WO2019069723A1 - ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム - Google Patents

ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム Download PDF

Info

Publication number
WO2019069723A1
WO2019069723A1 PCT/JP2018/035133 JP2018035133W WO2019069723A1 WO 2019069723 A1 WO2019069723 A1 WO 2019069723A1 JP 2018035133 W JP2018035133 W JP 2018035133W WO 2019069723 A1 WO2019069723 A1 WO 2019069723A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural unit
mol
polyimide
polyimide resin
derived
Prior art date
Application number
PCT/JP2018/035133
Other languages
English (en)
French (fr)
Inventor
洋平 安孫子
智寿 村山
佳奈 岡田
慎司 関口
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN201880064165.1A priority Critical patent/CN111164131B/zh
Priority to JP2019546628A priority patent/JP7215428B2/ja
Priority to KR1020207009350A priority patent/KR102647164B1/ko
Publication of WO2019069723A1 publication Critical patent/WO2019069723A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09J179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyimide resin, a polyimide varnish and a polyimide film.
  • the plastic substrate When light emitted from a display element is emitted through a plastic substrate, the plastic substrate is required to be colorless and transparent, and when light passes through a retardation film or a polarizing plate (for example, a liquid crystal display, In addition to colorless transparency, a touch panel or the like is also required to have high optical isotropy.
  • a retardation film or a polarizing plate for example, a liquid crystal display, In addition to colorless transparency, a touch panel or the like is also required to have high optical isotropy.
  • Patent Document 1 discloses a diamine resin using 1,2,4,5-cyclohexanetetracarboxylic acid dianhydride as a tetracarboxylic acid component as a polyimide resin having good transparency, heat resistance and optical isotropy.
  • polyimide resins and the like synthesized using 9,9-bis (3-methyl-4-aminophenyl) fluorene and 4,4'-diaminodiphenyl ether as components.
  • the polyimide film is also required to have laser peeling properties.
  • the polyimide film is required to be excellent in the property of absorbing light having a wavelength of 308 nm (that is, having a low light transmittance at a wavelength of 308 nm).
  • the present invention has been made in view of the above situation, and an object thereof is to provide a polyimide resin excellent in colorless transparency, optical isotropy and laser releasability.
  • the present inventors have found that a polyimide resin containing a combination of specific structural units can solve the above-mentioned problems, and has completed the invention.
  • a polyimide resin comprising a structural unit A derived from tetracarboxylic acid dianhydride and a structural unit B derived from a diamine, Structural unit (A-1) derived from a compound represented by the following formula (a-1) and structural unit derived from a compound represented by the following formula (a-2) (A-2) Including and A polyimide resin comprising a structural unit (B-1) derived from a compound represented by the following formula (b-1):
  • each R is independently a hydrogen atom, a fluorine atom or a methyl group.
  • the ratio of the structural unit (A-1) in the structural unit A is 10 to 90 mol%
  • the polyimide resin according to the above [1], wherein the proportion of the structural unit (A-2) in the structural unit A is 10 to 90 mol%.
  • the polyimide resin according to the above [1] or [2], wherein the proportion of the structural unit (B-1) in the structural unit B is 30 to 100 mol%.
  • R 1 to R 4 are each independently a monovalent aliphatic group or a monovalent aromatic group
  • Z 1 and Z 2 are each independently a divalent aliphatic group or a divalent aromatic group
  • r is a positive integer.
  • the proportion of the structural unit (B-1) in the structural unit B is 30 to 95 mol%
  • the polyimide resin according to the above [4], wherein the proportion of the structural unit (B-2) in the structural unit B is 5 to 70 mol%.
  • a polyimide film comprising the polyimide resin according to any one of the above [1] to [6].
  • the polyimide resin of the present invention is excellent in colorless transparency, optical isotropy, and laser releasability.
  • the polyimide resin of the present invention comprises a constituent unit A derived from tetracarboxylic acid dianhydride and a constituent unit B derived from a diamine, and the constituent unit A is represented by the following formula (a-1)
  • the structural unit B includes a structural unit (A-1) derived from the compound and a structural unit (A-2) derived from a compound represented by the following formula (a-2), and the structural unit B is represented by the following formula (b-1) It includes a structural unit (B-1) derived from the compound represented.
  • each R is independently a hydrogen atom, a fluorine atom or a methyl group.
  • the structural unit A is a structural unit derived from tetracarboxylic acid dianhydride, and is represented by a structural unit (A-1) derived from the compound represented by the formula (a-1) and a formula (a-2) And a structural unit (A-2) derived from the compound.
  • A-1 colorless transparency is improved
  • A-2 heat resistance, optical isotropy and laser releasability are improved.
  • the compound represented by the formula (a-1) is 1,2,4,5-cyclohexanetetracarboxylic acid dianhydride.
  • the compound represented by the formula (a-2) is 9,9′-bis (3,4-dicarboxyphenyl) fluorene dianhydride.
  • the proportion of the structural unit (A-1) in the structural unit A is preferably 10 to 90 mol%, more preferably 25 to 75 mol%, and still more preferably 40 to 60 mol%.
  • the proportion of the structural unit (A-2) in the structural unit A is preferably 10 to 90 mol%, more preferably 25 to 75 mol%, and still more preferably 40 to 60 mol%.
  • the content ratio of the total of the structural unit (A-1) and the structural unit (A-2) in the structural unit A is preferably 20 mol% or more, more preferably 50 mol% or more, and still more preferably 80. It is mol% or more.
  • the upper limit of the content ratio of the total of the structural unit (A-1) and the structural unit (A-2) is not particularly limited, that is, 100 mol%.
  • the structural unit A may consist only of the structural unit (A-1) and the structural unit (A-2).
  • the structural unit A may include structural units other than the structural units (A-1) and (A-2).
  • the tetracarboxylic acid dianhydride forming such a structural unit is not particularly limited, and pyromellitic acid dianhydride, 3,3 ', 4,4'-biphenyl tetracarboxylic acid dianhydride, and 4, Aromatic tetracarboxylic acid dianhydrides such as 4 '-(hexafluoroisopropylidene) diphthalic anhydride (with the exception of the compound represented by the formula (a-2)); 1,2,3,4-cyclobutane Tetracarboxylic acid dianhydride, norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′ ′-norbornane-5,5 ′ ′, 6,6 ′ ′-tetracarboxylic acid dianhydride, etc.
  • Alicyclic tetracarboxylic acid dianhydride (with the exception of the compound represented by the formula (a-1)); and aliphatic tetracarboxylic acids such as 1,2,3,4-butanetetracarboxylic acid dianhydride Dianhydride is mentioned.
  • aromatic tetracarboxylic acid dianhydride means tetracarboxylic acid dianhydride containing one or more aromatic rings
  • alicyclic tetracarboxylic acid dianhydride means one alicyclic ring.
  • the above means a tetracarboxylic dianhydride containing no aromatic ring
  • an aliphatic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing neither an aromatic ring nor an alicyclic ring.
  • the structural units that is, structural units other than the structural units (A-1) and (A-2)) optionally contained in the structural unit A may be of one type or of two or more types.
  • the structural unit B is a structural unit derived from a diamine, and includes a structural unit (B-1) derived from the compound represented by the formula (b-1). By the structural unit (B-1), the heat resistance, the optical isotropy and the laser removability are improved.
  • each R is independently selected from the group consisting of a hydrogen atom, a fluorine atom, and a methyl group, and is preferably a hydrogen atom.
  • the proportion of the structural unit (B-1) in the structural unit B is preferably 30 to 100 mol%, more preferably 30 to 95 mol%, still more preferably 40 to 90 mol%.
  • the structural unit B may consist of only the structural unit (B-1).
  • the structural unit B may contain structural units other than the structural unit (B-1), and a structural unit (B-2-1) derived from a compound represented by the following formula (b-2-1), Structural unit (B-2-2) derived from the compound represented by b-2-2), and structural unit (B-2-3) derived from the compound represented by the following formula (b-2-3) It is preferable to further include a constitutional unit (B-2) which is at least one selected from the group consisting of
  • R 1 to R 4 are each independently a monovalent aliphatic group or a monovalent aromatic group
  • Z 1 and Z 2 are each independently a divalent aliphatic group or a divalent aromatic group
  • r is a positive integer.
  • the compound represented by the formula (b-2-1) is bis (4-aminophenyl) sulfone.
  • the compound represented by the formula (b-2-2) is 2,2′-bis (trifluoromethyl) benzidine.
  • R 1 , R 2 , R 3 and R 4 in Formula (b-2-3) each independently represent a monovalent aliphatic group or a monovalent aromatic group, which are substituted by a fluorine atom It is also good.
  • the monovalent aliphatic group includes a monovalent saturated hydrocarbon group or a monovalent unsaturated hydrocarbon group.
  • the monovalent saturated hydrocarbon group includes an alkyl group having 1 to 22 carbon atoms, and examples thereof include a methyl group, an ethyl group and a propyl group.
  • the monovalent unsaturated hydrocarbon group includes an alkenyl group having 2 to 22 carbon atoms, and examples thereof include a vinyl group and a propenyl group.
  • Examples of the monovalent aromatic group include an aryl group having 6 to 24 carbon atoms, and an aralkyl group.
  • R 1 , R 2 , R 3 and R 4 in particular, a methyl group or a phenyl group is preferable.
  • Z 1 and Z 2 each independently represent a divalent aliphatic group or a divalent aromatic group, and these groups may be substituted with a fluorine atom.
  • a bivalent aliphatic group a bivalent saturated hydrocarbon group or a bivalent unsaturated hydrocarbon group is mentioned.
  • Examples of the divalent saturated hydrocarbon group include an alkylene group having 1 to 22 carbon atoms, and examples thereof include a methylene group, an ethylene group and a propylene group.
  • Examples of the divalent unsaturated hydrocarbon group include unsaturated hydrocarbon groups having 2 to 22 carbon atoms, and examples thereof include vinylene group, propenylene group, and alkylene group having an unsaturated double bond at the terminal.
  • Examples of the divalent aromatic group include a phenylene group having 6 to 24 carbon atoms, a phenylene group substituted with an alkyl group, and an aralkylene group.
  • Z 1 and Z 2 in particular, a propylene group, a phenylene group and an aralkylene group are preferable.
  • r represents a positive integer, and is preferably an integer of 10 to 10,000.
  • X-22-9409 As commercially available products of the compound represented by the formula (b-2-3), “X-22-9409”, “X-22-1660B”, “X-22” manufactured by Shin-Etsu Chemical Co., Ltd. -161AS ",” X-22-161A “,” X-22-161B “and the like.
  • the structural unit (B-2-1) is preferable from the viewpoint of improving colorless transparency.
  • the structural unit (B-2-2) is preferable from the viewpoint of improving colorless transparency and from the viewpoint of imparting low water absorption.
  • the structural unit (B-2-3) is preferable from the viewpoint of imparting optical isotropy and low water absorption.
  • the low water absorption polyimide resin has good moisture absorption dimensional stability.
  • the ratio of the structural unit (B-1) in the structural unit B is preferably 30 to 95 mol%, The proportion is preferably 40 to 90 mol%, and the proportion of the constituent unit (B-2) in the constituent unit B is preferably 5 to 70 mol%, more preferably 10 to 60 mol%.
  • the content ratio of the total of the structural unit (B-1) and the structural unit (B-2) in the structural unit B is preferably 35 mol% or more, more preferably 50 mol% or more.
  • the upper limit of the content ratio of the total of the structural unit (B-1) and the structural unit (B-2) is not particularly limited, that is, 100 mol%.
  • the structural unit B may consist only of the structural unit (B-1) and the structural unit (B-2).
  • the structural unit (B-2) may be only the structural unit (B-2-1) or may be only the structural unit (B-2-2), or the structural unit (B-2-3) Only).
  • the structural unit (B-2) may be a combination of the structural unit (B-2-1) and the structural unit (B-2-2), and the structural unit (B-2-2) and the structural unit It may be a combination of (B-2-3) or a combination of a structural unit (B-2-1) and a structural unit (B-2-3).
  • the structural unit (B-2) may be a combination of the structural unit (B-2-1), the structural unit (B-2-2) and the structural unit (B-2-3).
  • the constituent units (that is, constituent units other than the constituent unit (B-1)) arbitrarily contained in the constituent unit B are not limited to the above-mentioned constituent unit (B-2).
  • diamines that form such optional constitutional units, but 1,4-phenylenediamine, p-xylylenediamine, 3,5-diaminobenzoic acid, 2,2'-dimethylbiphenyl-4, 4'-diamine, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 2,2-bis (4-aminophenyl) hexafluoropropane, 4,4'-diaminobenzanilide, 1- (4- Aminophenyl) -2,3-dihydro-1,3,3-trimethyl-1H-inden-5-amine, ⁇ , ⁇ '-bis (4-aminophenyl) -1,4-diisopropylbenzene, N
  • an aromatic diamine means a diamine containing one or more aromatic rings
  • an alicyclic diamine means a diamine containing one or more alicyclic rings and containing no aromatic ring, a fat
  • the group diamine means a diamine containing neither an aromatic ring nor an alicyclic ring.
  • the structural unit (ie, structural units other than (B-1)) optionally contained in the structural unit B may be of one type or of two or more types.
  • the number average molecular weight of the polyimide resin of the present invention is preferably 5,000 to 100,000 from the viewpoint of the mechanical strength of the resulting polyimide film.
  • the number average molecular weight of a polyimide resin can be calculated
  • the polyimide resin of the present invention is excellent in colorless transparency, optical isotropy, and laser releasability, and thus can have the following physical property values.
  • the polyimide resin of the present invention has a total light transmittance of preferably 85% or more, more preferably 86% or more, still more preferably 87% or more, when it is formed into a polyimide film having a thickness of 10 ⁇ m. Preferably it is 88% or more.
  • the polyimide resin of the present invention preferably has a yellow index (YI) of 3.0 or less, more preferably 2.4 or less, still more preferably 2.0 or less, when it is formed into a polyimide film having a thickness of 10 ⁇ m. And particularly preferably 1.8 or less.
  • the polyimide resin of the present invention preferably has an absolute value of thickness retardation (Rth) of 100 nm or less, more preferably 85 nm or less, and still more preferably 60 nm or less when it is formed into a polyimide film having a thickness of 10 ⁇ m. , Particularly preferably 45 nm or less.
  • Rth thickness retardation
  • the polyimide resin of the present invention has a light transmittance at a wavelength of 308 nm of preferably 1.0% or less, more preferably 0.8% or less, and still more preferably 0 when it is formed into a polyimide film having a thickness of 10 ⁇ m. .5% or less, particularly preferably 0.3% or less.
  • the line total light transmittance, yellow index (YI), thickness retardation (Rth), and light transmittance at a wavelength of 308 nm in the present invention can be specifically measured by the method described in the Examples.
  • the polyimide resin of one embodiment of the present invention has low water absorption. Therefore, the water absorption rate is preferably 2.5% or less, more preferably 2.0% or less, still more preferably 1.5% or less, and particularly preferably 1.2% or less. In addition, the water absorption rate in this invention can be specifically measured by the method as described in an Example.
  • the polyimide resin of the present invention comprises a tetracarboxylic acid component containing a compound giving the above-mentioned constitutional unit (A-1) and a compound giving the above-mentioned constitutional unit (A-2), and the above-mentioned constitutional unit (B-1) Can be produced by reacting with a diamine component containing a compound which gives
  • Examples of the compound giving the structural unit (A-1) include the compounds represented by the formula (a-1), but the compound is not limited thereto, and may be a derivative thereof as long as the same structural unit can be formed.
  • As the derivatives tetracarboxylic acids corresponding to tetracarboxylic acid dianhydride represented by the formula (a-1) (ie, 1,2,4,5-cyclohexanetetracarboxylic acid), and tetracarboxylic acids of the tetracarboxylic acids Alkyl ester is mentioned.
  • the compound (namely, dianhydride) represented by Formula (a-1) is preferable.
  • Examples of the compound giving the structural unit (A-2) include the compounds represented by the formula (a-2), but the compound is not limited thereto, and may be a derivative thereof as long as the same structural unit can be formed.
  • Examples of the derivative include tetracarboxylic acid corresponding to tetracarboxylic acid dianhydride represented by the formula (a-2) and alkyl ester of the tetracarboxylic acid.
  • the compound (namely, dianhydride) represented by Formula (a-2) is preferable.
  • Examples of the compound giving the structural unit (B-1) include the compounds represented by the formula (b-1), but the compound is not limited thereto, and may be a derivative thereof as long as the same structural unit can be formed.
  • Examples of the derivative include diisocyanates corresponding to the diamine represented by the formula (b-1).
  • the compound (namely, diamine) represented by Formula (b-1) is preferable.
  • the tetracarboxylic acid component preferably contains 10 to 90 mol%, more preferably 25 to 75 mol%, still more preferably 40 to 60 mol% of the compound giving the structural unit (A-1).
  • the tetracarboxylic acid component preferably contains 10 to 90 mol%, more preferably 25 to 75 mol%, still more preferably 40 to 60 mol% of the compound giving the structural unit (A-2).
  • the tetracarboxylic acid component preferably contains 20 mol% or more, more preferably 50 mol% or more, more preferably 20 mol% or more in total of the compound giving the structural unit (A-1) and the compound giving the structural unit (A-2) Contains 80% or more.
  • the upper limit of the content ratio of the total of the compound giving the structural unit (A-1) and the compound giving the structural unit (A-2) is not particularly limited, that is, 100 mol%.
  • the tetracarboxylic acid component may consist only of the compound giving the structural unit (A-1) and the compound giving the structural unit (A-2).
  • the tetracarboxylic acid component may contain a compound other than the compound giving the structural unit (A-1) and the compound giving the structural unit (A-2), and as the compound, the above-mentioned aromatic tetracarboxylic acid dianhydride And alicyclic tetracarboxylic acid dianhydride, and aliphatic tetracarboxylic acid dianhydride, and derivatives thereof (tetracarboxylic acid, alkyl ester of tetracarboxylic acid, etc.).
  • the compound optionally contained in the tetracarboxylic acid component may be of one type or two or more types. It may be.
  • the diamine component preferably contains 30 to 100 mol%, more preferably 30 to 95 mol%, still more preferably 40 to 90 mol% of the compound giving the structural unit (B-1).
  • the diamine component may consist only of the compound giving the structural unit (B-1).
  • the diamine component may contain compounds other than the compound giving the structural unit (B-1), and preferably further contains the compound giving the structural unit (B-2).
  • B-2 the compound represented by Formula (b-2-1), the compound represented by Formula (b-2-2), and Formula (b-2-3)
  • the derivative may be sufficient as long as it can form the same structural unit. Examples of the derivative include diisocyanates corresponding to diamines represented by formulas (b-2-1) to (b-2-3).
  • the compound (namely, diamine) represented by Formula (b-2-1)-Formula (b-2-3) is preferable.
  • the diamine component when the diamine component includes a compound giving the structural unit (B-1) and a compound giving the structural unit (B-2), the diamine component preferably contains 30 to 95 mol% of the compound giving the structural unit (B-1)
  • the compound preferably contains 5 to 70 mol%, more preferably 10 to 60 mol%, of a compound that contains the structural unit (B-2), more preferably 40 to 90 mol%.
  • the diamine component preferably contains 35 mol% or more, more preferably 50 mol% or more, of the compound giving the structural unit (B-1) and the compound giving the structural unit (B-2) in total.
  • the upper limit of the content ratio of the total of the compound giving the structural unit (B-1) and the compound giving the structural unit (B-2) is not particularly limited, that is, 100 mol%.
  • the diamine component may consist only of the compound giving the structural unit (B-1) and the compound giving the structural unit (B-2).
  • the compound optionally contained in the diamine component is not limited to the compound giving the structural unit (B-2).
  • Such optional compounds include the aforementioned aromatic diamines, cycloaliphatic diamines, and aliphatic diamines, and derivatives thereof (such as diisocyanates).
  • the compound optionally contained in the diamine component may be one kind or two or more kinds.
  • the ratio by weight of the tetracarboxylic acid component to the diamine component used for producing the polyimide resin is preferably 0.9 to 1.1 moles of the diamine component to 1 mole of the tetracarboxylic acid component.
  • an end capping agent may be used for the production of the polyimide resin.
  • the end capping agent monoamines or dicarboxylic acids are preferable.
  • the preparation amount of the end capping agent to be introduced is preferably 0.0001 to 0.1 mol, particularly preferably 0.001 to 0.06 mol, per 1 mol of the tetracarboxylic acid component.
  • Examples of monoamines end capping agents include methylamine, ethylamine, propylamine, butylamine, benzylamine, 4-methylbenzylamine, 4-ethylbenzylamine, 4-dodecylbenzylamine, 3-methylbenzylamine, 3- Ethyl benzylamine, aniline, 3-methylaniline, 4-methylaniline and the like are recommended. Among these, benzylamine and aniline can be suitably used.
  • dicarboxylic acid end capping agent dicarboxylic acids are preferable, and some of them may be ring-closed.
  • phthalic acid, phthalic anhydride, 4-chlorophthalic acid, tetrafluorophthalic acid, 2,3-benzophenonedicarboxylic acid, 3,4-benzophenonedicarboxylic acid, cyclohexane-1,2-dicarboxylic acid, cyclopentane-1,2 -Dicarboxylic acid, 4-cyclohexene-1,2-dicarboxylic acid, etc. are recommended.
  • phthalic acid and phthalic anhydride can be suitably used.
  • tetracarboxylic acid component and a diamine component are made to react
  • a well-known method can be used.
  • a specific reaction method (1) a tetracarboxylic acid component, a diamine component, and a reaction solvent are charged in a reactor, and stirred at room temperature to 80 ° C. for 0.5 to 30 hours, and then heated to imidation Method for carrying out the reaction, (2) The diamine component and the reaction solvent are charged into the reactor and dissolved, and then the tetracarboxylic acid component is charged, and if necessary, stirred for 0.5 to 30 hours at room temperature to 80 ° C. (3) The tetracarboxylic acid component, the diamine component, and the reaction solvent are charged into a reactor, and the temperature is raised immediately to perform the imidization reaction.
  • the reaction solvent used for producing the polyimide resin may be any solvent which can dissolve the polyimide to be produced without inhibiting the imidization reaction.
  • aprotic solvents phenol solvents, ether solvents, carbonate solvents and the like can be mentioned.
  • aprotic solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 1,3-dimethylimidazolidinone, tetramethylurea and the like.
  • amido solvents lactone solvents such as ⁇ -butyrolactone and ⁇ -valerolactone, phosphorus-containing amide solvents such as hexamethylphosphoric amide and hexamethylphosphine triamide, and sulfur-containing solvents such as dimethylsulfone, dimethylsulfoxide and sulfolane
  • lactone solvents such as ⁇ -butyrolactone and ⁇ -valerolactone
  • phosphorus-containing amide solvents such as hexamethylphosphoric amide and hexamethylphosphine triamide
  • sulfur-containing solvents such as dimethylsulfone, dimethylsulfoxide and sulfolane
  • system solvents ketone solvents such as acetone, cyclohexanone and methylcyclohexanone
  • amine solvents such as picoline and pyridine
  • ester solvents such as acetic acid (2-methoxy-1-methylethyl).
  • phenolic solvents include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4 -Xylenol, 3,5-xylenol and the like.
  • ether solvents include 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, bis [2- (2-methoxyethoxy) ethyl] Ether, tetrahydrofuran, 1,4-dioxane and the like can be mentioned.
  • reaction solvents diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, a propylene carbonate etc. are mentioned as a specific example of a carbonate type solvent.
  • amide solvents or lactone solvents are preferable.
  • the above reaction solvents may be used alone or in combination of two or more.
  • the imidization reaction it is preferable to carry out the reaction while removing water generated at the time of production using a Dean-Stark apparatus or the like. By performing such an operation, the degree of polymerization and the imidation ratio can be further increased.
  • the imidation catalyst includes a base catalyst or an acid catalyst.
  • a base catalyst pyridine, quinoline, isoquinoline, ⁇ -picoline, ⁇ -picoline, 2,4-lutidine, 2,6-lutidine, trimethylamine, triethylamine, tripropylamine, tributylamine, tributylamine, triethylenediamine, imidazole, N, N
  • organic base catalysts such as dimethylaniline and N, N-diethylaniline
  • inorganic base catalysts such as potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, potassium hydrogencarbonate and sodium hydrogencarbonate.
  • an acid catalyst crotonic acid, acrylic acid, trans-3-hexenoic acid, cinnamic acid, benzoic acid, methylbenzoic acid, oxybenzoic acid, terephthalic acid, benzenesulfonic acid, paratoluenesulfonic acid, naphthalenesulfonic acid, etc.
  • the above imidation catalysts may be used alone or in combination of two or more.
  • a base catalyst more preferably an organic base catalyst, still more preferably triethylamine, and particularly preferably a combination of triethylamine and triethylenediamine.
  • the temperature of the imidization reaction is preferably 120 to 250 ° C., more preferably 160 to 200 ° C., from the viewpoint of the reaction rate and suppression of gelation and the like.
  • the reaction time is preferably 0.5 to 10 hours after the start of distillation of the produced water.
  • the polyimide varnish of the present invention is obtained by dissolving the polyimide resin of the present invention in an organic solvent. That is, the polyimide varnish of the present invention contains the polyimide resin of the present invention and an organic solvent, and the polyimide resin is dissolved in the organic solvent.
  • the organic solvent is not particularly limited as long as it dissolves the polyimide resin, but it is preferable to use one or more of the compounds described above as the reaction solvent used for producing the polyimide resin. Since the polyimide resin of the present invention has solvent solubility, it can be made a stable high concentration varnish at room temperature.
  • the polyimide varnish of the present invention preferably contains 5 to 40% by mass, and more preferably 10 to 30% by mass of the polyimide resin of the present invention.
  • the viscosity of the polyimide varnish is preferably 1 to 200 Pa ⁇ s, more preferably 5 to 150 Pa ⁇ s.
  • the polyimide varnish of the present invention is an inorganic filler, an adhesion promoter, a release agent, a flame retardant, an ultraviolet light stabilizer, a surfactant, a leveling agent, an antifoaming agent, a fluorescent increase, as long as the required properties of the polyimide film are not impaired.
  • Various additives such as a whitening agent, a crosslinking agent, a polymerization initiator, and a photosensitizer may be included.
  • the manufacturing method of the polyimide varnish of this invention is not specifically limited, A well-known method is applicable.
  • the polyimide film of the present invention contains the polyimide resin of the present invention. Therefore, the polyimide film of the present invention is excellent in colorless transparency, optical isotropy, and laser releasability.
  • limiting in particular in the preparation method of the polyimide film of this invention A well-known method can be used. For example, after apply
  • the polyimide film of the present invention is excellent in colorless transparency, optical isotropy, and laser removability, it is suitably used as a film for various members such as color filters, flexible displays, semiconductor parts, optical members and the like.
  • Be The polyimide film of the present invention is particularly suitably used as a substrate of an image display device such as a liquid crystal display or an OLED display.
  • Solid content concentration The solid content concentration of the polyimide varnish was measured by heating the sample at 320 ° C. for 120 minutes in a small electric furnace “MMF-1” manufactured by As One Corporation, and calculated from the mass difference of the sample before and after heating. .
  • Film thickness The film thickness was measured using a micrometer manufactured by Mitutoyo Corporation.
  • Total light transmittance, yellow index (YI) The measurement was performed in accordance with JIS K7361-1 using a color and turbidity simultaneous measurement device “COH400” manufactured by Nippon Denshoku Kogyo Co., Ltd.
  • Thickness retardation (Rth) The thickness retardation (Rth) was measured using an ellipsometer “M-220” manufactured by JASCO Corporation.
  • the thickness retardation was measured at a measurement wavelength of 590 nm.
  • Light transmittance at a wavelength of 308 nm It was measured using an ultraviolet-visible near-infrared spectrophotometer "UV-3100 PC" manufactured by Shimadzu Corporation. (6) Water absorption rate Determined according to JIS K7209. After drying a 50 mm ⁇ 50 mm polyimide film at 50 ° C.
  • Example 1 9,500- bis (4-aminophenyl) in a 500 mL five-necked round-bottom flask equipped with stainless steel half-moon stirring blades, a nitrogen inlet tube, a Dean Stark fitted with a cooling tube, a thermometer, and a glass end cap 34.845 g (0.100 mol) of fluorene (Taoka Chemical Industry Co., Ltd.) and 83.018 g of ⁇ -butyrolactone (Mitsubishi Chemical Co., Ltd.) are added, and the temperature of the system is 70 ° C. under a nitrogen atmosphere at a rotation speed of 200 rpm. Stirring gave a solution.
  • Example 2 The amount of 9,9-bis (4-aminophenyl) fluorene (Taoka Chemical Industry Co., Ltd.) was changed from 34.845 g (0.100 mol) to 17.423 g (0.050 mol) to obtain bis (4- A polyimide varnish was prepared in the same manner as in Example 1 except that 12.415 g (0.050 mol) of aminophenyl) sulfone (manufactured by Wakayama Seika Kogyo Co., Ltd.) was added, and a polyimide having a solid content concentration of 20% by mass was prepared. I got a varnish. Using the obtained polyimide varnish, a film was produced in the same manner as in Example 1 to obtain a film with a thickness of 10 ⁇ m. The results are shown in Table 1.
  • Example 3 12.42 g (0.050 mol) of bis (4-aminophenyl) sulfone (manufactured by Wakayama Seika Kogyo Co., Ltd.) to be 2,2'-bis (trifluoromethyl) benzidine (manufactured by Wakayama Seika Kogyo Co., Ltd.) 16.
  • a polyimide varnish was produced in the same manner as in Example 2 except that the content was changed to 012 g (0.050 mol), to obtain a polyimide varnish having a solid content concentration of 20% by mass.
  • a film was produced in the same manner as in Example 1 to obtain a film with a thickness of 12 ⁇ m. The results are shown in Table 1.
  • Example 4 The amount of 9,9-bis (4-aminophenyl) fluorene (Taoka Chemical Industry Co., Ltd.) was changed from 34.845 g (0.100 mol) to 30.629 g (0.08790 mol), and both terminal amino modified A polyimide varnish was prepared in the same manner as in Example 1 except that 16.214 g (0.01210 mol) of silicone oil “X-22-9409” (manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and the solid concentration 20 A mass% polyimide varnish was obtained. Using the obtained polyimide varnish, a film was produced in the same manner as in Example 1 to obtain a film with a thickness of 10 ⁇ m. The results are shown in Table 1.
  • Example 5 The amount of 9,9-bis (4-aminophenyl) fluorene (Taoka Chemical Industry Co., Ltd.) was changed from 34.845 g (0.100 mol) to 15.450 g (0.04434 mol) to obtain bis (4- 11.101 g (0.04344 mol) of aminophenyl) sulfone (manufactured by Wakayama Seika Kogyo Co., Ltd.) and 15.169 g (manufactured by Shin-Etsu Chemical Co., Ltd.) of both-end amino modified silicone oil “X-22-9409” (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • a polyimide varnish was prepared in the same manner as in Example 1 except that 0.01132 mol) was added, to obtain a polyimide varnish having a solid content concentration of 20% by mass. Using the obtained polyimide varnish, a film was produced in the same manner as in Example 1 to obtain a film with a thickness of 8 ⁇ m.
  • Example 6 The amount of 9,9-bis (4-aminophenyl) fluorene (Taoka Chemical Industry Co., Ltd.) was changed from 15.450 g (0.04343 mol) to 15.360 g (0.04408 mol) Aminophenyl) sulfone (manufactured by Wakayama Seika Kogyo Co., Ltd.) 11.010 g (0.04344 mol) of 2,2'-bis (trifluoromethyl) benzidine (manufactured by Wakayama Seika Kogyo Co., Ltd.) 14.116 g (0.
  • Example 7 The amount of 9,9-bis (4-aminophenyl) fluorene (Taoka Chemical Industry Co., Ltd.) was changed from 15.360 g (0.04408 mol) to 16.471 g (0.04727 mol). -Change the amount of bis (trifluoromethyl) benzidine (manufactured by Wakayama Seika Kogyo Co., Ltd.) from 14.116 g (0.04408 mol) to 15.138 g (0.04727 mol) By the same method as in Example 6, except that the amount of X-22-9409 (Shin-Etsu Chemical Co., Ltd.) was changed from 15.879 g (0.01184 mol) to 7.316 g (0.00546 mol) A polyimide varnish was produced to obtain a polyimide varnish having a solid content concentration of 20% by mass. Using the obtained polyimide varnish, a film was produced in the same manner as in Example 1 to obtain a film with a thickness of 8 ⁇ m. The results are shown
  • Comparative Example 1 Change the amount of 1,2,4,5-cyclohexanetetracarboxylic acid dianhydride (made by Mitsubishi Gas Chemical Co., Ltd.) from 11.209 g (0.050 mol) to 22.417 g (0.100 mol), 9
  • 22.922 g (0.050 mol) of 9,9'-bis (3,4-dicarboxyphenyl) fluorene dianhydride (manufactured by JFE Chemical Co., Ltd.) was not added.
  • a polyimide varnish was produced to obtain a polyimide varnish having a solid content concentration of 20% by mass.
  • a film was produced in the same manner as in Example 1 to obtain a film with a thickness of 11 ⁇ m. The results are shown in Table 2.
  • Comparative Example 2 9,9-bis (4-aminophenyl) fluorene (manufactured by Taoka Chemical Industry Co., Ltd.) 34.845 g (0.100 mol) of 2,2'-bis (trifluoromethyl) benzidine (manufactured by Wakayama Seika Kogyo Co., Ltd.) 2.)
  • a polyimide varnish was prepared in the same manner as in Comparative Example 1 except that it was changed to 32.024 g (0.100 mol), to obtain a polyimide varnish having a solid content concentration of 20% by mass.
  • the film was produced by the method similar to Example 1 using the obtained polyimide varnish, and the 9-micrometer-thick film was obtained. The results are shown in Table 2.
  • a polyimide varnish was prepared in the same manner as in Example 4 except that the amount was changed from 214 g (0.01210 mol) to 14.539 g (0.01085 mol), and the solid content concentration was 20%. To obtain the percentage of polyimide varnish. Using the obtained polyimide varnish, a film was produced in the same manner as in Example 1 to obtain a film with a thickness of 15 ⁇ m. The results are shown in Table 2.
  • the polyimide films of Examples 1 to 7 are excellent in colorless transparency, optical isotropy, and laser releasability.
  • the polyimide films of Examples 3 to 7 also have low water absorption.
  • the polyimide film of Comparative Example 1 is significantly inferior in laser removability
  • the polyimide film of Comparative Example 2 is significantly inferior in optical isotropy and laser removability
  • the polyimides of Comparative Examples 3 and 4 are inferior.
  • the film is largely inferior in colorless transparency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Wire Bonding (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

テトラカルボン酸二無水物に由来する構成単位Aと、ジアミンに由来する構成単位Bとを含むポリイミド樹脂であって、構成単位Aが下記式(a-1)で表される化合物に由来する構成単位(A-1)と、下記式(a-2)で表される化合物に由来する構成単位(A-2)とを含み、構成単位Bが下記式(b-1)で表される化合物に由来する構成単位(B-1)を含む、ポリイミド樹脂。 (式(b-1)中、Rはそれぞれ独立して、水素原子、フッ素原子又はメチル基である。)

Description

ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
 本発明はポリイミド樹脂、ポリイミドワニス及びポリイミドフィルムに関する。
 近年、高度情報化社会の到来に伴い、光ファイバー、光導波路等の光通信分野、また液晶配向膜、カラーフィルター等の表示装置分野では、耐熱性と無色透明性とを兼ね備えた材料が求められている。
 表示装置分野では、デバイスの軽量化やフレキシブル化を目的として、デバイスに用いられているガラス基板を、軽量化、フレキシブル化が可能なプラスチック基板へ代替することが検討されている。表示素子から発せられる光がプラスチック基板を通って出射されるような場合、プラスチック基板には無色透明性が要求され、さらに、位相差フィルムや偏光板を光が通過する場合(例えば、液晶ディスプレイ、タッチパネルなど)は、無色透明性に加えて、光学的等方性が高いことも要求される。
 上記のような要求を満たしうるプラスチック材料として、ポリイミド樹脂の開発が進められている。例えば、特許文献1には、透明性、耐熱性及び光学的等方性が良好なポリイミド樹脂として、テトラカルボン酸成分として1,2,4,5-シクロヘキサンテトラカルボン酸二無水物を用い、ジアミン成分として9,9-ビス(3-メチル-4-アミノフェニル)フルオレン及び4,4’-ジアミノジフェニルエーテルを用いて合成されたポリイミド樹脂等が開示されている。
 また、近年、マイクロエレクトロニクスの分野において、樹脂フィルムが積層された支持体における当該支持体と当該樹脂フィルムを剥離する方法として、レーザーリフトオフ(LLO)と呼ばれるレーザー剥離加工が注目を浴びている。したがって、ポリイミドフィルムをレーザー剥離加工に対応可能とするためには、ポリイミドフィルムにはレーザー剥離性も要求される。波長308nmのXeClエキシマレーザーによる剥離加工に対応可能とするためには、ポリイミドフィルムは波長308nmの光を吸収する特性に優れること(即ち、波長308nmにおける光線透過率が小さいこと)が求められる。
特許第6010533号公報
 本発明は上記の状況に鑑みてなされたものであり、その課題は、無色透明性、光学的等方性、及びレーザー剥離性に優れたポリイミド樹脂を提供することにある。
 本発明者らは、特定の構成単位の組み合わせを含むポリイミド樹脂が上記課題を解決できることを見出し、発明を完成させるに至った。
 即ち、本発明は、下記の[1]~[8]に関する。
[1]テトラカルボン酸二無水物に由来する構成単位Aと、ジアミンに由来する構成単位Bとを含むポリイミド樹脂であって、
 構成単位Aが下記式(a-1)で表される化合物に由来する構成単位(A-1)と、下記式(a-2)で表される化合物に由来する構成単位(A-2)とを含み、
 構成単位Bが下記式(b-1)で表される化合物に由来する構成単位(B-1)を含む、ポリイミド樹脂。
Figure JPOXMLDOC01-appb-C000003
(式(b-1)中、Rはそれぞれ独立して、水素原子、フッ素原子又はメチル基である。)
[2]構成単位A中における構成単位(A-1)の比率が10~90モル%であり、
 構成単位A中における構成単位(A-2)の比率が10~90モル%である、上記[1]に記載のポリイミド樹脂。
[3]構成単位B中における構成単位(B-1)の比率が30~100モル%である、上記[1]又は[2]に記載のポリイミド樹脂。
[4]構成単位Bが、下記式(b-2-1)で表される化合物に由来する構成単位(B-2-1)、下記式(b-2-2)で表される化合物に由来する構成単位(B-2-2)、及び下記式(b-2-3)で表される化合物に由来する構成単位(B-2-3)からなる群より選ばれる少なくとも1つである構成単位(B-2)を更に含む、上記[1]~[3]のいずれかに記載のポリイミド樹脂。
Figure JPOXMLDOC01-appb-C000004
(式(b-2-3)中、
 R~Rは、それぞれ独立して、一価の脂肪族基又は一価の芳香族基であり、
 Z及びZは、それぞれ独立して、二価の脂肪族基又は二価の芳香族基であり、
 rは、正の整数である。)
[5]構成単位B中における構成単位(B-1)の比率が30~95モル%であり、
 構成単位B中における構成単位(B-2)の比率が5~70モル%である、上記[4]に記載のポリイミド樹脂。
[6]Rが水素原子を表わす、上記[1]~[5]のいずれかに記載のポリイミド樹脂。
[7]上記[1]~[6]のいずれかに記載のポリイミド樹脂が有機溶媒に溶解してなるポリイミドワニス。
[8]上記[1]~[6]のいずれかに記載のポリイミド樹脂を含む、ポリイミドフィルム。
 本発明のポリイミド樹脂は、無色透明性、光学的等方性、及びレーザー剥離性に優れる。
[ポリイミド樹脂]
 本発明のポリイミド樹脂は、テトラカルボン酸二無水物に由来する構成単位Aとジアミンに由来する構成単位Bとを含むものであって、構成単位Aが下記式(a-1)で表される化合物に由来する構成単位(A-1)と下記式(a-2)で表される化合物に由来する構成単位(A-2)とを含み、構成単位Bが下記式(b-1)で表される化合物に由来する構成単位(B-1)を含む。
Figure JPOXMLDOC01-appb-C000005
(式(b-1)中、Rはそれぞれ独立して、水素原子、フッ素原子又はメチル基である。)
<構成単位A>
 構成単位Aは、テトラカルボン酸二無水物に由来する構成単位であり、式(a-1)で表される化合物に由来する構成単位(A-1)及び式(a-2)で表される化合物に由来する構成単位(A-2)を含む。構成単位(A-1)によって、無色透明性が向上し、構成単位(A-2)によって、耐熱性、光学的等方性及びレーザー剥離性が向上する。
 式(a-1)で表される化合物は、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物である。
 式(a-2)で表される化合物は、9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物である。
 構成単位A中における構成単位(A-1)の比率は、好ましくは10~90モル%であり、より好ましくは25~75モル%であり、更に好ましくは40~60モル%である。
 構成単位A中における構成単位(A-2)の比率は、好ましくは10~90モル%であり、より好ましくは25~75モル%であり、更に好ましくは40~60モル%である。
 構成単位A中における構成単位(A-1)と構成単位(A-2)の合計の含有比率は、好ましくは20モル%以上であり、より好ましくは50モル%以上であり、更に好ましくは80モル%以上である。構成単位(A-1)と構成単位(A-2)の合計の含有比率の上限値は特に限定されず、即ち、100モル%である。構成単位Aは構成単位(A-1)と構成単位(A-2)とのみからなっていてもよい。
 構成単位Aは、構成単位(A-1)及び(A-2)以外の構成単位を含んでもよい。そのような構成単位を形成するテトラカルボン酸二無水物としては、特に限定されないが、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物等の芳香族テトラカルボン酸二無水物(ただし、式(a-2)で表される化合物を除く);1,2,3,4-シクロブタンテトラカルボン酸二無水物、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物等の脂環式テトラカルボン酸二無水物(ただし、式(a-1)で表される化合物を除く);並びに1,2,3,4-ブタンテトラカルボン酸二無水物等の脂肪族テトラカルボン酸二無水物が挙げられる。
 なお、本明細書において、芳香族テトラカルボン酸二無水物とは芳香環を1つ以上含むテトラカルボン酸二無水物を意味し、脂環式テトラカルボン酸二無水物とは脂環を1つ以上含み、かつ芳香環を含まないテトラカルボン酸二無水物を意味し、脂肪族テトラカルボン酸二無水物とは芳香環も脂環も含まないテトラカルボン酸二無水物を意味する。
 構成単位Aに任意に含まれる構成単位(即ち、構成単位(A-1)及び(A-2)以外の構成単位)は、1種でもよいし、2種以上であってもよい。
<構成単位B>
 構成単位Bは、ジアミンに由来する構成単位であって、式(b-1)で表される化合物に由来する構成単位(B-1)を含む。構成単位(B-1)によって、耐熱性、光学的等方性及びレーザー剥離性が向上する。
 式(b-1)中において、Rは、それぞれ独立して、水素原子、フッ素原子、及びメチル基からなる群より選択され、水素原子であることが好ましい。式(b-1)で表される化合物としては、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(3-フルオロ-4-アミノフェニル)フルオレン、及び9,9-ビス(3-メチル-4-アミノフェニル)フルオレン等が挙げられ、9,9-ビス(4-アミノフェニル)フルオレンが好ましい。
 構成単位B中における構成単位(B-1)の比率は、好ましくは30~100モル%であり、より好ましくは30~95モル%であり、更に好ましくは40~90モル%である。構成単位Bは構成単位(B-1)のみからなっていてもよい。
 構成単位Bは構成単位(B-1)以外の構成単位を含んでもよく、下記式(b-2-1)で表される化合物に由来する構成単位(B-2-1)、下記式(b-2-2)で表される化合物に由来する構成単位(B-2-2)、及び下記式(b-2-3)で表される化合物に由来する構成単位(B-2-3)からなる群より選ばれる少なくとも1つである構成単位(B-2)を更に含むことが好ましい。
Figure JPOXMLDOC01-appb-C000006
(式(b-2-3)中、
 R~Rは、それぞれ独立して、一価の脂肪族基又は一価の芳香族基であり、
 Z及びZは、それぞれ独立して、二価の脂肪族基又は二価の芳香族基であり、
 rは、正の整数である。)
 式(b-2-1)で表される化合物は、ビス(4-アミノフェニル)スルホンである。
 式(b-2-2)で表される化合物は、2,2’-ビス(トリフルオロメチル)ベンジジンである。
 式(b-2-3)におけるR、R、R及びRは、それぞれ独立に一価の脂肪族基又は一価の芳香族基を示し、これらはフッ素原子で置換されていてもよい。一価の脂肪族基としては、一価の飽和炭化水素基又は一価の不飽和炭化水素基が挙げられる。一価の飽和炭化水素基としては炭素数1~22のアルキル基が挙げられ、例えば、メチル基、エチル基、プロピル基が例示できる。一価の不飽和炭化水素基としては炭素数2~22のアルケニル基が挙げられ、例えば、ビニル基、プロペニル基が例示できる。一価の芳香族基としては、炭素数6~24のアリール基、アラルキル基等が例示できる。R、R、R及びRとしては、特に、メチル基又はフェニル基が好ましい。
 また、Z及びZは、それぞれ独立に二価の脂肪族基又は二価の芳香族基を示し、これらの基はフッ素原子で置換されていてもよい。二価の脂肪族基としては、二価の飽和炭化水素基又は二価の不飽和炭化水素基が挙げられる。二価の飽和炭化水素基としては炭素数1~22のアルキレン基が挙げられ、例えば、メチレン基、エチレン基、プロピレン基が例示できる。二価の不飽和炭化水素基としては、炭素数2~22の不飽和炭素水素基が挙げられ、例えば、ビニレン基、プロペニレン基、末端に不飽和二重結合を有するアルキレン基が例示できる。二価の芳香族基としては炭素数6~24のフェニレン基、アルキル基で置換されたフェニレン基、アラルキレン基等が例示できる。Z及びZとしては、特に、プロピレン基、フェニレン基、アラルキレン基が好ましい。
 また、rは正の整数を示し、10~10,000の整数であることが好ましい。
 式(b-2-3)で表される化合物の市販品として入手できるものとしては、信越化学工業株式会社製の「X-22-9409」、「X-22-1660B」、「X-22-161AS」、「X-22-161A」、「X-22-161B」等が挙げられる。
 構成単位(B-2-1)は無色透明性を向上させる観点から好ましい。構成単位(B-2-2)は無色透明性を向上させる観点及び低吸水性を付与する観点から好ましい。構成単位(B-2-3)は光学的等方性及び低吸水性を付与する観点から好ましい。なお、低吸水性のポリイミド樹脂は、吸湿寸法安定性が良好である。
 構成単位Bが構成単位(B-1)及び構成単位(B-2)を含む場合、構成単位B中における構成単位(B-1)の比率は、好ましくは30~95モル%であり、より好ましくは40~90モル%であり、構成単位B中における構成単位(B-2)の比率は、好ましくは5~70モル%であり、より好ましくは10~60モル%である。
 構成単位B中における構成単位(B-1)と構成単位(B-2)の合計の含有比率は、好ましくは35モル%以上であり、より好ましくは50モル%以上である。構成単位(B-1)と構成単位(B-2)の合計の含有比率の上限値は特に限定されず、即ち、100モル%である。構成単位Bは構成単位(B-1)と構成単位(B-2)とのみからなっていてもよい。
 構成単位(B-2)は、構成単位(B-2-1)のみであってもよく、構成単位(B-2-2)のみであってもよく、又は構成単位(B-2-3)のみであってもよい。
 また、構成単位(B-2)は、構成単位(B-2-1)と構成単位(B-2-2)の組み合せであってもよく、構成単位(B-2-2)と構成単位(B-2-3)の組み合わせであってもよく、又は構成単位(B-2-1)と構成単位(B-2-3)の組み合せであってもよい。
 また、構成単位(B-2)は、構成単位(B-2-1)と構成単位(B-2-2)と構成単位(B-2-3)の組み合せであってもよい。
 構成単位Bに任意に含まれる構成単位(即ち、構成単位(B-1)以外の構成単位)は、上述の構成単位(B-2)に限定されない。そのような任意の構成単位を形成するジアミンとしては、特に限定されないが、1,4-フェニレンジアミン、p-キシリレンジアミン、3,5-ジアミノ安息香酸、2,2’-ジメチルビフェニル-4,4’-ジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、4,4’-ジアミノベンズアニリド、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-5-アミン、α,α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、N,N’-ビス(4-アミノフェニル)テレフタルアミド、4,4’-ビス(4-アミノフェノキシ)ビフェニル、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、及び2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン等の芳香族ジアミン(ただし、式(b-1)で表される化合物、式(b-2-1)で表される化合物、式(b-2-2)で表される化合物及び式(b-2-3)で表される化合物を除く);1,3-ビス(アミノメチル)シクロヘキサン及び1,4-ビス(アミノメチル)シクロヘキサン等の脂環式ジアミン;並びにエチレンジアミン及びヘキサメチレンジアミン等の脂肪族ジアミン(ただし、式(b-2-3)で表される化合物を除く)が挙げられる。
 なお、本明細書において、芳香族ジアミンとは芳香環を1つ以上含むジアミンを意味し、脂環式ジアミンとは脂環を1つ以上含み、かつ芳香環を含まないジアミンを意味し、脂肪族ジアミンとは芳香環も脂環も含まないジアミンを意味する。
 構成単位Bに任意に含まれる構成単位(即ち、(B-1)以外の構成単位)は、1種でもよいし、2種以上であってもよい。
 本発明のポリイミド樹脂の数平均分子量は、得られるポリイミドフィルムの機械的強度の観点から、好ましくは5,000~100,000である。なお、ポリイミド樹脂の数平均分子量は、例えば、ゲルろ過クロマトグラフィー測定による標準ポリメチルメタクリレート(PMMA)換算値より求めることができる。
 本発明のポリイミド樹脂は、無色透明性、光学的等方性、及びレーザー剥離性に優れるものであるため、以下のような物性値を有することができる。
 本発明のポリイミド樹脂は、厚さ10μmのポリイミドフィルムとした際に全光線透過率が、好ましくは85%以上であり、より好ましくは86%以上であり、更に好ましくは87%以上であり、特に好ましく88%以上である。
 本発明のポリイミド樹脂は、厚さ10μmのポリイミドフィルムとした際にイエローインデックス(YI)が、好ましくは3.0以下であり、より好ましくは2.4以下であり、更に好ましくは2.0以下であり、特に好ましくは1.8以下である。
 本発明のポリイミド樹脂は、厚さ10μmのポリイミドフィルムとした際の厚み位相差(Rth)の絶対値が、好ましくは100nm以下であり、より好ましくは85nm以下であり、更に好ましくは60nm以下であり、特に好ましくは45nm以下である。
 本発明のポリイミド樹脂は、厚さ10μmのポリイミドフィルムとした際に波長308nmにおける光線透過率が、好ましくは1.0%以下であり、より好ましくは0.8%以下であり、更に好ましくは0.5%以下であり、特に好ましく0.3%以下である。波長308nmにおける光線透過率が小さいほど、波長308nmのXeClエキシマレーザーによるレーザー剥離性に優れる。
 なお、本発明における線全光線透過率、イエローインデックス(YI)、厚み位相差(Rth)、波長308nmにおける光線透過率は、具体的には実施例に記載の方法で測定することができる。
 また、本発明の一態様のポリイミド樹脂は低吸水性を有する。そのため、吸水率が好ましくは2.5%以下であり、より好ましくは2.0%以下であり、更に好ましくは1.5%以下であり、特に好ましくは1.2%以下である。
 なお、本発明における吸水率は、具体的には実施例に記載の方法で測定することができる。
[ポリイミド樹脂の製造方法]
 本発明のポリイミド樹脂は、上述の構成単位(A-1)を与える化合物及び上述の構成単位(A-2)を与える化合物を含有するテトラカルボン酸成分と、上述の構成単位(B-1)を与える化合物を含むジアミン成分とを反応させることにより製造することができる。
 構成単位(A-1)を与える化合物としては、式(a-1)で表される化合物が挙げられるが、それに限られず、同じ構成単位を形成できる範囲でその誘導体であってもよい。当該誘導体としては、式(a-1)で表されるテトラカルボン酸二無水物に対応するテトラカルボン酸(即ち、1,2,4,5-シクロヘキサンテトラカルボン酸)、及び当該テトラカルボン酸のアルキルエステルが挙げられる。構成単位(A-1)を与える化合物としては、式(a-1)で表される化合物(即ち、二無水物)が好ましい。
 構成単位(A-2)を与える化合物としては、式(a-2)で表される化合物が挙げられるが、それに限られず、同じ構成単位を形成できる範囲でその誘導体であってもよい。当該誘導体としては、式(a-2)で表されるテトラカルボン酸二無水物に対応するテトラカルボン酸及び当該テトラカルボン酸のアルキルエステルが挙げられる。構成単位(A-2)を与える化合物としては、式(a-2)で表される化合物(即ち、二無水物)が好ましい。
 構成単位(B-1)を与える化合物としては、式(b-1)で表される化合物が挙げられるが、それに限られず、同じ構成単位を形成できる範囲でその誘導体であってもよい。当該誘導体としては、式(b-1)で表されるジアミンに対応するジイソシアネートが挙げられる。構成単位(B-1)を与える化合物としては、式(b-1)で表される化合物(即ち、ジアミン)が好ましい。
 テトラカルボン酸成分は、構成単位(A-1)を与える化合物を、好ましくは10~90モル%含み、より好ましくは25~75モル%含み、更に好ましくは40~60モル%含む。
 テトラカルボン酸成分は、構成単位(A-2)を与える化合物を、好ましくは10~90モル%含み、より好ましくは25~75モル%含み、更に好ましくは40~60モル%含む。
 テトラカルボン酸成分は、構成単位(A-1)を与える化合物と構成単位(A-2)を与える化合物を合計で、好ましくは20モル%以上含み、より好ましくは50モル%以上含み、更に好ましくは80%以上含む。構成単位(A-1)を与える化合物と構成単位(A-2)を与える化合物の合計の含有比率の上限値は特に限定されず、即ち、100モル%である。テトラカルボン酸成分は構成単位(A-1)を与える化合物と構成単位(A-2)を与える化合物とのみからなっていてもよい。
 テトラカルボン酸成分は、構成単位(A-1)を与える化合物及び構成単位(A-2)を与える化合物以外の化合物を含んでもよく、当該化合物としては、上述の芳香族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、及び脂肪族テトラカルボン酸二無水物、並びにそれらの誘導体(テトラカルボン酸、テトラカルボン酸のアルキルエステル等)が挙げられる。
 テトラカルボン酸成分に任意に含まれる化合物(即ち、構成単位(A-1)を与える化合物及び構成単位(A-2)を与える化合物以外の化合物)は、1種でもよいし、2種以上であってもよい。
 ジアミン成分は、構成単位(B-1)を与える化合物を、好ましくは30~100モル%含み、より好ましくは30~95モル%含み、更に好ましくは40~90モル%含む。ジアミン成分は構成単位(B-1)を与える化合物のみからなっていてもよい。
 ジアミン成分は構成単位(B-1)を与える化合物以外の化合物を含んでもよく、構成単位(B-2)を与える化合物を更に含むことが好ましい。
 構成単位(B-2)を与える化合物としては、式(b-2-1)で表される化合物、式(b-2-2)で表される化合物、及び式(b-2-3)で表される化合物が挙げられるが、それに限られず、同じ構成単位を形成できる範囲でその誘導体であってもよい。当該誘導体としては、式(b-2-1)~式(b-2-3)で表されるジアミンに対応するジイソシアネートが挙げられる。構成単位(B-2)を与える化合物としては、式(b-2-1)~式(b-2-3)で表される化合物(即ち、ジアミン)が好ましい。
 ジアミン成分が、構成単位(B-1)を与える化合物及び構成単位(B-2)を与える化合物を含む場合、ジアミン成分は構成単位(B-1)を与える化合物を好ましくは30~95モル%含み、より好ましくは40~90モル%含み、構成単位(B-2)を与える化合物を好ましくは5~70モル%含み、より好ましくは10~60モル%含む。
 ジアミン成分は、構成単位(B-1)を与える化合物と構成単位(B-2)を与える化合物を合計で、好ましくは35モル%以上含み、より好ましくは50モル%以上含む。構成単位(B-1)を与える化合物と構成単位(B-2)を与える化合物の合計の含有比率の上限値は特に限定されず、即ち、100モル%である。ジアミン成分は構成単位(B-1)を与える化合物と構成単位(B-2)を与える化合物とのみからなっていてもよい。
 また、ジアミン成分に任意に含まれる化合物(即ち、構成単位(B-1)を与える化合物以外の化合物)は、構成単位(B-2)を与える化合物に限定されない。そのような任意の化合物としては、上述の芳香族ジアミン、脂環式ジアミン、及び脂肪族ジアミン、並びにそれらの誘導体(ジイソシアネート等)が挙げられる。
 ジアミン成分に任意に含まれる化合物(即ち、構成単位(B-1)を与える化合物以外の化合物)は、1種でもよいし、2種以上であってもよい。
 本発明において、ポリイミド樹脂の製造に用いるテトラカルボン酸成分とジアミン成分の仕込み量比は、テトラカルボン酸成分1モルに対してジアミン成分が0.9~1.1モルであることが好ましい。
 また、本発明において、ポリイミド樹脂の製造には、前述のテトラカルボン酸成分及びジアミン成分の他に、末端封止剤を用いてもよい。末端封止剤としてはモノアミン類あるいはジカルボン酸類が好ましい。導入される末端封止剤の仕込み量としては、テトラカルボン酸成分1モルに対して0.0001~0.1モルが好ましく、特に0.001~0.06モルが好ましい。モノアミン類末端封止剤としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ベンジルアミン、4-メチルベンジルアミン、4-エチルベンジルアミン、4-ドデシルベンジルアミン、3-メチルベンジルアミン、3-エチルベンジルアミン、アニリン、3-メチルアニリン、4-メチルアニリン等が推奨される。これらのうち、ベンジルアミン、アニリンが好適に使用できる。ジカルボン酸類末端封止剤としては、ジカルボン酸類が好ましく、その一部を閉環していてもよい。例えば、フタル酸、無水フタル酸、4-クロロフタル酸、テトラフルオロフタル酸、2,3-ベンゾフェノンジカルボン酸、3,4-ベンゾフェノンジカルボン酸、シクロヘキサン-1,2-ジカルボン酸、シクロペンタン-1,2-ジカルボン酸、4-シクロヘキセン-1,2-ジカルボン酸等が推奨される。これらのうち、フタル酸、無水フタル酸が好適に使用できる。
 前述のテトラカルボン酸成分とジアミン成分とを反応させる方法には特に制限はなく、公知の方法を用いることができる。
 具体的な反応方法としては、(1)テトラカルボン酸成分、ジアミン成分、及び反応溶剤を反応器に仕込み、室温~80℃で0.5~30時間撹拌し、その後に昇温してイミド化反応を行う方法、(2)ジアミン成分及び反応溶剤を反応器に仕込んで溶解させた後、テトラカルボン酸成分を仕込み、必要に応じて室温~80℃で0.5~30時間撹拌し、その後に昇温してイミド化反応を行う方法、(3)テトラカルボン酸成分、ジアミン成分、及び反応溶剤を反応器に仕込み、直ちに昇温してイミド化反応を行う方法等が挙げられる。
 ポリイミド樹脂の製造に用いられる反応溶剤は、イミド化反応を阻害せず、生成するポリイミドを溶解できるものであればよい。例えば、非プロトン性溶剤、フェノール系溶剤、エーテル系溶剤、カーボネート系溶剤等が挙げられる。
 非プロトン性溶剤の具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、1,3-ジメチルイミダゾリジノン、テトラメチル尿素等のアミド系溶剤、γ-ブチロラクトン、γ-バレロラクトン等のラクトン系溶剤、ヘキサメチルホスホリックアミド、ヘキサメチルホスフィントリアミド等の含リン系アミド系溶剤、ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶剤、アセトン、シクロヘキサノン、メチルシクロヘキサノン等のケトン系溶剤、ピコリン、ピリジン等のアミン系溶剤、酢酸(2-メトキシ-1-メチルエチル)等のエステル系溶剤等が挙げられる。
 フェノール系溶剤の具体例としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール等が挙げられる。
 エーテル系溶剤の具体例としては、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、1,2-ビス(2-メトキシエトキシ)エタン、ビス〔2-(2-メトキシエトキシ)エチル〕エーテル、テトラヒドロフラン、1,4-ジオキサン等が挙げられる。
 また、カーボネート系溶剤の具体的な例としては、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等が挙げられる。
 上記反応溶剤の中でも、アミド系溶剤又はラクトン系溶剤が好ましい。また、上記の反応溶剤は単独で又は2種以上混合して用いてもよい。
 イミド化反応では、ディーンスターク装置などを用いて、製造時に生成する水を除去しながら反応を行うことが好ましい。このような操作を行うことで、重合度及びイミド化率をより上昇させることができる。
 上記のイミド化反応においては、公知のイミド化触媒を用いることができる。イミド化触媒としては、塩基触媒又は酸触媒が挙げられる。
 塩基触媒としては、ピリジン、キノリン、イソキノリン、α-ピコリン、β-ピコリン、2,4-ルチジン、2,6-ルチジン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリエチレンジアミン、イミダゾール、N,N-ジメチルアニリン、N,N-ジエチルアニリン等の有機塩基触媒、水酸化カリウムや水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム等の無機塩基触媒が挙げられる。
 また、酸触媒としては、クロトン酸、アクリル酸、トランス-3-ヘキセノイック酸、桂皮酸、安息香酸、メチル安息香酸、オキシ安息香酸、テレフタル酸、ベンゼンスルホン酸、パラトルエンスルホン酸、ナフタレンスルホン酸等が挙げられる。上記のイミド化触媒は単独で又は2種以上を組み合わせて用いてもよい。
 上記のうち、取り扱い性の観点から、塩基触媒を用いることが好ましく、有機塩基触媒を用いることがより好ましく、トリエチルアミンを用いることが更に好ましく、トリエチルアミンとトリエチレンジアミンを組み合わせて用いること特に好ましい。
 イミド化反応の温度は、反応率及びゲル化等の抑制の観点から、好ましくは120~250℃、より好ましくは160~200℃である。また、反応時間は、生成水の留出開始後、好ましくは0.5~10時間である。
[ポリイミドワニス]
 本発明のポリイミドワニスは、本発明のポリイミド樹脂が有機溶媒に溶解してなるものである。即ち、本発明のポリイミドワニスは、本発明のポリイミド樹脂及び有機溶媒を含み、当該ポリイミド樹脂は当該有機溶媒に溶解している。
 有機溶媒はポリイミド樹脂が溶解するものであればよく、特に限定されないが、ポリイミド樹脂の製造に用いられる反応溶剤として上述した化合物を、単独又は2種以上を混合して用いることが好ましい。
 本発明のポリイミド樹脂は溶媒溶解性を有しているため、室温で安定な高濃度のワニスとすることができる。本発明のポリイミドワニスは、本発明のポリイミド樹脂を5~40質量%含むことが好ましく、10~30質量%含むことがより好ましい。ポリイミドワニスの粘度は1~200Pa・sが好ましく、5~150Pa・sがより好ましい。
 また、本発明のポリイミドワニスは、ポリイミドフィルムの要求特性を損なわない範囲で、無機フィラー、接着促進剤、剥離剤、難燃剤、紫外線安定剤、界面活性剤、レベリング剤、消泡剤、蛍光増白剤、架橋剤、重合開始剤、感光剤等各種添加剤を含んでもよい。
 本発明のポリイミドワニスの製造方法は特に限定されず、公知の方法を適用することができる。
[ポリイミドフィルム]
 本発明のポリイミドフィルムは、本発明のポリイミド樹脂を含む。したがって、本発明のポリイミドフィルムは、無色透明性、光学的等方性、及びレーザー剥離性に優れる。
 本発明のポリイミドフィルムの作製方法には特に制限はなく、公知の方法を用いることができる。例えば、本発明のポリイミドワニスをフィルム状に塗布又は成形した後、有機溶媒を除去する方法等が挙げられる。
 本発明のポリイミドフィルムは、無色透明性、光学的等方性、及びレーザー剥離性に優れるものであるため、カラーフィルター、フレキシブルディスプレイ、半導体部品、光学部材等の各種部材用のフィルムとして好適に用いられる。本発明のポリイミドフィルムは、液晶ディスプレイやOLEDディスプレイ等の画像表示装置の基板として、特に好適に用いられる。
 以下に、実施例により本発明を具体的に説明する。但し、本発明はこれらの実施例により何ら制限されるものではない。
 実施例及び比較例で得たポリイミドワニスの固形分濃度及びポリイミドフィルムの各物性は以下に示す方法によって測定した。
(1)固形分濃度
 ポリイミドワニスの固形分濃度の測定は、アズワン株式会社製の小型電気炉「MMF-1」で試料を320℃×120minで加熱し、加熱前後の試料の質量差から算出した。
(2)フィルム厚さ
 フィルム厚さは、株式会社ミツトヨ製のマイクロメーターを用いて測定した。
(3)全光線透過率、イエローインデックス(YI)
 測定はJIS K7361-1準拠し、日本電色工業株式会社製の色彩・濁度同時測定器「COH400」を用いて行った。
(4)厚み位相差(Rth)
 厚み位相差(Rth)は、日本分光株式会社製のエリプソメーター「M-220」を用いて測定した。測定波長590nmにおける、厚み位相差の値を測定した。なおRthは、ポリイミドフィルムの面内の屈折率のうち最大のものをnx、最小のものをnyとし、厚み方向の屈折率をnzとし、フィルムの厚みをdとしたとき、下記式によって表されるものである。
  Rth=[{(nx+ny)/2}-nz]×d
(5)波長308nmにおける光線透過率
 株式会社島津製作所製の紫外可視近赤外分光光度計「UV-3100PC」を用いて測定した。
(6)吸水率
 JIS K7209に従って求めた。50mm×50mmのポリイミドフィルムを50℃で24時間乾燥した後、デシケーターで室温に戻し、23℃、湿度50±5%の環境下で重量(W0)を測定した。続いて、このフィルムを23℃の蒸留水に24時間浸漬し、表面の水分を拭き取った後、1分後の重量(W1)を測定した。下記式に基づいて吸水率を算出した。
  吸水率(%)=[(W1-W0)/W0]×100
<実施例1>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた500mLの5つ口丸底フラスコに、9,9-ビス(4-アミノフェニル)フルオレン(田岡化学工業株式会社製)34.845g(0.100モル)、γ-ブチロラクトン(三菱化学株式会社製)83.018gを投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(三菱ガス化学株式会社製)11.209g(0.050モル)、9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物(JFEケミカル株式会社製)22.922g(0.050モル)、及びγ-ブチロラクトン(三菱化学株式会社製)20.755gを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)5.060g及びトリエチレンジアミン(東京化成工業株式会社製)0.561gを投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
 その後、γ-ブチロラクトン(三菱化学株式会社製)158.54gを添加して、反応系内温度を120℃まで冷却した後、更に約3時間撹拌して均一化し、固形分濃度20質量%のポリイミドワニスを得た。続いてガラス板上へ、得られたポリイミドワニスを塗布し、ホットプレートで80℃、20分間保持し、その後、窒素雰囲気下、熱風乾燥機中300℃で30分加熱し溶媒を蒸発させ、厚み14μmのフィルムを得た。結果を表1に示す。
<実施例2>
 9,9-ビス(4-アミノフェニル)フルオレン(田岡化学工業株式会社製)の量を34.845g(0.100モル)から17.423g(0.050モル)に変更し、ビス(4-アミノフェニル)スルホン(和歌山精化工業株式会社製)を12.415g(0.050モル)追加した以外は、実施例1と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み10μmのフィルムを得た。結果を表1に示す。
<実施例3>
 ビス(4-アミノフェニル)スルホン(和歌山精化工業株式会社製)12.415g(0.050モル)を2,2’-ビス(トリフルオロメチル)ベンジジン(和歌山精化工業株式会社製)16.012g(0.050モル)に変更した以外は、実施例2と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み12μmのフィルムを得た。結果を表1に示す。
<実施例4>
 9,9-ビス(4-アミノフェニル)フルオレン(田岡化学工業株式会社製)の量を34.845g(0.100モル)から30.629g(0.08790モル)に変更し、両末端アミノ変性シリコーンオイル「X-22-9409」(信越化学工業株式会社製)を16.214g(0.01210モル)追加した以外は、実施例1と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み10μmのフィルムを得た。結果を表1に示す。
<実施例5>
 9,9-ビス(4-アミノフェニル)フルオレン(田岡化学工業株式会社製)の量を34.845g(0.100モル)から15.450g(0.04434モル)に変更し、ビス(4-アミノフェニル)スルホン(和歌山精化工業株式会社製)を11.010g(0.04434モル)、両末端アミノ変性シリコーンオイル「X-22-9409」(信越化学工業株式会社製)を15.169g(0.01132モル)追加した以外は、実施例1と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み8μmのフィルムを得た。結果を表1に示す。
<実施例6>
 9,9-ビス(4-アミノフェニル)フルオレン(田岡化学工業株式会社製)の量を15.450g(0.04434モル)から15.360g(0.04408モル)に変更し、ビス(4-アミノフェニル)スルホン(和歌山精化工業株式会社製)11.010g(0.04434モル)を2,2’-ビス(トリフルオロメチル)ベンジジン(和歌山精化工業株式会社製)14.116g(0.04408モル)に変更し、両末端アミノ変性シリコーンオイル「X-22-9409」(信越化学工業株式会社製)の量を15.169g(0.01132モル)から15.879g(0.01184モル)に変更した以外は、実施例5と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み9μmのフィルムを得た。結果を表1に示す。
<実施例7>
 9,9-ビス(4-アミノフェニル)フルオレン(田岡化学工業株式会社製)の量を15.360g(0.04408モル)から16.471g(0.04727モル)に変更し、2,2’-ビス(トリフルオロメチル)ベンジジン(和歌山精化工業株式会社製)の量を14.116g(0.04408モル)から15.138g(0.04727モル)に変更し、両末端アミノ変性シリコーンオイル「X-22-9409」(信越化学工業株式会社製)の量を15.879g(0.01184モル)から7.316g(0.00546モル)に変更した以外は、実施例6と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み8μmのフィルムを得た。結果を表1に示す。
<比較例1>
 1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(三菱ガス化学株式会社製)の量を11.209g(0.050モル)から22.417g(0.100モル)に変更し、9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物(JFEケミカル株式会社製)22.922g(0.050モル)を添加しなかった以外は、実施例1と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み11μmのフィルムを得た。結果を表2に示す。
<比較例2>
 9,9-ビス(4-アミノフェニル)フルオレン(田岡化学工業株式会社製)34.845g(0.100モル)を2,2’-ビス(トリフルオロメチル)ベンジジン(和歌山精化工業株式会社製)32.024g(0.100モル)に変更した以外は、比較例1と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み9μmのフィルムを得た。結果を表2に示す。
<比較例3>
 9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物(JFEケミカル株式会社製)22.922g(0.050モル)を3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)(三菱化学株式会社製)14.710g(0.050モル)に変更し、9,9-ビス(4-アミノフェニル)フルオレン(田岡化学工業株式会社製)の量を30.629g(0.08790モル)から31.064g(0.08915モル)に変更し、両末端アミノ変性シリコーンオイル「X-22-9409」(信越化学工業株式会社製)の量を16.214g(0.01210モル)から14.539g(0.01085モル)に変更した以外は、実施例4と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み15μmのフィルムを得た。結果を表2に示す。
<比較例4>
 9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物(JFEケミカル株式会社製)22.922g(0.050モル)を3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)(三菱化学株式会社製)14.710g(0.050モル)に変更した以外は、実施例1と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み8μmのフィルムを得た。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表1及び2中の略号は以下のとおりである。
HPMDA:1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(式(a-1)で表される化合物)
BPAF:9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物(式(a-2)で表される化合物)
BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
BAFL:9,9-ビス(4-アミノフェニル)フルオレン(式(b-1)で表される化合物)
4,4-DDS:ビス(4-アミノフェニル)スルホン(式(b-2-1)で表される化合物)
TFMB:2,2’-ビス(トリフルオロメチル)ベンジジン(式(b-2-2)で表される化合物)
X-22-9409:両末端アミノ変性シリコーンオイル(式(b-2-3)で表される化合物)
 表1に示すように、実施例1~7のポリイミドフィルムは、無色透明性、光学的等方性、及びレーザー剥離性に優れている。また、実施例3~7のポリイミドフィルムは低吸水性も有している。
 一方、表2に示すように、比較例1のポリイミドフィルムはレーザー剥離性が大きく劣り、比較例2のポリイミドフィルムは光学的等方性及びレーザー剥離性が大きく劣り、比較例3及び4のポリイミドフィルムは無色透明性が大きく劣る。

Claims (8)

  1.  テトラカルボン酸二無水物に由来する構成単位Aと、ジアミンに由来する構成単位Bとを含むポリイミド樹脂であって、
     構成単位Aが下記式(a-1)で表される化合物に由来する構成単位(A-1)と、下記式(a-2)で表される化合物に由来する構成単位(A-2)とを含み、
     構成単位Bが下記式(b-1)で表される化合物に由来する構成単位(B-1)を含む、ポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000001

    (式(b-1)中、Rはそれぞれ独立して、水素原子、フッ素原子又はメチル基である。)
  2.  構成単位A中における構成単位(A-1)の比率が10~90モル%であり、
     構成単位A中における構成単位(A-2)の比率が10~90モル%である、請求項1に記載のポリイミド樹脂。
  3.  構成単位B中における構成単位(B-1)の比率が30~100モル%である、請求項1又は2に記載のポリイミド樹脂。
  4.  構成単位Bが、下記式(b-2-1)で表される化合物に由来する構成単位(B-2-1)、下記式(b-2-2)で表される化合物に由来する構成単位(B-2-2)、及び下記式(b-2-3)で表される化合物に由来する構成単位(B-2-3)からなる群より選ばれる少なくとも1つである構成単位(B-2)を更に含む、請求項1~3のいずれかに記載のポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000002

    (式(b-2-3)中、
     R~Rは、それぞれ独立して、一価の脂肪族基又は一価の芳香族基であり、
     Z及びZは、それぞれ独立して、二価の脂肪族基又は二価の芳香族基であり、
     rは、正の整数である。)
  5.  構成単位B中における構成単位(B-1)の比率が30~95モル%であり、
     構成単位B中における構成単位(B-2)の比率が5~70モル%である、請求項4に記載のポリイミド樹脂。
  6.  Rが水素原子を表わす、請求項1~5のいずれかに記載のポリイミド樹脂。
  7.  請求項1~6のいずれかに記載のポリイミド樹脂が有機溶媒に溶解してなるポリイミドワニス。
  8.  請求項1~6のいずれかに記載のポリイミド樹脂を含む、ポリイミドフィルム。
PCT/JP2018/035133 2017-10-04 2018-09-21 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム WO2019069723A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880064165.1A CN111164131B (zh) 2017-10-04 2018-09-21 酰亚胺树脂、聚酰亚胺清漆和聚酰亚胺薄膜
JP2019546628A JP7215428B2 (ja) 2017-10-04 2018-09-21 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
KR1020207009350A KR102647164B1 (ko) 2017-10-04 2018-09-21 폴리이미드 수지, 폴리이미드 바니시 및 폴리이미드 필름

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-194284 2017-10-04
JP2017194284 2017-10-04

Publications (1)

Publication Number Publication Date
WO2019069723A1 true WO2019069723A1 (ja) 2019-04-11

Family

ID=65995355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035133 WO2019069723A1 (ja) 2017-10-04 2018-09-21 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム

Country Status (5)

Country Link
JP (1) JP7215428B2 (ja)
KR (1) KR102647164B1 (ja)
CN (1) CN111164131B (ja)
TW (1) TWI776960B (ja)
WO (1) WO2019069723A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255890A1 (ja) * 2019-06-20 2020-12-24 Jfeケミカル株式会社 ポリイミド溶液、及び、ポリイミド
WO2022004861A1 (ja) * 2020-07-02 2022-01-06 住友化学株式会社 ポリイミド系樹脂を含む光学フィルムの製造方法
WO2022014667A1 (ja) * 2020-07-16 2022-01-20 三菱瓦斯化学株式会社 積層体
WO2022019225A1 (ja) * 2020-07-21 2022-01-27 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
CN114502660A (zh) * 2019-10-11 2022-05-13 三菱瓦斯化学株式会社 聚酰亚胺树脂组合物、聚酰亚胺清漆和聚酰亚胺薄膜
WO2023199718A1 (ja) * 2022-04-15 2023-10-19 三菱瓦斯化学株式会社 共重合ポリイミド

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289034A (ja) * 2004-01-21 2005-10-20 Kaneka Corp 版材用樹脂組成物及びそれを用いた高分子印刷版
JP2006206825A (ja) * 2005-01-31 2006-08-10 Jfe Chemical Corp 芳香族ポリイミド樹脂前駆体及び芳香族ポリイミド樹脂
WO2011132641A1 (ja) * 2010-04-21 2011-10-27 日産化学工業株式会社 ポリイミド構造を含有する樹脂を含むリソグラフィー用レジスト下層膜形成組成物
WO2012033213A1 (ja) * 2010-09-07 2012-03-15 Jfeケミカル株式会社 ポリイミドおよびポリイミドフィルム
WO2012173126A1 (ja) * 2011-06-13 2012-12-20 株式会社カネカ ポリアミド酸、ポリイミド、ポリアミド酸溶液、ポリイミド溶液、およびこれらの溶液から得られるポリイミド膜、ならびにポリイミド膜の利用
WO2015046019A1 (ja) * 2013-09-27 2015-04-02 東レ株式会社 ポリイミド前駆体、それから得られるポリイミド樹脂膜、ならびにそれを含む表示素子、光学素子、受光素子、タッチパネル、回路基板、有機elディスプレイ、および、有機el素子ならびにカラーフィルタの製造方法
WO2016152906A1 (ja) * 2015-03-26 2016-09-29 東レ株式会社 樹脂積層膜、それを含む積層体、tft基板、有機el素子カラーフィルターならびにそれらの製造方法。

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010533U (ja) 1983-07-02 1985-01-24 鐘ケ江 一広 ブラシ矯正用キヤツプ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289034A (ja) * 2004-01-21 2005-10-20 Kaneka Corp 版材用樹脂組成物及びそれを用いた高分子印刷版
JP2006206825A (ja) * 2005-01-31 2006-08-10 Jfe Chemical Corp 芳香族ポリイミド樹脂前駆体及び芳香族ポリイミド樹脂
WO2011132641A1 (ja) * 2010-04-21 2011-10-27 日産化学工業株式会社 ポリイミド構造を含有する樹脂を含むリソグラフィー用レジスト下層膜形成組成物
JP2013137334A (ja) * 2010-04-21 2013-07-11 Nissan Chem Ind Ltd ポリイミド構造を含有する樹脂を含むリソグラフィー用レジスト下層膜形成組成物
WO2012033213A1 (ja) * 2010-09-07 2012-03-15 Jfeケミカル株式会社 ポリイミドおよびポリイミドフィルム
WO2012173126A1 (ja) * 2011-06-13 2012-12-20 株式会社カネカ ポリアミド酸、ポリイミド、ポリアミド酸溶液、ポリイミド溶液、およびこれらの溶液から得られるポリイミド膜、ならびにポリイミド膜の利用
WO2015046019A1 (ja) * 2013-09-27 2015-04-02 東レ株式会社 ポリイミド前駆体、それから得られるポリイミド樹脂膜、ならびにそれを含む表示素子、光学素子、受光素子、タッチパネル、回路基板、有機elディスプレイ、および、有機el素子ならびにカラーフィルタの製造方法
WO2016152906A1 (ja) * 2015-03-26 2016-09-29 東レ株式会社 樹脂積層膜、それを含む積層体、tft基板、有機el素子カラーフィルターならびにそれらの製造方法。

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255890A1 (ja) * 2019-06-20 2020-12-24 Jfeケミカル株式会社 ポリイミド溶液、及び、ポリイミド
CN114502660A (zh) * 2019-10-11 2022-05-13 三菱瓦斯化学株式会社 聚酰亚胺树脂组合物、聚酰亚胺清漆和聚酰亚胺薄膜
WO2022004861A1 (ja) * 2020-07-02 2022-01-06 住友化学株式会社 ポリイミド系樹脂を含む光学フィルムの製造方法
WO2022014667A1 (ja) * 2020-07-16 2022-01-20 三菱瓦斯化学株式会社 積層体
WO2022019225A1 (ja) * 2020-07-21 2022-01-27 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2023199718A1 (ja) * 2022-04-15 2023-10-19 三菱瓦斯化学株式会社 共重合ポリイミド

Also Published As

Publication number Publication date
TW201922848A (zh) 2019-06-16
JP7215428B2 (ja) 2023-01-31
CN111164131B (zh) 2022-08-02
CN111164131A (zh) 2020-05-15
TWI776960B (zh) 2022-09-11
JPWO2019069723A1 (ja) 2020-09-10
KR102647164B1 (ko) 2024-03-14
KR20200052317A (ko) 2020-05-14

Similar Documents

Publication Publication Date Title
JP7215428B2 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP6996609B2 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7302595B2 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7205491B2 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7424284B2 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7367699B2 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7180617B2 (ja) ポリイミド樹脂組成物及びポリイミドフィルム
JP7463964B2 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7384170B2 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7306371B2 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7255489B2 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2019054297A1 (ja) ポリイミド、ポリイミドワニス、及びポリイミドフィルム
WO2022019226A1 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2021230199A1 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7371621B2 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP6645620B2 (ja) ポリイミド、ポリイミド溶液及びポリイミドフィルム
WO2023085041A1 (ja) ポリイミド樹脂、ワニス及びポリイミドフィルム
WO2022091814A1 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2022091813A1 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
KR20220141292A (ko) 폴리이미드 필름의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18864274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019546628

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207009350

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18864274

Country of ref document: EP

Kind code of ref document: A1