交換水である。尚、表1における各成分の含有量は、濃縮液を40倍に希釈して得た研磨液組成物についての値であり、シリカ粒子の含有量は、SiO2換算濃度である。
 (2)研磨方法
 研磨液組成物(濃縮液)をイオン交換水で40倍に希釈して得た研磨液組成物(pH10.6±0.1(25℃))を研磨直前にフィルター(コンパクトカートリッジフィルター MCP-LX-C10S アドバンテック株式会社)にてろ過を行い、下記の研磨条件で下記のシリコンウェーハ(直径200mmのシリコン片面鏡面ウェーハ(伝導型:P、結晶方位:100、抵抗率0.1Ω・cm以上100Ω・cm未満)に対して仕上げ研磨を行った。当該仕上げ研磨に先立ってシリコンウェーハに対して市販の研磨液組成物を用いてあらかじめ粗研磨を実施した。粗研磨を終了し仕上げ研磨に供したシリコンウェーハの表面粗さ(ヘイズ)は、2.680ppmであった。表面粗さ(ヘイズ)は、KLA Tencor社製のSurfscan SP1-DLS(商品名)を用いて測定される暗視野ワイド斜入射チャンネル(DWO)での値である。
 <仕上げ研磨条件>
研磨機:片面8インチ研磨機GRIND-X SPP600s(岡本工作製)
研磨パッド:スエードパッド(東レ コーテックス社製 アスカー硬度64 厚さ 1.37mm ナップ長450um 開口径60um)
シリコンウェーハ研磨圧力:100g/cm2
定盤回転速度:60rpm
研磨時間:5分
研磨液組成物の供給速度:150g/cm2
研磨液組成物の温度:23℃
キャリア回転速度:60rpm
 仕上げ研磨後、シリコンウェーハに対して、オゾン洗浄と希フッ酸洗浄を下記のとおり行った。オゾン洗浄では、20ppmのオゾンを含んだ水溶液をノズルから流速1L/minで600rpmで回転するシリコンウェーハの中央に向かって3分間噴射した。このときオゾン水の温度は常温とした。次に希フッ酸洗浄を行った。希フッ酸洗浄では、0.5質量%のフッ化水素アンモニウム(特級:ナカライテクス株式会社)を含んだ水溶液をノズルから流速1L/minで600rpmで回転するシリコンウェーハの中央に向かって6秒間噴射した。上記オゾン洗浄と希フッ酸洗浄を1セットとして計2セット行い、最後にスピン乾燥を行った。スピン乾燥では1500rpmでシリコンウェーハを回転させた。
 <シリコンウェーハの表面粗さ(ヘイズ)及び表面欠陥(LPD)の評価>
 洗浄後のシリコンウェーハ表面の表面粗さ(ヘイズ)(ppm)の評価には、KLA Tencor社製のSurfscan SP1-DLS(商品名)を用いて測定される、暗視野ワイド斜入射チャンネル(DWO)での値を用いた。また、表面欠陥(LPD)(個)は、Haze測定時に同時に測定され、シリコンウェーハ表面の粒子径が45nm以上のパーティクル数を測定することによって評価した。Hazeの数値は小さいほど表面の平坦性が高いことを示す。また、LPDの数値(パーティクル数)が小さいほど表面欠陥が少ないことを示す。表面粗さ(ヘイズ)及び表面欠陥(LPD)の結果を表1に示した。表面粗さ(ヘイズ)及び表面欠陥(LPD)の測定は、各々2枚のシリコンウェーハに対して行い、各々平均値を表1に示した。
 <濡れ性の評価>
 仕上げ研磨直後のシリコンウェーハ(直径200mm)鏡面の親水化部(濡れている部分)の面積を目視により観察し、下記の評価基準に従って濡れ性を評価し、その結果を表1に示した。
(評価基準)
A:濡れ部分面積の割合が95以上
B:濡れ部分面積の割合が90%以上95%未満
C:濡れ部分面積の割合が50%以上90%未満
D:濡れ部分面積の割合が50%未満
 <分散粒径の評価>
 研磨液組成物(濃縮液)をイオン交換水で40倍に希釈して得た研磨液組成物(pH10.6±0.1(25℃))を用いて、研磨液組成物中のシリカ粒子の分散粒径の測定を行った。分散粒径測定に使用する粒径測定装置として、光子相関法(動的光散乱法)の原理に基づいているシスメックス社製の粒度分布測定機「ゼータサイザーナノZS」を使用した。前記研磨液組成物を測定液としてDisposable Sizing Cuvette(ポリスチレン製 10mmセル)に1.2mL採取し、測定部に入れて、分散粒径として体積中位粒径(D50)を測定した。この結果を下記表1に示した。D50の値が小さいほど、シリカ粒子の分散性は良好である。
 <腐食量の評価>
 40×40mm角にカットしたシリコンウェーハを、1質量%希フッ酸水溶液に2分浸漬させ酸化膜を除去した後、イオン交換水に瞬時浸漬し、リンスし、エアブロー乾燥した。次いでシリコンウェーハをプラスチック容器に入れ、当該プラスチック容器に研磨液組成物20gを加えて蓋をした。シリコンウェーハを、研磨液組成物に40℃で24時間浸漬した後、イオン交換水に瞬時浸漬し、リンスし、エアブロー乾燥した。エアブロー乾燥されたシリコンウェーハの研磨液組成物への浸漬前後での重量減少量を腐食量とした。
Figure JPOXMLDOC01-appb-T000007
 表1に示されるように、実施例1~17の研磨液組成物を用いることで、比較例1~11の研磨液組成物を用いた場合に比べて、表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立が可能になった。
 本発明の研磨液組成物を用いれば、シリコンウェーハの、表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減とを両立できる。よって、本発明の研磨液組成物は、様々な半導体基板の製造過程で用いられる研磨液組成物として有用であり、なかでも、シリコンウェーハの仕上げ研磨用の研磨液組成物として有用である。

Claims (10)

  1.  シリカ粒子を0.01~0.5質量%と、含窒素塩基性化合物と、水溶性高分子とを含み、前記水溶性高分子は、下記一般式(1)で表される構成単位を含み、前記水溶性高分子において、水酸基由来の酸素原子数とポリオキシアルキレン由来の酸素原子数の比(水酸基由来の酸素原子数/ポリオキシアルキレン由来の酸素原子数)が、0.8~10である、シリコンウェーハ用研磨液組成物。
    Figure JPOXMLDOC01-appb-C000001
    但し、上記一般式(1)中、R1は、メチレン基(―CH2―)又は結合手であり、R2、R3、R4、R5は、それぞれ独立して、H(水素原子)、―OH(水酸基)、―CH2OH、又はポリビニルアルコールであるが、R2、R3、R4、R5が各々すべて同時にはH(水素原子)、―OH(水酸基)、又は―CH2OHとはならない。
  2. 前記水溶性高分子が、ポリビニルアルコール・ポリエチレングリコール・グラフトコポリマーである、請求項1に記載のシリコンウェーハ用研磨液組成物。
  3.  前記ポリビニルアルコール・ポリエチレングリコール・グラフトコポリマーの重量平均分子量が、1万以上15万以下である、請求項2に記載のシリコンウェーハ用研磨液組成物。
  4.  前記水溶性高分子が、ポリグリシドール及び/又はポリグシドール誘導体である、請求項1に記載のシリコンウェーハ用研磨液組成物。
  5.  前記ポリグリシドール及びポリグシドール誘導体の重量平均分子量が、3000以上15万以下である、請求項4に記載のシリコンウェーハ用研磨液組成物。
  6.  前記水溶性高分子が、ポリグリセリン及び/又はポリグリセリン誘導体である、請求項1に記載のシリコンウェーハ用研磨液組成物。
  7.  前記ポリグリセリン及びポリグリセリン誘導体の重量平均分子量が、500以上5万以下である、請求項6に記載のシリコンウェーハ用研磨液組成物。
  8.  前記シリカ粒子と前記水溶性高分子の質量比(前記シリカ粒子の質量/前記水溶性高分子の質量)が1~38である請求項1~7のいずれかの項に記載のシリコンウェーハ用研磨液組成物。
  9.  請求項1~8のいずれかの項に記載のシリコンウェーハ用研磨液組成物を用いてシリコンウェーハを研磨する研磨工程を含むシリコンウェーハの研磨方法。
  10.  請求項1~8のいずれかの項に記載のシリコンウェーハ用研磨液組成物を用いてシリコンウェーハを研磨する研磨工程を含む、半導体基板の製造方法。
PCT/JP2014/077924 2013-10-25 2014-10-21 シリコンウェーハ用研磨液組成物 WO2015060293A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480057685.1A CN105659357B (zh) 2013-10-25 2014-10-21 硅晶片用研磨液组合物
EP14856663.1A EP3062337A4 (en) 2013-10-25 2014-10-21 Polishing liquid composition for silicon wafers
KR1020167008351A KR101728646B1 (ko) 2013-10-25 2014-10-21 실리콘 웨이퍼용 연마액 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-222541 2013-10-25
JP2013222541 2013-10-25

Publications (1)

Publication Number Publication Date
WO2015060293A1 true WO2015060293A1 (ja) 2015-04-30

Family

ID=52992887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077924 WO2015060293A1 (ja) 2013-10-25 2014-10-21 シリコンウェーハ用研磨液組成物

Country Status (6)

Country Link
EP (1) EP3062337A4 (ja)
JP (1) JP5893706B2 (ja)
KR (1) KR101728646B1 (ja)
CN (1) CN105659357B (ja)
TW (1) TWI541335B (ja)
WO (1) WO2015060293A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035346A1 (en) * 2014-09-05 2016-03-10 Nihon Cabot Microelectronics K.K. Slurry composition, rinse composition, substrate polishing method and rinsing method
WO2017126268A1 (ja) * 2016-01-19 2017-07-27 株式会社フジミインコーポレーテッド 研磨用組成物及びシリコン基板の研磨方法
CN109673157A (zh) * 2016-08-31 2019-04-23 福吉米株式会社 研磨用组合物和研磨用组合物套组
KR20190075897A (ko) 2016-10-28 2019-07-01 카오카부시키가이샤 실리콘 웨이퍼용 린스제 조성물
CN110023449A (zh) * 2016-12-28 2019-07-16 霓达哈斯股份有限公司 研磨用组合物和研磨方法
DE112017005434T5 (de) 2016-10-28 2019-08-01 Kao Corporation Spülmittelzusammensetzung für Silicium-Wafer
KR20190091467A (ko) 2016-12-22 2019-08-06 카오카부시키가이샤 실리콘 웨이퍼용 린스제 조성물

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6678076B2 (ja) * 2016-06-30 2020-04-08 花王株式会社 シリコンウェーハ用研磨液組成物
JP6728011B2 (ja) * 2016-09-27 2020-07-22 株式会社ダイセル Cmp用研磨材組成物、及び該cmp用研磨材組成物を使用した半導体デバイスの製造方法
JP2018074048A (ja) * 2016-10-31 2018-05-10 花王株式会社 シリコンウェーハ用研磨液組成物
WO2018124229A1 (ja) * 2016-12-28 2018-07-05 ニッタ・ハース株式会社 研磨用組成物及び研磨方法
JP7122258B2 (ja) 2017-01-17 2022-08-19 株式会社ダイセル 半導体基板洗浄剤
JP7074525B2 (ja) * 2017-03-30 2022-05-24 株式会社フジミインコーポレーテッド 研磨用組成物および研磨方法
JP7002354B2 (ja) * 2018-01-29 2022-02-04 ニッタ・デュポン株式会社 研磨用組成物
JP7405567B2 (ja) * 2018-12-28 2023-12-26 花王株式会社 研磨液組成物
EP3929155A4 (en) * 2019-02-21 2022-04-06 Mitsubishi Chemical Corporation SILICA PARTICLES AND METHOD FOR PRODUCTION THEREOF, SILICA SOL, POLISHING COMPOSITION, POLISHING METHOD, SEMICONDUCTOR WAFER PRODUCTION METHOD AND SEMICONDUCTOR DEVICE PRODUCTION METHOD
KR20210142582A (ko) * 2019-03-22 2021-11-25 주식회사 다이셀 반도체 배선 연마용 조성물
JP2020109864A (ja) * 2020-03-16 2020-07-16 花王株式会社 シリコンウェーハ用研磨液組成物
CN115785820A (zh) * 2022-11-17 2023-03-14 万华化学集团电子材料有限公司 一种硅抛光组合物及其应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06254383A (ja) 1993-03-01 1994-09-13 Tokuyama Soda Co Ltd 金属酸化物微粒子の製造方法
JPH1140427A (ja) 1997-07-16 1999-02-12 Tokin Corp インダクタンス素子
JPH1160232A (ja) 1997-08-11 1999-03-02 Mamoru Iso 繭型コロイダルシリカの製造方法
JPH11214338A (ja) 1998-01-20 1999-08-06 Memc Kk シリコンウェハーの研磨方法
JP2004128089A (ja) 2002-09-30 2004-04-22 Fujimi Inc 研磨用組成物及びそれを用いたシリコンウエハの研磨方法、並びにリンス用組成物及びそれを用いたシリコンウエハのリンス方法
JP2005060217A (ja) 2003-07-25 2005-03-10 Fuso Chemical Co Ltd シリカゾル及びその製造方法
JP2005060219A (ja) 2003-07-25 2005-03-10 Fuso Chemical Co Ltd シリカゾル及びその製造方法
JP2008053414A (ja) 2006-08-24 2008-03-06 Fujimi Inc 研磨用組成物及び研磨方法
JP2009099819A (ja) * 2007-10-18 2009-05-07 Daicel Chem Ind Ltd Cmp用研磨組成物及び該cmp用研磨組成物を使用したデバイスウェハの製造方法
JP2010095650A (ja) * 2008-10-17 2010-04-30 Hitachi Chem Co Ltd 研磨剤組成物及びこの研磨剤組成物を用いた基板の研磨方法
JP2010272733A (ja) * 2009-05-22 2010-12-02 Hitachi Chem Co Ltd 研磨剤及びこの研磨剤を用いた基板の研磨方法
WO2011093223A1 (ja) 2010-01-29 2011-08-04 株式会社 フジミインコーポレーテッド 半導体ウェーハの再生方法及び研磨用組成物
WO2013157554A1 (ja) * 2012-04-17 2013-10-24 花王株式会社 シリコンウェーハ用研磨液組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140427A (ja) * 1997-11-13 1999-05-25 Kobe Steel Ltd 研磨液および研磨方法
JP2002329688A (ja) * 2001-02-28 2002-11-15 Kyoeisha Chem Co Ltd 保湿剤を含有する研磨用懸濁液
JP5711900B2 (ja) * 2010-05-17 2015-05-07 四日市合成株式会社 ガラスエッチング組成物、ガラスポリッシング加工用組成物及びガラスポリッシング加工方法
WO2012133561A1 (ja) * 2011-03-30 2012-10-04 株式会社 フジミインコーポレーテッド 研磨用組成物および研磨方法
JP5798450B2 (ja) * 2011-11-15 2015-10-21 花王株式会社 シリコンウエハ用研磨液組成物
US9685341B2 (en) * 2012-03-14 2017-06-20 Fujimi Incorporated Abrasive composition and method for producing semiconductor substrate

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06254383A (ja) 1993-03-01 1994-09-13 Tokuyama Soda Co Ltd 金属酸化物微粒子の製造方法
JPH1140427A (ja) 1997-07-16 1999-02-12 Tokin Corp インダクタンス素子
JPH1160232A (ja) 1997-08-11 1999-03-02 Mamoru Iso 繭型コロイダルシリカの製造方法
JPH11214338A (ja) 1998-01-20 1999-08-06 Memc Kk シリコンウェハーの研磨方法
JP2004128089A (ja) 2002-09-30 2004-04-22 Fujimi Inc 研磨用組成物及びそれを用いたシリコンウエハの研磨方法、並びにリンス用組成物及びそれを用いたシリコンウエハのリンス方法
JP2005060217A (ja) 2003-07-25 2005-03-10 Fuso Chemical Co Ltd シリカゾル及びその製造方法
JP2005060219A (ja) 2003-07-25 2005-03-10 Fuso Chemical Co Ltd シリカゾル及びその製造方法
JP2008053414A (ja) 2006-08-24 2008-03-06 Fujimi Inc 研磨用組成物及び研磨方法
JP2009099819A (ja) * 2007-10-18 2009-05-07 Daicel Chem Ind Ltd Cmp用研磨組成物及び該cmp用研磨組成物を使用したデバイスウェハの製造方法
JP2010095650A (ja) * 2008-10-17 2010-04-30 Hitachi Chem Co Ltd 研磨剤組成物及びこの研磨剤組成物を用いた基板の研磨方法
JP2010272733A (ja) * 2009-05-22 2010-12-02 Hitachi Chem Co Ltd 研磨剤及びこの研磨剤を用いた基板の研磨方法
WO2011093223A1 (ja) 2010-01-29 2011-08-04 株式会社 フジミインコーポレーテッド 半導体ウェーハの再生方法及び研磨用組成物
WO2013157554A1 (ja) * 2012-04-17 2013-10-24 花王株式会社 シリコンウェーハ用研磨液組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3062337A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035346A1 (en) * 2014-09-05 2016-03-10 Nihon Cabot Microelectronics K.K. Slurry composition, rinse composition, substrate polishing method and rinsing method
KR20170048513A (ko) * 2014-09-05 2017-05-08 니혼 캐보트 마이크로일렉트로닉스 가부시키가이샤 슬러리 조성물, 린스 조성물, 기판 연마 방법 및 린스 방법
KR102524838B1 (ko) 2014-09-05 2023-04-24 씨엠씨 마테리알즈 가부시키가이샤 슬러리 조성물, 린스 조성물, 기판 연마 방법 및 린스 방법
WO2017126268A1 (ja) * 2016-01-19 2017-07-27 株式会社フジミインコーポレーテッド 研磨用組成物及びシリコン基板の研磨方法
JP2017128638A (ja) * 2016-01-19 2017-07-27 株式会社フジミインコーポレーテッド 研磨用組成物及びシリコン基板の研磨方法
CN108699425A (zh) * 2016-01-19 2018-10-23 福吉米株式会社 研磨用组合物及硅基板的研磨方法
EP3406684A4 (en) * 2016-01-19 2019-01-02 Fujimi Incorporated Polishing composition and method for polishing silicon substrate
EP3508550A4 (en) * 2016-08-31 2020-03-25 Fujimi Incorporated POLISHING COMPOSITION AND POLISHING COMPOSITION SET
CN109673157B (zh) * 2016-08-31 2021-05-07 福吉米株式会社 研磨用组合物和研磨用组合物套组
CN109673157A (zh) * 2016-08-31 2019-04-23 福吉米株式会社 研磨用组合物和研磨用组合物套组
DE112017005434T5 (de) 2016-10-28 2019-08-01 Kao Corporation Spülmittelzusammensetzung für Silicium-Wafer
KR20190075897A (ko) 2016-10-28 2019-07-01 카오카부시키가이샤 실리콘 웨이퍼용 린스제 조성물
KR20190091467A (ko) 2016-12-22 2019-08-06 카오카부시키가이샤 실리콘 웨이퍼용 린스제 조성물
DE112017006489T5 (de) 2016-12-22 2019-09-12 Kao Corporation Spülmittelzusammensetzung für Silicium-Wafer
US10865368B2 (en) 2016-12-22 2020-12-15 Kao Corporation Rinse agent composition for silicon wafers
CN110023449A (zh) * 2016-12-28 2019-07-16 霓达哈斯股份有限公司 研磨用组合物和研磨方法
CN110023449B (zh) * 2016-12-28 2021-08-17 霓达杜邦股份有限公司 研磨用组合物和研磨方法

Also Published As

Publication number Publication date
JP2015109423A (ja) 2015-06-11
CN105659357B (zh) 2019-01-29
EP3062337A1 (en) 2016-08-31
JP5893706B2 (ja) 2016-03-23
TW201527506A (zh) 2015-07-16
KR20160043120A (ko) 2016-04-20
CN105659357A (zh) 2016-06-08
TWI541335B (zh) 2016-07-11
EP3062337A4 (en) 2017-07-05
KR101728646B1 (ko) 2017-04-19

Similar Documents

Publication Publication Date Title
JP5893706B2 (ja) シリコンウェーハ用研磨液組成物
JP5822356B2 (ja) シリコンウェーハ用研磨液組成物
KR101331823B1 (ko) 실리콘 웨이퍼용 연마액 조성물
JP6836671B2 (ja) シリコンウェーハ用研磨液組成物、又はシリコンウェーハ用研磨液組成物キット
JP6087143B2 (ja) シリコンウェーハ用研磨液組成物
JP6039419B2 (ja) シリコンウェーハ用研磨液組成物
JP6678076B2 (ja) シリコンウェーハ用研磨液組成物
JP2018074048A (ja) シリコンウェーハ用研磨液組成物
JP6245939B2 (ja) シリコンウェーハ用研磨液組成物
JP6086725B2 (ja) シリコンウェーハ用研磨液組成物
JP6893835B2 (ja) シリコンウェーハ用仕上げ研磨液組成物
JP6265542B2 (ja) 半導体基板の製造方法
JP6168984B2 (ja) シリコンウェーハ用研磨液組成物
JP6831667B2 (ja) 濡れ剤
JP6169938B2 (ja) シリコンウェーハ用研磨液組成物
JP6366139B2 (ja) シリコンウェーハ用研磨液組成物の製造方法
JP2016119418A (ja) シリコンウェーハ用研磨液組成物
JP2014090100A (ja) シリコンウェーハ用研磨液組成物
JP7405567B2 (ja) 研磨液組成物
JP2020109864A (ja) シリコンウェーハ用研磨液組成物
JP2023154963A (ja) シリコン基板用研磨液組成物
JP6418941B2 (ja) シリコンウェーハ用研磨液組成物
TW202221099A (zh) 矽基板之研磨
TW202223058A (zh) 研磨方法
JP2023008518A (ja) シリコン基板の研磨方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856663

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167008351

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014856663

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014856663

Country of ref document: EP