WO2015046019A1 - ポリイミド前駆体、それから得られるポリイミド樹脂膜、ならびにそれを含む表示素子、光学素子、受光素子、タッチパネル、回路基板、有機elディスプレイ、および、有機el素子ならびにカラーフィルタの製造方法 - Google Patents

ポリイミド前駆体、それから得られるポリイミド樹脂膜、ならびにそれを含む表示素子、光学素子、受光素子、タッチパネル、回路基板、有機elディスプレイ、および、有機el素子ならびにカラーフィルタの製造方法 Download PDF

Info

Publication number
WO2015046019A1
WO2015046019A1 PCT/JP2014/074717 JP2014074717W WO2015046019A1 WO 2015046019 A1 WO2015046019 A1 WO 2015046019A1 JP 2014074717 W JP2014074717 W JP 2014074717W WO 2015046019 A1 WO2015046019 A1 WO 2015046019A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin film
polyimide precursor
formula
polyimide
Prior art date
Application number
PCT/JP2014/074717
Other languages
English (en)
French (fr)
Inventor
脇田潤史
有本由香里
富川真佐夫
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020167007544A priority Critical patent/KR102207439B1/ko
Priority to SG11201601946XA priority patent/SG11201601946XA/en
Priority to JP2014546220A priority patent/JP5773090B1/ja
Priority to US15/021,144 priority patent/US9828469B2/en
Priority to CN201480052871.6A priority patent/CN105593269B/zh
Publication of WO2015046019A1 publication Critical patent/WO2015046019A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1082Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a polyimide precursor, a polyimide resin film obtained therefrom, and a display element including the polyimide precursor, an optical element, a light receiving element, a touch panel, a circuit board, an organic EL display, an organic EL element, and a method for producing a color filter. It is.
  • ⁇ Organic film is more flexible than glass, hard to break, and lightweight. Recently, studies have been made to make a display flexible by using an organic film as a substrate for a flat panel display.
  • the resin used for the organic film includes polyester, polyamide, polyimide, polycarbonate, polyethersulfone, acrylic, epoxy, and the like.
  • polyimide resin is particularly widely used in the electric and electronic industries because it is excellent in heat resistance, mechanical strength, abrasion resistance, dimensional stability, chemical resistance, insulation, and the like.
  • Examples of a method for obtaining a polyimide having high transparency and low birefringence include a method of using an alicyclic monomer as at least one of acid dianhydride and diamine (see, for example, Patent Document 1). ).
  • CTE coefficient of linear thermal expansion
  • low CTE polyimide has also been proposed.
  • the main chain structure of polyimide is linear and rigid, and that internal rotation is constrained (see, for example, Non-Patent Document 1).
  • a wholly aromatic polyimide derived from an aromatic dianhydride and an aromatic diamine is considered to be effective.
  • all aromatic polyimide has an absorption band derived from intramolecular / intermolecular charge transfer absorption in the visible light wavelength region, the obtained polyimide resin film is colored yellow to brown.
  • a polyimide using a raw material having an alicyclic structure that can impart transparency is disclosed.
  • a polyimide obtained by combining trans-1,4-diaminocyclohexane, which is an alicyclic diamine having a rigid structure, with a rigid aromatic dianhydride exhibits transparency and low CTE (for example, see Patent Document 2).
  • the polyesterimide which uses ester group containing alicyclic acid dianhydride as a raw material shows high transparency and low birefringence (for example, refer patent document 3).
  • a copolymerized polyimide comprising 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, a fluorene group-containing aromatic acid dianhydride, and trans-1,4-diaminocyclohexane has high transparency.
  • Low birefringence, and low CTE are disclosed (for example, see Patent Document 4).
  • Patent Document 2 since a monomer having a rigid structure is used, low birefringence cannot be imparted. Furthermore, Patent Document 3 describes that in addition to high transparency and low birefringence, a low value for CTE is preferred, but for polyimides that achieve low birefringence, the CTE is in the high range of 70 ppm-100 ppm / K. Therefore, low birefringence and low CTE are not compatible. In addition, Patent Document 4 describes that high transparency, low birefringence, and low CTE are exhibited. However, low CTE polyimide having a CTE of 30 ppm / K has a high birefringence value of 0.07 or more, and a low value. Birefringence and low CTE are not compatible. Thus, the present condition is that the highly transparent polyimide which balanced low birefringence and low CTE has not been developed.
  • an object of the present invention is to provide a polyimide precursor in which a cured polyimide resin film has excellent light transmittance and has both low birefringence and low linear thermal expansion.
  • the present invention includes at least one acid dianhydride residue represented by the formula (1), a diamine residue represented by the formula (2), and one diamine residue represented by the formula (3).
  • the diamine residue represented by (2) is 50 mol% or more based on the total amount of diamine residues in the polyimide precursor, and the diamine residue represented by formula (3) is a diamine residue in the polyimide precursor. It is a polyimide precursor which is 15 mol% or less with respect to the total amount.
  • R 1 to R 8 in Formula (3) are each independently hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkoxy group, aryl ether group, aryl group, haloalkyl group, cyano group Selected from the group consisting of silyl groups, these may further have a substituent, and adjacent groups may have a bond to form a condensed ring structure.
  • a 1 and A 2 in Formula (3) may be the same or different, and are a structure comprising an aromatic ring, an aliphatic ring, a chain hydrocarbon group, or a combination thereof, and an amide group, ester group,
  • the structure is a combination of at least one group selected from the group consisting of an ether group, an alkylene group, an oxyalkylene group, a vinylene group and a haloalkylene group.
  • the present invention it is possible to obtain a polyimide precursor in which the cured polyimide resin film exhibits high transparency in the visible light wavelength range, low birefringence and low CTE.
  • Sectional drawing which shows an example of a color filter Sectional drawing which shows an example of a color filter Sectional drawing which shows an example of a color filter Sectional drawing which shows an example of a color filter Sectional drawing which shows an example of an organic EL element Sectional view showing an example of organic EL display Sectional drawing which shows an example of a color filter Sectional drawing which shows an example of a color filter Sectional drawing which shows an example of a color filter Sectional drawing which shows an example of a color filter Sectional view showing an example of organic EL display Sectional view showing an example of organic EL display Sectional view showing an example of organic EL display Sectional view showing an example of organic EL display Sectional view showing an example of organic EL display Sectional view showing an example of organic EL display
  • the polyimide precursor of the present invention is an acid dianhydride residue represented by the formula (1), a diamine residue represented by the formula (2), and 1 of the diamine residue represented by the formula (3).
  • the diamine residue represented by (2) is 50 mol% or more based on the total amount of diamine residues in the polyimide precursor, and the diamine residue represented by formula (3) is a diamine residue in the polyimide precursor. It is a polyimide precursor which is 15 mol% or less with respect to the total amount.
  • R 1 to R 8 in Formula (3) are each independently hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkoxy group, aryl ether group, aryl group, haloalkyl group, cyano group Selected from the group consisting of silyl groups, these may further have a substituent, and adjacent groups may have a bond to form a condensed ring structure.
  • a 1 and A 2 in Formula (3) may be the same or different, and are a structure comprising an aromatic ring, an aliphatic ring, a chain hydrocarbon group, or a combination thereof, and an amide group, ester group,
  • the structure is a combination of at least one group selected from the group consisting of an ether group, an alkylene group, an oxyalkylene group, a vinylene group and a haloalkylene group.
  • the alkyl group is, for example, a saturated aliphatic hydrocarbon group such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, and tert-butyl group. This may or may not have a substituent. There are no particular limitations on the additional substituent when it is substituted, and examples thereof include an alkyl group, an aryl group, and a heteroaryl group. This point is also common to the following description.
  • the cycloalkyl group represents, for example, a saturated alicyclic hydrocarbon group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a norbornyl group, and an adamantyl group, which has a substituent. It does not have to be.
  • the heterocyclic group refers to an aliphatic ring having atoms other than carbon, such as a pyran ring, a piperidine ring, and a cyclic amide, in the ring, which may or may not have a substituent. .
  • carbon number of a heterocyclic group is not specifically limited, Usually, it is the range of 2-20.
  • alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group, which may or may not have a substituent.
  • the cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group, which may have a substituent. You don't have to.
  • An alkoxy group refers to a functional group to which an aliphatic hydrocarbon group is bonded via an ether bond such as a methoxy group, an ethoxy group, and a propoxy group, and the aliphatic hydrocarbon group may have a substituent. It may not have.
  • An aryl ether group refers to a functional group to which an aromatic hydrocarbon group is bonded via an ether bond, such as a phenoxy group, and the aromatic hydrocarbon group may or may not have a substituent. .
  • the aryl group is, for example, an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a fluorenyl group, a phenanthryl group, a terphenyl group, an anthracenyl group, and a pyrenyl group, or a group in which a plurality of these are connected, It can be unsubstituted or substituted.
  • aryl groups may have are alkyl groups, cycloalkyl groups, alkenyl groups, alkynyl groups, alkoxy groups, aryl ether groups, alkylthio groups, halogens, cyano groups, amino groups (amino groups are further An aryl group or a heteroaryl group, which may be substituted), a silyl group and a boryl group.
  • a haloalkyl group refers to a group in which all or part of the hydrogen of the alkyl group is substituted with halogen, such as a trifluoromethyl group.
  • the silyl group refers to a group in which the reactive site of silicon is substituted with an alkyl chain, such as a trimethylsilyl group or a triethylsilyl group, or a group substituted with an alkoxy group.
  • These condensed rings may contain a nitrogen, oxygen, or sulfur atom in the ring structure, or may be further bonded to another ring.
  • the aromatic ring in A 1 and A 2 represents a ring derived from an aromatic hydrocarbon such as benzene, naphthalene, biphenyl, phenanthrene, anthracene and pyrene.
  • aliphatic ring refers to a ring derived from a saturated alicyclic hydrocarbon such as cyclopropane, cyclohexane, norbornene and adamantane.
  • the chain hydrocarbon group refers to a straight or branched hydrocarbon group, and does not include a cyclic hydrocarbon group.
  • the alkylene group represents, for example, a divalent saturated aliphatic hydrocarbon group such as a methylene group, an ethylene group, an n-propylene group, an isopropylene group, an n-butylene group, a sec-butylene group, and a tert-butylene group, This may or may not have a substituent.
  • a divalent saturated aliphatic hydrocarbon group such as a methylene group, an ethylene group, an n-propylene group, an isopropylene group, an n-butylene group, a sec-butylene group, and a tert-butylene group, This may or may not have a substituent.
  • the oxyalkylene group refers to a divalent functional group in which an aliphatic hydrocarbon group is bonded through an ether bond such as an oxyethylene group or an oxypropylene group, and the aliphatic hydrocarbon group has a substituent. You may or may not have.
  • the vinylene group represents a divalent group obtained by removing two hydrogens from ethylene.
  • the haloalkylene group represents a divalent group obtained by removing one hydrogen from a haloalkyl group.
  • the acid dianhydride residue represented by the formula (1) is 50 mol% or more, preferably 70 mol% or more, preferably 80 mol% based on the total amount of the acid dianhydride residues in the polyimide precursor. More preferably. Since the rigid biphenyl structure has a certain amount or more, the polyimide obtained from the polyimide precursor of the present invention exhibits low CTE property and chemical resistance.
  • the upper limit of the ratio of the acid dianhydride residue represented by the formula (1) to the total amount of the acid dianhydride residue in the polyimide precursor is 100 mol%, but the formula (4) or Since it is also preferable to contain an acid dianhydride residue of the formulas (25) to (28), in such a case, it is preferably 90 mol% or less.
  • the diamine residue represented by the formula (2) is 50 mol% or more with respect to the total amount of diamine residues in the polyimide precursor, preferably 70 mol% or more, more preferably 80 mol% or more, and 90 mol%. % Or more is particularly preferable.
  • the upper limit of the ratio with respect to the whole quantity of the diamine residue in the polyimide precursor of the diamine residue represented by Formula (2) needs to contain the diamine residue represented by Formula (3). To 98 mol% is preferable, and 95 mol% or less is more preferable.
  • the diamine residue represented by the formula (2) has an alicyclic structure, so that a certain amount or more of the diamine residue can be included in the molecular chain, thereby shortening the conjugation in the molecular chain and imidizing the polyimide precursor.
  • the polyimide after having high transparency shows high transparency.
  • polyimide since it has a rigid structure, polyimide exhibits a low CTE.
  • the polyimide precursor of the present invention contains a diamine residue represented by the formula (3).
  • This residue contains a fluorene structure in the structure.
  • the fluorene residue represented by the formula (3) has a rigid structure, the rigidity of the main chain derived from the biphenyl group represented by the formula (1) or the cyclohexyl group represented by the formula (2) Is not significantly reduced.
  • the polyimide obtained from the polyimide precursor of the present invention exhibits low CTE.
  • the Content of the diamine residue represented by Formula (3) is 15 mol% or less with respect to the whole quantity of a diamine residue.
  • the lower limit of the content of the diamine residue represented by the formula (3) is preferably 1 mol% or more, more preferably 3 mol% or more, from the viewpoint of reducing the polarizability in the direction perpendicular to the polymer main chain. More preferably, it is at least mol%.
  • the diamine residue represented by the formula (3) is in the above range, the balance between low birefringence and low CTE is further improved.
  • the diamine residue represented by the formula (3) is an aromatic diamine residue, so that a charge transfer complex having an absorption band in the visible light wavelength region is obtained. It is formed.
  • the diamine residue represented by the formula (3) is in the above range, the transmittance in the visible light wavelength region is not significantly reduced. As a result, the polyimide obtained from the polyimide precursor of the present invention exhibits high transparency.
  • Another embodiment of the present invention is a polyimide precursor containing at least one acid dianhydride residue represented by the formula (4).
  • R 9 to R 16 in the formula (4) are each independently hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkoxy group, aryl ether group, aryl group, haloalkyl group, cyano group Selected from the group consisting of silyl groups, these may further have a substituent, and adjacent groups may have a bond to form a condensed ring structure.
  • the definition of “adjacent groups having a bond to form a condensed ring structure” is the same as those in R 1 to R 8 of the above formula (3) (also for the following R 17 to R 157) the same).
  • B 1 and B 2 in formula (4) may be the same or different, and are a structure comprising an aromatic ring, an aliphatic ring, a chain hydrocarbon group, or a combination thereof, and an amide group, ester group,
  • the structure is a combination of at least one group selected from the group consisting of an ether group, an alkylene group, an oxyalkylene group, a vinylene group and a haloalkylene group.
  • the acid dianhydride residue represented by the formula (4) has a fluorene structure in the structure.
  • the birefringence of the polyimide after imidizing the polyimide precursor is lowered without greatly reducing the rigidity of the main chain. Therefore, by introducing a fluorene structure into both the acid dianhydride residue and the diamine residue, the birefringence of the formed polyimide film is further reduced.
  • the fluorene moiety is twisted with respect to the polymer main chain, the formation of a charge transfer complex in the molecular chain is suppressed. As a result, the polyimide obtained from the polyimide precursor of the present invention exhibits high transparency.
  • the content of the acid dianhydride residue represented by the formula (4) is preferably 40 mol% or less with respect to the total amount of the acid dianhydride residue in the polyimide precursor. By being in this range, the balance between low birefringence and low line CTE is improved. Moreover, it is excellent in mechanical strength and is preferable because it reduces cracks during film formation. Furthermore, from the viewpoint of reducing cracks during film formation, the content of the acid dianhydride residue represented by the formula (4) is more preferably 30 mol% or less with respect to the total amount of the acid dianhydride residue. Preferably, it is 25 mol% or less.
  • the lower limit of the content is preferably 1 mol% or more with respect to the total amount of the acid dianhydride residue. It is more preferably 5 mol% or more, and further preferably 10 mol% or more.
  • the polyimide precursor of the present invention contains both a diamine residue represented by formula (3) and an acid dianhydride residue represented by formula (4), formulas (1), (2), (3) If the range of the content of the residue represented by (4) satisfies the above range of each content rate, the total amount of the residues represented by formula (3) and formula (4) There is no limit. However, from the viewpoint of reducing cracks during film formation, the total of the residues of the formulas (3) and (4) is preferably 40 mol% or less with respect to the content of all residues, and 30 mol% More preferably, it is more preferably 15 mol% or less.
  • a 1 and A 2 in the formula (3) each have a structure represented by any of the following (5) to (10).
  • X in the formulas (5) to (7) is a single bond, an ether group, an alkylene group, an oxyalkylene group or a vinylene group, and one of the bonds is connected to the fluorene ring.
  • the single bond means that both sides of X are directly bonded by a single bond without interposing an atom or a bonding group.
  • the definition of an alkylene group or the like is defined by A 1 in the above formula (3).
  • a 2 are the same as those in X (hereinafter the same for Y).
  • Y in the formulas (8) to (10) is an amide group, an ester group, an ether group, an alkylene group, an oxyalkylene group, a vinylene group or a haloalkylene group.
  • R 17 to R 80 in formulas (5) to (10) are each independently hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkoxy group, aryl ether group, aryl group, haloalkyl Selected from the group consisting of a group, a cyano group, a hydroxyl group and a silyl group.
  • any one of R 17 to R 21 is a linking group containing X.
  • any one of R 22 to R 32 is a linking group containing X.
  • formulas (8) to (10) either of the two ring structures may be linked to the fluorene ring.
  • Each of R 33 to R 37 and any of R 38 to R 48 is a linking group containing Y.
  • Each of R 49 to R 53 and any of R 54 to R 58 is a linking group containing Y.
  • Any one of R 59 to R 69 and any one of R 70 to R 80 are each a linking group containing Y.
  • B 1 and B 2 in the formula (4) each have a structure represented by any of the following (11) to (17).
  • X in the formulas (11) to (13) is a single bond, an ether group, an alkylene group, an oxyalkylene group or a vinylene group, and one of the bonds is connected to the fluorene ring.
  • Y in the formulas (14) to (17) is an amide group, ester group, ether group, alkylene group, oxyalkylene group, vinylene group or haloalkylene group.
  • Z in the formulas (14) to (17) is a single bond, and one bond is connected to the fluorene ring.
  • R 81 to R 157 in formulas (11) to (17) are each independently hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkoxy group, aryl ether group, aryl group, haloalkyl Selected from the group consisting of a group, a cyano group, a hydroxyl group and a silyl group.
  • any one of R 81 to R 84 is a linking group containing X.
  • any one of R 85 to R 94 is a linking group containing X.
  • any one of R 98 to R 102 and any one of R 103 to R 112 are each a linking group containing Y.
  • any one of R 113 to R 123 and any one of R 124 to R 127 is a linking group containing Y.
  • any one of R 128 to R 132 and any one of R 133 to R 136 are each a linking group containing Y.
  • any one of R 137 to R 147 and any one of R 148 to R 157 are each a linking group containing Y.
  • Preferred examples of the diamine residue represented by formula (3) include, but are not limited to, at least one divalent organic group selected from formulas (18) to (21).
  • Preferable examples of the acid dianhydride residue represented by the formula (4) include, but are not limited to, at least one tetravalent organic group selected from the formulas (22) to (24). is not.
  • the polyimide precursor of the present invention may further contain other components in addition to the residues described so far as long as the effects of the present invention are not impaired.
  • the other component is a residue of an acid dianhydride other than an acid dianhydride that leads to an acid dianhydride residue represented by the formulas (1) and (4) (such an acid dianhydride and its dianhydride).
  • the residues are referred to as “other acid dianhydrides” and “other acid dianhydrides residues”, respectively, and diamines other than diamines leading to the diamine residues represented by formula (2) and formula (3) Residues (such diamines and their residues are referred to as “other diamines” and “other diamine residues”, respectively).
  • acid dianhydrides include aromatic acid dianhydrides, alicyclic acid dianhydrides, or aliphatic acid dianhydrides.
  • aromatic dianhydrides include pyromellitic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride 3,3 ′, 4,4′-terphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-oxyphthalic dianhydride, 2,3,3 ′, 4′-oxyphthalic acid Anhydride, 2,3,2 ′, 3′-oxyphthalic dianhydride, diphenylsulfone-3,3 ′, 4,4′-tetracarboxylic dianhydride, benzophenone-3,3 ′, 4,4 ′ Tetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 2,2- Bis (4- (3,4-dicarboxy
  • Examples of the alicyclic acid dianhydride include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5 -Cyclohexanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride Anhydride, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2 , 3,4-cycloheptanetetracarboxylic dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 3,4-dicarboxy-1-cyclohexylsuccinic dian
  • aliphatic dianhydride examples include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-pentanetetracarboxylic dianhydride, and derivatives thereof. It is not limited to these.
  • aromatic acid dianhydrides alicyclic acid dianhydrides, or aliphatic acid dianhydrides can be used alone or in combination of two or more.
  • a fluorene ring-containing acid dianhydride represented by the formula (4) is used by copolymerizing these acid dianhydrides with a polyimide precursor containing the formulas (1), (2), and (3). Even without this, the birefringence of the polyimide decreases.
  • the acid dianhydride containing the acid dianhydride residue represented by the formula (4) and the acid dianhydride represented by the formulas (25) to (28) are compared, the latter is more available. Easy to handle and excellent in crack resistance of pre-baked film.
  • the amount of the acid dianhydride is not particularly limited, but from the viewpoint of CTE and birefringence, it is preferably 10 to 20 mol% with respect to the total amount of the acid dianhydride residue in the polyimide precursor.
  • the number of moles of the diamine residue represented by formula (3) is the total mole of at least one acid dianhydride residue selected from formulas (25) to (28). Preferably it is the same as or less than the number.
  • examples of other diamines include aromatic diamine compounds, alicyclic diamine compounds, and aliphatic diamine compounds.
  • aromatic diamine compounds include 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfide, 4,4'-diaminodiphenylsulfide, 1,4-bis (4-aminophenoxy) benzene , Benzidine, 2,2'-bis (trifluoromethyl) benzidine, 3,3'-bis (trifluoromethyl) benzidine, 2,2'-diamin
  • alicyclic diamine compound examples include cyclobutane diamine, isophorone diamine, bicyclo [2,2,1] heptane bismethylamine, tricyclo [3,3,1,13,7] decane-1,3-diamine, 1,2 -Cyclohexyldiamine, 1,3-cyclohexyldiamine, cis-1,4-cyclohexyldiamine, 4,4'-diaminodicyclohexylmethane, 3,3'-dimethyl-4,4'-diaminodicyclohexylmethane, 3,3'- Diethyl-4,4′-diaminodicyclohexylmethane, 3,3 ′, 5,5′-tetramethyl-4,4′-diaminodicyclohexylmethane, 3,3 ′, 5,5′-tetraethyl-4,4′- Diaminodicyclohexylmethane
  • Aliphatic diamine compounds include ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, and 1,8-diaminooctane.
  • Alkylene diamines such as 1,9-diaminononane and 1,10-diaminodecane, ethylene glycol diamines such as bis (aminomethyl) ether, bis (2-aminoethyl) ether, bis (3-aminopropyl) ether, And siloxanes such as 1,3-bis (3-aminopropyl) tetramethyldisiloxane, 1,3-bis (4-aminobutyl) tetramethyldisiloxane, ⁇ , ⁇ -bis (3-aminopropyl) polydimethylsiloxane
  • diamine is mentioned, it is not limited to these.
  • aromatic diamine compounds alicyclic diamine compounds, or aliphatic diamine compounds can be used alone or in combination of two or more.
  • the polyimide precursor of the present invention may be sealed at both ends with a terminal blocking agent in order to adjust the molecular weight to a preferred range.
  • a terminal blocking agent that reacts with the acid dianhydride include monoamines and monohydric alcohols.
  • the terminal blocking agent that reacts with the diamine compound include acid anhydrides, monocarboxylic acids, monoacid chloride compounds, monoactive ester compounds, dicarbonates, and vinyl ethers.
  • various organic groups can be introduce
  • Monoamines used for the end-capping agent that reacts with an acid anhydride group include 5-amino-8-hydroxyquinoline, 4-amino-8-hydroxyquinoline, 1-hydroxy-8-aminonaphthalene, 1-hydroxy-7.
  • Examples of the monovalent alcohol used for the end-capping agent that reacts with the acid anhydride group include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1-pentanol, and 2-pentanol.
  • Examples of the acid anhydride, monocarboxylic acid, monoacid chloride compound and monoactive ester compound used for the end-capping agent that reacts with an amino group include phthalic anhydride, maleic anhydride, nadic anhydride, cyclohexanedicarboxylic anhydride, Acid anhydrides such as 3-hydroxyphthalic anhydride, 2-carboxyphenol, 3-carboxyphenol, 4-carboxyphenol, 2-carboxythiophenol, 3-carboxythiophenol, 4-carboxythiophenol, 1-hydroxy- 8-carboxynaphthalene, 1-hydroxy-7-carboxynaphthalene, 1-hydroxy-6-carboxynaphthalene, 1-hydroxy-5-carboxynaphthalene, 1-hydroxy-4-carboxynaphthalene, 1-hydroxy-3-carboxynaphthalene 1-hydroxy-2-carboxynaphthalene, 1-mercapto-8-carboxynaphthalene, 1-mercapto-7-carboxynaphthal
  • dicarbonate compound used for the end-capping agent that reacts with an amino group examples include di-tert-butyl dicarbonate, dibenzyl dicarbonate, dimethyl dicarbonate, and diethyl dicarbonate.
  • vinyl ether compounds used for end-capping agents that react with amino groups include: tert-butyl chloroformate, n-butyl chloroformate, isobutyl chloroformate, benzyl chloroformate, allyl chloroformate, ethyl chloroformate, isopropyl chloroformate Chloroformates such as butyl isocyanate, 1-naphthyl isocyanate, octadecyl isocyanate, phenyl isocyanate, and the like, butyl vinyl ether, cyclohexyl vinyl ether, ethyl vinyl ether, 2-ethylhexyl vinyl ether, isobutyl vinyl ether, isopropyl vinyl ether N-propyl vinyl ether, tert-butyl vinyl ether, benzyl vinyl ether and the like.
  • benzyl chloroformate benzyl chloroformate
  • benzoyl chloride fluorenylmethyl chloroformate
  • 2,2,2-trichloroethyl chloroformate allyl chloroformate
  • methanesulfonic acid examples include chloride, p-toluenesulfonic acid chloride, and phenyl isocyanate.
  • the introduction ratio of the end-capping agent that reacts with the acid anhydride group is preferably in the range of 0.1 to 60 mol%, particularly preferably 5 to 50 mol%, relative to the acid dianhydride component.
  • the introduction ratio of the end-capping agent that reacts with an amino group is preferably in the range of 0.1 to 100 mol%, particularly preferably 5 to 90 mol%, relative to the diamine component.
  • a plurality of terminal groups may be introduced by using a plurality of terminal blocking agents.
  • the end-capping agent introduced into the polyimide precursor can be easily detected by the following method. For example, by dissolving a polymer having a terminal blocking agent dissolved in an acidic solution and decomposing it into an amine component and an acid anhydride component, which are constituent units of the polymer, this is subjected to gas chromatography (GC) measurement and NMR measurement.
  • GC gas chromatography
  • the end capping agent can be easily detected.
  • it can be easily detected by performing pyrolysis gas chromatograph (PGC) measurement, infrared absorption spectrum measurement, and 13 C NMR spectrum measurement of the polymer into which the end-capping agent is introduced.
  • PPC pyrolysis gas chromatograph
  • the polyimide precursor of the present invention is preferably a polyimide precursor resin composition containing a solvent.
  • Solvents include N-methyl-2-pyrrolidone, gamma butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylpropyleneurea, 1,3-dimethyl-2-imidazolidinone, dimethyl Polar aprotic solvents such as sulfoxide, ethers such as tetrahydrofuran, dioxane, propylene glycol monomethyl ether, ketones such as acetone, methyl ethyl ketone, diisobutyl ketone, diacetone alcohol, ethyl acetate, propylene glycol monomethyl ether acetate, ethyl lactate, etc.
  • These esters and aromatic hydrocarbons such as toluene and xylene can be used alone or in combination of two or more.
  • the content of the solvent in the polyimide precursor resin composition is preferably 50 parts by weight or more, more preferably 100 parts by weight or more, preferably 2,000 parts by weight or less, based on 100 parts by weight of the polyimide precursor. Preferably it is 1,500 parts by weight or less. If it is in the range of 50 to 2,000 parts by weight, the viscosity is suitable for coating, and the film thickness after coating can be easily adjusted.
  • the polyimide precursor resin composition may contain a surfactant.
  • Fluorosurfactants such as Florard (trade name, manufactured by Sumitomo 3M Co., Ltd.), Megafuck (trade name, manufactured by DIC Corporation), Sulflon (trade name, manufactured by Asahi Glass Co., Ltd.), etc. Can be given.
  • KP341 trade name, manufactured by Shin-Etsu Chemical Co., Ltd.
  • DBE trade name, manufactured by Chisso Corporation
  • Granol trade name, manufactured by Kyoeisha Chemical Co., Ltd.
  • BYK manufactured by Big Chemie Corporation
  • Examples include polyoxyalkylene lauryl ether, polyoxyethylene lauryl ether, polyoxyethylene oleyl ether and polyoxyethylene cetyl ether surfactants such as Emalmin (manufactured by Sanyo Chemical Industries, Ltd.). Furthermore, acrylic polymer surfactants such as polyflow (trade name, manufactured by Kyoeisha Chemical Co., Ltd.) can be mentioned.
  • the surfactant is preferably 0.01 to 10 weights with respect to 100 weight parts of the polyimide precursor in the polyimide precursor resin composition.
  • the polyimide precursor resin composition can contain an internal release agent.
  • the internal mold release agent include long chain fatty acids.
  • the polyimide precursor resin composition has a range that does not impair storage stability, such as trimethoxyaminopropylsilane, trimethoxyepoxysilane, trimethoxyvinylsilane, trimethoxythiolpropylsilane, and the like.
  • a silane coupling agent may be contained.
  • a preferable content is 0.01 to 5 parts by weight with respect to 100 parts by weight of the polyimide precursor.
  • the polyimide precursor resin composition may contain a thermal crosslinking agent.
  • a thermal crosslinking agent an epoxy compound, a compound having at least two alkoxymethyl groups or methylol groups are preferable. By having at least two of these groups, a crosslinked structure is formed by a condensation reaction with the resin and the same kind of molecules, and the mechanical strength and chemical resistance of the cured film after heat treatment can be improved.
  • epoxy compound used as the thermal crosslinking agent include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, polymethyl (glycidyloxypropyl) siloxane and the like.
  • epoxy group containing silicone etc. can be mentioned, it is not limited to these.
  • Epicron 850-S Epicron HP-4032, Epicron HP-7200, Epicron HP-820, Epicron HP-4700, Epicron EXA-4710, Epicron HP-4770, Epicron EXA-859CRP, Epicron EXA-1514, Epicron EXA-4880, Epicron EXA-4850-150, Epicron EXA-4850-1000, Epicron EXA-4816, Epicron EXA-4822 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.), Rica Resin BEO-60E, Jamaica Resin BPO-20E, Rica Resin HBE-100, Jamaica Resin DME-100 (above trade names, Shin Nippon Rika Co., Ltd.), EP-4003S, EP-4000S (above trade names, Adeka Co., Ltd.), PG-10 CG-500, EG-200 (above trade name, manufactured by Osaka Gas Chemical Co., Ltd.), NC-3000, NC-6000 (above trade name, manufactured by Nippon
  • Examples of the compound having at least two alkoxymethyl groups or methylol groups used as a thermal crosslinking agent include DML-PC, DML-PEP, DML-OC, DML-OEP, DML-34X, DML-PTBP, and DML-PCHP.
  • the thermal crosslinking agent is preferably contained in an amount of 0.01 to 50 parts by weight with respect to 100 parts by weight of the polyimide precursor resin.
  • the polyimide precursor resin composition may contain an inorganic filler and / or an organoinorganic filler.
  • the inorganic filler include silica fine particles, alumina fine particles, titania fine particles, zirconia fine particles, and the like.
  • the shape of the inorganic filler is not particularly limited, and examples thereof include a spherical shape, an elliptical shape, a flat shape, a rod shape, and a fiber shape.
  • the inorganic filler contained has a small particle size in order to prevent light scattering.
  • the average particle size is 0.5 to 100 nm, preferably in the range of 0.5 to 30 nm.
  • the content of the inorganic filler is preferably 1 to 200% by weight with respect to the polyimide precursor, and more preferably 10% by weight or more with respect to the lower limit.
  • the upper limit is more preferably 150% by weight or less, further preferably 100% by weight or less, and particularly preferably 50% by weight or less. As the content increases, flexibility and folding resistance decrease.
  • Organo inorganic filler sol is an organic solvent in which an inorganic filler is dispersed at a ratio of about 30% by weight.
  • organic solvents include methanol, isopropanol, normal butanol, ethylene glycol, methyl ethyl ketone, methyl isobutyl ketone, propylene glycol monomethyl acetate, propylene.
  • Examples include glycol monomethyl ether, N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, 1,3-dimethylimidazolidinone, and gamma butyl lactone.
  • the dispersibility of the inorganic filler with respect to the polyimide precursor is improved by subjecting the organoinorganic filler sol to a surface treatment using a silane coupling agent.
  • the terminal functional group of the silane coupling agent contains an epoxy group or amino group
  • the carboxylic acid of the polyamic acid is bonded to the epoxy group or amino group, so that the polyimide precursor and the cured polyimide
  • the affinity of can be increased, and more effective dispersion can be performed.
  • silane coupling agent having an epoxy group examples include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycid And xylpropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, and the like.
  • silane coupling agent having an amino group examples include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and 3-aminopropyltrimethoxysilane.
  • Examples include methoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, and N-phenyl-3-aminopropyltrimethoxysilane.
  • the treatment method of the organoinorganic filler sol with a silane coupling agent various known methods can be used.
  • the treatment can be performed by adding a silane coupling agent to an organoinorganic filler sol having a controlled concentration and stirring at room temperature to 80 ° C. for 0.5 to 2 hours.
  • the polyimide precursor resin composition may contain a photoacid generator.
  • a photoacid generator By containing a photoacid generator, when light is irradiated through a mask on which an exposure pattern is drawn, an acid is generated in the exposed portion, and the solubility of the exposed portion in an alkaline aqueous solution is increased.
  • the polyimide precursor resin composition containing a photoacid generator can be used as a positive photosensitive resin.
  • the polyimide precursor resin composition containing the photoacid generator may be referred to as a positive photosensitive resin composition
  • the photoacid generator used in such a case include quinonediazide compounds, sulfonium salts, phosphonium salts, diazonium salts, and iodonium salts.
  • a quinonediazide compound is preferably used from the standpoint that a positive photosensitive resin composition exhibiting an excellent dissolution inhibiting effect and having a high sensitivity and a low film thickness can be obtained.
  • the quinonediazide compound includes a polyhydroxy compound in which a sulfonic acid of quinonediazide is bonded with an ester, a polyamino compound in which a sulfonic acid of quinonediazide is bonded to a sulfonamide, and a sulfonic acid of quinonediazide in an ester bond and / or sulfone.
  • Examples include amide-bonded ones.
  • a positive photosensitive resin composition that reacts with i-ray (wavelength 365 nm), h-ray (wavelength 405 nm), and g-ray (wavelength 436 nm) of a mercury lamp, which is a general ultraviolet ray, is obtained. be able to.
  • the 5-quinonediazide compound is preferably either a 5-naphthoquinonediazidesulfonyl group or a 4-naphthoquinonediazidesulfonyl group.
  • a compound having both of these groups in the same molecule may be used, or a compound using different groups may be used in combination.
  • the quinonediazide compound used in such a case is synthesized from a specific phenol compound by the following method. For example, there is a method in which 5-naphthoquinonediazide sulfonyl chloride and a phenol compound are reacted in the presence of triethylamine. Examples of the method for synthesizing a phenol compound include a method of reacting an ⁇ - (hydroxyphenyl) styrene derivative with a polyhydric phenol compound under an acid catalyst.
  • the content of the photoacid generator used in such a case is preferably 3 to 40 parts by weight with respect to 100 parts by weight of the polyimide precursor. By setting the content of the photoacid generator within this range, higher sensitivity can be achieved. Furthermore, you may contain a sensitizer etc. as needed.
  • a varnish of the positive photosensitive resin composition is applied onto a support substrate, and after exposure, the exposed portion is removed using a developer.
  • Developers include tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, dimethylaminoethyl acetate, dimethylaminoethanol, dimethyl
  • An aqueous solution of a compound showing alkalinity such as aminoethyl methacrylate, cyclohexylamine, ethylenediamine, hexamethylenediamine and the like is preferable.
  • these alkaline aqueous solutions are mixed with polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, gamma butyrolactone, dimethylacrylamide, methanol, ethanol, isopropanol.
  • Alcohols such as ethyl lactate, esters such as propylene glycol monomethyl ether acetate, ketones such as cyclopentanone, cyclohexanone, isobutyl ketone, and methyl isobutyl ketone may be added singly or in combination.
  • alcohols such as ethanol and isopropyl alcohol, and esters such as ethyl lactate and propylene glycol monomethyl ether acetate may be added to water for rinsing treatment.
  • Polyimide precursors such as polyamic acid, polyamic acid ester, and polyamic acid silyl ester can be synthesized by a reaction between a diamine compound and an acid dianhydride or a derivative thereof.
  • Derivatives include tetracarboxylic acid, acid chloride, tetracarboxylic acid mono-, di-, tri-, and tetra-esters of the acid dianhydride, such as methyl group, ethyl group, n-propyl group, isopropyl.
  • the reaction method of the polymerization reaction is not particularly limited as long as the target polyimide precursor can be produced, and a known reaction method can be used.
  • a predetermined amount of all the diamine component and the reaction solvent are charged and dissolved in a reactor, and then a predetermined amount of acid dianhydride component is charged and the mixture is charged at room temperature to 80 ° C. for 0.5 to 30 hours.
  • Examples include a stirring method.
  • the polyimide resin film may contain the aforementioned surfactant, internal mold release agent, silane coupling agent, thermal crosslinking agent, inorganic filler, photoacid generator, and the like.
  • a polyimide precursor resin composition film is formed by applying a polyimide precursor resin composition on a support substrate.
  • a support substrate for example, silicon, ceramics, gallium arsenide, soda lime glass, non-alkali glass, or the like is used, but is not limited thereto.
  • the coating method include a slit coating method, a spin coating method, a spray coating method, a roll coating method, and a bar coating method, and these methods may be used in combination. Among these, spin coating or slit coating is preferable.
  • the polyimide precursor resin composition applied on the support substrate is dried to obtain a polyimide precursor resin film.
  • a hot plate an oven, an infrared ray, a vacuum chamber or the like is used.
  • the support substrate coated with the polyimide precursor resin composition is held and heated directly on the plate or on a jig such as a proxy pin installed on the plate.
  • a material of the proxy pin there are a metal material such as aluminum or sterylene, or a synthetic resin such as polyimide resin or “Teflon (registered trademark)”, and any proxy pin may be used.
  • the height of the proxy pin varies depending on the size of the support substrate, the type of the resin layer to be heated, the purpose of heating, and the like.
  • a resin layer coated on a 300 mm ⁇ 350 mm ⁇ 0.7 mm glass support substrate In the case of heating, the height of the proxy pin is preferably about 2 to 12 mm.
  • the drying process time can be shortened and a uniform coating film can be formed.
  • the heating temperature for drying varies depending on the type and purpose of the support substrate and the polyimide precursor, and it is preferably performed in the range of room temperature to 170 ° C. for 1 minute to several hours. Furthermore, you may perform a drying process in multiple times on the same conditions or different conditions.
  • the polyimide precursor resin film is heated in a range of 180 ° C. or higher and 400 ° C. or lower to convert it into a polyimide resin film.
  • the thermal imidization process may be performed after passing through some process after the drying process.
  • the atmosphere of the thermal imidization step is not particularly limited, and may be air or an inert gas such as nitrogen or argon.
  • the polyimide resin film of the present invention is required to be colorless and transparent, it is preferable to perform thermal imidization by heating in an atmosphere having an oxygen concentration of 5% or less. Generally, by reducing the oxygen concentration, it is possible to reduce the coloration of the polyimide film during heating and obtain a polyimide resin film exhibiting high transparency.
  • a temperature raising method can be selected according to the heating method of the oven of the production line, but it is preferable to raise the temperature to the maximum heating temperature over 5 to 120 minutes.
  • a polyimide precursor resin film formed on a base material in an oven is heated from room temperature to a heating temperature for thermal imidization over 5 to 120 minutes to be imidized to form a polyimide resin film.
  • the polyimide precursor resin film formed on the base material is suddenly charged into an oven preheated in the range of 200 ° C. or higher and 650 ° C. or lower, and heat treatment is performed to imidize the polyimide resin film. .
  • the polyimide resin film obtained as described above has high transparency, low birefringence, low CTE, high heat resistance, chemical resistance, and flexibility.
  • a liquid crystal display and an organic EL described later are used as a flexible substrate. It can be suitably used for display elements such as displays and electronic paper, optical elements such as color filters and optical waveguides, light-receiving elements such as solar cells and CMOS, touch panels, circuit boards, and the like.
  • the transparency of the polyimide resin film can be judged by measuring an ultraviolet-visible (UV-vis) spectrum.
  • the light transmittance at a wavelength of 400 nm is preferably 70% or more, more preferably 80% or more, and still more preferably 90% or more with respect to a film having a thickness of 10 ⁇ m.
  • the polyimide resin film of the present invention preferably has a birefringence defined by a difference in refractive index between the vertical direction and the horizontal direction with respect to the film surface of 0.06 or less.
  • the average value of 50 ° C. to 200 ° C. is preferably 40 ppm / ° C. or less. More preferably, the birefringence is 0.04 or less and the CTE is 40 ppm / ° C. or less, and further preferably the birefringence is 0.04 or less and the CTE is 30 ppm / ° C. or less.
  • a residual stress is generated in a polyimide resin film formed on a support substrate, and as a result, the support substrate is warped.
  • the warp of the support substrate causes problems such as a decrease in processing accuracy of the element and a transport error during processing of the element.
  • the residual stress of the polyimide resin film is mainly due to the difference between the CTEs of the support substrate and the polyimide resin film. When the difference between the CTEs of the two increases, the residual stress also increases.
  • a glass substrate having a CTE lower than that of the polyimide resin film is used as the support substrate, and therefore a low CTE is required for the polyimide resin film.
  • low birefringence is required for a substrate of a display element such as a display substrate or an optical element such as a color filter.
  • a display using a display element or a color filter used for a substrate having high birefringence problems such as image distortion and color shift in an oblique visual field occur.
  • the polyimide resin film of the present invention is excellent in the balance between low CTE and low birefringence, both high processing accuracy and high-quality display images can be achieved.
  • polyimides formed from the polyimide precursors of the present invention are organic solvents such as acetone, propylene glycol monomethyl ether, N-methyl-2-pyrrolidone, gamma butyrolactone, dimethyl sulfoxide, hydrochloric acid, nitric acid, phosphoric acid.
  • organic solvents such as acetone, propylene glycol monomethyl ether, N-methyl-2-pyrrolidone, gamma butyrolactone, dimethyl sulfoxide, hydrochloric acid, nitric acid, phosphoric acid.
  • acidic solutions such as acetic acid and oxalic acid
  • basic solutions such as tetramethylammonium hydroxide.
  • these physical property values include those when the surfactant, internal mold release agent, silane coupling agent, thermal crosslinking agent, inorganic filler, photoacid generator, etc. are included in the polyimide resin film. It is a physical property value as a resin film in a dead state.
  • the polyimide resin film of the invention can be used for display elements such as liquid crystal displays, organic EL displays and electronic paper, optical elements such as color filters and optical waveguides, light receiving elements such as solar cells and CMOS, touch panels, circuit boards and the like. it can.
  • the polyimide resin film of the present invention can be preferably used as a flexible substrate in using these display elements, light receiving elements, etc. as flexible elements that are flexible and bend greatly and can be bent.
  • an optical element color filter, etc.
  • an element name such as a flexible display element, a flexible optical element (flexible color filter, etc.), etc. In some cases, “flexible” is indicated before the symbol.
  • Manufacturing of display elements, light receiving elements, circuits, TFT substrates, etc. may be carried out on the polyimide resin film after forming the polyimide resin film on the support substrate and peeling the polyimide resin film from the support substrate. You may implement on a polyimide resin film as it is, without peeling from a board
  • the method for peeling the polyimide resin film on which the display element, the light receiving element, the circuit, the TFT substrate, the touch panel and the like are formed from the substrate is not particularly limited.
  • peeling methods include a method of immersing in water, a method of immersing in a chemical solution such as hydrochloric acid and hydrofluoric acid, and a method of irradiating the interface between the polyimide resin film and the support substrate with laser light in the wavelength range of ultraviolet light to infrared light.
  • a release agent may be applied to the support substrate or a sacrificial layer may be formed before applying the polyimide precursor resin composition to the substrate.
  • Examples of the release agent include vegetable oils, alkyds, silicones, fluorines, aromatic polymers, alkoxysilanes, and the like.
  • Examples of the sacrificial layer include a metal film, a metal oxide film, and an amorphous silicon film.
  • an inorganic film can be formed on at least one surface to form a gas barrier layer, and the substrate with a gas barrier layer can be suitably used for a substrate of a display element.
  • the gas barrier layer on the polyimide resin film plays a role of preventing permeation of water vapor, oxygen and the like.
  • organic electroluminescence element organic EL element
  • deterioration of the element due to moisture is remarkable, so that it is necessary to provide a gas barrier property to the substrate.
  • the substrate including the polyimide resin film of the present invention has a feature that it is flexible and can be bent greatly. Such a flexible substrate is called a flexible substrate.
  • the flexible substrate can be manufactured through at least the following steps (1) to (3).
  • a flexible substrate having an inorganic film on a polyimide resin film can be produced through at least the following steps (1) to (4). (1) The process of apply
  • the step (4) is a step of forming an inorganic film on at least one surface of the polyimide resin film.
  • a flexible substrate can be manufactured by peeling the polyimide resin film from the support substrate.
  • an inorganic film may be formed immediately above the polyimide resin film, or an inorganic film may be formed with another layer interposed therebetween.
  • the inorganic film is formed directly on the polyimide resin film.
  • the support substrate used for manufacturing the flexible substrate is preferably a hard substrate having self-supporting properties, a smooth surface on which the resin composition is applied, and a heat-resistant base material.
  • the material is not particularly limited.
  • glass is preferred from the viewpoints of surface smoothness, laser peeling, and low cost.
  • An alkali free glass is preferable from a viewpoint of metal impurity reduction.
  • an inorganic film is preferably formed on the polyimide resin film.
  • metal oxide, metal nitride, and metal oxynitride can be preferably used.
  • a gas barrier layer containing at least a metal oxide of Zn, Sn, or In, a metal nitride, and a metal oxynitride is preferable because of high bending resistance.
  • a gas barrier layer having an atomic concentration of Zn, Sn, and In of 20 to 40% is preferable because it has higher bending resistance.
  • a composition in which silicon dioxide and aluminum oxide coexist in the gas barrier layer is also preferable because of its good bending resistance.
  • These inorganic gas barrier layers can be produced by vapor deposition such as sputtering, vacuum deposition, ion plating, plasma CVD, etc., in which a material is deposited in a vapor phase to form a film.
  • the deposition rate can be improved by performing reactive sputtering in which a metal target is sputtered in an oxygen-containing atmosphere.
  • the gas barrier layer may be formed on a laminate composed of a support substrate and a polyimide resin film, or may be formed on a self-supporting film peeled from the support substrate.
  • the polyimide resin of the present invention Since the polyimide resin of the present invention has high heat resistance, it is possible to produce a gas barrier layer by raising the substrate temperature.
  • the deposition temperature of the gas barrier layer is preferably 80 to 400 ° C.
  • the film forming temperature of the gas barrier layer is preferably 100 to 300 ° C. Since the polyimide resin film of the present invention has excellent heat resistance, defects such as wrinkles do not occur in the film even when the gas barrier layer is formed at a high temperature (for example, 300 ° C.).
  • gas barrier layers there is no limitation on the number of gas barrier layers, and it may be a single layer or a multilayer of two or more layers.
  • the multilayer film include a gas barrier layer in which the first layer is made of SiO, the second layer is made of SiN, and the first layer is made of SiO / AlO / ZnO, and the second layer is made of SiO.
  • Various organic solvents are used in the process of forming a layer having various functions such as an organic EL light emitting layer on the gas barrier layer of the flexible substrate to produce a display element or an optical element.
  • a color filter hereinafter referred to as “CF”
  • CF color filter
  • a gas barrier layer is formed on a polyimide resin film, and a colored pixel, a black matrix, or the like is formed to form a CF.
  • the uppermost gas barrier layer is preferably made of silicon oxide.
  • composition analysis of the gas barrier layer can be performed by quantitatively analyzing each element using X-ray photoelectron spectroscopy (XPS method).
  • the total thickness of the gas barrier layer is preferably 20 to 600 nm, and more preferably 30 to 300 nm.
  • the thickness of the gas barrier layer can usually be measured by cross-sectional observation with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • composition analysis in the thickness direction is performed, and then the elements in the thickness direction are analyzed. Then, the layer boundary and the layer thickness are determined based on the concentration distribution information.
  • the composition analysis procedure in the thickness direction and the definition of the layer boundary and layer thickness of each layer are described below.
  • composition analysis methods applied at this time include electron energy loss spectroscopy (hereinafter referred to as EELS analysis), energy dispersive X-ray spectroscopy (hereinafter referred to as EDX analysis), and secondary ion mass spectrometry (hereinafter referred to as SIMS analysis).
  • EELS analysis electron energy loss spectroscopy
  • EDX analysis energy dispersive X-ray spectroscopy
  • SIMS analysis secondary ion mass spectrometry
  • EELS analysis is most preferable from the viewpoint of sensitivity and accuracy. Therefore, the EELS analysis is first performed, and then the analysis is performed in the order given above (EELS analysis ⁇ EDX analysis ⁇ SIMS analysis ⁇ XPS analysis ⁇ AES analysis). To apply the data.
  • CF is obtained by providing a black matrix and colored pixels on a flexible substrate using the polyimide resin film of the present invention. Since CF uses a resin film as a base material, it is characterized by light weight, resistance to cracking, flexibility, and the like.
  • the resin used for at least one of the black matrix and the colored pixel layer preferably contains a polyimide resin.
  • the black matrix is composed of a low optical density layer and a high optical density layer formed on the low optical density layer, and at least of the low optical density layer and the high optical density layer. It is preferable that the resin used for one layer contains a polyimide resin.
  • the polyimide resin film of the present invention has high chemical resistance against a common polar aprotic solvent as a solvent for the polyimide precursor, a polyimide resin can be used for the black matrix and the colored pixel layer. Furthermore, even when a gas barrier layer is formed on the black matrix and the colored pixel layer, the polyimide resin of the black matrix and the colored pixel layer has high heat resistance. This is advantageous for forming a gas barrier layer. Further, when patterning the black matrix and the colored pixel layer, it can be used as a polyimide precursor soluble in an alkaline aqueous solution, which is advantageous for forming a fine pattern.
  • FIG. 1A shows a basic structure of a CF including a polyimide resin film of the present invention formed on a support substrate. From here, the support substrate 1 is peeled off by the peeling method described above, whereby a CF using the polyimide resin film of the present invention as a substrate is obtained.
  • a polyimide resin film 2 is formed on the support substrate 1, a black matrix 4, a red colored pixel 5R, a green colored pixel 5G, and a blue colored pixel 5B are formed thereon, and an overcoat layer 6 is further provided. .
  • the overcoat layer 6 is not essential, and an example in which it is not disposed is also possible.
  • 1B to 1D are modifications of FIG. 1A, in which a gas barrier layer 3 that is an inorganic film is further formed.
  • the place where the gas barrier layer 3 is formed is not particularly limited.
  • the gas barrier layer 3 may be formed on the polyimide resin film 2 (see FIG. 1B), or may be formed on the black matrix 4 or the colored pixel layer (see FIG. 1C).
  • the overcoat layer 6 may be formed on the overcoat layer 6 existing on the surface of the color filter, or may be formed on both the polyimide resin film 2 and the overcoat layer 6 (see FIG. 1D).
  • the multilayer film include a gas barrier layer in which the first layer is made of SiO, the second layer is made of SiN, and the first layer is made of SiO / AlO / ZnO, and the second layer is made of SiO.
  • the black matrix is preferably a black matrix made of a resin in which a black pigment is dispersed in a resin.
  • the black pigment include carbon black, titanium black, titanium oxide, titanium oxynitride, titanium nitride, or iron tetroxide.
  • carbon black and titanium black are suitable.
  • a red pigment, a green pigment, and a blue pigment can be mixed and used as a black pigment.
  • the resin used for the resin black matrix is preferably a polyimide resin from the viewpoint of heat resistance and ease of forming a fine pattern.
  • the polyimide resin is preferably a polyimide resin obtained by thermosetting a polyamic acid synthesized from an acid dianhydride and a diamine after patterning.
  • a photosensitive acrylic resin can also be used. It consists of a black pigment-dispersed alkali-soluble acrylic resin, a photopolymerizable monomer, a polymer dispersant and an additive.
  • alkali-soluble acrylic resins include copolymers of unsaturated carboxylic acids and ethylenically unsaturated compounds.
  • unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetic acid or acid anhydrides.
  • photopolymerizable monomers examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, triacryl formal, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate or dipentaerythritol. Examples include penta (meth) acrylate.
  • photopolymerization initiators examples include benzophenone, N, N′-tetraethyl-4,4′-diaminobenzophenone, 4-methoxy-4′-dimethylaminobenzophenone, 2,2-diethoxyacetophenone, ⁇ -hydroxyisobutylphenone , Thioxanthone or 2-chlorothioxanthone.
  • Examples of the solvent for dissolving the photosensitive acrylic resin include propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethyl acetoacetate, methyl-3-methoxypropionate, ethyl-3-ethoxypropionate, Mention may be made of methoxybutyl acetate or 3-methyl-3-methoxybutyl acetate.
  • the black matrix is a laminated resin black matrix composed of a low optical density layer and a high optical density layer formed on the low optical density layer in order to suppress a decrease in visibility due to external light reflection. It is preferable.
  • the low optical density layer has a layer configuration in which the optical density is not 0 and is not substantially transparent, and the optical density value per unit thickness is the optical density per unit thickness of the high optical density layer. It is smaller than the concentration.
  • the resin constituting the laminated resin black matrix is not particularly limited, but from the viewpoint of batch patterning the low optical density layer and the high optical density layer, the low optical density layer may be a polyimide resin, and the high optical density layer may be an acrylic resin. preferable. Furthermore, in order to reduce the reflectance, it is more preferable that the resin black matrix contains fine particles.
  • the colored pixels are composed of colored pixels of three colors, red, green, and blue.
  • the brightness of the white display of the display device can be improved by forming a pixel of the fourth color that is colorless and transparent or very lightly colored.
  • the colored pixel of the color filter can be a resin containing a pigment or a dye as a colorant.
  • pigments used for red colored pixels include PR254, PR149, PR166, PR177, PR209, PY138, PY150 or PYP139
  • examples of pigments used for green colored pixels are PG7, PG36, PG58. , PG37, PB16, PY129, PY138, PY139, PY150 or PY185
  • examples of pigments used for blue colored pixels include PB15: 6 or PV23.
  • blue dyes include C.I. I. Basic blue (BB) 5, BB7, BB9 or BB26 may be mentioned, and examples of red dye include C.I. I. Acid Red (AR) 51, AR87 or AR289.
  • red dyes include C.I. I. Acid green (AG) 25 and AG27.
  • resins used for red, green and blue colored pixels include acrylic resins, epoxy resins, and polyimide resins.
  • a polyimide resin is preferable from the viewpoint of heat resistance, and a photosensitive acrylic resin may be used in order to reduce the production cost of CF.
  • a non-photosensitive color paste made of polyamic acid, a colorant, and a solvent is applied on a substrate, and then dried by air drying, heat drying, vacuum drying, etc.
  • a photosensitive polyamic acid colored film is formed, a positive photoresist is used to form a desired pattern, the photoresist is then alkali peeled, and finally heated at 200 to 300 ° C. for 1 minute to 3 hours to form a colored pixel.
  • a method of curing (polyimidization) is common.
  • the photosensitive acrylic resin generally contains an alkali-soluble acrylic resin, a photopolymerizable monomer, and a photopolymerization initiator.
  • alkali-soluble acrylic resins include copolymers of unsaturated carboxylic acids and ethylenically unsaturated compounds.
  • unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetic acid or acid anhydrides.
  • photopolymerizable monomers examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, triacryl formal, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate or dipentaerythritol. Examples include penta (meth) acrylate.
  • photopolymerization initiators examples include benzophenone, N, N′-tetraethyl-4,4′-diaminobenzophenone, 4-methoxy-4′-dimethylaminobenzophenone, 2,2-diethoxyacetophenone, ⁇ -hydroxyisobutylphenone , Thioxanthone or 2-chlorothioxanthone.
  • Examples of the solvent for dissolving the photosensitive acrylic resin include propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethyl acetoacetate, methyl-3-methoxypropionate, ethyl-3-ethoxypropionate , Methoxybutyl acetate or 3-methyl-3-methoxybutyl acetate.
  • an overcoat layer may be further formed on the color filter surface.
  • the resin used for forming the overcoat layer include an epoxy resin, an acrylic epoxy resin, an acrylic resin, a siloxane resin, or a polyimide resin.
  • the thickness of the overcoat layer is preferably a thickness that makes the surface flat, more preferably 0.5 to 5.0 ⁇ m, and even more preferably 1.0 to 3.0 ⁇ m.
  • CF manufacturing method CF including the polyimide resin film of the present invention can be produced through at least the following steps.
  • the step (4) is a step of forming a black matrix and colored pixels on the polyimide resin film.
  • photolithography is used for pattern formation of a black matrix and colored pixels.
  • high definition of 300 ppi or more is required for a liquid crystal display or an organic EL display, and a performance equal to or higher than that of a flexible display panel is also required.
  • a black matrix or the like is formed on a polyimide resin film formed on a support substrate to produce a CF, a glass substrate is used as the support substrate and a black matrix or the like is formed thereon to produce a CF.
  • the current technology can be applied, and it is advantageous for forming a high-definition pattern as compared with the case of producing CF on a polyimide free-standing film.
  • a black matrix or colored pixels may be formed immediately above the polyimide resin film, or these may be formed with another layer interposed therebetween.
  • the CF manufacturing process may further include a process of forming an inorganic film such as a gas barrier layer.
  • the place where the inorganic film is formed is not particularly limited. For example, it can be formed on a polyimide resin film, on a black matrix or a colored pixel layer, or on a planarizing film existing on the surface of a color filter. It may be formed on both of the above.
  • limiting in the number of layers of an inorganic film Only 1 layer or a multilayer of 2 layers or more may be sufficient.
  • the multilayer film include an inorganic film in which the first layer is made of SiO, the second layer is made of SiN, and the first layer is made of SiO / AlO / ZnO, and the second layer is made of SiO.
  • a polyimide resin film and a gas barrier layer are produced on the support substrate by the above method.
  • a paste for a black matrix made of polyamic acid in which a black pigment made of carbon black or titanium black is dispersed is applied by a method such as a spin coater or a die coater so that the thickness after curing becomes 1 ⁇ m, and 60 Pa or less
  • semi-cure is performed in a hot air oven or hot plate at 110 to 140 ° C.
  • a positive resist by spin coater or die coater so that the thickness after pre-baking is 1.2 ⁇ m, then dry under reduced pressure to 80 Pa, and pre-bake in a hot air oven or hot plate at 80 to 110 ° C. And a resist film is formed. Then, after selective exposure with ultraviolet rays through a photomask by a proximity exposure machine or a projection exposure machine, alkali development such as 1.5 to 3% by weight of potassium hydroxide or tetramethylammonium hydroxide is performed. The exposed portion is removed by immersing in the solution for 20 to 300 seconds. After removing the positive resist using a stripping solution, the resin black matrix is formed by converting the polyamic acid to polyimide by heating in a hot air oven or hot plate at 200 to 300 ° C. for 10 to 60 minutes.
  • Colored pixels are produced using a colorant and a resin.
  • a pigment is used as the colorant, it is prepared by adding polyamic acid to a dispersion obtained by mixing a pigment with a polymer dispersant and a solvent and performing a dispersion treatment.
  • a dye is used as the colorant, it is prepared by adding a solvent and a polyamic acid to the dye.
  • the total solid content in this case is the total of the polymer dispersant, polyamic acid, which is a resin component, and the colorant.
  • the obtained colorant composition is formed on a polyimide resin film on which a resin black matrix is formed, with a target thickness of 0.8 to 3.0 ⁇ m after heat treatment by a method such as spin coater or die coater. After coating, the film is dried under reduced pressure to 80 Pa, and prebaked in a hot air oven or hot plate at 80 to 110 ° C. to form a colorant coating film.
  • a positive resist is applied by a method such as a spin coater or a die coater so that the thickness after pre-baking becomes 1.2 ⁇ m, and then dried to 80 Pa under reduced pressure, and a hot air oven or hot plate at 80 to 110 ° C. Is pre-baked to form a resist film. Then, after selective exposure with ultraviolet rays through a photomask by a proximity exposure machine or a projection exposure machine, alkali development such as 1.5 to 3% by weight of potassium hydroxide or tetramethylammonium hydroxide is performed. The exposed portion is removed by immersing in the solution for 20 to 300 seconds.
  • a method such as a spin coater or a die coater so that the thickness after pre-baking becomes 1.2 ⁇ m, and then dried to 80 Pa under reduced pressure, and a hot air oven or hot plate at 80 to 110 ° C. Is pre-baked to form a resist film.
  • alkali development such as 1.5 to 3% by weight of potassium hydroxide or
  • the patterning process as described above is sequentially performed on the red color pixel, the green color pixel, and the blue color pixel.
  • the order of patterning the colored pixels is not particularly limited.
  • the polysiloxane resin is applied by a method such as a spin coater or a die coater, vacuum dried, pre-baked in a hot air oven or hot plate at 80 to 110 ° C., and 5 to 5 in a hot air oven or hot plate at 150 to 250 ° C.
  • a method such as a spin coater or a die coater, vacuum dried, pre-baked in a hot air oven or hot plate at 80 to 110 ° C., and 5 to 5 in a hot air oven or hot plate at 150 to 250 ° C.
  • the polyimide resin film of the present invention has a low CTE, the warpage of the substrate when the polyimide resin film is formed on the support substrate can be reduced. Therefore, it is possible to reduce the focus shift in the photolithography process when forming the black matrix or the colored pixels, and as a result, the CF can be manufactured with high accuracy.
  • the polyimide resin film of this invention can be used conveniently for the base material of a TFT substrate. That is, a TFT substrate having a TFT on the polyimide resin film of the present invention can be obtained. Since this TFT substrate uses a resin film as a base material, it is characterized by light weight and resistance to cracking.
  • a TFT substrate using the polyimide resin film of the present invention can be manufactured through at least the following steps. (1) The process of apply
  • the steps (4) and (5) are steps for forming a gas barrier layer on the polyimide resin film and then forming a TFT.
  • a gas barrier layer or TFT may be formed immediately above the polyimide resin film, or these layers are formed with another layer interposed therebetween. Also good.
  • a gas barrier layer is formed directly on the polyimide resin film, and a TFT is formed thereon.
  • amorphous silicon semiconductor, polycrystalline silicon semiconductor, In-Ga-ZnO - 4 in the oxide semiconductor typified include organic semiconductor typified by pentacene or polythiophene.
  • organic semiconductor typified by pentacene or polythiophene.
  • using the polyimide resin film of the present invention as a base material, a gas barrier film, a gate electrode, a gate insulating film, a semiconductor layer, an etching stopper film, and a source / drain electrode are sequentially formed by a known method to produce a bottom gate type TFT.
  • a TFT substrate using a polyimide resin film can be manufactured through the above steps.
  • Such a TFT substrate can be used as a drive substrate for a display element such as a liquid crystal element, an organic EL element, or electronic paper.
  • a TFT substrate In the production of a TFT substrate, photolithography is mainly used to form a gate electrode, a gate insulating film, a semiconductor layer, an etching stopper film, and a source / drain electrode.
  • the polyimide resin film of the present invention has a low CTE, the warpage of the substrate when the polyimide resin film is formed on the support substrate can be reduced. Accordingly, since the defocus in the photolithography process can be reduced, the TFT can be manufactured with high accuracy. As a result, a TFT substrate with good driving performance can be obtained. For example, in the case of a bottom emission type organic EL display, the user of the display visually recognizes light transmitted through the TFT substrate.
  • the flexible substrate using the polyimide resin film of the present invention can be used for a touch panel substrate.
  • a transparent conductive layer is formed on at least one side of the polyimide resin film of the present invention to form a transparent conductive film, and a touch panel can be created by laminating transparent conductive films using an adhesive, an adhesive, or the like.
  • a carbon material such as a carbon nanotube or graphene such as a known metal film or metal oxide film
  • a metal oxide film is applied from the viewpoint of transparency, conductivity, and mechanical properties. It is preferable.
  • the metal oxide film include indium oxide, cadmium oxide and tin oxide to which tin, tellurium, cadmium, molybdenum, tungsten, fluorine, zinc, germanium and the like are added as impurities, zinc oxide to which aluminum is added as an impurity, and oxide.
  • metal oxide films such as titanium.
  • an indium oxide thin film containing 2 to 15% by mass of tin oxide or zinc oxide is preferably used because of its excellent transparency and conductivity.
  • the transparent conductive layer may be formed by any method as long as the target thin film can be formed. For example, from the gas phase such as sputtering, vacuum deposition, ion plating, and plasma CVD. A vapor deposition method or the like in which a material is deposited to form a film is suitable. Especially, it is preferable to form into a film using sputtering method from a viewpoint that the outstanding electroconductivity and transparency are acquired.
  • the film thickness of the transparent conductive layer is preferably 20 to 500 nm, and more preferably 50 to 300 nm.
  • the flexible substrate using the polyimide resin film of the present invention can be used for a circuit board.
  • a circuit board What formed some circuits on it by using the polyimide resin film of this invention as a base film is mentioned.
  • a photoresist film is formed on a copper-clad polyimide film (CCL) in which the polyimide resin film of the present invention is used as a base film and a copper foil is provided on one or both sides via an adhesive layer, exposure / development, etching, resist peeling Then, a solder resist film is formed, electrolytic gold plating is performed, and a cover lay film serving as a protective layer is pasted thereon to obtain a circuit board.
  • CTL copper-clad polyimide film
  • a solder resist film is formed, electrolytic gold plating is performed, and a cover lay film serving as a protective layer is pasted thereon to obtain a circuit board.
  • a transparent circuit board can be obtained. This can be suitably used for a transparent display.
  • the flexible substrate using the polyimide of the present invention can be used for a display element such as a liquid crystal display, an organic EL display, and electronic paper, or a light receiving element such as a solar battery or a CMOS.
  • a display element such as a liquid crystal display, an organic EL display, and electronic paper
  • a light receiving element such as a solar battery or a CMOS.
  • the flexible substrate of the present invention is preferably used.
  • a circuit and a functional layer necessary for the display element and the light receiving element are formed on the polyimide resin film formed on the substrate, and a known method such as laser irradiation is used.
  • the polyimide resin film can be peeled off from the substrate.
  • an organic EL element which is an example of a display element
  • an example of an organic EL element top emission method, white light emitting organic EL
  • a polyimide resin film 8 is formed on the support substrate 7, a gas barrier layer 9 which is an inorganic film is further formed thereon, and a TFT circuit and an organic EL light emitting layer are formed thereon.
  • the TFT circuit, the organic EL light emitting layer, and the like are the TFT 10 made of amorphous, silicon, low-temperature polysilicon, oxide semiconductor, etc., the flattening layer 11, the first electrode 12 made of Al / ITO, the end of the first electrode 12, etc.
  • a white organic EL light emitting layer 14W made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer, and a second electrode 15 made of ITO or the like.
  • the gas barrier layer 16 is sealed.
  • the organic EL element containing the polyimide resin film of the present invention can be produced through at least the following steps. (1) The process of apply
  • the TFT 10 made of amorphous, silicon, low-temperature polysilicon, oxide semiconductor, etc., the planarizing layer 11, the first electrode 12 made of Al / ITO, etc., and the end of the first electrode 12 are covered.
  • the second electrode 15 is formed in order.
  • a gas barrier layer 9 which is an inorganic film on the polyimide resin film 8 in advance, and then form a TFT circuit and an organic EL light emitting layer, and after forming the organic EL light emitting layer, the gas barrier layer is formed. Sealing with 16 is also preferred.
  • the step (5) is the same as that described above.
  • the light extraction method may be either a bottom emission method in which light is extracted to the TFT substrate side or a top emission method in which light is extracted to the sealing substrate side.
  • TFT formation with high accuracy and color shift in an oblique visual field can be reduced.
  • the gas barrier layer can be formed on the polyimide resin film of the present invention even at a high temperature, the gas permeability of the panel can be reduced. Therefore, by using the organic EL element including the polyimide resin film of the present invention, a flexible organic EL display with few defects such as dark spots and the like, in which chromaticity does not change and display quality / display reliability is high is obtained. be able to.
  • Organic EL display The organic EL element including the polyimide resin film of the present invention and / or the CF including the polyimide resin film of the present invention can be preferably used as an organic EL display including them.
  • a gas barrier film / TFT circuit / organic EL light emitting layer (red / green / blue) is formed on the polyimide resin film of the present invention.
  • the organic EL display (bottom emission type) shown in FIG. 7 can be obtained.
  • B. Organic EL Display Comprising CF Containing Polyimide Resin Film of the Present Invention By combining a CF including the polyimide resin film of the present invention and an organic EL element, a full color display organic EL display can be obtained. In particular, it is preferable to combine a white light-emitting organic EL element using a polyimide resin film as a base material and the CF of the present invention.
  • an existing polyimide resin film or the polyimide resin film of the present invention may be used as a base material of an organic EL element.
  • FIG. 3 shows an example of an organic EL display obtained by bonding the CF of the present invention and a white light emitting organic EL element.
  • the following method is mentioned as an example of the manufacturing process.
  • the CF 20 of the present invention is formed on a first support substrate (not shown) by the above-described manufacturing method.
  • an organic EL element 30 using a polyimide resin film as a substrate is formed on a second support substrate (not shown) by the above-described method.
  • the CF 20 and the organic EL element 30 are bonded together via the adhesive layer 17.
  • the first and second support substrates are respectively peeled by irradiating the first and second support substrates with laser from the support substrate side.
  • the pressure-sensitive adhesive layer is not particularly limited, and examples thereof include a pressure-sensitive adhesive, an adhesive, and an adhesive cured by light or heat.
  • the resin for the adhesive layer is not particularly limited, and examples thereof include acrylic resins, epoxy resins, urethane resins, polyamide resins, polyimide resins, and silicone resins.
  • the polyimide resin film formed on the second substrate is not particularly limited, and may be the polyimide resin film of the present invention or a known polyimide resin film.
  • Known polyimides include, for example, pyromellitic dianhydride and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as an acid component, paraphenylenediamine, 4,4′-diaminodiphenyl ether, 2 , 2'-dimethylbenzidine and wholly aromatic polyimides containing 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl as a diamine component.
  • the type of laser used for peeling the first and second support substrates is not particularly limited as long as peeling is possible.
  • excimer laser wavelengths 248, 308, 351 nm
  • YAG laser wavelengths 1064, 532, 355 nm
  • He—Ne laser 633 nm
  • carbon dioxide laser wavelength 1060 nm
  • the pre-baked film was heated to 300 ° C. at 3.5 ° C./min under a nitrogen stream (oxygen concentration 20 ppm or less), and then heated to 300 ° C. For 30 minutes, and cooled to 50 ° C. at 5 ° C./min to prepare a polyimide resin film (on a glass substrate).
  • T Measurement of light transmittance
  • the light transmittance at 400 nm was measured using an ultraviolet-visible spectrophotometer (MultiSpec 1500, manufactured by Shimadzu Corporation).
  • MultiSpec 1500 manufactured by Shimadzu Corporation
  • the polyimide resin film on the glass substrate produced by (3) was used for the measurement.
  • n (TE) and TM) are refractive indexes in the parallel direction and the vertical direction, respectively, with respect to the polyimide film surface.
  • the average refractive index n (AV) is calculated from ((2 ⁇ n (TE) 2 + n (TM) 2 ) / 3) ⁇ 0.5, and the birefringence is the difference between n (TE) and n (TM) (n (TE) ⁇ n (TM)).
  • the polyimide resin film prepared in (2) was used.
  • thermomechanical analyzer EXSTAR6000 TMA / SS6000 manufactured by SII Nanotechnology Co., Ltd.
  • the temperature raising method was performed under the following conditions. In the first stage, the temperature was raised to 200 ° C. at a temperature rising rate of 5 ° C./min to remove the adsorbed water of the sample, and in the second stage, it was air cooled to room temperature at a temperature lowering rate of 5 ° C./min. In the third stage, the main measurement was performed at a heating rate of 5 ° C./min, and the average value of CTEs from 50 ° C. to 200 ° C. was obtained.
  • the amount of deviation from the ideal lattice of the black matrix of the produced color filter was measured 24 times for each color filter substrate with glass using SMIC-800 (manufactured by Sokkia Topcon). The average of the absolute values of the deviation amounts obtained by measurement was obtained by calculation, and the obtained value was taken as the deviation amount from the ideal lattice of the black matrix at that level.
  • ITO target manufactured by Toto Corporation
  • An ITO film having a thickness of 160 nm was formed. Next, the ITO film thus formed was heat-treated at 200 ° C.
  • the obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water.
  • This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • a hole transport layer, an organic light emitting layer, and an electron transport layer were sequentially deposited by a resistance heating method to provide a red organic EL light emitting layer.
  • a cathode made of Mg / ITO was formed on the entire surface above the substrate. Further, a SiON sealing film was formed by CVD film formation.
  • the obtained substrate was taken out from the vapor deposition machine, and the organic EL element was peeled from the glass substrate by irradiating an excimer laser (wavelength 308 nm) from the glass substrate side.
  • the obtained organic EL element was driven at a constant voltage of 6 V, and color coordinates (x, y) in 0 ° and 70 ° directions using a luminance orientation characteristic measuring device C9920-11 (manufactured by Hamamatsu Photonics Co., Ltd.) was measured. It means that the smaller the difference between (x, y) measured in each direction, the smaller the color shift in the oblique field of view.
  • BPDA 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride
  • ODPA 3,3 ′, 4,4′-oxydiphthalic dianhydride
  • 6FDA 4,4 ′-(hexafluoroisopropylidene) diphthalate
  • Acid anhydride BSAA 2,2-bis (4- (3,4-dicarboxyphenoxy) phenyl) propane dianhydride
  • PMDA-HS 1R, 2S, 4S, 5R-cyclohexanetetracarboxylic dianhydride
  • BPAF 4,4 '-(fluorenyl) diphthalic anhydride
  • BPF-EPA 4,4'-((9H-fluorenyl) bis (4,1-phenyleneoxycarbonyl)) diphthalic dianhydride
  • BPF-PA 9, 9-bis (4- (3,4-dicarboxyphenoxy) phenyl) fluoride
  • Preparation Example 1 Preparation of Polyimide Precursor Composition (Varnish) BPDA 129.0416 g (0.438 mol), PDA 47.4290 g (0.438 mol) and NMP 1000 g were placed in a 2000 mL four-necked flask under a dry nitrogen stream and heated at 65 ° C. Stir. After 6 hours, the mixture was cooled to obtain a polyamic acid resin solution (resin concentration: 15 wt%).
  • Preparation Example 2 Preparation of polyimide precursor composition (varnish) DAE 60.07 g (0.30 mol), PDA 70.29 g (0.65 mol) and SiDA 12.43 g (0.05 mol) together with 850 g GBL and 850 g NMP The mixture was charged with 309.43 g (0.9975 mol) of ODPA and reacted at 80 ° C. for 3 hours. 1.96 g (0.02 mol) of maleic anhydride was added and further reacted at 80 ° C. for 1 hour to obtain a polyamic acid resin solution (resin concentration 20 wt%).
  • Preparation Example 3 Preparation of black light-shielding agent composition for forming a black matrix 50 g of carbon black (MA100; manufactured by Mitsubishi Chemical Corporation) and 200 g of polyimide precursor composition (varnish) of Preparation Example 2 NMP was mixed, and dispersion treatment was performed for 3 hours at 3200 rpm using zirconia beads having a diameter of 0.3 mm using DYNOMILL KDL-A to obtain a light-shielding agent dispersion 1.
  • this light-shielding agent dispersion Into 50 g of this light-shielding agent dispersion 1, 49.9 g of NMP and 0.1 g of a surfactant (LC951; manufactured by Enomoto Chemical Co., Ltd.) were added to obtain a non-photosensitive light-shielding agent composition.
  • a surfactant LC951; manufactured by Enomoto Chemical Co., Ltd.
  • a polymer dispersant BYK2000; resin concentration 40 wt%; manufactured by Big Me Japan Co., Ltd.
  • 67 g of an alkali-soluble resin Cyclomer (registered trademark) ACA250; resin concentration 45 wt%); Manufactured
  • 83 g of propylene glycol monomethyl ether and 650 g of propylene glycol monomethyl ether acetate were mixed to prepare a slurry.
  • the beaker containing the slurry was connected to a circulating bead mill disperser (Dynomill KDL-A; manufactured by Willy et Bacofen) with a tube, and using zirconia beads having a diameter of 0.3 mm as a medium, dispersion at 3200 rpm for 4 hours Processing was performed to obtain a colorant dispersion.
  • a circulating bead mill disperser (Dynomill KDL-A; manufactured by Willy et Bacofen) with a tube, and using zirconia beads having a diameter of 0.3 mm as a medium, dispersion at 3200 rpm for 4 hours Processing was performed to obtain a colorant dispersion.
  • Preparation Example 5 Preparation of photosensitive green colorant composition for forming green colored pixels
  • PG7 Hosta Palm (registered trademark) Green GNX; manufactured by Clariant Japan
  • PY150 E4GNGT; LANXESS Co., Ltd.
  • 100 g of BYK2000, 67 g of cyclomer ACA250, 83 g of propylene glycol monomethyl ether and 650 g of propylene glycol monomethyl ether acetate are mixed with this colorant, and zirconia beads having a diameter of 0.3 mm are used with DYNOMILL KDL-A.
  • a dispersion treatment was performed at 3200 rpm for 6 hours to obtain a colorant dispersion.
  • Preparation Example 6 Preparation of photosensitive blue colorant composition for forming blue colored pixels 100 g of PB15: 6 (Lionol (registered trademark) Blue 7602; manufactured by Toyo Ink Co., Ltd.) was used as a colorant. A slurry was prepared by mixing 100 g of BYK2000, 67 g of cyclomer ACA250, 83 g of propylene glycol monomethyl ether and 650 g of propylene glycol monomethyl ether acetate in the colorant.
  • PB15: 6 Lionol (registered trademark) Blue 7602; manufactured by Toyo Ink Co., Ltd.
  • a slurry was prepared by mixing 100 g of BYK2000, 67 g of cyclomer ACA250, 83 g of propylene glycol monomethyl ether and 650 g of propylene glycol monomethyl ether acetate in the colorant.
  • the slurry was subjected to a dispersion treatment at 3200 rpm for 3 hours using a zirconia bead having a diameter of 0.3 mm using a disperser DYNOMILL KDL-A to obtain a colorant dispersion.
  • Preparation Example 7 Preparation of non-photosensitive red colorant composition for forming red colored pixels Pigment Red PR254, 3.6 g (80 wt%), Pigment Red PR177, 0.9 g (20 wt%) and a polymer dispersant (PD) 22.5g and NMP63g were mixed and the slurry was produced.
  • the slurry was subjected to a dispersion treatment at 3200 rpm for 3 hours using a zirconia bead having a diameter of 0.3 mm using a disperser DYNOMILL KDL-A to obtain a colorant dispersion.
  • Preparation Example 8 Preparation of non-photosensitive green colorant composition for forming a green colored pixel Pigment Green PG36, 2.7 g (60 wt%), Pigment Yellow PY150, 1.8 g (40 wt%) and a polymer dispersant (PD) 22.5g and NMP63g were mixed and the slurry was produced.
  • the slurry was subjected to a dispersion treatment at 3200 rpm for 3 hours using a zirconia bead having a diameter of 0.3 mm using a disperser DYNOMILL KDL-A to obtain a colorant dispersion.
  • Preparation Example 9 Preparation of non-photosensitive blue colorant composition for forming blue colored pixels Pigment Blue PB15: 6, 4.5 g, polymer dispersant (PD) 22.5 g and N-methylpyrrolidone 63 g were mixed Thus, a slurry was prepared. The slurry was subjected to a dispersion treatment at 3200 rpm for 3 hours using a zirconia bead having a diameter of 0.3 mm using a disperser DYNOMILL KDL-A to obtain a colorant dispersion.
  • PD polymer dispersant
  • N-methylpyrrolidone 63 g N-methylpyrrolidone
  • Preparation Example 10 Preparation of resin composition for forming transparent protective film 280 g of GBL and 74.95 g of ⁇ -aminopropyltriethoxysilane were added to 65.05 g of trimellitic acid, and the mixture was heated at 120 ° C. for 2 hours. Heated. To 20 g of the obtained solution, 7 g of bisphenoxyethanol fluorange glycidyl ether and 15 g of diethylene glycol dimethyl ether were added to obtain a resin composition.
  • Preparation Example 11 Synthesis of polysiloxane solution In a 500 ml three-necked flask, 81.72 g (0.60 mol) of methyltrimethoxysilane, 59.49 g (0.30 mol) of phenyltrimethoxysilane, (2- (3,4- Epoxycyclohexyl) ethyltrimethoxysilane (24.64 g, 0.10 mol) and diacetone alcohol (163.1 g) were charged. While stirring at room temperature, 55.8 g of water was charged with 0.54 g of phosphoric acid (0.3 wt. %) Was added over 10 minutes, and then the flask was immersed in a 40 ° C.
  • the solid content concentration of the obtained polysiloxane solution was 43 wt%, and the weight average molecular weight of the polysiloxane was 4200.
  • the content ratio of the phenyl group-substituted silane in the polysiloxane was 30 mol% in terms of Si atom molar ratio.
  • Preparation Example 12 Preparation of photosensitive positive transparent resist 15.43 g of polysiloxane solution obtained by the above synthesis, 0.59 g of quinonediazide compound, 3.73 g of diacetone alcohol as a solvent, 9.84 g of propylene glycol monomethyl ether acetate as yellow After mixing and stirring under a lamp to make a uniform solution, the mixture was filtered through a 0.45 ⁇ m filter to prepare a photosensitive positive type transparent resist.
  • a polyimide resin film is prepared from the obtained polyimide precursor by the methods described in (1) to (4) above, and the light transmittance, birefringence, CTE, CTE, and the like are measured by the methods described in (5) to (11). Crack evaluation, substrate warpage, BM position accuracy, and angle dependency of EL element color coordinates were measured. The results are shown in Table 1.
  • Example 1 In the same manner as in Example 1, a polyimide resin film was prepared, and light transmittance, birefringence, CTE, crack evaluation, substrate warpage, BM position accuracy, and angle dependency of EL element color coordinates were measured. The results are shown in Table 1.
  • Example 1 In the same manner as in Example 1, a cured film was prepared, and transmittance, birefringence, and linear expansion coefficient were measured. The results are shown in Table 1. In the same manner as in Example 1, a polyimide resin film was prepared, and light transmittance, birefringence, CTE, crack evaluation, substrate warpage, BM position accuracy, and angle dependency of EL element color coordinates were measured. The results are shown in Table 1.
  • Example 1 In the same manner as in Example 1, a polyimide resin film was prepared, and light transmittance, birefringence, CTE, crack evaluation, substrate warpage, BM position accuracy, and angle dependency of EL element color coordinates were measured. The results are shown in Table 1.
  • Example 1 In the same manner as in Example 1, a polyimide resin film was prepared, and light transmittance, birefringence, CTE, crack evaluation, substrate warpage, BM position accuracy, and angle dependency of EL element color coordinates were measured. The results are shown in Table 1.
  • Example 1 In the same manner as in Example 1, a polyimide resin film was prepared, and light transmittance, birefringence, CTE, crack evaluation, substrate warpage, BM position accuracy, and angle dependency of EL element color coordinates were measured. The results are shown in Table 1.
  • Example 1 In the same manner as in Example 1, a polyimide resin film was prepared, and light transmittance, birefringence, CTE, crack evaluation, substrate warpage, BM position accuracy, and angle dependency of EL element color coordinates were measured. The results are shown in Table 1.
  • Example 1 In the same manner as in Example 1, a polyimide resin film was prepared, and light transmittance, birefringence, CTE, crack evaluation, substrate warpage, BM position accuracy, and angle dependency of EL element color coordinates were measured. The results are shown in Table 1.
  • Example 1 In the same manner as in Example 1, a polyimide resin film was prepared, and light transmittance, birefringence, CTE, crack evaluation, substrate warpage, BM position accuracy, and angle dependency of EL element color coordinates were measured. The results are shown in Table 1.
  • Example 1 In the same manner as in Example 1, a polyimide resin film was prepared, and light transmittance, birefringence, CTE, crack evaluation, substrate warpage, BM position accuracy, and angle dependency of EL element color coordinates were measured. The results are shown in Table 1.
  • Example 1 In the same manner as in Example 1, a polyimide resin film was prepared, and light transmittance, birefringence, CTE, crack evaluation, substrate warpage, BM position accuracy, and angle dependency of EL element color coordinates were measured. The results are shown in Table 1.
  • Example 1 In the same manner as in Example 1, a polyimide resin film was prepared, and light transmittance, birefringence, CTE, crack evaluation, substrate warpage, BM position accuracy, and angle dependency of EL element color coordinates were measured. The results are shown in Table 1.
  • Example 1 In the same manner as in Example 1, a polyimide resin film was prepared, and light transmittance, birefringence, CTE, crack evaluation, substrate warpage, BM position accuracy, and angle dependency of EL element color coordinates were measured. The results are shown in Table 1.
  • Example 1 In the same manner as in Example 1, a polyimide resin film was prepared, and light transmittance, birefringence, CTE, crack evaluation, substrate warpage, BM position accuracy, and angle dependency of EL element color coordinates were measured. The results are shown in Table 1.
  • Example 1 In the same manner as in Example 1, a polyimide resin film was prepared, and light transmittance, birefringence, CTE, crack evaluation, substrate warpage, BM position accuracy, and angle dependency of EL element color coordinates were measured. The results are shown in Table 1.
  • Example 1 In the same manner as in Example 1, a polyimide resin film was prepared, and light transmittance, birefringence, CTE, substrate warpage, BM position accuracy, and angle dependency of the color coordinates of the EL element were measured. The results are shown in Table 1.
  • Example 1 In the same manner as in Example 1, a polyimide resin film was prepared, and light transmittance, birefringence, CTE, substrate warpage, BM position accuracy, and angle dependency of the color coordinates of the EL element were measured. The results are shown in Table 1.
  • Example 16 Production of color filter (FIG. 4)
  • the varnish synthesized in Example 1 was spin-coated so as to have a thickness of 5 ⁇ m.
  • the prebaking process for 140 degreeC x 4 minutes was performed using the hotplate.
  • the pre-baked coating film was heated to 300 ° C.
  • the resist was peeled off with methyl cellosolve acetate and then imidized by heating at 280 ° C. for 10 minutes on a hot plate to form a black matrix 4.
  • the thickness of the black matrix was measured, it was 1.4 ⁇ m.
  • the film was developed by being immersed in a developer composed of a 0.2 wt% tetramethylammonium hydroxide aqueous solution, and then washed with pure water. Thereafter, heat treatment was performed in an oven at 230 ° C. for 30 minutes to produce a red pixel 5R.
  • a green pixel 5G made of the photosensitive green resist produced in Preparation Example 5 and a blue pixel 5B made of the photosensitive blue resist produced in Preparation Example 6 were produced. Subsequently, the rotation speed of the spinner was adjusted so that the thickness of the colored pixel portion after the heat treatment was 2.5 ⁇ m, and the resin composition produced in Preparation Example 10 was applied. Thereafter, heat treatment was performed in an oven at 230 ° C. for 30 minutes to produce an overcoat layer 6.
  • Example 17 Production of color filter Example for producing colored pixels, except that the non-photosensitive colorant composition described in Preparation Examples 7 to 9 was used to produce colored pixels by the method described below.
  • a color filter was prepared in the same manner as in No. 16.
  • the spinner rotation speed was adjusted so that the thickness at the black matrix opening after heat treatment was adjusted to 2.0 ⁇ m on the polyimide resin film 2 on the glass substrate on which the black matrix 4 was patterned.
  • a non-photosensitive colorant composition was applied onto the polyimide film. Next, it was dried at 130 ° C. for 10 minutes on a hot plate to form a red resin coating film.
  • a positive photoresist (“SRC-100”, manufactured by Shipley Co., Ltd.) was spin-coated on the red resin coating film, and prebaked on a hot plate at 120 ° C. for 5 minutes.
  • a 2.38% tetramethylammonium hydroxide aqueous solution is used to simultaneously develop the photoresist and etch the resin coating.
  • a pattern was formed.
  • the resist was peeled off with methyl cellosolve acetate and imidized by heating at 280 ° C. for 10 minutes on a hot plate to form a red pixel 5R.
  • a green pixel 5G made of the non-photosensitive green colorant composition produced in Preparation Example 8 and a blue pixel 5B made of the non-photosensitive blue colorant composition produced in Preparation Example 9 were produced. Subsequently, the rotation speed of the spinner was adjusted so that the thickness of the colored pixel portion after the heat treatment was 2.5 ⁇ m, and the resin composition produced in Preparation Example 10 was applied. Thereafter, heat treatment was performed in an oven at 230 ° C. for 30 minutes to produce an overcoat layer 6.
  • Example 18 Production of color filter (FIG. 5) Sputtering is performed in an argon atmosphere using a target made of silicon oxide to form a gas barrier layer 3 made of a silicon oxide film having a thickness of 300 nm on the polyimide resin film 2, and a black matrix 4 and colored pixels are formed on the laminated film.
  • a color filter was produced in the same manner as in Example 17 except that 5R, 5G, 5B and the overcoat layer 6 were formed.
  • the gas barrier layer was formed by sputtering under the conditions of a pressure of 2 ⁇ 10 ⁇ 1 Pa, a substrate temperature of 300 ° C., and an AC power supply of 13.56 MHz. When the pixel pattern shape was confirmed using an optical microscope, there was no change in the pattern shape before and after peeling. Further, the appearance of the obtained color filter was not inferior to that of the glass substrate color filter.
  • Example 19 Production of color filter (FIG. 6) Sputtering was performed in an argon atmosphere containing 10 vol% oxygen using a mixed sintered target having a ratio of zinc oxide, silicon dioxide, and aluminum oxide of 62/35/3 (mol), and the silicon oxide / zinc oxide having a thickness of 200 nm was formed. / A gas barrier layer (lower layer) 3 ′ made of an aluminum oxide film is formed on the polyimide resin film 2, and after that, sputtering is performed in an argon atmosphere using a target made of silicon oxide while maintaining a vacuum. A gas barrier layer (upper layer) 3 ′ ′ composed of a 100 nm silicon oxide film was obtained.
  • a color filter was produced in the same manner as in Example 17 except that the black matrix 4, the colored pixels 5R, 5G, 5B and the overcoat layer 6 were formed on the laminated film.
  • the gas barrier film (lower layer) was formed by sputtering under the conditions of a pressure of 3 ⁇ 10 ⁇ 1 Pa, a substrate temperature of 300 ° C., and a DC power source of 3 kW.
  • the gas barrier layer (upper layer) was formed by sputtering under the conditions of a pressure of 2 ⁇ 10 ⁇ 1 Pa, a substrate temperature of 300 ° C., and an AC power supply of 13.56 MHz.
  • Example 20 Production of active matrix organic EL element (FIG. 7)
  • FIG. 7 Fabrication of polyimide resin film A thickness of 15 ⁇ 0 after pre-baking at 140 ° C. for 10 minutes on a glass substrate (AN100 (Asahi Glass Co., Ltd.)) (not shown) having a thickness of 300 mm ⁇ 400 mm ⁇ 0.7 mm.
  • the varnish prepared in Example 1 was spin-coated so as to have a thickness of 5 ⁇ m.
  • the prebaking process for 140 degreeC x 10 minutes was performed using the ventilation dryer.
  • the pre-baked coating film was heated to 300 ° C.
  • TFT substrate A gas barrier layer 9 made of SiO was formed on the polyimide resin film (on a glass substrate) produced by the above method using a plasma CVD method. Thereafter, a bottom gate type TFT 10 was formed, and an insulating film (not shown) made of Si 3 N 4 was formed so as to cover the TFT. Next, after forming a contact hole in the insulating film, a wiring (height: 1.0 ⁇ m, not shown) connected to the TFT through the contact hole was formed on the insulating film. This wiring is for connecting an organic EL element formed between TFTs or an organic EL element formed in a later process and the TFT.
  • the flattening layer 11 was formed on the insulating film in a state where the unevenness due to the wiring was embedded.
  • the planarizing layer is formed by spin-coating a photosensitive polyimide varnish on a substrate, pre-baking on a hot plate (120 ° C. ⁇ 3 minutes), exposing and developing through a mask having a desired pattern, and under an air flow The heat treatment was performed at 230 ° C. for 60 minutes. The applicability when applying the varnish was good, and no wrinkles or cracks were observed in the flattened layer obtained after exposure, development and heat treatment. Furthermore, the average level difference of the wiring was 500 nm, a 5 ⁇ m square contact hole was formed in the prepared planarization layer, and the thickness was about 2 ⁇ m.
  • the following portions were formed on the obtained planarization layer 11 to produce a bottom emission type organic EL element.
  • the first electrode 12 made of ITO was formed on the planarizing layer by connecting to a wiring (not shown) through a contact hole. Thereafter, a resist was applied, prebaked, exposed through a mask having a desired pattern, and developed. Using this resist pattern as a mask, patterning of the first electrode was performed by wet etching using an ITO etchant. Thereafter, the resist pattern was stripped using a resist stripping solution (mixed solution of monoethanolamine and diethylene glycol monobutyl ether). The substrate after peeling was washed with water and dehydrated by heating at 200 ° C.
  • a resist stripping solution mixed solution of monoethanolamine and diethylene glycol monobutyl ether
  • the first electrode thus obtained corresponds to the anode of the organic EL element.
  • an insulating layer 13 having a shape covering the end portion of the first electrode was formed.
  • the photosensitive polyimide varnish was also used for the insulating layer.
  • a hole transport layer, an organic light emitting layer, and an electron transport layer are sequentially deposited through a desired pattern mask in a vacuum deposition apparatus, and then a red organic EL light emitting layer 14R, a green organic EL light emitting layer 14G, and a blue organic EL.
  • a light emitting layer 14B was provided.
  • a second electrode 15 made of Al / Mg (Al: reflective electrode) was formed on the entire surface above the substrate.
  • a SiON sealing film 16 was formed by CVD film formation.
  • substrate was taken out from the vapor deposition machine, and the organic EL element was peeled from the glass substrate by irradiating an excimer laser (wavelength 308nm) from the glass substrate side. When a voltage was applied to the obtained active matrix organic EL element through a drive circuit, good light emission was exhibited. Moreover, the obtained organic EL element was inferior compared with the organic EL element produced using the glass substrate.
  • Example 21 Production of Organic EL Display (Active Matrix Type) (FIG. 8) [1] Production of polyimide resin film A glass substrate (AN100 (Asahi Glass Co., Ltd.)) having a thickness of 300 mm ⁇ 400 mm ⁇ 0.7 mm has a thickness of 15 ⁇ 0.5 ⁇ m after pre-baking at 140 ° C. for 10 minutes. The varnish prepared in Example 1 was applied by spin coating. Then, the prebaking process for 140 degreeC x 10 minutes was performed using the ventilation dryer. The pre-baked coating film was heated to 300 ° C.
  • AN100 Aligni Glass Co., Ltd.
  • TFT substrate A gas barrier layer 9 made of SiO was formed on the polyimide resin film (on a glass substrate) produced by the above method using a plasma CVD method. Thereafter, a bottom gate type TFT 10 was formed, and an insulating film (not shown) made of Si 3 N 4 was formed so as to cover the TFT 10. Next, after forming a contact hole in the insulating film, a wiring (height: 1.0 ⁇ m, not shown) connected to the TFT through the contact hole was formed on the insulating film. This wiring is for connecting an organic EL element formed between TFTs or an organic EL element formed in a later process and the TFT.
  • the flattening layer 11 was formed on the insulating film in a state where the unevenness due to the wiring was embedded.
  • the planarizing layer is formed by spin-coating a photosensitive polyimide varnish on a substrate, pre-baking on a hot plate (120 ° C. ⁇ 3 minutes), exposing and developing through a mask having a desired pattern, and under an air flow The heat treatment was performed at 230 ° C. for 60 minutes. The applicability when applying the varnish was good, and no wrinkles or cracks were observed in the flattened layer obtained after exposure, development and heat treatment. Furthermore, the average level difference of the wiring was 500 nm, a 5 ⁇ m square contact hole was formed in the prepared planarization layer, and the thickness was about 2 ⁇ m.
  • a green pixel 5G is produced using the non-photosensitive green colorant composition PG-1 produced in Preparation Example 8, and a blue pixel is produced using the non-photosensitive blue colorant composition PB-1 produced in Preparation Example 9. 5B was formed.
  • PLA parallel light mask aligner
  • PLA-501F manufactured by Canon Inc.
  • the produced film was subjected to pattern exposure with an ultra-high pressure mercury lamp through a gray scale mask for sensitivity measurement, and then automatically Using a developing device (AD-2000 manufactured by Takizawa Sangyo Co., Ltd.), shower development is performed for 60 seconds with ELM-D (trade name, manufactured by Mitsubishi Gas Chemical Co., Ltd.) which is a 2.38 wt% tetramethylammonium hydroxide aqueous solution. Then rinsed with water for 30 seconds. Thereafter, as a bleaching exposure, PLA (Canon Co., Ltd. PLA-501F) was used, and the entire surface of the film was exposed to 3000 J / m 2 (wavelength 365 nm exposure amount conversion) of an ultrahigh pressure mercury lamp.
  • the first electrode 12 made of ITO was formed on the overcoat layer by connecting it to a wiring (not shown) through a contact hole. Thereafter, a resist was applied, prebaked, exposed through a mask having a desired pattern, and developed. Using this resist pattern as a mask, patterning of the first electrode 12 was performed by wet etching using an ITO etchant. Thereafter, the resist pattern was stripped using a resist stripping solution (mixed solution of monoethanolamine and diethylene glycol monobutyl ether). The peeled substrate was washed with water and heated and dehydrated at 200 ° C.
  • a resist stripping solution mixed solution of monoethanolamine and diethylene glycol monobutyl ether
  • the first electrode thus obtained corresponds to the anode of the organic EL element.
  • an insulating layer 13 having a shape covering the end of the first electrode 12 was formed.
  • a photosensitive polyimide varnish was also used for the insulating layer 13.
  • a hole transport layer, an organic light emitting layer, and an electron transport layer were sequentially deposited in a vacuum deposition apparatus through a desired pattern mask to provide a white organic EL light emitting layer 14W.
  • a second electrode 15 made of Al / Mg (Al: reflective electrode) was formed on the entire surface above the substrate.
  • a SiON sealing film 16 was formed by CVD film formation.
  • substrate was taken out from the vapor deposition machine, and the organic EL element was peeled from the glass substrate by irradiating an excimer laser (wavelength 308nm) from the glass substrate side.
  • an excimer laser wavelength 308nm
  • TFT substrate A gas barrier layer 9 made of SiO was formed on the polyimide resin film 2 (on a glass substrate) produced by the above method using a plasma CVD method. Thereafter, a bottom gate type TFT 10 was formed, and an insulating film (not shown) made of Si 3 N 4 was formed so as to cover the TFT. Next, after forming a contact hole in the insulating film, a wiring (height: 1.0 ⁇ m, not shown) connected to the TFT through the contact hole was formed on the insulating film. This wiring is for connecting an organic EL element formed between TFTs or an organic EL element formed in a later process and the TFT.
  • the flattening layer 11 was formed on the insulating film in a state where the unevenness due to the wiring was embedded.
  • the planarizing layer is formed by spin-coating a photosensitive polyimide varnish on a substrate, pre-baking on a hot plate (120 ° C. ⁇ 3 minutes), exposing and developing through a mask having a desired pattern, and under an air flow The heat treatment was performed at 230 ° C. for 60 minutes. The applicability when applying the varnish was good, and no wrinkles or cracks were observed in the flattened layer obtained after exposure, development and heat treatment. Furthermore, the average level difference of the wiring was 500 nm, a 5 ⁇ m square contact hole was formed in the prepared planarization layer, and the thickness was about 2 ⁇ m.
  • a first electrode 12 made of Al / ITO Al: reflective electrode
  • a resist was applied, prebaked, exposed through a mask having a desired pattern, and developed.
  • patterning of the first electrode was performed by wet etching using an ITO etchant.
  • the resist pattern was stripped using a resist stripping solution (mixed solution of monoethanolamine and diethylene glycol monobutyl ether).
  • the substrate after peeling was washed with water and dehydrated by heating at 200 ° C. for 30 minutes to obtain an electrode substrate with a planarizing layer.
  • the change in the thickness of the flattening layer was less than 1% after heat dehydration with respect to the treatment before the stripping solution treatment.
  • the first electrode 12 thus obtained corresponds to the anode of the organic EL element.
  • an insulating layer 13 having a shape covering the end of the first electrode 12 was formed.
  • the photosensitive polyimide varnish was also used for the insulating layer.
  • a hole transport layer, an organic light emitting layer, and an electron transport layer are sequentially deposited through a desired pattern mask in a vacuum deposition apparatus, and then a red organic EL light emitting layer 14R, a green organic EL light emitting layer 14G, and a blue organic EL.
  • a light emitting layer 14B was provided.
  • the second electrode 15 made of Mg / ITO was formed on the entire surface above the substrate.
  • a SiON sealing film 16 was formed by CVD film formation.
  • substrate was taken out from the vapor deposition machine, and the organic EL element was peeled from the glass substrate by irradiating an excimer laser (wavelength 308nm) from the glass substrate side. When a voltage was applied to the obtained active matrix organic EL element through a drive circuit, good light emission was exhibited. Moreover, the obtained organic EL element was inferior compared with the organic EL element produced using the glass substrate.
  • Example 23 Production of organic EL display (active matrix type) (FIG. 3) [1] Production of Color Filter with Glass Substrate By the method described in Example 18, a color filter was produced on a glass substrate.
  • a first electrode 12 made of Al / ITO Al: reflective electrode
  • a resist was applied, prebaked, exposed through a mask having a desired pattern, and developed.
  • patterning of the first electrode 12 was performed by wet etching using an ITO etchant.
  • the resist pattern was stripped using a resist stripping solution (mixed solution of monoethanolamine and diethylene glycol monobutyl ether).
  • the substrate after peeling was washed with water and dehydrated by heating at 200 ° C. for 30 minutes to obtain an electrode substrate with a planarizing layer.
  • the change in the thickness of the flattening layer was less than 1% after heat dehydration with respect to the treatment before the stripping solution treatment.
  • the first electrode 12 thus obtained corresponds to the anode of the organic EL element.
  • an insulating layer 13 having a shape covering the end of the first electrode 12 was formed.
  • the photosensitive polyimide varnish was also used for the insulating layer.
  • a hole transport layer, an organic light emitting layer, and an electron transport layer were sequentially deposited in a vacuum deposition apparatus through a desired pattern mask to provide a white organic EL light emitting layer 14W.
  • the second electrode 15 made of Mg / ITO was formed on the entire surface above the substrate.
  • a SiON sealing film 16 was formed by CVD film formation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

 硬化後の膜が優れた光透過性を有し、低複屈折性と低線熱膨張性を併せ持つポリイミド前駆体を提供することを課題とする。 少なくとも、式(1)で表される酸二無水物残基、式(2)で表されるジアミン残基、ならびに式(3)で表されるジアミン残基の1種以上を含むポリイミド前駆体であって、式(1)で表される酸二無水物残基がポリイミド前駆体中の酸二無水物残基の全量に対し50モル%以上であり、式(2)で表されるジアミン残基がポリイミド前駆体中のジアミン残基の全量に対し50モル%以上であり、式(3)で表されるジアミン残基がポリイミド前駆体中のジアミン残基の全量に対し15モル%以下であるポリイミド前駆体。

Description

ポリイミド前駆体、それから得られるポリイミド樹脂膜、ならびにそれを含む表示素子、光学素子、受光素子、タッチパネル、回路基板、有機ELディスプレイ、および、有機EL素子ならびにカラーフィルタの製造方法
 本発明は、ポリイミド前駆体、それから得られるポリイミド樹脂膜、ならびにそれを含む表示素子、光学素子、受光素子、タッチパネル、回路基板、有機ELディスプレイ、および、有機EL素子ならびにカラーフィルタの製造方法に関するものである。
 有機フィルムはガラスに比べて屈曲性に富み、割れにくく、軽量である。最近では、有機フィルムをフラットパネルディスプレイの基板に用いて、ディスプレイをフレキシブル化する検討がなされている。
 一般に、有機フィルムに用いられる樹脂としては、ポリエステル、ポリアミド、ポリイミド、ポリカーボネート、ポリエーテルスルホン、アクリル、エポキシなどが挙げられる。それらの中でも、特にポリイミド樹脂は、耐熱性、機械強度、耐磨耗性、寸法安定性、耐薬品性、絶縁性などに優れるため、電気・電子産業分野で広く用いられている。
 ディスプレイ基板としてガラス基板の代替材料にポリイミド樹脂を使用するには、高い透明性と低い複屈折が求められる。これらは、鮮明な画像を得るために必要な物性である。
 透明性が高く、複屈折の低いポリイミドを得る方法としては、酸二無水物およびジアミンのうち、少なくともどちらか一方の成分に脂環式モノマーを使用する方法が挙げられる(例えば、特許文献1参照)。
 一方で、製造工程においてポリイミド前駆体樹脂組成物を支持基板上にコーティングし、特に熱によってポリイミド前駆体を硬化させてポリイミド樹脂膜を形成した場合、その熱応力によって支持基板に反りが生じたり、支持基板からポリイミド樹脂膜が剥がれたりするといった問題がある。これらを抑制するために、ポリイミドの熱膨張率が支持基板の熱膨張率に近いことが求められる。
 しかし、ほとんどのポリイミドでは線熱膨張係数(CTE)が50-100ppm/Kと高い範囲にある。近年では低CTEのポリイミドも提案されている。それによると、ポリイミドの主鎖構造が直線的で剛直であり、さらに内部回転が束縛されていることが必要条件であると報告されている(例えば、非特許文献1参照)。具体的には、芳香族酸二無水物と芳香族ジアミンから誘導される全芳香族ポリイミドが有効であるとされている。しかし、全芳香族ポリイミドには分子内・分子間電荷移動吸収に由来する吸収帯が可視光波長域に存在するため、得られたポリイミド樹脂膜は黄~茶褐色に着色している。
 この問題を解決するために、透明性を付与できる脂環式構造を有する原料を用いたポリイミドが開示されている。例えば、剛直な構造の脂環式ジアミンであるトランス-1,4-ジアミノシクロヘキサンを、剛直な芳香族酸二無水物と組み合わせたポリイミドが、透明性と低CTEを示すことが開示されている(例えば、特許文献2参照)。また、エステル基含有の脂環式酸二無水物を原料とするポリエステルイミドが高い透明性と低複屈折を示すことが開示されている(例えば、特許文献3参照)。また、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、フルオレン基含有の芳香族酸二無水物、及びトランス-1,4-ジアミノシクロヘキサンからなる共重合ポリイミドが、高い透明性、低複屈折、低CTEを示すことが開示されている(例えば、特許文献4参照)。
特開平11-080350号公報 特開2012-041530号公報 特開2007-284414号公報 国際公開第2014/007112号
Polymer, 28, 228 (1987)
 しかし、特許文献2では、剛直な構造のモノマーを用いているため、低複屈折性を付与するには至っていない。さらに、特許文献3では高透明性と低複屈折に加え、CTEについても低い値が好ましいとの記載があるが、低複屈折を実現したポリイミドについては、CTEは70ppm-100ppm/Kと高い範囲にあり、低複屈折と低CTEを両立できていない。また、特許文献4では、高透明性、低複屈折、低CTEを示すとの記載があるが、CTEが30ppm/Kの低CTEポリイミドでは複屈折が0.07以上と高い値であり、低複屈折と低CTEを両立できていない。このように、低複屈折と低CTEのバランスの取れた高透明ポリイミドは開発されていないのが現状である。
 本発明は、上記課題に鑑み、硬化後のポリイミド樹脂膜が優れた光透過性を有し、低複屈折性と低線熱膨張性を併せ持つポリイミド前駆体を提供することを目的とする。
 すなわち、本発明は、少なくとも、式(1)で表される酸二無水物残基、式(2)で表されるジアミン残基、ならびに、式(3)で表されるジアミン残基の1種以上、を含むポリイミド前駆体であって、式(1)で表される酸二無水物残基がポリイミド前駆体中の酸二無水物残基の全量に対し50モル%以上であり、式(2)で表されるジアミン残基がポリイミド前駆体中のジアミン残基の全量に対し50モル%以上であり、式(3)で表されるジアミン残基がポリイミド前駆体中のジアミン残基の全量に対し15モル%以下であるポリイミド前駆体である。
Figure JPOXMLDOC01-appb-C000008
 式(3)中のR~Rは各々独立に水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルコキシ基、アリールエーテル基、アリール基、ハロアルキル基、シアノ基およびシリル基からなる群より選ばれ、これらはさらに置換基を有していてもよく、また隣り合う基が結合を有して縮合環構造を形成しても良い。
 式(3)中のA及びAは同じでも異なっていてもよく、芳香族環、脂肪族環、鎖状炭化水素基、もしくはこれらの組み合わせからなる構造またはこれらとアミド基、エステル基、エーテル基、アルキレン基、オキシアルキレン基、ビニレン基およびハロアルキレン基からなる群より選ばれる基の1種以上との組み合わせからなる構造である。
 本発明によれば、硬化後のポリイミド樹脂膜が可視光波長域での高透明性、低複屈折と低CTEを示すポリイミド前駆体を得ることができる。
カラーフィルタの一例を示す断面図 カラーフィルタの一例を示す断面図 カラーフィルタの一例を示す断面図 カラーフィルタの一例を示す断面図 有機EL素子の一例を示す断面図 有機ELディスプレイの一例を示す断面図 カラーフィルタの一例を示す断面図 カラーフィルタの一例を示す断面図 カラーフィルタの一例を示す断面図 有機ELディスプレイの一例を示す断面図 有機ELディスプレイの一例を示す断面図 有機ELディスプレイの一例を示す断面図
 以下、本発明を実施するための形態を詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。
 <ポリイミド前駆体>
 本発明のポリイミド前駆体は、式(1)で表される酸二無水物残基、式(2)で表されるジアミン残基、ならびに、式(3)で表されるジアミン残基の1種以上、を含むポリイミド前駆体であって、式(1)で表される酸二無水物残基がポリイミド前駆体中の酸二無水物残基の全量に対し50モル%以上であり、式(2)で表されるジアミン残基がポリイミド前駆体中のジアミン残基の全量に対し50モル%以上であり、式(3)で表されるジアミン残基がポリイミド前駆体中のジアミン残基の全量に対し15モル%以下であるポリイミド前駆体である。
Figure JPOXMLDOC01-appb-C000009
 式(3)中のR~Rは各々独立に水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルコキシ基、アリールエーテル基、アリール基、ハロアルキル基、シアノ基およびシリル基からなる群より選ばれ、これらはさらに置換基を有していてもよく、また隣り合う基が結合を有して縮合環構造を形成しても良い。
 式(3)中のA及びAは同じでも異なっていてもよく、芳香族環、脂肪族環、鎖状炭化水素基、もしくはこれらの組み合わせからなる構造またはこれらとアミド基、エステル基、エーテル基、アルキレン基、オキシアルキレン基、ビニレン基およびハロアルキレン基からなる群より選ばれる基の1種以上との組み合わせからなる構造である。
 これらの基のうち、アルキル基とは、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基およびtert-ブチル基などの飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。置換されている場合の追加の置換基には特に制限は無く、例えば、アルキル基、アリール基およびヘテロアリール基等を挙げることができ、この点は、以下の記載にも共通する。
 シクロアルキル基とは、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、ノルボルニル基およびアダマンチル基などの飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。
 複素環基とは、例えば、ピラン環、ピペリジン環、環状アミドなどの炭素以外の原子を環内に有する脂肪族環を示し、これは置換基を有していても有していなくてもよい。複素環基の炭素数は特に限定されないが、通常、2以上20以下の範囲である。
 アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。
 シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。
 アルコキシ基とは、例えば、メトキシ基、エトキシ基およびプロポキシ基などのエーテル結合を介して脂肪族炭化水素基が結合した官能基を示し、この脂肪族炭化水素基は置換基を有していても有していなくてもよい。
 アリールエーテル基とは例えば、フェノキシ基など、エーテル結合を介した芳香族炭化水素基が結合した官能基を示し、芳香族炭化水素基は置換基を有していても有していなくてもよい。
 アリール基とは、例えばフェニル基、ナフチル基、ビフェニル基、フルオレニル基、フェナントリル基、ターフェニル基、アントラセニル基およびピレニル基などの芳香族炭化水素基、もしくはこれらが複数連結した基を示し、これは無置換でも置換されていてもかまわない。このようなアリール基が有していても良い置換基はアルキル基、シクロアルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールエーテル基、アルキルチオ基、ハロゲン、シアノ基、アミノ基(アミノ基はさらにアリール基やヘテロアリール基で置換されていてもよい)、シリル基およびボリル基などである。
 ハロアルキル基とは、例えばトリフルオロメチル基のように、アルキル基の水素がすべてもしくは一部ハロゲンに置換されたものを示す。
 シリル基とは、トリメチルシリル基、トリエチルシリル基のような、アルキル鎖でケイ素の反応点が置換されたものや、アルコキシ基で置換された基を示す。
 隣り合う基が結合を有して縮合環構造を形成するとは、前記式(3)で説明すると、R~Rの中から選ばれる任意の隣接2置換基(例えばRとR)が互いに結合して共役または非供役の縮合環を形成するものである。これら縮合環は環内構造に窒素、酸素、硫黄原子を含んでいてもよいし、さらに別の環と結合していてもよい。
 また、式(3)において、AおよびAにおける芳香族環とはベンゼン、ナフタレン、ビフェニル、フェナントレン、アントラセンおよびピレンなどの芳香族炭化水素から誘導される環を表す。
 脂肪族環とは、シクロプロパン、シクロヘキサン、ノルボルネンおよびアダマンタンなどの飽和脂環式炭化水素から誘導される環を示す。
 鎖状炭化水素基とは、直鎖、もしくは分岐を有する炭化水素基を示し、この中には環状の炭化水素基は含まれない。
 アルキレン基とは、例えば、メチレン基、エチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基、sec-ブチレン基およびtert-ブチレン基などの2価の飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。
 オキシアルキレン基とは、例えば、オキシエチレン基、オキシプロピレン基などのエーテル結合を介して脂肪族炭化水素基が結合した2価の官能基を示し、この脂肪族炭化水素基は置換基を有していても有していなくてもよい。
 ビニレン基とはエチレンから水素を2個取り除いた2価の基を表す。
 ハロアルキレン基とはハロアルキル基から水素をひとつ除いた2価の基を表す。
 式(1)で表される酸二無水物残基はポリイミド前駆体中の酸二無水物残基の全量に対し50モル%以上であり、70モル%以上であることが好ましく、80モル%以上であることがより好ましい。剛直なビフェニル構造を一定量以上有するため、本発明のポリイミド前駆体から得られたポリイミドは低CTE性と耐薬品性を示す。なお、式(1)で表される酸二無水物残基はポリイミド前駆体中の酸二無水物残基の全量に対する割合の上限は、100モル%であるが、後述する式(4)または式(25)~(28)の酸二無水物残基を含有することもまた好ましいことから、そのような場合には90モル%以下であることが好ましい。
 式(2)で表されるジアミン残基はポリイミド前駆体中のジアミン残基の全量に対し50モル%以上であり、70モル%以上であれば好ましく、80モル%以上がさらに好ましく、90モル%以上が特に好ましい。なお、式(2)で表されるジアミン残基のポリイミド前駆体中のジアミン残基の全量に対する割合の上限は、式(3)で表されるジアミン残基を含有することが必要であることから98モル%が好ましく、95モル%以下がより好ましい。式(2)で表されるジアミン残基は、脂環式構造のため、一定量以上分子鎖中に含まれることで、分子鎖内の共役を短くすることができ、ポリイミド前駆体をイミド化した後のポリイミドは高透明性を示す。また、剛直な構造であることからポリイミドは低CTEを示す。
 また、本発明のポリイミド前駆体には式(3)で表されるジアミン残基が含まれる。この残基は構造中にフルオレン構造を含有している。フルオレンを9,9位でポリイミド前駆体の主鎖と結合させることで、ポリマー主鎖に対して垂直方向の分極率が低下し、その結果、イミド化後のポリイミドの複屈折が低下する。また、式(3)で表されるフルオレン残基は剛直な構造であるため、式(1)で表されるビフェニル基や式(2)で表されるシクロヘキシル基に由来する主鎖の剛直性が顕著に低下することない。その結果、本発明のポリイミド前駆体から得られるポリイミドは低CTEを示す。
 式(3)で表されるジアミン残基の含有量はジアミン残基の全量に対して15モル%以下である。式(3)で表されるジアミン残基の含有量の下限はポリマー主鎖に対して垂直方向の分極率が低下させる観点から、1モル%以上が好ましく、3モル%以上がより好ましく、5モル%以上がさらに好ましい。式(3)で表されるジアミン残基が上記範囲であることで、低複屈折と低CTEのバランスがより向上する。さらに、式(2)で表されるシクロヘキシル基とは異なり、式(3)で表されるジアミン残基は芳香族ジアミン残基であるため、可視光波長域に吸収帯を有する電荷移動錯体が形成される。しかし、式(3)で表されるジアミン残基が上記範囲であると、可視光波長域での透過率が顕著に低下することはない。その結果、本発明のポリイミド前駆体から得られるポリイミドは高透明性示す。
 本発明の別の形態としては、さらに式(4)で表される酸二無水物残基の1種以上を含むポリイミド前駆体である。
Figure JPOXMLDOC01-appb-C000010
 式(4)中のR~R16は各々独立に水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルコキシ基、アリールエーテル基、アリール基、ハロアルキル基、シアノ基およびシリル基からなる群より選ばれ、これらはさらに置換基を有していてもよく、また隣り合う基が結合を有して縮合環構造を形成しても良い。
 式(4)において、R~R16におけるアルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルコキシ基、アリールエーテル基、フェノキシ基、アリール基、ハロアルキル基、シリル基、及び、「隣り合う基が結合を有して縮合環構造を形成する」の定義は、前記の式(3)のR~Rにおけるそれらと同じである(以降のR17~R157についても同じ)。
 式(4)中のB及びBは同じでも異なっていてもよく、芳香族環、脂肪族環、鎖状炭化水素基、もしくはこれらの組み合わせからなる構造またはこれらとアミド基、エステル基、エーテル基、アルキレン基、オキシアルキレン基、ビニレン基およびハロアルキレン基からなる群より選ばれる基の1種以上との組み合わせからなる構造である。
 式(4)において、BおよびBにおける芳香族環、脂肪族環、鎖状炭化水素基、アルキレン基、オキシアルキレン基、ビニレン基、ハロアルキレン基の定義は、前記の式(3)のAおよびAにおけるそれらと同じである。
 式(4)で表される酸二無水物残基は構造中にフルオレン構造を有する。前述の通り、フルオレン構造を有することで、主鎖の剛直性を大きく落とすことなく、ポリイミド前駆体をイミド化した後のポリイミドの複屈折が低下する。したがって、酸二無水物残基とジアミン残基の両方にフルオレン構造を導入することで、形成されるポリイミド膜の複屈折がさらに低下する。加えて、ポリマー主鎖に対してフルオレン部分がねじれた構造であるため、分子鎖内での電荷移動錯体の形成が抑制される。その結果、本発明のポリイミド前駆体から得られるポリイミドは高透明性を示す。
 式(4)で表される酸二無水物残基の含有量は、ポリイミド前駆体中の酸二無水物残基の全量に対し40モル%以下であることが好ましい。かかる範囲であることで、低複屈折と低線CTEのバランスが向上する。また、機械強度に優れ、成膜時のクラックを低減するため好ましい。さらに、成膜時のクラック低減の観点から、式(4)で表される酸二無水物残基の含有量は酸二無水物残基の全量に対して30モル%以下であることがより好ましく、25モル%以下であることがさらに好ましい。また、式(4)で表される酸二無水物残基が含まる場合、その含有量の下限値としては、酸二無水物残基の全量に対して1モル%以上であることが好ましく5モル%以上であることがより好ましく、10モル%以上であることがさらに好ましい。
 本発明のポリイミド前駆体が式(3)で表されるジアミン残基と式(4)で表される酸二無水物残基を共に含む場合、式(1)、(2)、(3)、(4)で表される残基の含有量の範囲が、前述したそれぞれの含有率の範囲を満たすのであれば、式(3)と式(4)で表される残基の総量に特に制限はない。ただし、成膜時のクラック低減の観点から、式(3)と式(4)の残基の合計が全残基の含有量に対して、40モル%以下であることが好ましく、30モル%以下であることがより好ましく、15モル%以下であることがさらに好ましい。
 式(3)におけるAおよびAはそれぞれ以下の(5)~(10)のいずれかで表される構造であることがより好ましい。
Figure JPOXMLDOC01-appb-C000011
 式(5)~(7)中のXは単結合、エーテル基、アルキレン基、オキシアルキレン基またはビニレン基であり、片方の結合はフルオレン環と連結する。ここで、単結合とはXの両側が、原子または結合基を介在させずに直接に単結合で結合していることをいい、アルキレン基等の定義は、前記の式(3)のAおよびAのXにおけるそれらと同じである(以降Yについて同じ)。
 式(8)~(10)中のYはアミド基、エステル基、エーテル基、アルキレン基、オキシアルキレン基、ビニレン基またはハロアルキレン基である。
 式(5)~(10)中のR17~R80は各々独立に水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルコキシ基、アリールエーテル基、アリール基、ハロアルキル基、シアノ基、水酸基およびシリル基からなる群より選ばれる。ただし、式(5)において、R17~R21のうちいずれかはXを含む連結基である。式(6)において、R22~R32のうちいずれかはXを含む連結基である。式(8)~(10)において、2つの環構造のうちどちらがフルオレン環に連結してもよい。また、R33~R37のうちいずれか、及び、R38~R48のうちいずれかのそれぞれはYを含む連結基である。R49~R53のうちいずれか、及び、R54~R58のうちいずれかのそれぞれはYを含む連結基である。R59~R69のうちいずれか、及び、R70~R80のうちいずれかのそれぞれはYを含む連結基である。
 式(4)中のBおよびBはそれぞれ以下の(11)~(17)のいずれかで表される構造であることがより好ましい。
Figure JPOXMLDOC01-appb-C000012
 式(11)~(13)中のXは単結合、エーテル基、アルキレン基、オキシアルキレン基またはビニレン基であり、片方の結合はフルオレン環と連結する。
 式(14)~(17)中のYはアミド基、エステル基、エーテル基、アルキレン基、オキシアルキレン基、ビニレン基またはハロアルキレン基である。
式(14)~(17)中のZは単結合であり、片方の結合はフルオレン環と連結する。
 式(11)~(17)中のR81~R157は各々独立に水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルコキシ基、アリールエーテル基、アリール基、ハロアルキル基、シアノ基、水酸基およびシリル基からなる群より選ばれる。ただし、式(11)において、R81~R84のうちいずれかはXを含む連結基である。式(12)において、R85~R94のうちいずれかはXを含む連結基である。式(14)において、R98~R102のうちいずれか、及び、R103~R112のうちいずれかのそれぞれはYを含む連結基である。式(15)において、R113~R123のうちいずれか、及び、R124~R127のうちいずれかのそれぞれはYを含む連結基である。式(16)において、R128~R132のうちいずれか、及び、R133~R136のうちいずれかのそれぞれはYを含む連結基である。式(17)において、R137~R147のうちいずれか、及び、R148~R157のうちいずれかのそれぞれはYを含む連結基である。
 式(3)で表されるジアミン残基の好ましい例としては式(18)~(21)から選択される少なくとも1種の2価の有機基が挙げられるが、これらに限られるものではない。
Figure JPOXMLDOC01-appb-C000013
 式(4)で表される酸二無水物残基の好ましい例としては式(22)~(24)から選択される少なくとも1種の4価の有機基が挙げられるが、これらに限られるものではない。
Figure JPOXMLDOC01-appb-C000014
 本発明のポリイミド前駆体は、本発明の効果を損なわない範囲で、これまで説明した残基に加え、さらに他の成分を含んでも良い。他の成分とは、式(1)および式(4)で表される酸二無水物残基を導く酸二無水物以外の酸二無水物の残基(このような酸二無水物およびその残基をそれぞれ「他の酸二無水物」および「他の酸二無水物残基」という)や、式(2)および式(3)で表されるジアミン残基を導くジアミン以外のジアミンの残基(このようなジアミンおよびその残基をそれぞれ「他のジアミン」および「他のジアミン残基」という)などが挙げられる。
 他の酸二無水物としては、芳香族酸二無水物、脂環式酸二無水物、又は脂肪族酸二無水物が挙げられる。
 芳香族酸二無水物としては、ピロメリット酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ターフェニルテトラカルボン酸二無水物、3,3’,4,4’-オキシフタル酸二無水物、2,3,3’,4’-オキシフタル酸二無水物、2,3,2’,3’-オキシフタル酸二無水物、ジフェニルスルホン-3,3’,4,4’-テトラカルボン酸二無水物、ベンゾフェノン-3,3’,4,4’-テトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(4-(3,4-ジカルボキシフェノキシ)フェニル)プロパン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(1,3-ジオキソ-1,3-ジヒドロイソベンズフラン-5-カルボン酸)1,4-フェニレン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパンニ無水物、2,2-ビス(4-(3,4-ジカルボキシベンゾイルオキシ)フェニル)ヘキサフルオロプロパン二無水物、1,6-ジフルオロプロメリット酸二無水物、1-トリフルオロメチルピロメリット酸二無水物、1,6-ジトリフルオロメチルピロメリット酸二無水物、2,2’-ビス(トリフルオロメチル)-4,4’-ビス(3,4-ジカルボキシフェノキシ)ビフェニル二無水物などが挙げられるが、これらに限定されるものではない。
 脂環式酸二無水物としては、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロヘプタンテトラカルボン酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、3,4-ジカルボキシ-1-シクロヘキシルコハク酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物、ビシクロ[4,3,0]ノナン-2,4,7,9-テトラカルボン酸二無水物、ビシクロ[4,4,0]デカン-2,4,7,9-テトラカルボン酸二無水物、ビシクロ[4,4,0]デカン-2,4,8,10-テトラカルボン酸二無水物、トリシクロ[6,3,0,0<2,6>]ウンデカン-3,5,9,11-テトラカルボン酸二無水物、ビシクロ[2,2,2]オクタン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2,2,1]ヘプタンテトラカルボン酸二無水物、ビシクロ[2,2,1]ヘプタン-5-カルボキシメチル-2,3,6-トリカルボン酸二無水物、7-オキサビシクロ[2,2,1]ヘプタン-2,4,6,8-テトラカルボン酸二無水物、オクタヒドロナフタレン-1,2,6,7-テトラカルボン酸二無水物、テトラデカヒドロアントラセン-1,2,8,9-テトラカルボン酸二無水物、3,3’、4,4’-ジシクロへキサンテトラカルボン酸二無水物、3,3’、4,4’-オキシジシクロヘキサンテトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボンサン無水物、及び“リカシッド”(登録商標)BT-100(以上、商品名、新日本理化(株)製)及びそれらの誘導体などが例示されるが、これらに限定されるものではない。
 脂肪族酸二無水物としては、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-ペンタンテトラカルボン酸二無水物及びそれらの誘導体などが挙げられるが、これらに限定されるものではない。
 これらの芳香族酸二無水物、脂環式酸二無水物、又は脂肪族酸二無水物は、単独で又は2種以上を組み合わせて使用することができる。
 これらのうち、市販され手に入れやすい観点、高透明性、低複屈折の観点から2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパンニ無水物(式(25))、3,3’,4,4’-オキシフタル酸二無水物(式(26))、2,2-ビス(4-(3,4-ジカルボキシフェノキシ)フェニル)プロパン二無水物(式(27))、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(式(28))から選択される少なくとも1種の酸二無水物残基をさらに含むことが好ましい。
Figure JPOXMLDOC01-appb-C000015
 式(1)、(2)、(3)を含むポリイミド前駆体に、これらの酸二無水物を共重合させることで、式(4)で表されるフルオレン環含有の酸二無水物を用いなくとも、ポリイミドの複屈折が低下する。加えて、式(4)で表される酸二無水物残基を含む酸二無水物と式(25)~(28)で表される酸二無水物を比較すると、後者の方が入手のしやすさ、プリベーク膜の耐クラック性に優れる。
 上記の酸二無水物の量に特に制限はないが、CTE及び複屈折の観点からは、ポリイミド前駆体中の酸二無水物残基の全量に対して10~20モル%であることが好ましく、透明性の観点からは、式(3)で表されるジアミン残基のモル数が、式(25)~(28)から選択される少なくとも1種の酸二無水物残基の合計のモル数と同じであるか、またはそれより少ないことが好ましい。
 また、他のジアミンとしては、芳香族ジアミン化合物、脂環式ジアミン化合物、又は脂肪族ジアミン化合物が挙げられる。例えば、芳香族ジアミン化合物としては、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルヒド、4,4’-ジアミノジフェニルスルヒド、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス(トリフルオロメチル)ベンジジン、2,2’-ジメチルベンジジン、3,3’-ジメチルベンジジン、2,2’3,3’-テトラメチルベンジジン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ビス(4-アミノフェノキシフェニル)スルホン、ビス(3-アミノフェノキシフェニル)スルホン、ビス(4-アミノフェノキシ)ビフェニル、ビス{4-(4-アミノフェノキシ)フェニル}エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、あるいはこれらの芳香族環にアルキル基、アルコキシ基、ハロゲン原子などで置換したジアミン化合物が挙げられるが、これらに限定されるものではない。
 脂環式ジアミン化合物としては、シクロブタンジアミン、イソホロンジアミン、ビシクロ[2,2,1]ヘプタンビスメチルアミン、トリシクロ[3,3,1,13,7]デカン-1,3-ジアミン、1,2-シクロヘキシルジアミン、1,3-シクロヘキシルジアミン、シス-1,4-シクロヘキシルジアミン、4,4’-ジアミノジシクロヘキシルメタン、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、3,3’-ジエチル-4,4’-ジアミノジシクロヘキシルメタン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジシクロヘキシルメタン、3,3’,5,5’-テトラエチル-4,4’-ジアミノジシクロヘキシルメタン、3,5-ジエチル-3’,5’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノジシクロヘキシルエーテル、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルエーテル、3,3’-ジエチル-4,4’-ジアミノジシクロヘキシルエーテル、3,3’,5,5’-テトラメチル-4,4’-ジアミノジシクロヘキシルエーテル、3,3’,5,5’-テトラエチル-4,4’-ジアミノジシクロヘキシルエーテル、3,5-ジエチル-3’,5’-ジメチル-4,4’-ジアミノジシクロヘキシルエーテル、2,2-ビス(4-アミノシクロヘキシル)プロパン、2,2-ビス(3-メチル-4-アミノシクロヘキシル)プロパン、2,2-ビス(3-エチル-4-アミノシクロヘキシル)プロパン、2,2-ビス(3,5-ジメチル-4-アミノシクロヘキシル)プロパン、2,2-ビス(3,5-ジエチル-4-アミノシクロヘキシル)プロパン、2,2-(3,5-ジエチル-3’,5’-ジメチル-4,4’-ジアミノジシクロヘキシル)プロパン、あるいはこれらの脂環にアルキル基、アルコキシ基、ハロゲン原子などで置換したジアミン化合物が挙げられるが、これらに限定されるものではない。
 脂肪族ジアミン化合物としては、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカンなどのアルキレンジアミン類、ビス(アミノメチル)エーテル、ビス(2-アミノエチル)エーテル、ビス(3-アミノプロピル)エーテルなどのエチレングリコールジアミン類、及び1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、1,3-ビス(4-アミノブチル)テトラメチルジシロキサン、α,ω-ビス(3-アミノプロピル)ポリジメチルシロキサンなどのシロキサンジアミン類が挙げられるが、これらに限定されるものではない。
 これらの芳香族ジアミン化合物、脂環式ジアミン化合物、又は脂肪族ジアミン化合物は、単独で又は2種以上を組み合わせて使用することができる。
 これらのうち、市販され手に入れやすい観点、および光学特性の観点から、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ジアミノジフェニルスルホン、4,4-ジアミノジフェニルスルホン、4,4’-ジアミノジシクロヘキシルメタンが好ましい。
 本発明のポリイミド前駆体は、分子量を好ましい範囲に調整するために末端封止剤により両末端を封止してもよい。酸二無水物と反応する末端封止剤としては、モノアミンや一価のアルコールなどが挙げられる。また、ジアミン化合物と反応する末端封止剤としては、酸無水物、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物、二炭酸エステル類、ビニルエーテル類などが挙げられる。また、末端封止剤を用いることで、末端基として種々の有機基を導入することができる。
 酸無水物基と反応する末端封止剤に用いられるモノアミンとしては、5-アミノ-8-ヒドロキシキノリン、4-アミノ-8-ヒドロキシキノリン、1-ヒドロキシ-8-アミノナフタレン、1-ヒドロキシ-7-アミノナフタレン、1-ヒドロキシ-6-アミノナフタレン、1-ヒドロキシ-5-アミノナフタレン、1-ヒドロキシ-4-アミノナフタレン、1-ヒドロキシ-3-アミノナフタレン、1-ヒドロキシ-2-アミノナフタレン、1-アミノ-7-ヒドロキシナフタレン、2-ヒドロキシ-7-アミノナフタレン、2-ヒドロキシ-6-アミノナフタレン、2-ヒドロキシ-5-アミノナフタレン、2-ヒドロキシ-4-アミノナフタレン、2-ヒドロキシ-3-アミノナフタレン、1-アミノ-2-ヒドロキシナフタレン、1-カルボキシ-8-アミノナフタレン、1-カルボキシ-7-アミノナフタレン、1-カルボキシ-6-アミノナフタレン、1-カルボキシ-5-アミノナフタレン、1-カルボキシ-4-アミノナフタレン、1-カルボキシ-3-アミノナフタレン、1-カルボキシ-2-アミノナフタレン、1-アミノ-7-カルボキシナフタレン、2-カルボキシ-7-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、2-カルボキシ-5-アミノナフタレン、2-カルボキシ-4-アミノナフタレン、2-カルボキシ-3-アミノナフタレン、1-アミノ-2-カルボキシナフタレン、2-アミノニコチン酸、4-アミノニコチン酸、5-アミノニコチン酸、6-アミノニコチン酸、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、アメライド、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、3-アミノ-4,6-ジヒドロキシピリミジン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、5-アミノ-8-メルカプトキノリン、4-アミノ-8-メルカプトキノリン、1-メルカプト-8-アミノナフタレン、1-メルカプト-7-アミノナフタレン、1-メルカプト-6-アミノナフタレン、1-メルカプト-5-アミノナフタレン、1-メルカプト-4-アミノナフタレン、1-メルカプト-3-アミノナフタレン、1-メルカプト-2-アミノナフタレン、1-アミノ-7-メルカプトナフタレン、2-メルカプト-7-アミノナフタレン、2-メルカプト-6-アミノナフタレン、2-メルカプト-5-アミノナフタレン、2-メルカプト-4-アミノナフタレン、2-メルカプト-3-アミノナフタレン、1-アミノ-2-メルカプトナフタレン、3-アミノ-4,6-ジメルカプトピリミジン、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノール、2-エチニルアニリン、3-エチニルアニリン、4-エチニルアニリン、2,4-ジエチニルアニリン、2,5-ジエチニルアニリン、2,6-ジエチニルアニリン、3,4-ジエチニルアニリン、3,5-ジエチニルアニリン、1-エチニル-2-アミノナフタレン、1-エチニル-3-アミノナフタレン、1-エチニル-4-アミノナフタレン、1-エチニル-5-アミノナフタレン、1-エチニル-6-アミノナフタレン、1-エチニル-7-アミノナフタレン、1-エチニル-8-アミノナフタレン、2-エチニル-1-アミノナフタレン、2-エチニル-3-アミノナフタレン、2-エチニル-4-アミノナフタレン、2-エチニル-5-アミノナフタレン、2-エチニル-6-アミノナフタレン、2-エチニル-7-アミノナフタレン、2-エチニル-8-アミノナフタレン、3,5-ジエチニル-1-アミノナフタレン、3,5-ジエチニル-2-アミノナフタレン、3,6-ジエチニル-1-アミノナフタレン、3,6-ジエチニル-2-アミノナフタレン、3,7-ジエチニル-1-アミノナフタレン、3,7-ジエチニル-2-アミノナフタレン、4,8-ジエチニル-1-アミノナフタレン、4,8-ジエチニル-2-アミノナフタレン等が挙げられるが、これらに限定されるものではない。
 酸無水物基と反応する末端封止剤に用いられる一価のアルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、3-オクタノール、1-ノナノール、2-ノナノール、1-デカノール、2-デカノール、1-ウンデカノール、2-ウンデカノール、1-ドデカノール、2-ドデカノール、1-トリデカノール、2-トリデカノール、1-テトラデカノール、2-テトラデカノール、1-ペンタデカノール、2-ペンタデカノール、1-ヘキサデカノール、2-ヘキサデカノール、1-へプタデカノール、2-ヘプタデカノール、1-オクタデカノール、2-オクタデカノール、1-ノナデカノール、2-ノナデカノール、1-イコサノール、2-メチル-1-プロパノール、2-メチル-2-プロパノール、2-メチル-1-ブタノール、3-メチル-1-ブタノール、2-メチル-2-ブタノール、3-メチル-2-ブタノール、2-プロピル-1-ペンタノール、2-エチル-1-ヘキサノール、4-メチル-3-ヘプタノール、6-メチル-2-ヘプタノール、2,4,4-トリメチル-1-ヘキサノール、2,6-ジメチル-4-ヘプタノール、イソノニルアルコール、3,7-ジメチル-3-オクタノール、2,4-ジメチル-1-ヘプタノール、2-ヘプチルウンデカノール、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール1-メチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、シクロペンタノール、シクロヘキサノール、シクロペンタンモノメチロール、ジシクロペンタンモノメチロール、トリシクロデカンモノメチロール、ノルボネオール、テルピネオール等が挙げられるが、これらに限定されるものではない。
 アミノ基と反応する末端封止剤に用いられる酸無水物、モノカルボン酸、モノ酸クロリド化合物およびモノ活性エステル化合物としては、無水フタル酸、無水マレイン酸、無水ナジック酸、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物等の酸無水物、2-カルボキシフェノール、3-カルボキシフェノール、4-カルボキシフェノール、2-カルボキシチオフェノール、3-カルボキシチオフェノール、4-カルボキシチオフェノール、1-ヒドロキシ-8-カルボキシナフタレン、1-ヒドロキシ-7-カルボキシナフタレン、1-ヒドロキシ-6-カルボキシナフタレン、1-ヒドロキシ-5-カルボキシナフタレン、1-ヒドロキシ-4-カルボキシナフタレン、1-ヒドロキシ-3-カルボキシナフタレン、1-ヒドロキシ-2-カルボキシナフタレン、1-メルカプト-8-カルボキシナフタレン、1-メルカプト-7-カルボキシナフタレン、1-メルカプト-6-カルボキシナフタレン、1-メルカプト-5-カルボキシナフタレン、1-メルカプト-4-カルボキシナフタレン、1-メルカプト-3-カルボキシナフタレン、1-メルカプト-2-カルボキシナフタレン、2-カルボキシベンゼンスルホン酸、3-カルボキシベンゼンスルホン酸、4-カルボキシベンゼンスルホン酸、2-エチニル安息香酸、3-エチニル安息香酸、4-エチニル安息香酸、2,4-ジエチニル安息香酸、2,5-ジエチニル安息香酸、2,6-ジエチニル安息香酸、3,4-ジエチニル安息香酸、3,5-ジエチニル安息香酸、2-エチニル-1-ナフトエ酸、3-エチニル-1-ナフトエ酸、4-エチニル-1-ナフトエ酸、5-エチニル-1-ナフトエ酸、6-エチニル-1-ナフトエ酸、7-エチニル-1-ナフトエ酸、8-エチニル-1-ナフトエ酸、2-エチニル-2-ナフトエ酸、3-エチニル-2-ナフトエ酸、4-エチニル-2-ナフトエ酸、5-エチニル-2-ナフトエ酸、6-エチニル-2-ナフトエ酸、7-エチニル-2-ナフトエ酸、8-エチニル-2-ナフトエ酸等のモノカルボン酸類およびこれらのカルボキシル基が酸クロリド化したモノ酸クロリド化合物、およびテレフタル酸、フタル酸、マレイン酸、シクロヘキサンジカルボン酸、3-ヒドロキシフタル酸、5-ノルボルネン-2,3-ジカルボン酸、1,2-ジカルボキシナフタレン、1,3-ジカルボキシナフタレン、1,4-ジカルボキシナフタレン、1,5-ジカルボキシナフタレン、1,6-ジカルボキシナフタレン、1,7-ジカルボキシナフタレン、1,8-ジカルボキシナフタレン、2,3-ジカルボキシナフタレン、2,6-ジカルボキシナフタレン、2,7-ジカルボキシナフタレン等のジカルボン酸類のモノカルボキシル基だけが酸クロリド化したモノ酸クロリド化合物、モノ酸クロリド化合物とN-ヒドロキシベンゾトリアゾールやN-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドとの反応により得られる活性エステル化合物が挙げられる。
 アミノ基と反応する末端封止剤に用いられる二炭酸エステル化合物としては、二炭酸ジ-tert-ブチル、二炭酸ジベンジル、二炭酸ジメチル、二炭酸ジエチルが挙げられる。
 アミノ基と反応する末端封止剤に用いられるビニルエーテル化合物としては、クロロギ酸-tert-ブチル、クロロギ酸-n-ブチル、クロロギ酸イソブチル、クロロギ酸ベンジル、クロロギ酸アリル、クロロギ酸エチル、クロロギ酸イソプロピルなどのクロロギ酸エステル類、イソシアン酸ブチル、イソシアン酸1-ナフチル、イソシアン酸オクタデシル、イソシアン酸フェニルなどのイソシアナート化合物類、ブチルビニルエーテル、シクロヘキシルビニルエーテル、エチルビニルエーテル、2-エチルヘキシルビニルエーテル、イソブチルビニルエーテル、イソプロピルビニルエーテル、n-プロピルビニルエーテル、tert-ブチルビニルエーテル、ベンジルビニルエーテルなどが挙げられる。
 アミノ基と反応する末端封止剤に用いられるその他の化合物としては、クロロギ酸ベンジル、ベンゾイルクロリド、クロロギ酸フルオレニルメチル、クロロギ酸2,2,2-トリクロロエチル、クロロギ酸アリル、メタンスルホン酸クロリド、p-トルエンスルホン酸クロリド、フェニルイソシアネ-トなどが挙げられる。
 酸無水物基と反応する末端封止剤の導入割合は、酸二無水物成分に対して、0.1~60モル%の範囲が好ましく、特に好ましくは5~50モル%である。また、アミノ基と反応する末端封止剤の導入割合は、ジアミン成分に対して、0.1~100モル%の範囲が好ましく、特に好ましくは5~90モル%である。複数の末端封止剤を用いることで、複数の末端基を導入してもよい。
 ポリイミド前駆体に導入した末端封止剤は、以下の方法で容易に検出できる。例えば、末端封止剤を導入したポリマーを酸性溶液に溶解し、ポリマーの構成単位であるアミン成分と酸無水成分に分解し、これをガスクロマトグラフィー(GC)測定や、NMR測定を行うことで、末端封止剤を容易に検出できる。その他に、末端封止剤を導入したポリマーの、熱分解ガスクロマトグラフ(PGC)測定、赤外吸収スペクトル測定、13C NMRスペクトル測定を行うことで、容易に検出可能である。
 本発明のポリイミド前駆体は、溶剤を含有するポリイミド前駆体樹脂組成物とすることが好ましい。溶剤としては、N-メチル-2-ピロリドン、ガンマブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルプロピレン尿素、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシドなどの極性の非プロトン性溶媒、テトラヒドロフラン、ジオキサン、プロピレングリコールモノメチルエーテルなどのエーテル類、アセトン、メチルエチルケトン、ジイソブチルケトン、ジアセトンアルコールなどのケトン類、酢酸エチル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチルなどのエステル類、トルエン、キシレンなどの芳香族炭化水素類などを単独、または2種以上使用することができる。
 ポリイミド前駆体樹脂組成物における溶剤の含有量は、ポリイミド前駆体100重量部に対して、好ましくは50重量部以上、より好ましくは100重量部以上であり、好ましくは2,000重量部以下、より好ましくは1,500重量部以下である。50~2,000重量部の範囲であれば、塗布に適した粘度となり、塗布後の膜厚を容易に調節することができる。
 ポリイミド前駆体樹脂組成物は、界面活性剤を含有していてもよい。界面活性剤としては、フロラード(商品名、住友3M(株)製)、メガファック(商品名、DIC(株)製)、スルフロン(商品名、旭硝子(株)製)等のフッ素系界面活性剤があげられる。また、KP341(商品名、信越化学工業(株)製)、DBE(商品名、チッソ(株)製)、グラノール(商品名、共栄社化学(株)製)、BYK(ビック・ケミー(株)製)等の有機シロキサン界面活性剤が挙げられる。エマルミン(三洋化成工業(株)製)等のポリオキシアルキレンラウリエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンオレイルエーテルおよびポリオキシエチレンセチルエーテル界面活性剤が挙げられる。さらに、ポリフロー(商品名、共栄社化学(株)製)等のアクリル重合物界面活性剤が挙げられる。
 界面活性剤は、ポリイミド前駆体樹脂組成物中のポリイミド前駆体100重量部に対し、0.01~10重量であることが好ましい。
 ポリイミド前駆体樹脂組成物は、内部離型剤を含有することができる。内部離型剤としては、長鎖脂肪酸等が挙げられる。
 ポリイミド前駆体樹脂組成物は、支持基板との接着性を高めるために、保存安定性を損なわない範囲で、トリメトキシアミノプロピルシラン、トリメトキシエポキシシラン、トリメトキシビニルシラン、トリメトキシチオールプロピルシランなどのシランカップリング剤を含有してもよい。好ましい含有量は、ポリイミド前駆体100重量部に対し、0.01~5重量部である。
 ポリイミド前駆体樹脂組成物は、熱架橋剤を含有していてもよい。熱架橋剤としては、エポキシ化合物やアルコキシメチル基またはメチロール基を少なくとも2つ有する化合物が好ましい。これらの基を少なくとも2つ有することで、樹脂および同種分子と縮合反応して架橋構造体が形成され、加熱処理後の硬化膜の機械強度や耐薬品性を向上させることができる。
 熱架橋剤として用いられるエポキシ化合物の好ましい例としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリメチル(グリシジロキシプロピル)シロキサン等のエポキシ基含有シリコーンなどを挙げることができるが、これらに限定されない。具体的には、エピクロン850-S、エピクロンHP-4032、エピクロンHP-7200、エピクロンHP-820、エピクロンHP-4700、エピクロンEXA-4710、エピクロンHP-4770、エピクロンEXA-859CRP、エピクロンEXA-1514、エピクロンEXA-4880、エピクロンEXA-4850-150、エピクロンEXA-4850-1000、エピクロンEXA-4816、エピクロンEXA-4822(以上商品名、大日本インキ化学工業(株)製)、リカレジンBEO-60E、リカレジンBPO-20E、リカレジンHBE-100、リカレジンDME-100(以上商品名、新日本理化(株)製)、EP-4003S,EP-4000S(以上商品名、(株)アデカ製)、PG-100、CG-500、EG-200(以上商品名、大阪ガスケミカル(株)製)、NC-3000、NC-6000(以上商品名、日本化薬(株)製)、EPOX-MK R508、EPOX-MK R540、EPOX-MK R710、EPOX-MK R1710、VG3101L、VG3101M80(以上商品名、(株)プリンテック製)、セロキサイド2021P、セロキサイド2081、セロキサイド2083、セロキサイド2085(以上商品名、ダイセル化学工業(株)製)などが挙げられる。
 熱架橋剤として用いられるアルコキシメチル基またはメチロール基を少なくとも2つ有する化合物としては、例えば、DML-PC、DML-PEP、DML-OC、DML-OEP、DML-34X、DML-PTBP、DML-PCHP、DML-OCHP、DML-PFP、DML-PSBP、DML-POP、DML-MBOC、DML-MBPC、DML-MTrisPC、DML-BisOC-Z、DML-BisOCHP-Z、DML-BPC、DML-BisOC-P、DMOM-PC、DMOM-PTBP、DMOM-MBPC、TriML-P、TriML-35XL、TML-HQ、TML-BP、TML-pp-BPF、TML-BPE、TML-BPA、TML-BPAF、TML-BPAP、TMOM-BP、TMOM-BPE、TMOM-BPA、TMOM-BPAF、TMOM-BPAP、HML-TPPHBA、HML-TPHAP、HMOM-TPPHBA、HMOM-TPHAP(以上、商品名、本州化学工業(株)製)、NIKALAC(登録商標) MX-290、NIKALAC MX-280、NIKALAC MX-270、NIKALAC MX-279、NIKALAC MW-100LM、NIKALAC MX-750LM(以上、商品名、(株)三和ケミカル製)が挙げられる。これらを2種以上含有してもよい。
 熱架橋剤は、ポリイミド前駆体樹脂100重量部に対し、0.01~50重量部含有することが好ましい。
 ポリイミド前駆体樹脂組成物は、無機フィラー及び/又はオルガノ無機フィラーを含有していてもよい。無機フィラーとしては、シリカ微粒子、アルミナ微粒子、チタニア微粒子、ジルコニア微粒子などが挙げられる。
 無機フィラーの形状は特に限定されず、球状、楕円形状、偏平状、ロッド状、繊維状などが挙げられる。
 含有させた無機フィラーは光の散乱を防ぐため粒径が小さいことが好ましい。平均粒径は0.5~100nmであり、0.5~30nmの範囲が好ましい。
 無機フィラーの含有量は、ポリイミド前駆体に対し、好ましくは1~200重量%、下限についてより好ましくは10重量%以上である。上限についてはより好ましくは150重量%以下、さらに好ましくは100重量%以下、特に好ましくは50重量%以下である。含有量の増加に伴い、可とう性や耐折性が低下する。
 ポリイミド前駆体樹脂組成物と無機フィラーを混合する方法としては、種々の公知の方法を用いることができる。例えば、無機フィラーやオルガノ無機フィラーゾルとポリイミド前駆体と混合することが挙げられる。オルガノ無機フィラーゾルは、有機溶剤に無機フィラーが30重量%程度の割合で分散したもので、有機溶剤としては、メタノール、イソプロパノール、ノルマルブタノール、エチレングリコール、メチルエチルケトン、メチルイソブチルケトン、プロピレングリコールモノメチルアセテート、プロピレングリコールモノメチルエーテル、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、1,3-ジメチルイミダゾリジノン、ガンマブチルラクトンなどが挙げられる。
 オルガノ無機フィラーゾルは、シランカップリング剤を用いて表面処理することで、無機フィラーのポリイミド前駆体に対する分散性が向上する。シランカップリング剤の末端官能基に、エポキシ基やアミノ基が含まれていると、ポリアミド酸のカルボン酸とエポキシ基やアミノ基が結合することで、ポリイミド前駆体および、硬化処理後のポリイミドとの親和性が高まり、より効果的な分散を行うことができる。
 エポキシ基を有するシランカップリング剤としては、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランなどが挙げられる。
 アミノ基を有するシランカップリング剤としては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシランなどが挙げられる。
 オルガノ無機フィラーゾルのシランカップリング剤による処理方法としては、種々の公知の方法を用いることができる。例えば、濃度を調整したオルガノ無機フィラーゾルにシランカップリング剤を添加し、室温~80℃で0.5~2時間、撹拌することにより処理することができる。
 ポリイミド前駆体樹脂組成物は、光酸発生剤を含有していてもよい。光酸発生剤を含有することにより、露光パターンが描かれたマスクを介して光を照射すると露光部に酸が発生し、露光部のアルカリ水溶液に対する溶解性が増大する。このように光酸発生剤を含有するポリイミド前駆体樹脂組成物は、ポジ型感光性樹脂として用いることができる。(以降、光酸発生剤を含有するポリイミド前駆体樹脂組成物を、ポジ型感光性樹脂組成物と呼ぶこともある)
 かかる場合に用いられる光酸発生剤としては、キノンジアジド化合物、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、ヨードニウム塩などが挙げられる。中でも優れた溶解抑止効果を発現し、高感度かつ低膜減りのポジ型感光性樹脂組成物を得られるという点から、キノンジアジド化合物が好ましく用いられる。また、光酸発生剤を2種以上含有してもよい。これにより、露光部と未露光部の溶解速度の比をより大きくすることができ、高感度なポジ型感光性樹脂組成物を得ることができる。
 キノンジアジド化合物としては、ポリヒドロキシ化合物にキノンジアジドのスルホン酸がエステルで結合したもの、ポリアミノ化合物にキノンジアジドのスルホン酸がスルホンアミド結合したもの、ポリヒドロキシポリアミノ化合物にキノンジアジドのスルホン酸がエステル結合および/またはスルホンアミド結合したものなどが挙げられる。これらポリヒドロキシ化合物やポリアミノ化合物の全ての官能基がキノンジアジドで置換されていなくても良いが、官能基全体の50モル%以上がキノンジアジドで置換されていることが好ましい。このようなキノンジアジド化合物を用いることで、一般的な紫外線である水銀灯のi線(波長365nm)、h線(波長405nm)、g線(波長436nm)により反応するポジ型感光性樹脂組成物を得ることができる。
 かかる場合において、キノンジアジド化合物は5-ナフトキノンジアジドスルホニル基、4-ナフトキノンジアジドスルホニル基のいずれも好ましく用いられる。同一分子中にこれらの基を両方有する化合物を用いてもよいし、異なる基を用いた化合物を併用してもよい。
 かかる場合に用いられるキノンジアジド化合物は、特定のフェノール化合物から、次の方法により合成される。例えば5-ナフトキノンジアジドスルホニルクロライドとフェノール化合物をトリエチルアミン存在下で反応させる方法が挙げられる。フェノール化合物の合成方法は、酸触媒下で、α-(ヒドロキシフェニル)スチレン誘導体を多価フェノール化合物と反応させる方法などが挙げられる。
 かかる場合に用いられる光酸発生剤の含有量は、ポリイミド前駆体100重量部に対して、好ましくは3~40重量部である。光酸発生剤の含有量をこの範囲とすることにより、より高感度化を図ることができる。さらに増感剤などを必要に応じて含有してもよい。
 ポジ型感光性樹脂組成物のパターンを形成するには、ポジ型感光性樹脂組成物のワニスを支持基板上に塗布し、露光後、現像液を用いて露光部を除去する。現像液としては、テトラメチルアンモニウムヒドロキシド、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミンなどのアルカリ性を示す化合物の水溶液が好ましい。また場合によっては、これらのアルカリ水溶液にN-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ガンマブチロラクトン、ジメチルアクリルアミドなどの極性溶媒、メタノール、エタノール、イソプロパノールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類などを単独あるいは数種を組み合わせたものを添加してもよい。現像後は水にてリンス処理をすることが好ましい。ここでもエタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類などを水に加えてリンス処理をしてもよい。
 <ポリイミド樹脂膜>
 以下では、本発明のポリイミド前駆体の製造方法について説明する。ポリアミド酸やポリアミド酸エステル、ポリアミド酸シリルエステルなどのポリイミド前駆体は、ジアミン化合物と酸二無水物又はその誘導体との反応により合成することができる。誘導体としては該酸二無水物のテトラカルボン酸、酸塩化物、テトラカルボン酸のモノ、ジ、トリまたはテトラエステルなどが挙げられ、具体的にはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などでエステル化された構造が挙げられる。重合反応の反応方法は、目的のポリイミド前駆体が製造できれば特に制限はなく、公知の反応方法を用いることができる。
 具体的な反応方法としては、所定量の全てのジアミン成分および反応溶媒を反応器に仕込み溶解させた後、所定量の酸二無水物成分を仕込み、室温~80℃で0.5~30時間撹拌する方法などが挙げられる。
 以下では、本発明のポリイミド前駆体と溶剤とを含有するポリイミド前駆体樹脂組成物を用いてポリイミド樹脂膜を製造する方法について説明する。なお、ポリイミド樹脂膜には、前述の界面活性剤、内部離型剤、シランカップリング剤、熱架橋剤、無機フィラー、光酸発生剤等が含まれていてもよい。
 まず、ポリイミド前駆体樹脂組成物を支持基板上に塗布してポリイミド前駆体樹脂組成物膜を形成する。支持基板としては例えばシリコン、セラミックス類、ガリウムヒ素、ソーダ石灰硝子、無アルカリ硝子などが用いられるが、これらに限定されない。塗布方法は、例えば、スリットコート法、スピンコート法、スプレーコート法、ロールコート法、バーコート法などの方法があり、これらの手法を組み合わせて塗布してもかまわない。これらの中でも、スピンコートもしくはスリットコートによる塗布が好ましい。
 次に、支持基板上に塗布したポリイミド前駆体樹脂組成物を乾燥して、ポリイミド前駆体樹脂膜を得る。乾燥はホットプレート、オーブン、赤外線、真空チャンバーなどを使用する。ホットプレートを用いる場合、プレート上に直接、もしくは、プレート上に設置したプロキシピン等の治具上にポリイミド前駆体樹脂組成物を塗布した支持基板を保持して加熱する。プロキシピンの材質としては、アルミニウムやステレンレス等の金属材料、あるいはポリイミド樹脂や“テフロン(登録商標)”等の合成樹脂があり、いずれの材質のプロキシピンを用いてもかまわない。プロキシピンの高さは、支持基板のサイズ、被加熱体である樹脂層の種類、加熱の目的等により様々であるが、例えば300mm×350mm×0.7mmのガラス支持基板上に塗布した樹脂層を加熱する場合、プロキシピンの高さは2~12mm程度が好ましい。
 中でも、真空チャンバーを用いて真空乾燥させることが好ましく、真空乾燥後にさらに乾燥のための加熱を行ったり、真空乾燥しながら乾燥のための加熱を行ったりすることがさらに好ましい。これにより、乾燥処理時間の短縮、及び、均一な塗布膜形成が可能となる。乾燥のための加熱の温度は支持基板やポリイミド前駆体の種類、目的により様々であり、室温から170℃の範囲で1分から数時間行うことが好ましい。さらに、乾燥工程は同一の条件、又は異なる条件で複数回行ってもよい。
 次に、イミド化のための加熱を行う。ポリイミド前駆体樹脂膜を180℃以上400℃以下の範囲で加熱してポリイミド樹脂膜に変換する。なお、熱イミド化工程は、上記乾燥工程の後に何らかの工程を経てから行われても構わない。
 熱イミド化工程の雰囲気は特に限定されず、空気でも窒素やアルゴン等の不活性ガスでもよい。ただし、本発明のポリイミド樹脂膜には無色透明性が求められるため、酸素濃度が5%以下の雰囲気で加熱して熱イミド化を行うことが好ましい。一般的に、酸素濃度を低くすることで、加熱時のポリイミド膜の着色を低減し、高透明性を示すポリイミド樹脂膜を得ることができる。
 また、熱イミド化工程において、製造ラインのオーブンの加熱形式にあわせた昇温方法を選択することができるが、最高加熱温度まで5~120分かけて昇温することが好ましい。例えば、オーブン内にて、基材上に形成されたポリイミド前駆体樹脂膜を室温から、熱イミド化のための加熱温度まで5~120分かけて昇温してイミド化し、ポリイミド樹脂膜としてもよいし、予め200℃以上650℃以下の範囲に加熱されたオーブン内に基材上に形成されたポリイミド前駆体樹脂膜をいきなり投入して加熱処理を行ってイミド化し、ポリイミド樹脂膜としてもよい。
 このようにして支持基板上に形成したポリイミド樹脂膜を支持基板から剥離するには、機械的に剥離する方法、フッ酸などの薬液や水に浸漬する方法、レーザーを硬化膜と支持基板の界面に照射する方法などが挙げられるがいずれの方法を用いても構わない。
 上記のように得られたポリイミド樹脂膜は高透明性、低複屈折、低CTE、高耐熱性、耐薬品性、可とう性を有しており、フレキシブル基板として、後述する液晶ディスプレイ、有機ELディスプレイ、電子ペーパーなどの表示素子、カラーフィルタや光導波路などの光学素子、太陽電池、CMOSなどの受光素子、タッチパネル、回路基板等に好適に用いることができる。
 ポリイミド樹脂膜の透明性は、紫外-可視(UV-vis)スペクトルを測定することで判断できる。透明性樹脂膜としては、厚さ10μmの膜に対し波長400nmにおける光線透過率が70%以上であることが好ましく、より好ましくは80%以上であり、さらに好ましくは90%以上である。
 本発明のポリイミド樹脂膜は、膜表面に対して垂直方向と水平方向の屈折率差で定義される複屈折が0.06以下であることが好ましい。また、線熱膨張係数(CTE)に関しては50℃~200℃の平均値が40ppm/℃以下であることが好ましい。より好ましくは複屈折が0.04以下かつ、CTEが40ppm/℃以下であり、さらに好ましくは複屈折が0.04以下かつCTEが30ppm/℃以下である。
 一般的に、支持基板上に製膜したポリイミド樹脂膜には残留応力が生じ、その結果、支持基板に反りが生じる。支持基板の反りは、素子の加工精度の低下や、素子の加工時の搬送エラー等の不具合を引き起こす。ポリイミド樹脂膜の残留応力は、主に支持基板とポリイミド樹脂膜のCTEが異なることに起因し、両者のCTEの差が増大すると、残留応力も増大する。一般的に、支持基板にはポリイミド樹脂膜よりもCTEが低いガラス基板などが用いられることから、ポリイミド樹脂膜には低CTEが求められる。一方、ディスプレイ基板などの表示素子やカラーフィルタなどの光学素子の基板には低複屈折が求められる。例えば、複屈折の高い基板に用いた表示素子やカラーフィルターを用いたディスプレイでは、画像の歪み、斜め視野での色ずれなどの不具合が生じる。本発明のポリイミド樹脂膜は、低CTEと低複屈折のバランスに優れるため、高い加工精度と高品質の表示画像を共に達成することができる。
 耐薬品性に関しては、本発明のポリイミド前駆体から形成されたポリイミドは、アセトン、プロピレングリコールモノメチルエーテル、N-メチル-2-ピロリドン、ガンマブチロラクトン、ジメチルスルホキシドなどの有機溶剤や、塩酸、硝酸、燐酸、酢酸、シュウ酸などの酸性溶液、水酸化テトラメチルアンモニウムなどの塩基性溶液に対して、優れた耐薬品性を示す。
 なお、これらの物性値は、ポリイミド樹脂膜に界面活性剤、内部離型剤、シランカップリング剤、熱架橋剤、無機フィラー、光酸発生剤等が含まれている場合には、それらも含んだ状態の樹脂膜としての物性値である。
 発明のポリイミド樹脂膜は、液晶ディスプレイ、有機ELディスプレイ、電子ペーパーなどの表示素子、カラーフィルタや光導波路などの光学素子、太陽電池、CMOSなどの受光素子、タッチパネル、回路基板等に使用することができる。特にこれらの表示素子や受光素子等を、柔軟性があり大きく湾曲させ、また、折り曲げ可能なフレキシブル素子として活用する上で、本発明のポリイミド樹脂膜をフレキシブル基板として好ましく用いることができる。なお、本発明のポリイミド樹脂膜をフレキシブル基板として用いた場合の表示素子や光学素子(カラーフィルタ等)等については、フレキシブル表示素子やフレキシブル光学素子(フレキシブルカラーフィルタ等)等のように、素子名の前に「フレキシブル」と表記して示す場合もある。
 表示素子、受光素子、回路、TFT基板などの製造は、支持基板上にポリイミド樹脂膜を形成し、そのポリイミド樹脂膜を支持基板から剥離した後でポリイミド樹脂膜上に実施してもよく、支持基板から剥離せずにそのままポリイミド樹脂膜上に実施してもよい。
 後者の場合は、表示素子、受光素子、回路、TFT基板などを製造した後に、支持基板からそれらを剥離する。この方法は従来の枚葉式の製造プロセスを利用できる利点がある。また、ポリイミド樹脂膜が支持基板に固定されているため、位置精度良く表示素子、受光素子、回路、TFT基板、タッチパネルなどを製造するために好適である。以下の説明では後者の方法を代表例として説明することが多いが、いずれも前者の方法であってもよい。
 表示素子、受光素子、回路、TFT基板、タッチパネルなどを形成したポリイミド樹脂膜を基材から剥離する方法は特に限定されない。剥離方法の例としては、水に浸漬する方法、塩酸やフッ酸などの薬液に浸漬する方法、紫外光から赤外光の波長範囲のレーザー光をポリイミド樹脂膜と支持基板の界面に照射する方法などが挙げられる。なお、剥離を容易にするために、ポリイミド前駆体樹脂組成物を基材へ塗布する前に、支持基板に離型剤を塗布したり犠牲層を製膜したりしておいてもよい。離型剤としては、植物油系、アルキッド系、シリコーン系、フッ素系、芳香族高分子系、アルコキシシラン系等が挙げられる。犠牲層としては、金属膜、金属酸化物膜、アモルファスシリコン膜等が挙げられる。
 本発明のポリイミド樹脂膜には、少なくとも一方の面上に無機膜を製膜しガスバリア層とすることができ、ガスバリア層付き基板として、表示素子の基板に好適に使用することができる。
 ポリイミド樹脂膜上のガスバリア層は水蒸気や酸素等の透過を防ぐ役割を果たすものである。特に有機エレクトロルミネッセンス素子(有機EL素子)では、水分による素子の劣化が著しいので、基板にガスバリア性を付与することが必要である。
 <フレキシブル基板>
 本発明のポリイミド樹脂膜を含む基板は柔軟性があり大きく湾曲させることができるという特長を有する。かかる柔軟性のある基板を、フレキシブル基板と呼ぶ。フレキシブル基板は少なくとも以下の(1)~(3)の工程を経て製造できる。また、ポリイミド樹脂膜上に無機膜を有するフレキシブル基板は少なくとも以下の(1)~(4)の工程を経て製造することができる。
(1)本発明のポリイミド前駆体と溶剤とを含むポリイミド前駆体樹脂組成物を支持基板上に塗布する工程
(2)塗布されたポリイミド前駆体樹脂組成物から溶剤を除去する工程
(3)ポリイミド前駆体をイミド化してポリイミド樹脂膜を得る工程
(4)ポリイミド樹脂膜上に無機膜を形成する工程。
 上記(1)~(3)の工程は、<ポリイミド樹脂膜>で詳細を述べたとおりである。
 上記(4)の工程は、ポリイミド樹脂膜の少なくとも片面に、無機膜を形成する工程である。ポリイミド樹脂膜を支持基板から剥離して、フレキシブル基板を製造することができる。
 なお、(4)の工程はポリイミド樹脂膜の直上に無機膜を形成するものであってもよいし、間に別の層を介在させて無機膜を形成するものであってもよい。好ましくは、ポリイミド樹脂膜の直上に無機膜を形成する方法である。
 フレキシブル基板を製造する際の支持基板は、自立性をもつ硬質なものであって、樹脂組成物を塗布する面が平滑であり、耐熱性のある基材が好ましい。材質は特に制限されず、例えばソーダガラスや無アルカリガラス、シリコン、石英、アルミナやサファイアなどのセラミック、ガリウムヒ素、鉄、錫、亜鉛、銅、アルミニウム、ステンレスなどの金属、ポリイミドやポリベンゾオキサゾールなどの耐熱プラスチックフィルム、ポリテトラフルオロエチレンやポリフッ化ビニリデンなどのフッ素樹脂、エポキシ樹脂、ポリエチレンテレフタレートやポリエチレンナフタレートなどの基材が挙げられる。これらのうち、表面の平滑性、レーザー剥離が可能であること、安価な点などから、ガラスが好ましい。ガラスの種類に特に制約は無いが、金属不純物低減の観点から無アルカリガラスが好ましい。
 前述したように表示素子の基板にフレキシブル基板を用いる場合、基板はガスバリア性が求められるため、ポリイミド樹脂膜上に無機膜が形成されることが好ましい。ガスバリア層としての無機膜を構成する材料としては、金属酸化物、金属窒化物および金属酸窒化物が好ましく用いることができる。例えば、アルミニウム(Al)、ケイ素(Si)、チタン(Ti)、錫(Sn)、亜鉛(Zn)、ジルコニウム(Zr)、インジウム(In)、ニオブ(Nb)、モリブデン(Mo)、タンタル(Ta)、カルシウム(Ca)などの金属酸化物、金属窒化物および金属酸窒化物を挙げることができる。特に少なくともZn、Sn、Inの金属酸化物、金属窒化物および金属酸窒化物を含むガスバリア層は、耐屈曲性が高く好ましい。さらに、Zn、Sn、Inの原子濃度が20~40%であるガスバリア層は耐屈曲性がより高く好ましい。ガスバリア層には二酸化ケイ素、酸化アルミニウムを共存させた組成も耐屈曲性が良好で好ましい。
 これら無機のガスバリア層は例えばスパッタリング法、真空蒸着法、イオンプレーティング法、プラズマCVD法等の気相中より材料を堆積させて膜を形成する気相堆積法により作製することができる。中でも、スパッタ法では、金属ターゲットを酸素含有雰囲気でスパッタする反応性スパッタをすることで製膜速度を向上させることができる。
 ガスバリア層の形成は、支持基板とポリイミド樹脂膜からなる積層体上で行っても、支持基板から剥離された自立膜上で行ってもよい。
 本発明のポリイミド樹脂は耐熱性が高いので、基板温度を上げてガスバリア層を作製することが可能である。ガスバリア層の製膜温度は80~400℃とすることが好ましい。ガスバリア性能の向上には高い製膜温度を選択することが有利である。製膜温度が高いと耐屈曲性が低下する場合があるため、耐屈曲性が重要な用途では、ガスバリア層の製膜温度は100~300℃であることが好ましい。本発明のポリイミド樹脂膜は優れた耐熱性を有しているため、高温下(例えば300℃)でガスバリア層を形成しても、膜に皺などの欠陥が生じることはない。
 ガスバリア層の層数に制限は無く、1層だけでも、2層以上の多層でもよい。多層膜の例としては、1層目がSiO、2層目がSiNから成るガスバリア層や、1層目がSiO/AlO/ZnO、2層目がSiOからなるガスバリア層が挙げられる。
 フレキシブル基板のガスバリア層上に有機EL発光層等の各種の機能を有する層を形成して、表示素子や光学素子などを作製する工程においては、各種有機溶媒が使用される。例えば、カラーフィルタ(以下、「CF」)では、ポリイミド樹脂膜上にガスバリア層を形成した上に着色画素やブラックマトリックス等を形成してCFとする。このとき、ガスバリア層の耐溶剤性が悪い場合は、ガスバリア性能が低下する。したがって、最上層のガスバリア層に耐溶剤性が付与されていることが好ましく、例えば最上層のガスバリア層は酸化ケイ素からなることが好ましい。
 ガスバリア層の組成分析は、X線光電子分光法(XPS法)を使用して各元素を定量分析することにより行うことができる。
 ガスバリア層の合計の厚さは、20~600nmであることが好ましく、30~300nmであることがさらに好ましい。
 ガスバリア層の厚さは、通常は透過型電子顕微鏡(TEM)による断面観察により測定することが可能である。
 ガスバリア層の上層と下層の境界領域の組成が傾斜的に変化している等の理由によりTEMで明確な界面が視認できない場合には、まず、厚さ方向の組成分析を行い厚さ方向の元素の濃度分布を求めた上で、濃度分布の情報を基に層の境界および、層の厚さを求めるものとする。厚さ方向の組成分析の手順および各層の層の境界ならびに層の厚さの定義を以下に記す。
 まず、透過型電子顕微鏡によりガスバリア層の断面を観察し、全体の厚さを測定する。次いで、深さ方向に元素の組成分析が可能な以下の測定を適用して、ガスバリア層の厚さ位置に対応する元素の濃度の分布(厚さ方向の濃度プロファイル)をえる。このときに適用する組成分析方法としては、電子エネルギー損失分光法(以降EELS分析と記す)、エネルギー分散型X線分光法(以降EDX分析と記す)、二次イオン質量分析法(以降SIMS分析と記す)、X線光電子分光法(XPS分析と記す)、オージェ電子分光法(以降AES分析分析と記す)、が挙げられるが、感度および精度の観点から、EELS分析がもっとも好ましい。従って、まず、EELS分析を行い、以降先にあげた順(EELS分析→EDX分析→SIMS分析→XPS分析→AES分析)で分析を行って、より上位の分析で特定できない成分について、下位の分析のデータを適用するようにする。
 <CF>
 本発明のポリイミド樹脂膜を用いたフレキシブル基板上にブラックマトリックス、着色画素を設けることで、CFが得られる。このCFは、樹脂膜を基材に用いているため、軽量、割れにくい、可とう性などが特徴である。ブラックマトリックス、着色画素層のうち少なくとも1つの層に使用されている樹脂がポリイミド樹脂を含むことが好ましい。さらに、反射率低減及び耐熱性の観点から、ブラックマトリックスが低光学濃度層と、該低光学濃度層上に形成された高光学濃度層からなり、かつ低光学濃度層と高光学濃度層の少なくとも1つの層に使用されている樹脂がポリイミド樹脂を含むことが好ましい。
 本発明のポリイミド樹脂膜は、ポリイミド前駆体の溶剤として一般的な極性非プロトン性溶媒に対して高い耐薬品性を有するため、ブラックマトリックス、着色画素層にポリイミド樹脂を使用できる。さらに、ブラックマトリックス、着色画素層上にガスバリア層を形成する場合においても、ブラックマトリックス、着色画素層のポリイミド樹脂は耐熱性が高いため、ガスバリア層の形成過程においてガス発生が少なく、ガスバリア性の高いガスバリア層の製膜に有利である。また、ブラックマトリックス、着色画素層のパターン加工時には、アルカリ水溶液に可溶なポリイミド前駆体として使用できるため微細なパターン形成に有利である。
 CFの構成の例を図面により説明する。図1Aは支持基板上に形成された、本発明のポリイミド樹脂膜を含むCFの基本的な構成を示すものである。ここから前述の剥離方法によって支持基板1を剥離することで、本発明のポリイミド樹脂膜を基板とするCFが得られる。
 支持基板1上にポリイミド樹脂膜2が形成され、その上にブラックマトリックス4、赤の着色画素5R、緑の着色画素5Gおよび青の着色画素5Bが形成され、さらにオーバーコート層6を備えている。なお、オーバーコート層6は必須ではなく、配置しない例も可能である。また、図1B~図1Dは図1Aの変形例であり、無機膜であるガスバリア層3がさらに形成されている。ガスバリア層3を形成する場所は特に限定されず、例えば、ポリイミド樹脂膜2上に形成しても(図1B参照)、ブラックマトリックス4や着色画素層上に形成しても(図1C参照)、カラーフィルタの表面に存在するオーバーコート層6上に形成しても、ポリイミド樹脂膜2上とオーバーコート層6上の両方に形成してもよい(図1D参照)。また、ガスバリア層の層数に制限は無く、1層だけでも、2層以上の多層でもよい。多層膜の例としては、1層目がSiO、2層目がSiNから成るガスバリア層や、1層目がSiO/AlO/ZnO、2層目がSiOからなるガスバリア層が挙げられる。
 (ブラックマトリックス)
 ブラックマトリックスは、黒色顔料を樹脂に分散した樹脂からなるブラックマトリックスであることが好ましい。黒色顔料の例としては、カーボンブラック、チタンブラック、酸化チタン、酸化窒化チタン、窒化チタン又は四酸化鉄が挙げられる。特に、カーボンブラック、チタンブラックが好適である。また赤顔料、緑顔料、青顔料を混合して黒色顔料として用いることもできる。
 樹脂ブラックマトリックスに使用する樹脂としては、耐熱性の観点、微細パターンの形成のしやすさの観点から、ポリイミド樹脂が好ましい。ポリイミド樹脂は、酸二無水物とジアミンとから合成されたポリアミド酸を、パターン加工後に熱硬化してポリイミド樹脂とすることが好ましい。
 酸二無水物、ジアミンおよび溶剤の例としては、前述のポリイミド樹脂で挙げたものを用いることができる。
 樹脂ブラックマトリックスに使用する樹脂としては、感光性アクリル樹脂を用いることもできる。黒色顔料分散した、アルカリ可溶性のアクリル樹脂、光重合性モノマーおよび高分子分散剤および添加剤からなる。
 アルカリ可溶性のアクリル樹脂の例としては、不飽和カルボン酸とエチレン性不飽和化合物との共重合体が挙げられる。不飽和カルボン酸の例としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、ビニル酢酸又は酸無水物が挙げられる。
 光重合性モノマーの例としては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリアクリルホルマール、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート又はジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。
 光重合開始剤の例としては、ベンゾフェノン、N,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、2,2-ジエトキシアセトフェノン、α-ヒドロキシイソブチルフェノン、チオキサントン又は2-クロロチオキサントンが挙げられる。
 感光性アクリル樹脂を溶解するための溶媒の例としては、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、アセト酢酸エチル、メチル-3-メトキシプロピオネート、エチル-3-エトキシプロピオネート、メトキシブチルアセテート又は3-メチル-3-メトキシブチルアセテートが挙げられる。
 外光反射に起因する視認性の低下を抑制するために、ブラックマトリックスは、低光学濃度層と、該低光学濃度層上に形成された高光学濃度層と、からなる積層樹脂ブラックマトリックスであることが好ましい。なお、低光学濃度層とは、光学濃度が0ではなく実質的に透明でない層構成のものであって、単位厚さ当たりの光学濃度の値が、高光学濃度層の単位厚さ当たりの光学濃度よりも小さいものをいう。前記積層樹脂ブラックマトリックを構成する樹脂は特に制約されないが、低光学濃度層と高光学濃度層を一括パターニングする観点から、低光学濃度層はポリイミド樹脂、高光学濃度層はアクリル樹脂であることが好ましい。さらに、反射率を低下させるために、前記樹脂ブラックマトリックスには微粒子が含まれることがより好ましい。
 (着色画素)
 ブラックマトリックスを形成した後に、着色画素を形成する。着色画素は、赤、緑、青の3色の着色画素からなる。また3色の着色画素に加えて、無色透明または、ごく薄く着色した第4色の画素を形成することで、表示装置の白色表示の明るさを向上させることもできる。
 カラーフィルタの着色画素は、着色剤として顔料または染料を含む樹脂が用いることができる。
 赤の着色画素に使用する顔料の例としては、PR254、PR149、PR166、PR177、PR209、PY138、PY150又はPYP139が挙げられ、緑の着色画素に使用する顔料の例としては、PG7、PG36、PG58、PG37、PB16、PY129、PY138、PY139、PY150又はPY185が挙げられ、青の着色画素に使用する顔料の例としては、PB15:6又はPV23が挙げられる。
 青色染料の例としては、C.I.ベイシックブルー(BB)5、BB7、BB9又はBB26が挙げられ、赤色染料の例としては、C.I.アシッドレッド(AR)51、AR87又はAR289が挙げられ、緑色染料の例としては、C.I.アシッドグリーン(AG)25、AG27が挙げられる。
 赤緑青の着色画素に使用する樹脂の例としては、アクリル系樹脂、エポキシ系樹脂又はポリイミド系樹脂が挙げられる。耐熱性の観点からはポリイミド樹脂が好ましく、CFの製造コストを安くするために、感光性アクリル系樹脂を使用してもよい。
 ポリイミド樹脂からなる着色画素を形成するためには、少なくともポリアミック酸、着色剤、溶剤からなる非感光性カラーペーストを、基板上に塗布した後、風乾、加熱乾燥、真空乾燥などにより乾燥し、非感光性ポリアミック酸着色被膜を形成し、ポジ型フォトレジストを用いて、所望パターンを形成後、フォトレジストをアルカリ剥離し、最後に200~300℃で1分~3時間加熱することにより着色画素を硬化(ポリイミド化)させる方法が一般的である。
 感光性アクリル系樹脂は、アルカリ可溶性のアクリル樹脂、光重合性モノマーおよび光重合開始剤を含有することが一般的である。
 アルカリ可溶性のアクリル樹脂の例としては、不飽和カルボン酸とエチレン性不飽和化合物との共重合体が挙げられる。不飽和カルボン酸の例としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、ビニル酢酸又は酸無水物が挙げられる。
 光重合性モノマーの例としては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリアクリルホルマール、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート又はジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。
 光重合開始剤の例としては、ベンゾフェノン、N,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、2,2-ジエトキシアセトフェノン、α-ヒドロキシイソブチルフェノン、チオキサントン又は2-クロロチオキサントンが挙げられる。
 感光性アクリル系樹脂を溶解するための溶媒の例としては、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、アセト酢酸エチル、メチル-3-メトキシプロピオネート、エチル-3-エトキシプロピオネート、メトキシブチルアセテート又は3-メチル-3-メトキシブチルアセテートが挙げられる。
 ブラックマトリックスおよび着色画素を形成したカラーフィルタの表面を平坦化するために、カラーフィルタ表面にさらにオーバーコート層を形成してもよい。オーバーコート層の形成に使用する樹脂の例としては、エポキシ樹脂、アクリルエポキシ樹脂、アクリル樹脂、シロキサン樹脂又はポリイミド樹脂が挙げられる。オーバーコート層の厚さとしては、表面が平坦になる厚さが好ましく、0.5~5.0μmがより好ましく、1.0~3.0μmがさらに好ましい。
 (CFの製造方法)
 本発明のポリイミド樹脂膜を含むCFは少なくとも以下の工程を経て製造することができる。
(1)本発明のポリイミド前駆体と溶剤とを含むポリイミド前駆体樹脂組成物を支持基板上に塗布する工程
(2)塗布されたポリイミド前駆体樹脂組成物から溶剤を除去する工程
(3)ポリイミド前駆体をイミド化してポリイミド樹脂膜を得る工程
(4)ポリイミド樹脂膜上にブラックマトリックスおよび着色画素を形成する工程
(5)支持基板からポリイミド樹脂膜を剥離する工程
 上記(1)~(3)の工程は、<ポリイミド樹脂膜>で詳細を述べたとおりである。
 上記(4)の工程は、ポリイミド樹脂膜上にブラックマトリックスおよび着色画素を形成する工程である。後述するように、ブラックマトリックスや着色画素のパターン形成にはフォトリソグラフィーが用いられる。現在、液晶ディスプレイや有機ELディスプレイとしては300ppi以上の高精細が求められており、フレキシブルディスプレイパネルでも同等以上の性能が求められている。このような高解像度を実現するには高精度のパターン形成が必要である。支持基板上に製膜されたポリイミド樹脂膜上にブラックマトリックス等を形成して、CFを作製する場合、支持基板としてガラス基板を用い、その上にブラックマトリックス等を形成して、CFを作製する現行の技術が適用でき、ポリイミド自立膜上にCFを作製する場合と比較して、高精細パターンの形成に有利である。
 なお、(4)の工程はポリイミド樹脂膜の直上にブラックマトリックスや着色画素を形成するものであってもよいし、間に別の層を介在させてこれらを形成するものであってもよい。
 上記CFの製造工程には、さらにガスバリア層等の無機膜を製膜する工程が含まれていてもよい。無機膜を形成する場所は特に限定されない。例えば、ポリイミド樹脂膜上に形成しても、ブラックマトリックスや着色画素層上に形成しても、カラーフィルタの表面に存在する平坦化膜上に形成しても、ポリイミド樹脂膜上と平坦化膜上の両方に形成してもよい。また、無機膜の層数に制限は無く、1層だけでも、2層以上の多層でもよい。多層膜の例としては、1層目がSiO、2層目がSiNから成る無機膜や、1層目がSiO/AlO/ZnO、2層目がSiOからなる無機膜が挙げられる。
 次に、本発明のCFの製造方法の一例をより具体的に説明する。支持基板上にポリイミド樹脂膜およびガスバリア層を上記の方法で作製する。その上に、カーボンブラックまたはチタンブラックからなる黒色顔料を分散したポリアミド酸からなるブラックマトリックス用ペーストをスピンコーター又はダイコーター等の方法でキュア後の厚さが1μmになるように塗布し、60Pa以下まで減圧乾燥した後に、110~140℃の熱風オーブン又はホットプレートでセミキュアを行う。
 ポジ型レジストをスピンコーター又はダイコーター等の方法で、プリベーク後の厚さが1.2μmになるように塗布後、80Paまで減圧乾燥を行い、80~110℃の熱風オーブン又はホットプレートでプリベークを行い、レジスト膜を形成する。その後、プロキシミティ露光機又はプロジェクション露光機等により、フォトマスクを介して紫外線により選択的に露光を行った後、1.5~3重量%の水酸化カリウム又はテトラメチルアンモニウムヒドロキシド等のアルカリ現像液に20~300秒浸漬することにより露光部を除去する。剥離液を用いてポジレジストを剥離後、200~300℃の熱風オーブン又はホットプレートで10~60分加熱することで、ポリアミド酸をポリイミドに転換させることで樹脂ブラックマトリックスを形成する。
 着色画素は、着色剤と樹脂とを用いて作製する。着色剤として顔料を使用する場合には、顔料に高分子分散剤および溶媒を混合して分散処理を行った分散液に、ポリアミド酸を添加して作製する。一方、着色剤として染料を使用する場合には、染料に溶媒、ポリアミド酸を添加して作製する。この場合の全固形分は、樹脂成分である高分子分散剤、ポリアミド酸と、着色剤との合計である。
 得られた着色剤組成物を、樹脂ブラックマトリックスが形成されたポリイミド樹脂膜上に、スピンコーター又はダイコーター等の方法で加熱処理後の厚さが0.8~3.0μmの目的の厚さになるように塗布後、80Paまで減圧乾燥を行い、80~110℃の熱風オーブン又はホットプレートでプリベークを行い、着色剤の塗膜を形成する。
 次に、ポジ型レジストをスピンコーター又はダイコーター等の方法で、プリベーク後の厚さが1.2μmになるように塗布後、80Paまで減圧乾燥を行い、80~110℃の熱風オーブン又はホットプレートでプリベークを行い、レジスト膜を形成する。その後、プロキシミティ露光機又はプロジェクション露光機等により、フォトマスクを介して紫外線により選択的に露光を行った後、1.5~3重量%の水酸化カリウム又はテトラメチルアンモニウムヒドロキシド等のアルカリ現像液に20~300秒浸漬することにより露光部を除去する。剥離液を用いてポジレジストを剥離後、200~300℃の熱風オーブン又はホットプレートで10~60分加熱することで、ポリアミド酸をポリイミドに転換させることで着色画素を形成する。着色画素の色毎に作製した着色剤組成物を使用して、上記のようなパターンニング工程を赤の着色画素、緑の着色画素および青の着色画素について順次行う。なお、着色画素のパターンニングの順序は特に限定されない。
 その後、ポリシロキサン樹脂をスピンコーター又はダイコーター等の方法で塗布後、真空乾燥し、80~110℃の熱風オーブン又はホットプレートでプリベークを行い、150~250℃の熱風オーブン又はホットプレートで5~40分加熱することでオーバーコート層を形成することで、本発明のCFの画素が作製できる。
 前述したように本発明のポリイミド樹脂膜はCTEが低いため、支持基板上にポリイミド樹脂膜を形成した際の基板の反りを低減できる。したがって、ブラックマトリックスや着色画素形成時のフォトリソグラフィー工程での焦点ずれを小さくでき、その結果、CFを高精度で作製できる。
 <TFT基板>
 本発明のポリイミド樹脂膜は、TFT基板の基材に好適に使用することができる。すなわち、本発明のポリイミド樹脂膜上にTFTを備えたTFT基板を得ることができる。このTFT基板は、樹脂膜を基材に用いているため、軽量、割れにくいなどが特徴である。
 本発明のポリイミド樹脂膜を利用したTFT基板は少なくとも以下の工程を経て製造することができる。
(1)本発明のポリイミド前駆体と溶剤とを含むポリイミド前駆体樹脂組成物を支持基板上に塗布する工程
(2)塗布されたポリイミド前駆体樹脂組成物から溶剤を除去する工程
(3)ポリイミド前駆体をイミド化してポリイミド樹脂膜を得る工程
(4)ポリイミド樹脂膜上にガスバリア層を形成する工程
(5)ポリイミド樹脂膜上にTFTを形成する工程。
 上記(1)~(3)の工程は、<ポリイミド樹脂膜>で詳細を述べたとおりである。
 上記(4)及び(5)の工程は、ポリイミド樹脂膜の上に、ガスバリア層を形成し、次いで、TFTを形成する工程である。なお、(4)や(5)の工程はポリイミド樹脂膜の直上にガスバリア層やTFTを形成するものであってもよいし、間に別の層を介在させてこれらを形成するものであってもよい。好ましくは、ポリイミド樹脂膜の直上にガスバリア層を形成し、その上にTFTを形成する方法である。
 TFTを形成するための半導体層としては、アモルファスシリコン半導体、多結晶シリコン半導体、In-Ga-ZnO- に代表される酸化物半導体、ペンタセンやポリチオフェンに代表される有機物半導体が挙げられる。例えば、本発明のポリイミド樹脂膜を基材として、ガスバリア膜、ゲート電極、ゲート絶縁膜、半導体層、エッチングストッパ膜、ソース・ドレイン電極を公知の方法によって順次形成してボトムゲート型TFTを作製する。上記の工程を経てポリイミド樹脂膜を利用したTFT基板を製造することができる。このようなTFT基板は、液晶素子、有機EL素子、電子ペーパーなどの表示素子の駆動基板として用いることができる。
 TFT基板の製造において、ゲート電極、ゲート絶縁膜、半導体層、エッチングストッパ膜、ソース・ドレイン電極の形成には、主にフォトリソグラフィーを用いられる。前述したように本発明のポリイミド樹脂膜はCTEが低いため、支持基板上にポリイミド樹脂膜を形成した際の基板の反りを低減できる。したがって、フォトリソグラフィー工程での焦点ずれを小さくできるため、TFTを高精度で作製できる。その結果、駆動性能の良好なTFT基板が得られる。また、例えばボトムエミッション型有機ELディスプレイの場合、ディスプレイの使用者はTFT基板を透過した光を視認する。このため、複屈折の高い樹脂をTFT基板の基材に用いると、斜め方向から見た時に色ずれなどが起きる。本発明のポリイミドは、従来の低CTE/透明ポリイミドよりも複屈折が低いため、これらの不具合を改善することができる。
<タッチパネル>
 本発明のポリイミド樹脂膜を用いたフレキシブル基板は、タッチパネルの基板に使用することができる。例えば、本発明のポリイミド樹脂膜の少なくとも片面に透明導電層を形成することで透明導電膜とし、接着剤や粘着剤等を用いて透明導電膜同士を積層させることでタッチパネルを作成することができる。
 透明導電層としては、公知の金属膜、金属酸化物膜等、カーボンナノチューブやグラフェンなどの炭素材料を適用できるが、中でも透明性、導電性および機械特性の観点から、金属酸化物膜を適用することが好ましい。前記金属酸化物膜としては、例えば、不純物としてスズ、テルル、カドミウム、モリブテン、タングステン、フッ素、亜鉛、ゲルマニウム等を添加した酸化インジウム、酸化カドミウムおよび酸化スズ、不純物としてアルミニウムを添加した酸化亜鉛、酸化チタン等の金属酸化物膜が挙げられる。中でも酸化スズまたは酸化亜鉛を2~15質量%含有した酸化インジウムの薄膜は、透明性および導電性が優れているため好ましく用いられる。
 上記透明導電層の成膜方法は、目的の薄膜を形成できる方法であれば、いかなる方法で
もよいが、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法、プラズマ
CVD法等の気相中より材料を堆積させて膜を形成する気相堆積法などが適している。中でも、特に優れた導電性・透明性が得られるという観点から、スパッタリング法を用いて成膜することが好ましい。また、透明導電層の膜厚は20~500nmであることが好ましく、50~300nmであることがさらに好ましい。
 <回路基板>
 本発明のポリイミド樹脂膜を用いたフレキシブル基板は、回路基板に使用することができる。回路基板としては特に限定はなく、本発明のポリイミド樹脂膜をベースフィルムとしてその上に何らかの回路を形成したものが挙げられる。例えば、本発明のポリイミド樹脂膜をベースフィルムとし、その片面又は両面に接着剤層を介して銅箔を設けた銅張りポリイミドフィルム(CCL)にフォトレジスト膜形成、露光/現像、エッチング、レジスト剥離、ソルダーレジスト膜形成、電解金メッキを行ない、この上に保護層となるカバーレイフィルムが張り付けることで回路基板が得られる。前述の通り、本発明のポリイミド樹脂膜は透明性が高いため、透明回路基板を得ることができる。これは、透明ディスプレイに好適に用いることができる。
 <表示素子、受光素子>
 本発明のポリイミドを利用したフレキシブル基板は、液晶ディスプレイ、有機ELディスプレイ、電子ペーパーといった表示素子や太陽電池、CMOSなどの受光素子に使用することができる。特にこれらの表示素子や受光素子を、折り曲げ可能なフレキシブルデバイスとして活用する上で、本発明のフレキシブル基板が好ましく用いられる。
 表示素子や受光素子の製造工程の一例としては、基板上に形成したポリイミド樹脂膜の上に、表示素子や受光素子に必要な回路と機能層を形成し、レーザー照射等の公知の方法を用いてポリイミド樹脂膜を基板から剥離することが挙げられる。
 例えば表示素子の一例である有機EL素子として、図2に有機EL素子の一例(トップエミッション方式、白色発光有機EL)を示す。支持基板7上にポリイミド樹脂膜8が形成され、その上に無機膜であるガスバリア層9がさらに形成され、その上にTFT回路と有機EL発光層等が形成されている。TFT回路と有機EL発光層等は、アモルファス、シリコン、低温ポリシリコン、酸化物半導体などからなるTFT10、および平坦化層11、Al/ITOなどからなる第一電極12、第一電極12の端部を被覆する絶縁膜13を有し、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層からなる白色有機EL発光層14W、ITOなどからなる第二電極15から構成され、ガスバリア層16で封止されている。レーザ照射等の公知の方法を用いてポリイミド樹脂膜8を支持基板7から剥離することによって、有機EL素子として使用できる。
 本発明のポリイミド樹脂膜を含む有機EL素子は少なくとも以下の工程を経て製造することができる。
(1)ポリイミド前駆体と溶剤とを含むポリイミド前駆体樹脂組成物を支持基板上に塗布する工程
(2)塗布されたポリイミド前駆体樹脂組成物から溶剤を除去する工程
(3)ポリイミド前駆体をイミド化してポリイミド樹脂膜を得る工程
(4)前記ポリイミド樹脂膜上にTFT回路と有機EL発光層を形成する工程
(5)前記支持基板から前記ポリイミド樹脂膜を剥離する工程
 上記(1)~(3)の工程は、<ポリイミド樹脂膜>で詳細を述べたとおりである。
 上記(4)の工程は、アモルファス、シリコン、低温ポリシリコン、酸化物半導体などからなるTFT10、および平坦化層11、Al/ITOなどからなる第一電極12、第一電極12の端部を被覆する絶縁膜13を有し、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層からなる白色あるいは各色(赤色、緑色、青色等)の有機EL発光層、ITOなどからなる第二電極15を順時形成する。この際ポリイミド樹脂膜8の上に予め無機膜であるガスバリア層9を形成した上で、TFT回路と有機EL発光層を形成することが好ましく、また、有機EL発光層を形成した後、ガスバリア層16で封止することも好ましい。
 上記(5)の工程は、前述の場合と同様である。
 なお、光取り出し方式は、TFT基板側に光を取り出すボトムエミッション方式でも、封止基板側に光を取り出すトップエミッション方式のどちらでもよい。前述したように、本発明のポリイミド樹脂膜を用いることで高い精度でのTFT形成、及び斜め視野での色ずれを小さくすることができる。さらに、本発明のポリイミド樹脂膜上には高温下でもガスバリア層を形成できるため、パネルのガス透過率を低減することができる。したがって、本発明のポリイミド樹脂膜を含む有機EL素子を用いることで、ダークスポットなどの欠陥等が少なく、また色度が変化しない、表示品位/表示信頼性が高い、フレキシブルな有機ELディスプレイを得ることができる。
 <有機ELディスプレイ>
 本発明のポリイミド樹脂膜を含む有機EL素子、および/または、本発明のポリイミド樹脂膜を含むCFは、それらを備えた有機ELディスプレイとして好ましく用いることができる。
A.本発明のポリイミド樹脂膜を含む有機EL素子を備えた有機ELディスプレイ
 前項<表示素子、受光素子>に記載したように、本発明のポリイミド樹脂膜を用いた有機EL素子を用いることで、有機ELディスプレイを得ることができる。例えば、本発明のポリイミド樹脂膜は高い透明性を有していることから、本発明のポリイミド樹脂膜上にガスバリア膜/TFT回路/有機EL発光層(赤色/緑色/青色)を作成することで、図7に示す有機ELディスプレイ(ボトムエミッション型)を得ることができる。
B.本発明のポリイミド樹脂膜を含むCFを備えた有機ELディスプレイ
 本発明のポリイミド樹脂膜を含むCFと、有機EL素子を組み合わせることにより、フルカラー表示の有機ELディスプレイを得ることができる。特に、ポリイミド樹脂膜を基材に用いた白色発光有機EL素子と、本発明のCFとを組み合わせることが好ましい。なお、有機EL素子の基材として用いるポリイミド樹脂膜としては既存のポリイミド樹脂膜でも、本発明のポリイミド樹脂膜でもよい。
 本発明のCFと白色発光型の有機EL素子を貼り合わせてなる有機ELディスプレイの一例を図3に示す。その製造工程の一例としては、以下の方法が挙げられる。前述の製造方法によって第1支持基板(図示せず)上に本発明のCF20を形成する。別途、前述の方法によって第2支持基板(図示せず)上にポリイミド樹脂膜を基板とする有機EL素子30を形成する。その後、粘着層17を介してCF20と有機EL素子30とを貼り合わせる。その後、第1、第2支持基板にそれぞれ支持基板側からレーザーを照射することで第1、第2支持基板をそれぞれ剥離する。
 粘着層は特に制限されず、例えば、粘着剤、粘接着剤、接着剤を光や熱により硬化させたものが挙げられる。粘着層の樹脂は特に制限されず、例えば、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、ポリアミド樹脂、ポリイミド樹脂、シリコーン樹脂などが挙げられる。
 第2基板上に形成するポリイミド樹脂膜に特に制限はなく、本発明のポリイミド樹脂膜でも、公知のポリイミド樹脂膜でも構わない。公知のポリイミドとしては、例えば、ピロメリット酸二無水物や3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を酸成分に、パラフェニレンジアミン、4,4’-ジアミノジフェニルエーテル、2,2’-ジメチルベンジジン、2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニルをジアミン成分とする全芳香族ポリイミドが挙げられる。
 第1、第2支持基板の剥離に用いるレーザーの種類は、剥離が可能であれば特に制限はなく、例えば、エキシマレーザー(波長248、308、351nm)、YAGレーザー(波長1064、532、355nm)、He-Neレーザー(633nm)、炭酸ガスレーザ(波長1060nm)などが挙げられる。
 以下実施例等をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。
 (1)ポリイミド樹脂膜の作製-1
 6インチのミラーシリコンウェハーに、東京エレクトロン(株)製の塗布現像装置 Mark-7を用いて、140℃×4分のプリベーク後の膜厚が15±0.5μmになるようにワニス状態のポリイミド前駆体樹脂組成物をスピン塗布した。その後、同じくMark-7のホットプレートを用いて140℃×4分のプリベーク処理(主として塗布されたポリイミド前駆体樹脂組成物から溶剤を除去する工程)を行った。プリベーク膜をイナートオーブン(光洋サーモシステム(株)製 INH-21CD)を用いて窒素気流下(酸素濃度20ppm以下)、3.5℃/minで300℃まで昇温し、30分間保持しポリイミド前駆体をイミド化し、5℃/minで50℃まで冷却しポリイミド樹脂膜を作製した。続いてフッ酸に1~4分間浸漬してポリイミド樹脂膜を基板から剥離し、風乾してポリイミド樹脂膜を得た。
 (2)ポリイミド樹脂膜の作製-2
 1/4に切断した6インチシリコン基板に、140℃×4分のプリベーク後の膜厚が30±1.0μmになるようにポリイミド前駆体をスピン塗布した以外はポリイミド樹脂膜の作製-1と同様の手法にてポリイミド樹脂膜を作製した。
 (3)ポリイミド樹脂膜(ガラス基板上)の作製-1
 50mm×50mm×0.7mm厚のガラス基板(旭硝子(株)製AN-100)に、ミカサ(株)製のスピンコーターMS-A200を用いて140℃×4分のプリベーク後の膜厚が15±0.5μmになるようにワニスをスピン塗布した。その後、大日本スクリーン(株)製ホットプレートD-SPINを用いて140℃×4分のプリベーク処理を行った。プリベーク膜をイナートオーブン(光洋サーモシステム(株)製 INH-21CD)を用いて窒素気流下(酸素濃度20ppm以下)、3.5℃/minで300℃まで昇温し、300℃まで昇温し、30分間保持し、5℃/minで50℃まで冷却しポリイミド樹脂膜(ガラス基板上)を作製した。
 (4)ポリイミド樹脂膜(ガラス基板上)の作製-2
 300mm×350mm×0.7mm厚のガラス基板(旭硝子(株)製AN-100)に、スリットコーター(東レエンジニアリング(株)製)を用いて140℃×4分のプリベーク後の膜厚が15±0.5μmになるようにワニスをスピン塗布した。その後、ホットプレートを用いて140℃×4分のプリベーク処理を行った。プリベーク膜をイナートオーブン(光洋サーモシステム(株)製 INH-21CD)を用いて窒素気流下(酸素濃度20ppm以下)、70分かけて300℃まで昇温し、30分間保持し、5℃/minで50℃まで冷却しポリイミド樹脂膜(ガラス基板上)を作製した。
 (5)光透過率(T)の測定
 紫外可視分光光度計((株)島津製作所製 MultiSpec1500)を用い、400nmにおける光透過率を測定した。なお、測定には(3)で作製したガラス基板上ポリイミド樹脂膜を用いた。
 (6)屈折率、複屈折の測定
 プリズムカプラー(METRICON社製、PC2010)を用い、波長632.8nmのTE屈折率(n(TE))およびTM屈折率(n(TM))を測定した。n(TE)、n(TM)は、それぞれポリイミド膜面に対して、平行方向、垂直方向の屈折率である。平均屈折率n(AV)は((2×n(TE)+n(TM))/3)^0.5から算出し、複屈折はn(TE)とn(TM)の差(n(TE)-n(TM))として計算した。なお、測定には(2)で作製したポリイミド樹脂膜を用いた。
 (7)CTEの測定
 熱機械分析装置(エスアイアイ・ナノテクノロジー(株)製 EXSTAR6000 TMA/SS6000)を用いて、窒素気流下で測定を行った。昇温方法は、以下の条件にて行った。第1段階で昇温レート5℃/minで200度まで昇温して試料の吸着水を除去し、第2段階で降温レート5℃/minで室温まで空冷した。第3段階で、昇温レート5℃/minで本測定を行い、50℃~200℃のCTEの平均値を求めた。なお、測定には(1)で作製したポリイミド樹脂膜を用いた。
(8)クラック評価
 (3)に記載の方法でプリベーク膜を作製し、光学顕微鏡(Nikon製、OPTIPHOT300)を用いて目視で100枚観察を行い、クラックの生じた枚数を記録した。
(9)基板反りの測定
 反り測定は、(株)ミツトヨ製の精密石常盤(1000mm×1000mm)の上に載せ、試験板の4辺の各中点および各頂点の計8箇所について常盤から浮いている量(距離)を、隙間ゲージを用いて測定した。これらの平均値を反り量とした。測定は室温で行なった。
(10)ブラックマトリクスの位置精度(BM位置精度)の測定
 (3)の方法で作製したガラス基板上ポリイミド樹脂膜に下記調製例3で作製したブラックペーストをスピン塗布し、ホットプレートで130℃、10分間乾燥し、黒色の樹脂塗膜を形成した。ポジ型フォトレジスト(シプレー社製、“SRC-100”)をスピン塗布、ホットプレートで120℃、5分間プリベークした。次に、マスクを介して超高圧水銀灯を用いて100mJ/cmで紫外線照射した後、2.38%のテトラメチルアンモニウムヒドロキシド水溶液を用いて、フォトレジストの現像と樹脂塗膜のエッチングを同時に行い、パターンを形成した。さらに、メチルセロソルブアセテートでレジスト剥離した後、ホットプレートで280℃、10分間加熱させることでイミド化させ、ブラックマトリクスを形成した。ブラックマトリクスの厚さを測定したところ、1.4μmであった。
作製したカラーフィルタのブラックマトリックスの理想格子からのズレ量をSMIC-800(ソキア・トプコン社製)を用い、各ガラス付きカラーフィルタ基板について24ポイントずつ測定した。測定により得られたズレ量の絶対値の平均を計算により求め、得られた値をその水準におけるブラックマトリックスの理想格子からのズレ量とした。
(11)EL素子の色座標(x,y)の角度依存性の測定
 (4)の方法で作製したガラス基板上ポリイミド樹脂膜表面に、ITOターゲット(東トー社製)を用いたスパッタリングにより、膜厚160nmのITO膜を形成した。次にこのように形成したITO膜を、Ar雰囲気下、200℃で1時間、加熱処理することによってITO膜をアニールし、続いてエッチング処理して、ポリイミド基板に陽極を形成した。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を、素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、正孔輸送層、有機発光層、電子輸送層を順次蒸着し、赤色有機EL発光層を設けた。次いで、基板上方の全面にMg/ITOからなる陰極を形成した。さらにCVD製膜によりSiON封止膜を形成した。得られた上記基板を蒸着機から取出し、エキシマレーザー(波長308nm)をガラス基板側から照射することにより、ガラス基板から有機EL素子を剥離した。得られた有機EL素子を6Vの定電圧で駆動し、輝度配向特性測定装置C9920-11(浜松ホトニクス(株)製)を用いて、0°、70°方向での色座標(x,y)を測定した。各方向で測定した(x,y)の差が小さいほど、斜め視野での色ずれが小さいことを意味する。
 以下、実施例で使用する化合物の略号を記載する。
BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
ODPA:3,3’,4,4’-オキシジフタル酸二無水物
6FDA:4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物
BSAA:2,2-ビス(4-(3,4-ジカルボキシフェノキシ)フェニル)プロパン二無水物
PMDA-HS:1R,2S,4S,5R-シクロへキサンテトラカルボン酸二無水物
BPAF:4,4’-(フルオレニル)ジフタル酸無水物
BPF-EPA:4,4’-((9H-フルオレニル)ビス(4,1-フェニレンオキシカルボニル))ジフタル酸二無水物
BPF-PA: 9,9-ビス(4-(3,4-ジカルボキシフェノキシ)フェニル)フルオレン無水物
CHDA:トランス-1,4-ジアミノシクロへキサン
TFMB:2,2’-ビス(トリフルオロメチル)ベンジジン
FDA:9,9-ビス(4-アミノフェニル)フルオレン
FDH:9,9-ビス(3-(3-アミノベンズアミド)-4-ヒドロキシフェニル)フルオレン
BPF-AN:9,9-ビス(4-(4-アミノフェノキシ)フェニル)フルオレン
NMP:N-メチル-2-ピロリドン。
 調製例1;ポリイミド前駆体組成物(ワニス)の調製
 乾燥窒素気流下、2000mL4つ口フラスコにBPDA129.0416g(0.438mol)、PDA47.4290g(0.438mol)、NMP1000gを入れて65℃で加熱撹拌した。6時間後、冷却してポリアミド酸樹脂溶液(樹脂の濃度15wt%)を得た。
 調製例2;ポリイミド前駆体組成物(ワニス)の調製
 DAE60.07g(0.30mol)、PDA70.29g(0.65mol)およびSiDA12.43g(0.05mol)を、850gのGBLおよび850gのNMPと共に仕込み、ODPA309.43g(0.9975mol)を添加し、80℃で3時間反応させた。無水マレイン酸1.96g(0.02mol)を添加し、更に80℃で1時間反応させ、ポリアミド酸樹脂溶液(樹脂の濃度20wt%)を得た。
 調製例3;ブラックマトリックスを形成するための黒色遮光剤組成物の作製
 調製例2のポリイミド前駆体組成物(ワニス)250gに、50gのカーボンブラック(MA100;三菱化学(株)製)および200gのNMPを混合し、ダイノーミルKDL-Aを用いて、直径0.3mmのジルコニアビーズを使用して、3200rpmで3時間の分散処理を行い、遮光剤分散液1を得た。
 この遮光剤分散液1を50gに、49.9gのNMPおよび0.1gの界面活性剤(LC951;楠本化学(株)製)を添加して、非感光性の遮光剤組成物を得た。
 調製例4;赤の着色画素を形成するための感光性赤色着色剤組成物の作製
 着色剤として、50gのPR177(クロモファイン(登録商標)レッド6125EC;大日精化製)および50gのPR254(イルガフォア(登録商標)レッドBK-CF;チバ・スペシャルティケミカルズ(株)製)を混合した。この着色剤中に、100gの高分子分散剤(BYK2000;樹脂濃度40wt%;ビックミージャパン(株)製)、67gのアルカリ可溶性樹脂(サイクロマー(登録商標)ACA250;樹脂濃度45wt%;ダイセル化学製)、83gのプロピレングリコールモノメチルエーテルおよび650gのプロピレングリコールモノメチルエーテルアセテートを混合して、スラリーを作製した。スラリーを入れたビーカーを循環式ビーズミル分散機(ダイノーミルKDL-A;ウイリー・エ・バッコーフェン社製)とチューブでつなぎ、メディアとして直径0.3mmのジルコニアビーズを使用して、3200rpm、4時間の分散処理を行い、着色剤分散液を得た。
 この着色剤分散液45.7gに、7.8gのサイクロマーACA250、3.3gの光重合性モノマー(カヤラッド(登録商標)DPHA;日本化薬製)、0.2gの光重合開始剤(イルガキュア(登録商標)907;チバ・スペシャルティケミカルズ製)、0.1gの光重合開始剤(カヤキュアー(登録商標)DETX-S;日本化薬製)、0.03gの界面活性剤(BYK333;ビックケミージャパン(株)製)および42.9gのプロピレングリコールモノメチルエーテルアセテートを添加し、着色剤組成物を得た。着色剤組成物における全固形分中の着色剤の濃度は、31wt%であり、各着色剤の重量混合比は、PR177:PR254=50:50であった。
 調製例5;緑の着色画素を形成するための感光性緑色着色剤組成物の作製
 着色剤として、65gのPG7(ホスタパーム(登録商標)グリーンGNX;クラリアントジャパン社製)および35gのPY150(E4GNGT;ランクセス(株)製)を混合した。この着色剤に、100gのBYK2000、67gのサイクロマーACA250、83gのプロピレングリコールモノメチルエーテルおよび650gのプロピレングリコールモノメチルエーテルアセテートを混合し、ダイノーミルKDL-Aを用いて、直径0.3mmのジルコニアビーズを使用して、3200rpm、6時間の分散処理を行い、着色剤分散液を得た。
 この着色剤分散液51.7gに、6.3gのサイクロマーACA250、2.9gのカヤラッドDPHA、0.2gのイルガキュア907、0.1gのカヤキュアーDETX-S、0.03gのBYK333および38.8gのプロピレングリコールモノメチルエーテルアセテートを添加し、着色剤組成物を得た。着色剤組成物における全固形分中の着色剤の濃度は35wt%であり、着色剤はPG7:PY150=65:35(重量比)であった。
 調製例6;青の着色画素を形成するための感光性青色着色剤組成物の作製
 着色剤として、100gのPB15:6(リオノール(登録商標)ブルー7602;東洋インキ社製)を使用し、この着色剤中に100gのBYK2000、67gのサイクロマーACA250、83gのプロピレングリコールモノメチルエーテルおよび650gのプロピレングリコールモノメチルエーテルアセテートを混合して、スラリーを作製した。スラリーを分散機ダイノーミルKDL-Aを用いて、直径0.3mmのジルコニアビーズを使用して、3200rpm、3時間の分散処理を行い、着色剤分散液を得た。
 この着色剤分散液41.3gに、8.9gのサイクロマーACA250、3.5gのカヤラッドDPHA、0.2gのイルガキュア907、0.1gのカヤキュアーDETX-S、0.03gのBYK333および46gのプロピレングリコールモノメチルエーテルアセテートを添加し、着色剤組成物を得た。着色剤組成物における全固形分中の着色剤の濃度は28wt%であり、着色剤はPB15:6単独であった。
 調製例7;赤の着色画素を形成するための非感光性赤色着色剤組成物の作製
 ピグメントレッドPR254、3.6g(80wt%)、ピグメントレッドPR177、0.9g(20wt%)とポリマー分散剤(PD) 22.5g及びNMP63gを混合して、スラリーを作製した。スラリーを分散機ダイノーミルKDL-Aを用いて、直径0.3mmのジルコニアビーズを使用して、3200rpm、3時間の分散処理を行い、着色剤分散液を得た。
 この着色剤分散液45.6gに調製例2で作製したポリイミド前駆体ワニス18.2g、密着改良剤として3-アミノプロピルトリエトキシシランを0.1g、界面活性剤としてアクリル系界面活性剤を0.03g、および適量のNMPを添加混合し、顔料/樹脂比率が25/75(wt/wt)、固形分濃度が6%で溶剤としてNMPを94wt%含む赤色カラーペースト(PR-1)を得た。
 調製例8;緑の着色画素を形成するための非感光性緑色着色剤組成物の作製
 ピグメントグリーンPG36、2.7g(60wt%)、ピグメントイエローPY150、1.8g(40wt%)とポリマー分散剤(PD) 22.5g及びNMP63gを混合して、スラリーを作製した。スラリーを分散機ダイノーミルKDL-Aを用いて、直径0.3mmのジルコニアビーズを使用して、3200rpm、3時間の分散処理を行い、着色剤分散液を得た。
 この着色剤分散液45.6gに調製例2で作製したポリイミド前駆体ワニス18.2g、密着改良剤として3-アミノプロピルトリエトキシシランを0.1g、界面活性剤としてアクリル系界面活性剤を0.03g、および適量のNMPを添加混合し、顔料/樹脂比率が25/75(wt/wt)、固形分濃度が6%で溶剤としてNMPを94wt%含む緑色カラーペースト(PG-1)を得た。
 調製例9;青の着色画素を形成するための非感光性青色着色剤組成物の作製
 ピグメントブルーPB15:6、4.5gとポリマー分散剤(PD) 22.5g及びN-メチルピロリドン63gを混合して、スラリーを作製した。スラリーを分散機ダイノーミルKDL-Aを用いて、直径0.3mmのジルコニアビーズを使用して、3200rpm、3時間の分散処理を行い、着色剤分散液を得た。
 この着色剤分散液45.6gに調製例2で作製したポリイミド前駆体ワニス18.2g、密着改良剤として3-アミノプロピルトリエトキシシランを0.1g、界面活性剤としてアクリル系界面活性剤を0.03g、および適量のNMPを添加混合し、顔料/樹脂比率が25/75(wt/wt)、固形分濃度が6wt%で溶剤としてNMPを94wt%含む青色カラーペースト(PB-1)を得た。
 調製例10;透明保護膜を形成するための樹脂組成物の作製
 65.05gのトリメリット酸に、280gのGBLおよび74.95gのγ-アミノプロピルトリエトキシシランを添加し、120℃で2時間加熱した。得られた溶液20gに、7gのビスフェノキシエタノールフルオレンジグリシジルエーテルおよび15gのジエチレングリコールジメチルエーテルを添加し、樹脂組成物を得た。
 調製例11;ポリシロキサン溶液の合成
 500mlの三口フラスコにメチルトリメトキシシランを81.72g(0.60mol)、フェニルトリメトキシシランを59.49g(0.30mol)、(2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランを24.64g(0.10mol)、ジアセトンアルコールを163.1g仕込み、室温で攪拌しながら水55.8gにリン酸0.54g(仕込みモノマーに対して0.3wt%)を溶かしたリン酸水溶液を10分かけて添加した。その後、フラスコを40℃のオイルバスに浸けて30分攪拌した後、オイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから1.5時間加熱攪拌し(内温は100~110℃)、ポリシロキサン溶液を得た。なお、加熱攪拌中、窒素を0.05l(リットル)/min流した。反応中に副生成物であるメタノール、水が合計131g留出した。
 得られたポリシロキサン溶液の固形分濃度は43wt%、ポリシロキサンの重量平均分子量は4200であった。なお、ポリシロキサン中のフェニル基置換シランの含有比はSi原子モル比で30mol%であった。
 調製例12:感光性ポジ型透明レジストの作製
 上記合成で得られたポリシロキサン溶液15.43g、キノンジアジド化合物0.59g、溶剤としてジアセトンアルコール3.73g、プロピレングリコールモノメチルエーテルアセテート9.84gを黄色灯下で混合、攪拌して均一溶液とした後、0.45μmのフィルターで濾過して感光性ポジ型透明レジストを調製した。
 (実施例1)
 乾燥窒素気流下、200mL4つ口フラスコにCHDA3.1495g(27.51mmol)、FDA1.0651g(3.06mmol)、BPDA7.1951g(24.45mmol)、6FDA2.7159g(6.11mmol)、NMP80gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体組成物(ワニス)とした。このときモノマーのモル比はBPDA/6FDA/CHDA/FDA=80/20/90/10であった。得られたポリイミド前駆体から前述の(1)~(4)記載の各方法にてポリイミド樹脂膜を作製し、(5)~(11)記載の手法にて光透過率、複屈折、CTE、クラック評価、基板反り、BM位置精度、EL素子の色座標の角度依存性の測定を行なった。結果を表1に示す。
 (実施例2)
 乾燥窒素気流下、200mL4つ口フラスコにCHDA3.4068g(29.83mmol)、FDA0.5471g(1.57mmol)、BPDA8.0387g(27.32mmol)、BSAA2.1250g(4.08mmol)、NMP80gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体組成物(ワニス)とした。このときモノマーのモル比はBPDA/BSAA/CHDA/FDA=87/13/95/5であった。実施例1と同様に、ポリイミド樹脂膜を作製し、光透過率、複屈折、CTE、クラック評価、基板反り、BM位置精度、EL素子の色座標の角度依存性の測定を行なった。結果を表1に示す。
 (実施例3)
 乾燥窒素気流下、200mL4つ口フラスコにCHDA3.4463g(30.18mmol)、FDA0.9145g(2.62mmol)、BPDA7.7216g(26.24mmol)、ODPA2.0353g(6.56mmol)、NMP80gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体組成物(ワニス)とした。このときモノマーのモル比はBPDA/ODPA/CHDA/FDA=80/20/92/8であった。実施例1と同様に、硬化膜を作製し、透過率、複屈折および線膨張係数の測定を行なった。結果を表1にしめす。実施例1と同様に、ポリイミド樹脂膜を作製し、光透過率、複屈折、CTE、クラック評価、基板反り、BM位置精度、EL素子の色座標の角度依存性の測定を行なった。結果を表1に示す。
 (実施例4)
 乾燥窒素気流下、200mL4つ口フラスコにCHDA3.7100g(32.49mmol)、FDA0.7226g(2.62mmol)、BPDA8.1354g(27.65mmol)、PMDA-HS1.5496g(6.91mmol)、NMP80gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体組成物(ワニス)とした。このときモノマーのモル比はBPDA/PMDA-HS/CHDA/FDA=80/20/94/6であった。実施例1と同様に、ポリイミド樹脂膜を作製し、光透過率、複屈折、CTE、クラック評価、基板反り、BM位置精度、EL素子の色座標の角度依存性の測定を行なった。結果を表1に示す。
 (実施例5)
 乾燥窒素気流下、200mL4つ口フラスコにCHDA3.5082g(30.72mmol)、FDA0.5634g(1.62mmol)、BPDA8.5635g(29.11mmol)、BPAF1.4825g(3.23mmol)、NMP80gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体組成物(ワニス)とした。このときモノマーのモル比はBPDA/BPAF/CHDA/FDA=90/10/95/5であった。実施例1と同様に、ポリイミド樹脂膜を作製し、光透過率、複屈折、CTE、クラック評価、基板反り、BM位置精度、EL素子の色座標の角度依存性の測定を行なった。結果を表1に示す。
 (実施例6)
 乾燥窒素気流下、200mL4つ口フラスコにCHDA3.3253g(29.12mmol)、FDA0.5340g(1.53mmol)、BPDA8.1168g(27.59mmol)、BPF-EPA2.1415g(3.07mmol)、NMP80gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体組成物(ワニス)とした。このときモノマーのモル比はBPDA/BPF-EPA/CHDA/FDA=90/10/95/5であった。実施例1と同様に、ポリイミド樹脂膜を作製し、光透過率、複屈折、CTE、クラック評価、基板反り、BM位置精度、EL素子の色座標の角度依存性の測定を行なった。結果を表1に示す。
 (実施例7)
 乾燥窒素気流下、200mL4つ口フラスコにCHDA3.3662g(29.48mmol)、FDA0.5406g(1.55mmol)、BPDA8.2168g(27.93mmol)、BPF-PA1.9940g(3.10mmol)、NMP80gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体組成物(ワニス)とした。このときモノマーのモル比はBPDA/BPF-PA/CHDA/FDA=90/10/95/5であった。実施例1と同様に、ポリイミド樹脂膜を作製し、光透過率、複屈折、CTE、クラック評価、基板反り、BM位置精度、EL素子の色座標の角度依存性の測定を行なった。結果を表1に示す。
 (実施例8)
 乾燥窒素気流下、200mL4つ口フラスコにCHDA3.3209g(29.08mmol)、FDA0.5333g(1.53mmol)、BPDA6.7551g(22.96mmol)、BPAF3.5083g(7.65mmol)、NMP80gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体組成物(ワニス)とした。このときモノマーのモル比はBPDA/BPAF/CHDA/FDA=75/25/95/5であった。実施例1と同様に、ポリイミド樹脂膜を作製し、光透過率、複屈折、CTE、クラック評価、基板反り、BM位置精度、EL素子の色座標の角度依存性の測定を行なった。結果を表1に示す。
 (実施例9)
 乾燥窒素気流下、200mL4つ口フラスコにCHDA3.1226g(27.35mmol)、MFDA1.1439g(3.04mmol)、BPDA7.1516g(24.31mmol)、6FDA2.6995g(6.08mmol)、NMP80gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体組成物(ワニス)とした。このときモノマーのモル比はBPDA/6FDA/CHDA/MFDA=80/20/90/10であった。実施例1と同様に、ポリイミド樹脂膜を作製し、光透過率、複屈折、CTE、クラック評価、基板反り、BM位置精度、EL素子の色座標の角度依存性の測定を行なった。結果を表1に示す。
 (実施例10)
 乾燥窒素気流下、200mL4つ口フラスコにCHDA3.0978g(27.13mmol)、FHA1.4594g(2.36mmol)、BPDA6.9406g(23.59mmol)、6FDA2.6199g(5.90mmol)、NMP80gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体組成物(ワニス)とした。このときモノマーのモル比はBPDA/6FDA/CHDA/FHA=80/20/92/8であった。実施例1と同様に、ポリイミド樹脂膜を作製し、光透過率、複屈折、CTE、クラック評価、基板反り、BM位置精度、EL素子の色座標の角度依存性の測定を行なった。結果を表1に示す。
 (実施例11)
 乾燥窒素気流下、200mL4つ口フラスコにCHDA3.0211g(26.46mmol)、BPF-AN1.5657g(2.94mmol)、BPDA6.9191g(23.52mmol)、6FDA2.6118g(5.88mmol)、NMP80gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体組成物(ワニス)とした。このときモノマーのモル比はBPDA/6FDA/CHDA/BPF-AN=80/20/90/10であった。実施例1と同様に、ポリイミド樹脂膜を作製し、光透過率、複屈折、CTE、クラック評価、基板反り、BM位置精度、EL素子の色座標の角度依存性の測定を行なった。結果を表1に示す。
 (実施例12)
 乾燥窒素気流下、200mL4つ口フラスコにCHDA3.3598g(29.42mmol)、FDA1.1391g(3.27mmol)、BPDA9.6187g(32.69mmol)、NMP80gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体組成物(ワニス)とした。このときモノマーのモル比はBPDA/CHDA/FDA=100/90/10であった。実施例1と同様に、ポリイミド樹脂膜を作製し、光透過率、複屈折、CTE、クラック評価、基板反り、BM位置精度、EL素子の色座標の角度依存性の測定を行なった。結果を表1に示す。
 (実施例13)
 乾燥窒素気流下、200mL4つ口フラスコにCHDA3.3381g(29.23mmol)、MFDA1.2229g(3.25mmol)、BPDA9.5566g(32.48mmol)、NMP80gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体組成物(ワニス)とした。このときモノマーのモル比はBPDA/CHDA/MFDA=100/90/10であった。実施例1と同様に、ポリイミド樹脂膜を作製し、光透過率、複屈折、CTE、クラック評価、基板反り、BM位置精度、EL素子の色座標の角度依存性の測定を行なった。結果を表1に示す。
 (実施例14)
 乾燥窒素気流下、200mL4つ口フラスコにCHDA3.1619g(27.69mmol)、FHA1.9035g(3.08mmol)、BPDA9.0522g(30.77mmol)、NMP80gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体組成物(ワニス)とした。このときモノマーのモル比はBPDA/CHDA/FHA=100/92/8であった。実施例1と同様に、ポリイミド樹脂膜を作製し、光透過率、複屈折、CTE、クラック評価、基板反り、BM位置精度、EL素子の色座標の角度依存性の測定を行なった。結果を表1に示す。
 (実施例15)
 乾燥窒素気流下、200mL4つ口フラスコにCHDA3.2224g(28.22mmol)、BPF-AN1.6701g(3.14mmol)、BPDA9.2252g(31.35mmol)、NMP80gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体組成物(ワニス)とした。このときモノマーのモル比はBPDA/CHDA/BPF-AN=100/90/10であった。実施例1と同様に、ポリイミド樹脂膜を作製し、光透過率、複屈折、CTE、クラック評価、基板反り、BM位置精度、EL素子の色座標の角度依存性の測定を行なった。結果を表1に示す。
 (比較例1)
 乾燥窒素気流下、200mL4つ口フラスコにCHDA3.9472g(34.57mmol)、BPDA10.1704g(34.57mmol)、NMP80gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体組成物(ワニス)とした。実施例1と同様に、ポリイミド樹脂膜を作製し、光透過率、複屈折、CTE、基板反り、BM位置精度、EL素子の色座標の角度依存性の測定を行なった。結果を表1に示す。
 (比較例2)
 乾燥窒素気流下、200mL4つ口フラスコにTFMB5.9138g(18.47mmol)、6FDA8.2039g(18.47mmol)、NMP80gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体組成物(ワニス)とした。実施例1と同様に、ポリイミド樹脂膜を作製し、光透過率、複屈折、CTE、基板反り、BM位置精度、EL素子の色座標の角度依存性の測定を行なった。結果を表1に示す。
 (比較例3)
 乾燥窒素気流下、100mL4つ口フラスコにCHDA3.9014g(34.17mmol)、BPDA7.0366g(23.92mmol)、ODPA3.1796(10.25)NMP80gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体組成物(ワニス)とした。このときモノマーのモル比はBPDA/ODPA/CHDA=70/30/100であった。実施例1と同様に、ポリイミド樹脂膜を作製し、光透過率、複屈折、CTE、基板反り、BM位置精度、EL素子の色座標の角度依存性の測定を行なった。結果を表1に示す。
 (比較例4)
 乾燥窒素気流下、200mL4つ口フラスコにCHDA1.8178g(15.92mmol)、FDA3.6978(10.61mmol)、BPDA6.2448g(21.22mmol)、6FDA2.3572g(5.31mmol)、NMP80gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体組成物(ワニス)とした。このときモノマーのモル比はBPDA/6FDA/CHDA/FDA=80/20/60/40であった。実施例1と同様に、ポリイミド樹脂膜を作製し、光透過率、複屈折、CTE、基板反り、BM位置精度、EL素子の色座標の角度依存性の測定を行なった。結果を表1に示す。
 (比較例5)
 乾燥窒素気流下、200mL4つ口フラスコにFDA7.6544g(21.97mmol)、BPDA6.4633g(21.97mmol)、NMP80gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体組成物(ワニス)とした。実施例1と同様に、ポリイミド樹脂膜を作製したところ、膜全面にクラックが発生した。
 (実施例16) カラーフィルタの作製(図4)
 [1]ポリイミド樹脂膜の作製
 300mm×400mm×0.7mm厚のガラス基板(AN100(旭硝子(株)))(図示せず)に、140℃×20分のプリベーク後の厚さが15±0.5μmになるように実施例1で合成したワニスをスピン塗布した。その後、ホットプレートを用いて140℃×4分のプリベーク処理を行った。プリベーク処理後の塗膜を、イナートオーブンを用いて窒素気流下(酸素濃度20ppm以下)、3.5℃/minで300℃まで昇温し、30分間保持し、5℃/minで50℃まで冷却しポリイミド樹脂膜2(ガラス基板上)を作製した。
 [2]ブラックマトリクスの作製
 上記の方法で作製したガラス基板上ポリイミド樹脂膜に調製例3で作製したブラックペーストをスピン塗布し、ホットプレートで130℃、10分間乾燥し、黒色の樹脂塗膜を形成した。ポジ型フォトレジスト(シプレー社製、“SRC-100”)をスピン塗布、ホットプレートで120℃、5分間プリベークした。次に、マスクを介して超高圧水銀灯を用いて100mJ/cmで紫外線照射した後、2.38%のテトラメチルアンモニウムヒドロキシド水溶液を用いて、フォトレジストの現像と樹脂塗膜のエッチングを同時に行い、パターンを形成した。さらに、メチルセロソルブアセテートでレジスト剥離した後、ホットプレートで280℃、10分間加熱させることでイミド化させ、ブラックマトリクス4を形成した。ブラックマトリクスの厚さを測定したところ、1.4μmであった。
 [3]着色画素の作製
 ブラックマトリクスがパターン加工されたガラス基板上ポリイミド樹脂膜上に熱処理後のブラックマトリクス開口部での厚さが2.0μmになるようにスピナーの回転数を調整し、調製例4で作製した感光性赤レジストをポリイミド膜上に塗布した。次に、ホットプレートで100℃、10分間プリベークすることにより、赤色着色画素を得た。次に、キャノン(株)製、紫外線露光機“PLA-5011”を用い、ブラックマトリクス開口部とブラックマトリクス上の一部の領域についてアイランド状に光が透過するクロム製フォトマスクを介して、100mJ/cm(365nmでの紫外線強度)で露光した。露光後に0.2wt%のテトラメチルアンモニウムヒドロキシド水溶液からなる現像液に浸漬して現像し、続いて純水で洗浄した。その後、230℃のオーブンで30分間加熱処理し、赤色画素5Rを作製した。
 同様にして、調製例5で作製した感光性緑レジストからなる緑色画素5G、調製例6で作製した感光性青レジストからなる青色画素5Bを作製した。続いて、熱処理後の着色画素部での厚さが2.5μmになるようにスピナーの回転数を調整し、調製例10で作製した樹脂組成物を塗布した。その後、230℃のオーブンで30分間加熱処理し、オーバーコート層6を作製した。
 [4]カラーフィルタのガラス基板からの剥離
 上記の方法でガラス基板上に作製したカラーフィルタの周辺に切り込みを入れ、水に12時間浸漬させることで、カラーフィルタをガラス基板から剥離した。なお、光学顕微鏡を用いて画素パターン形状を確認したところ、剥離前後でパターン形状に変化はなかった。また、得られたカラーフィルタの外観については、ガラス基板カラーフィルタと比較して、遜色の無いものであった。
 (実施例17) カラーフィルタの作製
 着色画素の作製に、調製例7から9に記載の非感光性着色剤組成物を用いて、下記記載の方法で着色画素を作製したこと以外は、実施例16と同様にしてカラーフィルタを作製した。
 ブラックマトリクス4がパターン加工されたガラス基板上ポリイミド樹脂膜2上に熱処理後のブラックマトリクス開口部での厚さが2.0μmになるようにスピナーの回転数を調整し、調製例7で作製した非感光性着色剤組成物をポリイミド膜上に塗布した。次に、ホットプレートで130℃、10分間乾燥し、赤色の樹脂塗膜を形成した。赤色の樹脂塗膜の上にポジ型フォトレジスト(シプレー社製、“SRC-100”)をスピン塗布し、ホットプレートで120℃、5分間プリベークした。次に、超高圧水銀灯を用いて100mJ/cm紫外線照射してマスク露光した後、2.38%のテトラメチルアンモニウムヒドロキシド水溶液を用いて、フォトレジストの現像と樹脂塗膜のエッチングを同時に行い、パターンを形成した。メチルセロソルブアセテートでレジストを剥離し、ホットプレートで280℃、10分間加熱させることでイミド化させ、赤色画素5Rを形成した。
 同様にして、調製例8で作製した非感光性緑色着色剤組成物からなる緑色画素5G、調製例9で作製した非感光性青色着色剤組成物からなる青色画素5Bを作製した。続いて、熱処理後の着色画素部での厚さが2.5μmになるようにスピナーの回転数を調整し、調製例10で作製した樹脂組成物を塗布した。その後、230℃のオーブンで30分間加熱処理し、オーバーコート層6を作製した。
 光学顕微鏡を用いて、得られたカラーフィルタの画素パターン形状を確認したところ、剥離前後でパターン形状に変化はなかった。また、得られたカラーフィルタの外観については、ガラス基板カラーフィルタと比較して、遜色の無いものであった。
 (実施例18) カラーフィルタの作製(図5)
 酸化ケイ素からなるターゲットを用いて、アルゴン雰囲気下でスパッタリングを行い、厚さ300nmの酸化ケイ素膜からなるガスバリア層3をポリイミド樹脂膜2上に形成し、その積層膜上にブラックマトリクス4、着色画素5R、5G、5B、オーバーコート層6を形成したこと以外は実施例17と同様にしてカラーフィルタを作製した。ガスバリア層形成は、圧力2×10-1Pa、基板温度300℃、交流電源13.56MHzの条件でスパッタリングにて行った。光学顕微鏡を用いて画素パターン形状を確認したところ、剥離前後でパターン形状に変化はなかった。また、得られたカラーフィルタの外観については、ガラス基板カラーフィルタと比較して、遜色の無いものであった。
 (実施例19) カラーフィルタの作製(図6)
 酸化亜鉛と二酸化ケイ素と酸化アルミの比率が62/35/3(mol)の混合焼結ターゲットを用いて、10vol%酸素を含むアルゴン雰囲気下でスパッタリングを行い、厚さ200nmの酸化ケイ素/酸化亜鉛/酸化アルミ膜からなるガスバリア層(下層)3’をポリイミド樹脂膜2上に形成し、その後、真空を維持したまま、酸化ケイ素からなるターゲットを用いて、アルゴン雰囲気下でスパッタリングを行い、厚さ100nmの酸化ケイ素膜からなるガスバリア層(上層)3’ ’を得た。その積層膜上にブラックマトリクス4、着色画素5R、5G、5B、オーバーコート層6を形成したこと以外は実施例17と同様にしてカラーフィルタを作製した。ガスバリア膜(下層)の形成は、圧力3×10-1Pa、基板温度300度、直流電源3kWの条件でスパッタリングにて行った。ガスバリア層(上層)形成は、圧力2×10-1Pa、基板温度300℃、交流電源13.56MHzの条件でスパッタリングにて行った。光学顕微鏡を用いて画素パターン形状を確認したところ、剥離前後でパターン形状に変化はなかった。また、得られたカラーフィルタの外観については、ガラス基板カラーフィルタと比較して、遜色の無いものであった。
 (実施例20) アクティブマトリックス型有機EL素子の作製(図7)
 [1]ポリイミド樹脂膜の作製
 300mm×400mm×0.7mm厚のガラス基板(AN100(旭硝子(株)))(図示せず)に、140℃×10分のプリベーク後の厚さが15±0.5μmになるように実施例1で調製したワニスをスピン塗布した。その後、送風乾燥器を用いて140℃×10分のプリベーク処理を行った。プリベーク処理後の塗膜を、イナートオーブンを用いて窒素気流下(酸素濃度20ppm以下)、3.5℃/minで300℃まで昇温し、30分間保持し、5℃/minで50℃まで冷却しポリイミド樹脂膜2(ガラス基板上)を作製した。
 [2]TFT基板の作製
 上記の方法で作製したポリイミド樹脂膜(ガラス基板上)に、プラズマCVD法を用いてSiOから成るガスバリア層9を製膜した。その後、ボトムゲート型のTFT10を形成し、このTFTを覆う状態でSiから成る絶縁膜(図示せず)を形成した。次に、この絶縁膜に、コンタクトホールを形成した後、このコンタクトホールを介してTFTに接続される配線(高さ1.0μm、図示せず)を絶縁膜上に形成した。この配線は、TFT間または、後の工程で形成される有機EL素子とTFTとを接続するためのものである。
 さらに、配線の形成による凹凸を平坦化するために、配線による凹凸を埋め込む状態で絶縁膜上へ平坦化層11を形成した。平坦化層の形成は、感光性ポリイミドワニスを基板上にスピンコートし、ホットプレート上でプリベーク(120℃×3分間)した後、所望のパターンのマスクを介して露光、現像し、空気フロー下において230℃で60分間加熱処理することにより行った。ワニスを塗布する際の塗布性は良好で、露光、現像、加熱処理の後に得られた平坦化層にはしわやクラックの発生は認められなかった。さらに、配線の平均段差は500nm、作製した平坦化層には5μm四方のコンタクトホールが形成され、厚さは約2μmであった。
 [3]ボトムエミッション型有機EL素子の作製
 得られた平坦化層11上に以下の各部位を形成して、ボトムエミッション型の有機EL素子を作製した。まず、平坦化層上に、ITOからなる第一電極12を、コンタクトホールを介して配線(図示せず)に接続させて形成した。その後、レジストを塗布、プリベークし、所望のパターンのマスクを介して露光し、現像した。このレジストパターンをマスクとして、ITOエッチャント用いたウエットエッチングにより第一電極のパターン加工を行った。その後、レジスト剥離液(モノエタノールアミンとジエチレングリコールモノブチルエーテルの混合液)を用いて該レジストパターンを剥離した。剥離後の基板を水洗し、200℃で30分間加熱脱水して平坦化層付き電極基板を得た。平坦化層の厚さ寸法変化は、剥離液処理前に対して加熱脱水後で1%未満であった。こうして得られた第一電極は、有機EL素子の陽極に相当する。
 次に、第一電極の端部を覆う形状の絶縁層13を形成した。絶縁層には、同じく感光性ポリイミドワニスを用いた。この絶縁層を設けることによって、第一電極とこの後の工程で形成する第二電極15との間のショートを防止することができる。
 さらに、真空蒸着装置内で所望のパターンマスクを介して、正孔輸送層、有機発光層、電子輸送層を順次蒸着して、赤色有機EL発光層14R、緑色有機EL発光層14G、青色有機EL発光層14Bを設けた。次いで、基板上方の全面にAl/Mg(Al:反射電極)からなる第二電極15を形成した。さらにCVD成膜によりSiON封止膜16を形成した。得られた上記基板を蒸着機から取り出し、エキシマレーザー(波長308nm)をガラス基板側から照射することにより、ガラス基板から有機EL素子を剥離した。得られたアクティブマトリックス型の有機EL素子に駆動回路を介して電圧を印加したところ、良好な発光を示した。また、得られた有機EL素子は、ガラス基板を用いて作製した有機EL素子と比較して、遜色の無いものであった。
 (実施例21) 有機ELディスプレイ(アクティブマトリックス型)の作製(図8)
 [1]ポリイミド樹脂膜の作製
 300mm×400mm×0.7mm厚のガラス基板(AN100(旭硝子(株)))に、140℃×10分のプリベーク後の厚さが15±0.5μmになるように実施例1で調製したワニスをスピン塗布した。その後、送風乾燥器を用いて140℃×10分のプリベーク処理を行った。プリベーク処理後の塗膜を、イナートオーブンを用いて窒素気流下(酸素濃度20ppm以下)、3.5℃/minで300℃まで昇温し、30分間保持し、5℃/minで50℃まで冷却しポリイミド樹脂膜2(ガラス基板上)を作製した。
 [2]TFT基板の作製
 上記の方法で作製したポリイミド樹脂膜(ガラス基板上)に、プラズマCVD法を用いてSiOから成るガスバリア層9を製膜した。その後、ボトムゲート型のTFT10を形成し、このTFT10を覆う状態でSiから成る絶縁膜(図示せず)を形成した。次に、この絶縁膜に、コンタクトホールを形成した後、このコンタクトホールを介してTFTに接続される配線(高さ1.0μm、図示せず)を絶縁膜上に形成した。この配線は、TFT間または、後の工程で形成される有機EL素子とTFTとを接続するためのものである。
 さらに、配線の形成による凹凸を平坦化するために、配線による凹凸を埋め込む状態で絶縁膜上へ平坦化層11を形成した。平坦化層の形成は、感光性ポリイミドワニスを基板上にスピンコートし、ホットプレート上でプリベーク(120℃×3分間)した後、所望のパターンのマスクを介して露光、現像し、空気フロー下において230℃で60分間加熱処理することにより行った。ワニスを塗布する際の塗布性は良好で、露光、現像、加熱処理の後に得られた平坦化層にはしわやクラックの発生は認められなかった。さらに、配線の平均段差は500nm、作製した平坦化層には5μm四方のコンタクトホールが形成され、厚さは約2μmであった。
 [3]カラーフィルタ層の作製
 前記平坦化層11上に、熱処理後の厚さが1.9μmになるようにスピナーの回転数を調整し、調製例7で作製した非感光性赤色着色剤組成物PR-1を塗布し、120℃のホットプレートで、10分間加熱することにより赤色着色画素を得た。ポジ型フォトレジスト(ロームアンドハース電子材料社製、“LC-100A”)をスリットコーターでプリベーク後の厚さが1.0μmになるように塗布し、100℃のホットプレートで、5分間乾燥し、プリベークを行った。キャノン(株)製紫外線露光機PLA-501Fを用い、フォトマスクを介して100mJ/cm(365nmの紫外線強度)でマスク露光した。次に、2.0%のテトラメチルアンモニウムヒドロキシド水溶液を用いて、フォトレジストの現像と樹脂塗膜のエッチングを同時に行い、パターンを形成した。続いてメチルセロソルブアセテートでレジストを剥離した。次に270℃のオーブンで、30分間熱処理することでキュアを行い、厚さ1.9μmの赤色画素5Rを作製した。
 同様にして調製例8で作製した非感光性緑色着色剤組成物PG-1を用いて緑色画素5Gを、調製例9で作製した非感光性青色着色剤組成物PB-1を用いて青色画素5Bを形成した。
 [3]オーバーコート層の作製
 調製例12で作製した感光性ポジ型透明レジストを、カラーフィルタ層を形成した基板にスピンコーター(ミカサ(株)製1H-360S)を用いて任意の回転数でスピンコートした後、ホットプレート(大日本スクリーン製造(株)製SCW-636)を用いて90℃で2分間プリベークし、厚さ3μmの膜を作製した。作製した膜をパラレルライトマスクアライナー(以下、PLAと略する)(キヤノン(株)製PLA-501F)を用いて、超高圧水銀灯を感度測定用のグレースケールマスクを介してパターン露光した後、自動現像装置(滝沢産業(株)製AD-2000)を用いて2.38重量%水酸化テトラメチルアンモニウム水溶液であるELM-D(商品名、三菱ガス化学(株)製)で60秒間シャワー現像し、次いで水で30秒間リンスした。その後、ブリーチング露光として、PLA(キヤノン(株)製PLA-501F)を用いて、膜全面に超高圧水銀灯を3000J/m(波長365nm露光量換算)露光した。
 その後、ホットプレートを用いて110℃で2分間ソフトベークし、次いでオーブン(タバイエスペック(株)製IHPS-222)を用いて空気中230℃で1時間キュアしてオーバーコート層(図示せず)を作製した。
 [4]ボトムエミッション型有機EL素子の作製
 得られたオーバーコート層上に以下の各部位を形成して、ボトムエミッション型の有機EL素子を作製した。まず、オーバーコート層上に、ITOからなる第一電極12を、コンタクトホールを介して配線(図示せず)に接続させて形成した。その後、レジストを塗布、プリベークし、所望のパターンのマスクを介して露光し、現像した。このレジストパターンをマスクとして、ITOエッチャント用いたウエットエッチングにより第一電極12のパターン加工を行った。その後、レジスト剥離液(モノエタノールアミンとジエチレングリコールモノブチルエーテルの混合液)を用いて該レジストパターンを剥離した。剥離後の基板を水洗し、200℃で30分間加熱脱水してカラーフィルタ層付き電極基板を得た。カラーフィルタ層の厚さ寸法変化は、剥離液処理前に対して加熱脱水後で1%未満であった。こうして得られた第一電極は、有機EL素子の陽極に相当する。
 次に、第一電極12の端部を覆う形状の絶縁層13を形成した。絶縁層13には、同じく感光性ポリイミドワニスを用いた。この絶縁層13を設けることによって、第一電極とこの後の工程で形成する第二電極15との間のショートを防止することができる。
 さらに、真空蒸着装置内で所望のパターンマスクを介して、正孔輸送層、有機発光層、電子輸送層を順次蒸着して、白色有機EL発光層14Wを設けた。次いで、基板上方の全面にAl/Mg(Al:反射電極)からなる第二電極15を形成した。さらにCVD成膜によりSiON封止膜16を形成した。得られた上記基板を蒸着機から取り出し、エキシマレーザー(波長308nm)をガラス基板側から照射することにより、ガラス基板から有機EL素子を剥離した。得られたアクティブマトリックス型の有機EL素子に駆動回路を介して電圧を印加したところ、良好な発光を示した。また、得られた有機EL素子は、ガラス基板を用いて作製した有機EL素子と比較して、遜色の無いものであった。
 (実施例22)
 有機ELディスプレイ(アクティブマトリックス型)の作製(図9)
 [1]ポリイミド樹脂膜の作製
 300mm×400mm×0.7mm厚のガラス基板(AN100(旭硝子(株)))に、140℃×10分のプリベーク後の厚さが15±0.5μmになるように実施例1で調製したワニスをスピン塗布した。その後、送風乾燥器を用いて140℃×10分のプリベーク処理を行った。プリベーク処理後の塗膜を、イナートオーブンを用いて窒素気流下(酸素濃度20ppm以下)、3.5℃/minで300℃まで昇温し、30分間保持し、5℃/minで50℃まで冷却しポリイミド樹脂膜2(ガラス基板上)を作製した。
 [2]TFT基板の作製
 上記の方法で作製したポリイミド樹脂膜2(ガラス基板上)に、プラズマCVD法を用いてSiOから成るガスバリア層9を製膜した。その後、ボトムゲート型のTFT10を形成し、このTFTを覆う状態でSiから成る絶縁膜(図示せず)を形成した。次に、この絶縁膜に、コンタクトホールを形成した後、このコンタクトホールを介してTFTに接続される配線(高さ1.0μm、図示せず)を絶縁膜上に形成した。この配線は、TFT間または、後の工程で形成される有機EL素子とTFTとを接続するためのものである。
 さらに、配線の形成による凹凸を平坦化するために、配線による凹凸を埋め込む状態で絶縁膜上へ平坦化層11を形成した。平坦化層の形成は、感光性ポリイミドワニスを基板上にスピンコートし、ホットプレート上でプリベーク(120℃×3分間)した後、所望のパターンのマスクを介して露光、現像し、空気フロー下において230℃で60分間加熱処理することにより行った。ワニスを塗布する際の塗布性は良好で、露光、現像、加熱処理の後に得られた平坦化層にはしわやクラックの発生は認められなかった。さらに、配線の平均段差は500nm、作製した平坦化層には5μm四方のコンタクトホールが形成され、厚さは約2μmであった。
 [3]トップエミッション型有機EL素子の作製
 上記の方法で得られたTFTの平坦化層11上に以下の各部位を形成して、トップエミッション型の有機EL素子を作製した。まず、平坦化層11上に、Al/ITO(Al:反射電極)からなる第一電極12を、コンタクトホールを介して配線に接続させて形成した。その後、レジストを塗布、プリベークし、所望のパターンのマスクを介して露光し、現像した。このレジストパターンをマスクとして、ITOエッチャント用いたウエットエッチングにより第一電極のパターン加工を行った。その後、レジスト剥離液(モノエタノールアミンとジエチレングリコールモノブチルエーテルの混合液)を用いて該レジストパターンを剥離した。剥離後の基板を水洗し、200℃で30分間加熱脱水して平坦化層付き電極基板を得た。平坦化層の厚さの変化は、剥離液処理前に対して加熱脱水後で1%未満であった。こうして得られた第一電極12は、有機EL素子の陽極に相当する。
 次に、第一電極12の端部を覆う形状の絶縁層13を形成した。絶縁層には、同じく感光性ポリイミドワニスを用いた。この絶縁層を設けることによって、第一電極12とこの後の工程で形成する第二電極15との間のショートを防止することができる。
 さらに、真空蒸着装置内で所望のパターンマスクを介して、正孔輸送層、有機発光層、電子輸送層を順次蒸着して、赤色有機EL発光層14R、緑色有機EL発光層14G、青色有機EL発光層14Bを設けた。次いで、基板上方の全面にMg/ITOからなる第二電極15を形成した。さらにCVD成膜によりSiON封止膜16を形成した。得られた上記基板を蒸着機から取り出し、エキシマレーザー(波長308nm)をガラス基板側から照射することにより、ガラス基板から有機EL素子を剥離した。得られたアクティブマトリックス型の有機EL素子に駆動回路を介して電圧を印加したところ、良好な発光を示した。また、得られた有機EL素子はガラス基板を用いて作製した有機EL素子と比較して、遜色の無いものであった。
 (実施例23) 有機ELディスプレイ(アクティブマトリックス型)の作製(図3)
 [1]ガラス基板付きカラーフィルタの作製
 実施例18に記載の方法で、ガラス基板上にカラーフィルタを作製した。
 [2]ガラス基板付きTFTの作製
 調製例1で作製したポリイミド前駆体ワニスを用いたこと以外は、実施例20に記載の方法で、ポリイミド樹脂膜8、ガスバリア層9、TFT10、平坦化層11を順次作製した。
 [3]トップエミッション型有機EL素子の作製
 上記の方法で得られたTFTの平坦化層11上に以下の各部位を形成して、トップエミッション型の有機EL素子を作製した。まず、平坦化層11上に、Al/ITO(Al:反射電極)からなる第一電極12を、コンタクトホールを介して配線に接続させて形成した。その後、レジストを塗布、プリベークし、所望のパターンのマスクを介して露光し、現像した。このレジストパターンをマスクとして、ITOエッチャント用いたウエットエッチングにより第一電極12のパターン加工を行った。その後、レジスト剥離液(モノエタノールアミンとジエチレングリコールモノブチルエーテルの混合液)を用いて該レジストパターンを剥離した。剥離後の基板を水洗し、200℃で30分間加熱脱水して平坦化層付き電極基板を得た。平坦化層の厚さの変化は、剥離液処理前に対して加熱脱水後で1%未満であった。こうして得られた第一電極12は、有機EL素子の陽極に相当する。
 次に、第一電極12の端部を覆う形状の絶縁層13を形成した。絶縁層には、同じく感光性ポリイミドワニスを用いた。この絶縁層を設けることによって、第一電極とこの後の工程で形成する第二電極15との間のショートを防止することができる。
 さらに、真空蒸着装置内で所望のパターンマスクを介して、正孔輸送層、有機発光層、電子輸送層を順次蒸着して、白色有機EL発光層14Wを設けた。次いで、基板上方の全面にMg/ITOからなる第二電極15を形成した。さらにCVD成膜によりSiON封止膜16を形成した。
 [4]有機ELディスプレイの作製
 上記[1]で得られたガラス基板付きカラーフィルタと[3]で得られたガラス基板付きトップエミッション型有機EL素子を、粘着層17を介して貼り合わせた。続いて、エキシマレーザー(波長308nm)をガラス基板側から照射することにより、ガラス基板からカラーフィルタと有機EL素子を剥離し、有機ELディスプレイを作製した。得られたアクティブマトリックス型の有機ELディスプレイに駆動回路を介して電圧を印加したところ、良好な発光を示した。また、得られた有機EL素子は、ガラス基板を用いて作製した有機EL素子と比較して、遜色の無いものであった。
 1 支持基板(ガラス基板)
 2 ポリイミド樹脂膜
 3 ガスバリア層
 3’ ガスバリア層(下層)
 3’’ ガスバリア層(上層)
 4 ブラックマトリックス
 5R 赤の着色画素 
 5G 緑の着色画素
 5B 青の着色画素
 6 オーバーコート層
 7 ガラス基板
 8 ポリイミド樹脂膜
 9 ガスバリア層
10 TFT
11 平坦化層
12 第一電極
13 絶縁層
14W 白色有機EL発光層
14R 赤色有機EL発光層
14G 緑色有機EL発光層
14B 青色有機EL発光層
15 第二電極
16 封止膜
17 粘着層
20 CF
30 有機EL素子
Figure JPOXMLDOC01-appb-T000016

Claims (19)

  1. 少なくとも、
     式(1)で表される酸二無水物残基、
     式(2)で表されるジアミン残基、ならびに、
     式(3)で表されるジアミン残基の1種以上、
    を含むポリイミド前駆体であって、
     式(1)で表される酸二無水物残基がポリイミド前駆体中の酸二無水物残基の全量に対し50モル%以上であり、
     式(2)で表されるジアミン残基がポリイミド前駆体中のジアミン残基の全量に対し50モル%以上であり、
     式(3)で表されるジアミン残基がポリイミド前駆体中のジアミン残基の全量に対し15モル%以下であるポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000001
    (式(3)中のR~Rは各々独立に水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルコキシ基、アリールエーテル基、アリール基、ハロアルキル基、シアノ基およびシリル基からなる群より選ばれ、これらはさらに置換基を有していてもよく、また隣り合う基が結合を有して縮合環構造を形成しても良い。
     式(3)中のA及びAは同じでも異なっていてもよく、芳香族環、脂肪族環、鎖状炭化水素基、もしくはこれらの組み合わせからなる構造またはこれらとアミド基、エステル基、エーテル基、アルキレン基、オキシアルキレン基、ビニレン基およびハロアルキレン基からなる群より選ばれる基の1種以上との組み合わせからなる構造である。)
  2.  さらに式(4)で表される酸二無水物残基を含む請求項1記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000002
    (式(4)中のR~R16は各々独立に水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルコキシ基、アリールエーテル基、アリール基、ハロアルキル基、シアノ基およびシリル基からなる群より選ばれ、これらはさらに置換基を有していてもよく、また隣り合う基が結合を有して縮合環構造を形成しても良い。
     式(4)中のB及びBは同じでも異なっていてもよく、芳香族環、脂肪族環、鎖状炭化水素基、もしくはこれらの組み合わせからなる構造またはこれらとアミド基、エステル基、エーテル基、アルキレン基、オキシアルキレン基、ビニレン基およびハロアルキレン基からなる群より選ばれる基の1種以上との組み合わせからなる構造である。)
  3. 式(3)中のAおよびAがそれぞれ以下の(5)~(10)のいずれかで表される請求項1または2に記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000003
    (式(5)~(7)中のXは単結合、エーテル基、アルキレン基、オキシアルキレン基またはビニレン基であり、片方の結合はフルオレン環と連結する。
     式(8)~(10)中のYはアミド基、エステル基、エーテル基、アルキレン基、オキシアルキレン基、ビニレン基またはハロアルキレン基である。
     式(5)~(10)中のR17~R80は各々独立に水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルコキシ基、アリールエーテル基、アリール基、ハロアルキル基、シアノ基、水酸基およびシリル基からなる群より選ばれる。ただし、式(5)において、R17~R21のうちいずれかはXを含む連結基である。式(6)において、R22~R32のうちいずれかはXを含む連結基である。式(8)~(10)において、2つの環構造のうちどちらがフルオレン環に連結してもよい。また、R33~R37のうちいずれか、及び、R38~R48のうちいずれかのそれぞれはYを含む連結基である。R49~R53のうちいずれか、及び、R54~R58のうちいずれかのそれぞれはYを含む連結基である。R59~R69のうちいずれか、及び、R70~R80のうちいずれかのそれぞれはYを含む連結基である。)
  4. 式(4)中のBおよびBがそれぞれ以下の(11)~(17)のいずれかで表される請求項2または3に記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000004
    (式(11)~(13)中のXは単結合、エーテル基、アルキレン基、オキシアルキレン基またはビニレン基であり、片方の結合はフルオレン環と連結する。
    式(14)~(17)中のYはアミド基、エステル基、エーテル基、アルキレン基、オキシアルキレン基、ビニレン基またはハロアルキレン基である。
    式(14)~(17)中のZは単結合であり、片方の結合はフルオレン環と連結する。
    式(11)~(17)中のR81~R157は各々独立に水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルコキシ基、アリールエーテル基、アリール基、ハロアルキル基、シアノ基、水酸基、およびシリル基からなる群より選ばれる。ただし、式(11)において、R81~R84のうちいずれかはXを含む連結基である。式(12)において、R85~R94のうちいずれかはXを含む連結基である。式(14)において、R98~R102のうちいずれか、及び、R103~R112のうちいずれかのそれぞれはYを含む連結基である。式(15)において、R113~R123のうちいずれか、及び、R124~R127のうちいずれかのそれぞれはYを含む連結基である。式(16)において、R128~R132のうちいずれか、及び、R133~R136のうちいずれかのそれぞれはYを含む連結基である。式(17)において、R137~R147のうちいずれか、及び、R148~R157のうちいずれかのそれぞれはYを含む連結基である。)
  5. 式(3)で表されるジアミン残基が下記式(18)~(21)から選択される少なくとも1種の2価の有機基である請求項1から4のいずれかに記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000005
  6. 式(4)で表される酸二無水物残基が下記式(22)~(24)から選択される少なくとも1種の4価の有機基である請求項2から5のいずれかに記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000006
  7. さらに、下記式(25)~(28)から選択される少なくとも1種の酸二無水物残基を含む請求項1~6のいずれかに記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000007
  8. 式(3)で表されるジアミン残基のモル数が、式(25)~(28)から選択される少なくとも1種の酸二無水物残基の合計のモル数と同じであるか、またはそれより少ない請求項7に記載のポリイミド前駆体。
  9. 請求項1~8のいずれかに記載のポリイミド前駆体から得られるポリイミド樹脂膜。
  10. 請求項9記載のポリイミド樹脂膜を含む表示素子。
  11. 前記表示素子が有機EL素子である請求項10記載の表示素子。
  12. 請求項9記載のポリイミド樹脂膜を含む光学素子。
  13. 前記光学素子がカラーフィルタである請求項12記載の光学素子。
  14. 請求項9記載のポリイミド樹脂膜を含む受光素子。
  15. 請求項9記載のポリイミド樹脂膜を含むタッチパネル。
  16. 請求項9記載のポリイミド樹脂膜を含む回路基板。
  17. 以下の工程を含む有機EL素子の製造方法。
    (1)請求項1~8のいずれかに記載のポリイミド前駆体と溶剤とを含むポリイミド前駆体樹脂組成物を支持基板上に塗布する工程
    (2)塗布されたポリイミド前駆体樹脂組成物から溶剤を除去する工程
    (3)ポリイミド前駆体をイミド化してポリイミド樹脂膜を得る工程
    (4)前記ポリイミド樹脂膜上に有機EL発光回路を形成する工程
    (5)前記支持基板から前記ポリイミド樹脂膜を剥離する工程
  18. 以下の工程を含むカラーフィルタの製造方法。
    (1)請求項1~8のいずれかに記載のポリイミド前駆体と溶剤とを含むポリイミド前駆体樹脂組成物を支持基板上に塗布する工程
    (2)塗布されたポリイミド前駆体樹脂組成物から溶剤を除去する工程
    (3)ポリイミド前駆体をイミド化してポリイミド樹脂膜を得る工程
    (4)前記ポリイミド樹脂膜上にブラックマトリックスを形成する工程。
    (5)前記ポリイミド樹脂膜上に着色画素を形成する工程。
    (6)前記支持基板から前記樹脂膜を剥離する工程。
  19. 請求項11に記載の有機EL素子、および/または請求項13に記載のカラーフィルタを備えた有機ELディスプレイ。
PCT/JP2014/074717 2013-09-27 2014-09-18 ポリイミド前駆体、それから得られるポリイミド樹脂膜、ならびにそれを含む表示素子、光学素子、受光素子、タッチパネル、回路基板、有機elディスプレイ、および、有機el素子ならびにカラーフィルタの製造方法 WO2015046019A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167007544A KR102207439B1 (ko) 2013-09-27 2014-09-18 폴리이미드 전구체, 그것으로부터 얻어지는 폴리이미드 수지막, 및 그것을 포함하는 표시 소자, 광학 소자, 수광 소자, 터치 패널, 회로 기판, 유기 el 디스플레이, 및 유기 el 소자 및 컬러 필터의 제조 방법
SG11201601946XA SG11201601946XA (en) 2013-09-27 2014-09-18 Polyimide precursor, polyimide resin film produced from said polyimide precursor, display element, optical element, light-receiving element, touch panel and circuit board each equipped with said polyimide resin film, organic el display, and methods respectively for producing organic el element and color filter
JP2014546220A JP5773090B1 (ja) 2013-09-27 2014-09-18 ポリイミド前駆体、それから得られるポリイミド樹脂膜、ならびにそれを含む表示素子、光学素子、受光素子、タッチパネル、回路基板、有機elディスプレイ、および、有機el素子ならびにカラーフィルタの製造方法
US15/021,144 US9828469B2 (en) 2013-09-27 2014-09-18 Polyimide precursor, polyimide resin film produced from said polyimide precursor, display element, optical element, light-receiving element, touch panel and circuit board each equipped with said polyimide resin film, organic EL display, and methods respectively for producing organic EL element and color filter
CN201480052871.6A CN105593269B (zh) 2013-09-27 2014-09-18 聚酰亚胺前体、由其得到的聚酰亚胺树脂膜、以及含有其的显示元件、光学元件、受光元件、触摸面板、电路基板、有机el显示器、及有机el元件以及滤色片的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013201182 2013-09-27
JP2013-201182 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015046019A1 true WO2015046019A1 (ja) 2015-04-02

Family

ID=52743158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074717 WO2015046019A1 (ja) 2013-09-27 2014-09-18 ポリイミド前駆体、それから得られるポリイミド樹脂膜、ならびにそれを含む表示素子、光学素子、受光素子、タッチパネル、回路基板、有機elディスプレイ、および、有機el素子ならびにカラーフィルタの製造方法

Country Status (7)

Country Link
US (1) US9828469B2 (ja)
JP (1) JP5773090B1 (ja)
KR (1) KR102207439B1 (ja)
CN (1) CN105593269B (ja)
SG (1) SG11201601946XA (ja)
TW (1) TWI644944B (ja)
WO (1) WO2015046019A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018026549A (ja) * 2016-07-29 2018-02-15 株式会社半導体エネルギー研究所 剥離方法、表示装置、表示モジュール、及び電子機器
JP2018115247A (ja) * 2017-01-17 2018-07-26 三菱ケミカル株式会社 ポリイミド
JP2018115120A (ja) * 2017-01-17 2018-07-26 本州化学工業株式会社 新規なアルコキシメチル置換ビスフェノール化合物
JP2019503412A (ja) * 2016-09-23 2019-02-07 エルジー・ケム・リミテッド ポリイミド前駆体溶液及びその製造方法
JP2019038916A (ja) * 2017-08-24 2019-03-14 宇部興産株式会社 γ−ブチロラクトン溶媒中で重合した可溶性透明ポリイミド
WO2019069723A1 (ja) * 2017-10-04 2019-04-11 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2019142866A1 (ja) * 2018-01-17 2019-07-25 旭化成株式会社 ポリイミド前駆体樹脂組成物
JP2019144347A (ja) * 2018-02-19 2019-08-29 株式会社Screenホールディングス 表示装置の製造方法
JP2019189832A (ja) * 2018-04-27 2019-10-31 東京応化工業株式会社 ポリイミド前駆体組成物、ポリアミド酸、ポリイミド樹脂、ポリイミド膜、及び光学装置
WO2019244988A1 (ja) * 2018-06-22 2019-12-26 三井化学株式会社 ポリアミド酸およびこれを含むワニス、フィルム、タッチパネルディスプレイ、液晶ディスプレイ、ならびに有機elディスプレイ
JP2020007531A (ja) * 2018-06-28 2020-01-16 旭化成株式会社 ポリイミド前駆体樹脂組成物
JP2022008353A (ja) * 2016-03-17 2022-01-13 株式会社カネカ 電子デバイスの製造方法
WO2022019225A1 (ja) * 2020-07-21 2022-01-27 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
CN116814179A (zh) * 2023-01-31 2023-09-29 湖南联兴光电科技有限公司 一种uv光固化型光学胶膜
JP7514369B2 (ja) 2018-03-30 2024-07-10 株式会社カネカ ポリアミド酸、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびフレキシブルデバイス

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102378357B1 (ko) * 2015-08-24 2022-03-25 삼성디스플레이 주식회사 폴딩 가능한 디스플레이 장치 및 그 운용방법
US9612536B2 (en) * 2015-08-31 2017-04-04 Taiwan Semiconductor Manufacturing Company, Ltd. Developer for lithography
KR102133559B1 (ko) * 2015-09-24 2020-07-13 아사히 가세이 가부시키가이샤 폴리이미드 전구체, 수지 조성물 및 수지 필름의 제조 방법
CN105353555B (zh) * 2015-12-08 2018-08-14 深圳市华星光电技术有限公司 量子点彩膜基板的制作方法
KR102358122B1 (ko) * 2016-03-31 2022-02-04 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 플렉시블 기판의 제조 방법
CN108884317B (zh) 2016-04-05 2021-08-20 三菱瓦斯化学株式会社 聚酰亚胺树脂组合物和其制造方法、以及聚酰亚胺薄膜
US10155185B2 (en) * 2016-05-09 2018-12-18 Tokyo Ohka Kogyo Co., Ltd. Polyimide-based resin film cleaning liquid, method for cleaning polyimide-based resin film, method for producing polyimide coating, method for producing filter, filter medium, or filter device, and method for producing chemical solution for lithography
TW201808628A (zh) * 2016-08-09 2018-03-16 Semiconductor Energy Lab 半導體裝置的製造方法
KR102144643B1 (ko) * 2016-08-19 2020-08-13 후지필름 가부시키가이샤 피도금층 형성용 조성물, 피도금층, 피도금층 부착 기판, 도전성 필름, 터치 패널 센서, 터치 패널
CN106159089B (zh) * 2016-08-22 2019-07-23 达迈科技股份有限公司 可离型的软性基板及其制造方法
US10369664B2 (en) * 2016-09-23 2019-08-06 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US10396305B2 (en) * 2016-11-29 2019-08-27 Canon Kabushiki Kaisha Organic EL device, and display apparatus and lighting apparatus using the same
KR102524863B1 (ko) 2017-03-29 2023-04-24 도레이 카부시키가이샤 도전층 구비 필름, 터치 패널, 도전층 구비 필름의 제조 방법 및 터치 패널의 제조 방법
KR20200026191A (ko) * 2017-05-10 2020-03-10 듀폰 일렉트로닉스, 인크. 전자 장치의 가요성 기판용 저색도 중합체
EP3659998B1 (en) 2017-07-27 2021-05-19 Tokyo Ohka Kogyo Co., Ltd. Aromatic amine compound, curing agent for epoxy compound, curable composition, cured product, method for producing cured product, and method for producing aromatic amine compound
CN107507929B (zh) * 2017-08-04 2019-04-16 武汉华星光电半导体显示技术有限公司 Oled显示面板的柔性基底及其制备方法
JP6841924B2 (ja) * 2017-09-21 2021-03-10 富士フイルム株式会社 近赤外線カットフィルタの製造方法、積層体およびキット
KR102117151B1 (ko) * 2017-09-29 2020-05-29 주식회사 엘지화학 폴리이미드 전구체 용액 및 이를 이용하여 제조된 폴리이미드 필름
CN109796590A (zh) * 2017-11-16 2019-05-24 宁波长阳科技股份有限公司 一种聚酰亚胺树脂和透明聚酰亚胺薄膜
TWI703188B (zh) * 2017-12-29 2020-09-01 財團法人工業技術研究院 聚醯亞胺混成材料、其前驅液及其製法
US10995237B2 (en) * 2017-12-29 2021-05-04 Industrial Technology Research Institute Polyimide hybrid material, precursor solution and manufacture method thereof
JP7304338B2 (ja) * 2018-03-30 2023-07-06 株式会社カネカ ポリイミド膜の製造方法および電子デバイスの製造方法
WO2019244600A1 (ja) * 2018-06-22 2019-12-26 東洋紡株式会社 ポリカーボネートイミド樹脂、およびこれを用いたペースト
KR20200053302A (ko) * 2018-11-08 2020-05-18 삼성전자주식회사 폴리(아미드-이미드) 코폴리머, 폴리(아미드-이미드) 코폴리머 제조용 조성물, 폴리(아미드-이미드) 코폴리머를 포함하는 성형품 및 표시 장치
KR20210088551A (ko) * 2018-11-09 2021-07-14 도레이 카부시키가이샤 폴리이미드 전구체, 폴리이미드, 폴리이미드 수지막 및 플렉시블 디바이스
KR102319883B1 (ko) * 2019-01-25 2021-11-01 주식회사 엘지화학 디아민 화합물, 및 이를 이용한 폴리이미드 전구체 및 폴리이미드 필름
CN110256670B (zh) * 2019-05-24 2021-06-01 东南大学 一种含芴基团热塑性聚酰亚胺及其制备方法和应用
CN110156990B (zh) * 2019-05-30 2020-12-08 武汉华星光电半导体显示技术有限公司 一种聚酰亚胺复合物、制备方法及其应用
JP2021152639A (ja) * 2020-03-23 2021-09-30 信越化学工業株式会社 有機膜形成用材料、半導体装置製造用基板、有機膜の形成方法、パターン形成方法、及び有機膜形成用化合物
KR20220030470A (ko) * 2020-09-01 2022-03-11 삼성디스플레이 주식회사 폴더블 표시 장치
CN112708134B (zh) * 2020-12-28 2021-08-03 深圳瑞华泰薄膜科技股份有限公司 一种无色透明共聚酰胺-酰亚胺膜及其制备方法
JP2023001636A (ja) * 2021-06-21 2023-01-06 株式会社ピーアイ技術研究所 感光性ポリイミド樹脂組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539363A (ja) * 1991-08-05 1993-02-19 Nippon Steel Corp ポリイミド樹脂成形物とその製造方法
WO2010113412A1 (ja) * 2009-03-31 2010-10-07 三井化学株式会社 低熱膨張性ブロックポリイミドおよびその前駆体ならびにその用途
JP2013023597A (ja) * 2011-07-21 2013-02-04 Ube Industries Ltd ポリイミド前駆体ワニス、およびポリイミドワニスの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180350A (ja) 1997-09-12 1999-03-26 Hitachi Chem Co Ltd 光部品用ポリイミド及びこれを用いた光部品
JP5135718B2 (ja) 2005-06-01 2013-02-06 三菱化学株式会社 テトラカルボン酸又はそのポリエステルイミド、及びその製造方法
JP2007269970A (ja) * 2006-03-31 2007-10-18 Toray Ind Inc 着色樹脂組成物、カラーフィルター、および液晶表示装置
JP5903789B2 (ja) 2010-07-22 2016-04-13 宇部興産株式会社 共重合ポリイミド前駆体及び共重合ポリイミド
CN106279689B (zh) 2010-07-22 2019-05-21 宇部兴产株式会社 聚酰亚胺前体、聚酰亚胺及其制备中所用的材料
JP5727885B2 (ja) * 2010-09-07 2015-06-03 Jfeケミカル株式会社 ポリイミドおよびポリイミドフィルム
JP6010533B2 (ja) * 2011-06-13 2016-10-19 株式会社カネカ ポリアミド酸、ポリイミド、ポリアミド酸溶液、ポリイミド溶液、およびこれらの溶液から得られるポリイミド膜、ならびにポリイミド膜の利用
US11084906B2 (en) * 2011-08-19 2021-08-10 Akron Polymer Systems, Inc. Thermally stable, low birefringent copolyimide films
WO2013191180A1 (ja) * 2012-06-19 2013-12-27 新日鉄住金化学株式会社 表示装置及びその製造方法、並びに、表示装置支持基材用ポリイミドフィルム及びその製造方法
WO2014007112A1 (ja) 2012-07-02 2014-01-09 株式会社カネカ ポリアミド酸、ポリイミド、ポリアミド酸溶液、およびポリイミドの利用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539363A (ja) * 1991-08-05 1993-02-19 Nippon Steel Corp ポリイミド樹脂成形物とその製造方法
WO2010113412A1 (ja) * 2009-03-31 2010-10-07 三井化学株式会社 低熱膨張性ブロックポリイミドおよびその前駆体ならびにその用途
JP2013023597A (ja) * 2011-07-21 2013-02-04 Ube Industries Ltd ポリイミド前駆体ワニス、およびポリイミドワニスの製造方法

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7157859B2 (ja) 2016-03-17 2022-10-20 株式会社カネカ 電子デバイスの製造方法
JP2022008353A (ja) * 2016-03-17 2022-01-13 株式会社カネカ 電子デバイスの製造方法
JP2018026549A (ja) * 2016-07-29 2018-02-15 株式会社半導体エネルギー研究所 剥離方法、表示装置、表示モジュール、及び電子機器
JP7076959B2 (ja) 2016-07-29 2022-05-30 株式会社半導体エネルギー研究所 剥離方法
US11616206B2 (en) 2016-07-29 2023-03-28 Semiconductor Energy Laboratory Co., Ltd. Separation method, display device, display module, and electronic device
US10899886B2 (en) 2016-09-23 2021-01-26 Lg Chem, Ltd. Polyimide precursor solution and method for producing same
JP2019503412A (ja) * 2016-09-23 2019-02-07 エルジー・ケム・リミテッド ポリイミド前駆体溶液及びその製造方法
JP2018115247A (ja) * 2017-01-17 2018-07-26 三菱ケミカル株式会社 ポリイミド
JP2018115120A (ja) * 2017-01-17 2018-07-26 本州化学工業株式会社 新規なアルコキシメチル置換ビスフェノール化合物
JP7000682B2 (ja) 2017-01-17 2022-02-10 三菱ケミカル株式会社 ポリイミド
JP2019038916A (ja) * 2017-08-24 2019-03-14 宇部興産株式会社 γ−ブチロラクトン溶媒中で重合した可溶性透明ポリイミド
JP6994712B2 (ja) 2017-08-24 2022-01-14 宇部興産株式会社 γ-ブチロラクトン溶媒中で重合した可溶性透明ポリイミド
KR20200052317A (ko) * 2017-10-04 2020-05-14 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지, 폴리이미드 바니시 및 폴리이미드 필름
KR102647164B1 (ko) * 2017-10-04 2024-03-14 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지, 폴리이미드 바니시 및 폴리이미드 필름
WO2019069723A1 (ja) * 2017-10-04 2019-04-11 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7215428B2 (ja) 2017-10-04 2023-01-31 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JPWO2019069723A1 (ja) * 2017-10-04 2020-09-10 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
KR20200044950A (ko) * 2018-01-17 2020-04-29 아사히 가세이 가부시키가이샤 폴리이미드 전구체 수지 조성물
KR102650759B1 (ko) 2018-01-17 2024-03-22 아사히 가세이 가부시키가이샤 폴리이미드 전구체 수지 조성물
JP2022167930A (ja) * 2018-01-17 2022-11-04 旭化成株式会社 ポリイミド前駆体樹脂組成物
KR102417292B1 (ko) 2018-01-17 2022-07-05 아사히 가세이 가부시키가이샤 폴리이미드 전구체 수지 조성물
KR20220098403A (ko) * 2018-01-17 2022-07-12 아사히 가세이 가부시키가이샤 폴리이미드 전구체 수지 조성물
WO2019142866A1 (ja) * 2018-01-17 2019-07-25 旭化成株式会社 ポリイミド前駆体樹脂組成物
JPWO2019142866A1 (ja) * 2018-01-17 2020-09-17 旭化成株式会社 ポリイミド前駆体樹脂組成物
JP2019144347A (ja) * 2018-02-19 2019-08-29 株式会社Screenホールディングス 表示装置の製造方法
JP7514369B2 (ja) 2018-03-30 2024-07-10 株式会社カネカ ポリアミド酸、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびフレキシブルデバイス
JP7150465B2 (ja) 2018-04-27 2022-10-11 東京応化工業株式会社 ポリイミド前駆体組成物、ポリアミド酸、ポリイミド樹脂、ポリイミド膜、及び光学装置
JP2019189832A (ja) * 2018-04-27 2019-10-31 東京応化工業株式会社 ポリイミド前駆体組成物、ポリアミド酸、ポリイミド樹脂、ポリイミド膜、及び光学装置
JPWO2019244988A1 (ja) * 2018-06-22 2021-03-11 三井化学株式会社 ポリアミド酸およびこれを含むワニス、フィルム、タッチパネルディスプレイ、液晶ディスプレイ、ならびに有機elディスプレイ
WO2019244988A1 (ja) * 2018-06-22 2019-12-26 三井化学株式会社 ポリアミド酸およびこれを含むワニス、フィルム、タッチパネルディスプレイ、液晶ディスプレイ、ならびに有機elディスプレイ
JP7412094B2 (ja) 2018-06-28 2024-01-12 旭化成株式会社 ポリイミド前駆体樹脂組成物
JP2020007531A (ja) * 2018-06-28 2020-01-16 旭化成株式会社 ポリイミド前駆体樹脂組成物
WO2022019225A1 (ja) * 2020-07-21 2022-01-27 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
CN116814179A (zh) * 2023-01-31 2023-09-29 湖南联兴光电科技有限公司 一种uv光固化型光学胶膜
CN116814179B (zh) * 2023-01-31 2024-02-27 江苏穿越光电科技有限公司 一种uv光固化型光学胶膜

Also Published As

Publication number Publication date
CN105593269B (zh) 2017-11-21
TWI644944B (zh) 2018-12-21
TW201522421A (zh) 2015-06-16
US9828469B2 (en) 2017-11-28
KR20160062006A (ko) 2016-06-01
SG11201601946XA (en) 2016-04-28
JP5773090B1 (ja) 2015-09-02
CN105593269A (zh) 2016-05-18
US20160222165A1 (en) 2016-08-04
JPWO2015046019A1 (ja) 2017-03-09
KR102207439B1 (ko) 2021-01-26

Similar Documents

Publication Publication Date Title
JP5773090B1 (ja) ポリイミド前駆体、それから得られるポリイミド樹脂膜、ならびにそれを含む表示素子、光学素子、受光素子、タッチパネル、回路基板、有機elディスプレイ、および、有機el素子ならびにカラーフィルタの製造方法
JP5660249B1 (ja) ポリイミド前駆体、ポリイミド、それを用いたフレキシブル基板、カラーフィルタおよびその製造方法、ならびにフレキシブル表示デバイス
JP6787124B2 (ja) 樹脂積層膜、それを含む積層体、tft基板、有機el素子カラーフィルターならびにそれらの製造方法。
JP6292351B1 (ja) ポリイミド樹脂、ポリイミド樹脂組成物、それを用いたタッチパネルおよびその製造方法、カラーフィルタおよびその製造方法、液晶素子およびその製造方法、有機el素子およびその製造方法
JP5928447B2 (ja) フレキシブル基板、表示デバイスおよび受光デバイス
WO2016052323A1 (ja) ディスプレイ用支持基板、それを用いたカラーフィルターおよびその製造方法、有機el素子およびその製造方法、ならびにフレキシブル有機elディスプレイ
JP6503674B2 (ja) 樹脂積層体、それを用いた有機el素子基板、カラーフィルター基板及びそれらの製造方法ならびにフレキシブル有機elディスプレイ
JP6206071B2 (ja) 樹脂組成物、それを用いたポリイミド樹脂膜、それを含むカラーフィルタ、tft基板、表示デバイスおよびそれらの製造方法
JP2015078254A (ja) 樹脂組成物、それを用いたポリイミド樹脂膜、それを含むカラーフィルタ、tft基板、表示デバイスおよびそれらの製造方法
JP6369141B2 (ja) 樹脂膜、それを含む積層体、それを用いた有機el素子基板、カラーフィルター基板およびそれらの製造方法ならびにフレキシブル有機elディスプレイ
JP6331314B2 (ja) フレキシブルカラーフィルター、その製造方法ならびにそれを用いたフレキシブル発光デバイス
WO2018029766A1 (ja) 樹脂積層膜、それを含む積層体、tft基板、有機el素子カラーフィルターならびにそれらの製造方法
TW201809140A (zh) 樹脂積層膜、含有其之積層體、tft基板、有機el元件、彩色濾光片以及彼等之製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014546220

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849811

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15021144

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167007544

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849811

Country of ref document: EP

Kind code of ref document: A1