JPH06254383A - 金属酸化物微粒子の製造方法 - Google Patents

金属酸化物微粒子の製造方法

Info

Publication number
JPH06254383A
JPH06254383A JP4010493A JP4010493A JPH06254383A JP H06254383 A JPH06254383 A JP H06254383A JP 4010493 A JP4010493 A JP 4010493A JP 4010493 A JP4010493 A JP 4010493A JP H06254383 A JPH06254383 A JP H06254383A
Authority
JP
Japan
Prior art keywords
water
aqueous solution
alkaline aqueous
particles
organometallic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4010493A
Other languages
English (en)
Other versions
JP3364261B2 (ja
Inventor
Hiroshi Kato
寛 加藤
Namihiro Okabayashi
南洋 岡林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP04010493A priority Critical patent/JP3364261B2/ja
Publication of JPH06254383A publication Critical patent/JPH06254383A/ja
Application granted granted Critical
Publication of JP3364261B2 publication Critical patent/JP3364261B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

(57)【要約】 (修正有) 【構成】 アンモニア水等のアルカリ性水溶液中でテト
ラエトキシシラン等の加水分解可能な有機金属化合物を
加水分解してシリカ等の金属酸化物微粒子を10重量%
以上の高スラリー濃度で製造する方法において、アルカ
リ性水溶液(I)中に、遅くとも該アルカリ性水溶液中
の水が消費されて存在しなくなる時点前から、加水分解
可能な有機金属化合物とアルカリ性水溶液(II)とを
当該有機金属化合物中の金属元素1モルに対してアルカ
リ性水溶液(II)中の水が1〜6倍モルとなる供給比
で両者を各々独立して同時に且つ連続して滴下し、しか
も加水分解可能な有機金属化合物は液中滴下して加水分
解することを特徴とする金属酸化物微粒子の製造方法。 【効果】 プラスチックやフィルムの充填材や添加材、
セラミックスの原料などの一般工業材料として用いるこ
とができる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は粒径が非常に揃った、い
わゆる単分散性の良好な金属酸化物粒子の高スラリー状
態での製造方法に関する。
【0002】
【従来の技術】従来、テトラエトキシシランなどの加水
分解可能な有機金属化合物を、水、アンモニアおよびア
ルコールなどの反応液中ににおいて加水分解することに
より、シリカなどの金属酸化物粒子を得る方法が知られ
ている。このような方法により製造された金属酸化物粒
子は単分散性が良好であるため各種の充填材やスペーサ
ー、セラミックスの原料などとして非常に有用であるに
もかかわらず、工業的規模で実用に供される例はあまり
見あたらないのが現状である。
【0003】このように実用化が遅れている理由は、原
料のテトラエトキシシランなどの金属アルコキサイドが
比較的高価なことと、製造する金属酸化物粒子の液相中
におけるスラリー濃度を高くできず、生産性が低かった
ことなどが原因と考えられる。一般に、スラリー濃度を
上げようとした場合には、粒子同志が凝集したり、また
は、新たな小粒子が発生するなどして、単分散性の良好
な無機酸化物粒子を得ることはできなかった。
【0004】ところが、最近、スラリー濃度を上げて生
産性を向上させようとする試みも知られているようにな
ってきた。例えば、特開平3ー228839では、メチ
ルシリケートとアンモニア水を反応させ、スラリー濃度
(シリカ濃度)25%のコロイダルシリカを得ている。
しかしながら、ここで合成されたコロイダルシリカは粒
径が5〜40μmと単分散粒子とは言いがたいものであ
った。
【0005】また、特開平4ー77309には、アルコ
キシシランをアニオン系又はノニオン系界面活性剤の存
在下に加水分解し、シリカ粒子を製造する方法が公開さ
れている。この方法では、原料にテトラメトキシシラン
を用い、スラリー濃度(固形分濃度)26.2重量%と
いう高スラリー濃度でシリカ粒子を合成したことが記さ
れている。しかしながら、実施例に記されているよう
に、合成可能な粒子径は、0.14〜0.30μmとい
う狭い範囲であり、しかも、平均粒径が0.23μmの
ときの標準偏差が0.16μmと大きく、単分散粒子と
は言いがたいものであった。また、界面活性剤を添加す
ることによって生成するシリカの粒径は小さくなること
が記されており、0.4μm以上の大きな粒径の粒子を
合成することは困難である。
【0006】一方、特開昭62−52119では、加水
分解可能な有機ケイ素化合物を、反応液中において水お
よびアンモニアの濃度を実質的に変化させることなく加
水分解することによって、粒子径が0.05〜50μm
の範囲で粒子径の変動係数が10%以下である極めて単
分散性の高いシリカ粒子が得られている。しかしなが
ら、スラリー濃度は数%と低かった。
【0007】
【発明が解決しようとする課題】本発明は、従来知られ
ているような単分散性の極めて高い金属酸化物粒子を1
0%以上の高スラリー濃度で製造する方法を提供するも
のである。
【0008】
【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意研究を重ねた。その結果、アルカ
リ性水溶液に、加水分解可能な有機金属化合物とアルカ
リ性水溶液を同時に滴下する際に、該有機金属化合物中
の金属元素のモル数に対し1〜6倍モルの水を含むアル
カリ性水溶液を用いることを主とする製造条件によっ
て、合成した粒子の粒子径の変動係数が10%以下で、
しかも、合成終了後の反応液のスラリー濃度が10%以
上の高濃度で合成できることを見いだし、本発明を完成
するに至った。
【0009】即ち、本発明は、アルカリ性水溶液中で加
水分解可能な有機金属化合物を加水分解して金属酸化物
微粒子を10重量%以上の高スラリー濃度で製造する方
法において、アルカリ性水溶液(I)中に、遅くとも該
アルカリ性水溶液中の水が消費されて存在しなくなる時
点前から、加水分解可能な有機金属化合物とアルカリ性
水溶液(II)とを当該有機金属化合物中の金属元素1
モルに対してアルカリ性水溶液(II)中の水が1〜6
倍モルとなる供給比で両者を各々独立して同時に且つ連
続して滴下し、しかも加水分解可能な有機金属化合物は
液中滴下して加水分解することを特徴とする金属酸化物
微粒子の製造方法である。
【0010】本発明に用いるアルカリ性水溶液(I)と
は、pHが7より大きい水溶液、または、該水溶液とメ
タノール、エタノール、プロパノール、イソプロパノー
ル、ブタノール、エチレングリコール、プロピレングリ
コールなどのアルコール類、アセトン、メチルーエチル
ケトンなどのケトン類、ジオキサン、ジエチルエーテル
などのエーテル類、酢酸エチルなどのエーテル類、その
他水と相溶性のある有機溶媒を単独または複数混合した
液を言う。
【0011】アルカリ性にするための塩基としては、ア
ンモニア、LiOH、NaOH、KOHなどが何ら制限
されることなく用いられる。該アルカリ水溶液中の水の
割合は、用いる有機金属化合物の種類によって異なるた
め一概には言えないが、好ましくは3〜95%、さらに
好ましくは、5〜40%の範囲である。
【0012】次に、本発明の原料である加水分解可能な
有機金属化合物としては、前記のアルカリ性水溶液中で
加水分解を受けて金属酸化物になるものであれば公知の
化合物が何ら制限なく採用される。加水分解可能な有機
金属化合物の代表的なものを示すと、例えば、一般式S
i(OR)4またはSiR' n(OR)4-nで示されるアル
コキシシラン、またはアルコキシシランを部分的に加水
分解して得られる低縮合物が工業的に入手し易く、その
一種または2種以上の混合物が好ましく用いられる。な
お、上記の一般式において、RおよびR'はアルキル基
で、例えばメチル基、エチル基、イソプロピル基、ブチ
ル基などの低級アルキル基が好適である。nは1〜3の
整数である。
【0013】その他の加水分解可能な有機金属化合物と
しては、周期律表第I族、第II族、第III族、およ
び第IV族の加水分解可能な有機金属化合物が特に制限
されず使用される。例えば、一般式M1(OR)、M
2(OR)2、M3(OR)3、M4(OR)4(但し、Rは
アルキル基)で表示される金属アルコキシド化合物また
は上記一般式中の一つ又は二つのアルコキシド基(O
R)がカルボキシル基あるいはβ−ジカルボニル基で置
換された化合物が好ましい。ここでM1は第I族の金
属、M2は第II族の金属、M3は第III族の金属、M
4は第IV族の金属で、具体的には例えばリチウム、ナ
トリウム、カリウム、マグネシウム、カルシウム、スト
ロンチウム、バリウム、アルミニウム、チタニウム、ジ
ルコニウム、ゲルマニウム、ハフニウム、錫または鉛が
好適に挙げられる。
【0014】本発明において一般に好適に使用される上
記化合物を更に具体的に例示すると、Si(OM
e)4、Si(OEt)4、およびこれらの低縮合物等の
アルコキシシラン;NaOCH3,NaOC25,Na
OC37等の有機ナトリウム化合物および上記Naに代
わって、Li、K等で代替した第I族化合物;Mg(O
CH32、Mg(OC252、Mg(OC372、M
g(OC492、Mg(OC5112等の有機マグネ
シウム化合物および上記Mgに代わって、Ca、Sr、
Ba等で代替した第II族化合物;Al(OC
253、Al(OC373、Al(OC493等の
化合物および上記Alに代わって、B等で代替した第I
II族化合物;Ti(O−isoC374、Ti(O
−nC494、等の化合物および上記Tiに代わっ
て、Zr、Ge、Hf、Sn、Pb等で代替した第IV
族化合物などが挙げられる。また、CaCl2、Ca
(HOC64COO)2・H2O等の化合物も好適に使用
できる。
【0015】本発明を実施するためには、上記の有機金
属化合物を1種、または2種以上混合して適宜用いれば
よい。なお、ケイ素とその他の金属とよりなる複合酸化
物の粒子を製造するためには、アルコキシシランを部分
的に加水分解したものか、または部分的に加水分解して
得られる低縮合物を、その他の加水分解可能な有機金属
化合物と単に混合するか、または、混合後還流操作など
により生成した複合アルコキサイドを用いることも、本
発明を実施する上で好適である。
【0016】上記加水分解可能な有機金属化合物は、ア
ルコール等の有機溶媒で希釈して用いても差しつかえは
ないが、スラリー濃度を上げるためには、全く希釈せず
に用いるか、または、希釈する場合にも希釈率は50%
程度にとどめることが望ましい。
【0017】ところで、本発明では、上記加水分解可能
な有機金属化合物の液中滴下と同時に別途調製された該
有機金属化合物中の金属元素のモル数に対し水のモル数
が1〜6倍モルとなるような供給比でアルカリ性水溶液
(II)を滴下することが必要である。アルカリ性水溶
液の同時滴下を行わなかった場合には、単分散性の高い
10%以上の高濃度の金属酸化物微粒子スラリーを得る
ことは困難である。また、10%以上の高スラリー濃度
で製造する場合は、上記水の供給モル比が1倍モルより
小さい場合には、加水分解に必要な水が不足するため、
凝集を起こし易くなり、6倍モルよりも大きい場合に
は、新たな核粒子が発生する傾向が強く単分散性が低下
するので、合成条件としては不適である。
【0018】アルカリ性水溶液(II)の最適な供給比
は、用いる加水分解可能な有機金属化合物の種類によっ
て上記範囲から適宜選択する必要がある。例えば、有機
金属化合物としてアルコキシシランを部分的に加水分解
して得られる低縮合物を用いた場合には、供給比は比較
的小さい方が良く、ケイ素とその他の金属とよりなる複
合アルコキサイドを用いた場合には、供給比は比較的大
きい方が良い場合が多い。
【0019】該アルカリ性水溶液(II)は上述のよう
に該溶液中の水の供給量比が重要である点を除けばその
組成は特に限定されず先に述べたアルカリ性水溶液
(I)と同様に調製すればよい。しかし、10%以上の
高スラリー濃度で合成するためには、水の濃度は50〜
99.9%と高いことが好ましい。
【0020】アルカリ性水溶液(II)の同時滴下を開
始する時期は、最初に仕込んだアルカリ性水溶液(I)
の反応液中の水が加水分解で消費されて無くなる以前に
開始する必要があり、これ以前であれば特に限定されな
い。加水分解可能な有機金属化合物の滴下と同時期に開
始するのが製造工程上は、最も簡便な方法である。最初
に仕込んだアルカリ性水溶液(I)の反応液中の水が加
水分解で消費されて無くなった後に同時滴下を開始する
と、それまで成長していた球状粒子を含んだ凝集体しか
得られない。一方、加水分解可能な有機金属化合物の滴
下をある程度行った後にアルカリ性水溶液(I)の同時
滴下を開始すると、より単分散性の優れた粒子が得られ
る場合もある。加水分解可能な有機金属化合物の滴下を
始めると、加水分解反応によって反応液中の水が消費さ
れ、反応液中の水の濃度は低下する。この様な状態で合
成する方が、単分散性を向上させる場合がある。
【0021】加水分解可能な有機金属化合物の滴下は、
液中滴下することが必須である。液中滴下とは、上記溶
液をアルカリ性水溶液の反応液中に滴下する際、滴下口
先端が反応液中に浸されていることを言う。滴下口先端
の位置は、液中にあれば特に限定されないが、撹拌羽根
の近傍などの充分に撹拌が行われる位置が望ましい。液
中滴下をせずに、例えば、反応液の上部から液上滴下し
た場合には粒子は凝集しやすくなる。一方、同時滴下す
るアルカリ性水溶液(I)の滴下は、特に液中滴下する
必要はないが、撹拌羽根近傍で液中滴下した方が撹拌が
充分に行われるので好ましい。
【0022】また、単分散性を上げるためには、滴下速
度も製造因子となりうる。滴下速度は、できる限り遅く
した方が、単分散性は高くなる傾向にある。しかしなが
ら、滴下速度が遅い場合には、合成が終了するまでに長
時間を要するため、実用的ではない。そのため、合成初
期は滴下速度を遅くし、後半になってから滴下速度を速
めるのも本発明を実施する上で好ましい態様である。
【0023】加水分解可能な有機金属化合物およびアル
カリ性水溶液は、それぞれ滴下を開始してから終了する
まで連続的に滴下することが必要である。なお、ここで
言う連続的とは、通常は10分以上、好ましくは3分以
上の間隔を空けないことを言う。滴下速度は、必ずしも
一定である必要はないが、滴下速度を変える場合には連
続的に変えた方が望ましい。特開平4−77309に
は、数回に分けて水を添加することが記されているが、
このような方法では、急激な水の添加によって反応液中
の雰囲気が乱され、粒子同志の凝集や、新たな核粒子の
発生などが起こるため、好ましい方法ではない。
【0024】ところで、本発明で言う高スラリー濃度と
は、用いる有機金属化合物の種類によって変わるため一
概には言えないが、およそ次のように説明される。例え
ば、有機金属化合物にテトラエトキシシラン(Si(O
Et)4)を用いた場合には、次式のように加水分解反
応が起こるので、シリカの分子量(約60)を右辺の分
Si(OEt)4+2H2O−−−> SiO2+4E
tOH 子量の総和(約244)で除した値(約28%)が理論
的なスラリー濃度の上限値となる。実際には、溶媒等が
存在するためスラリー濃度は上記上限値の4〜8割程度
となる。有機金属化合物にテトラメトキシシランのオリ
ゴマー(例えば、コルコート(株)、品名;メチルシリ
ケート51)を用いた場合には、理論的なスラリー濃度
の上限値は、約50%と高いため、実際のスラリー濃度
も30%以上と高くできる。このように、用いる有機金
属化合物の種類によってスラリー濃度の上限値は変わ
る。本発明で言う高スラリー濃度とは、一般に10%〜
40%の範囲にあり、少なくとも合成終了時点でこの範
囲にあるものを言う。従って、合成途中のスラリー濃度
はこの範囲を下回っても良い。加水分解を行うときの反
応槽の温度は、0〜50℃の範囲であれば良く、用いる
加水分解可能な有機金属化合物の種類によって適宜選択
される。
【0025】その他、加水分解に使用する反応容器、そ
の他の反応条件等は公知のものがなんら制限なく採用さ
れる。
【0026】
【発明の効果】本発明の方法によれば、単分散性の極め
て高い金属酸化物粒子を10%以上の高スラリー濃度で
製造することができる。このような生産性の改善によっ
て、粒子の価格が大幅に下がり、そのため、従来価格的
に応用が不可能であった用途にまで使用できるようにな
る。例えば、プラスチックやフィルムの充填材や添加
材、セラミックスの原料などの一般工業材料として用い
ることができる。
【0027】
【実施例】以下、本発明の実施例を挙げて具体的に説明
するが、本発明はこれらの実施例によって何ら制限され
るものではない。
【0028】粒子を製造するときの加水分解可能な有機
金属化合物中の金属元素と、同時に液中滴下するアルカ
リ性水溶液中の水のモル比を、ここでは単にモル比と表
記する。
【0029】平均粒子径と標準偏差値は、電子顕微鏡撮
影像の任意の粒子100個の粒子径を測定し、下記式よ
り求めた。
【0030】
【数1】
【0031】(式中、Xiはi番目の粒子径を示し、n
=100である。) 実施例1 撹拌羽根付きの内容積4リットルのガラス製反応器にメ
タノールおよびアンモニア水(25重量%)をそれぞれ
400gおよび100g仕込み、よく混合して反応液を
調製した。次に、反応液の温度を30℃に保ちつつ、テ
トラエトキシシラン(関東化学(株)、品名;テトラエ
トキシシラン、純度;3N)を5g加え、30分間攪拌
して核粒子を生成させた。次いで、テトラエトキシシラ
ン(Si(OEt)4、コルコート(株)、品名;エチ
ルシリケート28)を8.3g/minの速度で、アン
モニア水(25重量%)を2.7g/minの速度で、
それぞれ別々に反応液中に液中同時滴下した。なお、こ
のときの金属に対する水の供給モル比は2.8であっ
た。滴下開始から4時間後に滴下を終了し、テトラエト
キシシランを2000g、アンモニア水を640g滴下
した。さらに1時間撹拌を続けた後、系内の溶液を取り
出した。取り出した溶液の重量は、3145gであっ
た。また、この溶液を濾過し、200℃で乾燥した後、
900℃で焼成したところ、575gのシリカ粒子を得
た。したがって、このときのスラリー濃度は18%であ
った。なお、得られたシリカ粒子は、真球状で、平均粒
子径は0.77μm、標準偏差値は1.067であっ
た。
【0032】実施例2 メタノールの代わりにエタノールを用い、反応液の温度
を40℃で行った以外は実施例1と同様にしてシリカ粒
子を合成した。このときの水の供給モル比は2.8であ
った。溶液の重量は、3140g、シリカ粒子は575
g得られた。したがって、このときのスラリー濃度は1
8%であった。なお、得られたシリカ粒子は、真球状
で、平均粒子径は2.12μm、標準偏差値は1.04
4であった。
【0033】実施例3 反応液の温度を10℃に保ちつつ、テトラメトキシシラ
ンのオリゴマー(Si(OMe)4の2〜6量体で、平
均4量体、コルコート(株)、品名;メチルシリケート
51)を6.3g/minの速度で、アンモニア水(2
5重量%)を2.0g/minの速度で滴下し、テトラ
メトキシシランのオリゴマーを1500g、アンモニア
水を480g滴下した以外は実施例1と同様にしてシリ
カ粒子を合成した。このときの水の供給モル比は1.6
であった。溶液の重量は、2500g、シリカ粒子は7
63g得られた。したがって、このときのスラリー濃度
は、31%であった。なお、得られたシリカ粒子は、真
球状で、平均粒子径は0.79μm、標準偏差値は1.
089であった。
【0034】実施例4 撹拌羽根付きの内容積4リットルのガラス製反応器にイ
ソプロパノールおよびアンモニア水(25重量%)をそ
れぞれ245gおよび105g仕込み、反応液の温度を
40℃に保持しつつ攪拌した。
【0035】次に、3リットルの三角フラスコに、テト
ラメトキシシラン(Si(OMe)4、コルコート
(株)、商品名;メチルシリケート39)943gを仕
込み、撹拌しながら、メタノール350gと0.1重量
%塩酸水溶液(35%塩酸、和光純薬工業(株)を1/
1000に水で希釈)49gを加え、約10分間撹拌し
た。続いて、テトラブトキシチタン(Ti(OBu)
4、日本曹達(株)、品名;B−1(TBT))308
gをイソプロパノール544gで希釈した液を加え、黄
色透明な均一溶液(SiとTiの複合アルコキサイド)
を得た。
【0036】上記複合アルコキサイド2192gを4.
6g/minの速度で、アンモニア水(25重量%)7
10gを1.5g/minの速度で反応液中に8時間か
けて同時滴下した。なお、このときの水の供給モル比は
4.2であった。
【0037】溶液の重量は、3250gで、粒子440
gを得た。したがって、このときのスラリー濃度は14
%であった。得られた粒子は球状で、平均粒子径は0.
60μm、標準偏差値は1.092であった。
【0038】実施例5 実施例4と同様にして得た複合アルコキサイドを平均
1.1g/minの速度で、単独に3時間滴下した。引
き続き複合アルコキサイドの滴下速度を4.5g/mi
mに上げ、同時に、アンモニア水(25重量%)を1.
4g/minの速度で反応液中に同時滴下した。なお、
このときの水の供給モル比は4.0であった。約10時
間後に滴下を終了した。
【0039】溶液の重量は、3250gで、粒子440
gを得た。したがって、このときのスラリー濃度は14
%であった。得られた粒子は球状で、平均粒子径は0.
60μm、標準偏差値は1.073であった。
【0040】比較例1 同時滴下するアンモニア水(25重量%)を0.88g
/minとした以外は実施例1と同様にしてシリカ粒子
を合成した。なお、このときの水の供給モル比は0.9
1であった。
【0041】この条件では、合成途中で反応液が凝集し
始め、攪拌が困難となったので、実験を中断した。
【0042】比較例2 同時滴下するアンモニア水(25重量%)を2.7g/
minとした以外は実施例4と同様にして粒子を合成し
た。なお、このときの水の供給モル比は7.6であっ
た。
【0043】取り出した溶液の重量は、3840g、粒
子は440g得られた。したがって、このときのスラリ
ー濃度は12%であった。しかし、得られた粒子は、数
10μmから数100μmの大きさの凝集粒子を多く含
んでおり、独立した球状粒子も0.1から0.7μmと
分布の広いものであった。

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 アルカリ性水溶液中で加水分解可能な有
    機金属化合物を加水分解して金属酸化物微粒子を10重
    量%以上の高スラリー濃度で製造する方法において、ア
    ルカリ性水溶液(I)中に、遅くとも該アルカリ性水溶
    液中の水が消費されて存在しなくなる時点前から、加水
    分解可能な有機金属化合物とアルカリ性水溶液(II)
    とを当該有機金属化合物中の金属元素1モルに対してア
    ルカリ性水溶液(II)中の水が1〜6倍モルとなる供
    給比で両者を各々独立して同時に且つ連続して滴下し、
    しかも加水分解可能な有機金属化合物は液中滴下して加
    水分解することを特徴とする金属酸化物微粒子の製造方
    法。
JP04010493A 1993-03-01 1993-03-01 金属酸化物微粒子の製造方法 Expired - Lifetime JP3364261B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04010493A JP3364261B2 (ja) 1993-03-01 1993-03-01 金属酸化物微粒子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04010493A JP3364261B2 (ja) 1993-03-01 1993-03-01 金属酸化物微粒子の製造方法

Publications (2)

Publication Number Publication Date
JPH06254383A true JPH06254383A (ja) 1994-09-13
JP3364261B2 JP3364261B2 (ja) 2003-01-08

Family

ID=12571559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04010493A Expired - Lifetime JP3364261B2 (ja) 1993-03-01 1993-03-01 金属酸化物微粒子の製造方法

Country Status (1)

Country Link
JP (1) JP3364261B2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004074180A1 (ja) * 2003-02-18 2004-09-02 Tytemn Corporation 耐アルカリ性繭型コロイダルシリカ粒子及びその製造方法
JP2008037700A (ja) * 2006-08-04 2008-02-21 Tokuyama Corp シリカ系複合酸化物粒子集合体およびその製造方法
WO2011004793A1 (ja) 2009-07-07 2011-01-13 花王株式会社 シリコンウエハ用研磨液組成物
WO2011093142A1 (ja) * 2010-01-26 2011-08-04 堺化学工業株式会社 シリカ粒子とその製造方法、及びそれを含む樹脂組成物
JP2012006796A (ja) * 2010-06-25 2012-01-12 Fuji Xerox Co Ltd シリカ粒子及びその製造方法
JP2012006789A (ja) * 2010-06-24 2012-01-12 Fuji Xerox Co Ltd シリカ粒子及びその製造方法
JP2012006781A (ja) * 2010-06-23 2012-01-12 Fuji Xerox Co Ltd シリカ粒子の製造方法
US8962139B2 (en) 2011-01-20 2015-02-24 Fuji Xerox Co., Ltd. Resin particle and method for producing the same
WO2015060293A1 (ja) 2013-10-25 2015-04-30 花王株式会社 シリコンウェーハ用研磨液組成物
US9243145B2 (en) 2013-01-28 2016-01-26 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same
US9394413B2 (en) 2011-01-19 2016-07-19 Fuji Xerox Co., Ltd. Resin particle and method for producing the same
US9708191B2 (en) 2011-12-01 2017-07-18 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same
WO2020250813A1 (ja) 2019-06-12 2020-12-17 株式会社トクヤマ 非晶質シリカチタニア複合酸化物粉末、樹脂組成物、分散液、及びシリカ被覆シリカチタニア複合酸化物粉末の製造方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004074180A1 (ja) * 2003-02-18 2006-06-01 株式会社タイテム 耐アルカリ性繭型コロイダルシリカ粒子及びその製造方法
JP4712556B2 (ja) * 2003-02-18 2011-06-29 株式会社タイテム 耐アルカリ性繭型コロイダルシリカ粒子及びその製造方法
WO2004074180A1 (ja) * 2003-02-18 2004-09-02 Tytemn Corporation 耐アルカリ性繭型コロイダルシリカ粒子及びその製造方法
JP2008037700A (ja) * 2006-08-04 2008-02-21 Tokuyama Corp シリカ系複合酸化物粒子集合体およびその製造方法
WO2011004793A1 (ja) 2009-07-07 2011-01-13 花王株式会社 シリコンウエハ用研磨液組成物
US8926859B2 (en) 2009-07-07 2015-01-06 Kao Corporation Polishing composition for silicon wafers
WO2011093142A1 (ja) * 2010-01-26 2011-08-04 堺化学工業株式会社 シリカ粒子とその製造方法、及びそれを含む樹脂組成物
JP2011173779A (ja) * 2010-01-26 2011-09-08 Sakai Chem Ind Co Ltd シリカ粒子とその製造方法、及びそれを含む樹脂組成物
US9416015B2 (en) 2010-06-23 2016-08-16 Fuji Xerox Co., Ltd. Method of producing silica particles
JP2012006781A (ja) * 2010-06-23 2012-01-12 Fuji Xerox Co Ltd シリカ粒子の製造方法
US9187502B2 (en) 2010-06-24 2015-11-17 Fuji Xerox Co., Ltd. Silica particles and method for producing the same
JP2012006789A (ja) * 2010-06-24 2012-01-12 Fuji Xerox Co Ltd シリカ粒子及びその製造方法
US8871344B2 (en) 2010-06-25 2014-10-28 Fuji Xerox Co., Ltd. Hydrophobization treatment of silica particles
JP2012006796A (ja) * 2010-06-25 2012-01-12 Fuji Xerox Co Ltd シリカ粒子及びその製造方法
US9394413B2 (en) 2011-01-19 2016-07-19 Fuji Xerox Co., Ltd. Resin particle and method for producing the same
US8962139B2 (en) 2011-01-20 2015-02-24 Fuji Xerox Co., Ltd. Resin particle and method for producing the same
US9708191B2 (en) 2011-12-01 2017-07-18 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same
US9243145B2 (en) 2013-01-28 2016-01-26 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same
WO2015060293A1 (ja) 2013-10-25 2015-04-30 花王株式会社 シリコンウェーハ用研磨液組成物
WO2020250813A1 (ja) 2019-06-12 2020-12-17 株式会社トクヤマ 非晶質シリカチタニア複合酸化物粉末、樹脂組成物、分散液、及びシリカ被覆シリカチタニア複合酸化物粉末の製造方法
KR20220019689A (ko) 2019-06-12 2022-02-17 가부시끼가이샤 도꾸야마 비정질 실리카 티타니아 복합 산화물 분말, 수지 조성물, 분산액, 및 실리카 피복 실리카 티타니아 복합 산화물 분말의 제조 방법

Also Published As

Publication number Publication date
JP3364261B2 (ja) 2003-01-08

Similar Documents

Publication Publication Date Title
KR100711081B1 (ko) 실리카 복합 산화물 입자 및 그 제조 방법
JP3364261B2 (ja) 金属酸化物微粒子の製造方法
JPH0465006B2 (ja)
KR950001660B1 (ko) 무기산화물 입자의 제조법
JPH0816003B2 (ja) 無機酸化物の製造方法
JP2013518801A (ja) 高純度の金属酸化物粒子及びそれにより製造される材料の製造方法
JP4925706B2 (ja) シリカ系複合酸化物粒子の製造方法
JP2008037700A (ja) シリカ系複合酸化物粒子集合体およびその製造方法
JP4200001B2 (ja) シリカ系複合酸化物粒子およびその製造方法
WO2011016418A1 (ja) シリカ層で被覆されたシリカ-ジルコニア複合粒子の製造方法
JP3878113B2 (ja) シリカ−チタニア複合酸化物の製造方法
JP3556277B2 (ja) 金属酸化物粒子の製造方法
JP2880173B2 (ja) 粒子の製造方法
JP3387969B2 (ja) 複合酸化物粒子
JPH03218915A (ja) シリカ粒子の製造方法
JPH0656418A (ja) 無機酸化物粒子の製造方法
JPS63210016A (ja) 無機酸化物粒子の製造方法
JPH03261615A (ja) シリカ多成分系粉末物の合成方法
JPH0662284B2 (ja) 無機酸化物粒子の製造法
JPS62226816A (ja) 酸化ジルコニウム微粒子の製造方法
JPH0733256B2 (ja) 複合酸化物粉末の製造方法
JPH05286709A (ja) シリカ系球状粒子の製造方法
JPH0637288B2 (ja) 複合酸化物前駆体の製造方法
JPH02124712A (ja) アルコキシド法によるイツトリウム含有複合酸化物前駆体の製造方法
JPH04321519A (ja) 複合酸化物粉末の製造方法

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20111025

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20121025

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20121025

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131025

Year of fee payment: 11

EXPY Cancellation because of completion of term