WO2015049944A1 - 半導体モジュール - Google Patents

半導体モジュール Download PDF

Info

Publication number
WO2015049944A1
WO2015049944A1 PCT/JP2014/072827 JP2014072827W WO2015049944A1 WO 2015049944 A1 WO2015049944 A1 WO 2015049944A1 JP 2014072827 W JP2014072827 W JP 2014072827W WO 2015049944 A1 WO2015049944 A1 WO 2015049944A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring layer
circuit board
disposed
semiconductor module
semiconductor chip
Prior art date
Application number
PCT/JP2014/072827
Other languages
English (en)
French (fr)
Inventor
孝仁 原田
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2015540430A priority Critical patent/JP5975180B2/ja
Priority to DE112014001487.7T priority patent/DE112014001487B4/de
Publication of WO2015049944A1 publication Critical patent/WO2015049944A1/ja
Priority to US14/877,389 priority patent/US9530707B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/051Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body another lead being formed by a cover plate parallel to the base plate, e.g. sandwich type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3675Cooling facilitated by shape of device characterised by the shape of the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/492Bases or plates or solder therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49833Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers the chip support structure consisting of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/486Via connections through the substrate with or without pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06572Auxiliary carrier between devices, the carrier having an electrical connection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06589Thermal management, e.g. cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5384Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5385Assembly of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Definitions

  • This invention relates to a semiconductor module.
  • FIG. 16 is a configuration diagram of a general conventional semiconductor module 500 described in Patent Document 1.
  • the semiconductor module 500 includes an insulating substrate 54, a semiconductor chip 56, a base plate 57, a resin case 59, a metal wire 60, a gel 61, and a lid 62.
  • the insulating substrate 54 includes a ceramic plate 51, a circuit plate 52 disposed on the front surface of the ceramic plate 51, and a metal plate 53 disposed on the back surface.
  • a semiconductor chip 56 is joined to the circuit board 52 with solder 55.
  • a metal base plate 57 is joined to the metal plate 53 via solder 55.
  • the resin case 59 is bonded to the outer periphery of the base plate 57, and the external terminals 58 are insert-molded.
  • the semiconductor chip 56 and the external terminal 58 are electrically connected by the metal wire 60.
  • the resin case 59 is filled with a gel 61 which is an insulating sealing material.
  • the resin lid 62 is fixed to the upper part of the resin case 59. Then, cooling fins (not shown) are attached to the base plate 57.
  • This semiconductor module 500 is a single-sided cooling semiconductor device.
  • the conventional semiconductor module 500 shown in FIG. 16 has the following problems. (1) Since the circuit board 52 is joined to one surface of the ceramic board 51, the area of the insulating substrate 54 is increased. (2) Since part of the wiring of the electric circuit is performed by the circuit board 52, when the configuration of the electric circuit is changed, the pattern of the circuit board 52 needs to be changed. It is necessary to change an assembly jig such as a mask. (3) Since part of the wiring of the electric circuit is performed by the metal wire 60, batch processing cannot be performed, the process time becomes long, and a large number of processing devices are required. (4) Since the wiring of the electric circuit is performed by the metal wire 60 and the external terminal 58, when different electric circuits are used, it is necessary to change the shape of the external terminal 58.
  • the number of constituent members (metal wire 60, resin case 59, lid 62, gel 61, etc.) is large, and the manufacturing cost increases. (6) Since the electric circuit is composed of the metal wire 60, the circuit board 52, and the external terminal 58, and the distance between the circuit board facing the metal wire is large, the wiring inductance is increased.
  • the object of the present invention is to solve the above-mentioned problems, reduce thermal resistance, reduce wiring inductance, secure ground insulation distance, simplify circuit configuration, reduce the number of steps required for connecting and joining components, and reducing
  • An object of the present invention is to provide a semiconductor module that can be reduced in cost and size.
  • a semiconductor module includes an insulating plate, a first wiring layer and a fourth wiring layer disposed on a main surface of the insulating plate, and opposite to the main surface.
  • a second wiring layer and a third wiring layer disposed on the side surface; a first via disposed in the insulating plate and electrically and mechanically connected to the first wiring layer and the third wiring layer;
  • a printed circuit board having a second via disposed in the insulating plate and electrically and mechanically connected to the second wiring layer and the fourth wiring layer, and disposed opposite to the first wiring layer.
  • the second circuit board is disposed, and the second circuit board is disposed such that the third circuit board facing the third wiring layer is disposed.
  • a semiconductor module capable of reducing thermal resistance, reducing wiring inductance, securing a ground insulation distance, simplifying a circuit configuration, reducing the number of steps required for connecting and joining components, reducing costs, and reducing the size of the semiconductor module. Can be provided.
  • FIG. 1 is a cross-sectional view of a semiconductor module 100 according to the first embodiment.
  • FIG. 2 is an enlarged view of part A in FIG.
  • FIG. 3 is a configuration diagram used to calculate the relationship between the thermal resistance Rth1 of the first semiconductor chip 6a and the filling rate of the first via 12a.
  • FIG. 4 is a configuration diagram of the first via 12a.
  • FIG. 5 is a diagram showing the relationship between the thermal resistance Rth1 and the filling rate of the first via 12a.
  • FIG. 6 is a perspective plan view of each component of the diode module of the first embodiment.
  • FIG. 7 is a perspective plan view of each component of the diode module of the first embodiment.
  • FIG. 8 is a cross-sectional view showing a modification of the first embodiment.
  • FIG. 1 is a cross-sectional view of a semiconductor module 100 according to the first embodiment.
  • FIG. 2 is an enlarged view of part A in FIG.
  • FIG. 3 is a configuration diagram used to calculate
  • FIG. 9 is a manufacturing process sectional view of the semiconductor module 100 of the second embodiment.
  • FIG. 10 is a manufacturing process sectional view of the semiconductor module 100 of the second embodiment following FIG.
  • FIG. 11 is a manufacturing process sectional view of the semiconductor module 100 of the second embodiment following FIG.
  • FIG. 12 is a manufacturing process sectional view of the semiconductor module 100 of the second embodiment following FIG.
  • FIG. 13 is a manufacturing process sectional view of the semiconductor module 100 of the second embodiment following FIG.
  • FIG. 14 is a manufacturing process sectional view of the semiconductor module of the second embodiment following FIG.
  • FIG. 15 is a process diagram illustrating a process of forming a via.
  • FIG. 16 is a configuration diagram of a conventional semiconductor module 500.
  • FIG. 1 is a cross-sectional view of a semiconductor module 100 according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged view of part A in FIG.
  • the semiconductor module 100 includes a printed circuit board 8, a first insulating substrate 4, a second insulating substrate 5, a first semiconductor chip 6a, a second semiconductor chip 6b, a first heat radiating member 16a, and a second heat radiating member. 16b.
  • the first semiconductor chip 6a and the second semiconductor chip 6b can be electrically connected to an external circuit by an external terminal 9.
  • the first semiconductor chip 6a is an upper chip
  • the second semiconductor chip 6b is a lower chip.
  • the printed circuit board 8 includes an insulating plate 8a, a first wiring layer 13a, a second wiring layer 13b, a third wiring layer 13c, a fourth wiring layer 13d, a first via 12a, and a second via 12b. is doing.
  • the first wiring layer 13a and the fourth wiring layer 13d are arranged on the main surface of the insulating plate 8a, and the second wiring layer 13b and the third wiring layer 13c are arranged on the surface opposite to the main surface of the insulating plate 8a.
  • the first wiring layer 13a and the third wiring layer 13c are electrically and mechanically connected by the first via 12a disposed in the insulating plate 8a.
  • the second wiring layer 13b and the fourth wiring layer 13d are electrically and mechanically connected by the second via 12b disposed in the insulating plate 8a.
  • the first via 12a and the second via 12b are formed of a conductor in which a large number of minute through holes 20 are formed in the insulating plate 8a and a metal is embedded in the through holes 20 by Cu (copper) plating or the like.
  • Examples of the insulating plate 8a include a glass epoxy plate.
  • the first insulating substrate 4 is configured by laminating a first circuit board 1a, a first ceramic plate 3a, and a first metal plate 2a.
  • the first insulating substrate 4 is disposed to face the main surface of the printed circuit board 8. Further, the first circuit board 1a is arranged to face the first wiring layer 13a and the fourth wiring layer 13d.
  • the second insulating substrate 5 is configured by laminating the second circuit board 1b and the third circuit board 1c, the second ceramic plate 3b, and the second metal plate 2b.
  • the second insulating substrate 5 is disposed to face the surface opposite to the main surface of the printed circuit board 8.
  • the second circuit board 1b is disposed to face the second wiring layer 13b
  • the third circuit board 1c is disposed to face the third wiring layer 13c.
  • the first ceramic plate 3a and the second ceramic plate 3b are made of a high thermal conductive ceramic such as alumina, aluminum nitride, or silicon nitride.
  • the 1st circuit board 1a, the 2nd circuit board 1b, the 3rd circuit board 1c, the 1st metal plate 2a, and the 2nd metal plate 2b are comprised with high heat conductive metals, such as copper and aluminum.
  • the first semiconductor chip 6a and the second semiconductor chip 6b are composed of power semiconductor elements such as an IGBT (insulated gate bipolar transistor), a power MOSFET, and an FWD (freewheeling diode).
  • the first semiconductor chip 6a and the second semiconductor chip 6b include electrodes such as an emitter electrode, a collector electrode, and a gate electrode (not shown) on both surfaces.
  • the first semiconductor chip 6a is sandwiched between the first wiring layer 13a and the first circuit board 1a, and both surfaces are electrically and mechanically connected by a conductive bonding material 7 such as solder.
  • a conductive bonding material 7 such as solder.
  • the second semiconductor chip 6b is sandwiched between the second wiring layer 13b and the second circuit board 1b, and both surfaces are electrically and mechanically connected by a conductive bonding material 7 such as solder.
  • a conductive bonding material 7 such as solder.
  • Conductive plating (for example, metal plating of Ti, Ni, Au, etc.) is performed on the front and back surfaces of the first semiconductor chip 6a and the second semiconductor chip 6b in order to improve the wettability of the bonding material 7 such as good solder. Is given.
  • a conductive adhesive such as Ag paste or Cu paste may be used.
  • the first heat radiating member 16a and the second heat radiating member 16b are made of metal.
  • the first heat radiating member 16a is sandwiched between the third wiring layer 13c and the third circuit board 1c, and both ends are electrically and mechanically connected.
  • the second heat radiating member 16b is sandwiched between the fourth wiring layer 13d and the first circuit board 1a, and both ends thereof are electrically and mechanically connected.
  • solder may be used for the first heat radiating member 16a and the second heat radiating member 16b. In this case, since it is not necessary to prepare a separate bonding material, the manufacturing cost can be reduced.
  • a copper block etc. can also be used for the 1st heat radiating member 16a and the 2nd heat radiating member 16b. In this case, the heat dissipation characteristics can be improved.
  • the semiconductor module 100 also includes an external terminal 9 that is bonded via the through via 11 of the printed circuit board 8 and is electrically connected to at least one of the first wiring layer 13a and the second wiring layer 13b. Moreover, the whole is sealed so that the external terminals 9 and the second metal plate 2b are exposed, and a sealing resin 10 that also functions as a housing is provided. Moreover, the conductor 17 which electrically connects the printed circuit board 8 and the 2nd circuit board 1b is provided.
  • This semiconductor module 100 is used as a single-sided cooling semiconductor device by installing cooling fins (not shown) on the exposed lower surface of the second metal plate 2b.
  • the printed circuit board 8, the first insulating substrate 4, the second insulating substrate 5, and the external terminals 9 constitute a predetermined electric circuit required for the semiconductor module 100.
  • the first wiring layer 13a on which the first semiconductor chip 6a is disposed and the third wiring layer 13c facing each other with the insulating plate 8a interposed therebetween are connected by the first via 12a.
  • the third wiring layer 13c and the third circuit board 1c are connected by the first heat radiating member 16a.
  • the second wiring layer 13b in which the second semiconductor chip 6b is disposed and the fourth wiring layer 13d facing each other with the insulating plate 8a interposed therebetween are connected by the second via 12b.
  • the fourth wiring layer 13d and the first circuit board 1a are connected by the second heat radiating member 16b.
  • the creeping distance between the second metal plate 2b, which is the ground plane of the second insulating substrate 5, and the external terminal 9 can be increased. it can. Therefore, a sufficient ground insulation distance can be secured.
  • the third wiring layer 13c and the third circuit board 1c are made of a metal that joins the first heat radiation member 16a to flow the heat of the first semiconductor chip 6a to the cooling fin through the second insulating substrate 5. It is a pad. Therefore, the third wiring layer 13c and the third circuit board 1c may not be used as electrical wiring. In this case, the second wiring layer 13b and the third wiring layer 13c may be configured integrally.
  • FIG. 3 is a configuration diagram in the vicinity of the first semiconductor chip 6a used for calculating the relationship between the thermal resistance Rth1 of the first semiconductor chip 6a and the filling rate of the first via 12a.
  • 3A is a cross-sectional view
  • FIG. 3B is a plan view cut along line X1-X1 in FIG. 3A
  • FIG. 3C is a plane cut along line X2-X2 in FIG. FIG.
  • four vias are shown as shown in the plan view.
  • the heat generated in the first semiconductor chip 6a is transmitted to the second insulating substrate 5 via the first via 12a of the printed circuit board 8, and is radiated to the cooling fin (not shown).
  • the thermal resistance Rth1 is determined based on the heat conduction path from the first semiconductor chip 6a to the second metal plate 2b.
  • the thermal resistance Rth1 greatly depends on the structure of the first via 12a.
  • the thermal resistance Rth2 does not depend on the via structure.
  • FIG. 4 is a configuration diagram of the first via 12a
  • FIG. 4 (a) is a plan view
  • FIG. 4 (b) is a cross-sectional view taken along line XX of FIG. 4 (a).
  • the first via 12a has a structure in which metal is embedded in a large number of minute through holes 20 formed in the insulating plate 8a of the printed circuit board 8, and fine-line columnar conductors 21 are gathered.
  • the planar shape of the through-hole 20 is shown as a circular shape, but is not limited thereto, and may be a polygonal shape or a slit shape.
  • the upper and lower first wiring layers 13a and the third wiring layers 13c are indicated by dotted lines.
  • FIG. 5 is a diagram showing the relationship between the thermal resistance Rth1 calculated using the configuration of FIG. 3 and the filling rate of the first via 12a.
  • FIG. 5 (a) shows the thickness of the insulating plate 8a of the printed circuit board 8.
  • 5 (b) shows a case where the thickness of the insulating plate 8a of the printed circuit board 8 is about three times that of FIG. 5 (a).
  • the burying rate was expressed as a percentage (%) of the area of the buried first via 12a with respect to the area of the semiconductor chip.
  • the size of the first semiconductor chip 6a and the second semiconductor chip 6b is about 5 mm ⁇ , and the chip area is about 25 mm 2 .
  • the first via 12a and the second via 12b are filled with the Cu plating film as described above, and the first wiring layer 13a and the third wiring layer 13c are the Cu plating film.
  • the thermal conductivity of the insulating plate 8a of the printed circuit board 8 is as extremely small as about 1/1000 of the thermal conductivity of Cu, so that the thermal resistance at locations other than the vias of the printed circuit board 8 increases.
  • the thermal resistance Rth2 does not pass through the via, it is constant at about 0.5 ° C./W regardless of the filling rate.
  • the thermal resistance Rth1 is not preferable in both cases of FIG. 5A and FIG. 5B, when the embedding rate is 10% or less, the rise of Rth1 becomes remarkable. For this reason, it is desirable to set the embedding rate to 10% or more.
  • the filling rate of the second via 12b is also preferably 10% or more.
  • the thermal resistance may be reduced as compared with the case of using a glass epoxy plate or the like.
  • the via may be formed by a method other than plating (for example, sputtering).
  • FIG. 6 is a perspective plan view of each component viewed from the top in the vertical direction for each laminated component.
  • 6A is a plan view of the first circuit board 1a of the first insulating substrate 4
  • FIG. 6B is a plan view of the first wiring layer 13a and the fourth wiring layer 13d of the printed circuit board 8
  • FIG. 6C is a plan view of the second wiring layer 13b and the third wiring layer 13c of the printed circuit board 8
  • FIG. 6D is a plan view of the second circuit board 1b and the third circuit board 1c of the second insulating substrate 5.
  • FIG. 6 (e) is a circuit diagram. This circuit diagram is a diode module in which a three-phase bridge (converter circuit) is formed by a diode. In this figure, the direction of current is reversed in part B, and the wiring inductance can be reduced.
  • FIG. 7 is a diagram when the wiring layers on both sides of the printed board 8 of FIG. 6 are changed. As shown in FIG. 7, different electrical circuits can be easily configured by changing the wiring layers on both sides of the printed circuit board 8. In FIG. 7, the direction of current is reversed at part B, and the wiring inductance can be reduced.
  • the diode module can be easily changed to an IGBT module or the like.
  • the constituent members (aluminum wire, resin case, gel, etc.) constituting the conventional semiconductor module 500 can be reduced, and the cost can be reduced.
  • the semiconductor module can be downsized by dividing and arranging a plurality of semiconductor chips on both sides of the printed circuit board 8. Further, by reducing the current directions of the first circuit board 1a, the second circuit board 1b, the third circuit board 1c, and the respective wiring layers of the printed circuit board 8 facing them, the wiring inductance can be reduced. Can do. Furthermore, as shown in FIGS. 6 and 7, the wiring inductance can be reduced by making the current directions of the wiring layers on both sides of the printed circuit board 8 opposite to each other. This is a mutual induction effect that occurs between them.
  • the first metal plate 2a of the first insulating substrate 4 serves as a shielding plate against radiated electromagnetic noise, and upwards from the first semiconductor chip 6a, the second semiconductor chip 6b, and the like. Radiated electromagnetic noise can be reduced. Further, by disposing the first via 12a and the first heat radiating member 16a, it is possible to effectively cool both surfaces of the heat generated from the first semiconductor chip 6a. Similarly, by disposing the second via 12b and the second heat radiating member 16b, it is possible to effectively cool both surfaces of the heat generated from the second semiconductor chip 6b.
  • FIG. 8 is a cross-sectional view when the first heat dissipating member 16a is replaced with a high thermal conductive insulator 18 as a modification of the first embodiment.
  • the cooling fin is provided on the upper first insulating substrate 4, but when the first metal plate 2a is sealed to be exposed, the cooling fin is provided. You can also. This further improves the efficiency of double-sided cooling from the semiconductor chip.
  • the base surface of the external terminal 9 may be covered with an insulating layer or the external terminal 9 may be placed in an insulating tube.
  • 9 to 14 show a method for manufacturing the semiconductor module 100 of the second embodiment.
  • the left column is a process related to the first insulating substrate 4, and the right column is a process related to the second insulating substrate 5.
  • the metal mask 30 is mounted on each of the first insulating substrate 4 and the second insulating substrate 5 (FIG. 9A).
  • the solder paste 7a which solidifies and becomes the joining material 7 is apply
  • the solder paste 7a is placed on the first circuit board 1a and the second circuit board 1b (FIG. 9C).
  • the first semiconductor chip 6a and the second semiconductor chip 6b are placed on the solder paste 7a, and the solder paste 7a is solidified by processing in a reflow furnace (not shown) (FIG. 9D).
  • the metal mask 31 is placed on the second insulating substrate 5 (FIG. 10E).
  • the opening 32 of the metal mask 31 is formed at a location where the second semiconductor chip 6 b is located and a location where the first heat radiating member 16 a and the solder paste 7 a serving as the conductor 17 are disposed.
  • a solder paste 7a is applied on the metal mask 31 (FIG. 10F).
  • the solder paste 7a is placed on the second circuit board 1b and the third circuit board 1c (FIG. 10 (g)).
  • a metal mask 33 is placed on the main surface of the printed circuit board 8 (FIG. 10H).
  • a through via 11 into which the external terminal 9 is inserted is formed at the end of the printed board 8, and a metal layer 37 is formed on the side wall of the through via 11.
  • the first via 12a and the second via 12b are already formed in the printed circuit board 8.
  • the solder paste 7a is applied on the metal mask 33 (FIG. 10 (i)).
  • the solder paste 7 a is placed on the main surface of the printed circuit board 8.
  • the solder paste may be applied using a dispenser or the like.
  • the printed circuit board 8 is placed on the second insulating substrate 5 fixed to the fixing jig 15 (FIG. 11 (k)).
  • the fixing jig 15 has a recess 38 into which the external terminal 9 is inserted.
  • the first insulating substrate 4 is placed on the main surface of the printed circuit board 8 with the first circuit board 1a facing downward. Further, a fixing jig 14 for fixing the first insulating substrate 4 is placed thereon (FIG. 11 (l)).
  • the fixing jig 14 and the fixing jig 15 are made of a material such as a carbon ceramic material that has a small coefficient of linear expansion and does not adhere to solder.
  • the fixing jig 14 and the fixing jig 15 are processed so that the first insulating substrate 4, the second insulating substrate 5, the printed board 8, and the like can be positioned.
  • the fixing jig 14 is provided with a through hole 39 for inserting the external terminal 9.
  • the lower end of the external terminal 9 is fixed at a position higher than the second metal plate 2b.
  • the columnar external terminals 9 are inserted into the through holes 39 (FIG. 12 (m)).
  • the external terminal 9 is disposed through the through via 11 on which the solder paste 7a is placed.
  • each member is soldered simultaneously.
  • the fixing jig 14 and the fixing jig 15 are removed, and a structure 34 in which each member is soldered is completed (FIG. 13 (n)).
  • the structure 34 is fixed to the casting jig 35b, and the casting jig 35a is further covered, and the thermosetting resin 40 is injected therein (FIG. 13 (o)).
  • the casting jig 35a is provided with a through hole 35c through which the external terminal 9 passes.
  • thermosetting resin 40 is cured to form the sealing resin 10. Further, the structure 34 covered with the sealing resin 10 is taken out from the casting jigs 35a and 35b, and the semiconductor module 100 is completed (FIG. 14 (p)).
  • the main processes for assembling the semiconductor module 100 in the second embodiment are the following three processes.
  • FIG. 15 is a process diagram illustrating a process of forming the first via 12a.
  • many minute through holes 20 are formed in the insulating plate 8a of the printed circuit board 8 (FIG. 15A).
  • the diameter of the through hole 20 is set to be within twice the thickness of the first wiring layer 13a.
  • the Cu plating film 21a is formed on both surfaces of the insulating plate 8a by plating.
  • the diameter of the through hole 20 is within twice the thickness of the Cu plating film 21a, that is, the thickness of the first wiring layer 13a, the Cu plating films 21a formed on the side walls of the through hole 20 Contact is made inside the through-hole 20 (FIG. 15B). By this contact, the inside of the through hole 20 is filled with the Cu plating film 21a, and the conductor 21 is formed. The aggregate of the conductors 21 is the first via 12a.
  • the Cu plating films 21a on both surfaces of the insulating plate 8a are patterned by photolithography to form the first wiring layer 13a and the third wiring layer 13c (FIG. 15C).
  • the first via 12a electrically and mechanically connected to the first wiring layer 13a and the third wiring layer 13c is formed.
  • the first via 12a is formed by a plating method is shown, but it can also be formed by using a sputtering method, a vapor deposition method, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Geometry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 熱抵抗の低減や配線インダクタンスの低減、低コスト化、小型化などが可能な半導体モジュールを提供する。 絶縁板の主面に配置された第1配線層および第4配線層と、反対側の面に配置された第2配線層および第3配線層と、第1配線層及び第3配線層を接続する第1ビアと、第2配線層及び第4配線層を接続する第2ビアを有するプリント基板と、第1配線層に対向し第1回路板を有する第1絶縁基板と、第2配線層に対向し第2回路板及び第3回路板を有する第2絶縁基板と、第1配線層と第1回路板との間に挟まれて固定される第1半導体チップと、第2配線層と第2回路板との間に挟まれて固定される第2半導体チップと、第3配線層と第3回路板との間に挟まれて固定される第1放熱部材と、第4配線層と第1回路板との間に挟まれて固定される第2放熱部材とを備えている。

Description

半導体モジュール
 この発明は、半導体モジュールに関する。
 図16は、特許文献1に記載されている一般的な従来の半導体モジュール500の構成図である。この半導体モジュール500は、絶縁基板54と、半導体チップ56と、ベース板57と、樹脂ケース59と、金属ワイヤ60と、ゲル61と、蓋62を備える。
 絶縁基板54は、セラミック板51と、セラミック板51のおもて面に配置される回路板52および裏面に配置される金属板53からなる。そして回路板52上に、はんだ55で半導体チップ56が接合されている。また金属板53には、はんだ55を介して金属製のベース板57が接合されている。樹脂ケース59は、ベース板57の外周に接着され、外部端子58がインサート成型されている。金属ワイヤ60により、半導体チップ56と外部端子58が電気的に接続されている。樹脂ケース59内には、絶縁封止材であるゲル61が充填されている。樹脂製の蓋62は、樹脂ケース59の上部に固着されている。そして、ベース板57に図示しない冷却フィンが取り付けられる。
 半導体チップ56で発生した熱は、絶縁基板54とベース板57を介して冷却フィンに放熱される。この半導体モジュール500は片面冷却の半導体装置である。
特開2010-267685号公報
 図16に示した従来の半導体モジュール500は、次に記述するような問題点がある。
(1)回路板52をセラミック板51の一つの面に接合するため、絶縁基板54の面積が大きくなる。
(2)電気回路の配線の一部を回路板52で行なっているため、電気回路の構成を変更する場合には回路板52のパターンを変更する必要があり、その都度、絶縁基板54と金属マスクなどの組立治具を変更する必要がある。
(3)電気回路の配線の一部を金属ワイヤ60で行なっているため、バッチ処理ができずに工程時間が長くなり、処理装置が多数必要になる。
(4)電気回路の配線を金属ワイヤ60と外部端子58で行なっているため、異なる電気回路にする場合、外部端子58の形状を変更する必要があり、外部端子58の加工に伴って金型がその都度必要になる。
(5)構成部材数(金属ワイヤ60、樹脂ケース59、蓋62およびゲル61など)が多く、製造コストが高くなる。
(6)電気回路が金属ワイヤ60と回路板52および外部端子58で構成され、金属ワイヤと対向する回路板の距離が大きいため、配線インダクタンスが大きくなる。
 この発明の目的は、前記の課題を解決して、熱抵抗の低減、配線インダクタンスの低減、対地絶縁距離の確保、回路構成の簡素化および構成部材の接続および接合に要する工程数の削減、低コスト化および小型化が図れる半導体モジュールを提供することにある。
 前記の目的を達成するために、この発明の一様態では、半導体モジュールは、絶縁板と、前記絶縁板の主面に配置された第1配線層および第4配線層と、前記主面の反対側の面に配置された第2配線層および第3配線層と、前記絶縁板内に配置され前記第1配線層及び前記第3配線層に電気的かつ機械的に接続された第1ビアと、前記絶縁板内に配置され前記第2配線層及び前記第4配線層に電気的かつ機械的に接続された第2ビアとを有するプリント基板と、前記第1配線層に対向して配置され、前記第1配線層および前記第4配線層との対向面に第1回路板が配置される第1絶縁基板と、前記第2配線層に対向して配置され、前記第2配線層と対向した第2回路板が配置され、前記第3配線層と対向した第3回路板が配置される第2絶縁基板と、前記第1配線層と前記第1回路板との間に挟まれ、両面がそれぞれ導電性の接合材で固定される第1半導体チップと、前記第2配線層と前記第2回路板との間に挟まれ、両面がそれぞれ導電性の接合材で固定される第2半導体チップと、前記第3配線層と前記第3回路板との間に挟まれて固定された第1放熱部材と、前記第4配線層と前記第1回路板との間に挟まれて固定された第2放熱部材を備えている。
 この発明により、熱抵抗の低減、配線インダクタンスの低減、対地絶縁距離の確保、回路構成の簡素化および構成部材の接続および接合に要する工程数の削減、低コスト化および小型化が図れる半導体モジュールを提供することができる。
図1は、第1実施例の半導体モジュール100の断面図である。 図2は、図1のA部拡大図である。 図3は、第1半導体チップ6aの熱抵抗Rth1と第1ビア12aの埋め込み率の関係を計算するために用いた構成図である。 図4は、第1ビア12aの構成図である。 図5は、熱抵抗Rth1と第1ビア12aの埋め込み率の関係を示した図である。 図6は、第1実施例のダイオードモジュールの各部品の透視平面図である。 図7は、第1実施例のダイオードモジュールの各部品の透視平面図である。 図8は、第1実施例の変形例を示した断面図である。 図9は、第2実施例の半導体モジュール100の製造工程断面図である。 図10は、図9に続く第2実施例の半導体モジュール100の製造工程断面図である。 図11は、図10に続く第2実施例の半導体モジュール100の製造工程断面図である。 図12は、図11に続く第2実施例の半導体モジュール100の製造工程断面図である。 図13は、図12に続く第2実施例の半導体モジュール100の製造工程断面図である。 図14は、図13に続く第2実施例の半導体モジュールの製造工程断面図である。 図15は、ビアを形成する工程を説明した工程図である。 図16は、従来の半導体モジュール500の構成図である。
 実施の形態を実施例で詳細に説明する。なお、平易な説明のために以下において図面の記載に対応した「上側」や「下側」といった表現を用いているが、この実施例は説明された実施形態に限定されるものではなく、本発明の技術的思想の範囲を逸脱しない限り様々な形態に変更することができる。また、「電気的かつ機械的に接続されている」とは、対象物同士が直接接合により接続されている場合に限られず、ハンダや金属焼結材などの導電性の接合材を介して対象物同士が接続されている場合も含むものとし、以下の説明でも同様である。
 図1は、この発明に係る第1実施例の半導体モジュール100の断面図である。図2は、図1のA部拡大図である。この半導体モジュール100は、プリント基板8と、第1絶縁基板4と、第2絶縁基板5と、第1半導体チップ6aと、第2半導体チップ6bと、第1放熱部材16aと、第2放熱部材16bを備えている。さらに、外部端子9により、第1半導体チップ6a及び第2半導体チップ6bを外部回路と電気的に接続可能とした半導体モジュールである。尚、第1半導体チップ6aは上側のチップであり、第2半導体チップ6bは下側のチップである。
 プリント基板8は、絶縁板8aと、第1配線層13aと、第2配線層13bと、第3配線層13cと、第4配線層13dと、第1ビア12aと、第2ビア12bを有している。第1配線層13aおよび第4配線層13dは絶縁板8aの主面に配置され、第2配線層13bおよび第3配線層13cは絶縁板8aの主面と反対側の面に配置されている。そして、絶縁板8a内に配置された第1ビア12aにより、第1配線層13aと第3配線層13cが電気的かつ機械的に接続されている。また、絶縁板8a内に配置された第2ビア12bにより、第2配線層13bと第4配線層13dが電気的かつ機械的に接続されている。第1ビア12aおよび第2ビア12bは、多数の微小な貫通孔20を絶縁板8aに形成し、Cu(銅)めっきなどで金属を貫通孔20に埋め込んだ導体で形成される。絶縁板8aとしては、例えば、ガラスエポキシ板などがある。
 第1絶縁基板4は、第1回路板1aと、第1セラミック板3aと、第1金属板2aが積層して構成されている。第1絶縁基板4は、プリント基板8の主面と対向して配置されている。さらに第1回路板1aは、第1配線層13aおよび第4配線層13dと対向して配置されている。
 第2絶縁基板5は、第2回路板1bおよび第3回路板1cと、第2セラミック板3bと、第2金属板2bが積層して構成されている。第2絶縁基板5は、プリント基板8の主面と反対側の面と対向して配置されている。さらに第2回路板1bは、第2配線層13bと対向して配置され、第3回路板1cは、第3配線層13cと対向して配置されている。
 第1セラミック板3aおよび第2セラミック板3bは、アルミナや窒化アルミ、窒化珪素などの高熱伝導セラミックなどで構成される。また、第1回路板1a、第2回路板1b、第3回路板1c、第1金属板2a、第2金属板2bは、銅やアルミなどの高熱伝導金属で構成される。
 第1半導体チップ6aおよび第2半導体チップ6bは、IGBT(絶縁ゲートバイポーラトランジスタ)やパワーMOSFET、FWD(還流ダイオード)などのパワー半導体素子で構成される。第1半導体チップ6aおよび第2半導体チップ6bは、両面にエミッタ電極やコレクタ電極、ゲート電極などの電極を備えている(図示せず)。
 第1半導体チップ6aは、第1配線層13aおよび第1回路板1aとの間に挟まれ、両面がはんだなどの導電性の接合材7で電気的かつ機械的に接続されている。これにより、第1配線層13aおよび第1回路板1aと、第1半導体チップ6aの両面の電極がそれぞれ電気的に接続される。
 第2半導体チップ6bは、第2配線層13bおよび第2回路板1bとの間に挟まれ、両面がはんだなどの導電性の接合材7で電気的かつ機械的に接続されている。これにより、第2配線層13bおよび第2回路板1bと、第2半導体チップ6bの両面の電極がそれぞれ電気的に接続される。
 この第1半導体チップ6a及び第2半導体チップ6bのそれぞれの表裏面には良好なはんだなどの接合材7の濡れ性を高めるために導電性めっき(例えば、Ti,Ni,Auなどの金属めっき)が施されている。接合材7としては、AgペーストやCuペーストなどの導電性接着剤を用いても構わない。
 第1放熱部材16aおよび第2放熱部材16bは、金属で構成されている。第1放熱部材16aは、第3配線層13cおよび第3回路板1cとの間に挟まれ、両端が電気的かつ機械的に接続されている。第2放熱部材16bは、第4配線層13dおよび第1回路板1aとの間に挟まれ、両端が電気的かつ機械的に接続されている。第1放熱部材16aおよび第2放熱部材16bは、例えばはんだを用いることができる。この場合、別途接合材を用意する必要が無いので、製造コストの低減が可能となる。また、第1放熱部材16aおよび第2放熱部材16bに銅ブロックなどを用いることもできる。この場合は、放熱特性の改善が可能となる。
 半導体モジュール100は、また、プリント基板8の貫通ビア11を介して接合され、第1配線層13aまたは第2配線層13bの少なくともいずれかと電気的に接続される外部端子9を備える。また、外部端子9および第2金属板2bが露出するようにして全体を封止し、筐体としても機能する封止樹脂10を備える。また、プリント基板8と第2回路板1bを電気的に接続する導電体17を備える。この半導体モジュール100は、第2金属板2bの露出した下面に図示しない冷却フィンを設置して、片面冷却の半導体装置として用いられる。
 半導体モジュール100では、プリント基板8と、第1絶縁基板4と、第2絶縁基板5と、外部端子9とで、半導体モジュール100に求められている所定の電気回路が構成されている。
 半導体モジュール100は、第1半導体チップ6aが配置された第1配線層13aと、絶縁板8aを挟んで対向する第3配線層13cが、第1ビア12aで接続されている。そして第3配線層13cと第3回路板1cが、第1放熱部材16aで接続されている。このため、第1半導体チップ6aで発生した熱は、第1絶縁基板4のみならず第2絶縁基板5にも伝わることから、放熱性を高めることができる。
 さらに、半導体モジュール100は、第2半導体チップ6bが配置された第2配線層13bと、絶縁板8aを挟んで対向する第4配線層13dが、第2ビア12bで接続されている。そして第4配線層13dと第1回路板1aが、第2放熱部材16bで接続されている。このため、第2半導体チップ6bで発生した熱は、第2絶縁基板5のみならず第1絶縁基板4にも伝わることから、放熱性を高めることができる。
 この構成では、外部端子9が半導体モジュール100の上面に突出させているため、第2絶縁基板5の接地面である第2金属板2bと外部端子9との間の沿面距離を長くすることができる。そのため、対地絶縁距離を十分に確保することができる。
 尚、第3配線層13cと第3回路板1cは、図示した例では第1半導体チップ6aの熱を第2絶縁基板5を介して冷却フィンへ流すため、第1放熱部材16aを接合する金属パッドである。そのため、第3配線層13cと第3回路板1cは、電気配線としては用いない場合もある。またこの場合においては、第2配線層13bと第3配線層13cが一体で構成されている場合もある。
 図3は、第1半導体チップ6aの熱抵抗Rth1と、第1ビア12aの埋め込み率の関係を計算するために用いた第1半導体チップ6a近傍の構成図である。図3(a)は断面図、図3(b)は図3(a)のX1-X1線で切断した平面図、図3(c)は図3(a)のX2-X2で切断した平面図である。ここでは、平面図に示すように4箇所のビアを示した。
 第1半導体チップ6aで発生する熱は、プリント基板8の第1ビア12aを経由して第2絶縁基板5へ伝わり、図示しない冷却フィンへ放熱される。このため、第1半導体チップ6aから第2金属板2bまでの熱伝導の経路に基づいて、熱抵抗Rth1が決定される。そして、この熱抵抗Rth1は第1ビア12aの構造に大きく依存する。一方、第2半導体チップ6bで発生する熱は、第2金属板2bへ直接流れて行くため、熱抵抗Rth2はビアの構造には依存しない。
 図4は、第1ビア12aの構成図であり、図4(a)は平面図、図4(b)は図4(a)のX-X線で切断した断面図である。
 第1ビア12aは、プリント基板8の絶縁板8aに形成された多数の微小な貫通孔20に金属を埋め込み、細線の柱状の導体21が集合した構造をしている。ここでは、貫通孔20の平面形状は円形の場合を示したが、これに限るものではなく、多角形やスリット状の場合もある。図4では、上下の第1配線層13a及び第3配線層13cを点線で示した。
 図5は、図3の構成を用いて計算した熱抵抗Rth1と、第1ビア12aの埋め込み率の関係を示した図であり、図5(a)はプリント基板8の絶縁板8aの厚さが薄い場合、図5(b)はプリント基板8の絶縁板8aの厚さを図5(a)の3倍程度にした場合である。埋め込み率は、半導体チップの面積に対して、埋め込まれた第1ビア12aの面積の割合を百分率(%)で表わした。
 また、ここでは、第1半導体チップ6a及び第2半導体チップ6bのチップの大きさは5mm□程度で、チップ面積は25mm程度である。また、第1ビア12a及び第2ビア12bは前記したようにCuめっき膜で埋め込まれ、第1配線層13a及び第3配線層13cはCuめっき膜である。プリント基板8の絶縁板8aの熱伝導率はCuの熱伝導率に対して1/1000程度と極めて小さく、そのためプリント基板8のビア以外の箇所での熱抵抗は大きくなる。
 熱抵抗Rth2はビアを経由しないので、埋め込み率に関係なく0.5℃/W程度で一定である。
 一方、熱抵抗Rth1は、図5(a)及び図5(b)のいずれの場合も、埋め込み率が10%以下ではRth1の上昇が顕著となり好ましくない。このため、埋め込み率を10%以上にするのが望ましい。
 上記結果については、第2半導体チップ6bから第2ビア12bを経由した、第1絶縁基板4への熱伝導についても同様である。そのため、第2ビア12bの埋め込み率についても、10%以上が望ましい。
 尚、プリント基板8の絶縁板8aとしてセラミック板を用いると、例えば、ガラスエポキシ板などを用いる場合より熱抵抗を低減できるのでよい。その場合には、ビアはめっき以外の方法(例えばスパッタ法など)で形成すればよい。
 図6は、各積層部品別の垂直方向で上面から見た各部品の透視平面図である。図6(a)は、第1絶縁基板4の第1回路板1aの平面図、図6(b)はプリント基板8の第1配線層13aおよび第4配線層13dの平面図、図6(c)はプリント基板8の第2配線層13bおよび第3配線層13cの平面図、図6(d)は第2絶縁基板5の第2回路板1b及び第3回路板1cの平面図、図6(e)は回路図である。この回路図はダイオードで3相ブリッジ(コンバータ回路)を形成したダイオードモジュールの図である。この図ではB部で電流の向きが逆になり配線インダクタンスを小さくできる。
 図7は、図6のプリント基板8の両面の配線層を変更した場合の図である。
 図7に示すように、プリント基板8の両面の配線層を変更することで、異なる電気回路を容易に構成することができる。なお、図7ではB部で電流の向きが逆になり配線インダクタンスを小さくできる。
 また、上記のダイオードモジュールは、容易にIGBTモジュールなどに変更することが可能である。
 第1実施例の半導体モジュール100は、従来の半導体モジュール500を構成する構成部材(アルミワイヤ、樹脂ケース、ゲルなど)を削減でき、低コスト化が可能となる。また、プリント基板8の両面に複数の半導体チップを分割配置することで、半導体モジュールの小型化を図ることができる。
 また、第1回路板1aや第2回路板1b、第3回路板1cと、これらに対向するプリント基板8の各配線層の電流方向を互いに逆方向にすることにより、配線インダクタンスを低減することができる。さらに、図6や図7で示した通り、プリント基板8の両面の配線層の電流方向を互いに逆方向にすることにより、配線インダクタンスを低減することができる。これは、これらの間で生じる相互誘導の効果である。
 また、第1絶縁基板4を配置することで、第1絶縁基板4の第1金属板2aが放射電磁ノイズに対して遮蔽板となり、第1半導体チップ6aや第2半導体チップ6bなどから上方に放射される電磁ノイズを低減することができる。
 また、第1ビア12aと第1放熱部材16aを配置することで、第1半導体チップ6aから発生した熱を効果的に両面冷却することが可能となる。同様に、第2ビア12bと第2放熱部材16bを配置することで、第2半導体チップ6bから発生した熱を効果的に両面冷却することが可能となる。
 図8は、第1実施例の変形例として、第1放熱部材16aを高熱伝導絶縁体18に代えた場合の断面図である。これにより、第2回路板1bと第3回路板1cを電気的に分離する必要が無くなり、第2回路板1bと第3回路板1cを一体にできるため距離Lを短縮できる。その結果、半導体モジュールをさらに小型化することができる。
 第1実施例の半導体モジュール100は、上側の第1絶縁基板4には冷却フィンが設置されていないが、第1金属板2aを露出するように封止した場合には、冷却フィンを設置することもできる。このようにすれば、さらに半導体チップからの両面冷却の効率が向上する。なおこの場合、外部端子9との沿面距離が短くなるので、例えば、外部端子9の根元表面を絶縁層で被覆したり、外部端子9を絶縁チューブに入れるなどの工夫をすればよい。
 図9~図14に、第2実施例の半導体モジュール100の製造方法を示す。図9(a)~図9(d)において、左側の列は第1絶縁基板4に関係する工程であり、右側の列は第2絶縁基板5に関係する工程である。
 まず、第1絶縁基板4及び第2絶縁基板5のそれぞれに、金属マスク30を載置する(図9(a))。
 次に、金属マスク30上に、固化して接合材7になるはんだペースト7aを塗布する(図9(b))。
 次に、金属マスク30を取り外すと、第1回路板1a及び第2回路板1b上にはんだペースト7aが載置される(図9(c))。
 次に、上記のはんだペースト7a上に第1半導体チップ6a及び第2半導体チップ6bを載置し、図示しないリフロー炉で処理してはんだペースト7aを固化する(図9(d))。
 次に、第2絶縁基板5上に金属マスク31を載置する(図10(e))。金属マスク31の開口部32は、第2半導体チップ6bが位置する箇所と、第1放熱部材16a及び導電体17となるはんだペースト7aを配置する箇所に形成されている。
 次に、金属マスク31上にはんだペースト7aを塗布する(図10(f))。
 次に、金属マスク31を取り外すと、第2回路板1b及び第3回路板1c上にはんだペースト7aが載置される(図10(g))。
 次に、プリント基板8の主面上に金属マスク33を載置する(図10(h))。なお、プリント基板8の端部には外部端子9が挿入される貫通ビア11が形成され、貫通ビア11の側壁には金属層37が形成されている。また、プリント基板8には第1ビア12aおよび第2ビア12bがすでに形成されている。
 次に、金属マスク33上にはんだペースト7aを塗布する(図10(i))。
 次に、金属マスク33を取り外すと、プリント基板8の主面上にはんだペースト7aが載置される。
 尚、上記のはんだ印刷工程は、ディスペンサーなどによりはんだペーストを塗布してもよい。
 次に、固定治具15に固定された第2絶縁基板5の上に、プリント基板8を載置する(図11(k))。なお、固定治具15には外部端子9を差し込む凹部38が配置されている。
 次に、プリント基板8の主面上に、第1絶縁基板4を第1回路板1aを下向きにして載置する。さらに、その上に第1絶縁基板4を固定する固定治具14を載置する(図11(l))。なお、固定治具14および固定治具15は、カーボン・セラミック材など線膨張係数が小さく、はんだが付着しない材料で構成されている。また、固定治具14および固定治具15には、第1絶縁基板4や第2絶縁基板5、プリント基板8などの位置決めができるように加工が施されている。また、固定治具14には、外部端子9を挿入するために貫通孔39が設けられている。また、対地絶縁距離を確保するために、外部端子9の下端は第2金属板2bよりも高い位置に固定する。
 次に、貫通孔39に柱状の外部端子9を挿入する(図12(m))。この外部端子9ははんだペースト7aが載置された貫通ビア11を貫通して配置される。
 次に、これらを図示しないリフロー炉で処理してはんだペースト7aを固化し、各部材のはんだ付けを同時に行なう。続いて、固定治具14および固定治具15を外して、各部材がはんだ付けされた構造体34が出来上がる(図13(n))。
 次に、構造体34を注型治具35bに固定し、さらに注型治具35aを被せ、その内部に熱硬化性樹脂40を注入する(図13(o))。なお、注型治具35aには、外部端子9を貫通させる貫通孔35cが設けられている。
 次に、熱硬化性樹脂40を硬化させて封止樹脂10にする。さらに、注型治具35a,35bから封止樹脂10で被覆された構造体34を取り出し、半導体モジュール100が完成する(図14(p))。
 このように、実施例2における半導体モジュール100の組立の主要工程は、下記の3工程である。
(1)第1絶縁基板4及び第2絶縁基板5に第1半導体チップ6a及び第2半導体チップ6bを固着する工程。
(2)プリント基板8と、その両面に配置される第1絶縁基板4及び第2絶縁基板5と、外部端子9をはんだペースト7aを用いて同時に固着する工程。
(3)封止樹脂10で被覆する工程。
 そのため、バッチ処理による組立工程時間の削減が可能となり、製造コストを低減できる。
 つぎに、第1ビア12aの形成方法についてその一例を説明する。なお、第2ビア12bについても同様の方法で形成できる。
 図15は、第1ビア12aを形成する工程を説明した工程図である。
 まず、プリント基板8の絶縁板8aに微小な貫通孔20を多数形成する(図15(a))。貫通孔20の直径は、第1配線層13aの厚さの2倍以内とする。
 次に、めっき処理でCuめっき膜21aを絶縁板8aの両面に形成する。このとき、貫通孔20の直径をCuめっき膜21aの厚さ、すなわち第1配線層13aの厚さの2倍以内にすることで、貫通孔20の側壁に形成されたCuめっき膜21a同士が貫通孔20の内部で接触する(図15(b))。この接触によって貫通孔20内はCuめっき膜21aで充填されて導体21が形成される。この導体21の集合体が第1ビア12aである。
 次に、フォトリソグラフィー技術で絶縁板8aの両面のCuめっき膜21aをパターニングし、第1配線層13a及び第3配線層13cを形成する(図15(c))。
 これらの工程により、第1配線層13aおよび第3配線層13cに電気的かつ機械的に接続された第1ビア12aが形成される。
 ここでは、第1ビア12aはめっき法で形成した場合を示したが、スパッタ法や蒸着法などを用いても形成することもできる。
 以上、図面を用いて本発明の半導体モジュールの実施形態について説明したが、本発明の半導体モジュールは、実施形態及び図面の記載に限定されるものではなく、本実施形態の趣旨を逸脱しない範囲で幾多の変形が可能である。
   1a 第1回路板
   1b 第2回路板
   1c 第3回路板
   2a 第1金属板
   2b 第2金属板
   3a 第1セラミック板
   3b 第2セラミック板
   4  第1絶縁基板
   5  第2絶縁基板
   6a 第1半導体チップ
   6b 第2半導体チップ
   7  接合材
   7a はんだペースト
   8  プリント基板
   8a 絶縁板
   9  外部端子
  10  封止樹脂
  11  貫通ビア
  12a 第1ビア
  12b 第2ビア
  13  配線層
  13a 第1配線層
  13b 第2配線層
  13c 第3配線層
  13d 第4配線層
  14,15 固定治具
  16a 第1放熱部材
  16b 第2放熱部材
  17  導電体
  18  高熱伝導絶縁体
  20  貫通孔
  21  導体
  21a Cuめっき膜
  30,31,33  金属マスク
  32  開口部
  34  構造体
  35a,35b 注型治具
  37  金属層
  38  凹部
  39  貫通孔
  40  熱硬化性樹脂
 100  半導体モジュール

Claims (10)

  1.  絶縁板と、前記絶縁板の主面に配置された第1配線層および第4配線層と、前記主面の反対側の面に配置された第2配線層および第3配線層と、前記絶縁板内に配置され前記第1配線層及び前記第3配線層に電気的かつ機械的に接続された第1ビアと、前記絶縁板内に配置され前記第2配線層及び前記第4配線層に電気的かつ機械的に接続された第2ビアとを有するプリント基板と、
     前記第1配線層に対向して配置され、前記第1配線層および前記第4配線層との対向面に第1回路板が配置される第1絶縁基板と、
     前記第2配線層に対向して配置され、前記第2配線層と対向した第2回路板が配置され、前記第3配線層と対向した第3回路板が配置される第2絶縁基板と、
     前記第1配線層と前記第1回路板との間に挟まれ、両面がそれぞれ導電性の接合材で固定される第1半導体チップと、
     前記第2配線層と前記第2回路板との間に挟まれ、両面がそれぞれ導電性の接合材で固定される第2半導体チップと、
     前記第3配線層と前記第3回路板との間に挟まれて固定された第1放熱部材と、
     前記第4配線層と前記第1回路板との間に挟まれて固定された第2放熱部材と、
    を備えた半導体モジュール。
  2.  前記絶縁板上における前記第1ビアの面積が、前記第1半導体チップの面積に対して10%以上である請求項1に記載の半導体モジュール。
  3.  前記絶縁板上における前記第2ビアの面積が、前記第2半導体チップの面積に対して10%以上である請求項1に記載の半導体モジュール。
  4.  前記第1放熱部材および前記第2放熱部材は、導電性接合材もしくは金属板で構成されている請求項1に記載の半導体モジュール。
  5.  前記第2回路板および前記第3回路板が一体で構成され、前記第1放熱部材が高熱伝導絶縁体で構成されている請求項1に記載の半導体モジュール。
  6.  前記第2絶縁基板の第2回路板が配置される面の反対面に、金属板が配置されている請求項1に記載の半導体モジュール。
  7.  前記第1絶縁基板の第1回路板が配置される面の反対面に、金属板が配置されている請求項1に記載の半導体モジュール。
  8.  前記第1ビア及び第2ビアが、前記プリント基板の絶縁板に配置された複数の貫通孔内を埋めた柱状の導体からなる請求項1に記載の半導体モジュール。
  9.  前記接合材および前記放熱部材が、いずれもはんだである請求項1に記載の半導体モジュール。
  10.  前記第1配線層もしくは第2配線層と電気的に接続されている外部端子をさらに備えた請求項1に記載の半導体モジュール。
PCT/JP2014/072827 2013-10-03 2014-08-29 半導体モジュール WO2015049944A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015540430A JP5975180B2 (ja) 2013-10-03 2014-08-29 半導体モジュール
DE112014001487.7T DE112014001487B4 (de) 2013-10-03 2014-08-29 Halbleitermodul
US14/877,389 US9530707B2 (en) 2013-10-03 2015-10-07 Semiconductor module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-207878 2013-10-03
JP2013207878 2013-10-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/877,389 Continuation US9530707B2 (en) 2013-10-03 2015-10-07 Semiconductor module

Publications (1)

Publication Number Publication Date
WO2015049944A1 true WO2015049944A1 (ja) 2015-04-09

Family

ID=52778539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072827 WO2015049944A1 (ja) 2013-10-03 2014-08-29 半導体モジュール

Country Status (4)

Country Link
US (1) US9530707B2 (ja)
JP (1) JP5975180B2 (ja)
DE (1) DE112014001487B4 (ja)
WO (1) WO2015049944A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018138902A1 (ja) * 2017-01-30 2018-08-02 三菱電機株式会社 パワー半導体装置の製造方法およびパワー半導体装置
US20220077103A1 (en) * 2020-09-10 2022-03-10 Fuji Electric Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
WO2022118510A1 (ja) * 2020-12-03 2022-06-09 株式会社日立製作所 絶縁基板および電力変換装置
DE112021007799T5 (de) 2021-06-09 2024-04-11 Mitsubishi Electric Corporation Halbleitermodul und leistungswandler

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015097748A1 (ja) * 2013-12-24 2015-07-02 三菱電機株式会社 電力変換装置、及びパワーモジュール
CN106463481B (zh) * 2015-04-28 2019-11-08 新电元工业株式会社 半导体模块以及半导体模块的制造方法
JP6813259B2 (ja) * 2015-06-29 2021-01-13 富士電機株式会社 半導体装置
CN108604588B (zh) * 2016-02-03 2021-12-17 新电元工业株式会社 半导体装置以及半导体装置的制造方法
TWI697058B (zh) 2016-03-30 2020-06-21 胡志良 具堅實導電及導熱性銅質線路之電路元件封裝方法及其封裝體
DE202016004404U1 (de) * 2016-07-12 2016-08-03 Würth Elektronik eiSos Gmbh & Co. KG Hochintegrierter Spannungsumsetzer
DE102016117841A1 (de) 2016-09-21 2018-03-22 HYUNDAI Motor Company 231 Packung mit aufgerauter verkapselter Oberfläche zur Förderung einer Haftung
US10163751B2 (en) 2016-11-29 2018-12-25 Taiwan Semiconductor Manufacturing Company, Ltd. Heat transfer structures and methods for IC packages
FR3073978B1 (fr) * 2017-11-17 2022-10-28 Inst Vedecom Module electronique de puissance et systeme electronique comprenant un tel module electronique
CN110164858B (zh) 2018-02-16 2023-05-05 株式会社电装 半导体器件
KR102048478B1 (ko) * 2018-03-20 2019-11-25 엘지전자 주식회사 양면냉각형 파워 모듈 및 그의 제조 방법
EP3557614A1 (de) * 2018-04-17 2019-10-23 Siemens Aktiengesellschaft Leistungsmodul mit einem leistungselektronischen bauelement auf einer substratplatte und leistungselektronische schaltung mit einem solchen leistungsmodul
JP7322369B2 (ja) * 2018-09-21 2023-08-08 富士電機株式会社 半導体装置の製造方法
JP2020126921A (ja) * 2019-02-04 2020-08-20 株式会社村田製作所 高周波モジュールおよび通信装置
JP7103256B2 (ja) * 2019-02-13 2022-07-20 株式会社デンソー 半導体装置
JP7240221B2 (ja) * 2019-03-28 2023-03-15 日立Astemo株式会社 パワー半導体装置
JP7156155B2 (ja) * 2019-04-19 2022-10-19 三菱電機株式会社 半導体モジュール
JP6741135B1 (ja) * 2019-10-02 2020-08-19 富士電機株式会社 半導体モジュール及び半導体モジュールの製造方法
DE102020130617A1 (de) * 2020-11-19 2022-05-19 Infineon Technologies Ag Halbleiterpackages mit elektrischen Umverteilungsschichten unterschiedlicher Dicken
JP7072698B1 (ja) * 2021-03-26 2022-05-20 三菱電機株式会社 降圧コンバータ
TWI778816B (zh) * 2021-09-28 2022-09-21 欣興電子股份有限公司 晶片互聯的封裝結構及其封裝方法
EP4290574A1 (en) * 2022-06-09 2023-12-13 Mitsubishi Electric R&D Centre Europe B.V. Power module with integrated power boards and pcb busbar

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955459A (ja) * 1995-06-06 1997-02-25 Seiko Epson Corp 半導体装置
JP2000101018A (ja) * 1998-09-25 2000-04-07 Shindengen Electric Mfg Co Ltd 電気装置
JP2006134990A (ja) * 2004-11-04 2006-05-25 Fuji Electric Holdings Co Ltd 半導体装置
JP2008010768A (ja) * 2006-06-30 2008-01-17 Toshiba Corp 電子機器および実装構造体
JP2009117428A (ja) * 2007-11-01 2009-05-28 Hitachi Ltd パワー半導体モジュールの製造方法、パワー半導体モジュールの製造装置、パワー半導体モジュール、及び接合方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63283147A (ja) 1987-05-15 1988-11-21 Seiko Keiyo Kogyo Kk 半導体装置
JP3006585B2 (ja) 1998-06-01 2000-02-07 富士電機株式会社 半導体装置
JP3847676B2 (ja) 2002-07-15 2006-11-22 三菱電機株式会社 パワー半導体装置
JP4438489B2 (ja) 2004-04-13 2010-03-24 富士電機システムズ株式会社 半導体装置
US7030317B1 (en) * 2005-04-13 2006-04-18 Delphi Technologies, Inc. Electronic assembly with stacked integrated circuit die
JP2007012685A (ja) 2005-06-28 2007-01-18 Toyota Motor Corp 半導体素子の冷却構造および半導体素子のモジュール構造
US20080258293A1 (en) 2007-04-17 2008-10-23 Advanced Chip Engineering Technology Inc. Semiconductor device package to improve functions of heat sink and ground shield
JP5067267B2 (ja) 2008-06-05 2012-11-07 三菱電機株式会社 樹脂封止型半導体装置とその製造方法
JP4907693B2 (ja) 2009-05-13 2012-04-04 三菱電機株式会社 半導体装置
JP2011086821A (ja) 2009-10-16 2011-04-28 Fuji Electric Systems Co Ltd 半導体装置およびその製造方法
JP5919692B2 (ja) 2011-09-08 2016-05-18 富士電機株式会社 半導体装置および半導体装置の製造方法
US8975711B2 (en) * 2011-12-08 2015-03-10 Infineon Technologies Ag Device including two power semiconductor chips and manufacturing thereof
US8884343B2 (en) * 2012-02-24 2014-11-11 Texas Instruments Incorporated System in package and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955459A (ja) * 1995-06-06 1997-02-25 Seiko Epson Corp 半導体装置
JP2000101018A (ja) * 1998-09-25 2000-04-07 Shindengen Electric Mfg Co Ltd 電気装置
JP2006134990A (ja) * 2004-11-04 2006-05-25 Fuji Electric Holdings Co Ltd 半導体装置
JP2008010768A (ja) * 2006-06-30 2008-01-17 Toshiba Corp 電子機器および実装構造体
JP2009117428A (ja) * 2007-11-01 2009-05-28 Hitachi Ltd パワー半導体モジュールの製造方法、パワー半導体モジュールの製造装置、パワー半導体モジュール、及び接合方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018138902A1 (ja) * 2017-01-30 2018-08-02 三菱電機株式会社 パワー半導体装置の製造方法およびパワー半導体装置
JPWO2018138902A1 (ja) * 2017-01-30 2019-11-07 三菱電機株式会社 パワー半導体装置の製造方法およびパワー半導体装置
US11270982B2 (en) 2017-01-30 2022-03-08 Mitsubishi Electric Corporation Method of manufacturing power semiconductor device and power semiconductor device
US20220077103A1 (en) * 2020-09-10 2022-03-10 Fuji Electric Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
WO2022118510A1 (ja) * 2020-12-03 2022-06-09 株式会社日立製作所 絶縁基板および電力変換装置
JP7535444B2 (ja) 2020-12-03 2024-08-16 株式会社日立製作所 絶縁基板および電力変換装置
DE112021007799T5 (de) 2021-06-09 2024-04-11 Mitsubishi Electric Corporation Halbleitermodul und leistungswandler

Also Published As

Publication number Publication date
US9530707B2 (en) 2016-12-27
JP5975180B2 (ja) 2016-08-23
JPWO2015049944A1 (ja) 2017-03-09
DE112014001487B4 (de) 2021-03-04
DE112014001487T5 (de) 2015-12-10
US20160027711A1 (en) 2016-01-28

Similar Documents

Publication Publication Date Title
JP5975180B2 (ja) 半導体モジュール
JP4438489B2 (ja) 半導体装置
TWI567896B (zh) 三維空間封裝結構及其製造方法
JP5788585B2 (ja) 電子モジュールおよびその製造方法
US20100134979A1 (en) Power semiconductor apparatus
JP2014199829A (ja) 半導体モジュール及びそれを搭載したインバータ
CN104488078A (zh) 功率用半导体模块
JP2019071412A (ja) チップパッケージ
JP2015005681A (ja) 半導体装置及びその製造方法
WO2019064775A1 (ja) 半導体装置およびその製造方法
JP4967701B2 (ja) 電力半導体装置
JP3935381B2 (ja) 両面電極半導体素子を有する電子回路装置及び該電子回路装置の製造方法
US20180040562A1 (en) Elektronisches modul und verfahren zu seiner herstellung
JP2017143227A (ja) 半導体集積回路素子の放熱構造、ならびに、半導体集積回路素子及びその製造方法
JP2017123360A (ja) 半導体モジュール
JP2019013079A (ja) パワー半導体装置及びそれを用いた電力変換装置
JP5477157B2 (ja) 半導体装置
JP2010287651A (ja) 半導体装置
JP5619232B2 (ja) 半導体装置および電極用部材の製造方法
JP2002043510A (ja) 半導体パワーモジュールおよびその製造方法
US20210184023A1 (en) Semiconductor device
JP5682511B2 (ja) 半導体モジュール
JP2017139303A (ja) 回路構成体およびその製造方法
JP4810898B2 (ja) 半導体装置
JP2016096190A (ja) 電子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851147

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015540430

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120140014877

Country of ref document: DE

Ref document number: 112014001487

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14851147

Country of ref document: EP

Kind code of ref document: A1