WO2012033213A1 - ポリイミドおよびポリイミドフィルム - Google Patents

ポリイミドおよびポリイミドフィルム Download PDF

Info

Publication number
WO2012033213A1
WO2012033213A1 PCT/JP2011/070672 JP2011070672W WO2012033213A1 WO 2012033213 A1 WO2012033213 A1 WO 2012033213A1 JP 2011070672 W JP2011070672 W JP 2011070672W WO 2012033213 A1 WO2012033213 A1 WO 2012033213A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
group
mol
linear
polyimide
Prior art date
Application number
PCT/JP2011/070672
Other languages
English (en)
French (fr)
Inventor
浩章 中尾
洋平 井上
小林 正典
Original Assignee
Jfeケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeケミカル株式会社 filed Critical Jfeケミカル株式会社
Priority to US13/821,118 priority Critical patent/US20130211040A1/en
Priority to KR1020137007803A priority patent/KR20130050373A/ko
Publication of WO2012033213A1 publication Critical patent/WO2012033213A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/1053Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyimide and a polyimide film. More specifically, the present invention relates to a polyimide and a polyimide film using an aromatic diamine or aromatic tetracarboxylic dianhydride having a group derived from fluorene or a fluorene derivative as a raw material.
  • Polyimide has not only excellent heat resistance, but also chemical resistance, radiation resistance, electrical insulation, and excellent mechanical properties. Therefore, it is currently widely used in various electronic devices such as flexible printed circuit boards, tape automation bonding base materials, protective films for semiconductor elements, and interlayer insulating films for integrated circuits.
  • polyimide is a very useful material in terms of simplicity of manufacturing method, high film purity, and ease of property improvement.
  • functional polyimide material design suitable for various applications has been made. Yes.
  • polyimide is synthesized by polymerizing equimolar amounts of aromatic tetracarboxylic dianhydride such as pyromellitic anhydride and aromatic diamine such as diaminodiphenyl ether in an aprotic polar organic solvent such as dimethylacetamide.
  • aromatic tetracarboxylic dianhydride such as pyromellitic anhydride
  • aromatic diamine such as diaminodiphenyl ether
  • aprotic polar organic solvent such as dimethylacetamide.
  • Polyamide acid polyamic acid
  • this polyamic acid is heated at 250 to 350 ° C. to advance a dehydration / cyclization (imidization) reaction.
  • the polyimide molding process is used in a polyamic acid solution.
  • a desired film, molded product, or coating film is obtained by drying the solution, and then heated and imidized.
  • thermal stress generated in the process of cooling the polyimide / copper substrate laminate from the imidization temperature to room temperature often causes serious problems such as curling, film peeling and cracking.
  • multilayer wiring boards have come to be used. However, even if film peeling or cracking does not occur, residual stress in the multilayer board significantly increases device reliability. Reduce.
  • polyimide As a measure for reducing thermal stress, it is effective to reduce the expansion of polyimide.
  • Most polyimides have a linear coefficient of thermal expansion in the range of 30 to 100 ppm / ° C., which is much higher than the linear coefficient of thermal expansion of 17 ppm / ° C. for metal substrates such as copper.
  • a polyimide produced from 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride and p-phenylenediamine is most well known as a practical low thermal expansion polyimide.
  • This polyimide film made of polyimide is known to exhibit a very low linear thermal expansion coefficient of 5 to 10 ppm / ° C., depending on the film thickness and production conditions.
  • polyimides exhibiting a low coefficient of thermal expansion have a rigid and linear main chain structure, as described above, and most of them have poor water vapor permeability and are liable to foam depending on film forming conditions. .
  • Patent Document 1 there is an example in which water vapor permeability is improved by mixing other polyimide chains, but the improvement by mixing has a problem in the stable production of the polyimide film.
  • an object of the present invention is to provide a polyimide and a polyimide film having a linear thermal expansion coefficient close to that of copper and having a high elastic modulus and good water vapor permeability without impairing heat resistance.
  • the present invention includes the following (1) to (5).
  • Component (I) an aromatic diamine represented by the following formula (1);
  • the component (I) is 0.1 to 10.0 mol% and the component (II) is 99.9 to 90% with respect to the total amount of the component (I) and the component (II).
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, a nitrogen-containing atom group, or a linear or branched alkyl group having 1 to 12 carbon atoms.
  • Component (III) an aromatic tetracarboxylic dianhydride represented by the following formula (2); Component (II): obtained by reacting 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, p-phenylenediamine and 4,4′-diaminodiphenyl ether, The component (III) is 0.1 to 2.5 mol% and the component (II) is 99.9 to 97 with respect to the total amount of the component (III) and the component (II). .5 mol% polyimide:
  • R 5 and R 6 are each independently a hydrogen atom, a halogen atom, a nitrogen-containing atom group, a linear or branched alkyl group having 1 to 12 carbon atoms, or 2 carbon atoms. -12 linear or branched alkenyl group, linear or branched alkoxy group having 1 to 12 carbon atoms, hydroxy group, nitrile group, nitro group, carboxy group, carbamoyl group and 6 to 12 carbon atoms Selected from the group consisting of aromatic groups.
  • Water vapor permeability is 10 to 100 g / m 2 / day, average linear thermal expansion coefficient at 50 to 200 ° C. is 10 to 25 ppm / ° C., no clear glass transition temperature, and tensile modulus Polyimide film as described in said (3) or (4) whose is 5.0 GPa or more.
  • a specific aromatic diamine or a specific aromatic tetracarboxylic dianhydride having a group derived from fluorene or a fluorene derivative It is obtained by reacting 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, p-phenylenediamine and 4,4′-diaminodiphenyl ether in a specific molar ratio.
  • the polyimide film produced by imidizing the polyimide precursor has a linear thermal expansion coefficient close to that of copper, and it is known that the polyimide film has a high elastic modulus and good water vapor permeability without impairing heat resistance. Thus, the present invention has been completed.
  • component (I) aromatic diamine represented by the following formula (1); component (II): 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, pyromellitic acid” It is obtained by reacting dianhydride, p-phenylenediamine and 4,4′-diaminodiphenyl ether, and the component (I) is 0 with respect to the total amount of the component (I) and the component (II).
  • polyimide (1) 0.1 to 10.0 mol% and the component (II) is 99.9 to 90.0 mol%
  • component (II) is 99.9 to 90.0 mol%
  • component (III) aromatic tetracarboxylic dianhydride represented by the following formula (2), and component (II): 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, pyromellitic acid 2 Anhydrides, p-phenylenediamine and 4,4'-diamino Obtained by reacting with phenyl ether, the component (III) is 0.1 to 2.5 mol% with respect to the total amount of the component (III) and the component (II), and the A polyimide film in which component (II) is 99.9 to 97.5 mol% (hereinafter sometimes referred to as “polyimide (2)”), and polyimide (1) or polyimide (2). .
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, a halogen atom, a nitrogen-containing atom group, or 1 carbon atom.
  • the nitrogen-containing atom group is not particularly limited as long as it is a monovalent group containing a nitrogen atom, but preferably has a free valence on the nitrogen atom.
  • an amino group —NH 2
  • Monomethylamino group —NHCH 3
  • dimethylamino group —N (CH 3 ) 2
  • the linear or branched alkyl group having 1 to 12 carbon atoms is not particularly limited as long as the general formula is a group represented by C n H 2n + 1- (n: a natural number of 1 to 12). Examples thereof include a methyl group, an ethyl group, a 1-propyl group (n-propyl group), a 2-propyl group (isopropyl group) and the like (hereinafter the same).
  • the linear or branched alkenyl group having 2 to 12 carbon atoms is not particularly limited as long as the general formula is a group represented by C n H 2n-1- (n: a natural number of 2 to 12).
  • the valence may be on an unsaturated carbon atom or a saturated carbon atom. Specific examples include a vinyl group and an allyl group (the same applies hereinafter).
  • the linear or branched alkoxy group having 1 to 12 carbon atoms is not particularly limited as long as the general formula is represented by C n H 2n + 1 O- (n: a natural number of 1 to 12). Examples include methoxy group and ethoxy group (the same applies hereinafter).
  • the said component (I) consists of aromatic diamine represented by the said Formula (1).
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, a nitrogen-containing atom group, a linear or branched alkyl group having 1 to 12 carbon atoms, or the number of carbon atoms.
  • R 1 , R 2 , R 3 and R 4 are simultaneously a hydrogen atom, a linear or branched alkyl group having 1 to 12 carbon atoms, or 2 to It is preferably a linear or branched alkenyl group having 12 or a linear or branched alkoxy group having 1 to 12 carbon atoms, and R 1 , R 2 , R 3 and R 4 are simultaneously a hydrogen atom or methyl
  • R 1 , R 2 , R 3 and R 4 are more preferably a hydrogen atom at the same time.
  • the component (II) is composed of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, p-phenylenediamine and 4,4′-diaminodiphenyl ether.
  • M BPTC 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride
  • M PMDA pyromellitic dianhydride
  • the molar ratio of the number of moles of p-phenylenediamine (M PPDA ) to the number of moles of 4,4′-diaminodiphenyl ether (M DAPE ) is not particularly limited, but M PPDA : M DAPE is It is preferably 1: 0.5 to 1: 2, more preferably 1: 0.7 to 1: 1.4, and even more preferably 1: 0.9 to 1: 1.1. More preferably, it is 1: 1.
  • tetracarboxylic dianhydride contained in the component (II)
  • the tetracarboxylic dianhydrides listed in 1 may be used alone or in admixture of two or more:
  • diamine contained in the said component (II) replaces with a part of p-phenylenediamine or 4,4'- diamino diphenyl ether, and the diamine hung up below is used individually by 1 type or in mixture of 2 or more types. And may be used:
  • Aliphatic diamines such as benzene aromatic diamino compounds, heteroaromatic diamino compounds, non-benzene aromatic diamino compounds; etc.
  • the aliphatic diamine is preferably a compound in which two hydrogen groups of a chain hydrocarbon compound having 2 to 15 carbon atoms are each substituted with an amino group.
  • the benzene aromatic diamino compound is preferably a compound having one benzene nucleus or 2 to 10 condensed or non-condensed benzene nuclei, and examples thereof include the following:
  • Phenylenediamine such as m-phenylenediamine; phenylenediamine derivative in which an alkyl group such as methyl group or ethyl group is bonded to phenylenediamine such as 2-methyl-1,4-diaminobenzene;
  • Two aminophenyl groups and one phenylene such as 1,3-bis (m-aminophenoxy) benzene, 1,3-bis (p-aminophenoxy) benzene, 1,4-bis (p-aminophenoxy) benzene
  • 1,3-bis (m-aminophenoxy) benzene 1,3-bis (p-aminophenoxy) benzene
  • 1,4-bis (p-aminophenoxy) benzene A diaminotriphenyl compound in which any group is bonded via another linking group (the linking group mentioned in the section of diaminodiphenyl compound);
  • Diaminonaphthalenes such as 1,5-diaminonaphthalene and 2,6-diaminonaphthalene; aminophenylaminoindanes such as 5 or 6-amino-1- (p-aminophenyl) -1,3,3-trimethylindane;
  • Diaminotetraphenyls such as 4,4′-bis (p-aminophenoxy) biphenyl, 2,2-bis (4- (4-aminophenoxy) phenyl) propane and 4,4′-bis (3-aminophenoxy) benzophenone A compound; and
  • the component (III) is composed of an aromatic tetracarboxylic dianhydride represented by the above formula (2).
  • R 5 and R 6 are each independently a hydrogen atom, a halogen atom, a nitrogen-containing atom group, a linear or branched alkyl group having 1 to 12 carbon atoms, and a straight chain having 2 to 12 carbon atoms.
  • R 5 and R 6 are simultaneously selected from the group consisting of a hydrogen atom, a linear or branched alkyl group having 1 to 12 carbon atoms, a linear or branched alkenyl group having 2 to 12 carbon atoms, or is preferably a straight-chain or branched alkoxy group having a carbon number of 1 ⁇ 12, R 5 and R 6 simultaneously, more preferably a hydrogen atom or a methyl group, R 5 and R 6 are simultaneously water A still more preferred atoms.
  • Component (I) is 0.1 to 10.0 mol% and Component (II) is 99.9 to 90.0 mol% with respect to the total amount of component (I) and component (II) It is. Within this range, the water vapor permeability is in a necessary and sufficient range, and film forming properties are also ensured.
  • the ratio of the component (I) to the total amount of the component (I) and the component (II) is more preferably 2.0 to 8.0 mol%, further preferably 4.5 to 6.5 mol% (here In the calculation of mol%, the first decimal place is rounded off to the first decimal place).
  • the total number of moles of aromatic diamine (M FL ) contained in component (I) and the total number of moles of diamine (M DA ) contained in component (II) (M FL + M DA ), and contained in component (II)
  • the ratio of the total number of moles of tetracarboxylic acid anhydride (M TC ) is preferably (M FL + M DA ): M TC is 1: 0.90 to 1: 1.10, and 1: 0 It is more preferably from 95 to 1: 1.05, and even more preferably from 1: 0.99.
  • the ratio of (a + b + c + d) :( e + f) in the formula (3) is 99.9 to 90.0 mol%: 0.1 to 10.0 mol%.
  • the ratio of (e + f) is more preferably 2.0 to 8.0 mol%, and further preferably 4.5 to 6.5 mol% (where the decimal point is rounded off to the second decimal place for calculation of mol%). Seek up to first place).
  • Component (III) is 0.1 to 2.5 mol% and component (II) is 99.9 to 97.5 mol% based on the total amount of component (III) and component (II) It is. Within this range, the water vapor permeability is in a necessary and sufficient range, and film forming properties are also ensured.
  • the amount of component (III) with respect to the total amount of component (III) and component (II) is more preferably 1.0 to 2.5 mol% (here, the second decimal place is rounded off in the calculation of mol%). To the first decimal place).
  • the total number of moles of diamine contained in component (II) (M DA ′), the number of moles of aromatic tetracarboxylic acid anhydride contained in component (I) (M FL ′), and the tetra number contained in component (II)
  • the ratio of the total number of moles of carboxylic anhydride (M TC ′) to the total (M FL ′ + M TC ′) is such that M DA ′: (M FL ′ + M TC ′) is 1: 0.90 to 1: It is preferably 1.10, more preferably 1: 0.95 to 1: 1.05, and even more preferably 1: 0.99.
  • the ratio of (a + b + c + d) :( g + h) in formula (4) is 99.9 to 97.5 mol%: 0.1 to 2.5 mol%. Within this range, the water vapor permeability is in a necessary and sufficient range, and film forming properties are also ensured.
  • the ratio of (g + h) is more preferably 1.0 to 1.5 mol%. (Here, in calculating mol%, the first decimal place is rounded off to the first decimal place).
  • the tensile elastic modulus of the polyimide film of the present invention is a value measured by a measuring method according to ASTM D882, and is preferably 5.0 GPa or more. Within this range, the tensile strength is sufficient. The higher the tensile elastic modulus, the better, more preferably 5.8 GPa or more, still more preferably 6.0 GPa or more, even more preferably 6.3 GPa or more, and even more preferably 6.5 GPa or more.
  • the linear thermal expansion coefficient of the polyimide film of the present invention is 50 ° C. to 200 ° C. from the elongation of the test piece at a load of 0.5 g and a heating rate of 5.0 ° C./min using TMA (Thermal Mechanical Analysis) -60 manufactured by Shimadzu
  • a value obtained as an average value in the range is preferably in the range of 10 to 25 ppm / ° C. Within this range, since it is close to the linear thermal expansion coefficient of copper of 17 ppm / ° C., it is possible to reduce thermal stress when used as a polyimide / copper substrate laminate.
  • the glass transition temperature of the polyimide film of the present invention is measured from the change point of specific heat by heating with a differential scanning calorimeter (DSC) in a nitrogen atmosphere at a heating rate of 20 ° C./min.
  • the polyimide film of the present invention preferably has no clear glass transition temperature.
  • the water vapor permeability of the polyimide film of the present invention is measured at a measurement temperature of 40 ° C., a measurement area of 50 cm 2 , a relative humidity of 90%, a high humidity side of 100%, and a low humidity side according to a measurement method based on JIS K 7129: 2008 It is preferably 10 to 100 g / m 2 / day, measured as 10% and a measurement lower limit of 0.2 g / m 2 / day. Within this range, water vapor permeability is necessary and sufficient, and foaming is less likely to occur, which is advantageous for stable production.
  • the water vapor permeability is more preferably 25 to 100 g / m 2 / day or more, further preferably 40 to 100 g / m 2 / day or more, and further preferably 50 to 100 g / m 2 / day or more.
  • a chemistry for dehydration and cyclization (imidization) using a catalyst As a means for producing the polyimide of the present invention, in order to ensure a low linear thermal expansion coefficient and a high elastic modulus, as a means for enhancing the in-plane orientation, a chemistry for dehydration and cyclization (imidization) using a catalyst. It is preferable to use an imidization method. For example, a tetracarboxylic dianhydride component and a diamine component are polymerized in an organic solvent at 5 to 40 ° C. for 3 to 10 hours, and then a dehydrating agent and a dehydrating catalyst are mixed at a temperature of 0 ° C.
  • a method is used in which a film is formed and heat-treated at a temperature of usually 200 ° C. to 400 ° C., preferably 250 ° C. to 350 ° C. for 0.5 to 15 hours, preferably 1 to 5 hours under an inert gas atmosphere or reduced pressure. .
  • Solvents used here include aprotic polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidone, phenolic solvents such as cresols, and glycols such as diglyme. A solvent is mentioned. These solvents can be used alone or in combination of two or more. There is no particular limitation on the amount of solvent used, but the content of polyimide to be produced is preferably 5 to 40% by mass.
  • Examples of the dehydrating agent and catalyst for chemically dehydrating and cyclizing include a combination of acetic anhydride and picoline, a combination of trifluoroacetic anhydride and picoline, and the like.
  • ⁇ Measuring method> The linear thermal expansion coefficient, mechanical toughness, glass transition temperature, and water vapor permeability of the polyimide films of Examples and Comparative Examples were measured by the following methods.
  • Tensile elastic modulus Tensile elastic modulus was measured using Shimadzu Autograph AGS-J500N, using a strip-shaped test piece of 90 mm in length and 10 mm in width, according to ASTM D882, distance between chucks of 50 mm, pulling speed of 50.8 mm / Min, measured at 23 ° C.
  • the measurement conditions were a measurement temperature of 40 ° C., a measurement area of 50 cm 2 , a relative humidity of 90%, a high humidity side of 100%, a low humidity side of 10%, and a measurement lower limit of 0.2 g / m 2 / day.
  • Example 1 In a reaction vessel equipped with a stirrer, a reflux condenser, and a nitrogen introducing tube, 17.4 g (0.05 mol) of 9,9-bis (4-aminophenyl) fluorene (BAFL) and 48.6 g of p-phenylenediamine (0 .45 mol) and 100 g (0.50 mol) of 4,4′-diaminodiphenyl ether were charged, and 1932 g of N, N-dimethylacetamide (DMAc) was added and completely dissolved.
  • BAFL 9,9-bis (4-aminophenyl) fluorene
  • DMAc N, N-dimethylacetamide
  • Example 2 In a reaction vessel equipped with a stirrer, a reflux condenser, and a nitrogen introduction tube, 34.8 g (0.10 mol) of 9,9-bis (4-aminophenyl) fluorene (BAFL) and 43.2 g of p-phenylenediamine (0 .40 mol) and 4,4′-diaminodiphenyl ether (100 g, 0.50 mol) were charged, and 1986 g of N, N-dimethylacetamide (DMAc) was added to completely dissolve the mixture.
  • BAFL 9,9-bis (4-aminophenyl) fluorene
  • p-phenylenediamine (0 .40 mol
  • 4,4′-diaminodiphenyl ether 100 g, 0.50 mol
  • Example 3 In a reaction vessel equipped with a stirrer, a reflux condenser, and a nitrogen introduction tube, 37.6 g (0.10 mol) of 9,9-bis (4-amino-3-methylphenyl) fluorene (BTFL), p-phenylenediamine 43 .2 g (0.40 mol) and 4,4′-diaminodiphenyl ether 100 g (0.50 mol) were charged, and N, N-dimethylacetamide (DMAc) 1988 g was added and completely dissolved.
  • BTFL 9,9-bis (4-amino-3-methylphenyl) fluorene
  • p-phenylenediamine 43 .2 g (0.40 mol
  • 4,4′-diaminodiphenyl ether 100 g (0.50 mol
  • Example 4 A reaction vessel equipped with a stirrer, a reflux condenser, and a nitrogen introduction tube was charged with 54.0 g (0.50 mol) of p-phenylenediamine and 100 g (0.50 mol) of 4,4′-diaminodiphenyl ether, and N, N -1983 g of dimethylacetamide (DMAc) was added and completely dissolved.
  • DMAc dimethylacetamide
  • Example 5 In a reaction vessel equipped with a stirrer, a reflux condenser, and a nitrogen introduction tube, 38.4 g (0.10 mol) of 9,9-bis (4-amino-3-fluorophenyl) fluorene (BFAF), p-phenylenediamine 43 .3 g (0.40 mol) and 4,4′-diaminodiphenyl ether 100 g (0.50 mol) were charged, and N, N-dimethylacetamide (DMAc) 1995 g was added and completely dissolved.
  • BFAF 9,9-bis (4-amino-3-fluorophenyl) fluorene
  • p-phenylenediamine 43 .3 g (0.40 mol) and 4,4′-diaminodiphenyl ether 100 g (0.50 mol) were charged, and N, N-dimethylacetamide (DMAc) 1995 g was added and completely dissolved.
  • DMAc N,
  • Example 6 In a reaction vessel equipped with a stirrer, a reflux condenser, and a nitrogen introduction tube, 50.1 g (0.10 mol) of 9,9-bis (4-amino-3-phenylphenyl) fluorene (BPAF), p-phenylenediamine 43 .3 g (0.40 mol) and 4,4′-diaminodiphenyl ether 100 g (0.50 mol) were charged, and 2050 g of N, N-dimethylacetamide (DMAc) was added and completely dissolved.
  • BPAF 9,9-bis (4-amino-3-phenylphenyl) fluorene
  • p-phenylenediamine 43 .3 g (0.40 mol) and 4,4′-diaminodiphenyl ether 100 g (0.50 mol) were charged, and 2050 g of N, N-dimethylacetamide (DMAc) was added and completely dissolved.
  • Example 7 A reaction vessel equipped with a stirrer, a reflux condenser, and a nitrogen introduction tube was charged with 54.0 g (0.50 mol) of p-phenylenediamine and 100 g (0.50 mol) of 4,4′-diaminophenyl ether. 1950 g of N-dimethylacetamide (DMAc) was added and completely dissolved.
  • DMAc N-dimethylacetamide
  • Acetic anhydride and ⁇ -picoline were added to this precursor, a film was formed on a smooth glass plate, dried and imidized by heating, and a polyimide film with a thickness of 30 ⁇ m was obtained.
  • a polyimide film with a thickness of 30 ⁇ m was obtained.
  • the tensile elasticity modulus, the linear thermal expansion coefficient, the glass transition temperature, and water vapor transmission rate were measured with the above-mentioned measuring method. The measurement results are shown in the column of Comparative Example 2 in Table 1.
  • Example 1 0.05 mol of 9,9-bis (4-aminophenyl) fluorene was used as component (I), p-phenylenediamine, 4,4′-diaminodiphenyl ether, 3, A total of 1.942 moles of 3 ′, 4,4′-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride are used.
  • Component (I) was 2.5 mol% and component (II) was 97.5 mol% based on the sum of component (I) and component (II).
  • Table 1 all of the tensile modulus, linear thermal expansion coefficient, glass transition temperature, and water vapor permeability were good.
  • Example 2 As component (I), 9,9-bis (4-aminophenyl) fluorene was 0.10 mol, and as component (II), p-phenylenediamine, 4,4′-diaminodiphenyl ether, 3, A total of 1.892 moles of 3 ′, 4,4′-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride are used. Component (I) was 5.0 mol% and component (II) was 95.0 mol% based on the sum of component (I) and component (II). As is clear from Table 1, all of the tensile modulus, linear thermal expansion coefficient, glass transition temperature, and water vapor permeability were good.
  • Example 3 ⁇ Description of Example 3>
  • 0.10 mol of 9,9-bis (4-amino-3-phenylphenyl) fluorene was used as component (I)
  • p-phenylenediamine, 4,4′-diamino was used as component (II).
  • a total of 1.892 mols of diphenyl ether, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride are used.
  • Component (I) was 5.0 mol% and component (II) was 95.0 mol% based on the sum of component (I) and component (II).
  • Table 1 all of the tensile modulus, linear thermal expansion coefficient, glass transition temperature, and water vapor permeability were good.
  • Example 4 includes 0.05 mol of 4,4 ′-(9-fluorenylidene) bisphthalic anhydride as component (III), p-phenylenediamine, 4,4′-diaminodiphenyl ether as component (II), A total of 1.942 moles of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride are used.
  • Component (III) was 2.5 mol% and component (II) was 97.5 mol% based on the sum of component (III) and component (II). As is clear from Table 1, all of the tensile modulus, linear thermal expansion coefficient, glass transition temperature, and water vapor permeability were good.
  • Example 5 ⁇ Description of Example 5>
  • 0.10 mol of 9,9-bis (4-amino-3-fluorophenyl) fluorene (BFAF) was used as component (I) and p-phenylenediamine was used as component (II).
  • a total of 1.892 mol of '-diaminodiphenyl ether, 3,3', 4,4'-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride is used.
  • Component (I) was 5.0 mol% and component (II) was 95.0 mol% based on the sum of component (I) and component (II).
  • Table 1 all of the tensile modulus, linear thermal expansion coefficient, glass transition temperature, and water vapor permeability were good.
  • Example 6 9,9-bis (4-amino-3-phenylphenyl) fluorene (BPAF) was 0.10 mol, as component (II), p-phenylenediamine, 4,4 A total of 1.892 mol of '-diaminodiphenyl ether, 3,3', 4,4'-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride is used.
  • Component (I) was 5.0 mol% and component (II) was 95.0 mol% based on the sum of component (I) and component (II). As is clear from Table 1, all of the tensile modulus, linear thermal expansion coefficient, glass transition temperature, and water vapor permeability were good.
  • Example 7 is 0.10 mol of 4,4 ′-(9-fluorenylidene) bisphthalic anhydride as component (III), p-phenylenediamine, 4,4′-diaminodiphenyl ether as component (II), A total of 1.892 moles of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride are used.
  • Component (III) was 5.0 mol% and component (II) was 95.0 mol% based on the sum of component (III) and component (II). As is clear from Table 1, all of the tensile modulus, linear thermal expansion coefficient, glass transition temperature, and water vapor permeability were good.
  • Comparative Example 1 ⁇ Description of Comparative Example 1>
  • no component corresponding to component (I) or component (III) is used, and polyimide is synthesized only from the component corresponding to component (II).
  • the molar ratio of diamine to tetracarboxylic dianhydride was 1.00: 0.992. Although the tensile modulus, linear thermal expansion coefficient and glass transition temperature were good, the water vapor permeability was not sufficient.
  • Comparative Example 2 ⁇ Description of Comparative Example 2> In Comparative Example 2, none of the components corresponding to Component (I), Component (II) and Component (III) was used, 1.0 mol of p-phenylenediamine as diamine, and 3 as tetracarboxylic dianhydride. , 3 ′, 4,4′-biphenyltetracarboxylic dianhydride is used to synthesize polyimide. The molar ratio of diamine to tetracarboxylic dianhydride was 1.00: 0.992. The tensile modulus, linear thermal expansion coefficient and glass transition temperature were good, but the water vapor permeability was insufficient.
  • the present invention it is possible to provide a polyimide film having a linear thermal expansion coefficient similar to copper and having a high elastic modulus and good water vapor permeability without impairing heat resistance. Therefore, it can greatly contribute to industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

成分(I):下記式(1)で表される芳香族ジアミンと、成分(II):3,3',4,4'-ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、p-フェニレンジアミンおよび4,4'-ジアミノジフェニルエーテルとを反応させて得られ、該成分(I)と該成分(II)との合計量に対して、該成分(I)が0.1~10.0モル%であり、かつ、該成分(II)が99.9~90.0モル%であるポリイミドおよびポリイミドフィルム[式(1)中、R,R,RおよびRは、それぞれ独立に、水素原子、ハロゲン原子、含窒素原子基、炭素原子数1~12の直鎖状または分岐状アルキル基、炭素原子数2~12の直鎖状または分岐状アルケニル基、炭素原子数1~12の直鎖状または分岐状アルコキシ基、ヒドロキシ基、ニトリル基、ニトロ基、カルボキシ基、カルバモイル基および炭素原子数6~12の芳香族基からなる群から選ばれる]。得られたポリイミドフィルムは、銅と近似した線熱膨張係数を持ち、かつ、耐熱性を損なうことなく高弾性率で水蒸気透過性に優れる。

Description

ポリイミドおよびポリイミドフィルム
 本発明はポリイミドおよびポリイミドフィルムに関する。より詳細には、本発明は、フルオレンまたはフルオレン誘導体から誘導される基を持つ芳香族ジアミンまたは芳香族テトラカルボン酸二無水物を原料とするポリイミドおよびポリイミドフィルムに関する。
 ポリイミドは優れた耐熱性のみならず、耐薬品性、耐放射線性、電気絶縁性、優れた機械的性質などの特性を併せ持つ。そのため、フレキシブルプリント配線回路用基板、テープオートメーションボンディング用基材、半導体素子の保護膜、集積回路の層間絶縁膜等、様々な電子デバイスに現在広く利用されている。
 また、ポリイミドは、製造方法の簡便さ、高い膜純度、物性改良のしやすさの点で、非常に有用な材料であり、近年様々な用途毎に適した機能性ポリイミドの材料設計がなされている。
 ところで、工業的に用いられている構造のポリイミドの多くは有機溶媒に不溶であり、しかも、ガラス転移温度以上でも溶融しないので、通常、ポリイミドそのものを成型加工することは容易ではない。一般に、ポリイミドの合成は、ジメチルアセトアミド等の非プロトン性極性有機溶媒中で、無水ピロメリット酸等の芳香族テトラカルボン酸二無水物とジアミノジフェニルエーテル等の芳香族ジアミンを原料に等モルで重合させ、ポリイミドの前駆体であるポリアミド酸(ポリアミック酸)を合成し、その後、このポリアミド酸を250~350℃で加熱し、脱水・環化(イミド化)反応を進めることによって行われる。
 しかし、工業的に用いられている構造のポリイミドの多くでは、ポリアミド酸構造の時には有機溶媒に溶解し、ポリイミドになると溶解しなくなるため、ポリイミドの成形加工は、ポリアミド酸の溶液で利用し、その溶液を乾燥させることで所望のフィルムや成型物、コーティング膜が得られた後に加熱し、イミド化させることにより行われるのが一般的である。
 一方、ポリイミド/銅基板積層体をイミド化温度から室温へ冷却する過程で発生する熱応力は、しばしばカーリング、膜の剥離、割れ等の深刻な問題を引き起こす。最近では電子回路の高密度化に伴い、多層配線基板が採用されるようになってきたが、たとえ膜の剥離や割れに至らなくても、多層基板における応力の残留はデバイスの信頼性を著しく低下させる。
 熱応力低減の方策としては、ポリイミドの低膨張化が有効である。ほとんどのポリイミドは、線熱膨張係数が30~100ppm/℃の範囲内にあるから、金属基板、例えば、銅の線熱膨張係数17ppm/℃よりもはるかに大きい。
 そのため、銅の値に近い、およそ25ppm/℃以下を示す低熱膨張性のポリイミドの研究開発がなされている。これまでに、ポリイミドの低熱膨張化には、一般に、その主鎖構造が直線的でしかも内部回転が束縛され、剛直であることが必要条件であると報告されている。
 現在のところ、実用的な低熱膨張性ポリイミドとしては3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とp−フェニレンジアミンから製造されるポリイミドが最もよく知られている。このポリイミドからなるポリイミドフィルムは、膜厚や製造条件にもよるが、5~10ppm/℃と非常に低い線熱膨張係数を示すことが知られている。
 しかしながら、低熱膨張係数を示すポリイミドは、上記したとおり、例外なく剛直で直線的な主鎖構造を有しているため、そのほとんどが、水蒸気透過性が悪く、製膜条件によっては発泡を起こし易い。
 また、接着剤と張り合わせる場合、線熱膨張係数が低すぎるとカールが発生する。特に化学閉環によるイミド化は面内配向が起こり易く剛直な主鎖構造の場合は、線熱膨張係数が低くなりすぎる。
 また、分子パッキングが過密な為、フィルムの水蒸気透過性が悪く、フィルム製造工程においてしばしば内部に気泡が発生する。この水蒸気透過性は、フレキシブル銅張積層(Flexible Copper Clad Laminates)工程(FCCL工程)においてもリードボンディングなどの工程において膨れなどを生じ易い。
 さらに、FCCL化後の銅との接着強度において、ガス発生の多いフィルムは接着面に微量のガスが溜まるため、接着性が劣る傾向にある。この水蒸気透過性を改善するため、一般的には、4,4’−ジアミノジフェニルエーテルなどの屈曲構造分子を変性し、分子パッキングを抑制することによる対応をはかっている。しかし、その一方で、エーテル結合の導入を多くすると、耐熱性や引張弾性率が低下するという問題がある。
 また、特許文献1では、他のポリイミド鎖を混合して水蒸気透過性の向上を行った例があるが、混合による改善はポリイミドフィルムの安定製造の面に問題がある。
特開2006−183040号公報
 そこで、本発明は、銅と近似した線熱膨張係数を持ち、かつ、耐熱性を損なうことなく高弾性率で水蒸気透過性の良いポリイミドおよびポリイミドフィルムを提供することを課題とする。
 本発明は以下の(1)~(5)である。
(1)成分(I):下記式(1)で表される芳香族ジアミンと、
 成分(II):3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、p−フェニレンジアミンおよび4,4’−ジアミノジフェニルエーテルとを反応させて得られ、
 当該成分(I)と当該成分(II)との合計量に対して、当該成分(I)が0.1~10.0モル%であり、かつ、当該成分(II)が99.9~90.0モル%であるポリイミド:
Figure JPOXMLDOC01-appb-C000003
 ただし、式(1)中、R,R,RおよびRは、それぞれ独立に、水素原子、ハロゲン原子、含窒素原子基、炭素原子数1~12の直鎖状または分岐状アルキル基、炭素原子数2~12の直鎖状または分岐状アルケニル基、炭素原子数1~12の直鎖状または分岐状アルコキシ基、ヒドロキシ基、ニトリル基、ニトロ基、カルボキシ基、カルバモイル基および炭素原子数6~12の芳香族基からなる群から選ばれる。
(2)成分(III):下記式(2)で表される芳香族テトラカルボン酸二無水物と、
 成分(II):3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、p−フェニレンジアミンおよび4,4’−ジアミノジフェニルエーテルとを反応させて得られ、
 当該成分(III)と当該成分(II)との合計量に対して、当該成分(III)が0.1~2.5モル%であり、かつ、当該成分(II)が99.9~97.5モル%であるポリイミド:
Figure JPOXMLDOC01-appb-C000004
 ただし、式(2)中、RおよびRは、それぞれ独立に、水素原子、ハロゲン原子、含窒素原子基、炭素原子数1~12の直鎖状または分岐状アルキル基、炭素原子数2~12の直鎖状または分岐状アルケニル基、炭素原子数1~12の直鎖状または分岐状アルコキシ基、ヒドロキシ基、ニトリル基、ニトロ基、カルボキシ基、カルバモイル基および炭素原子数6~12の芳香族基からなる群から選ばれる。
(3)上記(1)に記載のポリイミドからなるポリイミドフィルム。
(4)上記(2)に記載のポリイミドからなるポリイミドフィルム。
(5)水蒸気透過度が10~100g/m/dayであり、50~200℃の平均線熱膨張係数が10~25ppm/℃であり、明確なガラス転移温度がなく、かつ、引張弾性率が5.0GPa以上である、上記(3)または(4)に記載のポリイミドフィルム。
 本発明によれば、銅と近似した線熱膨張係数を持ち、かつ、耐熱性を損なうことなく高弾性率で水蒸気透過性の良いポリイミドフィルムを提供することができる。
 本発明者らは、上記課題を解決すべく、鋭意研究を積み重ねた結果、フルオレンまたはフルオレン誘導体から誘導される基を持つ、特定の芳香族ジアミンまたは特定の芳香族テトラカルボン酸二無水物と、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、p−フェニレンジアミンおよび4,4’−ジアミノジフェニルエーテルとを、特定のモル比で反応させて得られるポリイミド前駆体をイミド化して製造されるポリイミドフィルムは、銅と近似した線熱膨張係数を持ち、かつ、耐熱性を損なうことなく高弾性率で水蒸気透過性の良いポリイミドフィルムであることを知得し、本発明を完成するに至った。
 以下、本発明の実施の形態について詳細に説明するが、これらは本発明の実施形態の一例であり、これらの内容に限定されるものでない。
[ポリイミドおよびポリイミドフィルム]
 本発明は、「成分(I):下記式(1)で表される芳香族ジアミンと、成分(II):3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、p−フェニレンジアミンおよび4,4’−ジアミノジフェニルエーテルとを反応させて得られ、当該成分(I)と当該成分(II)との合計量に対して、当該成分(I)が0.1~10.0モル%であり、かつ、当該成分(II)が99.9~90.0モル%であるポリイミド」(以下、「ポリイミド(1)」という場合がある。)または「成分(III):下記式(2)で表される芳香族テトラカルボン酸二無水物と、成分(II):3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、p−フェニレンジアミンおよび4,4’−ジアミノジフェニルエーテルとを反応させて得られ、当該成分(III)と当該成分(II)との合計量に対して、当該成分(III)が0.1~2.5モル%であり、かつ、当該成分(II)が99.9~97.5モル%であるポリイミド」(以下、「ポリイミド(2)」という場合がある。)、およびポリイミド(1)またはポリイミド(2)からなるポリイミドフィルムである。
Figure JPOXMLDOC01-appb-C000005
 ただし、式(1)、(2)中、R,R,R,R,RおよびRは、それぞれ独立に、水素原子、ハロゲン原子、含窒素原子基、炭素原子数1~12の直鎖状または分岐状アルキル基、炭素原子数2~12の直鎖状または分岐状アルケニル基、炭素原子数1~12の直鎖状または分岐状アルコキシ基、ヒドロキシ基、ニトリル基、ニトロ基、カルボキシ基、カルバモイル基および炭素原子数6~12の芳香族基からなる群から選ばれる。
 上記含窒素原子基は、窒素原子を含む1価の基であれば特に限定されないが、遊離原子価が窒素原子上にあるものが好ましく、具体的には、例えば、アミノ基(−NH)、モノメチルアミノ基(−NHCH)、ジメチルアミノ基(−N(CH)等が挙げられる(以下同じ)。
 上記炭素数1~12の直鎖状または分岐状アルキル基は、一般式がC2n+1−(n:1~12の自然数)で表される基であれば特に限定されず、具体的には、例えば、メチル基、エチル基、1−プロピル基(n−プロピル基)、2−プロピル基(イソプロピル基)等が挙げられる(以下同じ)。
 上記炭素数2~12の直鎖状または分岐状アルケニル基は、一般式がC2n−1−(n:2~12の自然数)で表される基であれば特に限定されず、遊離原子価は不飽和炭素原子上にあっても飽和炭素原子上にあってもよく、具体的には、例えば、ビニル基、アリル基等が挙げられる(以下同じ)。
 上記炭素数1~12の直鎖状または分岐状アルコキシ基は、一般式がC2n+1O−(n:1~12の自然数)で表されるものであれば特に限定されず、具体的には、例えば、メトキシ基、エトキシ基等が挙げられる(以下同じ)。
〈成分(I)〉
 上記成分(I)は、上記式(1)で表される芳香族ジアミンからなる。R,R,RおよびRは上記のとおり、それぞれ独立に、水素原子、ハロゲン原子、含窒素原子基、炭素原子数1~12の直鎖状または分岐状アルキル基、炭素原子数2~12の直鎖状または分岐状アルケニル基、炭素原子数1~12の直鎖状または分岐状アルコキシ基、ヒドロキシ基、ニトリル基、ニトロ基、カルボキシ基、カルバモイル基および炭素原子数6~12の芳香族基からなる群から選ばれるが、R,R,RおよびRが同時に、水素原子、炭素原子数1~12の直鎖状または分岐状アルキル基、炭素原子数2~12の直鎖状または分岐状アルケニル基または炭素原子数1~12の直鎖状または分岐状アルコキシ基であるのが好ましく、R,R,RおよびRが同時に、水素原子またはメチル基であるのがより好ましく、R,R,RおよびRが同時に、水素原子であるのがさらに好ましい。
〈成分(II)〉
 上記成分(II)は、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、p−フェニレンジアミンおよび4,4’−ジアミノジフェニルエーテルからなるものである。
 上記成分(II)中、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物のモル数(MBPTC)とピロメリット酸二無水物のモル数(MPMDA)との量比は、特に限定されないが、MBPTC:MPMDAが、1:1.1~1:0.5であるのが好ましく、1:0.9~1:0.7であるのがより好ましく、1:0.8であるのがさらに好ましい。
 上記成分(II)中、p−フェニレンジアミンのモル数(MPPDA)と4,4’−ジアミノジフェニルエーテルのモル数(MDAPE)との量比は、特に限定されないが、MPPDA:MDAPEが1:0.5~1:2であるのが好ましく、1:0.7~1:1.4であるのがより好ましく、1:0.9~1:1.1であるのがさらに好ましく、1:1であるのがいっそう好ましい。
 しかしながら、上記成分(II)に含まれるテトラカルボン酸二無水物として、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物またはピロメリット酸二無水物の一部に代えて、以下に掲げるテトラカルボン酸二無水物を、1種類単独で、または2種類以上を混合して、使用してもよい:
 エチレンテトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、シクロヘキサンテトラカルボン酸二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、1,2,3,4−シクロヘキサンテトラカルボン酸二無水物などの脂肪族テトラカルボン酸二無水物;および、
 1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、2,3’,3,4’−ビフェニルテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、ビス(2,3−ジカルボキシフェニル)エーテル二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、3,3’、4,4’−オキシジフタル酸二無水物、2,3,3’,4’−オキシジフタル酸二無水物、1,2,5,6−ナフタレンテトラカルボン二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,2,3,4−ベンゼンテトラカルボン酸二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、2,3,6,7−アントラセンテトラカルボン酸二無水物および/または1,2,7,8−フェナントレンテトラカルボン酸二無水物などの芳香族テトラカルボン酸二無水物;等。
 また、上記成分(II)に含まれるジアミンとして、p−フェニレンジアミンまたは4,4’−ジアミノジフェニルエーテルの一部に代えて、以下に掲げるジアミンを、1種類単独で、または2種類以上を混合して、使用してもよい:
 脂肪族ジアミン;ベンゼン系芳香族ジアミノ化合物、複素芳香族ジアミノ化合物、非ベンゼン系芳香族ジアミノ化合物などの芳香族ジアミン;等。
 上記脂肪族ジアミンとしては、炭素数2~15の鎖式炭化水素化合物の2個の水素基をそれぞれアミノ基で置換した化合物が好ましく、具体的には、例えば、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミンなどが挙げられる。
 上記ベンゼン系芳香族ジアミノ化合物としては、ベンゼン核を1個または縮合もしくは非縮合のベンゼン核を2~10個有する化合物が好ましく、例えば、以下に掲げるものが挙げられる:
 m−フェニレンジアミンなどのフェニレンジアミン;2−メチル−1,4−ジアミノベンゼンなどのフェニレンジアミンにメチル基、エチル基等のアルキル基が結合したフェニレンジアミン誘導体;
 3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジエニルケトン、3,4’−ジアミノジフェニルケトン、2,2−ビス(p−アミノフェニル)プロパン、2,2’−ビス(p−アミノフェニル)ヘキサフルオロプロパン、4−メチル−2,4−ビス(p−アミノフェニル)−1−ペンテン、4−メチル−2,4−ビス(p−アミノフェニル)−2−ペンテン、イミノジアニリン、4−メチル−2,4−ビス(p−アミノフェニル)ペンタン、ビス(p−アミノフェニル)ホスフィンオキシド、4,4’−ジアミノアゾベンゼン、4,4’−ジアミノジフェニル尿素、4,4’−ジアミノジフェニルアミドなどの、2つのアミノフェニル基が、エーテル結合、スルホニル結合、チオエーテル結合、炭素数1~6個のアルキレンもしくはその誘導体基(例えば、アルキレン基の水素原子の1以上がハロゲン原子等で置換されたもの)による結合、イミノ結合、アゾ結合、ホスフィンオキシド結合、アミド結合、ウレイレン結合またはその他結合基を介してフェニル基同士が結合したジアミノジフェニル化合物;
 1,3−ビス(m−アミノフェノキシ)ベンゼン、1,3−ビス(p−アミノフェノキシ)ベンゼン、1,4−ビス(p−アミノフェノキシ)ベンゼンなどの、2つのアミノフェニル基と1つのフェニレン基が何れも他の結合基(ジアミノジフェニル化合物の項で挙げた結合基)を介して結合したジアミノトリフェニル化合物;
 1,5−ジアミノナフタレン、2,6−ジアミノナフタレンなどのジアミノナフタレン;5または6−アミノ−1−(p−アミノフェニル)−1,3,3−トリメチルインダンなどのアミノフェニルアミノインダン;
 4,4’−ビス(p−アミノフェノキシ)ビフェニル、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパンおよび4,4‘−ビス(3−アミノフェノキシ)ベンゾフェノンなどのジアミノテトラフェニル化合物;および、
 これらの芳香族ジアミンの水素原子がハロゲン原子、メチル基、メトキシ基、シアノ基およびフェニル基からなる群から選択される少なくとも1種の置換基により置換された化合物;等。
〈成分(III)〉
 上記成分(III)は、上記式(2)で表される芳香族テトラカルボン酸二無水物からなる。RおよびRは、上記のとおり、それぞれ独立に、水素原子、ハロゲン原子、含窒素原子基、炭素原子数1~12の直鎖状または分岐状アルキル基、炭素原子数2~12の直鎖状または分岐状アルケニル基、炭素原子数1~12の直鎖状または分岐状アルコキシ基、ヒドロキシ基、ニトリル基、ニトロ基、カルボキシ基、カルバモイル基および炭素原子数6~12の芳香族基からなる群から選ばれるが、RおよびRが同時に、水素原子、炭素原子数1~12の直鎖状または分岐状アルキル基、炭素原子数2~12の直鎖状または分岐状アルケニル基または炭素原子数1~12の直鎖状または分岐状アルコキシ基であるのが好ましく、RおよびRが同時に、水素原子またはメチル基であるのがより好ましく、RおよびRが同時に、水素原子であるのがさらに好ましい。
〈ポリイミド(1)〉
 成分(I)と成分(II)との合計量に対して、成分(I)が0.1~10.0モル%であり、かつ、成分(II)が99.9~90.0モル%である。この範囲内であると、水蒸気透過度が必要十分な範囲となり、製膜性も確保される。成分(I)と成分(II)との合計量に対する成分(I)の割合は、2.0~8.0モル%がより好ましく、4.5~6.5モル%がさらに好ましい(ここで、モル%の計算上、小数点第2位を四捨五入して小数点第1位までを求める)。
 成分(I)に含まれる芳香族ジアミンのモル数(MFL)および成分(II)に含まれるジアミンの合計モル数(MDA)の合計(MFL+MDA)と、成分(II)に含まれるテトラカルボン酸無水物の合計モル数(MTC)との比は、(MFL+MDA):MTCが、1:0.90~1:1.10であるのが好ましく、1:0.95~1:1.05であるのがより好ましく、1:0.99であるのがさらに好ましい。
 即ち、高分子ユニットとして、式(3)中の(a+b+c+d):(e+f)の比が99.9~90.0モル%:0.1~10.0モル%である。この範囲内であると、水蒸気透過度が必要十分な範囲となり、製膜性も確保される。(e+f)の割合は2.0~8.0モル%がより好ましく、4.5~6.5モル%がさらに好ましい(ここで、モル%の計算上、小数点第2位を四捨五入して小数点第1位までを求める)。
Figure JPOXMLDOC01-appb-C000006
〈ポリイミド(2)〉
 成分(III)と成分(II)との合計量に対して、成分(III)が0.1~2.5モル%であり、かつ、成分(II)が99.9~97.5モル%である。この範囲内であると、水蒸気透過度が必要十分な範囲となり、製膜性も確保される。成分(III)と成分(II)との合計量に対する成分(III)の量は、1.0~2.5モル%がより好ましい(ここで、モル%の計算上、小数点第2位を四捨五入して小数点第1位までを求める)。
 成分(II)に含まれるジアミンの合計モル数(MDA´)と、成分(I)に含まれる芳香族テトラカルボン酸無水物のモル数(MFL´)および成分(II)に含まれるテトラカルボン酸無水物の合計モル数(MTC´)の合計(MFL´+MTC´)との比は、MDA´:(MFL´+MTC´)が、1:0.90~1:1.10であるのが好ましく、1:0.95~1:1.05であるのがより好ましく、1:0.99であるのがさらに好ましい。
 即ち、高分子ユニットとして、式(4)中の(a+b+c+d):(g+h)の比が99.9~97.5モル%:0.1~2.5モル%である。この範囲内であると、水蒸気透過度が必要十分な範囲となり、製膜性も確保される。(g+h)の割合は1.0~1.5モル%がより好ましい。(ここで、モル%の計算上、小数点第2位を四捨五入して小数点第1位までを求める)。
Figure JPOXMLDOC01-appb-C000007
〈引張弾性率〉
 本発明のポリイミドフィルムの引張弾性率は、ASTM D882に準ずる測定方法によって測定した値で、5.0GPa以上であることが好ましい。この範囲であると、引張り強さが十分なものとなる。引張弾性率は大きいほどよく、5.8GPa以上がより好ましく、6.0GPa以上がさらに好ましく、6.3GPa以上がいっそう好ましく、6.5GPa以上がよりいっそう好ましい。
〈線熱膨張係数〉
 本発明のポリイミドフィルムの線熱膨張係数は、島津製TMA(Thermomechanical Analysis)−60を用い、荷重0.5g、昇温速度5.0℃/分における試験片の伸びより50℃~200℃の範囲での平均値として求めた値で、10~25ppm/℃の範囲内であることが好ましい。この範囲内であると、銅の線熱膨張係数である17ppm/℃に近いため、ポリイミド/銅基板積層体として用いたときにの熱応力の低減を図ることができる。
〈ガラス転移温度〉
 本発明のポリイミドフィルムのガラス転移温度は、示差走査熱量計(DSC)を用いて、窒素雰囲気中、昇温速度20℃/分の条件で加熱し、比熱の変化点より測定したものである。本発明のポリイミドフィルムには、明確なガラス転移温度がないことが好ましい。
〈水蒸気透過度〉
 本発明のポリイミドフィルムの水蒸気透過度は、JIS K 7129:2008(A法)に準拠した測定方法により、測定温度40℃、測定面積50cm、相対湿度90%、高湿側100%、低湿側10%、測定下限値0.2g/m/dayとして測定した値で、10~100g/m/dayであることが好ましい。この範囲内であると、水蒸気透過度が必要十分であり、発泡を起こしにくくなるため、安定製造のために有利である。
 水蒸気透過度は25~100g/m/day以上がより好ましく、40~100g/m/day以上がさらに好ましく、50~100g/m/day以上がいっそう好ましい。
[ポリイミドおよびポリイミドフィルムの製造方法]
 本発明のポリイミドを製造する手段としては、低い線熱膨張係数並びに高弾性率を確保する為に、面内配向性を高める手段として、触媒を用いて脱水・環化(イミド化)をする化学イミド化法を用いるのが好ましい。例えば、有機溶媒中でテトラカルボン酸二無水物成分とジアミン成分を5~40℃で3~10時間で重合し、その後、0℃以下の温度で脱水剤と脱水触媒を混合して、ガラス板上に製膜し、不活性ガス雰囲気または減圧下に通常200℃~400℃、好ましくは250℃~350℃の温度で0.5~15時間、好ましくは1~5時間熱処理をする方法を用いる。
 この際に用いられる溶媒としてはN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等の非プロトン系極性溶媒、クレゾール類等のフェノール系溶媒、ジグライム等のグリコール系溶媒が挙げられる。これらの溶媒は単独あるいは2種以上混合して用いる事ができる。溶媒使用量に特に制限はないが、生成するポリイミドの含有量が5~40質量%とするのが望ましい。
 化学的に脱水閉環させる為の脱水剤、脱水触媒としては、無水酢酸とピコリンとの組合せ、トリフルオロ無水酢酸とピコリンとの組合せ等が例示できる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
〈測定方法〉
 実施例および比較例のポリイミドフィルムの線熱膨張係数、機械的靱性、ガラス転移温度および水蒸気透過度は、下記の方法により測定した。
(1)引張弾性率
 引張弾性率は、島津製オートグラフAGS−J500Nを用い縦90mm×横10mmの短冊状試験片を使用して、ASTM D882に準じ、チャック間距離50mm、引張り速度50.8mm/min、23℃で測定した。
(2)線熱膨張係数
 島津製TMA(Thermomechanical Analysis)−60を用い、荷重0.5g、昇温速度5.0℃/分における試験片の伸びより50℃~200℃の範囲での平均値として線熱膨張係数を求めた。
(3)ガラス転移温度
 ガラス転移温度(Tg)は、示差走査熱量計(DSC)を用いて、窒素雰囲気中、昇温速度20℃/分の条件で加熱し、比熱の変化点より測定した。明確なガラス転移温度がなかったものを「検出なし」とした。
(4)水蒸気透過度
 Lyssy製L80シリーズ水蒸気透過度計を用いJIS K 7129:2008(A法)に準ずる手法により測定した。測定条件は、測定温度40℃、測定面積50cm、相対湿度90%、高湿側100%、低湿側10%、測定下限値0.2g/m/dayとした。
[実施例1]
 攪拌機、還流冷却器、窒素導入管を備えた反応容器に、9,9−ビス(4−アミノフェニル)フルオレン(BAFL)17.4g(0.05モル)、p−フェニレンジアミン48.6g(0.45モル)および4,4’−ジアミノジフェニルエーテル100g(0.50モル)を仕込み、N,N−ジメチルアセトアミド(DMAc)1932gを投入して完全に溶解した。
 その後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物161.7g(0.55モル)を投入し、室温下で重合させ、さらに、ピロメリット酸二無水物(PMDA)96.36g(0.442モル)を加えて、粘度約1500ポイズのポリイミド前駆体を調製した。
 この前駆体に無水酢酸およびβ−ピコリンを加え、平滑なガラス板に製膜し、加熱により乾燥、イミド化する事で、膜厚30μmのポリイミドフィルムを得た。
 得られたポリイミドフィルムについて、引張弾性率、線熱膨張係数、ガラス転移温度および水蒸気透過度を、上記した測定方法によって、測定した。測定結果は表1の実施例1の欄に示す。
[実施例2]
 攪拌機、還流冷却器、窒素導入管を備えた反応容器に、9,9−ビス(4−アミノフェニル)フルオレン(BAFL)34.8g(0.10モル)、p−フェニレンジアミン43.2g(0.40モル)および4,4’−ジアミノジフェニルエーテル100g(0.50モル)を仕込み、N,N−ジメチルアセトアミド(DMAc)1986gを投入して完全に溶解した。
 その後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物161.7g(0.55モル)を投入し、室温下で重合させ、さらに、ピロメリット酸二無水物(PMDA)96.36g(0.442モル)を加えて、粘度約1500ポイズのポリイミド前駆体を調製した。
 この前駆体に無水酢酸およびβ−ピコリンを加え、平滑なガラス板に製膜し、加熱により乾燥、イミド化する事で、膜厚30μmのポリイミドフィルムを得た。
 得られたポリイミドフィルムについて、引張弾性率、線熱膨張係数、ガラス転移温度および水蒸気透過度を、上記した測定方法によって、測定した。測定結果は表1の実施例2の欄に示す。
[実施例3]
 攪拌機、還流冷却器、窒素導入管を備えた反応容器に、9,9−ビス(4−アミノ−3−メチルフェニル)フルオレン(BTFL)37.6g(0.10モル)、p−フェニレンジアミン43.2g(0.40モル)および4,4’−ジアミノジフェニルエーテル100g(0.50モル)を仕込み、N,N−ジメチルアセトアミド(DMAc)1988gを投入して完全に溶解した。
 その後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物161.7g(0.55モル)を投入し、室温下で重合させ、さらにピロメリット酸二無水物(PMDA)96.36g(0.442モル)を加えて、粘度約1500ポイズのポリイミド前駆体を調製した。
 この前駆体に無水酢酸およびβ−ピコリンを加え、平滑なガラス板に製膜し、加熱により乾燥、イミド化する事で、ことで、膜厚30μmのポリイミドフィルムを得た。
 得られたポリイミドフィルムについて、引張弾性率、線熱膨張係数、ガラス転移温度および水蒸気透過度を、上記した測定方法によって、測定した。測定結果は表1の実施例3の欄に示す。
[実施例4]
 攪拌機、還流冷却器、窒素導入管を備えた反応容器に、p−フェニレンジアミン54.0g(0.50モル)および4,4’−ジアミノジフェニルエーテル100g(0.50モル)を仕込み、N,N−ジメチルアセトアミド(DMAc)1983gを投入して完全に溶解した。
 その後、4,4’−(9−フルオレニリデン)ビス無水フタル酸23g(0.05モル)および3,3’,4,4’−ビフェニルテトラカルボン酸二無水物147.0g(0.50モル)を投入し、室温下で重合させ、さらにピロメリット酸二無水物(PMDA)96.36g(0.442モル)を加えて、粘度約1500ポイズのポリイミド前駆体を調製した。
 この前駆体に無水酢酸およびβ−ピコリンを加え、平滑なガラス板に製膜し、加熱により乾燥、イミド化する事で、膜厚30μmのポリイミドフィルムを得た。
 得られたポリイミドフィルムについて、引張弾性率、線熱膨張係数、ガラス転移温度および水蒸気透過度を、上記した測定方法によって、測定した。測定結果は表1の実施例4の欄に示す。
[実施例5]
 攪拌機、還流冷却器、窒素導入管を備えた反応容器に、9,9−ビス(4−アミノ−3−フルオロフェニル)フルオレン(BFAF)38.4g(0.10モル)、p−フェニレンジアミン43.3g(0.40モル)および4,4’−ジアミノジフェニルエーテル100g(0.50モル)を仕込み、N,N−ジメチルアセトアミド(DMAc)1995gを投入して完全に溶解した。
 その後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物161.75g(0.55モル)を投入し、室温下で重合させ、さらにピロメリット酸二無水物(PMDA)96.36g(0.442モル)を加えて、粘度約1500ポイズのポリイミド前駆体を調製した。
 この前駆体に無水酢酸およびβ−ピコリンを加え、平滑なガラス板に製膜し、加熱により乾燥、イミド化する事で、膜厚30μmのポリイミドフィルムを得た。
 得られたポリイミドフィルムについて、引張弾性率、線熱膨張係数、ガラス転移温度および水蒸気透過度を、上記した測定方法によって、測定した。測定結果は表1の実施例5の欄に示す。
[実施例6]
 攪拌機、還流冷却器、窒素導入管を備えた反応容器に、9,9−ビス(4−アミノ−3−フェニルフェニル)フルオレン(BPAF)50.1g(0.10モル)、p−フェニレンジアミン43.3g(0.40モル)および4,4’−ジアミノジフェニルエーテル100g(0.50モル)を仕込み、N,N−ジメチルアセトアミド(DMAc)2050gを投入して完全に溶解した。
 その後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物161.75g(0.55モル)を投入し、室温下で重合させ、さらにピロメリット酸二無水物(PMDA)96.36g(0.442モル)を加えて、粘度約1500ポイズのポリイミド前駆体を調製した。
 この前駆体に無水酢酸およびβ−ピコリンを加え、平滑なガラス板に製膜し、加熱により乾燥、イミド化する事で、膜厚30μmのポリイミドフィルムを得た。
 得られたポリイミドフィルムについて、引張弾性率、線熱膨張係数、ガラス転移温度および水蒸気透過度を、上記した測定方法によって、測定した。測定結果は表1の実施例6の欄に示す。
[実施例7]
 攪拌機、還流冷却器、窒素導入管を備えた反応容器に、p−フェニレンジアミン54.0g(0.50モル)および4,4’−ジアミノフェニルエーテル100g(0.50モル)を仕込み、N,N−ジメチルアセトアミド(DMAc)1950gを投入して完全に溶解した。
 その後、4,4’−(9−フルオレニリデン)ビス無水フタル酸46g(0.10モル)および3,3’,4,4’−ビフェニルテトラカルボン酸二無水物132.1g(0.45モル)を投入し、室温下で重合させ、さらにピロメリット酸二無水物(PMDA)96.36g(0.442モル)を加えて、粘度約1500ポイズのポリイミド前駆体を調製した。
 この前駆体に無水酢酸およびβ−ピコリンを加え、平滑なガラス板に製膜し、加熱により乾燥、イミド化する事で、膜厚30μmのポリイミドフィルムを得た。
 得られたポリイミドフィルムについて、引張弾性率、線熱膨張係数、ガラス転移温度および水蒸気透過度を、上記した測定方法によって、測定した。測定結果は表1の実施例7の欄に示す。
[比較例1]
 攪拌機、還流冷却器、窒素導入管を備えた反応容器に、p−フェニレンジアミン54g(0.50モル)および4,4’−ジアミノジフェニルエーテル100g(0.50モル)を仕込み、N,N−ジメチルアセトアミド(DMAc)1877gを投入して完全に溶解した。
 その後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物161.7g(0.55モル)を投入し、室温下で重合させ、さらにピロメリット酸二無水物(PMDA)96.36g(0.442モル)を加えて粘度約1500ポイズのポリイミド前駆体を調製した。
 この前駆体に無水酢酸およびβ−ピコリンを加え、平滑なガラス板に製膜し、加熱により乾燥、イミド化する事で、膜厚30μmのポリイミドフィルムを得た。
 得られたポリイミドフィルムについて、引張弾性率、線熱膨張係数、ガラス転移温度および水蒸気透過度を、上記した測定方法によって、測定した。測定結果は表1の比較例1の欄に示す。
[比較例2]
 攪拌機、還流冷却器、窒素導入管を備えた反応容器に、p−フェニレンジアミン108g(1.0モル)を仕込み、N,N−ジメチルアセトアミド(DMAc)1821gを投入して完全に溶解した。
 その後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物291.6(0.992モル)を投入し、室温下で重合させ、粘度約1500ポイズのポリイミド前駆体を調製した。
 この前駆体に無水酢酸およびβ−ピコリンを加え、平滑なガラス板に製膜し、加熱により乾燥、イミド化する事で、膜厚30μmのポリイミドフィルムを得た。
 得られたポリイミドフィルムについて、引張弾性率、線熱膨張係数、ガラス転移温度および水蒸気透過度を、上記した測定方法によって、測定した。測定結果は表1の比較例2の欄に示す。
Figure JPOXMLDOC01-appb-T000008
〈実施例1の説明〉
 実施例1は、成分(I)として、9,9−ビス(4−アミノフェニル)フルオレンを0.05モル、成分(II)として、p−フェニレンジアミン、4,4’−ジアミノジフェニルエーテル、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物およびピロメリット酸二無水物を合計1.942モル、使用するものである。
 成分(I)と成分(II)との合計に対して、成分(I)は2.5モル%、成分(II)は97.5モル%であった。
 表1から明らかなように、引張弾性率、線熱膨張係数、ガラス転移温度および水蒸気透過度のいずれも良好であった。
〈実施例2の説明〉
 実施例2は、成分(I)として、9,9−ビス(4−アミノフェニル)フルオレンを0.10モル、成分(II)として、p−フェニレンジアミン、4,4’−ジアミノジフェニルエーテル、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物およびピロメリット酸二無水物を合計1.892モル、使用するものである。
 成分(I)と成分(II)との合計に対して、成分(I)は5.0モル%、成分(II)は95.0モル%であった。
 表1から明らかなように、引張弾性率、線熱膨張係数、ガラス転移温度および水蒸気透過度のいずれも良好であった。
〈実施例3の説明〉
 実施例3は、成分(I)として、9,9−ビス(4−アミノ−3−フェニルフェニル)フルオレンを0.10モル、成分(II)として、p−フェニレンジアミン、4,4’−ジアミノジフェニルエーテル、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物およびピロメリット酸二無水物を合計1.892モル、使用するものである。
 成分(I)と成分(II)との合計に対して、成分(I)は5.0モル%、成分(II)は95.0モル%であった。
 表1から明らかなように、引張弾性率、線熱膨張係数、ガラス転移温度および水蒸気透過度のいずれも良好であった。
〈実施例4の説明〉
 実施例4は、成分(III)として、4,4’−(9−フルオレニリデン)ビス無水フタル酸を0.05モル、成分(II)として、p−フェニレンジアミン、4,4’−ジアミノジフェニルエーテル、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物およびピロメリット酸二無水物を合計1.942モル、使用するものである。
 成分(III)と成分(II)との合計に対して、成分(III)は2.5モル%、成分(II)は97.5モル%であった。
 表1から明らかなように、引張弾性率、線熱膨張係数、ガラス転移温度および水蒸気透過度のいずれも良好であった。
〈実施例5の説明〉
 実施例5は、成分(I)として、9,9−ビス(4−アミノ−3−フルオロフェニル)フルオレン(BFAF)を0.10モル、成分(II)として、p−フェニレンジアミン、4,4’−ジアミノジフェニルエーテル、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物およびピロメリット酸二無水物を合計1.892モル、使用するものである。
 成分(I)と成分(II)との合計に対して、成分(I)は5.0モル%、成分(II)は95.0モル%であった。
 表1から明らかなように、引張弾性率、線熱膨張係数、ガラス転移温度および水蒸気透過度のいずれも良好であった。
〈実施例6の説明〉
 実施例6は、成分(I)として、9,9−ビス(4−アミノ−3−フェニルフェニル)フルオレン(BPAF)を0.10モル、成分(II)として、p−フェニレンジアミン、4,4’−ジアミノジフェニルエーテル、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物およびピロメリット酸二無水物を合計1.892モル、使用するものである。
 成分(I)と成分(II)との合計に対して、成分(I)は5.0モル%、成分(II)は95.0モル%であった。
 表1から明らかなように、引張弾性率、線熱膨張係数、ガラス転移温度および水蒸気透過度のいずれも良好であった。
〈実施例7の説明〉
 実施例7は、成分(III)として、4,4’−(9−フルオレニリデン)ビス無水フタル酸を0.10モル、成分(II)として、p−フェニレンジアミン、4,4’−ジアミノジフェニルエーテル、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物およびピロメリット酸二無水物を合計1.892モル、使用するものである。
 成分(III)と成分(II)との合計に対して、成分(III)は5.0モル%、成分(II)は95.0モル%であった。
 表1から明らかなように、引張弾性率、線熱膨張係数、ガラス転移温度および水蒸気透過度のいずれも良好であった。
〈比較例1の説明〉
 比較例1は、成分(I)または成分(III)に相当する成分を使用せず、成分(II)に相当する成分のみによってポリイミドが合成されるものである。
 ジアミンとテトラカルボン酸二無水物とのモル比は、1.00:0.992であった。
 引張弾性率、線熱膨張率およびガラス転移温度は良好であったが、水蒸気透過度が十分ではなかった。
〈比較例2の説明〉
 比較例2は、成分(I)、成分(II)および成分(III)に相当する成分のいずれも使用せず、ジアミンとしてp−フェニレンジアミンを1.0モル、テトラカルボン酸二無水物として3,3’,4,4’−ビフェニルテトラカルボン酸二無水物を0.992モル使用して、ポリイミドが合成されるものである。
 ジアミンとテトラカルボン酸二無水物とのモル比は、1.00:0.992であった。
 引張弾性率、線熱膨張率およびガラス転移温度は良好であったが、水蒸気透過度が不十分であった。
 本発明によれば、銅と近似した線熱膨張係数を持ち、かつ、耐熱性を損なうことなく高弾性率で水蒸気透過性の良いポリイミドフィルムを提供することができる。よって産業に大きく貢献できる。

Claims (5)

  1.  成分(I):下記式(1)で表される芳香族ジアミンと、
     成分(II):3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、p−フェニレンジアミンおよび4,4’−ジアミノジフェニルエーテルとを反応させて得られ、
     該成分(I)と該成分(II)との合計量に対して、該成分(I)が0.1~10.0モル%であり、かつ、該成分(II)が99.9~90.0モル%であるポリイミド:
    Figure JPOXMLDOC01-appb-C000001
     ただし、式(1)中、R,R,RおよびRは、それぞれ独立に、水素原子、ハロゲン原子、含窒素原子基、炭素原子数1~12の直鎖状または分岐状アルキル基、炭素原子数2~12の直鎖状または分岐状アルケニル基、炭素原子数1~12の直鎖状または分岐状アルコキシ基、ヒドロキシ基、ニトリル基、ニトロ基、カルボキシ基、カルバモイル基および炭素原子数6~12の芳香族基からなる群から選ばれる。
  2.  成分(III):下記式(2)で表される芳香族テトラカルボン酸二無水物と、
     成分(II):3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、p−フェニレンジアミンおよび4,4’−ジアミノジフェニルエーテルとを反応させて得られ、
     該成分(III)と該成分(II)との合計量に対して、該成分(III)が0.1~2.5モル%であり、かつ、該成分(II)が99.9~97.5モル%であるポリイミド:
    Figure JPOXMLDOC01-appb-C000002
     ただし、式(2)中、RおよびRは、それぞれ独立に、水素原子、ハロゲン原子、含窒素原子基、炭素原子数1~12の直鎖状または分岐状アルキル基、炭素原子数2~12の直鎖状または分岐状アルケニル基、炭素原子数1~12の直鎖状または分岐状アルコキシ基、ヒドロキシ基、ニトリル基、ニトロ基、カルボキシ基、カルバモイル基および炭素原子数6~12の芳香族基からなる群から選ばれる。
  3.  請求項1に記載のポリイミドからなるポリイミドフィルム。
  4.  請求項2に記載のポリイミドからなるポリイミドフィルム。
  5.  水蒸気透過度が10~100g/m/dayであり、50~200℃の平均線熱膨張係数が10~25ppm/℃であり、明確なガラス転移温度がなく、かつ、引張弾性率が5.0GPa以上である、請求項3または4に記載のポリイミドフィルム。
PCT/JP2011/070672 2010-09-07 2011-09-05 ポリイミドおよびポリイミドフィルム WO2012033213A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/821,118 US20130211040A1 (en) 2010-09-07 2011-09-05 Polyimides and polyimide films
KR1020137007803A KR20130050373A (ko) 2010-09-07 2011-09-05 폴리이미드 및 폴리이미드 필름

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-199704 2010-09-07
JP2010199704 2010-09-07
JP2011150803A JP5727885B2 (ja) 2010-09-07 2011-07-07 ポリイミドおよびポリイミドフィルム
JP2011-150803 2011-07-07

Publications (1)

Publication Number Publication Date
WO2012033213A1 true WO2012033213A1 (ja) 2012-03-15

Family

ID=45810805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070672 WO2012033213A1 (ja) 2010-09-07 2011-09-05 ポリイミドおよびポリイミドフィルム

Country Status (5)

Country Link
US (1) US20130211040A1 (ja)
JP (1) JP5727885B2 (ja)
KR (1) KR20130050373A (ja)
TW (2) TWI582135B (ja)
WO (1) WO2012033213A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069723A1 (ja) * 2017-10-04 2019-04-11 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI503610B (zh) * 2013-05-03 2015-10-11 Chi Mei Corp 液晶配向劑、液晶配向膜及液晶顯示元件
CN105593269B (zh) * 2013-09-27 2017-11-21 东丽株式会社 聚酰亚胺前体、由其得到的聚酰亚胺树脂膜、以及含有其的显示元件、光学元件、受光元件、触摸面板、电路基板、有机el显示器、及有机el元件以及滤色片的制造方法
US9694569B2 (en) * 2014-06-24 2017-07-04 Taiflex Scientific Co., Ltd. Polyimide metal laminated plate and method of making the same
JP6588100B2 (ja) * 2015-02-11 2019-10-09 コーロン インダストリーズ インク ポリイミドフィルム
KR102251517B1 (ko) * 2015-09-30 2021-05-12 코오롱인더스트리 주식회사 폴리아믹산 용액, 폴리이미드 필름, 및 이를 포함하는 영상 표시 소자
TWI607058B (zh) * 2015-10-07 2017-12-01 達勝科技股份有限公司 聚醯亞胺膜
JP6950684B2 (ja) * 2016-05-06 2021-10-13 三菱瓦斯化学株式会社 ポリイミド樹脂
KR101796875B1 (ko) * 2016-09-23 2017-11-10 주식회사 엘지화학 폴리이미드 전구체 용액 및 이의 제조방법
KR102271027B1 (ko) * 2016-12-29 2021-06-29 코오롱인더스트리 주식회사 폴리아믹산, 폴리이미드 수지, 폴리이미드 필름 및 이를 포함하는 영상표시 소자
US20190127529A1 (en) * 2017-11-02 2019-05-02 Honeywell International Inc. Polyimide for flexible displays, flexible displays, and methods for making flexible displays
CN112313264A (zh) * 2018-04-20 2021-02-02 宇部兴产株式会社 聚酰亚胺、层积体和包含它们的电子器件
KR102551047B1 (ko) * 2019-02-01 2023-07-04 주식회사 엘지화학 폴리이미드 필름, 이를 이용한 플렉서블 기판 및 플렉서블 기판을 포함하는 플렉서블 디스플레이
CN116348296A (zh) * 2020-10-22 2023-06-27 株式会社钟化 聚酰胺酸、聚酰胺酸溶液、聚酰亚胺、聚酰亚胺膜、层叠体、电子器件、及聚酰亚胺膜的制造方法
WO2022202769A1 (ja) * 2021-03-23 2022-09-29 株式会社カネカ ポリアミド酸、ポリアミド酸溶液、ポリイミド、ポリイミド基板および積層体ならびにそれらの製造方法
EP4219606A4 (en) * 2021-12-08 2024-05-29 Lg Chem, Ltd. POLYIMIDE RESIN FILM, SUBSTRATE FOR DISPLAY DEVICE THEREOF, AND OPTICAL DEVICE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173640A (ja) * 2000-11-30 2002-06-21 Three M Innovative Properties Co ポリイミド含有コーティング組成物及びそれから形成されたフィルム
JP2005296798A (ja) * 2004-04-12 2005-10-27 Research Institute Of Innovative Technology For The Earth ガス分離膜
JP2006206825A (ja) * 2005-01-31 2006-08-10 Jfe Chemical Corp 芳香族ポリイミド樹脂前駆体及び芳香族ポリイミド樹脂
JP2009079165A (ja) * 2007-09-27 2009-04-16 Du Pont Toray Co Ltd ポリイミドフィルム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166308A (en) * 1990-04-30 1992-11-24 E. I. Du Pont De Nemours And Company Copolyimide film with improved properties
US6948612B2 (en) * 2000-11-30 2005-09-27 3M Innovative Properties Company Polyimide-containing coating composition and film formed from the same
CN101068851B (zh) * 2004-12-03 2011-10-19 宇部兴产株式会社 聚酰亚胺、聚酰亚胺膜和层压体
TWI319748B (en) * 2006-07-26 2010-01-21 Polyimide composite flexible board and its preparation
JP2010189578A (ja) * 2009-02-19 2010-09-02 Jfe Chemical Corp ポリイミド樹脂

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173640A (ja) * 2000-11-30 2002-06-21 Three M Innovative Properties Co ポリイミド含有コーティング組成物及びそれから形成されたフィルム
JP2005296798A (ja) * 2004-04-12 2005-10-27 Research Institute Of Innovative Technology For The Earth ガス分離膜
JP2006206825A (ja) * 2005-01-31 2006-08-10 Jfe Chemical Corp 芳香族ポリイミド樹脂前駆体及び芳香族ポリイミド樹脂
JP2009079165A (ja) * 2007-09-27 2009-04-16 Du Pont Toray Co Ltd ポリイミドフィルム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069723A1 (ja) * 2017-10-04 2019-04-11 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JPWO2019069723A1 (ja) * 2017-10-04 2020-09-10 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7215428B2 (ja) 2017-10-04 2023-01-31 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム

Also Published As

Publication number Publication date
TW201217435A (en) 2012-05-01
US20130211040A1 (en) 2013-08-15
TWI582135B (zh) 2017-05-11
KR20130050373A (ko) 2013-05-15
TW201500410A (zh) 2015-01-01
JP2012077285A (ja) 2012-04-19
JP5727885B2 (ja) 2015-06-03
TWI448487B (zh) 2014-08-11

Similar Documents

Publication Publication Date Title
JP5727885B2 (ja) ポリイミドおよびポリイミドフィルム
JP6368961B2 (ja) ポリイミド系溶液、及びこれを用いて製造されたポリイミド系フィルム
TWI634172B (zh) 聚醯亞胺前驅體、及聚醯亞胺
KR102073449B1 (ko) 폴리이미드 전구체, 폴리이미드, 폴리이미드 필름, 바니시, 및 기판
US6320019B1 (en) Method for the preparation of polyamic acid and polyimide
TWI730946B (zh) 聚醯亞胺前驅體、聚醯亞胺及聚醯亞胺膜
TWI612077B (zh) 聚醯亞胺前驅體、聚醯亞胺、清漆、聚醯亞胺薄膜及基板
JP2009518500A (ja) ポリイミドフィルム
WO2000011066A1 (fr) Film de polyimide et son procede de production
US5942592A (en) Siloxane polyimide and heat-resistant adhesive containing the same
WO2016013403A1 (ja) ポリイミド、ポリアミド酸、樹脂組成物、及びフレキシブルディスプレイ用基板
WO2002014406A1 (fr) Nouveau polyimide et substrat de circuit le comprenant
WO2007135982A1 (ja) ポリイミド膜の製造方法、及びポリアミック酸溶液組成物
JP2018172562A (ja) ポリイミド前駆体及びポリイミド
JP2010189578A (ja) ポリイミド樹脂
TW201815891A (zh) 含金剛烷之聚醯亞胺之製備方法
TW202319444A (zh) 聚醯胺酸、聚醯亞胺、聚醯亞胺膜、金屬包覆積層板及電路基板
TWI422645B (zh) 聚醯亞胺膜
JP7101352B2 (ja) ポリイミド、ポリイミドフィルム、ポリイミド金属積層体及び、ポリアミド酸
JP2006213799A (ja) 芳香族ポリイミド樹脂及びその製造方法
JP2014201656A (ja) ポリアミド酸およびポリイミド
JP2002060488A (ja) ポリアミド酸及びポリイミドの製造方法、並びにこれらを用いて得られた接着テープ
JP5329163B2 (ja) ポリイミドフィルムの製造方法およびポリイミドフィルム
JP2732572B2 (ja) 磁気記録材料ベースフィルム
WO2023100951A1 (ja) ポリイミドフィルム、高周波回路基板、フレキシブル電子デバイス基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137007803

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13821118

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11823684

Country of ref document: EP

Kind code of ref document: A1