WO2015050262A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2015050262A1
WO2015050262A1 PCT/JP2014/076633 JP2014076633W WO2015050262A1 WO 2015050262 A1 WO2015050262 A1 WO 2015050262A1 JP 2014076633 W JP2014076633 W JP 2014076633W WO 2015050262 A1 WO2015050262 A1 WO 2015050262A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
anode
trench
igbt
fwd
Prior art date
Application number
PCT/JP2014/076633
Other languages
English (en)
French (fr)
Inventor
正樹 田村
崇一 吉田
新一郎 安達
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2015540577A priority Critical patent/JP5935951B2/ja
Priority to CN201480021099.1A priority patent/CN105210187B/zh
Priority to EP14850425.1A priority patent/EP2966683B1/en
Publication of WO2015050262A1 publication Critical patent/WO2015050262A1/ja
Priority to US14/882,427 priority patent/US9536875B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0647Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. vertical bipolar transistor and bipolar lateral transistor and resistor
    • H01L27/0652Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0664Vertical bipolar transistor in combination with diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT

Definitions

  • the present invention relates to a semiconductor device.
  • MOS power semiconductor devices In response to the recent demand for miniaturization and high performance of power supply equipment in the field of power electronics, power semiconductor devices have high breakdown voltage and high current, as well as low loss, high destruction resistance, and high speed performance. Efforts are being made to improve.
  • a MOS power device driven by a MOS gate (insulated gate made of metal-oxide film-semiconductor) is known as a power semiconductor device capable of increasing current and reducing loss.
  • MOS gate structure of this MOS power device there are two types of structures: a planar gate structure in which a MOS gate is provided on a semiconductor substrate and a trench gate structure in which a MOS gate is embedded in a trench formed in the semiconductor substrate. Widely known. In recent vertical power devices, a trench gate structure has attracted attention because it is structurally easy to obtain low on-resistance characteristics.
  • each surface of the p-type channel region and the n-type semiconductor substrate is alternately arranged in the longitudinal direction between the parallel trenches, and is formed on the surface layer of the p-type channel region.
  • An apparatus has been proposed in which the surface shape of the selectively formed n + -type emitter region is wide on the trench side and narrow on the center side between the trenches (see, for example, Patent Document 1 below).
  • an insulated gate bipolar transistor (IGBT) and a free-wheeling diode (FWD) connected in antiparallel to the IGBT are made of the same semiconductor in order to reduce the size of the entire power conversion device.
  • RC-IGBT reverse conducting IGBT
  • FIG. 18 is a plan view showing the structure of a conventional RC-IGBT.
  • FIG. 19 is a cross-sectional view showing a cross-sectional structure taken along section line AA-AA ′ of FIG.
  • the conventional RC-IGBT includes a general field stop type IGBT (FS-IGBT) and the FS ⁇ on the same n ⁇ type semiconductor substrate to be the n ⁇ drift region 101. And an FWD connected in antiparallel to the IGBT.
  • FS-IGBT general field stop type IGBT
  • FWD connected in antiparallel to the IGBT.
  • the p base region constituting the MOS gate structure on the front surface side of the n ⁇ type semiconductor substrate is defined as the p anode region 105-2 in order to connect the FWD in antiparallel to the FS-IGBT.
  • the p + collector region 111 provided on the back side of the n ⁇ type semiconductor substrate has a structure in which a part of the p + collector region 111 is replaced with an n + cathode region 112.
  • an IGBT section 121 provided with an FS-IGBT and an FWD section 122 provided with an FWD are provided on the same n ⁇ type semiconductor substrate.
  • trench 102, gate insulating film 103, gate electrode 104, p base region 105-1, n + emitter region 106, and p + contact region 107 are formed on the front surface side of the n ⁇ type semiconductor substrate.
  • a trench gate type MOS gate structure and an emitter electrode 109 are provided.
  • the p base regions 105-1 are arranged at a predetermined interval in the longitudinal direction of the trench 102 in the mesa portion between the adjacent trenches 102 (region sandwiched between the adjacent trenches 102).
  • a trench gate including the trench 102, the gate insulating film 103, and the gate electrode 104 has a direction (longitudinal direction) orthogonal to a direction (short direction) in which the IGBT part 121 and the FWD part 122 are arranged from the IGBT part 121 to the FWD part 122. It is provided in a stripe shape extending in the direction.
  • a p anode region 105-2 is provided on the entire front surface of the n ⁇ type semiconductor substrate in the mesa portion between the adjacent trenches 102.
  • the p anode region 105-2 is conductively connected to the emitter electrode 109.
  • a p + collector region 111 is provided in the IGBT portion 121, and an n + cathode region 112 is provided in the FWD portion 122.
  • An n buffer layer 110 is provided between the p + collector region 111 and the n + cathode region 112 and the n ⁇ drift region 101.
  • Collector electrode 113 is in contact with p + collector region 111 and n + cathode region 112.
  • Reference numeral 108 denotes an interlayer insulating film.
  • RC-IGBT a MOS gate structure is repeatedly arranged in the same pattern as a normal IGBT on the front surface of a semiconductor chip, and the n + cathode region of the FWD portion and the p portion of the IGBT portion are formed on the back surface of the semiconductor chip.
  • a collector short type device in which a + collector region is arranged in parallel has been proposed (see, for example, Patent Document 2 below).
  • an IGBT portion that operates as an IGBT element and a diode region that operates as a diode element are alternately and repeatedly laid out on a semiconductor substrate including an n ⁇ type drift layer. a part side, n - the surface portion of the type drift layer, n - -type drift layer device having a Schottky contact region of the p-type extract holes from has been proposed (for example, the following Patent Document 3. ).
  • Another RC-IGBT has a structure in which an emitter layer is provided in the first region on the first main surface side of the semiconductor substrate and no emitter layer is provided in the second region.
  • An apparatus having a structure in which a collector layer is provided in a first region on the surface side and a cathode layer is provided in a second region has been proposed (for example, see Patent Document 4 below).
  • a plurality of trench gates are formed at different intervals on the substrate front surface side of the diode part, and an n-type emitter region and a p-type base region are formed in the narrower interval between the trench gates.
  • a formed device has been proposed (for example, see Patent Document 5 below).
  • a barrier metal is formed on the surface of the interlayer insulating film and the inner surface of the second trench using titanium (Ti), tungsten (W), or the like.
  • the emitter (anode) electrode is in contact with the p base (anode) layer, the n emitter region and the p contact region through a barrier metal (see, for example, Patent Document 7 (paragraph 0054, 0080, FIG. 5) below).
  • the back electrode is formed on the second main surface so as to be in contact with both the p-type collector region and the n-type cathode region, and is laminated in order from the second main surface side, a nickel (Ni) layer and a gold layer It has an (Au) layer.
  • the titanium layer is in ohmic contact with both the p-type collector region and the n-type cathode region (see, for example, Patent Document 8 below).
  • Patent Document 9 (No. 1) described below. See paragraph 0068, FIG. 6)
  • Patent Document 9 by setting the width of the FWD region as the wide region (distance between two channels sandwiching the FWD region as the narrow region) to 170 ⁇ m or more, the ratio of the region that does not function as the FWD region is relatively Therefore, the snapback of the forward voltage is suppressed.
  • the following device has been proposed as another RC-IGBT.
  • a floating layer deeper than the emitter region and the contact region is provided in the depth direction of the trench in the p base layer of the IGBT portion.
  • the diode portion is not provided with a floating layer and an emitter region.
  • the gate electrode of the diode portion has an emitter potential (see, for example, Patent Document 10 below).
  • Patent Document 10 below excessive hole injection from the contact region of the IGBT portion to the diode portion is suppressed by providing a floating layer.
  • the trenches are arranged in the IGBT portion in a stripe shape extending in a direction orthogonal to the direction in which the trenches are arranged at a relatively narrow pitch.
  • the FWD portion when the trench penetrating the Schottky junction between the p anode region (p base region) and the n ⁇ drift layer from the front surface of the substrate is not provided, the FWD portion is provided closest to the FWD portion of the IGBT portion.
  • the electric field strength concentrates in the off state at the bottom of the trench, and the withstand voltage decreases.
  • Patent Document 2 since the FWD portion is partially provided in the entire IGBT portion, the carrier is pulled out from the FWD portion, the number of carriers in the IGBT portion is reduced, and the on-resistance is increased. May be higher.
  • the p anode region is provided on the entire substrate front side of the FWD portion as in Patent Document 4 described above, the electric field strength in the FWD portion is reduced, but the hole injection efficiency in the FWD portion is reduced. Since the reverse recovery current increases, the turn-on loss of the IGBT increases, and the reverse recovery tolerance of the FWD decreases.
  • the present invention improves the diode characteristics in a reverse conducting semiconductor device having a structure in which an insulated gate bipolar transistor and a diode are integrated and integrated in the same semiconductor substrate in order to eliminate the above-described problems caused by the prior art.
  • An object of the present invention is to provide a semiconductor device capable of performing
  • a semiconductor device includes a first element region in which an insulated gate bipolar transistor is provided on a semiconductor substrate serving as a first conductivity type drift region. And a second element region provided with a diode, and has the following characteristics.
  • a trench is provided.
  • a gate insulating film is provided along the side wall and bottom surface of the trench.
  • a gate electrode is provided inside the trench and inside the gate insulating film.
  • a base region of the second conductivity type is selectively provided in a mesa portion between the trenches adjacent to the first element region.
  • a second conductivity type anode region is selectively provided in a mesa between adjacent trenches of the second element region.
  • a first conductivity type emitter region is selectively provided in the base region.
  • a first electrode in contact with the base region, the emitter region, and the anode region is provided.
  • a second conductivity type collector region is provided on the back surface of the semiconductor substrate in the first element region.
  • a first conductivity type cathode region is provided on the back surface of the semiconductor substrate.
  • a second electrode in contact with the collector region and the cathode region is provided.
  • the anode region and the drift region are alternately and repeatedly arranged in the mesa portion between the adjacent trenches of the second element region along the longitudinal direction of the trench.
  • the proportion occupied by the anode region is 50 % Or more and less than 100%.
  • the semiconductor device according to the present invention is characterized in that, in the above-described invention, built-in depletion layers extending from the adjacent anode regions to the mesa portions are connected to each other.
  • a semiconductor device is a first semiconductor device in which an insulated gate bipolar transistor is provided on a semiconductor substrate serving as a first conductivity type drift region.
  • a semiconductor device including an element region and a second element region provided with a diode has the following characteristics.
  • a trench is provided.
  • a gate insulating film is provided along the side wall and bottom surface of the trench.
  • a gate electrode is provided inside the trench and inside the gate insulating film.
  • a base region of the second conductivity type is selectively provided in a mesa portion between the trenches adjacent to the first element region.
  • a second conductivity type anode region is selectively provided in a mesa between adjacent trenches of the second element region.
  • a first conductivity type emitter region is selectively provided in the base region.
  • a first electrode in contact with the base region, the emitter region, and the anode region is provided.
  • a second conductivity type collector region is provided on the back surface of the semiconductor substrate in the first element region.
  • a first conductivity type cathode region is provided on the back surface of the semiconductor substrate.
  • a second electrode in contact with the collector region and the cathode region is provided.
  • the anode region and the drift region are alternately and repeatedly arranged in the mesa portion between the adjacent trenches of the second element region along the longitudinal direction of the trench.
  • the first electrode is further in contact with the drift region in the second element region.
  • the proportion of the anode region in the unit region composed of the drift region in the anode region and the portion sandwiched between the anode region and the anode region adjacent to the longitudinal direction of the trench in the anode region. Is less than 50%.
  • the semiconductor device according to the present invention is characterized in that, in the above-described invention, built-in depletion layers extending from the adjacent trenches to mesa portions between the trenches are connected to each other.
  • reverse recovery current can be reduced and reverse recovery can be achieved in a reverse conducting semiconductor device having a structure in which an insulated gate bipolar transistor and a diode are integrated in a single semiconductor substrate. Since the loss can be reduced, the diode characteristics can be improved.
  • FIG. 1 is a plan view showing the structure of the semiconductor device according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing a cross-sectional structure taken along section line A-A ′ of FIG.
  • FIG. 3 is a characteristic diagram illustrating reverse recovery characteristics of the semiconductor device according to the first embodiment.
  • FIG. 4 is a characteristic diagram showing reverse recovery characteristics of the semiconductor device according to the first embodiment.
  • FIG. 5 is a cross-sectional view illustrating the semiconductor device according to the first embodiment in the middle of manufacturing.
  • FIG. 6 is a cross-sectional view showing a state in the middle of manufacturing the semiconductor device according to the first embodiment.
  • FIG. 7 is a cross-sectional view illustrating a state in the middle of manufacturing the semiconductor device according to the first embodiment.
  • FIG. 8 is a cross-sectional view illustrating the semiconductor device according to the first embodiment in the middle of manufacturing.
  • FIG. 9 is an explanatory diagram of a state in the process of manufacturing the semiconductor device according to the first embodiment.
  • FIG. 10 is an explanatory diagram of a state in the process of manufacturing the semiconductor device according to the first embodiment.
  • FIG. 11 is an explanatory diagram of a state in the middle of manufacturing the semiconductor device according to the first embodiment.
  • FIG. 12 is an explanatory diagram of a state in the process of manufacturing the semiconductor device according to the first embodiment.
  • FIG. 13 is a plan view showing the structure of the semiconductor device according to the second embodiment.
  • FIG. 14 is a cross-sectional view showing a cross-sectional structure taken along section line C-C ′ of FIG. FIG.
  • FIG. 15 is a characteristic diagram illustrating reverse recovery characteristics of the semiconductor device according to the second embodiment.
  • FIG. 16 is a characteristic diagram illustrating reverse recovery characteristics of the semiconductor device according to the second embodiment.
  • FIG. 17 is a cross-sectional view illustrating the structure of the semiconductor device according to the third embodiment.
  • FIG. 18 is a plan view showing the structure of a conventional RC-IGBT.
  • FIG. 19 is a cross-sectional view showing a cross-sectional structure taken along section line AA-AA ′ of FIG.
  • FIG. 20A is a plan view illustrating the structure of the semiconductor device according to the fourth embodiment.
  • FIG. 20B is a plan view illustrating a structure of another example of the semiconductor device according to the fourth embodiment.
  • FIG. 21 is a cross-sectional view showing a cross-sectional structure taken along the section line D-D ′ of FIGS. 20A and 20B.
  • FIG. 22A is a plan view illustrating the structure of the semiconductor device according to the fifth embodiment.
  • 22B is a cross-sectional view showing a cross-sectional structure taken along section line E-E ′ of FIG. 22A.
  • 22C is a cross-sectional view showing a cross-sectional structure taken along the section line F-F ′ of FIG. 22A.
  • FIG. 23A is a plan view illustrating the structure of the semiconductor device according to the sixth embodiment.
  • FIG. 23B is a cross-sectional view showing a cross-sectional structure taken along section line G-G ′ of FIG. 23A.
  • FIG. 23C is a cross-sectional view showing another example of the cross-sectional structure taken along section line G-G ′ of FIG. 23A.
  • FIG. 24 is a characteristic diagram illustrating a relationship between the width of the IGBT portion and the width of the FWD portion of the semiconductor device according to the second embodiment.
  • FIG. 25 is a plan view illustrating a planar structure of the semiconductor device according to the second embodiment.
  • FIG. 26 is a plan view of another example of the semiconductor device according to the second embodiment.
  • 27 is a cross-sectional view showing a cross-sectional structure taken along the cutting line H-H ′ of FIG.
  • Figure 28 is a characteristic diagram showing the relationship between a trench spacing ratio Lb / La and the reverse recovery current I AK of the semiconductor device in FIG 26.
  • FIG. 29A is a characteristic diagram showing the relationship between the trench spacing ratio Lb / La and the forward voltage drop Vf of the semiconductor device of FIG.
  • FIG. 29B is a characteristic diagram showing the relationship between the trench spacing ratio Lb / La and the reverse recovery peak current Irp of the semiconductor device of FIG.
  • FIG. 31 is a cross-sectional view illustrating the structure of the semiconductor device according to the seventh embodiment.
  • FIG. 32 is a cross-sectional view illustrating the structure of another example of the semiconductor device according to the seventh embodiment.
  • FIG. 33 is a cross-sectional view showing the structure of a semiconductor device of a comparative example.
  • FIG. 1 is a plan view showing the structure of the semiconductor device according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing a cross-sectional structure taken along section line AA ′ of FIG.
  • the semiconductor device according to the first embodiment includes an IGBT portion in which an insulated gate bipolar transistor (IGBT) is provided on the same n ⁇ type semiconductor substrate that becomes the n ⁇ drift region 1. 21 and an FWD section 22 provided with a reflux diode (FWD).
  • IGBT insulated gate bipolar transistor
  • FWD reflux diode
  • the FWD of the FWD unit 22 is connected in reverse parallel to the IGBT of the IGBT unit 21. That is, the semiconductor device according to the first embodiment is a reverse conducting IGBT (RC-IGBT). On the front surface of the n ⁇ type semiconductor substrate, a stripe shape extending from the IGBT portion 21 to the FWD portion 22 in a direction (longitudinal direction) orthogonal to the direction in which the IGBT portion 21 and the FWD portion 22 are arranged (short direction). A plurality of trenches 2 are provided at predetermined intervals.
  • RC-IGBT reverse conducting IGBT
  • a gate insulating film 3 is provided along the inner wall of the trench 2.
  • a gate electrode 4 is provided inside the gate insulating film 3 inside the trench 2.
  • p base regions 5-1 are provided in the mesa portion between adjacent trenches 2 at a predetermined interval along the longitudinal direction of the trench 2.
  • the p base region 5-1 is provided in contact with the trench 2 and at a depth shallower than the trench 2 (depth from the front surface of the substrate).
  • the p base region 5-1 and the n ⁇ drift region 1 are alternately exposed along the longitudinal direction of the trench 2 on the front surface of the n ⁇ type semiconductor substrate.
  • the width x11 in the longitudinal direction of the trench 2 of the p base region 5-1 is the width in the longitudinal direction of the trench 2 between the p base region 5-1 of the n ⁇ drift region 1, that is, the trench in the p base region 5-1. 2 Wider than the first pitch (arrangement interval) x12 in the longitudinal direction (x11> x12).
  • An n + emitter region 6 and a p + contact region 7 are selectively provided inside the p base region 5-1.
  • n + emitter region 6 is in contact with the gate insulating film 3 provided on the side wall of the trench 2 and faces the gate electrode 4 through the gate insulating film 3.
  • the width of the second n + region 6-2 in the longitudinal direction of the trench 2 is, for example, narrower than the width of the first n + region 6-1 in the longitudinal direction of the trench 2, and the n + emitter region 6 has, for example, an H-shaped planar shape.
  • the p + contact region 7 is provided between the first n + region 6-1 and is in contact with the n + emitter region 6. In this way, on the front surface side of the n ⁇ type semiconductor substrate of the IGBT portion 21, the p base region 5-1 is thinned out, and the trench 2, the gate insulating film 3, the gate electrode 4, and the p base region 5-1 are arranged.
  • the trench gate type MOS gate structure composed of the n + emitter region 6 and the p + contact region 7 is repeatedly arranged in the longitudinal direction of the trench 2. Each MOS gate constitutes an IGBT (cell part).
  • the trench 2 of the FWD portion 22 has a trench gate structure similarly to the trench 2 of the IGBT portion 21 in order to simplify the manufacturing process by unifying the wiring layout between the IGBT portion 21 and the FWD portion 22. ing.
  • p anode regions 5-2 are provided at predetermined intervals along the longitudinal direction of the trench 2 in the mesa portion between the adjacent trenches 2. That is, p anode regions 5-2 and n ⁇ drift regions 1 are alternately exposed along the longitudinal direction of trench 2 on the front surface of the n ⁇ type semiconductor substrate.
  • the p base region provided in the mesa portion between the adjacent trenches 2 constitutes the p anode region 5-2.
  • a p + contact region may be provided inside the p anode region 5-2.
  • the p anode region 5-2 is provided in contact with the trench 2 and at a depth shallower than the trench 2.
  • the impurity concentration of the p anode region 5-2 may be equal to the impurity concentration of the p base region 5-1, or may be lower than the impurity concentration of the p base region 5-1.
  • the front surface side of the n ⁇ -type semiconductor substrate of the FWD portion 22 has a structure in which p anode regions 5-2 are repeatedly arranged along the longitudinal direction of the trench 2, and each p anode region 5-2 has an FWD (cell Part). Specifically, in the mesa portion between adjacent trenches 2, a portion of n ⁇ drift region 1 sandwiched between p anode regions 5-2 adjacent in the longitudinal direction of trench 2 (hereinafter referred to as n ⁇ drift region 1). And a single p anode region 5-2 in contact with this portion as one unit (hereinafter referred to as a unit region) is formed.
  • the ratio (hereinafter referred to as anode ratio) ⁇ occupied by the p anode region 5-2 in one unit region will be described later.
  • the width w10 of the p anode region 5-2 in the longitudinal direction of the trench 2 is preferably wider than, for example, the width of the mesa portion in the lateral direction of the trench 2 (that is, the mesa width) w20. This is because it is easy to set the anode ratio ⁇ within a preferable range described later.
  • the front surface of the n ⁇ type semiconductor substrate is covered with an interlayer insulating film 8 having first and second contact holes 8-1 and 8-2.
  • the first contact hole 8-1 is provided for each cell portion of the IGBT portion 21, and the n + emitter region 6 and the p + contact region 7 of one cell portion are exposed in one first contact hole 8-1.
  • the second contact hole 8-2 is provided for each cell portion of the FWD portion 22, and the p anode region 5-2 of one cell portion is exposed in one second contact hole 8-2.
  • the n ⁇ drift region 1 is not exposed in the first and second contact holes 8-1 and 8-2.
  • the opening width w11 of the second contact hole 8-2 in the longitudinal direction of the trench 2 and the opening width w21 of the second contact hole 8-2 in the lateral direction of the trench 2 can substantially expose the entire p anode region 5-2. It is preferable to be large. This is because the contact resistance can be reduced and the on-voltage can be reduced. Specifically, the opening width w11 of the second contact hole 8-2 in the longitudinal direction of the trench 2 and the opening width w21 of the second contact hole 8-2 in the lateral direction of the trench 2 form the second contact hole 8-2.
  • the width w10 of the p anode region 5-2 in the longitudinal direction of the trench 2 and the width of the p anode region 5-2 in the lateral direction of the trench 2 (the mesa between the trenches 2) It is better to make it slightly narrower than the width w20).
  • the opening width w11 of the second contact hole 8-2 in the longitudinal direction of the trench 2 is such that both ends of the second contact hole 8-2 in the longitudinal direction of the trench 2 are p anode regions 5-2 and n ⁇ , respectively.
  • the width may be narrower from the boundary with the drift region 1 so as to be located inside the p anode region 5-2 by a width w12 (for example, about 0.5 ⁇ m to 1.0 ⁇ m).
  • the opening width w 21 of the second contact hole 8-2 in the short direction of the trench 2 is such that both ends of the second contact hole 8-2 in the short direction of the trench 2 are between the p anode region 5-2 and the side wall of the trench 2.
  • the width may be narrowed so as to be located inside the p anode region 5-2 by a width w22 (for example, about 0.5 ⁇ m to 1.0 ⁇ m) from the boundary.
  • the emitter electrode 9 is in contact with the n + emitter region 6 and the p + contact region 7 through the first contact hole 8-1.
  • the emitter electrode 9 also serves as an anode electrode and is in contact with the p anode region 5-2 through the second contact hole 8-2.
  • the emitter electrode 9 is electrically insulated from the gate electrode 4 by the interlayer insulating film 8.
  • a p + collector region 11 is provided in the IGBT portion 21 and an n + cathode region 12 is provided in the FWD portion 22 on the front surface layer of the back surface of the n ⁇ type semiconductor substrate.
  • n buffer layer 10 is provided between the p + collector region 11 and the n + cathode region 12 and the n ⁇ drift region 1.
  • the n buffer layer 10 suppresses the depletion layer extending from the pn junction between the p base region 5-1 and the p anode region 5-2 and the n ⁇ drift region 1 from reaching the p + collector region 11 when turned off. It functions as an n field stop layer.
  • Collector electrode 13 is in contact with p + collector region 11.
  • the collector electrode 13 also serves as a cathode electrode and is in contact with the n + cathode region 12.
  • the anode ratio ⁇ is based on the exposed area (surface area) of the substrate front surface of one unit region arranged in the mesa between the adjacent trenches 2 in the p anode region 5-2 in the unit region. It can be expressed as a ratio of the exposed area on the front surface. Specifically, the anode ratio ⁇ is expressed by the following formula (1).
  • the anode ratio ⁇ is a width in the longitudinal direction of the trench 2 of the p anode region 5-2 (not including an increment due to thermal diffusion) in consideration of misalignment of an ion implantation mask for forming the p anode region 5-2. ) Set based on Lp.
  • the anode ratio ⁇ is, for example, 50% to 75%. That is, in one unit region arranged in a mesa portion between adjacent trenches 2 of FWD portion 22, the exposed area of p anode region 5-2 before thermal diffusion is n ⁇ drift on the front surface of the substrate.
  • the p anode region 5-2 is thinned out so as to be equal to or larger than the exposed area of the region 1.
  • the anode ratio ⁇ is close to 75%.
  • the p anode region 5-2 is thinned out by providing a region where the p anode region 5-2 is not disposed and exposing the n ⁇ drift region 1 and the p anode region 5-2 alternately in the longitudinal direction of the trench 2. is there.
  • the width of the p anode region 5-2 in the longitudinal direction of the trench 2 (not including an increment due to thermal diffusion) Lp is an opening of an ion implantation mask for forming the p anode region 5-2 (p anode region 5- 2 is the width in the longitudinal direction of the trench 2. That is, the width of the p anode region 5-2 in the longitudinal direction of the trench 2 (not including the increment due to thermal diffusion) Lp is the same as that of the longitudinal direction of the trench 2 of the p anode region 5-2 diffused by the thermal diffusion treatment after ion implantation. It does not include the width increment and is narrower than the width w10 in the longitudinal direction of the trench 2 of the p anode region 5-2 after thermal diffusion.
  • Ln is the width in the longitudinal direction of the trench 2 between the n ⁇ drift region 1 and the p anode region 5-2 (that is, the second pitch in the longitudinal direction of the trench 2 of the p anode region 5-2).
  • Lc is the width of the p anode region 5-2 in the longitudinal direction of the trench 2 (not including an increment due to thermal diffusion) Lp and the length of the trench 2 in the longitudinal direction of the n ⁇ drift region 1 sandwiched between the p anode regions 5-2 And the width Ln (hereinafter referred to as unit length).
  • Lp, Ln, and Lc are the widths in the longitudinal direction of the trench 2 before thermal diffusion in each region. In order to clarify which region dimensions Lp, Ln, and Lc indicate, the symbols Lp, Ln and Lc are shown in FIG. 1 (the same applies to FIGS. 13, 20A, 20B, 22A, and 26).
  • FIGS. 3 and 4 are characteristic diagrams illustrating reverse recovery characteristics of the semiconductor device according to the first embodiment.
  • FIG. 3 shows a reverse recovery current Iak waveform.
  • FIG. 4 shows the relationship between the anode ratio ⁇ and the reverse recovery peak current (the peak value of the reverse recovery current Iak waveform) Irp.
  • the reverse recovery current Iak was calculated when the anode ratio ⁇ of the semiconductor device according to the first embodiment described above was 12.5%, 25%, 50%, 75%, and 100%.
  • the repetition pitch of the trenches 2 was set to 5 ⁇ m.
  • the width in the short direction of the trench 2 is 1 ⁇ m, and the mesa width w20 between the trenches 2 is 4 ⁇ m.
  • the width of the p anode region 5-2 in the longitudinal direction of the trench 2 (not including the increment due to thermal diffusion) Lp was 5 ⁇ m.
  • the reverse recovery current Iak is calculated by changing the anode ratio ⁇ .
  • the anode ratio ⁇ is 100% when the p anode region 5-2 is not thinned out, that is, in the mesa portion between adjacent trenches 2 in the FWD portion 22, the p anode region 5-2 is formed on the entire front surface of the substrate. This is the case where it is exposed (the same applies to FIGS. 15 and 16).
  • the reverse recovery peak current Irp increases more than when the p anode region 5-2 is formed on the entire surface, that is, when the anode ratio ⁇ is 100%.
  • the anode ratio ⁇ is 50% or more and less than 100%, it does not increase, but rather decreases when the anode ratio ⁇ is 100%. This is a peculiar effect not seen in the conventional diode.
  • the reason is considered as follows.
  • the interval between the adjacent p anode regions 5-2 along the longitudinal direction of the trench 2 is smaller than the built-in depletion layer width of the pn junction. Therefore, the built-in depletion layers extending from the adjacent p anode regions 5-2 are connected to each other in the n ⁇ drift region 1 sandwiched between them. Since this built-in depletion layer is reverse-biased with respect to the pn junction, even if a forward bias is applied to the pn junction, holes are injected into the n ⁇ drift region 1 until the built-in depletion layer disappears. Not. That is, hole injection is suppressed by the well-known JFET effect.
  • the hole injection efficiency when the anode ratio ⁇ is 50% or more and less than 100% is lower than when the anode ratio ⁇ is 100%.
  • the carrier concentration distribution in the state where the rated current flows is a distribution in which the p anode region 5-2 side is relatively lower than the n + cathode region 12 side.
  • the series of operations described above has the effect of reducing the reverse recovery peak current Irp.
  • the reason why the reverse recovery peak current Irp increases when the anode ratio ⁇ is less than 50% is that the built-in depletion layers extending from the p anode region 5-2 on both sides to the n ⁇ drift region 1 are not connected to each other. This is because the effect is reduced. As the JFET effect is reduced, the number of accumulated carriers immediately under the oxide film starts to increase, so that the reverse recovery peak current Irp increases.
  • the interval between the adjacent p anode regions 5-2 is equal to or less than the distance at which the built-in depletion layers extending from the respective p anode regions 5-2 are connected to each other.
  • the width Lp of the p anode region 5-2 in the longitudinal direction of the trench 2 is made sufficiently smaller than the mesa width w20 between the trenches 2.
  • the width Lp in the longitudinal direction of the trench 2 of the p anode region 5-2 is short, the built-in depletion layers that spread from the p anode regions 5-2 are spaced apart from each other. It can be less than the distance of connection.
  • the reverse recovery peak current Irp is further reduced, and for example, the minimum value of the reverse recovery peak current Irp shown in FIG. 4 can be further reduced.
  • the anode ratio ⁇ at which the reverse recovery peak current Irp is minimized can be between 75% or more (and 80% or more) and less than 100%.
  • FIGS. 9 to 12 are explanatory diagrams showing a state in the middle of manufacturing the semiconductor device according to the first embodiment.
  • (b) shows a plan structure in the middle of manufacture
  • (a) shows a cross-sectional structure taken along the line BB ′ of (b).
  • the specific resistance of the silicon substrate is, for example, about 40 ⁇ cm to 80 ⁇ cm. For this reason, the specific resistance of the n ⁇ type semiconductor substrate 31 may be about 55 ⁇ cm, for example.
  • the plane orientation of the main surface of the silicon substrate is, for example, (100).
  • a p guard ring that constitutes a breakdown voltage structure is formed on the front surface side of the n ⁇ type semiconductor substrate 31 in a termination structure portion (not shown).
  • the termination structure portion is a region that maintains a breakdown voltage by relaxing an electric field applied to the n ⁇ drift region 1 of the active region.
  • the active region is a region where an RC-IGBT element structure is formed.
  • the termination structure is not shown.
  • a resist mask (not shown) having an opening for forming a p guard ring is formed on the front surface of the n ⁇ type semiconductor substrate 31.
  • a p-type impurity such as boron (B) is ion-implanted into the front surface of the n ⁇ type semiconductor substrate 31 using the resist mask as a mask.
  • the p guard ring is formed by diffusing the p type impurity implanted into the n ⁇ type semiconductor substrate 31 by thermal diffusion treatment.
  • an oxide film 32 is formed on the front surface of the n ⁇ type semiconductor substrate 31 by the thermal diffusion process for forming the p guard ring.
  • a portion of the oxide film 32 corresponding to the formation region of the trench 2 is removed by photolithography.
  • anisotropic dry etching is performed using the oxide film 32 as a mask to form the trench 2 with a predetermined depth on the front surface of the n ⁇ type semiconductor substrate 31.
  • a sacrificial oxide film (not shown) is formed on the inner wall of the trench 2 by sacrificial oxidation, and the sacrificial oxide film is removed, whereby a defect layer formed on the surface of the n ⁇ type semiconductor substrate 31 by the formation of the trench 2.
  • the oxide film 32 covering the front surface of the n ⁇ type semiconductor substrate 31 in the active region is removed.
  • the gate insulating film 3 is formed on the front surface of the n ⁇ type semiconductor substrate 31 along the inner wall of the trench 2 by thermal oxidation.
  • the thickness of the gate insulating film 3 is, for example, 100 nm to 120 nm, and in the first embodiment, for example, 110 nm.
  • a conductive polycrystalline silicon film 33 is deposited on the front surface of the n ⁇ type semiconductor substrate 31 and buried in the trench 2.
  • the conductive polycrystalline silicon film 33 is etched back until the gate insulating film 3 is exposed, and the conductive polycrystalline silicon film 33 that becomes the gate electrode 4 only inside the trench 2 is formed. leave.
  • the gate insulating film 3 and the oxide film 32 on the front surface of the n ⁇ type semiconductor substrate 31 are removed.
  • a screen oxide film 34 is formed on the front surface of the n ⁇ type semiconductor substrate 31 by a thermal oxidation method.
  • the screen oxide film 34 is omitted (the same applies to FIGS. 10 to 12B).
  • the first opening 35a exposing the formation region of the p base region 5-1 and the formation region of the p anode region 5-2 are exposed on the front surface of the n ⁇ type semiconductor substrate 31 by photolithography.
  • a resist mask 35 having an exposed second opening 35b is formed.
  • the width Lp in the longitudinal direction of the trench 2 of the second opening 35b of the resist mask 35 is set so that the anode ratio ⁇ expressed by the above equation (1) is in the range of 50% to 75%.
  • a p-type impurity such as boron is first ion-implanted 41 over the screen oxide film 34 on the front surface of the n ⁇ type semiconductor substrate 31.
  • a p-type impurity regions 5-1a and 5-2a are formed in the n ⁇ drift region 1 exposed in the first and second openings 35a and 35b of the resist mask 35.
  • the resist mask 35 is removed.
  • the p base region 5-1 of the IGBT portion 21 and the p anode region 5-2 of the FWD portion 22 are formed with different impurity concentrations, further formation of a resist mask, ion implantation of p-type impurities, Just do.
  • the p base region 5-1 and the p anode region 5-2 are formed with different impurity concentrations, for example, only the formation region of the p base region 5-1 in the region of the IGBT portion 21 first is used.
  • a resist mask that is selectively opened is formed.
  • boron is ion-implanted at a dose of about 2 ⁇ 10 13 / cm 2 and an acceleration energy of about 100 keV, and then the resist mask is removed.
  • a resist mask that is selectively opened only in the formation region of the p anode region 5-2 in the region of the FWD portion 22 is formed.
  • boron is ion-implanted at a dose of about 1 ⁇ 10 12 / cm 2 to 1 ⁇ 10 13 / cm 2 at an acceleration energy of about 100 keV, and then the resist is removed. do it.
  • a thermal diffusion process is performed at a temperature in the range of about 1050 ° C. to 1150 ° C., and a p-type impurity region 5-1a is thermally diffused.
  • a p-type anode region 5-2 is formed by thermally diffusing the type impurity region 5-2a.
  • the gate threshold value of the semiconductor device is set to about 6V.
  • a resist mask 36 having an opening exposing the formation region of the p + contact region 7 is formed on the front surface of the n ⁇ type semiconductor substrate 31 by photolithography.
  • the opening of the resist mask 36 is only in the region of the IGBT part 21 and is not formed in the FWD part 22.
  • a second ion implantation 42 of a p-type impurity such as boron is performed on the front surface of the n ⁇ type semiconductor substrate 31 through the screen oxide film 34.
  • the dose of ion implantation may be, for example, in the range of about 1 ⁇ 10 15 / cm 2 to 5 ⁇ 10 15 / cm 2 and the acceleration energy may be about 100 keV.
  • the p-type impurity implanted by the second ion implantation 42 is thermally diffused at a temperature of about 1000 ° C., for example, so that only the IGBT portion 21 is formed in the p base region 5-1. + Contact region 7 is formed.
  • the resist mask 36 is not shown.
  • a resist mask 37 having an opening exposing the formation region of the n + emitter region 6 is formed on the front surface of the n ⁇ type semiconductor substrate 31 by photolithography.
  • a third ion implantation 43 of an n-type impurity such as arsenic (As) is performed on the front surface of the n ⁇ -type semiconductor substrate 31 through the screen oxide film 34 using the resist mask 37 as a mask.
  • the n + emitter region 6 is formed inside the p base region 5-1 by thermally diffusing the n-type impurity implanted by the third ion implantation 43.
  • the resist mask 37 is not shown.
  • an interlayer insulating film 8 such as BPSG (Boro Phospho Silicate Glass) is formed on the entire front surface of the n ⁇ type semiconductor substrate 31.
  • the interlayer insulating film 8 is selectively removed by photolithography to form first and second contact holes 8-1 and 8-2.
  • n - -type After forming the emitter electrode 9 on the front surface of the semiconductor substrate 31, n - the front side of the type semiconductor substrate 31 with a resist film (not shown) Protect.
  • the back surface of the n ⁇ type semiconductor substrate 31 is ground to reduce the thickness of the n ⁇ type semiconductor substrate 31 to, for example, 125 ⁇ m, and then etched to remove the grinding strain layer.
  • a fourth ion implantation of an n-type impurity such as selenium (Se) is performed from the back surface of the n ⁇ -type semiconductor substrate 31.
  • the fourth ion implantation is an ion implantation for forming the n buffer layer 10.
  • the dose may be about 3 ⁇ 10 14 / cm 2 and the acceleration energy may be about 100 keV.
  • a fifth ion implantation of a p-type impurity such as boron is performed from the back surface of the n ⁇ type semiconductor substrate 31 into a region shallower than the fourth ion implantation.
  • the fifth ion implantation is an ion implantation for forming the p + collector region 11.
  • the dose may be about 8 ⁇ 10 13 / cm 2 and the acceleration energy may be about 40 keV.
  • a resist mask (not shown) having a thickness of, for example, about 2 ⁇ m having an n + cathode region 12 formation region, that is, an opening exposing the FWD portion 22 on the back surface of the n ⁇ type semiconductor substrate 31 by photolithography.
  • a resist mask (not shown) having a thickness of, for example, about 2 ⁇ m having an n + cathode region 12 formation region, that is, an opening exposing the FWD portion 22 on the back surface of the n ⁇ type semiconductor substrate 31 by photolithography.
  • a sixth ion implantation of an n-type impurity such as phosphorus (P) is performed on the back surface of the n ⁇ -type semiconductor substrate 31.
  • the dose may be about 2 ⁇ 10 15 / cm 2 and the acceleration energy may be about 110 keV.
  • n - -type semiconductor resist film and n protects the front surface of the substrate 31 - removing the back surface of the resist mask type semiconductor substrate 31.
  • the impurity region formed by the fourth to sixth ion implantations is activated by performing a heat treatment for about 30 minutes at a temperature of about 950 ° C., for example.
  • an aluminum silicon (Al—Si, eg, Al containing 1% Si) film having a thickness of about 5 ⁇ m is formed on the front surface side of the n ⁇ type semiconductor substrate 31.
  • the emitter electrode 9 is formed by patterning the Al—Si film.
  • helium (4He) is irradiated from the back surface of the n ⁇ type semiconductor substrate 31 with an acceleration energy of about 23 MeV and a dose of about 1 ⁇ 10 13 / cm 2 .
  • annealing heat treatment
  • a temperature of about 370 ° C. for about 1 hour defects generated in the n ⁇ type semiconductor substrate 31 by helium irradiation are recovered.
  • an Al film, a Ti film, a Ni film, and a gold (Au) film are sequentially deposited on the back surface of the n ⁇ type semiconductor substrate 31 to a thickness of about 1 ⁇ m, 0.07 ⁇ m, 1 ⁇ m, and 0.3 ⁇ m, respectively.
  • the RC-IGBT shown in FIGS.
  • the reverse recovery current can be reduced and the reverse recovery loss can be reduced by setting the anode ratio to 50% to 75%. Can be improved.
  • the Schottky junction between the emitter electrode and the n ⁇ drift region is not formed in the FWD portion, it is possible to prevent an increase in leakage current at the time of OFF.
  • region (IGBT part) in which only IGBT was provided can be ensured more widely than the said patent document 2 by arrange
  • FIG. 13 is a plan view showing the structure of the semiconductor device according to the second embodiment.
  • 14 is a cross-sectional view showing a cross-sectional structure taken along the section line CC ′ of FIG.
  • the semiconductor device according to the second embodiment is different from the semiconductor device according to the first embodiment in the following two points.
  • the first difference is that in the FWD portion 22, almost the entire mesa portion between the adjacent trenches 2 is exposed to the second contact hole 58-2, and the p anode region 5-2 and the n ⁇ drift region are exposed. 1 is connected to the emitter electrode 9 together.
  • a Schottky junction between the n ⁇ drift region 1 and the emitter electrode 9 is formed.
  • the constituent material of the emitter electrode 9 at least in the portion in contact with the silicon portion of the FWD portion 22 is, for example, Schottky at the interface with the silicon portion such as Al containing 1% of Si, platinum (Pt) or platinum silicide (PtSi). It is preferable to use a material having a barrier height ⁇ B of 0.8 eV or more. Thereby, the leakage current can be reduced. This is effective when a barrier metal is provided between the emitter electrode 9 and the silicon portion in the IGBT portion 21 due to miniaturization or the like.
  • the second difference is that the anode ratio ⁇ is preferably as low as possible ( ⁇ ⁇ 0%), for example, less than 50%, preferably 25% or less.
  • the reason is that the reverse recovery peak current Irp can be decreased as the anode ratio ⁇ is decreased.
  • 15 and 16 show the results of verifying the relationship between the anode ratio ⁇ and the reverse recovery characteristic.
  • 15 and 16 are characteristic diagrams showing reverse recovery characteristics of the semiconductor device according to the second embodiment.
  • FIG. 15 shows the reverse recovery current Iak waveform.
  • FIG. 16 shows the relationship between the anode ratio ⁇ and the reverse recovery peak current Irp.
  • the manufacturing method of the semiconductor device according to the second embodiment is different from the manufacturing method of the semiconductor device according to the first embodiment in that the p anode region 5-2 is arranged so that the anode ratio ⁇ is low, and the FWD unit 22
  • the second contact hole 58-2 may be formed so that substantially the entire mesa portion between the adjacent trenches 2 is exposed.
  • the semiconductor device manufacturing method according to the second embodiment is the same as the semiconductor device manufacturing method according to the first embodiment except for these two points.
  • FIG. 24 is a characteristic diagram illustrating a relationship between the width of the IGBT portion and the width of the FWD portion of the semiconductor device according to the second embodiment.
  • FIG. 25 is a plan view showing a planar structure of the semiconductor device in the second embodiment. As shown in FIG. 25, an edge termination region 72 is formed on the outer peripheral portion of the reverse conducting IGBT chip comprising the IGBT portion 21 and the FWD portion 22 so as to surround the active region.
  • the gate runner 73 is formed along the outer periphery of the active region and surrounded by the edge termination region 72.
  • the gate runner 73 is a wiring for supplying a gate signal from the gate pad 74 to the IGBT cell in the active region.
  • the IGBT portions 21 and the FWD portions 22 having a predetermined size are alternately and repeatedly arranged. As described above, by arranging the IGBT unit 21 and the FWD unit 22 alternately and repeatedly, the current is evenly distributed over the entire chip when the IGBT unit 21 is on and when the FWD unit 22 is reversely conductive. .
  • the width W IGBT of the IGBT part 21 is defined as a length between adjacent FWD parts 22 in a direction in which the IGBT parts 21 and the FWD parts 22 are alternately and repeatedly arranged. That is, for example, the shorter width of the substantially rectangular planar IGBT portion 21 is defined as W IGBT .
  • the width W FWD of the FWD portion 22 is set to the length between the adjacent IGBT portions 21 in the direction in which the IGBT portions 21 and the FWD portions 22 are alternately arranged. That is, for example, the shorter width of the substantially rectangular planar FWD portion 22 is defined as WFWD .
  • the width W FWD width W IGBT and FWD portion 22 of the IGBT 21, the current density is shown in FIG.
  • each ON voltage when the width W FWD of the FWD portion 22 is 1 ⁇ m, 3 ⁇ m, 10 ⁇ m, 100 ⁇ m, and 1000 ⁇ m is shown by an approximate curve connecting a plurality of data points.
  • the vertical axis represents the on-voltage
  • the horizontal axis represents the width W IGBT of the IGBT portion.
  • the on-voltage is 1.1 V
  • the position of the on-voltage 1.1 V is the highest in FIG. This is indicated by a thick broken line (horizontal line).
  • the position where the ON voltage is 1.3 V is indicated by a solid line (the horizontal line on the right side of the data point when the width W FWD of the FWD portion 22 is 1 ⁇ m), and an approximation of the portion where the ON voltage is greater than 1.3 V
  • a curve is indicated by a dotted line (in the case where the width W FWD of the FWD portion 22 is 1 ⁇ m, 3 ⁇ m, 10 ⁇ m, and 1000 ⁇ m, a data point having an ON voltage greater than 1.3 V is indicated by a white symbol).
  • the on-voltage of 1.3 V corresponds to the occurrence of snapback without increasing the current in the current-voltage curve.
  • Snapback is because electrons injected from the MOS gate of the IGBT part 21 flow into the n + cathode region 12 of the FWD part 22 adjacent to the IGBT part 21 through the field stop layer (n buffer layer 10). Furthermore, this is a phenomenon in which hole injection from the p + collector region 11 of the IGBT portion 21 is inhibited. In order to suppress this snapback phenomenon, the width W IGBT of the IGBT portion 21 needs to be set to a width that makes the ON voltage lower than 1.3V.
  • the width W FWD of the FWD part 22 needs to be at least 1 ⁇ m or more. Therefore, the width W IGBT of the IGBT part 21 is preferably 20 ⁇ m or more.
  • the width W FWD of the FWD portion 22 is 10 ⁇ m and the width W IGBT of the IGBT portion 21 is 20 ⁇ m or more, an increase in on-voltage can be suppressed. Further, when the width W FWD of the FWD portion 22 is, for example, 100 ⁇ m, the width W IGBT of the IGBT portion 21 is 100 ⁇ m or more, and when the width W FWD of the FWD portion 22 is, for example, 1000 ⁇ m, the width W IGBT of the IGBT portion 21 is 1000 ⁇ m. It is necessary to do it above.
  • the width W IGBT of the IGBT portion 21 is preferably 300 ⁇ m or less, and in this case, the width W FWD of the FWD portion 22 is preferably 150 ⁇ m or less depending on the current density ratio. From the above, the width W IGBT of the IGBT part 21 is preferably 20 ⁇ m or more and 300 ⁇ m or less, and the width W FWD of the FWD part 22 is preferably 10 ⁇ m or more and 150 ⁇ m or less.
  • the mesa width w20 between the trenches 2 may be further narrower than 4 ⁇ m.
  • a built-in depletion layer extends from the boundary between the trench 2 and the mesa portion to the mesa portion.
  • the depletion layer spreads from the trench 2 to the mesa portion and is pinched off. Will be able to.
  • the hole injection from the p anode region 5-2 is completely eliminated, and the hole injection amount is determined only by the barrier height of the barrier metal, so that the hole injection efficiency can be extremely reduced. .
  • the p anode region 5-2 may have a repetition pitch in the longitudinal direction of the trench 2 that is 10 times the mesa width w20 between the trenches 2 or more.
  • the reverse recovery peak current Irp can be dramatically reduced, and the p anode region 5-2 enhances the depletion layer pinch-off effect during reverse bias. Therefore, the leakage current is less affected by defects at the Schottky interface than in the case of only Schottky contact between the n ⁇ drift region 1 and the anode electrode, and the device characteristics can be stabilized.
  • FIG. 26 is a plan view of another example of the semiconductor device according to the second embodiment.
  • 27 is a cross-sectional view showing a cross-sectional structure taken along the cutting line HH ′ of FIG.
  • the trench 2 of the FWD portion 22 may be arranged, for example, so as to have a first trench interval La and a second trench interval Lb wider than the first trench interval La.
  • FIG. 28 is a characteristic diagram showing the relationship between a trench spacing ratio Lb / La and the reverse recovery current I AK of the semiconductor device in FIG 26.
  • the reverse recovery peak current Irp is greater than when the first trench interval La and the second trench interval Lb are equal. It can be seen that decreases.
  • FIGS. 29A and 29B are characteristic diagram showing the relationship between the trench spacing ratio Lb / La and the forward voltage drop Vf of the semiconductor device of FIG.
  • FIG. 29B is a characteristic diagram showing the relationship between the trench spacing ratio Lb / La and the reverse recovery peak current Irp of the semiconductor device of FIG.
  • FIG. 30A (b) shows a current density distribution in each cross section taken along cutting lines II ′ and JJ ′ of FIG. 30A (a).
  • FIG. 30B (b) shows a current density distribution in each cross section cut along the cutting lines KK ′ and LL ′ of FIG. 30B (a).
  • FIGS. 30A (a) and 30B (a) only one trench 82 is shown, and adjacent trenches 82 on both sides in the lateral direction of the trench 82 are not shown.
  • the region on the right side is a region sandwiched between adjacent trenches 82 at the first trench interval La, and the region on the left side of the trench 82 is a region sandwiched between adjacent trenches 82 at the second trench interval Lb.
  • the vertical axis represents the hole current density
  • the different hatching shown inside the semiconductor substrate 81 indicates the level of the hole (hole) current density.
  • the hole current density inside the semiconductor substrate 81 is The lower the depth from the front surface of the semiconductor substrate 81, the lower the value.
  • the hole current density inside the semiconductor substrate 81 decreases as the distance from the trench 82 increases in the short direction of the trench 82.
  • the current density of the narrow region sandwiched between the trenches 82 adjacent to each other at the first trench spacing La of the semiconductor substrate 81 is higher than the current density of other regions.
  • the large pitch La + Lb is the reason why the increment of the forward voltage drop Vf is suppressed to about 2%.
  • the reverse recovery current IAK the anode region (not shown) is divided into a plurality of (divided) by the trench 82, so that the semiconductor substrate 81 is sandwiched between the adjacent trenches 82 at the first trench interval La. Since the operation is mainly performed in a narrow area, the injection efficiency is lowered. For this reason, it is easy to sweep holes during the reverse recovery operation, and the reverse recovery peak current Irp is reduced.
  • the trench spacing ratio Lb / La is larger than 1 (1 ⁇ Lb / La), preferably 2 or more (2 ⁇ Lb / La).
  • the trench spacing ratio Lb / La is preferably 10 or less because the characteristics are almost saturated at 10 or more (Lb / La ⁇ 10), and preferably 5 or less, which can lower the forward voltage. (Lb / La ⁇ 5). If attention is paid only to the reverse recovery current I AK, trench spacing ratio Lb / La may be 10 or more, but it becomes current easily concentrated in a narrow region sandwiched between trenches 82 adjacent the first trench distance La, the current From the viewpoint of preventing concentration, the trench spacing ratio Lb / La is preferably 10 or less.
  • the same effect can be obtained even when the anode ratio ⁇ is 100%, that is, the p anode region is formed on the entire surface of the FWD portion 22.
  • the reverse recovery peak current can be further reduced by forming the Schottky junction between the n ⁇ drift region and the emitter electrode in the FWD portion.
  • the p anode region is thinned and arranged, so that a pn junction between the p anode region and the n ⁇ drift region, and a depletion layer extending from the boundary between the trench and the n ⁇ drift region Since it becomes easy to pinch off, it is possible to prevent the leakage current from increasing at the time of off.
  • FIG. 17 is a cross-sectional view illustrating the structure of the semiconductor device according to the third embodiment.
  • the semiconductor device according to the third embodiment is different from the semiconductor device according to the second embodiment in that the gate electrode 54 and the emitter electrode 9 in the FWD portion 22 are conductively connected. That is, the gate electrode 54 of the FWD portion 22 has an emitter potential.
  • the gate electrode 4 of the IGBT part 21 is electrically insulated from the gate electrode 54 of the FWD part 22 at a part not shown.
  • FIG. 20A is a plan view illustrating the structure of the semiconductor device according to the fourth embodiment.
  • FIG. 20B is a plan view illustrating a structure of another example of the semiconductor device according to the fourth embodiment.
  • FIG. 21 is a cross-sectional view showing a cross-sectional structure taken along the section line DD ′ of FIGS. 20A and 20B.
  • the semiconductor device according to the fourth embodiment is a diode having a configuration in which only the FWD portion in the third embodiment is connected to the built-in depletion layers extending from the trenches 2 on both sides to the mesa portions.
  • Other configurations of the semiconductor device according to the fourth embodiment are the same as those in the third embodiment.
  • Reference numeral 59 denotes an anode electrode
  • reference numeral 63 denotes a cathode electrode.
  • the specific resistance of the n ⁇ -type silicon substrate serving as the n ⁇ drift region 1 is typically from 30 ⁇ cm to a unit converted from a value obtained by multiplying the rated voltage by 0.05. 325 ⁇ cm. Therefore, the width of the built-in depletion layer extending from the trench 2 on one side to the mesa is approximately 2.4 ⁇ m to 7.8 ⁇ m using the Poisson equation.
  • the mesa width w20 between the trenches 2 is shorter than 4.8 ⁇ m to 15.6 ⁇ m with respect to the rated voltage of 600 V to 6500 V, the built-in depletion layers extending from the trenches 2 on both sides of the mesa portion are connected. Become. More preferably, if the mesa width w20 between the trenches 2 is further shortened so that the rated voltage is 600 V to 6500 V, for example, 2.4 ⁇ m to 7.8 ⁇ m or less, which is half of the above value, respectively. An increase in leakage current due to the mirror image effect can be suppressed.
  • the mesa width w20 between the trenches 2 is 4.8 ⁇ m to 15.6 ⁇ m with respect to the rated voltage of 600 V to 6500 V
  • the rated voltage is V and the mesa width of the trench is W, and the following formula (2) is satisfied.
  • the mesa width w20 with respect to the rated voltage V may be calculated.
  • the above equation (2) defines a specific resistance of a typical semiconductor substrate with respect to the rated voltage V by the above-described method, and 7 points (600V, 1200V, 1700V, 2500V, (3300V, 4500V, 6500V), the built-in depletion layer width is obtained according to Poisson's equation, and the value is fitted with a 6th order polynomial.
  • the mesa width W20 calculated by the above equation (2) may be made smaller, for example, the mesa width w20 between the trenches 2 is calculated by the above equation (2).
  • the calculated mesa width W may be half of the calculated value.
  • the p anode region 5-2 is disposed so as to face a region (n ⁇ drift region 1) between two adjacent p anode regions 5-2 across the trench 2. May be. Since holes are injected from the p anode region 5-2, the current density under the p anode region 5-2 increases.
  • the adjacent p anode regions 5-2 are separated from each other with the trench 2 interposed therebetween, so that regions with high current density are dispersed and heat generation, current concentration, etc. are suppressed. can do.
  • the fourth embodiment by sufficiently narrowing the mesa width between the trenches, it is possible to obtain a diode that suppresses an increase in leakage current even when there is no p anode region.
  • FIG. 22A is a plan view illustrating the structure of the semiconductor device according to the fifth embodiment.
  • 22B is a cross-sectional view showing a cross-sectional structure taken along section line EE ′ of FIG. 22A.
  • 22C is a cross-sectional view showing a cross-sectional structure taken along the cutting line FF ′ of FIG. 22A.
  • the semiconductor device according to the fifth embodiment differs from the semiconductor device according to the fourth embodiment in the following two points. The first difference is that the p anode region 5-2 is selectively formed along the longitudinal direction of the trench 2 so that the anode ratio ⁇ is 10% or less.
  • the second difference is that the repetition pitch of the trench 2 is made sufficiently shorter than the built-in depletion layer width, for example, the mesa width w20 between the trenches 2 is less than half of the value of the above equation (2), and the short direction of the trench 2 It is the point which makes more than the width.
  • the built-in depletion layer 90 refers to an n ⁇ drift region from a pn junction between the p anode region 5-2 and the n ⁇ drift region 1 in a thermal equilibrium state without applying a voltage to both the anode electrode 59 and the cathode electrode (not shown). It is a depletion layer spreading to 1.
  • the mesa width w20 between the trenches 2 is equal to or less than half the value of the above equation (2), the built-in depletion layers 90 extending from the adjacent trenches 2 to the mesa portion are connected to each other as shown in FIG. 22B.
  • the depletion layer end 91 of the built-in depletion layer 90 has a depth equivalent to the depth of the p anode region 5-2, and the surface shape of the depletion layer end 91 of the built-in depletion layer 90 is substantially flat parallel to the substrate main surface. It becomes a state. Therefore, the depletion layer end 91 of the built-in depletion layer 90 has a shape close to a planar junction, and the breakdown voltage is improved.
  • the planar junction is a region between the p anode region 5-2 and the n ⁇ drift region 1 when the p anode region 5-2 is uniformly provided on the front surface layer of the n ⁇ type semiconductor substrate. It is a pn junction.
  • the depletion layer end 91 of the built-in depletion layer 90 has a shape close to a planar junction, it is possible to suppress a decrease in the barrier height at the Schottky contact, so that the leakage current almost increases even at a high applied voltage. do not do.
  • the second pitch in the longitudinal direction of the trench 2 of the p anode region 5-2 is sufficiently longer than the width of the built-in depletion layer 90 and the anode ratio ⁇ is 10% or less, both the breakdown voltage and the leakage current are increased in the p anode region. 5-2 no longer depends on the second pitch in the longitudinal direction of the trench 2.
  • the surface shape of the depletion layer end 91 of the built-in depletion layer 90 is sufficiently close to that of a planar junction.
  • the hole injection efficiency of the anode electrode 59 can be made extremely small (10% or less), resulting in a decrease in breakdown voltage and an increase in leakage current. Therefore, the reverse recovery current can be reduced.
  • FIG. 23A is a plan view illustrating the structure of the semiconductor device according to the sixth embodiment.
  • FIG. 23B is a cross-sectional view showing a cross-sectional structure taken along section line GG ′ of FIG. 23A.
  • FIG. 23C is a cross-sectional view showing another example of the cross-sectional structure taken along section line GG ′ of FIG. 23A.
  • the semiconductor device according to the sixth embodiment is different from the semiconductor device according to the fifth embodiment in that the p ⁇ anode region is not formed and the n ⁇ drift region 1 and the anode electrode 59 are made Schottky as shown in FIG. 23B. It is a point only to contact.
  • the surface shape of the depletion layer end 91 of the built-in depletion layer 90 can be obtained without the p anode region 5-2 by sufficiently reducing the repetition pitch of the trenches 2 as in the fifth embodiment. Is close enough for planar bonding. By not forming the p anode region 5-2, the breakdown voltage is not lowered and the leakage current is not increased, and the efficiency of hole injection from the p anode region 5-2 to the n ⁇ drift region 1 is almost zero. (Zero) is also possible.
  • the anode electrode 59 is formed using an aluminum-silicon (Al—Si) alloy or platinum silicide (PtSi) having a high Schottky barrier height, holes from the p anode region 5-2 to the n ⁇ drift region 1 are formed. Therefore, the hole injection efficiency cannot be reduced to zero, but the injection efficiency can be less than half that of the case where the p anode region 5-2 is formed.
  • Al—Si aluminum-silicon
  • PtSi platinum silicide
  • a shallow p layer 5-3 that is sufficiently shallower and lower in impurity concentration than the p anode region 5-2 of the fifth embodiment may be formed.
  • a depletion layer spreads with respect to a surface defect (surface level) introduced during the element formation process, and carriers are likely to be generated due to thermal excitation. . Therefore, there is a possibility that the leakage current increases and the yield decreases. Therefore, since the shallow p layer 5-3 is formed as in the modification of the sixth embodiment in FIG. 23C, the depletion layer can be prevented from hitting the surface defect (surface level), and thus the leakage current is low. It is stable at the value, and yield reduction can be suppressed.
  • the diode structure described in the fourth to sixth embodiments may be applied to the FWD portion 22 of the semiconductor device in the second embodiment.
  • shallow p layer 5-3 in the modification of Embodiment 6 may be formed. Thereby, an effect similar to that of the sixth embodiment can be obtained.
  • FIG. 31 is a cross-sectional view illustrating the structure of the semiconductor device according to the seventh embodiment.
  • the planar structure of the semiconductor device according to the seventh embodiment shown in FIG. 31 is the same as FIG. 1, and FIG. 31 is a cross-sectional structure taken along the section line AA ′ of FIG.
  • FIG. 32 is a cross-sectional view illustrating the structure of another example of the semiconductor device according to the seventh embodiment.
  • the planar structure of another example of the semiconductor device according to the seventh embodiment shown in FIG. 32 is the same as that of FIG. 13, and FIG. 32 is a sectional structure taken along the section line CC ′ of FIG. FIG.
  • the semiconductor device according to the seventh embodiment is different from the semiconductor device according to the first embodiment in that the p base region 5-1 and the p anode region 5-2 are electrically connected to the emitter electrode 9 through the contact electrode 18, respectively. It is a point connected to.
  • the contact electrode 18 is formed by sequentially laminating a titanium (Ti) layer 14, a titanium nitride (TiN) layer 15, and a tungsten (W) layer 16 from the substrate front surface side.
  • a p + contact region 17 is selectively provided inside the p anode region 5-2.
  • the p + contact region 17 realizes ohmic contact (ohmic electrical contact) with the titanium layer 14.
  • the p + contact region 17 differs from the p + contact region 7 of the IGBT portion 21 in depth and impurity concentration, and is adjusted (optimized) to obtain predetermined FWD characteristics based on design conditions.
  • the depth of the p + contact region 17 is shallower than the depth of the p + contact region 7, the impurity concentration of p + contact region 17 is preferably lower than the impurity concentration of p + contact region 7.
  • the contact electrode 18 is embedded in, for example, the first and second contact holes 8-1 and 8-2.
  • the contact electrode 18 has an opening width w31 of the first contact hole 8-1 in the width direction of the trench 2 and a width of the second contact hole 8-2 in the width direction of the trench 2 due to the repetition pitch L30 of the trench 2 being as narrow as 4 ⁇ m or less, for example. Even if the opening width w21 is narrow, good ohmic contact is realized.
  • the opening width w31 of the first contact hole 8-1 in the lateral direction of the trench 2 is reduced by reducing the repetition pitch L30 of the trench 2.
  • the opening width w21 of the second contact hole 8-2 in the lateral direction of the trench 2 is also narrowed. For this reason, the inside of the first and second contact holes 8-1 and 8-2 cannot be completely filled only with the emitter electrode 9 made of an aluminum silicon film. This creates a gap 19 between the emitter electrode 9 and the silicon portion (at least the p + contact region 7 of the IGBT portion 21 and the p anode region 5-2 of the FWD portion 22), thereby increasing the contact resistance. It is difficult to obtain a good ohmic contact between the electrode 9 and the silicon part.
  • the insides of the first and second contact holes 8-1 and 8-2 can be completely filled with the contact electrode 18 composed of the titanium layer 14, the titanium nitride layer 15 and the tungsten layer 16. For this reason, it is possible to prevent the gap 19 from being generated between the emitter electrode 9 and the silicon portion.
  • the titanium layer 14 is provided along the side wall and the substrate front surface inside each of the first and second contact holes 8-1 and 8-2. Titanium layer 14 is in contact with n + emitter region 6 and p + contact region 7 at IGBT portion 21, and is in contact with p anode region 5-2 and p + contact region 17 at FWD portion 22.
  • a titanium nitride layer 15 is provided along the titanium layer 14 inside the titanium layer 14, and a tungsten layer 16 is provided inside the titanium nitride layer 15. It has been.
  • the emitter electrode 9 is in contact with the titanium layer 14, the titanium nitride layer 15, and the tungsten layer 16.
  • the repetition pitch L30 of the trench 2 is 4 ⁇ m, it is about 10%, and when the repetition pitch L30 of the trench 2 is 2.3 ⁇ m, it is about 21%.
  • the rate of increase of the forward voltage increases in proportion to the magnitude of the gate voltage. The reason is as follows.
  • the gate voltage is applied, electrons are concentrated around the trench 2, so that the electrons concentrated around the trench 2 in the FWD portion 22 suppress the hole injection from the p anode region 5-2 to the n ⁇ drift region 1.
  • the repetition pitch L30 of the trench 2 is reduced, the width of the p anode region 5-2 in the short direction of the trench 2 (portion indicated by reference numeral w20 in FIG. 1) is narrowed. This is because the rate at which hole injection from 5-2 to n ⁇ drift region 1 is suppressed increases and conductivity modulation does not proceed.
  • the third embodiment may be applied to the seventh embodiment, and the gate electrode 4 and the emitter electrode 9 in the FWD portion 22 may be conductively connected.
  • the gate electrode 4 and the emitter electrode 9 in the FWD portion 22 By electrically connecting the gate electrode 4 and the emitter electrode 9 in the FWD portion 22, electrons are not concentrated around the trench 2 in the FWD portion 22 when a gate voltage is applied. For this reason, even if the repetition pitch L30 of the trench 2 is miniaturized, the hole injection from the p anode region 5-2 to the n ⁇ drift region 1 is not suppressed by electrons, so that a low forward voltage can be achieved. Further, as shown in FIG. 32, the seventh embodiment may be applied to the second embodiment.
  • the p + contact region is located inside the p anode region 5-2. 17 and the emitter electrode 9 and the p + contact region 17 may be connected via the contact electrode 18.
  • a good ohmic contact with the silicon portion can be realized by the contact electrode 18 regardless of the planar shape of the second contact hole 58-2.
  • the same effect as in the first and second embodiments can be obtained.
  • the forward voltage is prevented from increasing when the gate voltage is applied, and the FWD portion Good ohmic contact can be realized on the anode side.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • various dimensions, surface concentrations, and the like are set according to required specifications.
  • the first conductivity type is n-type and the second conductivity type is p-type.
  • the first conductivity type is p-type and the second conductivity type is n-type. It holds.
  • the semiconductor device according to the present invention is useful for a power semiconductor device used for a power conversion device or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

 IGBT部(21)にIGBTが配置され、FWD部(22)にFWDが配置される。IGBT部(21)において、隣り合うトレンチ(2)間のメサ部には、基板おもて面にトレンチ(2)長手方向に沿ってpベース領域(5-1)とn-ドリフト領域(1)とが交互に露出される。FWD部(22)において、メサ部には、基板おもて面にトレンチ(2)長手方向に沿ってpアノード領域(5-2)とn-ドリフト領域(1)とが交互に露出され、n-ドリフト領域(1)の、pアノード領域(5-2)間に挟まれた部分と、この部分に接する1つのpアノード領域(5-2)とを1つのユニット領域とする繰り返し構造が形成される。1つのユニット領域内でpアノード領域(5-2)が占める割合(アノード比率)(α)は50%~100%である。これにより、IGBTとFWDとを同一半導体基板に内蔵したRC-IGBTのダイオード特性を向上させることができる。

Description

半導体装置
 この発明は、半導体装置に関する。
 近年のパワーエレクトロニクス分野における電源機器の小型化、高性能化への要求を受けて、電力用半導体装置では、高耐圧化、大電流化とともに、低損失化、高破壊耐量化、高速化に対する性能の改善に力が注がれている。これらの大電流化、低損失化が可能な電力用半導体装置として、MOSゲート(金属-酸化膜-半導体からなる絶縁ゲート)により駆動されるMOSパワーデバイスが公知である。
 このMOSパワーデバイスのMOSゲート構造として、半導体基板上に平板状にMOSゲートを設けたプレーナゲート構造、および、半導体基板に形成したトレンチ内にMOSゲートを埋め込んだトレンチゲート構造の2種類の構造が広く知られている。最近の縦型パワーデバイスにおいては、構造的に低オン抵抗特性を得やすいことから、トレンチゲート構造が注目されている。
 このトレンチゲート構造の縦型MOSパワーデバイスとして、並列トレンチ間の長手方向にp型チャネル領域とn型半導体基板の各表面が交互に現われるように配設され、該p型チャネル領域の表面層に選択的に形成されるn+型エミッタ領域の表面形状が、トレンチ側で広く、トレンチ間の中央側で狭くなっている装置が提案されている(例えば、下記特許文献1参照。)。
 また、別の縦型MOSパワーデバイスとして、電力変換装置全体の小型化を図るために、絶縁ゲート型バイポーラトランジスタ(IGBT)と当該IGBTに逆並列に接続された還流ダイオード(FWD)とを同一半導体基板(半導体チップ)に内蔵して一体化した構造の逆導通型IGBT(RC-IGBT)についても開発が進んでいる。
 従来のRC-IGBTについて説明する。図18は、従来のRC-IGBTの構造を示す平面図である。図19は、図18の切断線AA-AA’における断面構造を示す断面図である。図18,19に示すように、従来のRC-IGBTは、n-ドリフト領域101となる同一のn-型半導体基板上に、一般的なフィールドストップ型IGBT(FS-IGBT)と、当該FS-IGBTに逆並列に接続されたFWDと、を備える。
 通常、RC-IGBTは、FS-IGBTにFWDを逆並列に接続するために、n-型半導体基板のおもて面側のMOSゲート構造を構成するpベース領域をpアノード領域105-2とし、n-型半導体基板の裏面側に設けられるp+コレクタ領域111の一部をn+カソード領域112に置き換えた構造を有する。具体的には、同一のn-型半導体基板に、FS-IGBTが設けられたIGBT部121と、FWDが設けられたFWD部122と、が設けられている。
 IGBT部121において、n-型半導体基板のおもて面側には、トレンチ102、ゲート絶縁膜103、ゲート電極104、pベース領域105-1、n+エミッタ領域106およびp+コンタクト領域107からなるトレンチゲート型のMOSゲート構造と、エミッタ電極109とが設けられている。pベース領域105-1は、隣り合うトレンチ102の間のメサ部(隣り合うトレンチ102間に挟まれた領域)において、トレンチ102の長手方向に所定の間隔で配置されている。
 トレンチ102、ゲート絶縁膜103およびゲート電極104からなるトレンチゲートは、IGBT部121からFWD部122にわたって、IGBT部121とFWD部122とが並ぶ方向(短手方向)と直交する方向(長手方向)に延びるストライプ状に設けられている。FWD部122において、隣り合うトレンチ102の間のメサ部には、n-型半導体基板のおもて面の全面にpアノード領域105-2が設けられている。
 pアノード領域105-2は、エミッタ電極109に導通接続されている。n-型半導体基板の裏面側には、IGBT部121にp+コレクタ領域111が設けられ、FWD部122にn+カソード領域112が設けられている。p+コレクタ領域111およびn+カソード領域112と、n-ドリフト領域101との間に、nバッファ層110が設けられている。コレクタ電極113は、p+コレクタ領域111およびn+カソード領域112に接する。符号108は層間絶縁膜である。
 このようなRC-IGBTとして、半導体チップのおもて面に通常のIGBTと同様のパターンでMOSゲート構造を繰り返し配置し、半導体チップの裏面に、FWD部のn+カソード領域とIGBT部のp+コレクタ領域とを並列に配置したコレクタショート型の装置が提案されている(例えば、下記特許文献2参照。)。
 また、別のRC-IGBTとして、n-型ドリフト層を含む半導体基板にIGBT素子として動作するIGBT部とダイオード素子として動作するダイオード領域とが交互に繰り返しレイアウトされており、ダイオード領域のうちもっともIGBT部側であって、n-型ドリフト層の表層部に、n-型ドリフト層からホールを引き抜くp型のショットキーコンタクト領域を設けた装置が提案されている(例えば、下記特許文献3参照。)。
 また、別のRC-IGBTとして、半導体基板の第1主面側の第1領域にエミッタ層が設けられ、第2領域にはエミッタ層が設けられない構造とするとともに、半導体基板の第2主面側の第1領域にコレクタ層が設けられ、第2領域にカソード層が設けられた構造とした装置が提案されている(例えば、下記特許文献4参照。)。
 また、別のRC-IGBTとして、ダイオード部の基板おもて面側に異なる間隔で複数のトレンチゲートが形成され、さらにトレンチゲート間の間隔が狭い方にn型エミッタ領域およびp型ベース領域が形成された装置が提案されている(例えば、下記特許文献5参照。)。
 また、メサ部を備えた装置として、基板おもて面側にトレンチを備える縦型のダイオードであって、トレンチが異なる間隔で配置され、トレンチの短手方向におけるトレンチ間の間隔が長い領域と短い領域との2つの領域を備えた半導体装置が提案されている(例えば、下記特許文献6参照。)。
 また、別のRC-IGBTとして、次の装置が提案されている。層間絶縁膜の表面および第2トレンチの内表面には、チタン(Ti)やタングステン(W)等を用いてバリアメタルが形成されている。エミッタ(アノード)電極は、pベース(アノード)層、nエミッタ領域およびpコンタクト領域とバリアメタルを介して接する(例えば、下記特許文献7(第0054,0080段落、第5図)参照。)。
 また、別のRC-IGBTとして、次の装置が提案されている。裏面電極は、p型コレクタ領域およびn型カソード領域との双方に接するように第2主面上に形成され、かつ第2主面側から順に積層されたチタン層、ニッケル(Ni)層および金(Au)層を有している。チタン層はp型コレクタ領域およびn型カソード領域の双方にオーミック接触している(例えば、下記特許文献8参照。)。
 また、別のRC-IGBTとして、IGBT領域とFWD領域とが互いに隣接して交互に設けられ、幅の異なる2種類のFWD領域を有する装置が提案されている(例えば、下記特許文献9(第0068段落、第6図)参照。)。下記特許文献9では、幅広領域としてのFWD領域の幅(幅狭領域としてのFWD領域を間に挟む2つのチャネル間距離)を170μm以上とすることで、FWD領域として機能しない領域の割合を相対的に減少させて順方向電圧のスナップバックを抑制している。
 また、別のRC-IGBTとして、次の装置が提案されている。IGBT部のpベース層に、トレンチの深さ方向にエミッタ領域およびコンタクト領域よりも深いフローティング層が設けられている。ダイオード部には、フローティング層およびエミッタ領域が設けられていない。ダイオード部のゲート電極はエミッタ電位となっている(例えば、下記特許文献10参照。)。下記特許文献10では、フローティング層を設けることで、IGBT部のコンタクト領域からダイオード部への過剰なホール注入を抑制している。
特開2008-034794号公報 特開2005-101514号公報 特開2009-071217号公報 特開2008-053648号公報 特開2012-009629号公報 特開2008-047565号公報 特開2009-027152号公報 特開2013-012783号公報 特開2010-171385号公報 特開2012-043890号公報
 しかしながら、上述した従来技術では、IGBT部に、比較的狭いピッチで、トレンチが並ぶ方向と直交する方向に延びるストライプ状にトレンチを配置している。このため、FWD部において基板おもて面からpアノード領域(pベース領域)とn-ドリフト層とのショットキー接合を貫通するトレンチを設けない場合、IGBT部の最もFWD部側に設けられたトレンチの底部にオフ状態で電界強度が集中し、耐圧が低下するという問題がある。
 また、上述した特許文献2では、IGBT部全体に部分的にFWD部を設けているため、FWD部からキャリアが引き抜かれ、IGBT部のキャリアが減少してオン抵抗が高くなるため、オン電圧が高くなる虞がある。また、上述した特許文献4のようにFWD部の基板おもて面側全体にpアノード領域を設けた構成では、FWD部における電界強度は緩和されるが、FWD部で正孔の注入効率が増加し、逆回復電流が増加するため、IGBTのターンオン損失が増加するほか、FWDの逆回復耐量が低下するという問題がある。
 この発明は、上述した従来技術による問題点を解消するため、絶縁ゲート型バイポーラトランジスタとダイオードとを同一半導体基板に内蔵して一体化した構造の逆導通型半導体装置において、ダイオード特性を向上させることができる半導体装置を提供することを目的とする。
 上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、第1導電型のドリフト領域となる半導体基板に、絶縁ゲート型バイポーラトランジスタが設けられた第1素子領域と、ダイオードが設けられた第2素子領域と、を備えた半導体装置であって、次の特徴を有する。前記半導体基板のおもて面に、前記第1素子領域から前記第2素子領域にわたって、前記第1素子領域と前記第2素子領域とが並ぶ方向と直交する長手方向に延びるストライプ状に複数のトレンチが設けられている。前記トレンチの側壁および底面に沿ってゲート絶縁膜が設けられている。前記トレンチの内部の、前記ゲート絶縁膜の内側にゲート電極が設けられている。前記第1素子領域の隣り合う前記トレンチの間のメサ部に、第2導電型のベース領域が選択的に設けられている。前記第2素子領域の隣り合う前記トレンチの間のメサ部に、第2導電型のアノード領域が選択的に設けられている。前記ベース領域の内部に第1導電型のエミッタ領域が選択的に設けられている。前記ベース領域、前記エミッタ領域および前記アノード領域に接する第1電極が設けられている。前記第1素子領域において前記半導体基板の裏面に第2導電型のコレクタ領域が設けられている。前記第2素子領域において前記半導体基板の裏面に第1導電型のカソード領域が設けられている。前記コレクタ領域および前記カソード領域に接する第2電極が設けられている。そして、前記第2素子領域の隣り合う前記トレンチの間のメサ部には、前記トレンチの長手方向に沿って前記アノード領域と前記ドリフト領域とが交互に繰り返し配置されている。前記アノード領域、および、当該アノード領域と当該アノード領域の前記トレンチの長手方向に隣り合う前記アノード領域とに挟まれた部分における前記ドリフト領域からなる単位領域のうち、当該アノード領域が占める割合は50%以上100%未満である。
 また、この発明にかかる半導体装置は、上述した発明において、前記隣り合う前記アノード領域からそれぞれ前記メサ部に広がるビルトイン空乏層同士が互いにつながっていることを特徴とする。
 また、上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、第1導電型のドリフト領域となる半導体基板に、絶縁ゲート型バイポーラトランジスタが設けられた第1素子領域と、ダイオードが設けられた第2素子領域と、を備えた半導体装置であって、次の特徴を有する。前記半導体基板のおもて面に、前記第1素子領域から前記第2素子領域にわたって、前記第1素子領域と前記第2素子領域とが並ぶ方向と直交する長手方向に延びるストライプ状に複数のトレンチが設けられている。前記トレンチの側壁および底面に沿ってゲート絶縁膜が設けられている。前記トレンチの内部の、前記ゲート絶縁膜の内側にゲート電極が設けられている。前記第1素子領域の隣り合う前記トレンチの間のメサ部に、第2導電型のベース領域が選択的に設けられている。前記第2素子領域の隣り合う前記トレンチの間のメサ部に、第2導電型のアノード領域が選択的に設けられている。前記ベース領域の内部に第1導電型のエミッタ領域が選択的に設けられている。前記ベース領域、前記エミッタ領域および前記アノード領域に接する第1電極が設けられている。前記第1素子領域において前記半導体基板の裏面に第2導電型のコレクタ領域が設けられている。前記第2素子領域において前記半導体基板の裏面に第1導電型のカソード領域が設けられている。前記コレクタ領域および前記カソード領域に接する第2電極が設けられている。そして、前記第2素子領域の隣り合う前記トレンチの間のメサ部には、前記トレンチの長手方向に沿って前記アノード領域と前記ドリフト領域とが交互に繰り返し配置されている。前記第1電極は、さらに前記第2素子領域における前記ドリフト領域に接している。そして、前記アノード領域、および、当該アノード領域と当該アノード領域の前記トレンチの長手方向に隣り合う前記アノード領域とに挟まれた部分における前記ドリフト領域からなる単位領域のうち、当該アノード領域が占める割合は50%未満である。
 また、この発明にかかる半導体装置は、上述した発明において、前記隣り合う前記トレンチからそれぞれ当該トレンチ間のメサ部に広がるビルトイン空乏層同士が互いにつながっていることを特徴とする。
 本発明にかかる半導体装置によれば、絶縁ゲート型バイポーラトランジスタとダイオードとを同一半導体基板に内蔵して一体化した構造の逆導通型半導体装置において、逆回復電流を低減することができ、逆回復損失を低減することができるため、ダイオード特性を向上させることができるという効果を奏する。
図1は、実施の形態1にかかる半導体装置の構造を示す平面図である。 図2は、図1の切断線A-A’における断面構造を示す断面図である。 図3は、実施の形態1にかかる半導体装置の逆回復特性を示す特性図である。 図4は、実施の形態1にかかる半導体装置の逆回復特性を示す特性図である。 図5は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図6は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図7は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図8は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図9は、実施の形態1にかかる半導体装置の製造途中の状態を示す説明図である。 図10は、実施の形態1にかかる半導体装置の製造途中の状態を示す説明図である。 図11は、実施の形態1にかかる半導体装置の製造途中の状態を示す説明図である。 図12は、実施の形態1にかかる半導体装置の製造途中の状態を示す説明図である。 図13は、実施の形態2にかかる半導体装置の構造を示す平面図である。 図14は、図13の切断線C-C’における断面構造を示す断面図である。 図15は、実施の形態2にかかる半導体装置の逆回復特性を示す特性図である。 図16は、実施の形態2にかかる半導体装置の逆回復特性を示す特性図である。 図17は、実施の形態3にかかる半導体装置の構造を示す断面図である。 図18は、従来のRC-IGBTの構造を示す平面図である。 図19は、図18の切断線AA-AA’における断面構造を示す断面図である。 図20Aは、実施の形態4にかかる半導体装置の構造を示す平面図である。 図20Bは、実施の形態4にかかる半導体装置の別の一例の構造を示す平面図である。 図21は、図20A,20Bの切断線D-D’における断面構造を示す断面図である。 図22Aは、実施の形態5にかかる半導体装置の構造を示す平面図である。 図22Bは、図22Aの切断線E-E’における断面構造を示す断面図である。 図22Cは、図22Aの切断線F-F’における断面構造を示す断面図である。 図23Aは、実施の形態6にかかる半導体装置の構造を示す平面図である。 図23Bは、図23Aの切断線G-G’における断面構造を示す断面図である。 図23Cは、図23Aの切断線G-G’における断面構造の別の一例を示す断面図である。 図24は、実施の形態2にかかる半導体装置のIGBT部の幅とFWD部の幅との関係を示す特性図である。 図25は、実施の形態2にかかる半導体装置の平面構造を示す平面図である。 図26は、実施の形態2にかかる半導体装置の別の一例を示す平面図である。 図27は、図26の切断線H-H’における断面構造を示す断面図である。 図28は、図26の半導体装置のトレンチ間隔比Lb/Laと逆回復電流IAKとの関係を示す特性図である。 図29Aは、図26の半導体装置のトレンチ間隔比Lb/Laと順方向電圧降下Vfとの関係を示す特性図である。 図29Bは、図26の半導体装置のトレンチ間隔比Lb/Laと逆回復ピーク電流Irpとの関係を示す特性図である。 図30Aは、定常的な順電流を導通させたときのダイオード内部の電流密度を示す特性図である(トレンチ間隔比Lb/La=8)。 図30Bは、定常的な順電流を導通させたときのダイオード内部の電流密度を示す特性図である(トレンチ間隔比Lb/La=1)。 図31は、実施の形態7にかかる半導体装置の構造を示す断面図である。 図32は、実施の形態7にかかる半導体装置の別の一例の構造を示す断面図である。 図33は、比較例の半導体装置の構造を示す断面図である。
 以下に添付図面を参照して、この発明にかかる半導体装置の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
(実施の形態1)
 実施の形態1にかかる半導体装置の構成について説明する。図1は、実施の形態1にかかる半導体装置の構造を示す平面図である。図2は、図1の切断線A-A’における断面構造を示す断面図である。図1,2に示すように、実施の形態1にかかる半導体装置は、n-ドリフト領域1となる同一のn-型半導体基板上に、絶縁ゲート型バイポーラトランジスタ(IGBT)が設けられたIGBT部21と、還流用ダイオード(FWD)が設けられたFWD部22と、を備える。
 FWD部22のFWDは、IGBT部21のIGBTに逆並列に接続されている。すなわち、実施の形態1にかかる半導体装置は、逆導通型IGBT(RC-IGBT)である。n-型半導体基板のおもて面には、IGBT部21からFWD部22にわたって、IGBT部21とFWD部22とが並ぶ方向(短手方向)と直交する方向(長手方向)に延びるストライプ状に所定の間隔で複数のトレンチ2が設けられている。
 トレンチ2の内部には、トレンチ2の内壁に沿ってゲート絶縁膜3が設けられている。また、トレンチ2の内部には、ゲート絶縁膜3の内側にゲート電極4が設けられている。IGBT部21において、隣り合うトレンチ2の間のメサ部には、トレンチ2長手方向に沿って所定の間隔でpベース領域5-1が設けられている。pベース領域5-1は、トレンチ2に接するように、かつトレンチ2よりも浅い深さ(基板おもて面からの深さ)で設けられている。
 すなわち、IGBT部21において、n-型半導体基板のおもて面には、トレンチ2長手方向に沿ってpベース領域5-1とn-ドリフト領域1とが交互に露出される。pベース領域5-1のトレンチ2長手方向の幅x11は、n-ドリフト領域1のpベース領域5-1に挟まれた部分のトレンチ2長手方向の幅、すなわちpベース領域5-1のトレンチ2長手方向の第1ピッチ(配置間隔)x12よりも広い(x11>x12)。pベース領域5-1の内部には、n+エミッタ領域6およびp+コンタクト領域7が選択的に設けられている。
 n+エミッタ領域6は、トレンチ2の側壁に設けられたゲート絶縁膜3に接し、ゲート絶縁膜3を介してゲート電極4に対向する。n+エミッタ領域6は、例えば、pベース領域5-1を挟み込むトレンチ2側にそれぞれ設けられた第1n+領域6-1と、第1n+領域6-1間に設けられ当該第1n+領域6-1同士を連結する第2n+領域6-2とからなる。第2n+領域6-2のトレンチ2長手方向の幅は例えば第1n+領域6-1のトレンチ2長手方向の幅よりも狭く、n+エミッタ領域6は例えばH形状の平面形状をなす。
 p+コンタクト領域7は、第1n+領域6-1間に設けられ、n+エミッタ領域6に接する。このようにIGBT部21のn-型半導体基板のおもて面側は、pベース領域5-1を間引いて配置し、トレンチ2、ゲート絶縁膜3、ゲート電極4、pベース領域5-1、n+エミッタ領域6およびp+コンタクト領域7からなるトレンチゲート型のMOSゲート構造をトレンチ2長手方向に繰り返し配置した構造となっている。各MOSゲートはそれぞれIGBT(セル部)を構成する。
 FWD部22において、IGBT部21とFWD部22とで配線レイアウトを統一して製造プロセスを簡略化するために、FWD部22のトレンチ2もIGBT部21のトレンチ2と同様にトレンチゲート構造となっている。FWD部22において、隣り合うトレンチ2の間のメサ部には、トレンチ2長手方向に沿って所定の間隔でpアノード領域5-2が設けられている。すなわち、n-型半導体基板のおもて面に、トレンチ2長手方向に沿ってpアノード領域5-2とn-ドリフト領域1とが交互に露出されている。
 このように、FWD部22において、隣り合うトレンチ2の間のメサ部に設けられたpベース領域はpアノード領域5-2を構成する。pアノード領域5-2の内部にp+コンタクト領域が設けられていてもよい。以降、FWD部22にp+コンタクト領域を形成しない場合を例に説明する。pアノード領域5-2は、トレンチ2に接し、かつトレンチ2よりも浅い深さで設けられている。pアノード領域5-2の不純物濃度は、pベース領域5-1の不純物濃度と等しくてもよいし、pベース領域5-1の不純物濃度よりも低くてもよい。
 FWD部22のn-型半導体基板のおもて面側は、トレンチ2長手方向に沿ってpアノード領域5-2が繰り返し配置された構造となり、各pアノード領域5-2はそれぞれFWD(セル部)を構成する。具体的には、隣り合うトレンチ2の間のメサ部には、n-ドリフト領域1の、トレンチ2長手方向に隣り合うpアノード領域5-2に挟まれた部分(以下、n-ドリフト領域1のpアノード領域5-2に挟まれた部分とする)と、この部分に接する1つのpアノード領域5-2とを1単位(以下、ユニット領域する)とする繰り返し構造が形成されている。1つのユニット領域内においてpアノード領域5-2が占める割合(以下、アノード比率とする)αについては後述する。pアノード領域5-2のトレンチ2長手方向の幅w10は、例えば、メサ部のトレンチ2短手方向の幅(すなわちメサ幅)w20よりも広いのがよい。その理由は、アノード比率αを後述する好適な範囲内に設定しやすいからである。
 n-型半導体基板のおもて面は、第1,2コンタクトホール8-1,8-2を有する層間絶縁膜8で覆われている。第1コンタクトホール8-1はIGBT部21のセル部ごとに設けられ、1つの第1コンタクトホール8-1に1つのセル部のn+エミッタ領域6およびp+コンタクト領域7が露出されている。第2コンタクトホール8-2はFWD部22のセル部ごとに設けられ、1つの第2コンタクトホール8-2に1つのセル部のpアノード領域5-2が露出されている。第1,2コンタクトホール8-1,8-2にn-ドリフト領域1は露出されていない。
 第2コンタクトホール8-2のトレンチ2長手方向の開口幅w11および第2コンタクトホール8-2のトレンチ2短手方向の開口幅w21は、pアノード領域5-2全体をほぼ露出させることができる程度に大きいのが好ましい。その理由は、コンタクト抵抗を低減することができ、オン電圧を低減することができるからである。具体的には、第2コンタクトホール8-2のトレンチ2長手方向の開口幅w11および第2コンタクトホール8-2のトレンチ2短手方向の開口幅w21は、第2コンタクトホール8-2を形成するためのエッチング用マスクのアライメントずれを考慮して、それぞれpアノード領域5-2のトレンチ2長手方向の幅w10およびpアノード領域5-2のトレンチ2短手方向の幅(トレンチ2間のメサ幅w20)よりも若干狭くするのがよい。
 より具体的には、第2コンタクトホール8-2のトレンチ2長手方向の開口幅w11は、第2コンタクトホール8-2のトレンチ2長手方向の両端部がそれぞれpアノード領域5-2とn-ドリフト領域1との境界から幅w12(例えば0.5μm~1.0μm程度)だけpアノード領域5-2の内側に位置するように狭くしてもよい。第2コンタクトホール8-2のトレンチ2短手方向の開口幅w21は、第2コンタクトホール8-2のトレンチ2短手方向の両端部がそれぞれpアノード領域5-2とトレンチ2の側壁との境界から幅w22(例えば0.5μm~1.0μm程度)だけpアノード領域5-2の内側に位置するように狭くしてもよい。
 エミッタ電極9は、第1コンタクトホール8-1を介してn+エミッタ領域6およびp+コンタクト領域7に接する。また、エミッタ電極9は、アノード電極を兼ねており、第2コンタクトホール8-2を介してpアノード領域5-2に接する。エミッタ電極9は、層間絶縁膜8によってゲート電極4と電気的に絶縁されている。n-型半導体基板の裏面の表面層には、IGBT部21においてp+コレクタ領域11が設けられ、FWD部22において、n+カソード領域12が設けられている。
 p+コレクタ領域11およびn+カソード領域12と、n-ドリフト領域1との間には、nバッファ層10が設けられている。nバッファ層10は、オフ時にpベース領域5-1およびpアノード領域5-2とn-ドリフト領域1との間のpn接合から広がる空乏層がp+コレクタ領域11に達しないように抑制するnフィールドストップ層としての機能を有する。コレクタ電極13は、p+コレクタ領域11に接する。また、コレクタ電極13は、カソード電極を兼ねており、n+カソード領域12に接する。
 次に、アノード比率αについて説明する。アノード比率αは、隣り合うトレンチ2の間のメサ部内に配置される1つのユニット領域の基板おもて面における露出面積(表面積)に対する、当該ユニット領域内のpアノード領域5-2の基板おもて面における露出面積の割合であらわすことができる。具体的には、アノード比率αは、下記(1)式であらわされる。アノード比率αは、pアノード領域5-2を形成するためのイオン注入用マスクのアライメントずれなどを考慮して、pアノード領域5-2のトレンチ2長手方向の幅(熱拡散による増分を含まない)Lpに基づいて設定される。
 α=Lp/Lc=Lp/(Lp+Ln) ・・・(1)
 具体的には、アノード比率αは、例えば50%~75%とする。すなわち、FWD部22の隣り合うトレンチ2の間のメサ部に配置された1つのユニット領域内において、熱拡散前のpアノード領域5-2の露出面積が、基板おもて面におけるn-ドリフト領域1の露出面積以上となるように、pアノード領域5-2を間引いて配置する。好ましくは、アノード比率αは75%に近いのがよい。pアノード領域5-2を間引くとは、pアノード領域5-2を配置しない領域を設けて、トレンチ2長手方向にn-ドリフト領域1とpアノード領域5-2とを交互に露出させることである。
 pアノード領域5-2のトレンチ2長手方向の幅(熱拡散による増分を含まない)Lpとは、pアノード領域5-2を形成するためのイオン注入用マスクの開口部(pアノード領域5-2の形成領域を露出する開口部)のトレンチ2長手方向の幅である。すなわち、pアノード領域5-2のトレンチ2長手方向の幅(熱拡散による増分を含まない)Lpは、イオン注入後の熱拡散処理によって拡散されるpアノード領域5-2のトレンチ2長手方向の幅の増分を含んでおらず、熱拡散後のpアノード領域5-2のトレンチ2長手方向の幅w10よりも狭い。
 Lnは、n-ドリフト領域1のpアノード領域5-2に挟まれた部分のトレンチ2長手方向の幅(すなわちpアノード領域5-2のトレンチ2長手方向の第2ピッチ)である。Lcは、pアノード領域5-2のトレンチ2長手方向の幅(熱拡散による増分を含まない)Lpと、n-ドリフト領域1のpアノード領域5-2に挟まれた部分のトレンチ2長手方向の幅Lnとの総和(以下、ユニット長とする)である。Lp,Ln,Lcは各領域の熱拡散前のトレンチ2長手方向の幅であるが、Lp,Ln,Lcがいずれの領域の寸法を示すものであるかを明確にするために、符号Lp,Ln,Lcを図1にそれぞれ図示する(図13,20A,20B,22A,26についても同様)。
 次に、アノード比率αと逆回復特性との関係について検証した結果を図3,4に示す。図3,4は、実施の形態1にかかる半導体装置の逆回復特性を示す特性図である。図3には、逆回復電流Iak波形を示す。図4には、アノード比率αと逆回復ピーク電流(逆回復電流Iak波形のピーク値)Irpとの関係を示す。シミュレーション技術を用いて、上述した実施の形態1にかかる半導体装置のアノード比率αを12.5%、25%、50%、75%および100%とした場合の逆回復電流Iakを算出した。
 具体的には、トレンチ2の繰り返しピッチを5μmとした。トレンチ2の短手方向の幅は1μmであり、トレンチ2間のメサ幅w20は4μmである。pアノード領域5-2のトレンチ2長手方向の幅(熱拡散による増分を含まない)Lpを5μmとした。そして、ユニット長Lcを40μm(α=12.5%)、20μm(α=25%)、10μm(α=50%)、約6.7μm(α=75%)および5μm(α=100%)とすることでアノード比率αを変更して逆回復電流Iakを算出している。アノード比率αが100%とは、pアノード領域5-2を間引いていない場合、すなわちFWD部22における隣り合うトレンチ2の間のメサ部において基板おもて面全体にpアノード領域5-2が露出されている場合である(図15,16においても同様)。
 図3,4に示す結果より、アノード比率αを50%以上100%未満とすることで、アノード比率αが100%である場合よりも逆回復ピーク電流Irpを小さくすることができることが確認された。また、アノード比率αが75%である場合に、逆回復ピーク電流Irpを最も小さくすることができることが確認された。なお、図4にはデータ点は5点であるが、各点の間の条件も実験評価をしており、各点をむすぶ直線の特性を示すことを確認した。
 一般的には、n-ドリフト領域1の表面がpアノード領域5-2を介さずに直接酸化膜(層間絶縁膜8)と接する部分では、導通時に過剰キャリアがpアノード領域5-2のドーピング濃度以上に蓄積される。そのため、逆回復ピーク電流Irpはpアノード領域5-2が全面に形成される場合、すなわちアノード比率αが100%の場合よりも増加する。それに対して、本発明では、アノード比率αが50%以上100%未満の場合では増加せず、むしろアノード比率αが100%のときよりも減少している。これは、従来のダイオードには見られない特異な効果である。
 この理由としては、以下のことが考えられる。アノード比率αが50%以上100%未満のときには、トレンチ2長手方向に沿って隣り合うpアノード領域5-2の間隔が、pn接合のビルトイン空乏層幅よりも小さくなる。そのため、隣り合うpアノード領域5-2からそれぞれ広がるビルトイン空乏層同士は、これらに挟まれるn-ドリフト領域1において互いにつながっている。このビルトイン空乏層は、pn接合に対して逆バイアスとなっているため、当該pn接合に順バイアスが印加されても、ビルトイン空乏層が消滅されるまではn-ドリフト領域1に正孔が注入されない。すなわち、周知のJFET効果により正孔の注入が抑制される。そのため、アノード比率αが50%以上100%未満の場合の正孔の注入効率は、アノード比率αが100%の場合よりも低下する。これによって、定格電流が流れている状態のキャリア濃度分布は、n+カソード領域12側に比べて相対的にpアノード領域5-2側が下がる分布となる。以上の一連の作用が、図3,4に示すように、逆回復ピーク電流Irpの低減効果を奏する。
 アノード比率αが50%未満であるときに逆回復ピーク電流Irpが増加する理由は、両側のpアノード領域5-2からそれぞれn-ドリフト領域1に広がるビルトイン空乏層同士がつながっていないため、JFET効果が低減するからである。JFET効果が低減することで、酸化膜直下の蓄積キャリアは増加に転じるため、逆回復ピーク電流Irpが増加する。
 以上より、隣り合うpアノード領域5-2の間隔は、各pアノード領域5-2からそれぞれ広がるビルトイン空乏層同士がつながる程度の距離以下であることが好ましい。この場合、さらに以下のような効果を奏する。例えばpアノード領域5-2のトレンチ2長手方向の幅Lpをトレンチ2間のメサ幅w20よりも十分小さくする。これにより、pアノード領域5-2のトレンチ2長手方向の幅Lpが短くても、隣り合うpアノード領域5-2の間隔を、当該各pアノード領域5-2からそれぞれ広がるビルトイン空乏層同士がつながる程度の距離以下とすることができる。このため、逆回復ピーク電流Irpはさらに低減され、例えば図4に示す逆回復ピーク電流Irpの最小値をさらに低下させることができる。これにより、逆回復ピーク電流Irpが最小となるアノード比率αを75%以上(さらには80%以上)100%未満の間にすることができる。
 次に、実施の形態1にかかる半導体装置の製造方法について、定格電圧1200V、定格電流400AのRC-IGBTを作製(製造)する場合を例に説明する。図5~8は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。図9~12は、実施の形態1にかかる半導体装置の製造途中の状態を示す説明図である。図9~12では、それぞれ、(b)に製造途中の平面構造を示し、(a)に(b)のB-B’切断線における断面構造を示す。まず、図5に示すように、例えば厚さ650μmで直径6インチの、n-ドリフト領域1となるn-型シリコン(Si)基板(n-型半導体基板)31を用意する。
 定格電圧1200Vの場合、シリコン基板の比抵抗は例えば40Ωcm~80Ωcm程度である。このため、n-型半導体基板31の比抵抗は、例えば55Ωcm程度としてもよい。シリコン基板の主面の面方位は、例えば(100)である。次に、図示を省略した終端構造部において、n-型半導体基板31のおもて面側に、耐圧構造を構成する例えばpガードリングを形成する。終端構造部とは、活性領域のn-ドリフト領域1にかかる電界を緩和して耐圧を保持する領域である。活性領域とは、RC-IGBTの素子構造が形成される領域である。図1,2,5~14,17,20A~23C,26,27においても同様に終端構造部を図示省略する。
 具体的には、n-型半導体基板31のおもて面に、pガードリングの形成領域が開口したレジストマスク(不図示)を形成する。次に、レジストマスクをマスクとしてn-型半導体基板31のおもて面に例えばボロン(B)などのp型不純物をイオン注入する。次に、レジストマスクを除去した後、熱拡散処理によりn-型半導体基板31に注入したp型不純物を拡散させることでpガードリングが形成される。また、図6に示すように、pガードリングを形成するための熱拡散処理により、n-型半導体基板31のおもて面に酸化膜32が形成される。
 次に、フォトリソグラフィにより、トレンチ2の形成領域に対応する部分の酸化膜32を除去する。次に、酸化膜32をマスクとして例えば異方性乾式エッチングを行い、n-型半導体基板31のおもて面に所定の深さでトレンチ2を形成する。次に、犠牲酸化により、トレンチ2の内壁に犠牲酸化膜(不図示)を形成し、この犠牲酸化膜を除去することで、トレンチ2の形成によりn-型半導体基板31表面に生じた欠陥層を除去する。次に、活性領域においてn-型半導体基板31のおもて面を覆う酸化膜32を除去する。
 次に、図7に示すように、熱酸化により、n-型半導体基板31のおもて面に、トレンチ2の内壁に沿うようにゲート絶縁膜3を形成する。ゲート絶縁膜3の厚さは、例えば100nm~120nmであり、実施の形態1においては例えば110nmである。次に、導電性多結晶シリコン膜33をn-型半導体基板31のおもて面に堆積してトレンチ2の内部に埋め込む。次に、図8に示すように、ゲート絶縁膜3が露出されるまで導電性多結晶シリコン膜33をエッチバックし、トレンチ2の内部にのみゲート電極4となる導電性多結晶シリコン膜33を残す。次に、n-型半導体基板31のおもて面上のゲート絶縁膜3および酸化膜32を除去する。
 次に、図9に示すように、熱酸化法により、n-型半導体基板31のおもて面にスクリーン酸化膜34を形成する。図9(b)では、スクリーン酸化膜34を図示省略する(図10~12の(b)も同様)。次に、フォトリソグラフィにより、n-型半導体基板31のおもて面に、pベース領域5-1の形成領域を露出する第1開口部35a、および、pアノード領域5-2の形成領域を露出する第2開口部35bを有するレジストマスク35を形成する。レジストマスク35の第2開口部35bのトレンチ2長手方向の幅Lpは、上記(1)式であらわされるアノード比率αが50%~75%の範囲内となるように設定される。
 次に、レジストマスク35をマスクとして、n-型半導体基板31のおもて面に、スクリーン酸化膜34越しに例えばボロンなどのp型不純物を第1イオン注入41する。この第1イオン注入41により、レジストマスク35の第1,2開口部35a,35bに露出されたn-ドリフト領域1にp型不純物領域5-1a,5-2aが形成される。その後、レジストマスク35を除去する。このとき、IGBT部21のpベース領域5-1と、FWD部22のpアノード領域5-2とを異なる不純物濃度で形成する場合には、さらにレジストマスクの形成とp型不純物のイオン注入とを行えばよい。
 具体的には、pベース領域5-1とpアノード領域5-2とを異なる不純物濃度で形成する場合、例えば、最初にIGBT部21の領域内の、pベース領域5-1の形成領域のみ選択的に開口したレジストマスクを形成する。次に、このレジストマスクをマスクとして例えばボロンをドーズ量が2×1013/cm2程度で加速エネルギーが100keV程度にてイオン注入した後、レジストマスクを除去する。次に、FWD部22の領域内の、pアノード領域5-2の形成領域のみ選択的に開口したレジストマスクを形成する。そして、このレジストマスクをマスクとして例えばボロンをドーズ量が1×1012/cm2以上1×1013/cm2以下程度の範囲で、加速エネルギーが100keV程度にてイオン注入した後、レジストを除去すればよい。
 次に、図10に示すように、1050℃以上1150℃以下程度の範囲の温度で熱拡散処理を行い、p型不純物領域5-1aが熱拡散されてなるpベース領域5-1と、p型不純物領域5-2aが熱拡散されてなるpアノード領域5-2とを形成する。以上の処理により、半導体装置のゲートしきい値を約6Vとする。
 次に、図11に示すように、フォトリソグラフィにより、n-型半導体基板31のおもて面に、p+コンタクト領域7の形成領域を露出する開口部を有するレジストマスク36を形成する。レジストマスク36の開口部はIGBT部21の領域内のみとし、FWD部22には形成しない。次に、レジストマスク36をマスクとして、n-型半導体基板31のおもて面に、スクリーン酸化膜34越しに例えばボロンなどのp型不純物を第2イオン注入42する。例えば、イオン注入のドーズ量は例えば1×1015/cm2以上5×1015/cm2以下程度の範囲で、加速エネルギーが100keV程度であってもよい。次に、レジストマスク36を除去した後、第2イオン注入42されたp型不純物を例えば1000℃程度の温度で熱拡散させることで、IGBT部21のみ、pベース領域5-1の内部にp+コンタクト領域7を形成する。図11(b)では、レジストマスク36を図示省略する。
 次に、図12に示すように、フォトリソグラフィにより、n-型半導体基板31のおもて面に、n+エミッタ領域6の形成領域を露出する開口部を有するレジストマスク37を形成する。次に、レジストマスク37をマスクとして、n-型半導体基板31のおもて面に、スクリーン酸化膜34越しに例えば砒素(As)などのn型不純物を第3イオン注入43する。次に、レジストマスク37を除去した後、第3イオン注入43されたn型不純物を熱拡散させることで、pベース領域5-1の内部にn+エミッタ領域6を形成する。図12(b)では、レジストマスク37を図示省略する。
 次に、n-型半導体基板31のおもて面全面にBPSG(Boro Phospho Silicate Glass)等の層間絶縁膜8を形成する。次に、フォトリソグラフィにより層間絶縁膜8を選択的に除去し、第1,2コンタクトホール8-1,8-2を形成する。次に、一般的な方法により、n-型半導体基板31のおもて面にエミッタ電極9を形成した後、n-型半導体基板31のおもて面側を例えばレジスト膜(不図示)で保護する。次に、n-型半導体基板31の裏面を研削して、n-型半導体基板31の厚さを例えば125μmにまで薄くした後、エッチングして研削歪層を除去する。
 次に、n-型半導体基板31の裏面から例えばセレン(Se)などのn型不純物を第4イオン注入する。第4イオン注入は、nバッファ層10を形成するためのイオン注入であり、例えば、ドーズ量を3×1014/cm2程度とし、加速エネルギーを100keV程度としてもよい。n-型半導体基板31の裏面から、第4イオン注入よりも浅い領域に例えばボロンなどのp型不純物を第5イオン注入する。第5イオン注入は、p+コレクタ領域11を形成するためのイオン注入であり、例えば、ドーズ量を8×1013/cm2程度とし、加速エネルギーを40keV程度としてもよい。
 次に、フォトリソグラフィにより、n-型半導体基板31の裏面に、n+カソード領域12の形成領域、すなわちFWD部22を露出する開口部を有する例えば2μm程度の厚さのレジストマスク(不図示)を形成する。次に、このレジストマスクをマスクとして、n-型半導体基板31の裏面に例えばリン(P)などのn型不純物を第6イオン注入する。第6イオン注入は、例えば、ドーズ量を2×1015/cm2程度とし、加速エネルギーを110keV程度としてもよい。
 次に、n-型半導体基板31のおもて面を保護するレジスト膜およびn-型半導体基板31の裏面のレジストマスクを除去する。次に、例えば950℃程度の温度で30分間程度の熱処理を行うことにより、第4~6イオン注入で形成された不純物領域を活性化する。次に、n-型半導体基板31のおもて面側に例えば5μm程度の厚さのアルミニウムシリコン(Al-Si、例えばSiを1%含有するAl)膜を形成する。そして、このAl-Si膜をパターニングすることでエミッタ電極9を形成する。
 次に、n-型半導体基板31の裏面から例えばヘリウム(4He)を23MeV程度の加速エネルギーでドーズ量1×1013/cm2程度照射する。次に、370℃程度の温度で1時間程度のアニール(熱処理)を行い、ヘリウム照射によってn-型半導体基板31の内部に生じた欠陥を回復させる。その後、n-型半導体基板31の裏面にAl膜、Ti膜、Ni膜および金(Au)膜をそれぞれ1μm、0.07μm、1μmおよび0.3μm程度の厚さで順に堆積してコレクタ電極13を形成することにより、図1,2に示すRC-IGBTが完成する。
 以上、説明したように、実施の形態1によれば、アノード比率を50%~75%とすることで逆回復電流を低減することができ、逆回復損失を低減することができるため、ダイオード特性を向上させることができる。また、実施の形態1によれば、FWD部においてエミッタ電極とn-ドリフト領域とのショットキー接合が形成されていないため、オフ時に漏れ電流が増加することを防止することができる。また、実施の形態1によれば、IGBT部とFWD部とを分けて配置することで、IGBTのみが設けられた領域(IGBT部)を上記特許文献2よりも広く確保することができる。これにより、FWD部からキャリアが引き抜かれたとしても、IGBT部でのキャリア濃度を高く維持することができる。このため、オン抵抗を低減させることができ、オン電圧を低減させることができる。
(実施の形態2)
 次に、実施の形態2にかかる半導体装置の構成について説明する。図13は、実施の形態2にかかる半導体装置の構造を示す平面図である。図14は、図13の切断線C-C’における断面構造を示す断面図である。実施の形態2にかかる半導体装置が実施の形態1にかかる半導体装置と異なる点は、次の2点である。1つ目の相違点は、FWD部22において、隣り合うトレンチ2の間のメサ部のほぼ全面が第2コンタクトホール58-2に露出されており、pアノード領域5-2とn-ドリフト領域1とがともにエミッタ電極9に接続されている点である。
 すなわち、FWD部22において、n-ドリフト領域1とエミッタ電極9とのショットキー接合が形成されている。エミッタ電極9の、少なくともFWD部22のシリコン部と接触する部分における構成材料は、例えばSiを1%含有するAl、プラチナ(Pt)またはプラチナシリサイド(PtSi)など、シリコン部との界面におけるショットキーバリアの障壁の高さΔφBが0.8eV以上となる材料を用いるのが好ましい。これにより、漏れ電流を低減することができる。小型化などによりIGBT部21におけるエミッタ電極9とシリコン部との間にバリアメタルを設ける場合に有効である。
 2つ目の相違点は、アノード比率αが低いほど好ましく(α≠0%)、例えば、50%未満、好適には25%以下であるのがよい点である。その理由は、アノード比率αを低くするほど逆回復ピーク電流Irpを小さくすることができるからである。アノード比率αと逆回復特性との関係について検証した結果を図15,16に示す。図15,16は、実施の形態2にかかる半導体装置の逆回復特性を示す特性図である。図15には、逆回復電流Iak波形を示す。図16には、アノード比率αと逆回復ピーク電流Irpとの関係を示す。
 シミュレーション技術を用いて、上述した実施の形態2にかかる半導体装置のアノード比率αを15%、25%、50%、75%および100%とした場合の逆回復電流Iakを算出した。具体的には、pアノード領域5-2のトレンチ2長手方向の幅(熱拡散による増分を含まない)Lpを5μmとした。そして、ユニット長Lcを約33μm(α=15%)、20μm(α=25%)、10μm(α=50%)、約6.7μm(α=75%)および5μm(α=100%)とすることでアノード比率αを変更して逆回復電流Iakを算出している。
 図15,16に示す結果より、アノード比率αを低くするほど、アノード比率αが100%である場合よりも逆回復ピーク電流Irpを最も小さくすることができることが確認された。
 実施の形態2にかかる半導体装置の製造方法は、実施の形態1にかかる半導体装置の製造方法において、アノード比率αが低くなるようにpアノード領域5-2を配置することと、FWD部22において隣り合うトレンチ2の間のメサ部のほぼ全面が露出されるように第2コンタクトホール58-2を形成することとを行えばよい。実施の形態2にかかる半導体装置の製造方法の、これら2点以外は、実施の形態1にかかる半導体装置の製造方法と同様である。
 次に、IGBT部21およびFWD部22の好ましい幅について説明する。図24は、実施の形態2にかかる半導体装置のIGBT部の幅とFWD部の幅との関係を示す特性図である。図25は、実施の形態2における半導体装置の平面構造を示す平面図である。図25に示すように、IGBT部21およびFWD部22からなる逆導通型IGBTのチップの外周部に、活性領域を取り囲むようにエッジ終端領域72が形成されている。ゲートランナー73は、活性領域の外周部に沿って、かつエッジ終端領域72に取り囲まれるように形成されている。ゲートランナー73は、ゲートパッド74から活性領域内部のIGBTセルにゲート信号を供給するための配線である。ゲートランナー73で囲まれる領域(活性領域の内側の領域)には、所定の大きさを備えるIGBT部21とFWD部22とが交互に繰り返し配置される。このように、IGBT部21とFWD部22とを交互に繰り返し複数配置することで、IGBT部21のオン時、およびFWD部22の逆導通時のそれぞれにおいて、チップ全体に電流を均等に分散させる。
 IGBT部21の幅WIGBTを、IGBT部21とFWD部22とが交互に繰り返し配置される方向の、隣り合うFWD部22間の長さとする。すなわち、例えば略矩形状の平面形状のIGBT部21の短いほうの幅をWIGBTとする。同様に、FWD部22の幅WFWDを、IGBT部21とFWD部22とが交互に繰り返し配置される方向の、隣り合うIGBT部21間の長さとする。すなわち、例えば略矩形状の平面形状のFWD部22のうち短いほうの幅をWFWDとする。このIGBT部21の幅WIGBTおよびFWD部22の幅WFWDについて、電流密度が400A/cm2で温度が125℃におけるオン電圧を示すグラフを図24に示す。図24には、FWD部22の幅WFWDを1μm,3μm,10μm,100μm,1000μmとしたときのそれぞれのオン電圧を複数のデータ点を結ぶ近似曲線で示す。図24において、縦軸はオン電圧であり、横軸はIGBT部の幅WIGBTである。ここで、ゲートランナー73で囲まれる領域が全てIGBT部である場合(すなわちFWD部を設けていない)のオン電圧は1.1Vであり、図24にはオン電圧=1.1Vの位置を最も太い破線(横線)で示す。
 図24に示すように、それぞれのFWD部22の幅WFWDにおいて、IGBT部21の幅WIGBTがある程度の幅より短くなると、オン電圧が増加する。特に、全てのFWD部22の幅WFWDにおいて、オン電圧が1.3V以上では、IGBT部21の幅WIGBTの減少に対して急激にオン電圧が増加することが分かった。図24には、オン電圧=1.3Vの位置を実線(FWD部22の幅WFWD=1μmの場合のデータ点よりも右側の横線)で示し、オン電圧が1.3Vより大きい部分の近似曲線を点線で示す(FWD部22の幅WFWDが1μm,3μm,10μm,1000μmの場合については、オン電圧が1.3Vより大きいデータ点を白抜きの記号で示す)。オン電圧が1.3Vであることは、電流-電圧カーブにおいて、電流が増加せずにスナップバックが発生することに対応する。スナップバックとは、IGBT部21のMOSゲートから注入された電子が、フィールドストップ層(nバッファ層10)を通って、IGBT部21に隣接するFWD部22のn+カソード領域12に流入するために、IGBT部21のp+コレクタ領域11からの正孔注入が阻害される現象である。このスナップバック現象を抑制するには、IGBT部21の幅WIGBTを、オン電圧が1.3Vよりも低くなる幅とする必要がある。
 具体的には、IGBT部21の単位セルの寸法、すなわちトレンチ2の繰り返しピッチにもよるが、トレンチ2の繰り返しピッチが1μm以上の場合、FWD部22の幅WFWDは少なくとも1μm以上必要であるので、IGBT部21の幅WIGBTは20μm以上であるのがよい。ただし、通常はFWD部22がIGBT部21よりも大きい電流密度を担い、電流密度比はFWD部22がIGBT部21の2倍以上である。そのため、IGBT部21とFWD部22との幅の比(=WIGBT/WFWD)は、2以上とする。この場合、FWD部22の幅WFWDを10μmとし、IGBT部21の幅WIGBTを20μm以上とすれば、オン電圧の増大を抑制することができる。また、FWD部22の幅WFWDが例えば100μmの場合、IGBT部21の幅WIGBTは100μm以上であり、FWD部22の幅WFWDが例えば1000μmの場合、IGBT部21の幅WIGBTは1000μm以上とする必要がある。IGBT部21およびFWD部22のそれぞれの領域の幅が正孔の拡散長よりも長くなると、電流はIGBT部21およびFWD部22のそれぞれに流れるようになるため、電流に偏りが生じる。したがって、特にIGBT部21の幅WIGBTは300μm以下が好ましく、この場合FWD部22の幅WFWDは、電流密度比にもよるが150μm以下が好ましい。以上より、IGBT部21の幅WIGBTは20μm以上300μm以下であり、FWD部22の幅WFWDは10μm以上150μm以下であるのが好ましい。特に、IGBT部21の幅WIGBTを20μm以上100μm以下とし、FWD部22の幅WFWDを10μm以上50μm以下とすることで、スナップバック現象の抑制とチップ内電流分散の効果とを両立することができる。
 他に、実施の形態2の変形例1として、トレンチ2間のメサ幅w20を4μmよりもさらに狭くしてもよい。トレンチ2とメサ部との境界からビルトイン空乏層がメサ部に広がっている。このメサ部のメサ幅w20をさらに狭くして、両側のトレンチ2から広がるビルトイン空乏層同士をつなげることで、メサ部をゼロバイアスで完全に空乏化させることができる。これにより、FWD部22において、pアノード領域5-2を形成せずにn-ドリフト領域1とアノード電極とのショットキー接触のみとしても、メサ部にトレンチ2から空乏層が広がってピンチオフさせることができるようになる。これよって、素子の耐圧に近い程度の逆バイアスにおける周知のバリア高さ低減現象を抑えることが可能となる。このため、例えば従来のMPS(Merged PiN/Schottky)ダイオードのようなpアノード領域5-2が無い場合でも、逆バイアス増加に伴う漏れ電流の増加を抑えることができる。さらに、pアノード領域5-2からの正孔注入は完全に無くなり、前述のバリアメタルのバリア高さのみで正孔注入量が決まるため、正孔の注入効率を極めて小さくすることが可能となる。
 実際には、n-ドリフト領域1とアノード電極とのショットキー接触だけでなく、トレンチ2間のメサ幅w20に対してさらにトレンチ2短手方向の幅が狭いpアノード領域5-2をメサ部に形成し、そのpアノード領域5-2のトレンチ2長手方向の繰り返しピッチをトレンチ2間のメサ幅w20の10倍かそれ以上にしてもよい。これにより、アノード比率αは10%未満となり、pアノード領域5-2からの正孔注入はn-ドリフト領域1とアノード電極とのショットキー接触のみ(アノード比率α=0%)程度まで十分低減することができる。これよって、逆回復ピーク電流Irpを劇的に低減することができるとともに、逆バイアス時にはpアノード領域5-2が空乏層のピンチオフ効果を増強する。このため、n-ドリフト領域1とアノード電極とのショットキー接触だけの場合よりも、漏れ電流がショットキー界面の欠陥の影響を受けにくく、素子特性を安定化させることができる。
 また、実施の形態2の変形例2として、FWD部22のトレンチ2を異なるトレンチ間隔で設けてもよい。図26は、実施の形態2にかかる半導体装置の別の一例を示す平面図である。図27は、図26の切断線H-H’における断面構造を示す断面図である。図26,27に示すように、FWD部22のトレンチ2を、例えば、第1トレンチ間隔Laと、第1トレンチ間隔Laよりも広い第2トレンチ間隔Lbとなるように配置してもよい。実施の形態2の変形例2において、FWD部22のアノード比率αを50%とした場合の、トレンチ2の第1トレンチ間隔Laに対する第2トレンチ間隔Lbの比(=Lb/La、以下、トレンチ間隔比Lb/Laとする)と、逆回復電流IAKとの関係を図28に示す。図28は、図26の半導体装置のトレンチ間隔比Lb/Laと逆回復電流IAKとの関係を示す特性図である。図28には、トレンチ間隔比Lb/La=8としたときの逆回復電流波形と、比較として、トレンチ間隔比Lb/La=1としたときの逆回復電流波形とを示す。図28に示すように、トレンチ2の第2トレンチ間隔Lbを第1トレンチ間隔Laよりも大きくすることで、第1トレンチ間隔Laと第2トレンチ間隔Lbとが等しい場合よりも逆回復ピーク電流Irpが減少することがわかる。
 また、トレンチ2の第2トレンチ間隔Lbを第1トレンチ間隔Laよりも大きくしたときの、トレンチ間隔比Lb/Laと順方向電圧降下Vfとの関係、およびトレンチ間隔比Lb/Laと逆回復ピーク電流Irpとの関係をそれぞれ図29A,29Bに示す。図29Aは、図26の半導体装置のトレンチ間隔比Lb/Laと順方向電圧降下Vfとの関係を示す特性図である。図29Bは、図26の半導体装置のトレンチ間隔比Lb/Laと逆回復ピーク電流Irpとの関係を示す特性図である。図29A,29Bにおいて最も左側のデータ点が、トレンチ間隔比Lb/La=1の場合である。図29Aに示すように、トレンチ間隔比Lb/Laが1より大きい場合、トレンチ間隔比Lb/Laが大きくなるにしたがって、順方向電圧降下Vfは徐々に増加するが、順方向電圧降下Vfの増加分はトレンチ間隔比Lb/La=20の場合でも約3%である。一方、図29Bに示すように、トレンチ間隔比Lb/Laが大きくなるにしたがって、逆回復ピーク電流Irpは徐々に減少する。逆回復ピーク電流Irpの減少分は、トレンチ間隔比Lb/La=20で約10%である。すなわち、トレンチ間隔比Lb/Laが1より大きい場合、順方向電圧降下Vfに比べて逆回復電流IAKの減少効果が大きい。
 トレンチ間隔比Lb/Laが1より大きい場合に、順方向電圧降下Vfに比べて逆回復電流IAKの減少効果が大きい理由を、図30A,30Bを用いて説明する。図30A,30Bは、定常的な順電流(=400A/cm2)を導通させたときのダイオード内部の電流密度を示す特性図である。図30A(a)には、トレンチ間隔比Lb/La=8のときの電流密度分布を示す。図30A(b)には、図30A(a)の切断線I-I’,J-J’で切断した各断面における電流密度分布を示す。図30B(a)には、トレンチ間隔比Lb/La=1のときの電流密度分布を示す。図30B(b)には、図30B(a)の切断線K-K’,L-L’で切断した各断面における電流密度分布を示す。図30A(a),30B(a)では、トレンチ82を1つのみ図示し、このトレンチ82の短手方向の両隣に隣り合うトレンチ82を図示省略するが、半導体基板81の、トレンチ82よりも右側の領域は第1トレンチ間隔Laで隣り合うトレンチ82間に挟まれた領域であり、トレンチ82よりも左側の領域は第2トレンチ間隔Lbで隣り合うトレンチ82間に挟まれた領域である。図30A(b),30B(b)において、縦軸はホール電流密度であり、横軸は半導体基板81のおもて面(深さ=0μm)からの深さである。半導体基板81の内部に図示した異なるハッチングはホール(正孔)電流密度の高低を示しており、図30A(b),30B(b)にそれぞれ示すように半導体基板81の内部のホール電流密度は半導体基板81のおもて面から深くなるほど低い。また、半導体基板81の内部のホール電流密度は、トレンチ82の短手方向にトレンチ82から離れるほど低い。
 トレンチ間隔比Lb/La=8の場合、トレンチ間隔比Lb/La=8をなす自然数のうち最小の数値(すなわち1および8)の総和(以下、ピッチLa+Lbとする)は9(=1+8)であり、トレンチ間隔比Lb/La=1の場合、ピッチLa+Lbは2(=1+1)である。すなわち、トレンチ間隔比Lb/La=8のピッチLa+Lbはトレンチ間隔比Lb/La=1のピッチLa+Lbの4.5倍であり、その分、トレンチ間隔比Lb/La=8の電流密度は全体的にトレンチ間隔比Lb/La=1の電流密度よりも低くなっている。さらに、トレンチ間隔比Lb/La=8においては、半導体基板81の、第1トレンチ間隔Laで隣り合うトレンチ82間に挟まれた狭い領域の電流密度が他の領域の電流密度よりも高い。特に、ピッチLa+Lbが大きいことが、順方向電圧降下Vfの増分を2%程度に抑えている理由である。一方、逆回復電流IAKの場合、トレンチ82によりアノード領域(不図示)を複数に区切る(分割する)ことで、半導体基板81の、第1トレンチ間隔Laで隣り合うトレンチ82間に挟まれた狭い領域での動作が主となるため、注入効率が低下していく。そのため、逆回復動作時のホールの掃出しが容易となり、逆回復ピーク電流Irpが低下する。
 以上より、トレンチ間隔比Lb/Laは1よりも大きく(1<Lb/La)、好ましくは2以上であるのがよい(2≦Lb/La)。また、トレンチ間隔比Lb/Laは、10以上で特性がほぼ飽和するので10以下であるのがよく(Lb/La≦10)、好ましくは順方向電圧を低くすることができる5以下であるのがよい(Lb/La≦5)。逆回復電流IAKのみに着目すれば、トレンチ間隔比Lb/Laは10以上でもよいが、第1トレンチ間隔Laで隣り合うトレンチ82間に挟まれた狭い領域に電流集中しやすくなるため、電流集中を防ぐ観点からもトレンチ間隔比Lb/Laは10以下であるのが好ましい。
 なお、この実施の形態2の変形例2の場合は、アノード比率αが100%、すなわちFWD部22の全面にpアノード領域が形成されていても同様の効果を奏する。
 以上、説明したように、実施の形態2によれば、実施の形態1と同様の効果を得ることができる。また、実施の形態2によれば、FWD部においてn-ドリフト領域とエミッタ電極とのショットキー接合が形成されていることにより、逆回復ピーク電流をさらに低減することができる。また、実施の形態2によれば、pアノード領域を間引いて配置することで、pアノード領域とn-ドリフト領域との間のpn接合、およびトレンチとn-ドリフト領域との境界から伸びる空乏層がピンチオフしやすくなるため、オフ時に漏れ電流が増加することを防止することができる。
(実施の形態3)
 次に、実施の形態3にかかる半導体装置の構成について説明する。図17は、実施の形態3にかかる半導体装置の構造を示す断面図である。実施の形態3にかかる半導体装置が実施の形態2にかかる半導体装置と異なる点は、FWD部22におけるゲート電極54とエミッタ電極9とが導通接続されている点である。すなわち、FWD部22のゲート電極54はエミッタ電位となっている。この場合、IGBT部21のゲート電極4は、図示省略する部分でFWD部22のゲート電極54と電気的に絶縁される。
 以上、説明したように、実施の形態3によれば、実施の形態1,2と同様の効果を得ることができる。
(実施の形態4)
 次に、実施の形態4にかかる半導体装置の構成について説明する。図20Aは、実施の形態4にかかる半導体装置の構造を示す平面図である。図20Bは、実施の形態4にかかる半導体装置の別の一例の構造を示す平面図である。図21は、図20A,20Bの切断線D-D’における断面構造を示す断面図である。実施の形態4にかかる半導体装置は、実施の形態3におけるFWD部のみとし、両側のトレンチ2からメサ部にそれぞれ広がるビルトイン空乏層同士がつながった構成のダイオードである。実施の形態4にかかる半導体装置のそれ以外の構成は、実施の形態3と同様である。符号59はアノード電極であり、符号63はカソード電極である。
 例えば、定格電圧が600V~6500Vの場合、n-ドリフト領域1となるn-型シリコン基板の比抵抗は、典型的には、定格電圧を0.05倍した値について単位を換算した、30Ωcm~325Ωcmである。そのため、片側のトレンチ2からメサ部に広がるビルトイン空乏層の幅は、ポアソンの式を用いて、およそ2.4μm~7.8μmである。したがって、定格電圧が600V~6500Vに対して、トレンチ2間のメサ幅w20をそれぞれ4.8μm~15.6μmよりも短くすれば、メサ部の両側のトレンチ2から広がるビルトイン空乏層はつながるようになる。より好ましくは、トレンチ2間のメサ幅w20をさらに短くして、定格電圧が600V~6500Vに対して、それぞれ例えば上記の値の半分の2.4μm~7.8μm以下とすれば、さらに確実に鏡像効果による漏れ電流の増加を抑えることができる。
 定格電圧が600V~6500Vに対して、トレンチ2間のメサ幅w20を4.8μm~15.6μmとする場合は、定格電圧をV、トレンチのメサ幅をWとして、下記(2)式に沿って定格電圧Vに対するメサ幅w20を算出すればよい。
 W=-1.12590×10-21・V6+2.36081×10-17・V5-2.00947×10-13・V4+9.15899×10-10・V3-2.55808×10-6・V2+6.11403×10-3・V+2.01005×100 ・・・(2)
 上記(2)式は、上述の方法により定格電圧Vに対して典型的な半導体基板の比抵抗を定義し、定格電圧Vが600V~6500Vの間の7点(600V,1200V,1700V,2500V,3300V,4500V,6500V)においてポアソンの式に従ってビルトイン空乏層幅を求めて、その値を6次の多項式でフィッティングさせたものである。トレンチ2間のメサ幅w20を狭める場合は、上記(2)式によって算出されたメサ幅Wの算出値よりも小さくすればよく、例えばトレンチ2間のメサ幅w20を上記(2)式によって算出されたメサ幅Wの算出値の半分とすればよい。
 また、図20Bに示すように、pアノード領域5-2は、トレンチ2を挟んだ隣の2つのpアノード領域5-2の間の領域(n-ドリフト領域1)に対向するように配置してもよい。pアノード領域5-2からは正孔が注入されるため、pアノード領域5-2下部の電流密度は増加する。図20Bのようにpアノード領域5-2を配置すれば、トレンチ2を挟んで隣り合うpアノード領域5-2同士が離れるため、電流密度の高い領域が分散され、発熱、電流集中等を抑制することができる。
 このように、実施の形態4によれば、トレンチ間のメサ幅を十分狭くすることで、pアノード領域が無い場合でも、漏れ電流の増加を抑えたダイオードとすることができる。
(実施の形態5)
 次に、実施の形態5にかかる半導体装置の構成について説明する。図22Aは、実施の形態5にかかる半導体装置の構造を示す平面図である。図22Bは、図22Aの切断線E-E’における断面構造を示す断面図である。図22Cは、図22Aの切断線F-F’における断面構造を示す断面図である。実施の形態5にかかる半導体装置が実施の形態4にかかる半導体装置と異なる点は、次の2点である。1つ目の相違点は、アノード比率αが10%以下となるように、pアノード領域5-2をトレンチ2長手方向に沿って選択的に形成した点である。2つ目の相違点は、トレンチ2の繰り返しピッチをビルトイン空乏層幅よりも十分短くし、例えばトレンチ2間のメサ幅w20を上記(2)式の値の半分以下、トレンチ2の短手方向の幅以上とする点である。
 図22B,22Cには、ビルトイン空乏層90の広がる様子を示す。ビルトイン空乏層90とは、アノード電極59およびカソード電極(不図示)ともに電圧を印加せず、熱平衡状態においてpアノード領域5-2とn-ドリフト領域1との間のpn接合からn-ドリフト領域1に広がる空乏層のことである。トレンチ2間のメサ幅w20を上記(2)式の値の半分以下とした場合、図22Bに示すように、隣り合うトレンチ2からメサ部に広がるビルトイン空乏層90は互いに接続される。これによって、ビルトイン空乏層90の空乏層端91はpアノード領域5-2の深さと同等の深さとなり、ビルトイン空乏層90の空乏層端91の面形状が基板主面に平行な略平坦な状態となる。そのため、ビルトイン空乏層90の空乏層端91が平面接合に近い形状となり、耐圧が向上する。平面接合とは、n-型半導体基板のおもて面の表面層にpアノード領域5-2を一様に設けた場合の、pアノード領域5-2とn-ドリフト領域1との間のpn接合である。
 また、ビルトイン空乏層90の空乏層端91が平面接合に近い形状となることで、ショットキー接触におけるバリア高さが低下することも抑制することができるため、高い印加電圧でも漏れ電流がほとんど増加しない。さらに、pアノード領域5-2のトレンチ2長手方向の第2ピッチを、ビルトイン空乏層90の幅よりも十分長くして、アノード比率αを10%以下としても、耐圧および漏れ電流ともにpアノード領域5-2のトレンチ2長手方向の第2ピッチに依存しなくなる。これにより、pアノード領域5-2からn-ドリフト領域1への正孔の注入をほとんど無視することができる。また、図22Cに示すように、切断線上にpアノード領域5-2が設けられていない領域においても、ビルトイン空乏層90の空乏層端91の面形状は十分平面接合の場合に近くなる。このような構造において、アノード比率αを10%以下とすることにより、アノード電極59の正孔の注入効率を極めて小さく(10%以下に)できるので、耐圧の低下および漏れ電流の増加を生じさせることなく、逆回復電流の低下が可能である。
 以上、説明したように、実施の形態5によれば、実施の形態3,4と同様の効果を得ることができる。
(実施の形態6)
 次に、実施の形態6にかかる半導体装置の構成について説明する。図23Aは、実施の形態6にかかる半導体装置の構造を示す平面図である。図23Bは、図23Aの切断線G-G’における断面構造を示す断面図である。図23Cは、図23Aの切断線G-G’における断面構造の別の一例を示す断面図である。実施の形態6にかかる半導体装置が実施の形態5にかかる半導体装置と異なる点は、pアノード領域を形成せずに、図23Bに示すようにn-ドリフト領域1とアノード電極59とをショットキー接触のみとする点である。
 実施の形態6においても、実施の形態5と同様に、トレンチ2の繰り返しピッチを十分小さくすることで、pアノード領域5-2がなくても、ビルトイン空乏層90の空乏層端91の面形状は十分に平面接合の場合に近くなる。そして、pアノード領域5-2を形成しないことで、耐圧の低下および漏れ電流の増加を生じさせず、かつpアノード領域5-2からn-ドリフト領域1への正孔の注入効率をほとんど0(ゼロ)にすることも可能である。ショットキー障壁高さが高いアルミニウム-シリコン(Al-Si)合金や白金シリサイド(PtSi)等を用いてアノード電極59を形成する場合、pアノード領域5-2からn-ドリフト領域1への正孔の注入が生じるため、正孔の注入効率をゼロにすることはできないが、pアノード領域5-2を形成する場合に比べると、その半分以下の注入効率とすることができる。
 また、図23Cに示すように、実施の形態6の変形例として、実施の形態5のpアノード領域5-2よりも十分浅くて不純物濃度の低い、浅いp層5-3を形成してもよい。n-ドリフト領域1とアノード電極59とのショットキー接触の場合、素子形成プロセスの途中で導入される表面欠陥(表面準位)に対して空乏層が広がり、熱励起によるキャリアの発生が起きやすい。そのため、漏れ電流が増加し、歩留りが低下する虞がある。そこで、図23Cの実施の形態6の変形例のように浅いp層5-3を形成することで、空乏層が表面欠陥(表面準位)にあたることを防ぐことができるため、漏れ電流は低い値で安定し、歩留り低下を抑制することができる。
 なお、実施の形態2における半導体装置のFWD部22においても、実施の形態4~6に記載のダイオードの構造を適用してもよい。また、実施の形態4~5において、実施の形態6の変形例における浅いp層5-3を形成してもよい。これにより、実施の形態6と同様の効果を奏することができる。
 以上、説明したように、実施の形態6によれば、実施の形態3~5と同様の効果を得ることができる。
(実施の形態7)
 次に、実施の形態7にかかる半導体装置の構成について説明する。図31は、実施の形態7にかかる半導体装置の構造を示す断面図である。図31に示す実施の形態7にかかる半導体装置の平面構造は図1と同様であり、図31は図1の切断線A-A’における断面構造である。図32は、実施の形態7にかかる半導体装置の別の一例の構造を示す断面図である。図32に示す実施の形態7にかかる半導体装置の別の一例の平面構造は図13と同様であり、図32は図13の切断線C-C’における断面構造である。図33は、比較例の半導体装置の構造を示す断面図である。実施の形態7にかかる半導体装置が実施の形態1にかかる半導体装置と異なる点は、pベース領域5-1およびpアノード領域5-2とをそれぞれコンタクト電極18を介してエミッタ電極9に電気的に接続している点である。コンタクト電極18は、基板おもて面側からチタン(Ti)層14、窒化チタン(TiN)層15およびタングステン(W)層16を順に積層してなる。
 具体的には、図31に示すように、pアノード領域5-2の内部には、p+コンタクト領域17が選択的に設けられている。p+コンタクト領域17は、チタン層14とのオーミックコンタクト(オーミック性の電気的接触)を実現する。p+コンタクト領域17は、IGBT部21のp+コンタクト領域7と深さおよび不純物濃度が異なっており、設計条件に基づく所定のFWD特性が得られるように調整(最適化)されている。例えば、p+コンタクト領域17の深さはp+コンタクト領域7の深さよりも浅く、p+コンタクト領域17の不純物濃度はp+コンタクト領域7の不純物濃度よりも低いことが好ましい。その理由は、IGBT部21のp+コンタクト領域7と同程度に深く、かつ高不純物濃度なp+コンタクト領域17をpアノード領域5-2に形成した場合、FWDのオン時にpアノード領域5-2からn-ドリフト領域1への正孔注入が増えすぎてハードリカバリーになるからである。
 コンタクト電極18は、例えば第1,2コンタクトホール8-1,8-2の内部にそれぞれ埋め込まれている。コンタクト電極18は、トレンチ2の繰り返しピッチL30が例えば4μm以下と狭いことによって第1コンタクトホール8-1のトレンチ2短手方向の開口幅w31および第2コンタクトホール8-2のトレンチ2短手方向の開口幅w21も狭くなっている場合であっても良好なオーミックコンタクトを実現する。例えば、図33に示す比較例のようにコンタクト電極18を備えていない場合、トレンチ2の繰り返しピッチL30を狭くすることで、第1コンタクトホール8-1のトレンチ2短手方向の開口幅w31および第2コンタクトホール8-2のトレンチ2短手方向の開口幅w21も狭くなる。このため、アルミニウムシリコン膜からなるエミッタ電極9のみでは第1,2コンタクトホール8-1,8-2の内部を完全に埋め込むことができない。これによって、エミッタ電極9とシリコン部(IGBT部21の少なくともp+コンタクト領域7、FWD部22のpアノード領域5-2)との間に隙間19が生じて、コンタクト抵抗が増大するため、エミッタ電極9とシリコン部との良好なオーミックコンタクトを得ることが難しい。
 一方、本発明においては、チタン層14、窒化チタン層15およびタングステン層16からなるコンタクト電極18によって、第1,2コンタクトホール8-1,8-2の内部を完全に埋め込むことができる。このため、エミッタ電極9とシリコン部との間に隙間19が生じることを防止することができる。具体的には、チタン層14は、第1,2コンタクトホール8-1,8-2それぞれの内部において側壁および基板おもて面に沿って設けられている。チタン層14は、IGBT部21においてn+エミッタ領域6およびp+コンタクト領域7に接し、FWD部22においてpアノード領域5-2およびp+コンタクト領域17に接する。第1,2コンタクトホール8-1,8-2の内部において、チタン層14の内側にはチタン層14に沿って窒化チタン層15が設けられ、窒化チタン層15の内側にタングステン層16が設けられている。エミッタ電極9は、チタン層14、窒化チタン層15およびタングステン層16に接する。
 また、例えば、FWD部22におけるゲート電極4がゲート電位である場合、トレンチ2の繰り返しピッチL30を例えば4μm以下と狭くしてIGBT部での低オン電圧化を図ったときに、ゲート電圧印加時の順方向電圧が大幅に上昇することが発明者らによって確認されている。例えば、一般的に用いられるゲート電圧15Vの印加時では、順方向電圧の上昇率は、ゲート電圧を印加しない場合(=0V)に比べて、トレンチ2の繰り返しピッチL30=5μmでは3%程度であるのに対して、トレンチ2の繰り返しピッチL30=4μmでは10%程度となり、トレンチ2の繰り返しピッチL30=2.3μmで21%程度となる。また、順方向電圧の上昇率は、ゲート電圧の大きさに比例して増加する。その理由は、次の通りである。ゲート電圧印加時、トレンチ2の周辺には電子が集中するため、FWD部22におけるトレンチ2の周辺に集中した電子によってpアノード領域5-2からn-ドリフト領域1への正孔注入が抑制される。トレンチ2の繰り返しピッチL30を狭くするほど、pアノード領域5-2のトレンチ2短手方向の幅(図1の符号w20で示す部分)が狭くなるため、トレンチ2の周辺の電子によってpアノード領域5-2からn-ドリフト領域1への正孔注入が抑制される割合が大きくなり、伝導度変調が進まなくなるからである。
 このため、実施の形態7に実施の形態3を適用し、FWD部22におけるゲート電極4とエミッタ電極9とを導通接続してもよい。FWD部22におけるゲート電極4とエミッタ電極9とを導通接続することで、ゲート電圧を印加したときにFWD部22におけるトレンチ2の周辺に電子が集中しない。このため、トレンチ2の繰り返しピッチL30を微細化したとしても、pアノード領域5-2からn-ドリフト領域1への正孔注入が電子によって抑制されないため、低順方向電圧化が可能となる。また、図32に示すように、実施の形態2に実施の形態7を適用してもよい。具体的には、FWD部22において隣り合うトレンチ2の間のメサ部のほぼ全面を第2コンタクトホール58-2に露出させた場合においても、pアノード領域5-2の内部にp+コンタクト領域17を設け、かつコンタクト電極18を介してエミッタ電極9とp+コンタクト領域17とを接続してもよい。このように第2コンタクトホール58-2の平面形状によらず、コンタクト電極18によってシリコン部との良好なオーミックコンタクトを実現することができる。
 以上、説明したように、実施の形態7によれば、実施の形態1,2と同様の効果を得ることができる。実施の形態7によれば、トレンチの繰り返しピッチを例えば4μm以下と狭くして低オン電圧化を図った場合においても、ゲート電圧印加時に順方向電圧が上昇することを抑制するとともに、FWD部のアノード側において良好なオーミックコンタクトを実現することができる。
 以上において本発明は、上述した実施の形態に限らず、本発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、上述した各実施の形態において各部の寸法や表面濃度等は要求される仕様等に応じて種々設定される。また、各実施の形態では第1導電型をn型とし、第2導電型をp型としたが、本発明は第1導電型をp型とし、第2導電型をn型としても同様に成り立つ。
 以上のように、本発明にかかる半導体装置は、電力変換装置などに使用されるパワー半導体装置に有用である。
 1 n-ドリフト領域
 2 トレンチ
 3 ゲート絶縁膜
 4,54 ゲート電極
 5-1 pベース領域
 5-2 pアノード領域
 6 n+エミッタ領域
 6-1 n+エミッタ領域の構成部(第1n+領域)
 6-2 n+エミッタ領域の構成部(第2n+領域)
 7 p+コンタクト領域
 8 層間絶縁膜
 8-1 IGBT部のコンタクトホール(第1コンタクトホール)
 8-2 FWD部のコンタクトホール(第2コンタクトホール)
 9 エミッタ電極
 10 nバッファ層
 11 p+コレクタ領域
 12 n+カソード領域
 13 コレクタ電極
 21 IGBT部
 22 FWD部
 Lc ユニット長
 Lp pアノード領域のトレンチ長手方向の幅(熱拡散による増分を含まない)
 Ln n-ドリフト領域のpアノード領域に挟まれた部分のトレンチ長手方向の幅(熱拡散による増分を含まない)
 w10 pアノード領域のトレンチ長手方向の幅
 w20 pアノード領域のトレンチ短手方向の幅(メサ幅)
 w11 第2コンタクトホールのトレンチ長手方向の開口幅
 w21 第2コンタクトホールのトレンチ短手方向の開口幅
 x11 pベース領域のトレンチ長手方向の幅
 x12 n-ドリフト領域のpベース領域に挟まれた部分のトレンチ長手方向の幅
 α アノード比率

Claims (4)

  1.  第1導電型のドリフト領域となる半導体基板に、絶縁ゲート型バイポーラトランジスタが設けられた第1素子領域と、ダイオードが設けられた第2素子領域と、を備えた半導体装置であって、
     前記半導体基板のおもて面に、前記第1素子領域から前記第2素子領域にわたって、前記第1素子領域と前記第2素子領域とが並ぶ方向と直交する長手方向に延びるストライプ状に設けられた複数のトレンチと、
     前記トレンチの側壁および底面に沿って設けられたゲート絶縁膜と、
     前記トレンチの内部の、前記ゲート絶縁膜の内側に設けられたゲート電極と、
     前記第1素子領域の隣り合う前記トレンチの間のメサ部に選択的に設けられた第2導電型のベース領域と、
     前記第2素子領域の隣り合う前記トレンチの間のメサ部に選択的に設けられた第2導電型のアノード領域と、
     前記ベース領域の内部に選択的に設けられた第1導電型のエミッタ領域と、
     前記ベース領域、前記エミッタ領域および前記アノード領域に接する第1電極と、
     前記第1素子領域において前記半導体基板の裏面に設けられた第2導電型のコレクタ領域と、
     前記第2素子領域において前記半導体基板の裏面に設けられた第1導電型のカソード領域と、
     前記コレクタ領域および前記カソード領域に接する第2電極と、
     を備え、
     前記第2素子領域の隣り合う前記トレンチの間のメサ部には、前記トレンチの長手方向に沿って前記アノード領域と前記ドリフト領域とが交互に繰り返し配置されており、
     前記アノード領域、および、当該アノード領域と当該アノード領域の前記トレンチの長手方向に隣り合う前記アノード領域とに挟まれた部分における前記ドリフト領域からなる単位領域のうち、当該アノード領域が占める割合は50%以上100%未満であることを特徴とする半導体装置。
  2.  前記隣り合う前記アノード領域からそれぞれ前記メサ部に広がるビルトイン空乏層同士が互いにつながっていることを特徴とする請求項1に記載の半導体装置。
  3.  第1導電型のドリフト領域となる半導体基板に、絶縁ゲート型バイポーラトランジスタが設けられた第1素子領域と、ダイオードが設けられた第2素子領域と、を備えた半導体装置であって、
     前記半導体基板のおもて面に、前記第1素子領域から前記第2素子領域にわたって、前記第1素子領域と前記第2素子領域とが並ぶ方向と直交する長手方向に延びるストライプ状に設けられた複数のトレンチと、
     前記トレンチの側壁および底面に沿って設けられたゲート絶縁膜と、
     前記トレンチの内部の、前記ゲート絶縁膜の内側に設けられたゲート電極と、
     前記第1素子領域の隣り合う前記トレンチの間のメサ部に選択的に設けられた第2導電型のベース領域と、
     前記第2素子領域の隣り合う前記トレンチの間のメサ部に選択的に設けられた第2導電型のアノード領域と、
     前記ベース領域の内部に選択的に設けられた第1導電型のエミッタ領域と、
     前記ベース領域、前記エミッタ領域および前記アノード領域に接する第1電極と、
     前記第1素子領域において前記半導体基板の裏面に設けられた第2導電型のコレクタ領域と、
     前記第2素子領域において前記半導体基板の裏面に設けられた第1導電型のカソード領域と、
     前記コレクタ領域および前記カソード領域に接する第2電極と、
     を備え、
     前記第2素子領域の隣り合う前記トレンチの間のメサ部には、前記トレンチの長手方向に沿って前記アノード領域と前記ドリフト領域とが交互に繰り返し配置されており、
     前記第1電極は、さらに前記第2素子領域における前記ドリフト領域に接しており、
     前記アノード領域、および、当該アノード領域と当該アノード領域の前記トレンチの長手方向に隣り合う前記アノード領域とに挟まれた部分における前記ドリフト領域からなる単位領域のうち、当該アノード領域が占める割合は50%未満であることを特徴とする半導体装置。
  4.  前記隣り合う前記トレンチからそれぞれ当該トレンチ間のメサ部に広がるビルトイン空乏層同士が互いにつながっていることを特徴とする請求項3に記載の半導体装置。
PCT/JP2014/076633 2013-10-04 2014-10-03 半導体装置 WO2015050262A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015540577A JP5935951B2 (ja) 2013-10-04 2014-10-03 半導体装置
CN201480021099.1A CN105210187B (zh) 2013-10-04 2014-10-03 半导体装置
EP14850425.1A EP2966683B1 (en) 2013-10-04 2014-10-03 Semiconductor device
US14/882,427 US9536875B2 (en) 2013-10-04 2015-10-13 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-209632 2013-10-04
JP2013209632 2013-10-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/882,427 Continuation US9536875B2 (en) 2013-10-04 2015-10-13 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2015050262A1 true WO2015050262A1 (ja) 2015-04-09

Family

ID=52778844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076633 WO2015050262A1 (ja) 2013-10-04 2014-10-03 半導体装置

Country Status (5)

Country Link
US (1) US9536875B2 (ja)
EP (1) EP2966683B1 (ja)
JP (1) JP5935951B2 (ja)
CN (1) CN105210187B (ja)
WO (1) WO2015050262A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018046249A (ja) * 2016-09-16 2018-03-22 トヨタ自動車株式会社 半導体装置
JPWO2018092787A1 (ja) * 2016-11-17 2019-03-07 富士電機株式会社 半導体装置
WO2019220940A1 (ja) * 2018-05-17 2019-11-21 富士電機株式会社 半導体装置
JP2021122076A (ja) * 2017-01-17 2021-08-26 富士電機株式会社 半導体装置
JPWO2022009582A1 (ja) * 2020-07-07 2022-01-13
WO2023188561A1 (ja) * 2022-03-28 2023-10-05 株式会社日立パワーデバイス 半導体装置および電力変換装置

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6641983B2 (ja) * 2015-01-16 2020-02-05 株式会社デンソー 半導体装置
JP2017055046A (ja) * 2015-09-11 2017-03-16 トヨタ自動車株式会社 半導体装置の製造方法
JP6614326B2 (ja) 2016-02-15 2019-12-04 富士電機株式会社 半導体装置
DE112017000079T5 (de) 2016-03-10 2018-05-17 Fuji Electric Co., Ltd. Halbleitervorrichtung
US9768285B1 (en) * 2016-03-16 2017-09-19 Semiconductor Components Industries, Llc Semiconductor device and method of manufacture
JP6801324B2 (ja) * 2016-09-15 2020-12-16 富士電機株式会社 半導体装置
JP6540906B2 (ja) * 2016-10-17 2019-07-10 富士電機株式会社 半導体装置
CN108010881B (zh) 2016-10-31 2021-03-16 中芯国际集成电路制造(上海)有限公司 半导体装置的制造方法
CN109219888B (zh) * 2016-12-08 2022-03-29 富士电机株式会社 半导体装置
JP6652515B2 (ja) * 2017-02-09 2020-02-26 株式会社東芝 半導体装置
KR20180104236A (ko) 2017-03-10 2018-09-20 매그나칩 반도체 유한회사 전력 반도체 소자의 제조 방법
JP2018152426A (ja) * 2017-03-10 2018-09-27 富士電機株式会社 半導体装置
JP6952483B2 (ja) * 2017-04-06 2021-10-20 三菱電機株式会社 半導体装置、半導体装置の製造方法、および電力変換装置
JP6804379B2 (ja) * 2017-04-24 2020-12-23 三菱電機株式会社 半導体装置
WO2018225571A1 (ja) * 2017-06-09 2018-12-13 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6958093B2 (ja) * 2017-08-09 2021-11-02 富士電機株式会社 半導体装置
US10847617B2 (en) * 2017-12-14 2020-11-24 Fuji Electric Co., Ltd. Semiconductor device
JP7095303B2 (ja) 2018-02-14 2022-07-05 富士電機株式会社 半導体装置
JP6970632B2 (ja) * 2018-03-16 2021-11-24 株式会社東芝 半導体装置
JP7024626B2 (ja) * 2018-06-27 2022-02-24 三菱電機株式会社 半導体装置、半導体装置の製造方法
US10692988B2 (en) * 2018-11-26 2020-06-23 Infineon Technologies Austria Ag Semiconductor device having integrated MOS-gated or Schottky diodes
CN110797403B (zh) * 2019-10-18 2023-08-01 上海睿驱微电子科技有限公司 一种rc-igbt半导体装置
CN113809145B (zh) * 2020-06-16 2024-03-29 芯恩(青岛)集成电路有限公司 窄台面绝缘栅双极型晶体管器件及形成方法
CN111987089A (zh) * 2020-08-19 2020-11-24 株洲中车时代半导体有限公司 逆导型igbt功率集成模块
CN115117152A (zh) * 2022-08-26 2022-09-27 深圳芯能半导体技术有限公司 一种逆导型igbt器件及制备方法
CN116884996A (zh) * 2023-09-08 2023-10-13 深圳芯能半导体技术有限公司 一种降低关断损耗的igbt芯片及其制作方法
CN117650161A (zh) * 2023-10-31 2024-03-05 海信家电集团股份有限公司 半导体装置和半导体装置的制造方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163469A (ja) * 1996-11-29 1998-06-19 Toshiba Corp ダイオードおよびその駆動方法
JP2005101514A (ja) 2003-08-27 2005-04-14 Mitsubishi Electric Corp 絶縁ゲート型トランジスタ及びインバータ回路
JP2008034794A (ja) 2006-04-27 2008-02-14 Fuji Electric Device Technology Co Ltd 縦型トレンチ型絶縁ゲートmos半導体装置
JP2008047565A (ja) 2006-08-10 2008-02-28 Denso Corp ダイオード
JP2008053648A (ja) 2006-08-28 2008-03-06 Mitsubishi Electric Corp 絶縁ゲート型半導体装置及びその製造方法
JP2009027152A (ja) 2007-06-20 2009-02-05 Denso Corp 半導体装置及び半導体装置の製造方法
JP2009071217A (ja) 2007-09-18 2009-04-02 Denso Corp 半導体装置
JP2010171385A (ja) 2008-12-24 2010-08-05 Denso Corp 半導体装置
US20110140180A1 (en) * 2009-12-15 2011-06-16 Kabushiki Kaisha Toshiba Semiconductor device having diode characteristic
JP2012009629A (ja) 2010-06-24 2012-01-12 Fuji Electric Co Ltd 半導体装置の製造方法
JP2012043890A (ja) 2010-08-17 2012-03-01 Denso Corp 半導体装置
JP2012231092A (ja) * 2011-04-27 2012-11-22 Toyota Motor Corp 半導体装置の製造方法
JP2013012783A (ja) 2012-10-10 2013-01-17 Mitsubishi Electric Corp 半導体装置およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3807107B2 (ja) * 1998-07-27 2006-08-09 日産自動車株式会社 双極性整流素子
JP2008192737A (ja) 2007-02-02 2008-08-21 Denso Corp 半導体装置
US8716746B2 (en) 2010-08-17 2014-05-06 Denso Corporation Semiconductor device
JP5561376B2 (ja) * 2010-11-30 2014-07-30 富士電機株式会社 半導体装置
US9520465B2 (en) 2011-07-27 2016-12-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Diode, semiconductor device, and MOSFET
JP2013197122A (ja) 2012-03-15 2013-09-30 Toshiba Corp 半導体装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163469A (ja) * 1996-11-29 1998-06-19 Toshiba Corp ダイオードおよびその駆動方法
JP2005101514A (ja) 2003-08-27 2005-04-14 Mitsubishi Electric Corp 絶縁ゲート型トランジスタ及びインバータ回路
JP2008034794A (ja) 2006-04-27 2008-02-14 Fuji Electric Device Technology Co Ltd 縦型トレンチ型絶縁ゲートmos半導体装置
JP2008047565A (ja) 2006-08-10 2008-02-28 Denso Corp ダイオード
JP2008053648A (ja) 2006-08-28 2008-03-06 Mitsubishi Electric Corp 絶縁ゲート型半導体装置及びその製造方法
JP2009027152A (ja) 2007-06-20 2009-02-05 Denso Corp 半導体装置及び半導体装置の製造方法
JP2009071217A (ja) 2007-09-18 2009-04-02 Denso Corp 半導体装置
JP2010171385A (ja) 2008-12-24 2010-08-05 Denso Corp 半導体装置
US20110140180A1 (en) * 2009-12-15 2011-06-16 Kabushiki Kaisha Toshiba Semiconductor device having diode characteristic
JP2011146682A (ja) * 2009-12-15 2011-07-28 Toshiba Corp 半導体装置
JP2012009629A (ja) 2010-06-24 2012-01-12 Fuji Electric Co Ltd 半導体装置の製造方法
JP2012043890A (ja) 2010-08-17 2012-03-01 Denso Corp 半導体装置
JP2012231092A (ja) * 2011-04-27 2012-11-22 Toyota Motor Corp 半導体装置の製造方法
JP2013012783A (ja) 2012-10-10 2013-01-17 Mitsubishi Electric Corp 半導体装置およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2966683A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018046249A (ja) * 2016-09-16 2018-03-22 トヨタ自動車株式会社 半導体装置
JPWO2018092787A1 (ja) * 2016-11-17 2019-03-07 富士電機株式会社 半導体装置
JP2021122076A (ja) * 2017-01-17 2021-08-26 富士電機株式会社 半導体装置
JP7295162B2 (ja) 2017-01-17 2023-06-20 富士電機株式会社 半導体装置
WO2019220940A1 (ja) * 2018-05-17 2019-11-21 富士電機株式会社 半導体装置
JPWO2019220940A1 (ja) * 2018-05-17 2020-12-10 富士電機株式会社 半導体装置
JP6996621B2 (ja) 2018-05-17 2022-01-17 富士電機株式会社 半導体装置
US11276771B2 (en) 2018-05-17 2022-03-15 Fuji Electric Co., Ltd. Semiconductor device
JPWO2022009582A1 (ja) * 2020-07-07 2022-01-13
WO2022009582A1 (ja) * 2020-07-07 2022-01-13 富士電機株式会社 半導体モジュール
JP7294540B2 (ja) 2020-07-07 2023-06-20 富士電機株式会社 半導体モジュール
WO2023188561A1 (ja) * 2022-03-28 2023-10-05 株式会社日立パワーデバイス 半導体装置および電力変換装置

Also Published As

Publication number Publication date
CN105210187A (zh) 2015-12-30
CN105210187B (zh) 2017-10-10
EP2966683A1 (en) 2016-01-13
JP5935951B2 (ja) 2016-06-15
US20160043073A1 (en) 2016-02-11
US9536875B2 (en) 2017-01-03
EP2966683B1 (en) 2020-12-09
EP2966683A4 (en) 2016-10-26
JPWO2015050262A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
JP5935951B2 (ja) 半導体装置
JP6418340B2 (ja) 逆導通型絶縁ゲートバイポーラトランジスタの製造方法および逆導通型絶縁ゲートバイポーラトランジスタ
JP6683228B2 (ja) 半導体装置
JP5366297B2 (ja) 半導体装置
JP6524666B2 (ja) 半導体装置
CN107534042B (zh) 半导体装置
JP2018092968A (ja) 半導体装置、rc−igbt及び半導体装置の製造方法
JP7486373B2 (ja) 半導体装置
JP5011634B2 (ja) 半導体装置およびその半導体装置を用いた双方向スイッチ素子
TWI741185B (zh) 半導體裝置及半導體裝置之製造方法
JP2020191441A (ja) 超接合半導体装置および超接合半導体装置の製造方法
JP2022123036A (ja) 半導体装置
JP2009043782A (ja) 半導体装置及びその製造方法
US9257544B2 (en) Semiconductor device and fabrication method of semiconductor device
JP7403401B2 (ja) 半導体装置
JP7403386B2 (ja) 半導体装置
JP6658955B2 (ja) 半導体装置
JP2013251467A (ja) 半導体装置および半導体装置の製造方法
JP7486407B2 (ja) 半導体装置および半導体装置の製造方法
WO2023127253A1 (ja) 半導体装置
US20240088275A1 (en) Semiconductor device and method of manufacturing the same
US20230083162A1 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850425

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015540577

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014850425

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE