WO2015045674A1 - ビナフタレン骨格を有するエポキシ樹脂 - Google Patents

ビナフタレン骨格を有するエポキシ樹脂 Download PDF

Info

Publication number
WO2015045674A1
WO2015045674A1 PCT/JP2014/071616 JP2014071616W WO2015045674A1 WO 2015045674 A1 WO2015045674 A1 WO 2015045674A1 JP 2014071616 W JP2014071616 W JP 2014071616W WO 2015045674 A1 WO2015045674 A1 WO 2015045674A1
Authority
WO
WIPO (PCT)
Prior art keywords
binaphthalene
resin
diepoxy
added
hydroxyethoxy
Prior art date
Application number
PCT/JP2014/071616
Other languages
English (en)
French (fr)
Inventor
芳範 河村
克宏 藤井
Original Assignee
田岡化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田岡化学工業株式会社 filed Critical 田岡化学工業株式会社
Priority to KR1020167009380A priority Critical patent/KR102048610B1/ko
Priority to CN201480052825.6A priority patent/CN105579488B/zh
Publication of WO2015045674A1 publication Critical patent/WO2015045674A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/27Condensation of epihalohydrins or halohydrins with compounds containing active hydrogen atoms
    • C07D301/28Condensation of epihalohydrins or halohydrins with compounds containing active hydrogen atoms by reaction with hydroxyl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/28Ethers with hydroxy compounds containing oxirane rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic

Definitions

  • the present invention relates to a novel epoxy resin having a binaphthalene skeleton.
  • An epoxy resin generally becomes a cured product excellent in mechanical properties, water resistance, chemical resistance, heat resistance, electrical properties and the like by being cured with various curing agents. Therefore, epoxy resins are used in a wide range of fields such as adhesives, paints, laminates, molding materials and casting materials.
  • Patent Document 1 and Patent Document 2 include the following structural formula (2):
  • a diglycidyl ether of binaphthol represented by is disclosed.
  • the softening point of the epoxy resin of the above formula (2) described in Examples 1 to 3 is 61 to 79 ° C.
  • Patent Document 2 describes the softening point in Examples.
  • the softening point of the epoxy resin of the above formula (2) is described to be 59 to 60 ° C., and even if these are handled as solids, the softening point is low, and handling properties such as blocking due to storage conditions are difficult,
  • the use application is limited, for example, dissolution work is required.
  • An object of the present invention is to provide a novel binaphthalene skeleton-containing epoxy resin that has a binaphthalene skeleton, has a low melt viscosity, and is liquid even at room temperature, and has excellent workability and fluidity.
  • a binaphthalene skeleton-containing epoxy resin having a structure represented by the following formula (1) has a low melt viscosity and is liquid even at room temperature, It has been found that it is excellent in fluidity. Furthermore, it was also found that the binaphthalene skeleton-containing epoxy resin exhibits a high refractive index and a high Abbe number.
  • the present invention includes the following.
  • the present invention it is possible to provide a novel binaphthalene skeleton-containing epoxy resin having a binaphthalene skeleton, which is liquid even at room temperature, and excellent in workability and fluidity, and a method for producing the same. Furthermore, since the binaphthalene skeleton-containing epoxy resin of the present invention exhibits a high refractive index and a high Abbe number, it is expected to be used as a novel optical system material.
  • n is 0 or an integer of 1 or more.
  • 2,2′-bis (2-hydroxyethoxy) -1,1′-binaphthalene used as a raw material may be used, for example, 1,1-bi-2-naphthol.
  • 2,2′-bis (2-hydroxyethoxy) -1,1′-binaphthalene obtained by reacting a certain amount of ethylene carbonate or ethylene oxide in the presence of an inert solvent and an alkali catalyst may be used as it is.
  • a product purified from the reaction product after completion of the reaction using a conventional purification method (extraction, crystallization, etc.) may be used.
  • the purity of 2,2′-bis (2-hydroxyethoxy) -1,1′-binaphthalene used as a raw material in the present invention is usually 90% by weight or more, preferably 95% by weight or more, particularly preferably 99% by weight or more. It is.
  • alkali metal hydroxide in the present invention examples include sodium hydroxide and potassium hydroxide, and the amount used is a hydroxyl group of 2,2′-bis (2-hydroxyethoxy) -1,1′-binaphthalene. The amount is usually 0.8 to 4.0 moles, preferably 2.0 to 3.0 moles per mole equivalent.
  • the alkali metal hydroxide may be a solid or an aqueous solution.
  • epihalohydrin used in the present invention examples include epichlorohydrin, epibromohydrin and the like, and the amount used is a hydroxyl group of 2,2′-bis (2-hydroxyethoxy) -1,1′-binaphthalene.
  • the amount is usually 2 to 30 mol, preferably 3 to 20 mol, per mol equivalent.
  • the value (n number) which is the repeating unit number of diepoxy binaphthalene resin represented by the said Formula (1) can be adjusted with the usage-amount of epihalohydrin.
  • 2,2′-bis (2-hydroxyethoxy) -1,1′-binaphthalene with epihalohydrin for example, 2,2′-bis (2-hydroxyethoxy) -1,1 '-Binaphthalene and epihalohydrin are charged into a reaction vessel, dissolved and mixed, and then an alkali metal hydroxide is added at 20 to 120 ° C, preferably 40 to 90 ° C, and then 20 to 120 ° C, preferably 40
  • the diepoxy binaphthalene resin of the present invention can be obtained by reacting at ⁇ 90 ° C. for 1 to 24 hours.
  • Alkali metal hydroxide may be added all at once, but in order to maintain a predetermined reaction temperature, it may be added continuously by a method such as dropping over a certain period of time, for example, 1 to 10 hours, or necessary.
  • the amount is preferably added in portions.
  • the aqueous solution of the alkali metal hydroxide is continuously added to the reaction system, while the reaction system is under reduced pressure or normal pressure.
  • the mixture is brought to a reflux state, and after distilling off water and unreacted epihalohydrin, the distillate is separated, water is removed to the outside of the system, and epihalohydrin is preferably returned to the reaction system.
  • a quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide, tetrabutylammonium bromide, benzyltrimethylammonium chloride, benzyltriethylammonium chloride from the viewpoint of improving the reactivity.
  • the amount used is usually 0.01 to 0.50 mol, preferably 0.8, per 1 mol of 2,2′-bis (2-hydroxyethoxy) -1,1′-binaphthalene. 02 to 0.20 mol.
  • quaternary ammonium salt When a quaternary ammonium salt is used, it is usually added before adding an alkali metal hydroxide to a dissolved mixture of 2,2′-bis (2-hydroxyethoxy) -1,1′-binaphthalene and epihalohydrin. .
  • the diepoxy binaphthalene resin represented by the above formula (1) may be used as it is, but the post-treatment steps shown in the following ⁇ 1> to ⁇ 3> are appropriately performed to obtain the desired diepoxy biphthalene resin.
  • Naphthalene resin is preferable.
  • ⁇ 2> Ring closure step In order to obtain a diepoxy binaphthalene resin having a lower hydrolyzable halogen content, the diepoxy binaphthalene resin after the reaction or diepoxy binaphthalene subjected to a post-treatment step shown in ⁇ 1> After adding an organic solvent to the resin, an alkali metal hydroxide is added, and the mixture is usually stirred at 20 to 120 ° C., whereby a diepoxy binaphthalene resin having a smaller hydrolyzable halogen content can be obtained.
  • the organic solvent used in the ring-closing step may be any organic solvent that does not react with diepoxy binaphthalene resin or alkali metal hydroxide, and examples thereof include toluene, methyl isobutyl ketone, and methyl ethyl ketone.
  • Examples of the alkali metal hydroxide used in the ring closing step include sodium hydroxide and potassium hydroxide, which may be solid or aqueous solution, but an aqueous solution is preferably used.
  • the amount of alkali metal hydroxide used is usually 0.01-2. With respect to 1 molar equivalent of the hydroxyl group of 2,2′-bis (2-hydroxyethoxy) -1,1′-binaphthalene used for epoxidation. 5 moles, preferably 0.20 to 1.2 moles.
  • This ring closing step is usually carried out in 0.5 to 6 hours.
  • the reaction product obtained in the ring closure step is filtered and / or washed with water and separated to remove by-products such as tar and salts. Thereafter, neutralization is performed with an acid such as phosphoric acid, sodium phosphate, oxalic acid, acetic acid or the like so that the pH becomes 8.0 to 4.0. After neutralization, water washing and liquid separation removal are repeated, and if necessary, the insoluble matter is removed by filtration. Then, the organic solvent used in the ring-closing step is distilled off under reduced pressure to remove the diepoxy vinyl of the present invention. A naphthalene resin is obtained.
  • an acid such as phosphoric acid, sodium phosphate, oxalic acid, acetic acid or the like
  • n is 0 or an integer of 1 or more.
  • the value of n (n number) which is the number of repeating units of the diepoxy binaphthalene resin represented by the following (hereinafter also referred to as the diepoxy binaphthalene resin of the present invention), is combined with the use of the diepoxy binaphthalene resin of the present invention.
  • n number which is the number of repeating units of the diepoxy binaphthalene resin represented by the following (hereinafter also referred to as the diepoxy binaphthalene resin of the present invention)
  • n number which is the number of repeating units of the diepoxy binaphthalene resin represented by the following (hereinafter also referred to as the diepoxy binaphthalene resin of the present invention)
  • the diepoxy binaphthalene resin of the present invention is usually used as the diepoxy binaphthalene of the present invention. Used as a resin.
  • at least one of the prepared triglycidyl bodies is mixed.
  • the n number of the diepoxy binaphthalene resin of the present invention is preferably 0 or an integer of 1 to 10, more preferably 0 or an integer of 1 to 2, and most preferably 0 or 1.
  • the ratio of those having an n number exceeding 3 is increased, the compatibility is deteriorated, and there may be inconveniences such as restrictions on the amount added when the composition is used.
  • the diepoxy binaphthalene resin of the present invention is liquid at room temperature despite having a binaphthalene skeleton exhibiting features such as low water absorption and low elastic modulus at high temperatures.
  • the characteristic is low.
  • the diepoxy binaphthalene resin of the present invention has an excellent handling property because the melt viscosity at 100 ° C. is 50 to 200 mPa ⁇ s and the melt viscosity at 150 ° C. is 5 to 30 mPa ⁇ s.
  • the diepoxy binaphthalene resin of the present invention has characteristics such as high heat resistance and low viscosity, so it has excellent handling properties and can be used as a thermosetting resin raw material, a curing agent, and the like.
  • the diepoxy binaphthalene resin of the present invention may be used as it is as a general epoxy resin, or may be used as a thermosetting resin raw material such as epoxy (meth) acrylate.
  • the diepoxy binaphthalene resin of the present invention usually contains a curing agent, a diluent as necessary, a curing accelerator, and, if necessary, a conventional additive (for example, a coloring material, a stabilizer, a filler, a charging agent). It is good also as an epoxy resin composition containing a prevention material, a flame retardant, etc.).
  • the epoxy resin component contained in this epoxy resin composition may be comprised only with the diepoxy binaphthalene resin of this invention, and may be used together with another epoxy resin.
  • each measured value was measured according to the following method and measurement conditions.
  • HPLC purity The area percentage value when HPLC measurement was performed under the following measurement conditions was defined as HPLC purity.
  • ⁇ Device "LC-2010AHT” manufactured by Shimadzu Corporation Column: “L-column ODS” (5 ⁇ m, 4.6 mm ⁇ ⁇ 250 mm) manufactured by the Chemical Substance Evaluation Research Organization -Column temperature: 40 ° C ⁇
  • NMR measurement 13 C-NMR was measured under the following measurement conditions.
  • the obtained diepoxy binaphthalene resin of the present invention was dissolved in N, N-dimethylformamide to prepare 10 wt%, 20 wt% and 30 wt% solutions. Number was measured. Next, an approximate curve was derived from the three measured values obtained, and values obtained by extrapolating the approximate curve to 100% by weight were used as the refractive index and Abbe number of the obtained resin.
  • Example 1 In a 200 ml glass reaction vessel equipped with a stirrer, a cooler and a thermometer, 2,2′-bis (2-hydroxyethoxy) -1,1′-binaphthalene (manufactured by Taoka Chemical Industry Co., Ltd.) under a nitrogen atmosphere , Trade name TBIS-BNE) 15.00 g (0.040 mol) and epichlorohydrin 74.20 g (0.800 mol) were charged, heated to 50 ° C. and dissolved, and then 1.37 g (0.006 mol) of benzyltriethylammonium chloride. ) was added.
  • 2,2′-bis (2-hydroxyethoxy) -1,1′-binaphthalene manufactured by Taoka Chemical Industry Co., Ltd.
  • FIG. 1 shows a 13 C-NMR (CDCl 3 ) chart of the obtained diepoxy binaphthalene resin.
  • 115.4 to 154.2 ppm is attributed to carbon of the naphthalene skeleton, 43.9, 50.6, and 69.8 ppm are glycidyl group carbon, and 71.4 and 71.7 ppm are ethoxy group carbon. Is attributed to
  • the calculated value (TOF MS ESI + ; C 30 H 30 O 6 + Na) of the diepoxy binaphthalene resin in this analysis was 509.1940, and the actually measured value was 509.1955.
  • Example 2 In a 200 ml glass reaction vessel equipped with a stirrer, a cooler and a thermometer, 2,2′-bis (2-hydroxyethoxy) -1,1′-binaphthalene (manufactured by Taoka Chemical Industry Co., Ltd.) under a nitrogen atmosphere , Trade name TBIS-BNE) 15.00 g (0.040 mol) and epichlorohydrin 74.20 g (0.800 mol) were charged, heated to 50 ° C. and dissolved, and then 1.37 g (0.006 mol) of benzyltriethylammonium chloride. ) was added.
  • 2,2′-bis (2-hydroxyethoxy) -1,1′-binaphthalene manufactured by Taoka Chemical Industry Co., Ltd.
  • the mixture was heated to 130 ° C. and concentrated at an internal pressure of 10 mmHg. Then, it cooled to 60 degreeC and added toluene and melt
  • the organic layer was washed several times with saline and water and subjected to liquid separation removal operation, and then the organic layer was filtered to remove insoluble matters, followed by concentration under reduced pressure to obtain 16.64 g of a tan viscous liquid. (Apparent yield 85.5%) was obtained.
  • the diepoxy binaphthalene resin of the present invention or the epoxy resin composition containing the diepoxy binaphthalene resin has characteristics such as low water absorption and low elastic modulus in a high temperature range because it has a binaphthalene skeleton. Since it has a low viscosity and good workability before curing, it can be used in a wide range of fields requiring heat resistance and low viscosity. Specifically, it is useful as all electrical / electronic materials such as sealing materials, laminates, insulating materials, solder resists for printed boards, resist materials such as coverlays, color filters, and coating agents. Further, since it has characteristics of high refraction and low Abbe number, it is also useful as a raw material for optical materials. In addition, it can be used in fields such as molding materials, adhesives, composite materials, paints, printing inks, photocurable resin materials, and photosensitive resin materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epoxy Resins (AREA)
  • Epoxy Compounds (AREA)

Abstract

 本発明は、下記式(1) (式中nは0または1以上の整数である。) で示す構造を有するビナフタレン骨格含有エポキシ樹脂を含む。また、本発明は、アルカリ金属水酸化物存在下、2,2'-ビス(2-ヒドロキシエトキシ)-1,1'-ビナフタレンにエピハロヒドリンを反応させることを含む、上記式(1)で表される新規なビナフタレン骨格含有エポキシ樹脂の製造方法を含む。

Description

ビナフタレン骨格を有するエポキシ樹脂
 本発明は、ビナフタレン骨格を有する新規なエポキシ樹脂に関する。
 エポキシ樹脂は、一般的に、種々の硬化剤で硬化させることにより、機械的性質、耐水性、耐薬品性、耐熱性、電気的性質などに優れた硬化物となる。その為に、エポキシ樹脂は、接着剤、塗料、積層板、成形材料、注型材料などの幅広い分野に利用されている。
 その中で、ビナフタレン骨格を有するエポキシ樹脂は、吸水率が低く、かつ高温域での弾性率が低い等といった特徴を有するエポキシ樹脂として、半導体封止材料分野などへの利用に活発な研究開発が行われている。また、同時に、半導体封止材分野においては、表面実装時の耐ハンダクラック性の向上のため、フィラーを高充填化することが求められており、フィラーの高充填化という目的を達成するため、溶融粘度を低くし流動性に優れるエポキシ樹脂が必要とされている。(例えば特許文献1参照。)
 一方、ビナフタレン骨格を有するエポキシ樹脂として、例えば、特許文献1及び特許文献2に、下記構造式(2): 
Figure JPOXMLDOC01-appb-C000002
で表わされる、ビナフトールのジグリシジルエーテルが開示されている。しかし、特許文献1には実施例1~3に記載される上記式(2)のエポキシ樹脂の軟化点は61~79℃であることが、同様に、特許文献2には実施例に記載の上記式(2)のエポキシ樹脂の軟化点は59~60℃であることが記載されており、これらを固体として取り扱うとしても軟化点が低く、保管条件によりブロッキングするなどハンドリング性に難があり、一方で液体として取扱う為には溶解作業が必要になるなど、使用用途が限定されるといった問題があった。
日本国公開特許公報「特開平6-184131号公報」 日本国公開特許公報「特開2009-292996号公報」
 本発明の目的は、ビナフタレン骨格を有し、さらには溶融粘度が低く、室温でも液体であるため、作業性と流動性に優れた新規なビナフタレン骨格含有エポキシ樹脂を提供することにある。
 本発明者らは、前記の課題を解決すべく鋭意研究を重ねた結果、下記式(1)で示す構造を有するビナフタレン骨格含有エポキシ樹脂は溶融粘度が低く、室温でも液体であり、作業性と流動性に優れるものであることを見出した。更には、該ビナフタレン骨格含有エポキシ樹脂は、高屈折率、高アッベ数を示すことも判明した。具体的には本発明は以下のものを含む。
 [1]下記式(1):
Figure JPOXMLDOC01-appb-C000003
(式中nは0または1以上の整数である。)
で表わされるジエポキシビナフタレン樹脂。
[2]
 アルカリ金属水酸化物存在下、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンにエピハロヒドリンを反応させる工程を含む[1]記載のジエポキシビナフタレン樹脂の製造方法。
 本発明によれば、ビナフタレン骨格を有し、室温でも液体である、作業性と流動性に優れた、新規なビナフタレン骨格含有エポキシ樹脂及びその製造方法を提供することが可能となる。更には、本発明のビナフタレン骨格含有エポキシ樹脂は高屈折率、高アッベ数を示すことから新規な光学系材料としての利用も期待される。
式(1)で表されるジエポキシビナフタレン樹脂の13C-NMR(CDCl)チャートである。 式(1)で表されるジエポキシビナフタレン樹脂の質量分析チャートである。
<新規なジエポキシビナフタレン樹脂の製造方法>
 以下式(1)
Figure JPOXMLDOC01-appb-C000004
(式中nは0または1以上の整数である。)
で表わされるジエポキシビナフタレン樹脂は、例えば、アルカリ金属水酸化物存在下、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンとエピハロヒドリンとを反応させることにより得られる。
 原料として使用する2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンは、市販品を用いてもよく、慣用の方法、例えば、1,1-ビ-2-ナフトールと所定量のエチレンカーボネートまたはエチレンオキサイドとを、不活性溶媒及びアルカリ触媒存在下反応させ2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンとしたものをそのまま用いてもよく、また、前記反応終了後の反応生成物から、慣用の精製方法(抽出、晶析など)を利用して精製したものを用いてもよい。本発明において原料として使用する2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンの純度は、通常90重量%以上、好ましくは95重量%以上、特に好ましくは99重量%以上である。
 本発明におけるアルカリ金属水酸化物としては、例えば、水酸化ナトリウム、水酸化カリウム等が例示され、その使用量は2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンの水酸基1モル当量に対し通常0.8~4.0モル、好ましくは2.0~3.0モルである。アルカリ金属水酸化物は固体であっても水溶液であっても良い。
 本発明において使用するエピハロヒドリンとしては、具体的には、エピクロルヒドリン、エピブロムヒドリン等が例示され、その使用量は2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンの水酸基1モル当量に対し通常2~30モル、好ましくは3~20モルである。なお、上記式(1)で表されるジエポキシビナフタレン樹脂の繰り返し単位数であるnの値(n数)は、エピハロヒドリンの使用量により調整が可能である。すなわち、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンに対してエピハロヒドリンを大過剰に使用すると、nが0の化合物が主成分として得られ、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンに対してエピハロヒドリンの使用量を下げていけば、nが0より大きい化合物の割合を高くすることが可能である。
 2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンとエピハロヒドリンとを反応させる際の反応方法としては、例えば、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンとエピハロヒドリンとを反応容器に投入し、溶解混合させた後、20~120℃、好ましくは40~90℃でアルカリ金属水酸化物を添加し、その後、20~120℃、好ましくは40~90℃で1~24時間反応させることにより本発明のジエポキシビナフタレン樹脂を得ることが出来る。なお、アルカリ金属水酸化物は一括添加しても良いが、所定の反応温度を維持する為、一定時間、例えば1~10時間かけて滴下等の方法により連続的に添加すること、または、必要量を分割添加することが好ましい。
 前記反応を実施する際、アルカリ金属水酸化物の水溶液を使用する場合は、該アルカリ金属水酸化物の水溶液を連続的に反応系内に添加する一方で、反応系を減圧下、または常圧下で還流状態とし、水及び未反応のエピハロヒドリンを留出させた後に留出液を分液し、水は系外へ除去し、エピハロヒドリンは反応系内へと戻すことが好ましい。
 前記反応を実施する際、テトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド、ベンジルトリメチルアンモニウムクロライド、ベンジルトリエチルアンモニウムクロライド等の4級アンモニウム塩を用いることが、反応性向上の観点から好ましい。4級アンモニウム塩を使用する場合の使用量は2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン1モルに対し、通常0.01~0.50モル、好ましくは0.02~0.20モルである。また、4級アンモニウム塩を使用する場合、通常、アルカリ金属水酸化物を2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンとエピハロヒドリンの溶解混合物に添加する前に添加する。
 前記反応後、そのまま上記式(1)で表されるジエポキシビナフタレン樹脂を使用しても良いが、下記<1>~<3>に示す後処理工程を適宜施し、所望の該ジエポキシビナフタレン樹脂とすることが好ましい。
 <1>無機分等除去工程及び濃縮工程
 前記反応で得られた反応生成物を必要に応じろ過および/または水洗・分液除去し、不溶解分、無機塩、及びアルカリ金属水酸化物を除去する。その後、前記反応においてエピハロヒドリンを大過剰使用した場合、内温100~150℃、内圧30mmHg以下、好ましくは、10mmHg以下でエピハロヒドリンを除去することが好ましい。
 <2>閉環工程
 加水分解性ハロゲンの含有量がより少ないジエポキシビナフタレン樹脂とするために、前記反応後のジエポキシビナフタレン樹脂または<1>で示す後処理工程を施したジエポキシビナフタレン樹脂に有機溶媒を添加した後、アルカリ金属水酸化物を添加し、通常20~120℃で撹拌することにより加水分解性ハロゲンの含有量がより少ないジエポキシビナフタレン樹脂とすることができる。
 閉環工程で使用する有機溶媒としてはジエポキシビナフタレン樹脂やアルカリ金属水酸化物と反応しないものであればどのようなものでも良く、例えばトルエン、メチルイソブチルケトン、メチルエチルケトン等が例示される。また、閉環工程で使用するアルカリ金属水酸化物としては、例えば水酸化ナトリウム、水酸化カリウムが例示され、固体であっても水溶液であっても良いが、好ましくは水溶液が用いられる。また、アルカリ金属水酸化物の使用量はエポキシ化に使用した2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンの水酸基1モル当量に対して通常0.01~2.5モル、好ましくは0.20~1.2モルである。本閉環工程は通常0.5~6時間で実施される。
 <3>精製工程
 前記閉環工程終了後、閉環工程で得られた反応物を必要に応じろ過および/または水洗・分液除去を行い副生したタール分や塩を除去する。その後、pHが8.0~4.0になるよう、リン酸、リン酸ナトリウム、シュウ酸、酢酸等の酸で中和を行う。中和後、水洗・分液除去を繰り返し、必要に応じろ過を行うことによって不溶解分を除去した後、減圧下、閉環工程で使用した有機溶媒を留去することにより本発明のジエポキシビナフタレン樹脂を得る。
 <新規なジエポキシビナフタレン樹脂>
 以下式(1)
Figure JPOXMLDOC01-appb-C000005
(式中nは0または1以上の整数である。)
で表わされるジエポキシビナフタレン樹脂(以下本発明のジエポキシビナフタレン樹脂と称することもある)の繰り返し単位数であるnの値(n数)は本発明のジエポキシビナフタレン樹脂の用途に併せて任意に選択することができ、n数が単一のものを精製により得ることも可能ではあるが、通常はn数の異なるジエポキシビナフタレン樹脂が混合したものを本発明のジエポキシビナフタレン樹脂として使用する。また、本発明のジエポキシビナフタレン樹脂には中間体であるモノグリシジル体、少量の加水分解性塩素、α-グリコール等の不純物及びn=1のジエポキシビナフタレン樹脂の水酸基にさらにエピクロヒドリンが付加したトリグリシジル体などの少なくとも1つが混合している場合がある。
 本発明のジエポキシビナフタレン樹脂のn数は好ましくは0または1~10の整数、更に好ましくは0または1~2の整数、最も好ましくは0または1とする。n数が3を超えるものの割合が高くなると、相溶性が悪くなり、組成物とする際に、添加量に制約が生じる等の不都合が生じる場合がある。また、より低粘度のジエポキシビナフタレン樹脂とする為には、n=0である樹脂の割合を通常は65%以上、好ましくは85%以上とする。
 本発明のジエポキシビナフタレン樹脂は、吸水率が低く、かつ高温域での弾性率が低い等といった特徴を示すビナフタレン骨格を有しているにもかかわらず、室温で液体であり、さらに溶融粘度が低いといった特徴を示す。たとえば、本発明のジエポキシビナフタレン樹脂の100℃における溶融粘度は50~200mPa・s、150℃における溶融粘度は、5~30mPa・sである為、ハンドリング性に優れている。
 本発明のジエポキシビナフタレン樹脂は、高耐熱性などの特性を有し、低粘度である為、ハンドリング性にもすぐれており、熱硬化性樹脂原料、硬化剤などにも利用できる。たとえば、本発明のジエポキシビナフタレン樹脂は、そのまま一般的なエポキシ樹脂と同様に用いてもよく、エポキシ(メタ)アクリレートなどの熱硬化性樹脂原料として用いてもよい。
 本発明のジエポキシビナフタレン樹脂は、通常、硬化剤、必要に応じて希釈剤、硬化促進剤、さらに、必要に応じて、慣用の添加剤(例えば、着色材、安定材、充填剤、帯電防止材、難燃剤など)などを含むエポキシ樹脂組成物としてもよい。該エポキシ樹脂組成物とする際、該エポキシ樹脂組成物に含まれるエポキシ樹脂成分は本発明のジエポキシビナフタレン樹脂のみで構成してもよく、他のエポキシ樹脂と併用してもよい。
 本発明のジエポキシビナフタレン樹脂と併用しうる他のエポキシ樹脂としてはノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂などが挙げられる。これらの他のエポキシ樹脂は、単独又は2種類以上組み合わせてもよい。
 以下、実施例及び比較例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 なお、実施例及び比較例において各測定値は、次の方法、測定条件に従って測定した。
 〔1〕HPLC純度
 次の測定条件でHPLC測定を行ったときの面積百分率値をHPLC純度とした。
・装置:(株)島津製作所製「LC-2010AHT」
・カラム:一般財団法人 化学物質評価研究機構製「L-column ODS」(5μm、4.6mmφ×250mm)
・カラム温度:40℃
・検出波長:UV 254nm
・移動相:A液=30%メタノール、B液=メタノール
・移動相流量:1.0ml/分
・移動相グラジエント:B液濃度:30%(0分)→100%(25分後)→100%(35分後)
 〔2〕NMR測定
 次の測定条件にて13C-NMRを測定した。
・内部標準:テトラメチルシラン
・溶媒:CDCl
・装置:JEOL-ESC400分光計
 [3]LC-MS測定
 次の測定条件にて分離、質量分析し、目的物を同定した。
・装置:(株)Waters製「Xevo G2 Q-Tof」
・カラム:(株)Waters製「ACQUITY UPLC BEH C18」(1.7μm、2.1mmφ×100mm)
・カラム温度:40℃
・検出波長:UV 230-800nm
・移動相:A液=超純水、B液=メタノール
・移動相流量:0.3ml/分
・移動相グラジエント:B液濃度:60%(0分)→70%(10分後)→100%(12分後)
・検出法:Q-Tof
・イオン化法:ESI(+)法
・Ion Source:電圧(+)2.0kV、温度120℃
・Sampling Cone :電圧 10V、ガスフロー50L/h
・Desolvation Cas:温度500℃、ガスフロー1000L/h
 〔4〕エポキシ当量
 自動滴定装置(京都電子製 AT-5100)を用いて、JIS  K7236による方法で測定した。
 〔5〕溶融粘度
 B型粘度計(TOKIMEC INC製、MODEL:BBH)を用いて、ローターHH-1にて、20~100rpmで100℃及び150℃に加熱して測定した。
 〔6〕屈折率及びアッベ数
 アッベ屈折計((株)アタゴ製「多波長アッベ屈折計 DR-2M」)を用いて、20℃における屈折率(波長:589nm)及び20℃におけるアッベ数(波長:486、589、656nm)を測定した。なおサンプル調製及び屈折率・アッベ数の算出は以下の方法にて行った。
 得られた本発明のジエポキシビナフタレン樹脂をN,N-ジメチルホルムアミドに溶解して10重量%、20重量%及び30重量%溶液を調製し、各溶液について前述の条件にて屈折率及びアッベ数を測定した。次に、得られた3点の測定値から近似曲線を導き、これを100重量%に外挿したときの値を得られた樹脂の屈折率及びアッベ数とした。
 [実施例1]
 攪拌器、冷却器及び温度計を備えた200mlのガラス製反応容器に、窒素雰囲気下で2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン(田岡化学工業(株)製、商品名TBIS-BNE)15.00g(0.040mol)、エピクロルヒドリン74.20g(0.800mol)を仕込み、50℃に昇温、溶解させた後、ベンジルトリエチルアンモニウムクロライド1.37g(0.006mol)を添加した。添加後80℃に昇温し、粒状水酸化ナトリウム6.65g(0.166mol)を同温度で80分かけて分割添加し、更に同温度で4時間攪拌した後、HPLCにより反応生成物の分析を行ったところ、原料2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンは0.1%以下であった。
 得られた反応生成物に水を加え撹拌し、ろ過を行うことによって不溶解分を除去した。その後、水層を分液除去し、さらに水洗・分液を行った後、有機層を130℃まで加熱し、内圧10mmHgで濃縮を行った。その後、80℃まで冷却し、残留物にトルエンを加え残留物を溶解した後、該トルエン溶液に、80℃で24重量%の水酸化ナトリウム水溶液5.00g(0.030mol)を添加し、同温度で6時間攪拌した。撹拌後、ろ過を行うことによって不溶解分を除去し、更に水層を分液除去した。その後、水及び酸を加えて中和し、水層を分液除去した。次いで、有機層を水洗・分液し、有機層をろ過し不溶解分を除去した後に減圧濃縮することによって、黄褐色粘調性の液体17.27g(みかけ収率89.2%)を得た。
 得られた黄褐色粘調性の液体をHPLCにて分析した所、上記式(1)においてn=0のものが86.6%、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンにエピクロヒドリンが1個付加したモノグリシジル体が4.8%、上記式(1)においてn=1のものが1.9%、n=1の水酸基にさらにエピクロヒドリンが付加したトリグリシジル体が1.8%、上記式(1)においてn=2以上のものが0.1%以下含まれていることから、目的とする上記式(1)で表されるジエポキシビナフタレン樹脂が生成していることを確認した。得られたジエポキシビナフタレン樹脂の物性を以下に示す。
・エポキシ当量:256g/eq
・溶融粘度;100℃:80mPa・s、150℃:15mPa・s
・屈折率:1.60
・アッベ数:21.5
 得られたジエポキシビナフタレン樹脂の13C-NMR(CDCl)チャートを図1に示す。ここで、115.4~154.2ppmまではナフタレン骨格の炭素に帰属され、43.9、50.6、69.8ppmはグリシジル基の炭素、71.4、71.7ppmは、エトキシ基の炭素に帰属される。
 また、得られたジエポキシビナフタレン樹脂の内、上記式(1)におけるn=0に該当するピークをLC-MSにて分析した結果を図2に示す。本分析におけるジエポキシビナフタレン樹脂の計算値(TOF MS ESI;C3030+Na)は509.1940であり、実測値は509.1955であった。
 [実施例2]
 攪拌器、冷却器及び温度計を備えた200mlのガラス製反応容器に、窒素雰囲気下で2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン(田岡化学工業(株)製、商品名TBIS-BNE)15.00g(0.040mol)、エピクロルヒドリン74.20g(0.800mol)を仕込み、50℃に昇温、溶解させた後、ベンジルトリエチルアンモニウムクロライド1.37g(0.006mol)を添加した。添加後80℃に昇温し、粒状水酸化ナトリウム8.00g(0.200mol)を同温度で90分かけて分割添加し、更に同温度で3時間攪拌した後、HPLCにより反応生成物の分析を行ったところ、原料2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンは0.1%以下であった。
 得られた反応生成物に水を加え、ろ過を行うことによって不溶解分を除去した後、130℃まで加熱し、内圧10mmHgで濃縮を行った。その後、60℃まで冷却し、残留物にトルエンを加え溶解した。このトルエン溶液に、60℃で24重量%の水酸化ナトリウム水溶液3.30g(0.020mol)を添加し、更に同温度で2時間攪拌した後ろ過を行うことによって不溶解分を除去後、水層を分液除去した。その後、水及び酸を加えて中和した後、水層を分液除去した。更に、有機層を食塩水及び水で数回洗浄・分液除去操作を行った後、有機層をろ過し不溶解分を除去した後に減圧濃縮することによって、黄褐色粘調性液体16.64g(みかけ収率85.5%)を得た。
 得られた黄褐色粘調性液体をHPLCで分析した所、上記式(1)においてn=0のものが82.3%、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンにエピクロヒドリンが1個付加したモノグリシジル体が5.0%、上記式(1)においてn=1のものが2.0%、n=1の水酸基にさらにエピクロヒドリンが付加したトリグリシジル体が2.1%、上記式(1)においてn=2以上のものが0.2%含まれていることから、目的とする上記式(1)で表されるジエポキシビナフタレン樹脂が生成していることを確認した。得られたジエポキシビナフタレン樹脂の物性を以下に示す。
・エポキシ当量:258g/eq
・溶融粘度;100℃:87mPa・s、150℃:17mPa・s
 [実施例3]
 攪拌器、冷却器及び温度計を備えた200mlのガラス製反応容器に、窒素雰囲気下で2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン(田岡化学工業(株)製、商品名TBIS-BNE)15.00g(0.040mol)、エピクロルヒドリン37.10g(0.400mol)を仕込み、50℃に昇温、溶解後、ベンジルトリエチルアンモニウムクロライド1.37g(0.006mol)を添加した。添加後80℃に昇温し、粒状水酸化ナトリウム6.65g(0.166mol)を同温度で50分かけて分割添加し、更に同温度で4時間攪拌した後、HPLCにより反応生成物の分析を行ったところ、原料2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンは0.1%以下であった。
 得られた反応生成物に水を加え、ろ過を行うことによって不溶解分をろ過除去した後、130℃まで加熱し、内圧10mmHgで濃縮した。その後、80℃まで冷却し、残留物にトルエンを加え溶解した。このトルエン溶液に、80℃で30重量%の水酸化ナトリウム水溶液10.95g(0.082mol)を添加し、同温度で3時間攪拌した後、水を追加し水洗を行い、水層を分液除去した。その後、水及び酸を加えて中和した後、水層を分液除去した。更に水洗・分液除去操作を行い、有機層をろ過し不溶解分を除去した後に、減圧濃縮することによって、黄褐色粘調性液体16.28g(みかけ収率84.2%)を得た。
 得られた黄褐色粘調性液体をHPLCで分析した所、上記式(1)においてn=0のものが73.0%で、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンにエピクロヒドリンが1個付加したモノグリシジル体が2.1%、上記式(1)においてn=1のものが4.1%、n=1の水酸基にさらにエピクロヒドリンが付加したトリグリシジル体が6.2%、上記式(1)においてn=2以上のものが1.2%含まれていることから、目的とする上記式(1)で表されるジエポキシビナフタレン樹脂が生成していることを確認した。得られたジエポキシビナフタレン樹脂の物性を以下に示す。
・エポキシ当量:251g/eq
・溶融粘度;100℃:68mPa・s、150℃:15mPa・s
[実施例4]
 攪拌器、冷却器及び温度計を備えた200mlのガラス製反応容器に、窒素雰囲気下で2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン(田岡化学工業(株)製、商品名TBIS-BNE)20.00g(0.053mol)、エピクロルヒドリン29.70g(0.321mol)を仕込み、80℃に昇温、溶解させた後、ベンジルトリエチルアンモニウムクロライド1.82g(0.008mol)を添加した。その後、粒状水酸化ナトリウム8.87g(0.222mol)を同温度で90分かけて分割添加し、更に同温度で3時間攪拌した後、HPLCにより反応生成物の分析を行ったところ、原料2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンは0.1%以下であった。
 反応生成物にトルエン40gを加えた後にろ過を行うことによって不溶解分を除去した後、このトルエン溶液に、30℃で24重量%の水酸化ナトリウム水溶液4.50g(0.027mol)を添加し、同温度で3時間攪拌した。その後、水を追加し水洗を行い、水層を分液除去した。その後、水及び酸を加えて中和した後、水層を分液除去した。更に、水洗、分液除去を行った後、有機層をろ過し不溶解分を除去した後に、減圧濃縮することによって、黄褐色粘調性液体25.26g(みかけ収率97.9%)を得た。
 得られた黄褐色粘調性液体をHPLCで分析した所、上記式(1)においてn=0のものが77.9%で、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンにエピクロヒドリンが1個付加したモノグリシジル体が0.6%、上記式(1)においてn=1のものが3.6%、n=1の水酸基にさらにエピクロヒドリンが付加したトリグリシジル体が7.4%、上記式(1)においてn=2以上のものが1.5%含まれていることから、目的とする上記式(1)で表されるジエポキシビナフタレン樹脂が生成していることを確認した。得られたジエポキシビナフタレン樹脂の物性を以下に示す。
・エポキシ当量:254g/eq
・溶融粘度;100℃:77mPa・s、150℃:16mPa・s
 [実施例5]
 攪拌器、冷却器及び温度計を備えた200mlのガラス製反応容器に、窒素雰囲気下で2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン(田岡化学工業(株)製、商品名TBIS-BNE)20.00g(0.053mol)、エピクロルヒドリン20.80g(0.225mol)を仕込み、80℃に昇温、溶解させた後、テトラブチルアンモニウムブロマイド、2.58g(0.008mol)を添加した。その後、粒状水酸化ナトリウム8.87g(0.222mol)を同温度で80分かけて分割添加し、更に同温度で2時間攪拌した後、HPLCにより反応生成物の分析を行ったところ、原料2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンは0.1%以下であった。
 得られた反応生成物にトルエン40gを加えた後にろ過を行うことによって不溶解分を除去した後、このトルエン溶液に、40℃で24重量%の水酸化ナトリウム水溶液4.50g(0.027mol)を添加し、同温度で2時間攪拌した後、水を追加し水洗を行い、水層を分液除去した。その後、水及び酸を加えて中和した後、水層を分液除去した。次いで、水洗・分液操作を行った後、有機層をろ過し不溶解分を除去した後に減圧濃縮することによって、黄褐色粘調性液体25.34g(みかけ収率98.3%)を得た。
 得られた黄褐色粘調性液体をHPLCで分析した所、上記式(1)においてn=0のものが68.3%で、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンにエピクロヒドリンが1個付加したモノグリシジル体が0.4%、上記式(1)においてn=1のものが3.9%、n=1の水酸基にさらにエピクロヒドリンが付加したトリグリシジル体が9.0%、上記式(1)においてn=2以上のものが3.2%含まれていることから、目的とする上記式(1)で表されるジエポキシビナフタレン樹脂が生成していることを確認した。得られたジエポキシビナフタレン樹脂の物性を以下に示す。
・エポキシ当量:280g/eq
・溶融粘度;100℃:150mPa・s、150℃:23mPa・s
 [比較例1]
 原料を1,1’-ビ-2-ナフトール11.45g(0.040mol)に変更した以外は実施例1と同様にエポキシ化反応、反応後の後処理を実施し、淡黄色固体の上記式(2)で表されるビナフトールのジグリシジルエーテルを主体とするエポキシ樹脂14.30g(みかけ収率91.9%、HPLC純度90.4%)を得た。得られたエポキシ樹脂の物性を以下に示す。
・エポキシ当量:218g/eq
・溶融粘度;100℃:825mPa・s、150℃:40mPa・s
 本発明のジエポキシビナフタレン樹脂、または該ジエポキシビナフタレン樹脂を含むエポキシ樹脂組成物は、ビナフタレン骨格を有することから吸水率が低く、かつ高温域での弾性率が低い等といった特性を有し、硬化前は低粘度で作業性が良好である為、耐熱性、低粘度の要求される広範囲な分野で用いることができる。具体的には封止材料、積層板、絶縁材料、プリント基板用のソルダーレジスト、カバーレイなどのレジスト材料、カラーフィルター、コーティング剤などのあらゆる電気・電子材料として有用である。また、高屈折、低アッベ数という特性を有することから光学材原料としても有用である。その他、成形材料、接着剤、複合材料、塗料、印刷インキ、光硬化性樹脂原料、感光性樹脂原料などの分野にも用いることができる。

Claims (2)

  1.  下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中nは0または1以上の整数である。)
    で表わされる、ジエポキシビナフタレン樹脂。
  2.  アルカリ金属水酸化物存在下、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンにエピハロヒドリンを反応させる工程を含む、請求項1記載のジエポキシビナフタレン樹脂の製造方法。
PCT/JP2014/071616 2013-09-26 2014-08-19 ビナフタレン骨格を有するエポキシ樹脂 WO2015045674A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167009380A KR102048610B1 (ko) 2013-09-26 2014-08-19 바이나프탈렌 골격을 가지는 에폭시 수지
CN201480052825.6A CN105579488B (zh) 2013-09-26 2014-08-19 具有联萘骨架的环氧树脂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-199079 2013-09-26
JP2013199079 2013-09-26

Publications (1)

Publication Number Publication Date
WO2015045674A1 true WO2015045674A1 (ja) 2015-04-02

Family

ID=52742828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071616 WO2015045674A1 (ja) 2013-09-26 2014-08-19 ビナフタレン骨格を有するエポキシ樹脂

Country Status (5)

Country Link
JP (1) JP6095620B2 (ja)
KR (1) KR102048610B1 (ja)
CN (1) CN105579488B (ja)
TW (1) TWI557149B (ja)
WO (1) WO2015045674A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086361A (ja) * 2013-09-26 2015-05-07 田岡化学工業株式会社 ビナフタレン骨格を有するエポキシ樹脂

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116063252A (zh) * 2022-12-26 2023-05-05 北京智芯微电子科技有限公司 联萘单体及其制备方法和环氧树脂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184131A (ja) * 1992-12-17 1994-07-05 Dainippon Ink & Chem Inc エポキシ樹脂、その製法、エポキシ樹脂組成物及び半導体封止材料
JPH07268060A (ja) * 1994-03-29 1995-10-17 Toto Kasei Kk エポキシ樹脂及びその製造方法
JP2005263778A (ja) * 2004-02-18 2005-09-29 Chisso Corp 重合性ビナフタレン誘導体
JP2008031344A (ja) * 2006-07-31 2008-02-14 Dainippon Ink & Chem Inc エポキシ樹脂組成物及びその硬化物
JP2010189534A (ja) * 2009-02-18 2010-09-02 Nippon Kayaku Co Ltd 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7413782B2 (en) * 2004-02-18 2008-08-19 Chisso Corporation Polymerizing binaphthalene derivatives
JP5168547B2 (ja) * 2008-02-29 2013-03-21 Dic株式会社 エポキシ樹脂組成物、半導体封止材料及び半導体装置
JP5292930B2 (ja) 2008-06-09 2013-09-18 住友ベークライト株式会社 半導体封止用エポキシ樹脂組成物及び半導体装置
JP2011184623A (ja) * 2010-03-10 2011-09-22 Dic Corp 硬化性樹脂組成物、その硬化物、及びプラスチックレンズ
JP6083900B2 (ja) * 2013-05-24 2017-02-22 田岡化学工業株式会社 ビナフタレン化合物の製造方法
JP6083901B2 (ja) * 2013-05-24 2017-02-22 田岡化学工業株式会社 ビナフタレン化合物の製造方法
KR102048610B1 (ko) * 2013-09-26 2019-11-25 타오카 케미컬 컴퍼니 리미티드 바이나프탈렌 골격을 가지는 에폭시 수지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184131A (ja) * 1992-12-17 1994-07-05 Dainippon Ink & Chem Inc エポキシ樹脂、その製法、エポキシ樹脂組成物及び半導体封止材料
JPH07268060A (ja) * 1994-03-29 1995-10-17 Toto Kasei Kk エポキシ樹脂及びその製造方法
JP2005263778A (ja) * 2004-02-18 2005-09-29 Chisso Corp 重合性ビナフタレン誘導体
JP2008031344A (ja) * 2006-07-31 2008-02-14 Dainippon Ink & Chem Inc エポキシ樹脂組成物及びその硬化物
JP2010189534A (ja) * 2009-02-18 2010-09-02 Nippon Kayaku Co Ltd 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086361A (ja) * 2013-09-26 2015-05-07 田岡化学工業株式会社 ビナフタレン骨格を有するエポキシ樹脂

Also Published As

Publication number Publication date
JP6095620B2 (ja) 2017-03-15
KR20160062037A (ko) 2016-06-01
TWI557149B (zh) 2016-11-11
CN105579488A (zh) 2016-05-11
JP2015086361A (ja) 2015-05-07
KR102048610B1 (ko) 2019-11-25
CN105579488B (zh) 2017-07-21
TW201512237A (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
KR101144420B1 (ko) 고순도 지환식 에폭시 화합물, 그 제조 방법, 경화성에폭시 수지 조성물, 그 경화물, 및 용도
US7884172B2 (en) Tetraglycidyl ether of 1,1,2,2-tetrakis(hydroxyphenyl)ethane
EP1760101A1 (en) Epoxy resin, epoxy resin composition and cured product thereof
WO2020213526A1 (ja) 脂環式エポキシ化合物製品
JP6157001B2 (ja) ビスフェノールフルオレン骨格を有するエポキシ樹脂
JP6095620B2 (ja) ビナフタレン骨格を有するエポキシ樹脂
CN111587267B (zh) 脂环式环氧化合物产品
JP6521448B2 (ja) ビスフェノールフルオレン骨格を有するエポキシ樹脂
JP2013193980A (ja) 低粘度エポキシ化合物およびその製造方法
US20130012730A1 (en) High-purity epoxy compound and method of producing thereof
WO2013089006A1 (ja) グリシジルアミン系エポキシ化合物の製造方法
JP2007277498A (ja) エポキシ樹脂の精製方法
JP6936544B2 (ja) ビスフェノールフルオレン骨格を有するエポキシ樹脂組成物
JP2016155891A (ja) ビナフタレン骨格を有する精製エポキシ樹脂の製造方法
WO2014162947A1 (ja) ジグリシジルアミン系エポキシ化合物の製造方法
JP2016172800A (ja) ビナフタレン骨格を有する精製エポキシ樹脂の製造方法
JP4743824B2 (ja) 液状エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP5083988B2 (ja) エポキシ樹脂組成物
JP2017155131A (ja) ビスフェノールフルオレン骨格を有するエポキシ樹脂
JP2016160340A (ja) ビナフタレン骨格を有するエポキシ樹脂組成物及び硬化物
JP2005247902A (ja) エポキシ樹脂及びエポキシ樹脂組成物
JP4466907B2 (ja) 液状エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP5529707B2 (ja) イソシアヌレート化合物
JP2007254581A (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP2006124492A (ja) エポキシ樹脂及びフェノール樹脂

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480052825.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167009380

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14846978

Country of ref document: EP

Kind code of ref document: A1