WO2015004891A1 - 半導体装置、及びそれを用いたインバータ - Google Patents

半導体装置、及びそれを用いたインバータ Download PDF

Info

Publication number
WO2015004891A1
WO2015004891A1 PCT/JP2014/003561 JP2014003561W WO2015004891A1 WO 2015004891 A1 WO2015004891 A1 WO 2015004891A1 JP 2014003561 W JP2014003561 W JP 2014003561W WO 2015004891 A1 WO2015004891 A1 WO 2015004891A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
region
current
gate
semiconductor device
Prior art date
Application number
PCT/JP2014/003561
Other languages
English (en)
French (fr)
Inventor
楠本 修
中田 秀樹
慶治 赤松
内田 正雄
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201480002917.3A priority Critical patent/CN104781923B/zh
Priority to JP2015526160A priority patent/JP5979570B2/ja
Priority to US14/440,341 priority patent/US9543858B2/en
Publication of WO2015004891A1 publication Critical patent/WO2015004891A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8213Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using SiC technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0646PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7815Vertical DMOS transistors, i.e. VDMOS transistors with voltage or current sensing structure, e.g. emulator section, overcurrent sensing cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • H01L29/7828Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Definitions

  • the present disclosure relates to a semiconductor device having a silicon carbide semiconductor layer and an inverter using the same.
  • Silicon carbide is a high hardness semiconductor material having a larger band gap than silicon (Si). Silicon carbide has a breakdown electric field strength one digit higher than that of silicon. Therefore, by using silicon carbide, it is possible to manufacture a semiconductor device having the same breakdown voltage and a small volume as compared with the case of using silicon. By using silicon carbide, a structure serving as a resistance component can be reduced as compared with the case of using silicon, so that the on-resistance of the semiconductor device can be reduced and power loss can be reduced. In addition, the silicon carbide semiconductor device has an advantage that it can operate at a higher temperature than silicon. A silicon carbide semiconductor device is used as a switching element which constitutes a switching circuit, for example.
  • Patent Document 1 discloses a current flowing through a low-side MOSFET in a switching circuit configured by a half-bridge circuit using a metal-oxide-semiconductor field effect transistor (MOSFET) as a switching element.
  • MOSFET metal-oxide-semiconductor field effect transistor
  • Disclosed is a technique for reducing recovery loss while suppressing a through current by providing a transistor current detecting means for detecting and a diode current detecting means for detecting a current flowing in a body diode of a low-side MOSFET that functions as a freewheeling diode. Yes.
  • a diode electrode is provided so as to be in ohmic contact with the body region without contacting the source region, and the diode electrode is electrically insulated from the source electrode. Deploy. In this way, the current flowing through the MOSFET is detected by detecting the current flowing between the source electrode and the drain electrode, and the current flowing through the body diode is detected by detecting the current flowing between the diode electrode and the drain electrode. Can do.
  • the means for detecting the current between the source electrode and the drain electrode and the means for detecting the current between the diode electrode and the drain electrode in some of the unit cells function as a transistor current detecting means and a diode current detecting means, respectively.
  • an inverter that drives a motor is configured to include a transistor bridge circuit that includes a plurality of transistors and a diode bridge circuit that includes a plurality of diodes that are free-wheeling diodes.
  • a first current detector disposed so as to straddle a plus-side line and a minus-side line between the circuit and a second current detector disposed between a transistor bridge circuit, a diode bridge circuit and a DC power source Is disclosed. Since the first current detector and the second current detector can be used to detect the drive current that flows during normal driving, the return current that flows during the recirculation operation, and the regenerative current that flows during the regenerative operation, Patent Document 2 discloses that the generated overcurrent can be detected.
  • JP 2007-014059 A Japanese Patent Laid-Open No. 6-14561
  • the technology disclosed in this specification provides a semiconductor device capable of detecting both a current flowing through a transistor and a current flowing through a freewheeling diode with a simple configuration, and an inverter using the semiconductor device.
  • the semiconductor device disclosed in this specification is provided in a first conductive type semiconductor substrate including a main region and a sense region, and in the main region and the sense region of the first conductive type semiconductor substrate, A plurality of unit cells having metal-insulator-semiconductor field effect transistors, wherein the number of unit cells included in the sense region is smaller than the number of unit cells included in the main region; In each of the sense regions, a plurality of unit cells in which the metal-insulator-semiconductor field effect transistors are connected in parallel, and a first source insulated from a gate pad disposed on the main surface side of the semiconductor substrate A pad and a second source pad, and a drain pad disposed on the back side of the semiconductor substrate, each metal-insulator
  • the semiconductor field effect transistor comprises a first conductivity type first silicon carbide semiconductor layer located on a main surface of the semiconductor substrate; a second conductivity type body region in contact with the first silicon carbide semiconductor layer; A first conductivity type source region in contact with the body region; and a second
  • the drain electrode potential with respect to the source electrode potential as Vds, the gate electrode potential with respect to the source electrode potential as Vgs, and the metal-insulator-semiconductor electric field Assuming that the gate threshold voltage of the transistor is Vth, when the Vds is positive, the metal-insulator-semiconductor field effect transistor passes a current from the drain electrode to the source electrode when the Vgs is equal to or higher than the Vth.
  • the metal-insulator-semiconductor field effect transistor functions as a diode that flows current from the source electrode to the drain electrode when the Vgs is less than Vth, and the rising voltage of the diode
  • the absolute value is smaller than the absolute value of the rising voltage of the body diode constituted by the body region and the first silicon carbide semiconductor layer, and the gate electrode and the sense region in the unit cell included in the main region
  • the gate electrode in the unit cell included in the gate cell is the gate pad.
  • the drain electrode in the unit cell included in the main region and the drain electrode in the unit cell included in the sense region are electrically connected to the drain pad and connected to the main region.
  • the source electrode in the unit cell included is electrically connected to the first source pad, and the source electrode in the unit cell included in the sense region is electrically connected to the second source pad. Has been.
  • the inverter disclosed in the present specification is a leg composed of an upper arm and a lower arm, and at least one of the upper arm and the lower arm is a semiconductor device disclosed in the present specification.
  • a current-voltage conversion unit connected to the second source pad of the semiconductor device and outputting a voltage having a value corresponding to a value of a current flowing between the drain pad and the second source pad;
  • a gate voltage control unit configured to control a voltage applied to the gate pad of the semiconductor device based on the voltage output from the current-voltage conversion unit.
  • the semiconductor device disclosed in this specification can detect both a current flowing through a transistor and a current flowing through a freewheeling diode with a simple configuration.
  • FIG. 4 is a cross-sectional view schematically showing a unit cell in the semiconductor device
  • FIG. 4D is an enlarged cross-sectional view in the vicinity of an element isolation region 110 shown in FIG. 6 is a cross-sectional view showing a part of the method for manufacturing the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional view showing a part of the method for manufacturing the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional view showing a part of the method for manufacturing the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 5 is a graph showing a forward Is-Vgs curve of the semiconductor device according to the first embodiment of the present disclosure; 5 is a graph showing an Is-Vds curve in the reverse direction of the semiconductor device according to the first embodiment of the present disclosure. It is a figure showing circuit composition of a measurement system for evaluating forward current of a semiconductor device concerning a 1st embodiment of this indication.
  • 6 is a graph showing a result of evaluating a forward current of the semiconductor device according to the first embodiment of the present disclosure at an ambient temperature of 25 ° C.
  • FIG. 6 is a graph showing the results of evaluating the forward current of the semiconductor device according to the first embodiment of the present disclosure at ambient temperatures of ⁇ 40 ° C., 25 ° C., 85 ° C., and 150 ° C.
  • FIG. It is a figure showing circuit composition of a measurement system for evaluating reverse current of a semiconductor device concerning a 1st embodiment of this indication.
  • 6 is a graph showing a result of evaluating a reverse current of the semiconductor device according to the first embodiment of the present disclosure at an ambient temperature of 25 ° C.
  • 6 is a graph showing the results of evaluating the reverse current of the semiconductor device according to the first embodiment of the present disclosure at ambient temperatures of ⁇ 40 ° C., 25 ° C., 85 ° C., and 150 ° C.
  • FIG. 3 is a diagram illustrating a circuit configuration of a measurement system for measuring a forward current and a reverse current of a semiconductor device according to the first embodiment of the present disclosure using a current-voltage conversion circuit including an operational amplifier.
  • 5 is a graph showing the gate voltage dependence of the reverse direction Ism-Vds curve of the main region in the semiconductor device according to the first embodiment of the present disclosure.
  • A is a top view which shows the outline of the semiconductor device which concerns on 2nd Embodiment of this indication
  • (b) is sectional drawing which shows the outline of the AA 'part in (a)
  • FIG. 15 is a cross-sectional view schematically showing a unit cell in the semiconductor device, and FIG.
  • FIG. 15D is an enlarged cross-sectional view of a boundary portion between the main region 320 and the sense region 321 in FIG.
  • FIG. 10 is a cross-sectional view illustrating a part of the method for manufacturing the semiconductor device according to the second embodiment of the present disclosure.
  • FIG. 10 is a cross-sectional view illustrating a part of the method for manufacturing the semiconductor device according to the second embodiment of the present disclosure.
  • FIG. 10 is a cross-sectional view illustrating a part of the method for manufacturing the semiconductor device according to the second embodiment of the present disclosure. It is a block diagram showing composition of a load drive system provided with an inverter concerning a 3rd embodiment of this indication.
  • 14 is a timing chart related to a protection operation when a forward overcurrent flows through a load drive system according to a third embodiment of the present disclosure.
  • 12 is a timing chart regarding a protection operation when a reverse forward overcurrent flows through a load drive system according to a third embodiment of the present disclosure.
  • 14 is a graph illustrating temperature characteristics of an IV curve in a reverse direction of a semiconductor device according to a third embodiment of the present disclosure. It is a block diagram showing a gate control part concerning a 4th embodiment of this indication.
  • 14 is a timing chart regarding a protection operation when a reverse forward overcurrent flows through a load driving system according to a fourth embodiment of the present disclosure. It is a block diagram which shows the structure of a load drive system provided with the inverter which concerns on a comparative example.
  • FIG. 6 is a diagram showing a distribution of conduction band energy at AA ′ in (a) during forward operation.
  • (A) is a cross-sectional structure diagram of a unit cell according to the present embodiment, and (b) is a potential distribution diagram at C-C ′ of (a). It is a figure which shows the correlation of the dopant density
  • the outline of the semiconductor device of the present disclosure is as follows.
  • a semiconductor device is provided in a first conductive type semiconductor substrate including a main region and a sense region, and in the main region and the sense region of the first conductive type semiconductor substrate, respectively.
  • a plurality of unit cells in which the metal-insulator-semiconductor field effect transistors are connected in parallel, and a gate pad disposed on the main surface side of the semiconductor substrate are insulated from each other. Source pads and second source pads, and drain pads disposed on the back side of the semiconductor substrate.
  • the body-semiconductor field effect transistor includes a first conductivity type first silicon carbide semiconductor layer located on a main surface of the semiconductor substrate, and a second conductivity type body region in contact with the first silicon carbide semiconductor layer.
  • a first conductivity type source region in contact with the body region, and a second silicon carbide semiconductor layer disposed on the first silicon carbide semiconductor layer and in contact with at least part of the body region and the source region A gate insulating film on the second silicon carbide semiconductor layer, a gate electrode on the gate insulating film, a source electrode in contact with the source region, a drain electrode disposed on the back side of the semiconductor substrate,
  • the drain electrode potential with reference to the source electrode potential is Vds
  • the gate electrode potential with reference to the source electrode potential is Vgs
  • the metal-insulator-semiconductor electrode When the gate threshold voltage of the effect transistor is Vth, when the Vds is positive, the metal-insulator-semiconductor field effect transistor allows a current to flow from the drain electrode
  • the metal-insulator-semiconductor field effect transistor functions as a diode that flows current from the source electrode to the drain electrode when the Vgs is less than Vth, and the rising voltage of the diode
  • the absolute value is smaller than the absolute value of the rising voltage of the body diode constituted by the body region and the first silicon carbide semiconductor layer, and the gate electrode and the sense region in the unit cell included in the main region
  • the gate electrode in the unit cell included in the gate cell The drain electrode in the unit cell included in the main region and the drain electrode in the unit cell included in the sense region are electrically connected to the drain pad, and are connected to the main region.
  • the source electrode in the unit cell included in the unit cell is electrically connected to the first source pad, and the source electrode in the unit cell included in the sense region is electrically connected to the second source pad. It is connected.
  • At least a region in contact with the second silicon carbide semiconductor layer has an impurity concentration of 1 ⁇ 10 18 cm ⁇ 3 or more, and the impurity concentration of the second silicon carbide semiconductor layer is 1 ⁇ 10 17 cm. -3 to 4 ⁇ 10 18 cm ⁇ 3 , and the thickness of the second silicon carbide semiconductor layer may be 20 nm to 70 nm.
  • the semiconductor device is located at a boundary between the main region and the sense region, and is formed on the first conductivity type first silicon carbide semiconductor layer and the first silicon carbide semiconductor layer located on the semiconductor substrate. And a second conductivity type element isolation region provided, and the second silicon carbide semiconductor layer may not be disposed on the element isolation region.
  • the semiconductor device may further include a trench that penetrates the body region and the source region and reaches the first silicon carbide semiconductor layer.
  • the current flowing in the sense region may be 100 mA or less.
  • the current flowing between the drain pad and the second source pad may be proportional to the current flowing between the drain pad and the first source pad.
  • the direction of the current flowing between the drain pad and the second source pad may match the direction of the current flowing between the drain pad and the first source pad.
  • An inverter is a leg configured by an upper arm and a lower arm, and at least one of the upper arm and the lower arm is a semiconductor device according to any one of the host machines
  • a current-voltage converter connected to the second source pad of the semiconductor device and outputting a voltage having a value corresponding to a value of a current flowing between the drain pad and the second source pad; and the current
  • a gate voltage control unit configured to control a voltage applied to the gate pad of the semiconductor device based on the voltage output from the voltage conversion unit.
  • the current-voltage conversion unit may include an operational amplifier having an inverting input terminal, a non-inverting input terminal, and an output terminal, and a resistor connecting the inverting input terminal and the output terminal.
  • the operational amplifier may be a dual power supply type.
  • the inverter includes a smoothing capacitor connected in parallel to the leg, a voltage detection unit that detects a voltage of the smoothing capacitor, a resistor for consuming a regenerative current flowing from a load to the inverter as heat, and the resistor.
  • a regenerative power consumption circuit including a switching element for controlling a regenerative current, wherein the gate voltage control unit compares a voltage of the smoothing capacitor detected by the voltage detection unit with a reference voltage value, and performs the smoothing When the voltage of the capacitor exceeds the reference voltage value, the switching element may be controlled such that the regenerative current flows through the resistor.
  • the inverter further includes a smoothing capacitor connected in parallel with the leg, and a voltage detection unit that detects a voltage of the smoothing capacitor, wherein the gate voltage control unit detects the smoothing capacitor detected by the voltage detection unit.
  • the voltage applied to the gate pad may be negative when the voltage of the smoothing capacitor exceeds the reference voltage value.
  • the inverter includes a smoothing capacitor connected in parallel with the leg, a resistor for consuming the regenerative current flowing from the load to the inverter as heat, and a switching element for controlling the regenerative current flowing to the resistor
  • the gate voltage control unit compares the output voltage value output from the current-voltage conversion unit with a reverse reference voltage value, and the absolute value of the output voltage is the reverse reference voltage value. When the value exceeds the value, the operation of the switching element may be controlled so that the regenerative current flows through the resistor.
  • the inverter further includes a smoothing capacitor connected in parallel with the leg, and the gate voltage control unit compares the value of the output voltage output from the current-voltage conversion unit with a reverse reference voltage value, When the absolute value of the output voltage exceeds the reverse reference voltage value, the voltage applied to the gate pad may be negative.
  • An inverter control method is a leg including an upper arm and a lower arm, and at least one of the upper arm and the lower arm is the semiconductor device according to any one of the above.
  • a method of controlling an inverter comprising a leg and a smoothing capacitor connected in parallel with the leg, the step of detecting the voltage of the smoothing capacitor, and comparing the voltage of the smoothing capacitor with a reference voltage value. And, when the voltage of the smoothing capacitor exceeds the reference voltage value, the voltage applied to the gate pad is made negative.
  • An inverter control method is a leg including an upper arm and a lower arm, and at least one of the upper arm and the lower arm is the semiconductor device according to any one of the above.
  • a regenerative power consuming circuit including a resistor for consuming the regenerative current flowing from the load to the inverter as heat and a switching element for controlling the regenerative current flowing to the resistor.
  • a method for controlling an inverter the step of detecting a value of an output voltage output from the current-voltage converter, and the current-voltage converter
  • the output voltage value is compared with a reverse reference voltage value.
  • the regenerative current flows through the resistor. Operating the device.
  • An inverter control method is a leg including an upper arm and a lower arm, and at least one of the upper arm and the lower arm is the semiconductor device according to any one of the above.
  • a method for controlling an inverter comprising a current-voltage converter that outputs a voltage of a value, the step of detecting the value of an output voltage output from the current-voltage converter, and the output from the current-voltage converter When the output voltage value is compared with the reverse reference voltage value and the absolute value of the output voltage exceeds the reverse reference voltage value, the voltage applied to the gate pad is negative. And a step of.
  • FIG. 1A is a plan view schematically showing the semiconductor device according to the present embodiment.
  • FIG. 1B is a cross-sectional view showing an outline of the AA ′ portion in FIG.
  • FIG.1 (c) is sectional drawing which shows the outline of the unit cell 111 in FIG.1 (b).
  • FIG. 1D is a cross-sectional view showing, in an enlarged manner, the vicinity of the element isolation region 110 shown in FIG.
  • MISFET planar-type metal-insulator-semiconductor field effect transistor
  • the semiconductor device 1 includes a semiconductor substrate 5.
  • the main region source pad 2, the sense region source pad 3, and the gate pad 4 are provided on the main surface 5 a side of the semiconductor substrate 5.
  • the main region source pad 2, the sense region source pad 3, and the gate pad 4 are electrically insulated from each other.
  • a drain electrode 16 and a back electrode 17 are stacked so as to cover the entire back surface 5 b.
  • the main region source pad 2, the sense region source pad 3, and the back electrode 17 correspond to a first source pad, a second source pad, and a drain pad in the semiconductor device disclosed in this specification, respectively.
  • the semiconductor device 1 includes a sense region 21 and a main region 20.
  • Each of the sense region 21 and the main region 20 includes a plurality of unit cells 111 connected in parallel to each other.
  • the main region source pad 2 is configured by connecting the upper wirings 15 of the plurality of unit cells 111 included in the main region 20 to each other.
  • the sense region source pad 3 is configured by connecting the upper wirings 15 of the plurality of unit cells 111 included in the sense region 21 to each other.
  • the terminal base regions 18 and 19 and the element isolation region 110 are arranged in the first conductivity type first silicon carbide semiconductor layer 6 at the boundary portion between the sense region 21 and the main region 20. Yes.
  • the termination base regions 18 and 19 and the element isolation region 110 are all of the second conductivity type.
  • the terminal base regions 18 and 19 do not include a source region of the first conductivity type.
  • a source electrode 10 is disposed on the termination base regions 18 and 19, and is electrically connected to the source electrode 10 of the unit cell 111 by the upper wiring 15. Therefore, the terminal base regions 18 and 19 and the source region 8 of the unit cell 111 are at the same potential.
  • Termination base regions 18 and 19 constitute first silicon carbide semiconductor layer 6 and a PN diode.
  • the element isolation region 110 is disposed between the termination base region 18 and the termination base region 19.
  • the source electrode 10 is not disposed on the element isolation region 110, and the potential of the element isolation region 110 is a floating potential.
  • the element isolation region 110 prevents a current from flowing between the sense region 21 and the main region 20.
  • the second silicon carbide semiconductor layer 11 is not disposed on the element isolation region 110 and the end portions of the termination base regions 18 and 19. Thereby, it is possible to prevent a current from flowing between main region 20 and sense region 21 through second silicon carbide semiconductor layer 11, and a current flowing through sense region 21 is separated from a current flowing through main region 20. It can be detected separately.
  • the gate electrodes 13 of adjacent unit cells 111 are electrically connected to each other by a gate wiring (not shown).
  • the gate electrodes 13 in the main region 20 and the sense region 21 are both electrically connected to the gate pad 4.
  • the current flowing through the main region can be indirectly detected from the ratio between the current flowing through the sense region and the number of cells. If the ratio of the number of cells is about 1000, even if the current flowing through the main region is on the order of A, the current flowing through the sense region is on the order of mA. Therefore, a simple circuit that detects a small current of about mA is used. A large current of the order can be detected indirectly.
  • n-type first silicon carbide semiconductor layer 6 is arranged on the main surface of n-type semiconductor substrate 5.
  • the semiconductor substrate 5 for example, an offcut substrate in which the 4H—SiC (0001) plane is turned off by 4 ° in the [11-20] direction is used.
  • the doping concentration of the n-type impurity in the semiconductor substrate 5 is about 1 ⁇ 10 19 cm ⁇ 3 .
  • the doping concentration of the n-type impurity in the first silicon carbide semiconductor layer 6 is about 7 ⁇ 10 15 cm ⁇ 3
  • the thickness of the first silicon carbide semiconductor layer 6 is about 13 ⁇ m.
  • a p-type body region (well region) 7 is arranged on the surface layer of first silicon carbide semiconductor layer 6.
  • the depth of the body region 7 is about 0.8 ⁇ m
  • the doping concentration of the p-type impurity in the body region 7 is 2 ⁇ 10 18 to 2 ⁇ 10 19 cm ⁇ 3 .
  • An n-type source region 8 is disposed in the body region 7.
  • the depth of the source region 8 is about 0.2 ⁇ m
  • the doping concentration of the n-type impurity in the source region 8 is about 5 ⁇ 10 19 cm ⁇ 3 .
  • a p-type contact region 9 is disposed on the surface layer of the body region 7.
  • the depth of the contact region 9 is about 200 nm
  • the doping concentration of the p-type impurity in the contact region 9 is about 2 ⁇ 10 20 cm ⁇ 3 .
  • a source electrode 10 is disposed in contact with a part of the source region 8 and a part of the contact region 9.
  • the source electrode 10 is made of nickel silicide formed by heat treatment of nickel having a thickness of about 100 nm, for example.
  • the source electrode 10 is in ohmic contact with the source region 8 and the contact region 9.
  • a second silicon carbide semiconductor layer 11 is disposed on the surface of first silicon carbide semiconductor layer 6 including source region 8 and body region 7.
  • the second silicon carbide semiconductor layer 11 is an epitaxial layer formed by epitaxial growth on the first silicon carbide semiconductor layer 6, for example.
  • the thickness of second silicon carbide semiconductor layer 11 is 75 nm or less, and n-type in second silicon carbide semiconductor layer 11 is used.
  • the doping concentration of impurities may be at least 1 ⁇ 10 18 cm -3.
  • the second silicon carbide semiconductor layer 11 is composed of a single n-type layer, if the doping profile varies, the forward threshold voltage and the rising voltage of the channel diode vary greatly.
  • the thickness of second silicon carbide semiconductor layer 11 may be reduced in the sacrificial oxidation and gate oxidation steps. Due to variations in the amount of decrease in the thickness of the second silicon carbide semiconductor layer 11 in the manufacturing process, variations in electrical characteristics of the semiconductor device 1 such as a rising voltage in the reverse direction of the threshold voltage in the forward direction occur. Therefore, by laminating a low-concentration doped layer on the surface of the n-type impurity layer, variations in electrical characteristics of the semiconductor device 1 can be reduced.
  • the growth rate may not be stable at the initial stage of growth, and the impurity concentration may not be stable.
  • an undoped layer or a low-concentration doped layer of residual nitrogen is grown without flowing a dopant gas at the initial stage of growth, and then a high-concentration n-type impurity layer is grown after the growth rate is stabilized. Good. In this way, fluctuations in impurity concentration due to the unstable growth rate at the initial growth can be reduced.
  • second silicon carbide semiconductor layer 11 has a laminated structure including a bottom layer made of an undoped or low impurity concentration n-type layer, a high concentration n-type impurity layer, and a cap layer made of an undoped or low impurity concentration n-type layer. There may be.
  • the thickness of each layer is, for example, about 10 to 50 nm for the bottom layer, 15 to 30 nm for the high-concentration n-type impurity layer, and 10 to 100 nm for the cap layer.
  • the n-type impurity concentration of each layer is, for example, less than 1 ⁇ 10 17 cm ⁇ 3 for the bottom layer, 1 ⁇ 10 18 to 1 ⁇ 10 19 cm ⁇ 3 for the high-concentration n-type impurity layer, It is less than 1 ⁇ 10 17 cm ⁇ 3 .
  • the impurity concentration of each layer is not necessarily constant, and may be distributed in the film thickness direction of each layer.
  • a gate insulating film 12 is disposed on the second silicon carbide semiconductor layer 11.
  • the thickness of the gate insulating film 12 is about 70 nm.
  • a gate electrode 13 is disposed on the gate insulating film 12.
  • the gate electrode 13 is, for example, n-type poly-Si doped with phosphorus at about 7 ⁇ 10 20 cm ⁇ 3 , and the thickness of the gate electrode 13 is about 500 nm.
  • An interlayer insulation film 14 is disposed on the gate electrode 13.
  • the interlayer insulating film 14 is made of, for example, a silicon oxide film.
  • the thickness of the interlayer insulating film 14 is about 1 ⁇ m.
  • An upper wiring 15 that is electrically connected to the source electrode 10 is disposed on the interlayer insulating film 14.
  • the upper wiring 15 is made of aluminum, for example.
  • the thickness of the upper wiring 15 is about 4 ⁇ m.
  • a drain electrode 16 that is in ohmic contact with the semiconductor substrate 5 is disposed on the back surface of the semiconductor substrate 5.
  • the drain electrode 16 is made of, for example, titanium silicide formed by heat treatment of Ti having a thickness of about 150 nm.
  • a back electrode 17 for die bonding is disposed on the drain electrode 16.
  • the back electrode 17 is made of, for example, titanium having a thickness of about 100 nm, nickel having a thickness of about 300 nm, and silver having a thickness of about 700 nm from the side close to the drain electrode 16.
  • the unit cell since the unit cell has the following configuration, the unit cell has a function of a field effect transistor and a function of a diode.
  • FIG. 28 (a) is a cross-sectional view of the unit cell 111
  • FIG. 28 (b) is a diagram showing the distribution of conduction band energy during reverse operation at AA ′ in FIG.
  • FIG. 28C is a diagram showing the distribution of the conduction band energy during the forward operation at AA ′ in FIG.
  • the region on the left side of the left dotted line is the conduction band energy distribution of the portion of the second silicon carbide semiconductor layer 11 located on the source region 8
  • the region between the dotted lines is the channel conduction band energy distribution
  • the region on the right side of the right dotted line is the conduction band energy distribution of the portion of the second silicon carbide semiconductor layer 11 located on the JFET region.
  • the part on the body region is a channel
  • the region between two adjacent body regions is a JFET region.
  • Vgs 0.
  • Vds 0, the conduction band energy distribution of A-A ′ is indicated by the lowermost curve in the graph shown in FIG.
  • second silicon carbide semiconductor layer 11 is at a potential of Vf0 with respect to the source potential.
  • Vds 0, the potential of the portion of the second silicon carbide semiconductor layer 11 located on the JFET region is Vf0 lower than the potential of the channel, so that the electrons are on the JFET region of the second silicon carbide semiconductor layer 11. Cannot flow into the channel from where it is located.
  • Vds if Vds is negative, the potential of the portion of the second silicon carbide semiconductor layer 11 located on the JFET region becomes higher in the second silicon carbide semiconductor layer 11 as shown by the arrow in FIG. It rises higher than the potential of the portion located on the source region 8.
  • Vds ⁇ Vf0
  • the potential of the portion of the second silicon carbide semiconductor layer 11 located on the JFET region becomes higher than the channel potential, so that the location of the second silicon carbide semiconductor layer 11 on the JFET region is increased. Electrons flow into the portion of second silicon carbide semiconductor layer 11 located on source region 8 through the channel from the portion to be formed. That is, a reverse current flows through the unit cell 111. This operation is a diode operation, and Vf0 is a rising voltage of the channel diode.
  • the drain has a positive potential with respect to the source.
  • the channel has a higher energy and a barrier than the portion of the second silicon carbide semiconductor layer 11 located on the source region 8, so that electrons are present in the second silicon carbide semiconductor layer 11.
  • the portion located on the source region 8 does not flow into the channel.
  • Vgs increases, the channel energy decreases as shown by the arrow in FIG.
  • FIG. 29 is a schematic diagram showing a potential distribution in the depth direction of a unit cell in the present disclosure.
  • FIG. 29A is a cross-sectional view of the unit cell
  • FIG. 29B is a potential distribution diagram at C-C ′ in FIG.
  • the horizontal axis of the potential distribution diagram indicates which region of the unit cell corresponds.
  • the horizontal axis is the depth based on the interface between the gate insulating film 12 and the gate electrode 13.
  • the vertical axis represents the potential ( ⁇ ) based on the source potential.
  • This potential distribution can be calculated from Poisson's equation.
  • the impurity concentration of the first conductivity type of the second silicon carbide semiconductor layer 11 is Nd, The film thickness is d.
  • the impurity concentration of the body region 7 is Nb.
  • the surface of body region 7 that is in contact with second silicon carbide semiconductor layer 11 is depleted, and depletion layer 700 having a thickness y is formed.
  • a depletion layer extending from the interface with the body region and a depletion layer extending from the interface with the gate insulating film are formed in second silicon carbide semiconductor layer 11.
  • the thickness of second silicon carbide semiconductor layer 11 is set so that these depletion layers overlap.
  • the entire second silicon carbide semiconductor layer 11 is depleted.
  • FIG. 30 illustrates the threshold voltage Vth of the transistor and the rising voltage
  • the impurity concentration of the body region 7 is changed to 2 ⁇ 10 18 cm ⁇ 3 , 5 ⁇ 10 18 cm ⁇ 3 , 1 ⁇ 10 19 cm ⁇ 3 , and 2 ⁇ 10 19 cm ⁇ 3 .
  • threshold voltage Vth also changes.
  • threshold voltage Vth is set to about 3 V by appropriately changing the impurity concentration of second silicon carbide semiconductor layer 11. Yes.
  • of the channel diode can be reduced by setting the impurity concentration of the body region to 1 ⁇ 10 18 cm ⁇ 3 or more.
  • the rising voltage of the body diode is about 2.7V.
  • the impurity concentration of the body region may be 2 ⁇ 10 18 cm ⁇ 3 or more.
  • the horizontal axis represents the threshold voltage Vth of the forward current
  • the vertical axis represents the absolute value (
  • the concentration of the p-type body region (well region) is 1 ⁇ 10 19 cm ⁇ 3 and the thickness of the gate insulating film is fixed at 70 nm.
  • the thickness range of second silicon carbide semiconductor layer 11 is 20 nm or more and 70 nm or less, and the impurity concentration range of second silicon carbide semiconductor layer 11 is 1 ⁇ 10 17 cm ⁇ 3 or more and 4 ⁇ 10 18 cm ⁇ . 3 or less.
  • FIG. 31 shows that, for example, by decreasing the thickness of the channel epilayer and increasing the impurity concentration of the channel epilayer, it is possible to increase Vth while keeping
  • the thickness of the channel epi layer corresponding to the correlation line passing through the intersection of Vth 5V and
  • the thickness d of the second silicon carbide semiconductor layer 11 is at 20nm or more 70nm or less, and if the impurity concentration Nd of 1 ⁇ 10 17 cm -3 or more 4 ⁇ 10 18 cm -3 or less, the threshold voltage It can be seen that the rise voltage
  • the film thickness t of the gate oxide film may be 20 nm or more, or 100 nm or less. If the thickness t of the gate oxide film is 100 nm or less, a good quality oxide film can be formed by thermal oxidation without requiring a long time.
  • the second silicon carbide semiconductor layer 11 is described as a single layer having a uniform impurity concentration Nd for simplicity. However, if the average impurity concentration is Nd, the second silicon carbide semiconductor layer 11 is distributed in the impurity concentration. There may be.
  • the body region does not need to have a uniform impurity concentration distribution, and at least the region extending from the depletion layer from the interface with the second silicon carbide semiconductor layer 11 should satisfy the above concentration.
  • the region of at least 100 nm from the interface with the second silicon carbide semiconductor layer 11 may be in the impurity concentration range.
  • FIGS. 2 to 4 are cross-sectional views illustrating the method for manufacturing the semiconductor device according to the present embodiment.
  • an n-type semiconductor substrate 5 is prepared.
  • the semiconductor substrate 5 for example, an offcut substrate in which the 4H—SiC (0001) plane is turned off by 4 ° in the [11-20] direction is used.
  • an n-type first silicon carbide semiconductor layer 6 is epitaxially grown on the semiconductor substrate 5.
  • the first silicon carbide semiconductor layer 6 is made of, for example, 4H—SiC.
  • the n-type impurity concentration in first silicon carbide semiconductor layer 6 is made lower than the n-type impurity concentration in semiconductor substrate 5.
  • the body region 7 is formed.
  • an electric field relaxation ring Field Limited Ring: FLR
  • a sense base termination base region 18, a main region termination base region 19, and an element isolation region 110 are formed in the termination region of the semiconductor device 1.
  • FLR Field Limited Ring
  • the body region 7, the termination base region 18 of the sense region, the termination base region 19 of the main region, and the element isolation region 110 are formed with the same p-type dopant concentration and the same depth.
  • the present invention is not limited to this, and each region may be formed individually. When each region is formed individually, the p-type dopant concentration and depth can be set individually.
  • a source region 8 is formed by implanting nitrogen ions into the body region 7 using a mask (not shown), and the body using another mask (not shown).
  • a contact region 9 is formed by implanting Al ions into the region 7.
  • the mask is removed and activation annealing is performed. The activation annealing is performed, for example, for about 30 minutes at a temperature of about 1700 ° C. in an inert atmosphere.
  • the second silicon carbide semiconductor layer 11 is epitaxially grown on the entire surface of the first silicon carbide semiconductor layer 6 including the body region 7, the source region 8, and the contact region 9. Form.
  • Gate insulating film 12 is formed on the surface of second silicon carbide semiconductor layer 11 by thermal oxidation.
  • a polycrystalline silicon film 113 doped with about 7 ⁇ 10 20 cm ⁇ 3 of phosphorus is deposited on the surface of the gate insulating film 12.
  • the thickness of the polycrystalline silicon film 113 is, for example, about 500 nm.
  • a gate electrode 13 is formed by removing a part of the polycrystalline silicon film 113 by dry etching using a mask (not shown).
  • the chemical vapor deposition is performed on the interlayer insulating film 14 made of SiO 2 so as to cover the surface of the gate electrode 13 and the surface of the first silicon carbide semiconductor layer 6. It deposits by (Chemical Vapor Deposition: CVD) method.
  • the thickness of the interlayer insulating film 14 is 1.5 ⁇ m, for example.
  • the interlayer insulating film 14 on the surface of the contact region 9 and a part of the surface of the source region 8 is removed by dry etching using a mask (not shown). As a result, the via hole 114 is formed.
  • a nickel film having a thickness of, for example, about 50 nm is formed on the interlayer insulating film 14 and then etched to leave the inside of the via hole 114 and a part of the periphery thereof. Remove the nickel film. After the etching, heat treatment is performed, for example, at 950 ° C. for 5 minutes in an inert atmosphere to react nickel with the silicon carbide surface. Thereby, the source electrode 10 made of nickel silicide is formed.
  • the drain electrode 16 is formed by depositing nickel on the entire back surface 5b of the semiconductor substrate 5 and performing the same heat treatment.
  • the semiconductor device 1 (Evaluation of threshold voltage and rising voltage of semiconductor devices) The semiconductor device 1 according to the present embodiment was prototyped and the electrical characteristics were evaluated.
  • the n-type impurity concentration in the body region 7 was 2 ⁇ 10 18 cm ⁇ 3 and the thickness of the gate insulating film 12 was 70 nm.
  • Second silicon carbide semiconductor layer 11 had a structure in which an undoped layer having a thickness of 75 nm was stacked on an n-type impurity layer having an n-type impurity concentration of 1.1 ⁇ 10 18 cm ⁇ 3 .
  • the ratio of the number of unit cells in the main area to the sense area is 34.
  • the forward threshold voltage Vth and the reverse rising voltage Vf of the prototype semiconductor device 1 were evaluated using a prober and a semiconductor parameter analyzer.
  • FIG. 5 is a graph showing Iss-Vgs and Ism-Vgs curves in the forward direction of the prototype semiconductor device 1.
  • the vertical axis on the left is the source current Ism in the main region
  • the vertical axis on the right is the source current Iss in the sense region.
  • black circle data indicates the source current of the main region
  • white square data indicates the source current of the sense region.
  • the threshold voltage in the forward direction was obtained from Vgs when the reference current was obtained.
  • the value of the reference current different values were used for the main region and the sense region according to the cell number ratio.
  • the reference current in the main region was 1 mA, and 0.029 mA, which is a value obtained by dividing this by 34 of the cell number ratio, was used as the reference current in the sense region.
  • the threshold voltage of the main region was 4.05 V
  • the threshold voltage of the sense region was 3.99 V, and both values were almost the same.
  • the threshold voltage has a negative temperature characteristic, a threshold voltage of about 1 V can be maintained even at 150 ° C. if the threshold voltage is 3 V or more at room temperature. From this result, it was found that the prototype semiconductor device 1 can perform a normally-off operation and secure a noise margin in the range from room temperature to 150 ° C.
  • FIG. 6 is a graph showing Iss-Vds and Ism-Vds curves in the reverse direction of the prototype semiconductor device 1.
  • the left vertical axis is the source current -Ism in the main region
  • the right vertical axis is the source current -Iss in the sense region.
  • black circle data indicates the source current of the main region
  • white square data indicates the source current of the sense region.
  • the rising voltage in the reverse direction was obtained from Vds when the reference current was obtained.
  • the value of the reference current was set to ⁇ 1 mA in the main region, and ⁇ 0.029 mA, which was obtained by dividing this by 34 of the cell number ratio, was set as the reference current in the sense region.
  • the rising voltage of the main region was ⁇ 0.74 V
  • the rising voltage of the sense region was ⁇ 0.7 V, and both were almost the same.
  • the rising voltage of the body diode composed of body region 7 and first silicon carbide semiconductor layer 6 is about 2.5 V, which is the value of the built-in potential of the PN junction of silicon carbide
  • the prototype semiconductor device 1 It was found that the rising voltage in the reverse direction of was lower than that of the body diode. From this result, the reverse current is not a body diode but a current obtained by flowing through a channel diode in which current flows from the source electrode 10 to the drain electrode 16 via the second silicon carbide semiconductor layer 11. Recognize.
  • FIG. 7 is a diagram showing a circuit configuration of the measurement system 70 for evaluating the forward current flowing simultaneously in the main region 20 and the sense region 21 of the semiconductor device 1 according to the present embodiment.
  • the substrate 72 on which the semiconductor device 1 is mounted includes a drain terminal 74, a gate terminal 76, a main region source terminal 78, a sense region source terminal 79, and a Kelvin terminal 80.
  • a Vcc power supply 22 is connected in series between the drain terminal 74 and the main region source terminal 78.
  • the main region source pad 2 of the main region 20 is connected to the main region source terminal 78 and the Kelvin terminal 80 on the substrate.
  • the current Ism flowing through the main region 20 flows from the main region source pad 2 to the main region source terminal 78, but does not flow from the main region source pad 2 to the Kelvin terminal 80.
  • the sense region source pad 3 of the sense region 21 is connected to the sense region source terminal 79. It is connected to the Kelvin terminal 80.
  • the gate pads 4 of the main region 20 and the sense region 21 are connected to the gate terminal 76.
  • the gate terminal 76 is connected to the gate driver 23 through the gate resistor 26.
  • the reference potential of the gate driver 23 is the potential of the Kelvin terminal 80. Since only a small current from the sense region 21 flows through the Kelvin terminal 80, the potential is almost equal to the potential of the source electrode in the main region 20.
  • a gate driver power supply 24 is connected to the gate driver 23. A gate-source voltage determined by the voltage of the gate driver power supply 24 is applied to both the main region 20 and the sense region 21 in accordance with the output from the pulse signal generator 25.
  • the small current probe 28 is disposed between the sense region source pad 3 of the sense region 21 and the Kelvin terminal, and measures a current Iss flowing through the sense region 21 (hereinafter abbreviated as a sense region current Iss). After passing through the Kelvin terminal 80, the sense region current Iss flows together with the main region current Ism to the main region source terminal 78.
  • the large current probe 27 is disposed between the main region source pad 2 and the main region source terminal 78, and the total value of the sense region current Iss and the main region current Ism is measured.
  • the voltmeter 29 monitors the voltage between the drain terminal 74 and the source terminal 78.
  • FIG. 8 is a graph showing the results of evaluating the forward current of the semiconductor device 1 when the ambient temperature Ta is 25 ° C.
  • the horizontal axis represents the main region current Ism
  • the left vertical axis represents the sense region current Iss
  • the right vertical axis represents the ratio Ism / Iss of the main region current Ism to the sense region current Iss.
  • data represented by black circles represents the sense region current Iss
  • data represented by white squares represents the ratio Ism / Iss of the main region current Ism with respect to the sense region current Iss.
  • FIG. 8 clearly shows that the sense region current Iss is proportional to the main region current Ism.
  • the ratio of the main region current Ism to the sense region current Iss is about 32, which is almost equal to the cell number ratio of 34.
  • FIG. 9 is a graph showing the results of evaluating the forward current of the semiconductor device 1 when the ambient temperature Ta is ⁇ 40 ° C., 25 ° C., 85 ° C., and 150 ° C.
  • the horizontal axis represents the main region current Ism
  • the vertical axis represents the ratio of the main region current Ism to the sense region current Iss.
  • the ratio of the main region current Ism to the sense region current Iss was almost constant regardless of the magnitude of the sense region current Iss. .
  • the average value of the ratio of the main region current Ism to the sense region current Iss is 32.2, which is almost equal to the cell number ratio.
  • the minimum value of the ratio of the main region current Ism to the sense region current Iss was 30.8, the maximum value was 33.5, and the average absolute deviation was a small value of 1.7%.
  • the definition of the average absolute deviation is as the following formula (3).
  • FIG. 10 is a diagram showing a circuit configuration of a measurement system 90 for evaluating reverse currents that simultaneously flow through the main region 20 and the sense region 21 of the semiconductor device 1 according to the present embodiment.
  • the semiconductor device 1 and the switching FET 30 are connected in series. At this time, the semiconductor device 1 is connected in the opposite direction to the switching FET 30. That is, the main region source terminal 78 of the substrate 72 on which the semiconductor device 1 is mounted is connected to the source electrode of the switching FET 30.
  • the positive terminal of the Vcc power supply 22 is connected to the drain electrode of the switching FET 30, and the negative terminal of the Vcc power supply 22 is connected to the drain terminal 74 of the substrate 72. Since the gate terminal 76 of the substrate 72 is connected to the Kelvin terminal 80, Vgs is fixed at 0V.
  • the gate electrode of the switching FET 30 is connected to the gate driver 23 via the gate resistor 26.
  • a gate driver power supply 24 is connected to the gate driver 23, and each reference potential terminal is connected to a Kelvin terminal 80.
  • the gate driver 23 outputs a gate voltage determined by the voltage of the gate driver power supply to the switching FET 30. Only when the switching FET 30 is turned on, a reverse voltage obtained by subtracting the potential drop of the switching FET 30 from the output voltage of the Vcc power supply 22 is applied between the drain terminal 74 and the main region source terminal 78 of the substrate 72 in the reverse direction. Current flows.
  • the current flowing through the switching FET 30 is divided into a main region current -Ism in the reverse direction and a sense region current -Iss in the reverse direction at the main region source pad 2.
  • a sense region current -Iss in the reverse direction passes through the Kelvin terminal 80 from the main region source pad 2 and flows through the sense region 21.
  • the small current probe 28 is disposed between the sense region source pad 3 of the sense region 21 and the Kelvin terminal 80, and measures the sense region current -Iss in the reverse direction.
  • the large current probe 27 is disposed between the main region source pad 2 and the main region source terminal 78, and the total value of the sense region current -Iss in the reverse direction and the main region current -Ism in the reverse direction is measured.
  • the voltmeter 29 monitors the voltage between the drain terminal 74 and the main region source terminal 78.
  • the reverse main region current ⁇ Ism is in the range from 0 to 40 A.
  • the direction sense region current -Iss was measured.
  • FIG. 11 is a graph showing the results of evaluating the reverse current of the semiconductor device 1 when the ambient temperature Ta is 25 ° C.
  • the horizontal axis is the reverse main region current -Ism
  • the left vertical axis is the reverse sense region current -Iss
  • the right vertical axis is the reverse main region current -Iss.
  • the data represented by black circles represents the sense region current ⁇ Iss in the reverse direction
  • the data represented by black squares represents the ratio Ism / Iss of the main region current ⁇ Ism in the reverse direction to the sense region current ⁇ Iss in the reverse direction. ing.
  • FIG. 11 shows the results of evaluating the reverse current of the semiconductor device 1 when the ambient temperature Ta is 25 ° C.
  • the horizontal axis is the reverse main region current -Ism
  • the left vertical axis is the reverse sense region current -Iss
  • the ratio of the reverse main region current -Ism to the reverse sense region current -Iss is about 32, which is substantially equal to the cell number ratio of 34 as in the forward direction.
  • FIG. 12 is a graph showing the results of evaluating the reverse current of the semiconductor device 1 when the ambient temperature Ta is ⁇ 40, 25 ° C., 85 ° C., and 150 ° C.
  • the horizontal axis indicates the reverse main region current ⁇ Ism
  • the vertical axis indicates the ratio Ism / Iss of the reverse main region current ⁇ Ism to the reverse sense region current ⁇ Iss.
  • the ratio of the reverse main region current ⁇ Ism to the reverse sense region current ⁇ Iss is the reverse sense region current ⁇ It was almost constant regardless of the size of Iss.
  • the average value of the ratio of the main region current -Ism in the reverse direction to the sense region current -Iss in the reverse direction is 32.4, which is almost equal to the ratio of the main region current Ism to the sense region current Iss in the forward direction.
  • the minimum value of the ratio of the reverse main region current -Ism to the reverse sense region current -Iss was 31.1, the maximum value was 33.8, and the average absolute deviation was a small value of 2.3%. .
  • the semiconductor device disclosed in this specification functions as a diode having a high threshold voltage Vth in the forward direction and a rising voltage Vf of less than 1V in the reverse direction.
  • the ratio between the current flowing in the main region and the current flowing in the sense region of the semiconductor device disclosed in this specification is constant in a wide current range and a wide temperature range, and in both the forward and reverse directions. The relationship of (1) is satisfied. Therefore, by using the semiconductor device disclosed in this specification, a large current flowing in the main region can be detected with high accuracy by measuring a small current flowing in the sense region.
  • the ratio of the number of cells in the main area to the sense area is not limited to the above value, and may be larger than this. However, if the sense region current Iss is 100 mA or less, the sense region current Iss can be handled by an inexpensive general-purpose operational amplifier, and the current can be detected by a simple current-voltage conversion circuit using the general-purpose operational amplifier. There is.
  • FIG. 13 is a diagram showing a circuit configuration of a measurement system 200 for measuring the forward current and the reverse current of the semiconductor device according to the present embodiment using a current-voltage conversion circuit including an operational amplifier.
  • the measurement system 200 includes an operational amplifier 35 having a non-inverting input terminal 35p, an inverting input terminal 35q, and an output terminal 35r.
  • the drain electrodes of the main region 33 and the sense region 34 of the semiconductor device 1 are connected to one end of the load 37 via the drain terminal 204.
  • the other end of the load 37 is connected to the Vdd power supply line 31.
  • the source electrode of the main region 33 is connected to the return line 32 of the Vdd power supply via the main region source terminal 208.
  • the Kelvin terminal 210 branched from the source electrode of the main region 33 is connected to the non-inverting input terminal 35p of the operational amplifier 35.
  • the source electrode of the sense region 34 is connected to the inverting input terminal 35q of the operational amplifier 35 via the sense region source terminal 209.
  • the current flowing through the load 37 is divided into a current Ism flowing through the main region 33 and a current Iss flowing through the sense region 34.
  • the input impedance of the operational amplifier 35 is extremely large, neither the current Ism flowing in the main region 33 nor the current Iss flowing in the sense region 34 flows into the non-inverting input terminal 35p and the inverting input terminal 35q of the operational amplifier 35.
  • the Kelvin terminal 210 Since the current Ism flowing through the main region 33 does not flow into the Kelvin terminal 210, the Kelvin terminal 210 is not affected by the potential drop due to the current Ism flowing through the main region 33. Therefore, the potential of the Kelvin terminal 210, that is, the potential of the non-inverting input terminal 35p of the operational amplifier 35 matches the potential of the main region source pad 2 of the main region 33 with high accuracy.
  • a sense resistor 36 is connected between the output terminal 35 r and the inverting input terminal of the operational amplifier 35.
  • the gate electrodes of the main region 20 and the sense region 21 are connected to the gate terminal 206.
  • the gain of the operational amplifier 35 is ideally infinite and is extremely large in reality. If there is a difference in potential between the inverting input terminal 35q and the non-inverting input terminal 35p, a potential proportional to the difference appears at the output terminal 35r, and negative feedback is performed so that this lowers the potential at the inverting input terminal 35q through the sense resistor 36. Take it. As a result, the potential of the inverting input terminal 35q becomes equal to the potential of the non-inverting input terminal 35p. Accordingly, the potentials of the source electrodes of the main region 33 and the sense region 34 are matched, and the same gate-source voltage is applied to both the main region 33 and the sense region 34. In order to make negative feedback more stable, the resistance value of the sense resistor 36 is preferably in the order of k ⁇ .
  • Vsense ⁇ Iss ⁇ Rsense (4)
  • Iss is a current flowing in the sense region 34
  • Rsense is a resistance value of the sense resistor 36.
  • the right side of the above equation shows a negative value in the case of a so-called forward current in which the current flowing in the sense region 34 flows from the drain to the source, and a positive value in the case of a so-called reverse current that flows from the source to the drain. It becomes the value of.
  • operational amplifiers are classified into a single power supply type that applies only a unipolar power supply voltage and a dual power supply type that applies both positive and negative power supply voltages.
  • the output can take either positive or negative polarity
  • the dual power supply type the output can take both positive and negative polarities. Therefore, in order to measure the forward current and the reverse current, it is preferable to use a dual power supply type operational amplifier. That is, it is preferable to use a dual power supply type for the operational amplifier 35.
  • the operational amplifier cannot output a voltage exceeding the power supply voltage.
  • Many general-purpose operational amplifiers have a power supply voltage of 12 to 15V.
  • the sense resistor is in the order of k ⁇ , the current that can be passed through the operational amplifier is on the order of 100 mA or less. In this embodiment, when the sense resistor is less than 100 ⁇ , the negative feedback of the operational amplifier is not stable.
  • an operational amplifier is not necessarily used as the current-voltage conversion circuit.
  • a current sensor using the Hall effect or a current sensor such as a Rogowski coil can be used instead of the operational amplifier.
  • the magnitude of the reverse current can be controlled by controlling the gate voltage. it can.
  • FIG. 14 is a graph showing the gate voltage dependence of the reverse direction Ism-Vds curve of the main region in the semiconductor device 1 according to the present embodiment.
  • the horizontal axis represents the negative drain voltage ⁇ Vds
  • the vertical axis represents the reverse current ⁇ Ism flowing in the main region.
  • data represented by white squares represents data when Vgs is 0V
  • data represented by black circles represents data when Vgs is ⁇ 5V.
  • the reverse current flowing in the main region can be reduced by making the gate voltage more negative.
  • FIG. 14 shows the graph showing the gate voltage dependence of the reverse direction Ism-Vds curve of the main region in the semiconductor device 1 according to the present embodiment.
  • the horizontal axis represents the negative drain voltage ⁇ Vds
  • the vertical axis represents the reverse current ⁇ Ism flowing in the main region.
  • data represented by white squares represents data when Vgs is 0V
  • data represented by black circles represents data when Vgs is ⁇ 5V.
  • the semiconductor device disclosed in this specification not only the forward current corresponding to the transistor current but also the reverse current corresponding to the diode current can be detected by using the sense region. Therefore, the semiconductor device disclosed in this specification can detect both the current flowing through the transistor and the current flowing through the free wheel diode with a simple configuration.
  • Patent Document 1 discloses that a reverse current flowing in a body diode of a low-side MOSFET is detected in a conventional switching circuit.
  • the reverse current cannot be controlled by the gate voltage.
  • a silicon carbide semiconductor when a current is passed through a PN junction constituting the body diode, the stacking fault grows and the characteristics of the body diode deteriorate.
  • the rising voltage Vf of the body diode is as large as about 2.5V.
  • the reverse current is detected by using a channel diode instead of a body diode, so that characteristic deterioration due to growth of stacking faults does not occur, and the diode rising voltage Vf is low. Further, the semiconductor device disclosed in this specification has a unique effect that the reverse current can be controlled by the gate voltage.
  • FIG. 15A is a plan view showing an outline of the semiconductor device according to the present embodiment.
  • FIG. 15B is a cross-sectional view schematically showing the AA ′ portion in FIG.
  • FIG. 15C is a cross-sectional view showing an outline of the unit cell in FIG.
  • FIG. 15D is a cross-sectional view showing an enlarged boundary portion between the main region 320 and the sense region 321 in FIG.
  • the unit cell 111 is a planar gate type MISFET, whereas in the semiconductor device 301 according to the present embodiment, the unit cell 311 is a trench gate type MISFET. Is different.
  • symbol is provided about the component which is common in the semiconductor device 1 which concerns on 1st Embodiment, and description is abbreviate
  • the semiconductor device 301 includes a sense region 321 and a main region 320.
  • Each of the sense region 321 and the main region 320 includes a plurality of unit cells 311 connected in parallel to each other.
  • the termination base region 18, 19 and an element isolation region 110 are arranged in the first conductivity type first silicon carbide semiconductor layer 6 at the boundary portion between the sense region 321 and the main region 320.
  • the termination base regions 18 and 19 and the element isolation region 110 are all of the second conductivity type.
  • the termination base regions 18 and 19 do not include a source region of the first conductivity type. When the source region is disposed in the termination base regions 18 and 19, a large current flows through the parasitic bipolar formed by the source region, the termination base regions 18 and 19 and the first silicon carbide semiconductor layer 6, and the semiconductor device 301. This is because there is a possibility of destruction.
  • a source electrode 10 is disposed on the termination base regions 18 and 19, and is electrically connected to the source electrode 10 of the unit cell 311 by the upper wiring 15. Therefore, the terminal base regions 18 and 19 and the source region 8 of the unit cell 311 have the same potential.
  • Termination base regions 18 and 19 constitute first silicon carbide semiconductor layer 6 and a PN diode.
  • the element isolation region 110 is disposed between the termination base region 18 and the termination base region 19.
  • the source electrode 10 is not disposed on the element isolation region 110, and the potential of the element isolation region 110 is a floating potential.
  • the element isolation region 110 prevents a current from flowing between the sense region 321 and the main region 320.
  • the second silicon carbide semiconductor layer 11 is not disposed on the element isolation region 110 and the end portions of the termination base regions 18 and 19. Thereby, it is possible to prevent a current from flowing between main region 320 and sense region 321 through second silicon carbide semiconductor layer 11, so that a current flowing through sense region 321 is reduced from a current flowing through main region 320. It becomes possible to detect them in distinction.
  • Second silicon carbide semiconductor layer 11 is disposed on the side and bottom surfaces of trench 112 and part of the surface of source region 8.
  • Second silicon carbide semiconductor layer 11 is, for example, an epitaxial layer formed by epitaxial growth so as to cover the bottom and side surfaces of trench 112 of first silicon carbide semiconductor layer 6 and the periphery of trench 112.
  • second silicon carbide semiconductor layer 11 is formed of a single n-type layer, for example, the thickness of second silicon carbide semiconductor layer 11 is 75 nm or less, and n-type in second silicon carbide semiconductor layer 11 is used.
  • Second silicon carbide semiconductor layer 11 may be a layer in which an undoped layer is stacked on the surface of an n-type impurity layer.
  • the thickness of second silicon carbide semiconductor layer 11 may be reduced in the sacrificial oxidation and gate oxidation steps. Variations in the amount of decrease in the film thickness of the second silicon carbide semiconductor layer 11 during the manufacturing process cause variations in the electrical characteristics of the semiconductor device 301 such as the rising voltage in the reverse direction of the threshold voltage in the forward direction.
  • a gate insulating film 12 is disposed on the second silicon carbide semiconductor layer 11.
  • the thickness of the gate insulating film 12 is about 70 nm.
  • the gate electrode 13 is disposed so as to fill the trench 112.
  • the gate electrode 13 is, for example, n-type poly-Si doped with about 1 ⁇ 10 21 cm ⁇ 3 of phosphorus, and the thickness of the gate electrode 13 is about 500 nm.
  • the channel is formed in the thickness direction of the semiconductor substrate, not in the direction parallel to the main surface of the semiconductor substrate, so that the channel area density can be increased as compared with the planar gate type MISFET. it can. Therefore, if the semiconductor device has the same size, the trench gate type MISFET can increase the flowing current as compared with the planar gate type MISFET. Since the current measurement becomes more difficult as the current increases, if the unit cell in the semiconductor device disclosed in this specification is a trench gate type MISFET, the current flowing in the sense region with a smaller number of cells than the main region Thus, the effect of performing current measurement becomes significant.
  • FIGS. 16 to 18 are cross-sectional views illustrating the method for manufacturing the semiconductor device according to the present embodiment.
  • the step of preparing the semiconductor substrate 5 shown in FIG. 16A and the step of epitaxially growing the first silicon carbide semiconductor layer 6 shown in FIG. 16B are the same as those shown in FIGS. 2A and 2 in the first embodiment. Since it is the same as the process shown in FIG.
  • body region 7 may be formed by implanting aluminum ions or boron ions into first silicon carbide semiconductor layer 6.
  • a source region 8 containing a high-concentration n-type impurity is formed on the surface of the body region 7 by nitrogen ion implantation or epitaxial growth.
  • a p-type contact region 9 reaching the body region 7 is formed by implanting Al ions into the source region 8 using a mask (not shown).
  • activation annealing is performed.
  • the activation annealing is performed in an inert atmosphere at about 1700 to 1800 ° C. for about 30 minutes.
  • Trench 112 is a recess that penetrates source region 8 and body region 7 and reaches first silicon carbide semiconductor layer 6.
  • a second silicon carbide semiconductor layer 11 is formed by epitaxial growth on the entire surface of first silicon carbide semiconductor layer 6 including the bottom and side surfaces of trench 112.
  • gate insulating film 12 is formed on the surface of second silicon carbide semiconductor layer 11 by thermal oxidation.
  • a polycrystalline silicon film having a thickness of about 500 nm doped with, for example, about 7 ⁇ 10 20 cm ⁇ 3 of phosphorus is deposited on the surface of the gate insulating film 12.
  • the polycrystalline silicon film is processed into a desired pattern by dry etching, thereby forming the gate electrode 13 in the trench 112 and a partial region around the trench 112.
  • the process of forming is the same as the process shown in FIG. 3E, FIG. 4A, FIG. 4B, and FIG.
  • the semiconductor device 301 shown in FIG. 15 is obtained as described above.
  • FIG. 19 is a block diagram illustrating a configuration of a load driving system 400 including the inverter 402 according to the present embodiment.
  • the load drive system 400 includes an AC power supply 40, a rectifier circuit 404, an inverter 402, and a load 45.
  • the rectifier circuit 404 includes a diode bridge circuit 406 constituted by four rectifier diodes 42 and a choke coil 41.
  • the AC output voltage from the AC power supply 40 is converted into a direct current through the rectifier diode 42.
  • the choke coil 41 is inserted between the AC power supply 40 and the diode bridge circuit 406 in order to improve the power factor.
  • the inverter 402 includes a three-phase bridge circuit 408, a regenerative power consumption circuit 410, a current-voltage conversion unit 48, a gate voltage control unit 49, a smoothing capacitor 43, and a voltage detection unit 420 that detects the voltage of the smoothing capacitor 43.
  • the three-phase bridge circuit 408 includes upper arms 44a, 44c, 44e and lower arms 44b, 44d, 44f, which are the semiconductor devices described in the first embodiment or the second embodiment.
  • the upper arm 44 a and the lower arm 44 b are connected to each other in series to form a leg 440.
  • the upper arm 44c and the lower arm 44d are connected to each other in series to form a leg 442, and the upper arm 44e and the lower arm 44f are connected to each other in series to form a leg 444.
  • the midpoint of each leg 440, 442, 444 is connected to a load 45.
  • the DC voltage smoothed by the smoothing capacitor 43 is applied to both ends of each leg 440, 442, 444 of the three-phase bridge circuit 408, and is converted into a three-phase AC voltage by the three-phase bridge circuit 408.
  • the three-phase AC voltage output from the three-phase bridge circuit 408 is applied to the load 45.
  • the gate terminals of the semiconductor devices constituting the upper arms 44a, 44c, 44e and the lower arms 44b, 44d, 44f of the legs 440, 442, 444 are connected to a gate voltage control unit 49 that controls the gate voltage.
  • the gate voltage control unit 49 adjusts the gate voltages of the upper arms 44a, 44c, 44e and the lower arms 44b, 44d, 44f of the legs 440, 442, 444 so that a sine wave voltage of a desired frequency is supplied to the load 45. Control individually. Further, the source terminal of the sense region 21 of each semiconductor device is connected to the current-voltage converter 48.
  • the current-voltage converter 48 is connected to the second source pad of the semiconductor device, and outputs a voltage having a value corresponding to the value of the current flowing between the drain pad and the second source pad.
  • the regenerative power consumption circuit 410 includes a resistor 46 for consuming the regenerative current flowing from the load 45 to the inverter 402 as heat, and a switching element 47 for controlling the regenerative current flowing through the resistor.
  • the voltage detector 420 is connected in parallel with the smoothing capacitor 43 and is provided to detect the regenerative current.
  • the gate voltage control unit 49 controls the voltage applied to the gate pad of the semiconductor device based on the voltage output from the current-voltage conversion unit 48 and the voltage detected by the voltage detection unit 420.
  • the current-voltage converter 48 includes current-voltage converters 48L and 48U. 20 and 21 show details of the current-voltage converters 48L and 48U.
  • FIG. 20 is a block diagram of the current-voltage converter 48L connected to the lower arms 44b, 44d, 44f.
  • the current-voltage converter 48L includes three operational amplifiers 35b, 35d, and 35f connected to the lower arms 44b, 44d, and 44f, and feedback resistors 36b, 36d, and 36f, respectively.
  • a positive power supply voltage Vcc and a negative power supply voltage ⁇ Vcc are applied to the respective operational amplifiers 35b, 35d, and 35f.
  • the configuration is the same as that of FIG. 13, and the positive power supply voltage + Vcc supplied to the three operational amplifiers 35b, 35d, and 35f is the same voltage, and may be supplied from the same positive power supply.
  • the negative power supply voltage ⁇ Vcc supplied to the three operational amplifiers 35b, 35d, and 35f is the same voltage, and may be supplied from the same negative power supply.
  • a terminal 481b is provided on the inverting input side of the operational amplifier 35b and is connected to the source pad of the sense region of the semiconductor device of the lower arm.
  • a terminal 482b is provided on the non-inverting input side, and is connected to the Kelvin terminal branched from the source pad of the main region of the semiconductor device of the lower arm 44b.
  • the output of the operational amplifier 35b is provided with a terminal 483b, which is connected to the gate voltage controller 49.
  • a sense resistor 36 is connected to the inverting input and output of the operational amplifier 35b, and a voltage obtained by applying the feedback resistor 36b to the current flowing into the output terminal 481b is output to the output terminal. Since the source pads in the main region of the lower arm semiconductor device are all connected to one electrode of the smoothing capacitor and have the same potential, the reference potential of the power supply voltage applied to the operational amplifier is also equal to the negative potential of the smoothing capacitor. do it.
  • FIG. 21 is a block diagram of a current-voltage converter 48U for the upper arm.
  • the difference from the lower-arm current-voltage converter 48L is that the source potentials of the three semiconductor devices of the upper arm vary depending on the operating state and can take different potentials. Accordingly, since the power supply voltages applied to the operational amplifiers 35a, 35c and 35e are also based on the source potential of the upper arm semiconductor device connected thereto, different power supply voltages + Vcc1, -Vcc1, + Vcc2, -Vcc2, + Vcc3, -Vcc3 give. The rest is the same as the current-voltage conversion unit 48L for the lower arm.
  • FIG. 22 is a functional block diagram showing details of the gate voltage control unit 49.
  • the gate voltage control unit 49 includes a PWM signal generation circuit 51, an overcurrent determination circuit 52, a regenerative current determination circuit 53, a transistor cutoff signal generation circuit 54, a gate negative bias signal generation circuit 55, a regenerative resistance switch control signal generation circuit 56, and A gate signal switching circuit 57 is included.
  • the signal generated by the PWM signal generation circuit 51 is output from the gate voltage control unit 49 as the gate signal of each transistor of the legs 440, 442, and 444. Thereby, a three-phase AC voltage is applied to the load 45 (FIG. 19).
  • the gate voltage control unit 49 determines that an overcurrent has flowed through the semiconductor device, the gate voltage control unit 49 stops the normal gate voltage control of the semiconductor device and shuts off the overcurrent flowing through the semiconductor device. Reduce voltage.
  • the overcurrent determination circuit 52 receives a signal output from the current-voltage converter 48 and compares it with a predetermined forward reference value.
  • the signal output from the current-voltage converter 48 has a voltage value proportional to the value of the current flowing between the drain pad and the second source pad.
  • the current flowing between the drain pad and the second source pad that is, the current flowing through the sense region 21 is proportional to the current flowing through the main region 20 that is the current flowing between the drain pad and the first source pad. Therefore, when the absolute value of the voltage output from the current-voltage converter 48 is larger than a predetermined forward reference value, it can be determined that an overcurrent is flowing through the load.
  • the overcurrent determination circuit 52 determines that an overcurrent flows through the load
  • the overcurrent determination circuit 52 outputs a signal to the transistor cutoff signal generation circuit 54 and the gate signal switching circuit 57.
  • the gate signal switching circuit 57 that has received the signal selects the output of the transistor cutoff signal generation circuit 54, so that the gate voltage control unit 49 has a low gate voltage for blocking the transistor generated by the transistor cutoff signal generation circuit 54. Is output. Thereby, the transistor of the leg in which the overcurrent is detected can be cut off, and the overcurrent can be suppressed from flowing to the load 45.
  • the load 45 is an inductive load
  • the load 45 when the operation of the semiconductor device is stopped from a state in which a forward current flows, a reverse induced electromotive force is generated and a regenerative current that is a reverse current flows.
  • the path through which the regenerative current flows is, for example, a path connecting the channel diode of the upper arm 44 c of the leg 442, the smoothing capacitor 43, the channel diode of the lower arm 44 b of the leg 440, and the load 45 in order from the load 45.
  • the regenerative current determination circuit 53 receives the detection voltage from the voltage detection unit 420 and compares the value of the detection voltage with a predetermined reference voltage value. When the value of the detected voltage exceeds the reference voltage value, the regenerative current determination circuit 53 determines that the voltage of the smoothing capacitor 43 has exceeded the reference voltage value.
  • the regenerative current determination circuit 53 outputs a signal to the regenerative resistance switch control signal generation circuit 56.
  • the regenerative resistance switch control signal generation circuit 56 that has received the signal outputs a signal that causes the switching element 47 provided in the regenerative power consumption circuit 410 to conduct. Thereby, in the regenerative power consumption circuit 410, the switching element 47 is conducted, and the regenerative current flows through the resistor 46, whereby the regenerative power is converted into heat and consumed. For this reason, the voltage of the smoothing capacitor 43, that is, the voltage of the primary power supply becomes excessively high, and the smoothing capacitor 43 can be prevented from being destroyed by the overvoltage.
  • the regenerative current determination circuit 53 also outputs a signal to the gate negative bias signal generation circuit 55 and the gate signal switching circuit 57.
  • the gate signal switching circuit 57 that has received the signal selects the output of the gate negative bias signal generation circuit 55, so that the gate voltage control unit 49 outputs the negative gate voltage generated by the gate negative bias signal generation circuit 55.
  • the resistance of the transistors that are the semiconductor devices of the legs 440, 442, and 444 increases in the reverse direction, and even in the semiconductor devices of the legs 440, 442, and 444, more regenerative current is converted into heat and consumed. .
  • the gate voltage control unit 49 includes both the gate negative bias signal generation circuit 55 and the regenerative resistance switch control signal generation circuit 56, and when it is determined that the regenerative current is a predetermined value or more, Both the gate negative bias signal generation circuit 55 and the regenerative resistance switch control signal generation circuit 56 are operated. However, only one of them may be operated.
  • the gate voltage control unit 49 may not include a circuit that does not operate.
  • FIG. 23A is a timing chart relating to a protection operation when a forward overcurrent flows through a semiconductor device due to a load short-circuit or the like in the inverter of this embodiment, and shows a gate signal of a specific semiconductor device. . From time 0 to t1, the gate is on. At this time, the forward current flowing through the corresponding semiconductor device continues to increase, so the output voltage value corresponding to the forward current decreases. Since the gate is turned off from time t1 to t2, the current of the corresponding semiconductor device does not flow, so the output voltage value does not change.
  • the gate is turned on again at time t2, but when the output voltage value decreases due to a sudden increase in current due to an accident such as a load short circuit and exceeds a forward reference voltage value set in advance at time t3, the overcurrent determination circuit 52 Is turned on, and a gate signal is output so as to cut off the current of the semiconductor device. If the gate is turned off instantaneously, a counter electromotive force of the inductive load is generated, so it is preferable to turn it off gradually. In this way, the forward current of the semiconductor device is reduced to zero.
  • FIG. 23B is a timing chart regarding the protective operation when the motor decelerates and the regenerative current flows from the motor into the smoothing capacitor.
  • the gate signal is turned off and the current once becomes zero, but at time t5, a reverse current that seems to be a regenerative current starts to flow.
  • This reverse current charges the smoothing capacitor and increases the voltage value across it.
  • the output of the regenerative current determination circuit 53 is turned on, and the regenerative resistor switch gate signal is turned on at time t7.
  • the regenerative current flows to the regenerative resistor and becomes heat, and regenerative energy is consumed. As a result, the regenerative current decreases and becomes zero.
  • the overvoltage of the smoothing capacitor is eliminated.
  • FIG. 23C is a time chart showing a protection operation in which the regenerative energy is consumed not only by the regenerative resistor but also by the semiconductor device of the inverter.
  • the semiconductor device disclosed in this specification can increase the resistance of the channel diode of the semiconductor device by changing the gate voltage to the negative side. As a result, conduction loss in the channel diode of the semiconductor device increases, so that regenerative power can be consumed also in the channel diode.
  • the temperature of the semiconductor device rises due to heat when consuming regenerative power and exceeds the absolute maximum rated temperature and becomes inoperable.
  • the semiconductor device disclosed in this specification uses silicon carbide having excellent heat resistance, it is possible to prevent the semiconductor device from becoming inoperable due to heat when consuming regenerative power. it can.
  • FIG. 24 is a graph showing the temperature characteristics of the IV curve in the reverse direction of the semiconductor device disclosed in this specification.
  • the horizontal axis represents the drain-source voltage Vds
  • the vertical axis represents the drain current in the reverse direction.
  • the data represented by a broken line represents the measurement result at room temperature
  • the data represented by a one-dot chain line represents the measurement result at 75 ° C.
  • the data represented by a solid line represents the measurement result at 150 ° C.
  • FIG. 24 indicates that the semiconductor device disclosed in this specification operates as a diode even at a high temperature of 150 ° C.
  • the heat dissipation mechanism provided in 46 can be reduced in size.
  • an inverter according to a fourth embodiment of the present disclosure will be described with reference to the drawings.
  • the inverter of this embodiment is different from the third embodiment in that the regenerative current is not detected by the voltage of the smoothing capacitor but is detected by the reverse current flowing through the semiconductor device.
  • FIG. 25 is a functional block diagram showing the gate voltage control unit 49 in the present embodiment.
  • the gate voltage control unit 49 includes a forward overcurrent determination circuit 52A and a reverse overcurrent determination circuit 52B. In a normal operation state, the output of the PWM signal generation circuit is output as the gate signal of the transistor of the inverter.
  • the output of the current-voltage converter 48 that is, a voltage having a value corresponding to the value of the current flowing between the drain pad and the second source pad is input to the gate voltage controller 49.
  • the output voltage of the current-voltage converter 48 is input to both the forward overcurrent determination circuit 52A and the reverse overcurrent determination circuit 52B.
  • the forward overcurrent determination circuit 52A compares a preset forward reference voltage value with the output voltage value of the current-voltage converter 48, and the absolute value of the output voltage of the current-voltage converter 48 is forward. When it is larger than the reference voltage value, it is determined as a forward overcurrent. In this case, the forward overcurrent determination circuit 52A outputs a signal to the transistor cutoff signal generation circuit 54 and the gate signal switching circuit 57.
  • the gate signal switching circuit 57 that has received the signal selects the output of the transistor cutoff signal generation circuit 54, so that the gate voltage control unit 49 has a low gate voltage for blocking the transistor generated by the transistor cutoff signal generation circuit 54. Is output. Thereby, the transistor of the leg in which the overcurrent is detected can be cut off, and the overcurrent can be suppressed from flowing to the load 45.
  • the reverse overcurrent determination circuit 52B compares the reverse reference voltage value set in advance with the value of the output voltage of the current-voltage converter 48, and the absolute value of the output voltage of the current-voltage converter 48 is the reverse reference voltage. When it is larger than the value, it is determined that a regenerative current is generated. In this case, the reverse overcurrent determination circuit 52B outputs a signal to the regenerative resistance switch control signal generation circuit 56, as in the third embodiment.
  • the regenerative resistance switch control signal generation circuit 56 that has received the signal outputs a signal that causes the switching element 47 provided in the regenerative power consumption circuit 410 to conduct.
  • the reverse overcurrent determination circuit 52B outputs a signal to the gate negative bias signal generation circuit 55 and the gate signal switching circuit 57.
  • the gate signal switching circuit 57 that has received the signal selects the output of the gate negative bias signal generation circuit 55, so that the gate voltage control unit 49 outputs the negative gate voltage generated by the gate negative bias signal generation circuit 55.
  • the resistance of the transistors that are the semiconductor devices of the legs 440, 442, and 444 increases in the reverse direction, and even in the semiconductor devices of the legs 440, 442, and 444, more regenerative current is converted into heat and consumed. .
  • the gate voltage control unit 49 includes both the gate negative bias signal generation circuit 55 and the regenerative resistance switch control signal generation circuit 56, and the regenerative current is based on the value of the output voltage of the current-voltage conversion unit 48. Is determined to be greater than or equal to a predetermined value, both the gate negative bias signal generation circuit 55 and the regenerative resistance switch control signal generation circuit 56 are operated. However, only one of them may be operated.
  • the gate voltage control unit 49 may not include a circuit that does not operate.
  • FIG. 26 is a time chart showing the protective operation when an overcurrent flows in the reverse direction in the inverter of the present embodiment.
  • the gate of the semiconductor device is on, and a forward current flows.
  • the gate signal is turned off, and the current flowing through the semiconductor device once becomes zero.
  • reverse current starts to flow from time t9 (the output voltage value of the current-voltage converter 48 becomes negative), and the output
  • the reverse overcurrent determination circuit is turned on, and the gate of the regenerative resistance switching element 47 is turned on.
  • the regenerative current flows through the resistor 46, and regenerative energy is consumed by the regenerative resistor. Therefore, the current gradually decreases and does not flow.
  • FIG. 27 shows a block diagram of an inverter using conventional semiconductor devices 501a to 501f having a current detection function and not having a channel diode function. Since there is no channel diode, it is necessary to connect the external free-wheeling diode 502 to the semiconductor device of each arm in antiparallel. Although the conventional semiconductor device 501 with a current detection function can detect a forward current, it cannot detect a reverse current flowing in an external reflux diode. Therefore, unlike the fourth embodiment of the present disclosure, the regenerative current cannot be directly detected, and the voltage of the smoothing capacitor is detected by the voltage detection unit 420 or a current detector for an external freewheeling diode is separately provided. If it is not provided, it cannot be determined that the regenerative current is flowing.
  • a reverse current also flows through the channel of the same semiconductor device without providing an external free-wheeling diode, and a small current flows in both the forward current and the reverse current flowing in the main region into the sense region. Can be detected indirectly.
  • the present invention is not limited to this.
  • the first conductivity type may be p-type and the second conductivity type may be n-type.
  • the technology disclosed in the present specification is useful in, for example, a semiconductor device application used for a power converter.
  • it is useful in power semiconductor device applications for mounting on power converters for in-vehicle use and industrial equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inverter Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

 半導体装置は、ゲートパッド、互いに絶縁された第1のソースパッド及び第2のソースパッド、ドレインパッド、メイン領域、並びに順方向電流及び逆方向電流を検出するためのセンス領域を備える。メイン領域及びセンス領域は、並列に接続された複数の単位セルをそれぞれ含み、センス領域に含まれる単位セルの数は、メイン領域に含まれる単位セルの数よりも小さい。メイン領域内の単位セルのソース電極は第1ソースパッドに、センス領域内の単位セルのソース電極は第2のソースパッドにそれぞれ接続されている。

Description

半導体装置、及びそれを用いたインバータ
 本開示は、炭化珪素半導体層を有する半導体装置、及びそれを用いたインバータに関する。
 近年、炭化珪素半導体を用いたパワーデバイスの開発が盛んである。炭化珪素(SiC)は、シリコン(Si)に比べてバンドギャップの大きな高硬度の半導体材料である。炭化珪素はシリコンに比べて1桁高い絶縁破壊電界強度を備える。そのため、炭化珪素を用いることにより、シリコンを用いる場合と比較して、同じ耐圧を有し、かつ体積の小さい半導体装置を製造することができる。炭化珪素を用いることにより、シリコンを用いる場合と比較して、抵抗成分となる構成を小さくすることができるので、半導体装置のオン抵抗を低減し、電力損失を低減することができる。また、炭化珪素半導体装置は、シリコンに比べ高温でも動作できるという利点がある。炭化珪素半導体装置は、例えば、スイッチング回路を構成するスイッチング素子として用いられる。
 スイッチング回路では、スイッチング素子の動作の制御による損失低減の試みもされている(例えば、特許文献1参照)。
 特許文献1には、スイッチング素子として金属‐酸化物‐半導体電界効果トランジスタ(Metal‐Oxide‐Semiconductor Field Effect Transistor:MOSFET)を用いたハーフブリッジ回路により構成されるスイッチング回路において、ローサイドMOSFETに流れる電流を検出するトランジスタ電流検出手段と、還流ダイオードとして機能するローサイドMOSFETのボディダイオードに流れる電流を検出するダイオード電流検出手段とを設けることにより、貫通電流を抑制しつつリカバリー損失を低減する技術が開示されている。
 具体的には、特許文献1によると、縦型MOSFETにおいて、ソース領域と接触せず、ボディ領域とオーミック接触するようにダイオード電極を設け、ダイオード電極をソース電極と電気的に絶縁された状態で配置する。このようにすると、ソース電極‐ドレイン電極間に流れる電流を検出することによりMOSFETに流れる電流を検出し、ダイオード電極‐ドレイン電極間に流れる電流を検出することによりボディダイオードに流れる電流を検出することができる。複数のユニットセルのうち、一部のユニットセルにおけるソース電極‐ドレイン電極間電流を検出する手段及びダイオード電極‐ドレイン電極間電流を検出する手段が、それぞれトランジスタ電流検出手段及びダイオード電流検出手段として機能する。そこで、トランジスタ電流検出手段により検出される貫通電流とダイオード電流検出手段により検出されるリカバリー電流の検出とがいずれも小さくなるようにデッドタイムを設定することにより、貫通電流を抑制しつつリカバリー損失を低減することができると特許文献1に記載されている。
 また、特許文献2では、モーターを駆動するようなインバータを、複数のトランジスタからなるトランジスタブリッジ回路と、還流ダイオードである複数のダイオードからなるダイオードブリッジ回路とを含む構成とし、トランジスタブリッジ回路とダイオードブリッジ回路との間のプラス側線路及びマイナス側線路にまたがるように配置された第1の電流検出器と、トランジスタブリッジ回路及びダイオードブリッジ回路と直流電源との間に配置された第2の電流検出器とを備えることが開示されている。第1の電流検出器及び第2の電流検出器を用いて、通常の駆動時に流れる駆動電流、還流動作時に流れる還流電流、並びに回生動作時に流れる回生電流を検出することができるため、各動作時に発生した過電流を検出することができると特許文献2に記載されている。
特開2007-014059号公報 特開平6-14561号公報
 しかしながら、特許文献1に開示された技術では、還流ダイオードに流れる電流を検出するために、トランジスタ電流検出手段とは別に、ダイオード電流検出手段を設ける必要があったため、構成が複雑になっていた。また、特許文献2に開示された技術では、ブリッジ回路がダイオードブリッジ回路とトランジスタブリッジ回路との2つに分けられた構成となっているため、配線が長く、構成が複雑になっていた。また、高価で大型の大電流検出用の電流検出器が必要であった。
 そこで、本明細書において開示される技術は、簡易な構成により、トランジスタに流れる電流及び還流ダイオードに流れる電流をともに検出することができる半導体装置、及びそれを用いたインバータを提供する。
 本明細書において開示される半導体装置は、メイン領域およびセンス領域を含む第1導電型の半導体基板と、前記第1導電型の半導体基板の前記メイン領域および前記センス領域にそれぞれ設けられており、金属-絶縁体-半導体電界効果トランジスタを有する複数の単位セルであって、前記センス領域に含まれる単位セルの数は、前記メイン領域に含まれる単位セルの数よりも小さく、前記メイン領域および前記センス領域のそれぞれにおいて、前記金属-絶縁体-半導体電界効果トランジスタが並列に接続された複数の単位セルと、前記半導体基板の主面側に配置されたゲートパッドと互いに絶縁された第1のソースパッドおよび第2のソースパッドと、前記半導体基板の裏面側に配置されたドレインパッドと、を備え、各金属-絶縁体-半導体電界効果トランジスタは、前記半導体基板の主面上に位置する第1導電型の第1の炭化珪素半導体層と、前記第1の炭化珪素半導体層に接する第2導電型のボディ領域と、前記ボディ領域に接する第1導電型のソース領域と、前記第1の炭化珪素半導体層上でかつ前記ボディ領域及び前記ソース領域の少なくとも一部に接して配置された第2の炭化珪素半導体層と、前記第2の炭化珪素半導体層上のゲート絶縁膜と、前記ゲート絶縁膜上のゲート電極と、前記ソース領域に接触するソース電極と、前記半導体基板の裏面側に配置されたドレイン電極とを含み、前記ソース電極の電位を基準とする前記ドレイン電極の電位をVds、前記ソース電極の電位を基準とする前記ゲート電極の電位をVgs、前記金属-絶縁体-半導体電界効果トランジスタのゲート閾値電圧をVthとすると、前記Vdsが正の場合、前記金属-絶縁体-半導体電界効果トランジスタは、前記Vgsが前記Vth以上のとき、前記ドレイン電極から前記ソース電極へ電流を流し、前記Vdsが負の場合、前記金属-絶縁体-半導体電界効果トランジスタは、前記VgsがVth未満のとき、前記ソース電極から前記ドレイン電極へ電流を流すダイオードとして機能し、前記ダイオードの立ち上がり電圧の絶対値は、前記ボディ領域と前記第1の炭化珪素半導体層とにより構成されるボディダイオードの立ち上がり電圧の絶対値よりも小さく、前記メイン領域に含まれる前記単位セルにおける前記ゲート電極及び前記センス領域に含まれる前記単位セルにおける前記ゲート電極は、前記ゲートパッドに電気的に接続され、前記メイン領域に含まれる前記単位セルにおける前記ドレイン電極及び前記センス領域に含まれる前記単位セルにおける前記ドレイン電極は、前記ドレインパッドに電気的に接続され、前記メイン領域に含まれる前記単位セルにおける前記ソース電極は、前記第1のソースパッドに電気的に接続され、前記センス領域に含まれる前記単位セルにおける前記ソース電極は、前記第2のソースパッドに電気的に接続されている。
 また、本明細書において開示されるインバータは、上アーム及び下アームにより構成されるレグであって、前記上アーム及び下アームのうち少なくとも一方が、本明細書において開示される半導体装置であるレグと、前記半導体装置の前記第2のソースパッドに接続され、前記ドレインパッドと前記第2のソースパッドとの間に流れる電流の値に対応した値の電圧を出力する電流電圧変換部と、前記電流電圧変換部から出力される前記電圧に基づいて、前記半導体装置の前記ゲートパッドに印加する電圧を制御するゲート電圧制御部とを備える。
 本明細書において開示される半導体装置は、簡易な構成により、トランジスタに流れる電流及び還流ダイオードに流れる電流をともに検出することができる。
(a)は本開示の第1の実施形態に係る半導体装置の概略を示す平面図であり、(b)は(a)におけるA-A’部分の概略を示す断面図であり、(c)は同半導体装置における単位セルの概略を示す断面図であり、(d)は(b)に示す素子分離領域110近傍の拡大断面図である。 本開示の第1の実施形態に係る半導体装置の製造方法の一部を示す断面図である。 本開示の第1の実施形態に係る半導体装置の製造方法の一部を示す断面図である。 本開示の第1の実施形態に係る半導体装置の製造方法の一部を示す断面図である。 本開示の第1の実施形態に係る半導体装置の順方向のIs-Vgs曲線を示すグラフである。 本開示の第1の実施形態に係る半導体装置の逆方向のIs-Vds曲線を示すグラフである。 本開示の第1の実施形態に係る半導体装置の順方向電流を評価するための測定系の回路構成を示す図である。 本開示の第1の実施形態に係る半導体装置の順方向電流を雰囲気温度25℃において評価した結果を示すグラフである。 本開示の第1の実施形態に係る半導体装置の順方向電流を、雰囲気温度が-40℃、25℃、85℃及び150℃において評価した結果を示すグラフグラフである。 本開示の第1の実施形態に係る半導体装置の逆方向電流を評価するための測定系の回路構成を示す図である。 本開示の第1の実施形態に係る半導体装置の逆方向電流を雰囲気温度25℃において評価した結果を示すグラフである。 本開示の第1の実施形態に係る半導体装置の逆方向電流を、雰囲気温度が-40℃、25℃、85℃及び150℃において評価した結果を示すグラフである。 演算増幅器を含む電流電圧変換回路を用いた、本開示の第1の実施形態に係る半導体装置順方向電流及び逆方向電流を測定するための測定系の回路構成を示す図である。 本開示の第1の実施形態に係る半導体装置におけるメイン領域の逆方向Ism-Vds曲線のゲート電圧依存性を示すグラフである。 (a)は本開示の第2の実施形態に係る半導体装置の概略を示す平面図であり、(b)は(a)におけるA-A’部分の概略を示す断面図であり、(c)は同半導体装置における単位セルの概略を示す断面図であり、(d)は図15(b)における、メイン領域320とセンス領域321との境界部分の拡大断面図である。 本開示の第2の実施形態に係る半導体装置の製造方法の一部を示す断面図である。 本開示の第2の実施形態に係る半導体装置の製造方法の一部を示す断面図である。 本開示の第2の実施形態に係る半導体装置の製造方法の一部を示す断面図である。 本開示の第3の実施形態に係るインバータを備える負荷駆動システムの構成を示すブロック図である。 本開示の第3の実施形態に係る電流電圧変換部(下アーム用)を示すブロック図である。 本開示の第3の実施形態に係る電流電圧変換部(上アーム用)を示すブロック図である。 本開示の第3の実施形態に係るゲート制御部を示すブロック図である。 本開示の第3の実施形態に係る負荷駆動システムに順方向の過電流が流れた場合における保護動作に関するタイミングチャートである。 本開示の第3の実施形態に係る負荷駆動システムに逆順方向の過電流が流れた場合における保護動作に関するタイミングチャートである。 本開示の第3の実施形態に係る負荷駆動システムに回生エネルギーを回生抵抗およびインバータの半導体装置で消費させる場合における保護動作に関するタイミングチャートである。 本開示の第3の実施形態に係る半導体装置の逆方向のIV曲線の温度特性を示すグラフである。 本開示の第4の実施形態に係るゲート制御部を示すブロック図である。 本開示の第4の実施形態に係る負荷駆動システムに逆順方向の過電流が流れた場合における保護動作に関するタイミングチャートである。 比較例に係るインバータを備える負荷駆動システムの構成を示すブロック図である。 (a)本実施の形態の単位セルの断面構造図であり、(b)は逆方向動作時の(a)のA-A’におけるコンダクションバンドエネルギーの分布を示す図であり、(c)は順方向動作時の(a)のA-A’におけるコンダクションバンドエネルギーの分布を示す図である。 (a)本実施の形態の単位セルの断面構造図であり、(b)は(a)のC-C’におけるポテンシャル分布図である。 本実施の形態の半導体装置のボディ領域のドーパント濃度と、Vthおよび|Vf0|の相関を示す図である。 本実施の形態の半導体装置において、第2の炭化珪素半導体層の厚みdと不純物濃度Ndを変えたときのVthと|Vf0|の相関を示す図である。
 本開示の半導体装置の概要は以下の通りである。
 本開示の一実施形態にかかる半導体装置は、メイン領域およびセンス領域を含む第1導電型の半導体基板と、前記第1導電型の半導体基板の前記メイン領域および前記センス領域にそれぞれ設けられており、金属-絶縁体-半導体電界効果トランジスタを有する複数の単位セルであって、前記センス領域に含まれる単位セルの数は、前記メイン領域に含まれる単位セルの数よりも小さく、前記メイン領域および前記センス領域のそれぞれにおいて、前記金属-絶縁体-半導体電界効果トランジスタが並列に接続された複数の単位セルと、前記半導体基板の主面側に配置されたゲートパッドと、互いに絶縁された第1のソースパッドおよび第2のソースパッドと、前記半導体基板の裏面側に配置されたドレインパッドと、を備え、各金属-絶縁体-半導体電界効果トランジスタは、前記半導体基板の主面上に位置する第1導電型の第1の炭化珪素半導体層と、前記第1の炭化珪素半導体層に接する第2導電型のボディ領域と、前記ボディ領域に接する第1導電型のソース領域と、前記第1の炭化珪素半導体層上でかつ前記ボディ領域及び前記ソース領域の少なくとも一部に接して配置された第2の炭化珪素半導体層と、前記第2の炭化珪素半導体層上のゲート絶縁膜と、前記ゲート絶縁膜上のゲート電極と、前記ソース領域に接触するソース電極と、前記半導体基板の裏面側に配置されたドレイン電極とを含み、前記ソース電極の電位を基準とする前記ドレイン電極の電位をVds、前記ソース電極の電位を基準とする前記ゲート電極の電位をVgs、前記金属-絶縁体-半導体電界効果トランジスタのゲート閾値電圧をVthとすると、前記Vdsが正の場合、前記金属-絶縁体-半導体電界効果トランジスタは、前記Vgsが前記Vth以上のとき、前記ドレイン電極から前記ソース電極へ電流を流し、前記Vdsが負の場合、前記金属-絶縁体-半導体電界効果トランジスタは、前記VgsがVth未満のとき、前記ソース電極から前記ドレイン電極へ電流を流すダイオードとして機能し、前記ダイオードの立ち上がり電圧の絶対値は、前記ボディ領域と前記第1の炭化珪素半導体層とにより構成されるボディダイオードの立ち上がり電圧の絶対値よりも小さく、前記メイン領域に含まれる前記単位セルにおける前記ゲート電極及び前記センス領域に含まれる前記単位セルにおける前記ゲート電極は、前記ゲートパッドに電気的に接続され、前記メイン領域に含まれる前記単位セルにおける前記ドレイン電極及び前記センス領域に含まれる前記単位セルにおける前記ドレイン電極は、前記ドレインパッドに電気的に接続され、前記メイン領域に含まれる前記単位セルにおける前記ソース電極は、前記第1のソースパッドに電気的に接続され、前記センス領域に含まれる前記単位セルにおける前記ソース電極は、前記第2のソースパッドに電気的に接続されている。
 前記ボディ領域のうち、少なくとも前記第2の炭化珪素半導体層に接する領域の不純物濃度が1×1018cm-3以上であり、前記第2の炭化珪素半導体層の不純物濃度は1×1017cm-3以上4×1018cm-3以下であり、前記第2の炭化珪素半導体層の厚さは20nm以上70nm以下であってもよい。
 前記半導体装置は、前記メイン領域と前記センス領域との境界に位置し、前記半導体基板上に位置する第1導電型の前記第1の炭化珪素半導体層と、前記第1の炭化珪素半導体層に設けられた第2導電型の素子分離領域とをさらに備え、前記素子分離領域上には第2の炭化珪素半導体層が配置されていなくてもよい。
 前記半導体装置は、前記ボディ領域及び前記ソース領域を貫通し、前記第1の炭化珪素半導体層に達するトレンチをさらに備えていてもよい。
 前記センス領域に流れる電流が100mA以下であってもよい。
 前記ドレインパッドと前記第2のソースパッドとの間に流れる電流は、前記ドレインパッドと前記第1のソースパッドとの間に流れる電流に比例していてもよい。
 前記ドレインパッドと前記第2のソースパッドとの間に流れる電流の向きは、前記ドレインパッドと前記第1のソースパッドとの間に流れる電流も向きと一致していてもよい。
 本開示の一実施形態に係るインバータは、上アーム及び下アームにより構成されるレグであって、前記上アーム及び下アームのうち少なくとも一方が、上位機いずれかに記載の半導体装置であるレグと、前記半導体装置の前記第2のソースパッドに接続され、前記ドレインパッドと前記第2のソースパッドとの間に流れる電流の値に対応した値の電圧を出力する電流電圧変換部と、前記電流電圧変換部から出力される前記電圧に基づいて、前記半導体装置の前記ゲートパッドに印加する電圧を制御するゲート電圧制御部とを備える。
 前記電流電圧変換部は、反転入力端子、非反転入力端子及び出力端子を有する演算増幅器と、前記反転入力端子と前記出力端子とを接続する抵抗とを含んでいてもよい。
 前記演算増幅器は両電源タイプであってもよい。
 前記インバータは、前記レグと並列に接続された平滑コンデンサと、前記平滑コンデンサの電圧を検出する電圧検出部と、負荷から前記インバータへ流れる回生電流を熱として消費するための抵抗および前記抵抗に流す回生電流を制御するスイッチング素子を含む回生電力消費回路とをさらに備え、前記ゲート電圧制御部は、前記電圧検出部により検出された前記平滑コンデンサの電圧と、基準電圧値とを比較し、前記平滑コンデンサの電圧が前記基準電圧値を超えた場合、前記抵抗に前記回生電流が流れるように、前記スイッチング素子を制御してもよい。
 前記インバータは、前記レグと並列に接続された平滑コンデンサと、前記平滑コンデンサの電圧を検出する電圧検出部とをさらに備え、前記ゲート電圧制御部は、前記電圧検出部により検出された前記平滑コンデンサの電圧と、基準電圧値とを比較し、前記平滑コンデンサの電圧が前記基準電圧値を超えた場合、前記ゲートパッドに印加する電圧を負にしてもよい。
 前記インバータは、前記レグと並列に接続された平滑コンデンサと、負荷から前記インバータへ流れる回生電流を熱として消費するための抵抗および前記抵抗に流す回生電流を制御するスイッチング素子を含む回生電力消費回路とをさらに備え、前記ゲート電圧制御部は、前記電流電圧変換部から出力される出力電圧の値と、逆方向基準電圧値とを比較し、前記出力電圧の絶対値が前記逆方向基準電圧値を超えた場合、前記抵抗に前記回生電流が流れるように、前記スイッチング素子の動作を制御してもよい。
 前記インバータは、前記レグと並列に接続された平滑コンデンサをさらに備え、前記ゲート電圧制御部は、前記電流電圧変換部から出力される出力電圧の値と、逆方向基準電圧値とを比較し、前記出力電圧の絶対値が前記逆方向基準電圧値を超えた場合、前記ゲートパッドに印加する電圧を負にしてもよい。
 本開示の一実施形態にかかるインバータの制御方法は、上アーム及び下アームにより構成されるレグであって、前記上アーム及び下アームのうち少なくとも一方が、上記いずれかに記載の半導体装置であるレグと、前記レグと並列に接続された平滑コンデンサとを備えたインバータの制御方法であって、前記平滑コンデンサの電圧を検出するステップと、前記平滑コンデンサの電圧と、基準電圧値とを比較し、前記平滑コンデンサの電圧が前記基準電圧値を超えた場合、前記ゲートパッドに印加する電圧を負にするステップとを含む。
 本開示の一実施形態にかかるインバータの制御方法は、上アーム及び下アームにより構成されるレグであって、前記上アーム及び下アームのうち少なくとも一方が、上記いずれかに記載の半導体装置であるレグと、前記レグと並列に接続された平滑コンデンサと、前記半導体装置の前記第2のソースパッドに接続され、前記ドレインパッドと前記第2のソースパッドとの間に流れる電流の値に対応した値の電圧を出力する電流電圧変換部と、負荷から前記インバータへ流れる回生電流を熱として消費するための抵抗および前記抵抗に流す回生電流を制御するスイッチング素子を含む回生電力消費回路とを備えたインバータの制御方法であって、前記電流電圧変換部から出力される出力電圧の値を検出するステップと、前記電流電圧変換部から出力される出力電圧の値と、逆方向基準電圧値とを比較し、前記出力電圧の絶対値が前記逆方向基準電圧値を超えた場合、前記抵抗に前記回生電流が流れるように、前記スイッチング素子を動作させるステップとを含む。
 本開示の一実施形態にかかるインバータの制御方法は、上アーム及び下アームにより構成されるレグであって、前記上アーム及び下アームのうち少なくとも一方が、上記いずれかに記載の半導体装置であるレグと、前記レグと並列に接続された平滑コンデンサと、前記半導体装置の前記第2のソースパッドに接続され、前記ドレインパッドと前記第2のソースパッドとの間に流れる電流の値に対応した値の電圧を出力する電流電圧変換部とを備えたインバータの制御方法であって、前記電流電圧変換部から出力される出力電圧の値を検出するステップと、前記電流電圧変換部から出力される出力電圧の値と、逆方向基準電圧値とを比較し、前記出力電圧の絶対値が前記逆方向基準電圧値を超えた場合、前記ゲートパッドに印加する電圧を負にするステップとを含む。
 以下、図面を参照しながら、本開示の実施形態について説明する。
 (第1の実施形態)
 (半導体装置の構造)
 図1(a)は、本実施形態に係る半導体装置の概略を示す平面図である。図1(b)は、図1(a)におけるA-A’部分の概略を示す断面図である。図1(c)は、図1(b)における単位セル111の概略を示す断面図である。図1(d)は、図1(b)に示す素子分離領域110近傍を拡大して示す断面図である。本実施形態では、単位セル111がプレーナ型の金属‐絶縁体‐半導体電界効果トランジスタ(Metal‐Insulator‐Semiconductor Field Effect Transistor:MISFET)である例について説明する。
 図1(a)に示すように、半導体装置1は、半導体基板5を備える。また、メイン領域ソースパッド2、センス領域ソースパッド3、及びゲートパッド4を半導体基板5の主面5a側に備える。メイン領域ソースパッド2、センス領域ソースパッド3、及びゲートパッド4は、互いに電気的に絶縁されている。半導体装置1の裏面5b側には、裏面5b全体を覆うようにドレイン電極16及び裏面電極17が積層して配置されている。
 メイン領域ソースパッド2、センス領域ソースパッド3、及び裏面電極17は、本明細書において開示される半導体装置における、第1のソースパッド、第2のソースパッド、及びドレインパッドにそれぞれ相当する。
 図1(a)および(b)に示すように、半導体装置1はセンス領域21及びメイン領域20を備えている。センス領域21及びメイン領域20はいずれも、互いに並列に接続された複数の単位セル111を備えている。
 メイン領域ソースパッド2は、メイン領域20に含まれる複数の単位セル111の上部配線15が互いに接続されることにより構成されている。同様に、センス領域ソースパッド3は、センス領域21に含まれる複数の単位セル111の上部配線15が互いに接続されることにより構成されている。
 センス領域21とメイン領域20との境界部分における第1導電型の第1の炭化珪素半導体層6中には、単位セルとは異なり、終端ベース領域18,19及び素子分離領域110が配置されている。終端ベース領域18,19及び素子分離領域110は、いずれも第2導電型である。終端ベース領域18,19には、第1導電型のソース領域が含まれていない。終端ベース領域18,19中にソース領域が配置されていると、ソース領域、終端ベース領域18,19及び第1の炭化珪素半導体層6により構成される寄生バイポーラに大電流が流れて半導体装置1が破壊する可能性があるためである。終端ベース領域18,19上にはソース電極10が配置されており、上部配線15によって単位セル111のソース電極10と電気的に接続している。したがって終端ベース領域18,19と単位セル111のソース領域8とは同電位である。終端ベース領域18,19は第1の炭化珪素半導体層6とPNダイオードを構成する。
 素子分離領域110は、終端ベース領域18と終端ベース領域19との間に配置されている。素子分離領域110上には、ソース電極10が配置されておらず、素子分離領域110の電位はフローティング電位となっている。素子分離領域110は、センス領域21とメイン領域20との間に電流が流れることを防止する。
 図1(d)に示すように、素子分離領域110上及び終端ベース領域18、19の端部上には、第2の炭化珪素半導体層11が配置されていない。これにより、第2の炭化珪素半導体層11を通してメイン領域20とセンス領域21との間に電流が流れることを防止することができ、センス領域21を流れる電流を、メイン領域20を流れる電流から区別して検出することが可能となる。
 隣接する単位セル111のゲート電極13は、図示しないゲート配線によって互いに電気的に接続されている。メイン領域20及びセンス領域21におけるゲート電極13は、いずれもゲートパッド4に電気的に接続されている。
 センス領域に対するメイン領域のセル数の比率をn、センス領域を流れる電流をIss、メイン領域を流れる電流をIsmとすると、次式の関係式(1)が成り立つ。
Ism=n×Iss   ・・・(1)
 したがって、センス領域を流れる電流及びセル数の比率から、メイン領域に流れる電流を間接的に検出することができる。セル数の比率を1000程度とすれば、メイン領域を流れる電流がAオーダーであっても、センス領域を流れる電流はmAオーダーとなるので、mA程度の小電流を検出する簡便な回路で、Aオーダーの大電流を間接的に検出することができる。
 図1(c)を用いて、単位セル111の構造を説明する。n型の半導体基板5の主面上に、n型の第1の炭化珪素半導体層6が配置されている。半導体基板5としては、例えば4H-SiC(0001)面を[11-20]方向に4°オフさせたオフカット基板を用いる。半導体基板5におけるn型不純物のドーピング濃度は1×1019cm-3程度である。また、例えば、第1の炭化珪素半導体層6におけるn型不純物のドーピング濃度は7×1015cm-3程度で、第1の炭化珪素半導体層6の厚みは13μm程度である。
 第1の炭化珪素半導体層6の表層には、p型のボディ領域(ウェル領域)7が配置されている。例えば、ボディ領域7の深さは0.8μm程度で、ボディ領域7におけるp型不純物のドーピング濃度は2×1018から2×1019cm-3である。ボディ領域7内には、n型のソース領域8が配置されている。例えば、ソース領域8の深さは0.2μm程度で、ソース領域8におけるn型不純物のドーピング濃度は5×1019cm-3程度である。ボディ領域7の表層には、p型のコンタクト領域9が配置されている。例えば、コンタクト領域9の深さは200nm程度で、コンタクト領域9におけるp型不純物のドーピング濃度は2×1020cm-3程度である。
 ソース領域8の一部及びコンタクト領域9の一部に接して、ソース電極10が配置されている。ソース電極10は、例えば、厚みが100nm程度のニッケルの熱処理により形成されたニッケルシリサイドにより構成される。ソース電極10は、ソース領域8及びコンタクト領域9とオーミック接触している。
 ソース領域8及びボディ領域7を含む第1の炭化珪素半導体層6の表面には、第2の炭化珪素半導体層11が配置されている。第2の炭化珪素半導体層11は、例えば、第1の炭化珪素半導体層6上にエピタキシャル成長により形成されたエピタキシャル層である。第2の炭化珪素半導体層11が単一のn型層により構成される場合、例えば、第2の炭化珪素半導体層11の厚みが75nm以下で、かつ第2の炭化珪素半導体層11におけるn型不純物のドーピング濃度が1×1018cm-3以上であればよい。
 しかしながら、第2の炭化珪素半導体層11が単一のn型層からなる場合、そのドーピングプロファイルがばらつくと、順方向の閾値電圧、およびチャネルダイオードの立ち上がり電圧が大きく変動する。第2の炭化珪素半導体層11は、犠牲酸化およびゲート酸化の工程において膜厚が減少する場合がある。製造工程での第2の炭化珪素半導体層11の膜厚の減少量のばらつきによって、順方向の閾値電圧逆方向の立ち上がり電圧等の半導体装置1の電気特性にばらつきが生じる。したがって、n型不純物層の表面に低濃度のドープ層を積層することにより、半導体装置1の電気特性のばらつきを低減することができる。
 また、第2の炭化珪素半導体層11をエピタキシャル成長するとき、成長初期は成長レートが安定せず、不純物濃度も安定しないことがある。この場合、成長初期にはドーパントガスを流さずに、アンドープ層または残留窒素による低濃度のドープ層を成長させ、その後、成長レートが安定してから高濃度のn型不純物層を成長させてもよい。このようにすれば、成長初期の成長レートが安定しないことによる不純物濃度の変動を低減することができる。
 すなわち、第2の炭化珪素半導体層11はアンドープまたは低不純物濃度のn型層からなるボトム層、高濃度n型不純物層およびアンドープまたは低不純物濃度のn型層からなるキャップ層を含む積層構造であってもよい。各層の厚みは、例えば、ボトム層は10から50nm程度であり、高濃度n型不純物層は15から30nmであり、キャップ層は10から100nmである。各層のn型不純物濃度は、例えば、ボトム層は1×1017cm-3未満であり、高濃度n型不純物層は1×1018から1×1019cm-3程度であり、キャップ層は1×1017cm-3未満である。なお、各層の不純物濃度は必ずしも一定である必要はなく、各層の膜厚方向に分布を持っていてもよい。
 第2の炭化珪素半導体層11上には、ゲート絶縁膜12が配置されている。ゲート絶縁膜12の厚みは70nm程度である。
 ゲート絶縁膜12上には、ゲート電極13が配置されている。ゲート電極13は、例えば、リンを7×1020cm-3程度ドープしたn型poly-Siであり、ゲート電極13の厚みは500nm程度である。
 ゲート電極13上には、層間絶縁膜14が配置されている。層間絶縁膜14は、例えば、シリコン酸化膜により構成される。層間絶縁膜14の厚みは1μm程度である。層間絶縁膜14上には、ソース電極10と電気的に接続する上部配線15が配置されている。上部配線15は、例えば、アルミニウムにより構成される。上部配線15の厚みは4μm程度である。
 半導体基板5の裏面には、半導体基板5とオーミック接触するドレイン電極16が配置されている。ドレイン電極16は、例えば、厚みが150nm程度のTiの熱処理により形成されたチタンシリサイドにより構成される。ドレイン電極16上には、ダイボンディング用の裏面電極17が配置されている。裏面電極17は、例えば、ドレイン電極16に近い側から、厚みが100nm程度のチタン、厚みが300nm程度のニッケル、及び厚みが700nm程度の銀により構成される。
 本開示では、この単位セルが以下のような構成を有することにより、単位セルは電界効果トランジスタの機能とダイオードの機能とを備えている。
 次に、図28を用いて、単位セル111の順方向及び逆方向の動作について説明する。図28(a)は、単位セル111の断面図であり、図28(b)は、(a)のA-A’における逆方向動作時のコンダクションバンドエネルギーの分布を示す図であり、図28(c)は、(a)のA-A’における順方向動作時のコンダクションバンドエネルギーの分布を示す図である。なお、図28(b)及び(c)において、左側の点線よりも左側の領域は、第2の炭化珪素半導体層11のうちソース領域8上に位置する部分のコンダクションバンドエネルギー分布、左右の点線に挟まれた領域は、チャネルのコンダクションバンドエネルギー分布、右側の点線よりも右側の領域は、第2の炭化珪素半導体層11のうちJFET領域上に位置する部分のコンダクションバンドエネルギー分布を示す。第2の炭化珪素半導体層11のうち、ボディ領域上の部分がチャネルであり、第1の炭化珪素半導体層6のうち、隣接する2つのボディ領域の間の領域がJFET領域である。
 図28(b)を使って単位セル111の逆方向における動作を説明する。図28(b)において、Vgs=0である。Vds=0のとき、A-A’のコンダクションバンドエネルギー分布は、図28(b)に示すグラフのうち最も下側の曲線で示される。このとき、第2の炭化珪素半導体層11はソース電位に対してVf0の電位となっている。Vds=0のとき、第2の炭化珪素半導体層11のうちJFET領域上に位置する部分の電位はチャネルの電位よりVf0低いので、電子は第2の炭化珪素半導体層11のうちJFET領域上に位置する部分からチャネルに流れ込むことができない。しかしながら、Vdsを負にすると、図28(b)の矢印で示すように、第2の炭化珪素半導体層11のうちJFET領域上に位置する部分の電位が第2の炭化珪素半導体層11のうちソース領域8上に位置する部分の電位よりも上昇する。Vds<-Vf0となると、第2の炭化珪素半導体層11のうちJFET領域上に位置する部分の電位がチャネル電位よりも高くなるので、第2の炭化珪素半導体層11のうちJFET領域上に位置する部分からチャネルを介して第2の炭化珪素半導体層11のうちソース領域8上に位置する部分に電子が流れ込む。すなわち、単位セル111に逆方向電流が流れる。この動作はダイオード動作であり、Vf0はチャネルダイオードの立ち上がり電圧である。
 次に図28(c)を用いて、単位セル111の順方向動作を説明する。図28(c)において、ドレインはソースに対して正の電位となっている。Vgs=0のとき、A-A’のコンダクションバンドエネルギー分布は、図28(c)に示すグラフのうち最も上側の曲線で示される。Vgs=0ではチャネルの方が第2の炭化珪素半導体層11のうちソース領域8上に位置する部分よりもエネルギーが高く障壁となっているので、電子が第2の炭化珪素半導体層11のうちソース領域8上に位置する部分からチャネルへ流れ込まない。Vgsを高くしていくと、図28(c)の矢印で示すように、チャネルのエネルギーが下がる。チャネルのエネルギーが第2の炭化珪素半導体層11のうちソース領域8上に位置する部分よりも低くなると、電子が第2の炭化珪素半導体層11のうちソース領域8上に位置する部分からチャネルを介して第2の炭化珪素半導体層11のうちJFET領域上に位置する部分へと流れ込む。すなわち、単位セル111に順方向電流が流れる。
 図29は本開示における単位セルの深さ方向のポテンシャル分布を示す模式図である。図29(a)は単位セルの断面図であり、(b)は(a)のC-C’におけるポテンシャル分布図である。
 図29(b)の上には、ポテンシャル分布図の横軸が、単位セルのどの領域に相当するかを示す。
 横軸はゲート絶縁膜12とゲート電極13との界面を基準とした深さである。縦軸はソース電位を基準としたポテンシャル(-Φ)である。
 このポテンシャル分布はポアソンの方程式から計算することができる。
 曲線61はVgs=0のときのポテンシャル分布である。Vgs=0なので、ゲート絶縁膜12とゲート電極13との界面のポテンシャルが0となる。
 ゲート絶縁膜12の膜厚をtとし、第2の炭化珪素半導体層11は一様な不純物濃度をもつと仮定し、第2の炭化珪素半導体層11の第1導電型の不純物濃度をNd、膜厚をdとする。ボディ領域7の不純物濃度をNbとする。ボディ領域7のうち第2の炭化珪素半導体層11と接している表面は空乏化しており、厚さyの空乏層700が形成されているとする。同様に、第2の炭化珪素半導体層11には、ボディ領域との接合面から伸びる空乏層と、ゲート絶縁膜との界面から伸びる空乏層とが形成されている。これらの空乏層が重なるように第2の炭化珪素半導体層11の膜厚が設定されているとする。すなわち、第2の炭化珪素半導体層11は全体が空乏化している。このように、第2の炭化珪素半導体層11がVgs=0において空乏化していればノーマリオフとなる。第2の炭化珪素半導体層11を空乏化するには、ボディ領域7の不純物濃度Nbを大きくし、第2の炭化珪素半導体層11の膜厚dを小さくすることが好ましい。
 なお、ソース領域とボディ領域はPN接合を形成しており、ソース領域から見たボディ領域のポテンシャルはビルトインポテンシャルΦbiとなる。Vgs=0のとき、ゲート電極13とゲート絶縁膜12との界面のポテンシャルはソース電位と等しいから、ゲート電極13とゲート絶縁膜12との界面から見たボディ領域7の電位もまたビルトインポテンシャルΦbiである。
 ゲート絶縁膜12と第2の炭化珪素半導体層11との界面におけるポテンシャルPchは、式(2)で示される。ここで、εiは、ゲート絶縁膜12の誘電率を示し、qは素電荷を示す。
Figure JPOXMLDOC01-appb-M000001

  
Vgs=0のときのPchがダイオードの立ち上がり電圧Vf0に相当する。式(2)から、ボディ領域の不純物濃度Nbを大きくすることにより、|Vf0|を小さくすることができることがわかる。
 図30は、第2の炭化珪素半導体層11に接するボディ領域7の不純物濃度を変化させたときの、トランジスタの閾値電圧Vthおよび、チャネルダイオードの立ち上がり電圧│Vf0│を例示している。図30において、ボディ領域7の不純物濃度は、2×1018cm-3、5×1018cm-3、1×1019cm-3、および2×1019cm-3と変化させている。ボディ領域7の不純物濃度を変化させると閾値電圧Vthも変化するが、ここでは第2の炭化珪素半導体層11の不純物濃度を適宜変更することにより閾値電圧Vthが約3Vとなるように設定している。図30は、閾値電圧Vthを一定とした場合に、ボディ領域7のドーパント濃度が大きくなるにつれて、立ち上がリ電圧│Vf0│が小さくなる傾向を示している。図30からわかるように、第2の炭化珪素半導体層11に接するボディ領域7の不純物濃度を大きくすることにより、トランジスタの閾値電圧Vthを維持しながら、チャネルダイオードの立ち上がり電圧│Vf0│を選択的に小さくすることができる。
 以上の検討により、チャネルダイオードの立ち上がり電圧の絶対値│Vf0│を小さくするために、ボディ領域の不純物濃度を高濃度とすることが望ましいという知見が得られた。例えば、ボディ領域の不純物濃度を1×1018cm-3以上とすることにより、チャネルダイオードの立ち上がり電圧|Vf0|を小さくすることができる。なお、SiCでは、ボディダイオードの立ち上がり電圧は約2.7Vである。ボディ領域の不純物濃度は2×1018cm-3以上であってもよい。
 図31はNb=1×1019cm-3において第2の炭化珪素半導体層11の厚みdと、不純物濃度Ndの濃度を変化させたときのVthと|Vf0|の関係を示している。図31において、横軸は順方向電流の閾値電圧Vth、縦軸は逆方向電流の立ち上がり電圧Vf0の絶対値(|Vf0|)を示す。本図を得るために実施したシミュレーションにおいて、p型ボディ領域(ウェル領域)の濃度は1×1019 cm-3 、ゲート絶縁膜の厚さは70nmで固定している。第2の炭化珪素半導体層11の厚さの範囲は、20nm以上70nm以下とし、第2の炭化珪素半導体層11の不純物濃度の範囲は、1×1017cm-3以上4×1018cm-3以下である。
 図31から、例えば、チャネルエピ層の厚さを薄くし、かつチャネルエピ層の不純物濃度を高くすることにより、|Vf0|を一定にしながら、Vthを大きくすることが可能であることがわかる。したがって、チャネルエピ層の不純物濃度と厚さを適度に設定することにより、Vthと|Vf0|とをそれぞれ独立に制御することが可能である。
 例えばVth=5V、|Vf0|=1Vに制御する場合のチャネルエピ層の厚さと不純物濃度の設定方法を、この図を用いて説明する。
 まず、Vth=5Vと、|Vf0|=1Vとの交点を通る相関直線に対応するチャネルエピ層の厚さを読み取る。図31では約40nmと読み取ることができる。したがって、チャネルエピ層の厚さを40nmに設定する。次に上記のチャネルエピ層の厚さにおいて、Vth=5Vとなる不純物濃度を設定すればよい。ここでは、データが存在する2点の濃度、すなわち7×1017cm-3と1×1018cm-3の中間をとって、約8.5×1017cm-3に設定すればよい。
 図31から、第2の炭化珪素半導体層11の厚みdが20nm以上70nm以下であり、かつ不純物濃度Ndが1×1017cm-3以上4×1018cm-3以下であれば、閾値電圧Vth>0、かつボディダイオードの立ち上がり電圧(SiCでは約2.7V)よりもチャネルダイオードの立ち上がり電圧|Vf0|を小さくすることができることがわかる。
 ゲート酸化膜の膜厚tは20nm以上であってもよく、100nm以下であってもよい。ゲート酸化膜の膜厚tが100nm以下であれば、熱酸化により、長時間を要することなく、良質な酸化膜を形成することができる。
 なお以上の説明では、簡単のため第2の炭化珪素半導体層11を不純物濃度Ndが一様な単一の層であるとして説明しているが、平均不純物濃度がNdであれば不純物濃度に分布があってもよい。
 またボディ領域も不純物濃度の分布が一様である必要はなく、少なくとも第2の炭化珪素半導体層11との界面から空乏層から広がる領域が上記濃度を満たしていればよい。例えば第2の炭化珪素半導体層11との界面から少なくとも100nm以上の領域が上記不純物濃度の範囲であればよい。
 (半導体装置の製造方法)
 次に、図2から図4を参照しながら、本実施形態に係る半導体装置の製造方法について説明する。図2から図4は、本実施形態に係る半導体装置の製造方法を示す断面図である。
 まず、図2(a)に示すように、n型の半導体基板5を準備する。半導体基板5としては、例えば4H-SiC(0001)面を[11-20]方向に4°オフさせたオフカット基板を用いる。
 次に、図2(b)に示すように、半導体基板5の上に、n型の第1の炭化珪素半導体層6をエピタキシャル成長する。第1の炭化珪素半導体層6は、例えば4H-SiCにより構成される。第1の炭化珪素半導体層6におけるn型不純物濃度は、半導体基板5におけるn型不純物濃度よりも低くなるようにする。
 次に、図2(c)に示すように、第1の炭化珪素半導体層6の上に、例えばSiO2により構成されるマスク(図示しない)を形成し、AlイオンまたはBイオンを注入することにより、ボディ領域7を形成する。また図示しないが、このイオン注入によって、半導体装置1の終端領域に、電界緩和リング(Field Limited Ring:FLR)、センス領域の終端ベース領域18、メイン領域の終端ベース領域19、及び素子分離領域110を同時に形成する。したがって、ボディ領域7と、センス領域の終端ベース領域18、メイン領域の終端ベース領域19、及び素子分離領域110とは、同じp型ドーパント濃度及び同じ深さで形成される。ただし、これに限定するものでなく、各領域を個別に形成してもよい。各領域を個別に形成する場合は、p型ドーパント濃度及び深さをそれぞれに設定することができる。
 続いて、図2(d)に示すように、マスク(図示しない)を用いてボディ領域7に窒素イオンを注入することによってソース領域8を形成し、他のマスク(図示しない)を用いてボディ領域7にAlイオンを注入することによってコンタクト領域9を形成する。イオン注入後に、マスクを除去して活性化アニールを行う。活性化アニールは、例えば、不活性雰囲気中で1700℃程度の温度で30分程度行う。
 次に、図3(a)に示すように、ボディ領域7、ソース領域8及びコンタクト領域9を含む第1の炭化珪素半導体層6の表面全体に、第2の炭化珪素半導体層11をエピタキシャル成長により形成する。
 次いで、図3(b)に示すように、ソース領域8の一部及びコンタクト領域9の表面が露出するように第2の炭化珪素半導体層11の一部の領域をドライエッチにより除去した後、熱酸化によって、第2の炭化珪素半導体層11の表面にゲート絶縁膜12を形成する。
 その後、図3(c)に示すように、ゲート絶縁膜12の表面に、リンを7×1020cm-3程度ドーピングした多結晶シリコン膜113を堆積する。多結晶シリコン膜113の厚さは、例えば、500nm程度である。
 次に、図3(d)に示すように、マスク(図示しない)を用いて、多結晶シリコン膜113の一部の領域をドライエッチングにより除去することにより、ゲート電極13を形成する。
 続いて、図3(e)に示すように、ゲート電極13の表面及び第1の炭化珪素半導体層6の表面を覆うように、SiO2により構成される層間絶縁膜14を化学的気相成長(Chemical Vapor Deposition:CVD)法によって堆積する。層間絶縁膜14の厚さは、例えば、1.5μmである。
 次に、図4(a)に示すように、マスク(図示しない)を用いたドライエッチングにて、コンタクト領域9の表面上及びソース領域8の一部の表面上の層間絶縁膜14を除去することによって、ヴィアホール114を形成する。
 その後、図4(b)に示すように、例えば厚さ50nm程度のニッケル膜を、層間絶縁膜14上に形成した後、エッチングによって、ヴィアホール114の内部及びその周辺の一部を残して、ニッケル膜を除去する。エッチング後、不活性雰囲気内で、例えば950℃、5分間の熱処理を行い、ニッケルを炭化珪素表面と反応させる。これにより、ニッケルシリサイドにより構成されるソース電極10を形成する。なお、半導体基板5の裏面5bにもニッケルを全面に堆積させ、同様の熱処理を行うことにより、ドレイン電極16を形成する。
 続いて、図4(c)に示すように、層間絶縁膜14及びヴィアホール114の上に、上部配線15となる厚さ4μm程度のアルミニウムを堆積する。上部配線15を所望のパターンにエッチングすると、図1(a)に示す、メイン領域ソースパッド2とセンス領域ソースパッド3とが得られる。なお、図示しないが、ゲート電極と接触するゲート配線及びゲートパッドを、メイン領域ソースパッド2及びセンス領域ソースパッド3と電気的に絶縁されるように形成する。さらに、ドレイン電極16上に、ダイボンド用の裏面電極17として、Ti/Ni/Agをこの順に堆積する。以上のようにして、図1に示した半導体装置1が得られる。
 (半導体装置の閾値電圧及び立ち上がり電圧評価)
 本実施形態に係る半導体装置1を試作し、電気特性を評価した。試作した半導体装置1において、ボディ領域7のn型不純物濃度は2×1018cm-3、ゲート絶縁膜12の膜厚は70nmとした。第2の炭化珪素半導体層11は、n型不純物濃度が1.1×1018cm-3のn型不純物層上に、膜厚75nmのアンドープ層を積層した構造とした。試作した半導体装置1における、センス領域に対するメイン領域の単位セル数比率は34である。試作した半導体装置1の順方向の閾値電圧Vth及び逆方向の立ち上がり電圧Vfを、プローバー及び半導体パラメータアナライザを用いて評価した。
 まず、試作した半導体装置1の順方向の閾値電圧を評価するために、Vdsを0.1Vに設定し、Vgsを0から10Vまでスイープし、メイン領域及びセンス領域のソース電流(Ism,Iss)を個別かつ同時に測定した。図5は、試作した半導体装置1の順方向のIss-Vgs、Ism-Vgs曲線を示すグラフである。図5において、左側の縦軸はメイン領域のソース電流Ismであり、右側の縦軸はセンス領域のソース電流Issである。図5において、黒丸のデータはメイン領域のソース電流を示し、白四角のデータはセンス領域のソース電流を示している。順方向の閾値電圧は、基準電流が得られたときのVgsにより求めた。基準電流の値としては、セル数比率に応じてメイン領域とセンス領域とで異なる値を用いた。メイン領域の基準電流は1mAとし、これをセル数比率の34で割った値である0.029mAをセンス領域の基準電流とした。
 室温での測定の結果、メイン領域の閾値電圧は4.05V、センス領域の閾値電圧は3.99Vであり、両者の値はほぼ一致していた。閾値電圧は負の温度特性を持っているが、室温において閾値電圧が3V以上あれば、150℃においても1V程度の閾値電圧を維持できる。この結果から、試作した半導体装置1は、室温から150℃の範囲において、ノーマリオフ動作ができ、かつノイズマージンを確保できることがわかった。
 次に、試作した半導体装置1の逆方向の立ち上がり電圧を評価するために、Vgsを0Vに固定し、Vdsを0から-1Vまでスイープし、メイン領域及びセンス領域のソース電流(Ism、Iss)を個別かつ同時に測定した。図6は、試作した半導体装置1の逆方向のIss-Vds、Ism-Vds曲線を示すグラフである。図6において、左側の縦軸はメイン領域のソース電流-Ismであり、右側の縦軸はセンス領域のソース電流-Issである。図6において、黒丸のデータはメイン領域のソース電流を示し、白四角のデータはセンス領域のソース電流を示している。逆方向の立ち上がり電圧は、基準電流が得られたときのVdsにより求めた。基準電流の値としては、メイン領域は-1mAとし、これをセル数比率の34で割った値である-0.029mAをセンス領域の基準電流とした。
 室温での測定の結果、メイン領域の立ち上がり電圧は-0.74V、センス領域の立ち上がり電圧は-0.7Vであり、両者はほぼ一致していた。ボディ領域7と第1の炭化珪素半導体層6とで構成されるボディダイオードの立ち上がり電圧は、炭化珪素のPN接合のビルトインポテンシャルの値である約2.5Vとなることから、試作した半導体装置1の逆方向の立ち上がり電圧は、ボディダイオードの立ち上がり電圧に比べて低い値を実現できていることがわかった。この結果から、逆方向電流が、ボディダイオードではなく、ソース電極10から第2の炭化珪素半導体層11を介してドレイン電極16に電流が流れるチャネルダイオードを流れることによって得られた電流であることがわかる。
 (半導体装置の順方向電流評価)
 次に、電極パターンを形成した基板72上に試作した半導体装置1を実装し、大電流での評価を行った。図7は、本実施形態に係る半導体装置1のメイン領域20及びセンス領域21に同時に流れる順方向電流を評価するための測定系70の回路構成を示す図である。半導体装置1を実装した基板72は、ドレイン端子74、ゲート端子76、メイン領域ソース端子78、センス領域ソース端子79及びケルビン端子80を備えている。ドレイン端子74・メイン領域ソース端子78間にはVcc電源22が直列に接続されている。メイン領域20のメイン領域ソースパッド2は、基板上でメイン領域ソース端子78及びケルビン端子80に接続されている。
 メイン領域20を流れる電流Ism(以下、メイン領域電流Ismと略称する)は、メイン領域ソースパッド2からメイン領域ソース端子78へ流れるが、メイン領域ソースパッド2からケルビン端子80へは流れない。センス領域21のセンス領域ソースパッド3はセンス領域ソース端子79に接続されている。ケルビン端子80に接続されている。メイン領域20及びセンス領域21のゲートパッド4はゲート端子76に接続されている。
 ゲート端子76は、ゲート抵抗26を介してゲートドライバ23に接続されている。ゲートドライバ23の基準電位はケルビン端子80の電位としている。ケルビン端子80にはセンス領域21からの小電流が流れるだけなので、メイン領域20のソース電極の電位とほぼ等しい電位となっている。ゲートドライバ23には、ゲートドライバ電源24が接続されている。パルス信号発生器25からの出力に応じて、ゲートドライバ電源24の電圧によって決まるゲート・ソース間電圧が、メイン領域20及びセンス領域21の両方に印加される。
 小電流プローブ28はセンス領域21のセンス領域ソースパッド3とケルビン端子との間に配置され、センス領域21を流れる電流Iss(以下、センス領域電流Issと略称する)を計測する。センス領域電流Issは、ケルビン端子80を通過後、メイン領域電流Ismと合わさってメイン領域ソース端子78へと流れる。大電流プローブ27は、メイン領域ソースパッド2とメイン領域ソース端子78との間に配置され、センス領域電流Issとメイン領域電流Ismとの合算値が計測される。電圧計29は、ドレイン端子74・ソース端子78間電圧をモニターする。
 図8は、雰囲気温度Taが25℃において、半導体装置1の順方向電流を評価した結果を示すグラフである。図8において、横軸はメイン領域電流Ism、左側の縦軸はセンス領域電流Iss、右側の縦軸はセンス領域電流Issに対するメイン領域電流Ismの比率Ism/Issを示す。図8において、黒丸で表すデータはセンス領域電流Issを示し、白四角で表すデータはセンス領域電流Issに対するメイン領域電流Ismの比率Ism/Issを示している。図8から、センス領域電流Issはメイン領域電流Ismに比例していることがよくわかる。センス領域電流Issに対するメイン領域電流Ismの比率は約32で、セル数比率の34とほぼ一致していた。
 図9は、雰囲気温度Taが-40℃、25℃、85℃及び150℃において、半導体装置1の順方向電流を評価した結果を示すグラフである。図9において、横軸はメイン領域電流Ism、縦軸はセンス領域電流Issに対するメイン領域電流Ismの比率を示す。図9からわかるように、雰囲気温度Taが-40℃から150℃までの範囲において、センス領域電流Issに対するメイン領域電流Ismの比率は、センス領域電流Issの大きさによらずほぼ一定であった。センス領域電流Issに対するメイン領域電流Ismの比率の平均値は32.2であり、セル数比率とほぼ一致していた。センス領域電流Issに対するメイン領域電流Ismの比率の最小値は30.8、最大値は33.5であり、平均絶対偏差は1.7%と小さい値であった。平均絶対偏差の定義は次の式(3)の通りである。
Figure JPOXMLDOC01-appb-M000002
 (半導体装置の逆方向電流評価)
 次に、試作した半導体装置1について、逆方向電流の評価を行った。図10は、本実施形態に係る半導体装置1のメイン領域20及びセンス領域21に同時に流れる逆方向電流を評価するための測定系90の回路構成を示す図である。
 半導体装置1とスイッチング用FET30とが直列に接続されている。このとき、半導体装置1は、スイッチング用FET30とは逆方向にして接続されている。すなわち、半導体装置1が実装された基板72のメイン領域ソース端子78が、スイッチング用FET30のソース電極と接続される。Vcc電源22の正側端子はスイッチング用FET30のドレイン電極と接続し、Vcc電源22の負側端子は基板72のドレイン端子74と接続されている。基板72のゲート端子76がケルビン端子80に接続されているため、Vgsは0Vで固定されている。スイッチング用FET30のゲート電極は、ゲート抵抗26を介してゲートドライバ23に接続されている。ゲートドライバ23にはゲートドライバ電源24が接続され、それぞれの基準電位端子はケルビン端子80と接続されている。
 パルス信号発生器25からの出力によって、ゲートドライバ23はゲートドライバ電源の電圧によって決まるゲート電圧をスイッチング用FET30に出力する。スイッチング用FET30が導通した瞬間のみ、基板72のドレイン端子74・メイン領域ソース端子78間には、Vcc電源22の出力電圧からスイッチング用FET30の電位降下分を引いた逆電圧が印加され、逆方向電流が流れる。
 スイッチング用FET30を流れる電流は、メイン領域ソース端子78を通過後、メイン領域ソースパッド2において、逆方向のメイン領域電流-Ismと逆方向のセンス領域電流-Issとに分かれる。逆方向のセンス領域電流-Issは、メイン領域ソースパッド2からケルビン端子80を通過し、センス領域21を流れる。小電流プローブ28はセンス領域21のセンス領域ソースパッド3とケルビン端子80との間に配置され、逆方向のセンス領域電流-Issを計測する。大電流プローブ27は、メイン領域ソースパッド2とメイン領域ソース端子78との間に配置され、逆方向のセンス領域電流-Issと逆方向のメイン領域電流-Ismとの合算値が計測される。電圧計29は、ドレイン端子74・メイン領域ソース端子78間電圧をモニターする。
 図10に示す測定系90を用いて、半導体装置1のVgsを0Vとして、Vcc電源22の出力電圧を変化させることにより、逆方向のメイン領域電流-Ismが0から40Aとなる範囲において、逆方向のセンス領域電流-Issを測定した。
 図11は、雰囲気温度Taが25℃において、半導体装置1の逆方向電流を評価した結果を示すグラフである。図11において、横軸は逆方向のメイン領域電流-Ism、左側の縦軸は逆方向のセンス領域電流-Iss、右側の縦軸は逆方向のセンス領域電流-Issに対する逆方向のメイン領域電流-Ismの比率Ism/Issを示す。図11において、黒丸で表すデータは逆方向のセンス領域電流-Issを示し、黒四角で表すデータは逆方向のセンス領域電流-Issに対する逆方向のメイン領域電流-Ismの比率Ism/Issを示している。図11から、逆方向においてもセンス領域電流-Issは、メイン領域電流-Ismに比例していることがわかる。逆方向のセンス領域電流-Issに対する逆方向のメイン領域電流-Ismの比率は約32であり、順方向と同様に、セル数比率の34とほぼ一致している。
 図12は、雰囲気温度Taが-40、25℃、85℃及び150℃において、半導体装置1の逆方向電流を評価した結果を示すグラフである。図12において、横軸は逆方向のメイン領域電流-Ism、縦軸は逆方向のセンス領域電流-Issに対する逆方向のメイン領域電流-Ismの比率Ism/Issを示す。図12からわかるように、雰囲気温度Taが-40℃から150℃までの範囲において、逆方向のセンス領域電流-Issに対する逆方向のメイン領域電流-Ismの比率は、逆方向のセンス領域電流-Issの大きさによらずほぼ一定であった。逆方向のセンス領域電流-Issに対する逆方向のメイン領域電流-Ismの比率の平均値は32.4であり、順方向でのセンス領域電流Issに対するメイン領域電流Ismの比率とほぼ一致していた。逆方向のセンス領域電流-Issに対する逆方向のメイン領域電流-Ismの比率の最小値は31.1、最大値は33.8であり、平均絶対偏差は2.3%と小さい値であった。
 上記のように、本明細書において開示される半導体装置は、順方向の閾値電圧Vthが高く、逆方向においても立ち上がり電圧Vfが1V未満のダイオードとして機能する。本明細書において開示される半導体装置のメイン領域に流れる電流とセンス領域に流れる電流との比率は、広い電流範囲かつ広い温度範囲において、かつ順方向と逆方向の双方向で一定であり、式(1)の関係を満たしている。したがって、本明細書において開示される半導体装置を用いることにより、センス領域に流れる小電流を測定することによって、メイン領域に流れる大電流を高精度で検出することができる。
 なお、センス領域に対するメイン領域のセル数の比率は上記の値に限定されるものでなく、これより大きくてもよい。ただし、センス領域電流Issが100mA以下であれば、安価な汎用演算増幅器でセンス領域電流Issを扱うことが出来、汎用演算増幅器を用いた簡便な電流電圧変換回路で電流検出することができるという利点がある。
 図13は、演算増幅器を含む電流電圧変換回路を用いた、本実施形態に係る半導体装置の順方向電流及び逆方向電流を測定するための測定系200の回路構成を示す図である。測定系200は非反転入力端子35p、反転入力端子35q、および出力端子35rを有する演算増幅器35を含む。
 半導体装置1のメイン領域33及びセンス領域34のドレイン電極は、ドレイン端子204を介して負荷37の一端と接続している。負荷37の他端はVdd電源ライン31に接続されている。メイン領域33のソース電極は、メイン領域ソース端子208を介してVdd電源のリターンライン32に接続されている。
 また、メイン領域33のソース電極から分岐されたケルビン端子210は、演算増幅器35の非反転入力端子35pに接続されている。センス領域34のソース電極は、センス領域ソース端子209を介して演算増幅器35の反転入力端子35qと接続されている。負荷37を流れる電流は、メイン領域33に流れる電流Ismと、センス領域34に流れる電流Issとに分流される。ここで演算増幅器35の入力インピーダンスは極めて大きいので、メイン領域33に流れる電流Ism及びセンス領域34に流れる電流Issは、ともに演算増幅器35の非反転入力端子35pおよび反転入力端子35qには流れ込まない。ケルビン端子210にはメイン領域33に流れる電流Ismが流れ込まないので、メイン領域33に流れる電流Ismによる電位降下の影響を受けない。したがって、ケルビン端子210の電位、すなわち演算増幅器35の非反転入力端子35pの電位は、メイン領域33のメイン領域ソースパッド2の電位に精度よく一致する。演算増幅器35の出力端子35rと反転入力端子間にはセンス抵抗36が接続されている。メイン領域20及びセンス領域21のゲート電極はゲート端子206に接続されている。
 演算増幅器35のゲインは理想的には無限大であり、現実にも極めて大きい。反転入力端子35qおよび非反転入力端子35pの電位に差があると、出力端子35rにはその差に比例した電位が現れ、これがセンス抵抗36を通して反転入力端子35qの電位を下げるように負帰還がかかる。結果的に反転入力端子35qの電位は非反転入力端子35pの電位に等しくなる。よって、メイン領域33及びセンス領域34のソース電極の電位が一致し、メイン領域33及びセンス領域34の両方に等しいゲート・ソース間電圧が印加される。負帰還をより安定させるため、センス抵抗36の抵抗値はkΩオーダーであることが好ましい。
 演算増幅器35の出力Vsenseは、次の式で表される。
Vsense=-Iss×Rsense      (4)
ここで、Issはセンス領域34に流れる電流、Rsenseはセンス抵抗36の抵抗値である。上記の式の右辺は、センス領域34に流れる電流がドレインからソースに向かって流れる、いわゆる順方向電流の場合には負の値となり、ソースからドレインに流れる、いわゆる逆方向電流の場合には正の値となる。
 一般に、演算増幅器には、単極性の電源電圧のみ印加する単電源タイプと、正極性、負極性の両方の電源電圧を印加する両電源タイプがある。単電源タイプの場合、出力は正または負のいずれかの極性しかとれないのに対し、両電源タイプであれば出力は正負の両極性をとることができる。したがって、順方向電流及び逆方向電流を測定するには、両電源タイプの演算増幅器を用いることが好ましい。つまり、演算増幅器35には、両電源タイプを用いることが好ましい。
 演算増幅器は電源電圧を越える電圧を出力することはできない。汎用演算増幅器では12から15Vの電源電圧のものが多い。センス抵抗はkΩオーダーである場合、演算増幅器に流せる電流は100mA以下のオーダーとなる。本実施形態において、センス抵抗を100Ω未満としたときは演算増幅器の負帰還が安定しなかった。
 なお、電流電圧変換回路としては必ずしも演算増幅器を用いずとも良い。電流電圧変換回路として、演算増幅器に代えて、例えばホール効果を利用した電流センサ、またはロゴスキーコイルなどの電流センサを用いることもできる。
 さらに、本明細書において開示される半導体装置を用いると、検出された逆方向電流値が、所望の値と異なる場合、ゲート電圧を制御することにより、逆方向電流の大きさを制御することができる。
 図14は、本実施形態に係る半導体装置1におけるメイン領域の逆方向Ism-Vds曲線のゲート電圧依存性を示すグラフである。図14において、横軸は負方向のドレイン電圧-Vds、縦軸はメイン領域に流れる逆方向電流-Ismを示す。図14において、白四角で表すデータはVgsが0Vでのデータを示し、黒丸で表すデータはVgsが-5Vでのデータを示す。図14からわかるように、半導体装置1において、ゲート電圧をより負にすることにより、メイン領域に流れる逆方向電流を小さくすることができる。図14に示すグラフにおいて、Vgs=0Vの場合、-Isが15Aとなるときの-Vdsは1.5Vであるので、抵抗は0.1Ωとなる。一方、Vgs=-5Vにすると、-Isが15Aとなるときの-Vdsは2Vとなるので、抵抗は0.13Ωに増大している。このように本明細書の半導体装置においては逆方向電流もトランジスタのチャネルを流れるので、ゲート電圧によって、そのIV特性を変化させることができる。特許文献1に開示された技術では、逆方向電流はボディダイオードを通して流れるので、ゲート電圧によって逆方向のIV特性を変化させることはきない。
 特許文献1に開示された技術では、還流ダイオードに流れる電流を検出するために、トランジスタ電流検出手段とは別に、ダイオード電流検出手段を設ける必要があったため、構成が複雑になっていた。
 これに対して、本明細書において開示される半導体装置では、センス領域を用いることにより、トランジスタ電流に相当する順方向電流だけでなく、ダイオード電流に相当する逆方向電流も検出することができる。したがって、本明細書において開示される半導体装置では、簡易な構成により、トランジスタに流れる電流及び還流ダイオードに流れる電流をともに検出することができる。
 また、特許文献1には、従来のスイッチング回路において、ローサイドMOSFETのボディダイオードに流れる逆方向電流を検出することが開示されている。しかし、特許文献1に記載されたスイッチング回路では、ゲート電圧により逆方向電流を制御することはできない。また、炭化珪素半導体の場合、ボディダイオードを構成するPN接合に電流を流すと、積層欠陥が成長することによりボディダイオードの特性が劣化する。また、炭化珪素半導体の場合、バンドギャップが広いため、ボディダイオードの立ち上がり電圧Vfが約2.5Vと大きい。
 それに対して、本明細書において開示される半導体装置では、ボディダイオードでなくチャネルダイオードを用いることにより逆方向電流を検出するので、積層欠陥が成長することによる特性劣化は起こらず、ダイオードの立ち上がり電圧Vfが低い。さらに、本明細書において開示される半導体装置は、ゲート電圧によって逆方向電流を制御できるという特有な効果を有する。
 (第2の実施形態)
 (半導体装置の構造)
 次に、本開示の第2の実施形態に係る半導体装置について、図面を参照して説明する。図15(a)は、本実施形態に係る半導体装置の概略を示す平面図である。図15(b)は、図15(a)におけるA-A’部分の概略を示す断面図である。図15(c)は、図15(b)における単位セルの概略を示す断面図である。図15(d)は図15(b)における、メイン領域320とセンス領域321との境界部分を拡大して示す断面図である。
 第1の実施形態に係る半導体装置1では、単位セル111がプレーナゲート型のMISFETであるのに対して、本実施形態に係る半導体装置301では、単位セル311がトレンチゲート型のMISFETである点が異なる。なお、第1の実施形態に係る半導体装置1と共通する構成要素については同じ符号を付与して説明を省略する。
 図15(b)に示すように、半導体装置301はセンス領域321及びメイン領域320を備えている。センス領域321及びメイン領域320はいずれも、互いに並列に接続された複数の単位セル311を備えている。
 図15(b)に示すように、センス領域321とメイン領域320との境界部分における第1導電型の第1の炭化珪素半導体層6中には、単位セルとは異なり、終端ベース領域18、19及び素子分離領域110が配置されている。終端ベース領域18、19及び素子分離領域110は、いずれも第2導電型である。終端ベース領域18、19には、第1導電型のソース領域が含まれていない。終端ベース領域18、19中にソース領域が配置されていると、ソース領域、終端ベース領域18、19及び第1の炭化珪素半導体層6により構成される寄生バイポーラに大電流が流れて半導体装置301が破壊する可能性があるためである。終端ベース領域18、19上にはソース電極10が配置されており、上部配線15によって単位セル311のソース電極10と電気的に接続している。したがって終端ベース領域18、19と単位セル311のソース領域8とは同電位である。終端ベース領域18、19は第1の炭化珪素半導体層6とPNダイオードを構成する。
 素子分離領域110は、終端ベース領域18と終端ベース領域19との間に配置されている。素子分離領域110上には、ソース電極10が配置されておらず、素子分離領域110の電位はフローティング電位となっている。素子分離領域110は、センス領域321とメイン領域320との間に電流が流れることを防止する。図15(d)に示すように、素子分離領域110上及び終端ベース領域18、19の端部上には、第2の炭化珪素半導体層11が配置されていない。これにより、第2の炭化珪素半導体層11を通してメイン領域320とセンス領域321との間に電流が流れることを防止することができるので、センス領域321を流れる電流を、メイン領域320を流れる電流から区別して検出することが可能となる。
 図15(c)を用いて、単位セル311の構造を説明する。ソース領域8の表層から、ソース領域8及びボディ領域7を貫通するトレンチ112が配置されている。トレンチ112の側面及び底面、並びにソース領域8の表面の一部には、第2の炭化珪素半導体層11が配置されている。第2の炭化珪素半導体層11は、例えば、第1の炭化珪素半導体層6のトレンチ112の底面及び側面、並びにトレンチ112の周辺部を覆うようにエピタキシャル成長により形成されたエピタキシャル層である。第2の炭化珪素半導体層11が単一のn型層により構成される場合、例えば、第2の炭化珪素半導体層11の厚みが75nm以下で、かつ第2の炭化珪素半導体層11におけるn型不純物のドーピング濃度が1×1018cm-3以上であればよい。第2の炭化珪素半導体層11は、n型不純物層の表面にアンドープ層を積層した層であってもよい。第2の炭化珪素半導体層11は、犠牲酸化およびゲート酸化の工程において膜厚が減少する場合がある。製造工程での第2の炭化珪素半導体層11の膜厚の減少量のばらつきによって、順方向の閾値電圧逆方向の立ち上がり電圧等の半導体装置301の電気特性にばらつきが生じる。n型不純物層の表面にアンドープ層を積層することにより、半導体装置301の電気特性のばらつきを低減することができる。
 第2の炭化珪素半導体層11上には、ゲート絶縁膜12が配置されている。ゲート絶縁膜12の厚みは70nm程度である。
 ゲート絶縁膜12上には、トレンチ112を埋め込むようにゲート電極13が配置されている。ゲート電極13は、例えば、リンを1×1021cm-3程度ドープしたn型poly-Siであり、ゲート電極13の厚みは500nm程度である。
 トレンチゲート型のMISFETの場合、半導体基板の主面に平行な方向でなく、半導体基板の厚み方向にチャネルが形成されるので、プレーナゲート型のMISFETに比べてチャネルの面積密度を大きくすることができる。したがって、同じ大きさの半導体装置であれば、トレンチゲート型のMISFETは、プレーナゲート型のMISFETに比べて、流れる電流を大きくすることができる。電流が大きくなるほど、電流測定が困難になるので、本明細書において開示される半導体装置における単位セルがトレンチゲート型のMISFETであると、メイン領域に比べてセル数を小さくしたセンス領域に流れる電流により、電流測定を行うことによる効果が顕著になる。
 (半導体装置の製造方法)
 次に、図16から図18を参照しながら、本実施形態に係る半導体装置の製造方法を説明する。図16から図18は、本実施形態に係る半導体装置の製造方法を示す断面図である。
 図16(a)に示す半導体基板5を準備する工程及び図16(b)に示す第1の炭化珪素半導体層6をエピタキシャル成長する工程は、第1の実施形態における図2(a)及び図2(b)に示す工程と同じであるので、説明を省略する。
 次に、図16(c)に示すように、第1の炭化珪素半導体層6の表面の上に、例えば、厚さが0.5μmから1μm程度のボディ領域7をエピタキシャル成長する。エピタキシャル成長に代えて、アルミニウムイオンまたはボロンイオンを第1の炭化珪素半導体層6に注入することにより、ボディ領域7を形成しても良い。
 続いて、図16(d)に示すように、ボディ領域7の表面に、窒素イオンの注入またはエピタキシャル成長によって、高濃度のn型不純物を含むソース領域8を形成する。加えて、マスク(図示しない)を用いてソース領域8にAlイオンを注入することによって、ボディ領域7に到達するp型のコンタクト領域9を形成する。この後、活性化アニールを行う。活性化アニールは、例えば、不活性雰囲気中で1700から1800℃程度で30分程度行う。
 次に、図16(e)に示すように、マスク(図示しない)を用いて、ソース領域8及びボディ領域7のうち一部の領域をドライエッチングにより除去することによって、所望の領域にトレンチ112を形成する。トレンチ112は、ソース領域8及びボディ領域7を貫通し、第1の炭化珪素半導体層6に到達する凹部である。
 次に、図17(a)に示すように、トレンチ112の底面及び側面を含む第1の炭化珪素半導体層6の表面全体に、第2の炭化珪素半導体層11をエピタキシャル成長により形成する。
 次いで、図17(b)に示すように、ソース領域8の一部及びコンタクト領域9の表面が露出するよう第2の炭化珪素半導体層11の一部の領域をドライエッチングによって除去する。この後、熱酸化によって、第2の炭化珪素半導体層11の表面にゲート絶縁膜12を形成する。
 続いて、図17(c)に示すように、ゲート絶縁膜12の表面に、例えばリンを7×1020cm-3程度ドーピングした厚さ500nm程度の多結晶シリコン膜を堆積する。次いで、ドライエッチングにて多結晶シリコン膜を所望のパターンに加工することによって、トレンチ112内及びトレンチ112周辺の一部の領域に、ゲート電極13を形成する。
 図17(d)に示す層間絶縁膜14を堆積する工程、図18(a)に示すソース電極10及びドレイン電極16を形成する工程、並びに図18(b)に示す上部配線15及び裏面電極17を形成する工程は、第1の実施形態における図3(e)、図4(a)、図4(b)及び図4(c)に示す工程と同じであるので説明を省略する。
 以上のようにして、図15に示した半導体装置301が得られる。
 (第3の実施形態)
 次に、本開示の第3の実施形態に係るインバータについて、図面を参照して説明する。図19は、本実施形態に係るインバータ402を備える負荷駆動システム400の構成を示すブロック図である。
 負荷駆動システム400は、交流電源40、整流回路404、インバータ402、及び負荷45を備えている。
 整流回路404は、4つの整流ダイオード42により構成されるダイオードブリッジ回路406、及びチョークコイル41を備えている。交流電源40からの交流出力電圧は整流ダイオード42を通して直流化される。チョークコイル41は、力率を向上させるために、交流電源40とダイオードブリッジ回路406との間に挿入されている。
 インバータ402は、3相ブリッジ回路408、回生電力消費回路410、電流電圧変換部48、ゲート電圧制御部49、平滑コンデンサ43、及び平滑コンデンサ43の電圧を検出する電圧検出部420を備えている。
 3相ブリッジ回路408は、第1の実施形態または第2の実施形態に記載の半導体装置である上アーム44a、44c、44e及び下アーム44b、44d、44fにより構成されている。上アーム44a及び下アーム44bは、互いに直列に接続されてレグ440を構成している。同様に、上アーム44c及び下アーム44dは、互いに直列に接続されてレグ442を構成し、上アーム44e及び下アーム44fは、互いに直列に接続されてレグ444を構成している。各レグ440、442、444の中点は負荷45に接続されている。
 平滑コンデンサ43により平滑化された直流電圧は、3相ブリッジ回路408の各レグ440、442、444の両端に印加され、3相ブリッジ回路408により3相交流電圧に変換される。3相ブリッジ回路408から出力された3相交流電圧は負荷45に印加される。
 各レグ440、442、444の上アーム44a、44c、44e及び下アーム44b、44d、44fを構成する半導体装置のゲート端子は、ゲート電圧を制御するゲート電圧制御部49に接続されている。
 ゲート電圧制御部49は、所望の周波数の正弦波電圧が負荷45に供給されるよう、各レグ440、442、444の上アーム44a、44c、44e及び下アーム44b、44d、44fのゲート電圧を個別に制御する。また、各半導体装置のセンス領域21のソース端子は電流電圧変換部48に接続されている。
 電流電圧変換部48は、半導体装置の第2のソースパッドに接続され、ドレインパッドと第2のソースパッドとの間に流れる電流の値に対応した値の電圧を出力する。
 回生電力消費回路410は、負荷45からインバータ402へ流れる回生電流を熱として消費するための抵抗46および抵抗に流す回生電流を制御するスイッチング素子47を含む。電圧検出部420は、平滑コンデンサ43と並列に接続されており、回生電流を検出するために設けられている。
 ゲート電圧制御部49は、電流電圧変換部48から出力される電圧および電圧検出部420が検出した電圧に基づいて、半導体装置のゲートパッドに印加する電圧を制御する。   
 以下、各構成要素を詳細に説明する。電流電圧変換部48は、電流電圧変換部48L、48Uを含む。図20、図21は電流電圧変換部48L、48Uの詳細を示す図である。図20は下アーム44b、44d、44fに接続する電流電圧変換部48Lのブロック図である。電流電圧変換部48Lは下アーム44b、44d、44fに接続する3つの演算増幅器35b、35d、35fと、それぞれの帰還抵抗36b、36d、36fからなっている。各々の演算増幅器35b、35d、35fは、正の電源電圧Vcc及び負の電源電圧-Vccがそれぞれ印加されている。構成は図13のものと同じであり、3つの演算増幅器35b、35d、35fに供給される正の電源電圧+Vccは同一の電圧であり、同一の正電源から供給しても構わない。
 3つの演算増幅器35b、35d、35fに供給される負の電源電圧-Vccは同一の電圧であり、同一の負電源から供給しても構わない。例えば下アーム44bに接続する回路を説明すれば、演算増幅器35bの反転入力側には端子481bが設けられ、下アームの半導体装置のセンス領域のソースパッドと接続する。非反転入力側には端子482bが設けられ、下アーム44bの半導体装置のメイン領域のソースパッドから分岐したケルビン端子に接続する。演算増幅器35bの出力には端子483bが設けられ、これはゲート電圧制御部49と接続する。演算増幅器35bの反転入力と、出力にはセンス抵抗36が接続されており、出力端子には481bに流れ込む電流に、帰還抵抗36bをかけて得られる電圧が出力される。下アームの半導体装置のメイン領域のソースパッドは全て平滑コンデンサの一方の電極に接続されており、同電位であるため、演算増幅器に与える電源電圧の基準電位も、平滑コンデンサの負側の電位とすればよい。
 図21は上アーム用の電流電圧変換部48Uのブロック図である。下アーム用の電流電圧変換部48Lと異なるのは、上アームの3つの半導体装置のソース電位は動作状態によって変動し、また、それぞれ異なる電位をとりうるということである。したがって、演算増幅器35a、35c、35eに与える電源電圧も、それぞれに接続する上アームの半導体装置のソース電位を基準とするので、異なる電源電圧+Vcc1、-Vcc1、+Vcc2、-Vcc2、+Vcc3、-Vcc3を与える。その他は下アーム用の電流電圧変換部48Lと同じである。
 図22はゲート電圧制御部49の詳細を示す機能ブロック図である。ゲート電圧制御部49は、PWM信号発生回路51、過電流判定回路52、回生電流判定回路53、トランジスタ遮断信号発生回路54、ゲート負バイアス信号発生回路55、回生抵抗用スイッチ制御信号発生回路56およびゲート信号切替回路57を含む。
 通常の動作状態では、PWM信号発生回路51で生成した信号が、レグ440、442、444の各トランジスタのゲート信号として、ゲート電圧制御部49から出力される。これにより、負荷45(図19)には、3相交流電圧が印加される。
 負荷45が短絡したり、ゲート電圧の制御の不調で上アーム44a、44c、44eと下アーム44b、44d、44fとが短絡したりすると、半導体装置に過電流が流れることにより、半導体装置が破壊する可能性がある。これを防止するために、ゲート電圧制御部49は、半導体装置に過電流が流れたと判断すると、その半導体装置の通常のゲート電圧制御を中止し、半導体装置に流れる過電流を遮断するようにゲート電圧を低下させる。具体的には、過電流判定回路52は、電流電圧変換部48から出力される信号を受け取り、所定の順方向基準値と比較する。電流電圧変換部48から出力される信号は、ドレインパッドと第2のソースパッドとの間に流れる電流の値に比例した電圧値を有する。ドレインパッドと第2のソースパッドとの間に流れる電流、つまり、センス領域21を流れる電流は、ドレインパッドと第1のソースパッドとの間に流れる電流であるメイン領域20を流れる電流に比例するため、電流電圧変換部48から出力される電圧の絶対値が、所定の順方向基準値よりも大きい場合、負荷に過電流が流れていると判断できる。
 過電流判定回路52は、負荷に過電流が流れていると判断した場合、トランジスタ遮断信号発生回路54およびゲート信号切替回路57へ信号を出力する。信号を受け取ったゲート信号切替回路57が、トランジスタ遮断信号発生回路54の出力を選択することによって、ゲート電圧制御部49は、トランジスタ遮断信号発生回路54で生成したトランジスタを遮断するための低いゲート電圧を出力する。これにより、過電流が検出されたレグのトランジスタを遮断し、負荷45に過電流が流れるのを抑制することができる。
 また、負荷45が誘導性負荷である場合、例えば、順方向電流が流れていた状態から半導体装置の動作を停止させると、逆誘導起電力が発生して、逆方向電流である回生電流が流れる。この回生電流が流れる経路は、例えば、負荷45から順に、レグ442の上アーム44cのチャネルダイオード、平滑コンデンサ43、レグ440の下アーム44bのチャネルダイオード、及び負荷45を結ぶ経路である。
 回生電流が流れると、平滑コンデンサ43の電圧が上昇する。平滑コンデンサ43の電圧が平滑コンデンサ43の耐圧を超えると、平滑コンデンサ43が破壊する恐れがある。これを防止するために、回生電流判定回路53は、電圧検出部420からの検出電圧を受け取り、検出電圧の値を所定の基準電圧値と比較する。検出電圧の値が基準電圧値を超えている場合、回生電流判定回路53は、平滑コンデンサ43の電圧が基準電圧値を超えたと判断する。
 この場合、回生電流判定回路53は、回生抵抗用スイッチ制御信号発生回路56に信号を出力する。信号を受け取った回生抵抗用スイッチ制御信号発生回路56は、回生電力消費回路410に設けられたスイッチング素子47を導通させる信号を出力する。これにより、回生電力消費回路410において、スイッチング素子47が導通し、回生電流は抵抗46を流れることにより、回生電力は熱に変換され、消費される。このため、平滑コンデンサ43の電圧、すなわち一次側電源の電圧が過剰に高圧になり、平滑コンデンサ43が過電圧によって破壊されることを防止することができる。
 回生電流判定回路53は、また、ゲート負バイアス信号発生回路55およびゲート信号切替回路57に信号を出力する。信号を受け取ったゲート信号切替回路57が、ゲート負バイアス信号発生回路55の出力を選択することにより、ゲート電圧制御部49は、ゲート負バイアス信号発生回路55で生成した負のゲート電圧を出力する。これにより、レグ440、442、444の半導体装置であるトランジスタは逆方向の抵抗値が増え、レグ440、442、444の半導体装置においても、より多くの回生電流が熱に変換され、消費される。
 なお、本実施形態では、ゲート電圧制御部49は、ゲート負バイアス信号発生回路55および回生抵抗用スイッチ制御信号発生回路56の両方を備え、回生電流が所定の値以上であると判断した場合、ゲート負バイアス信号発生回路55および回生抵抗用スイッチ制御信号発生回路56の両方を動作させている。しかし、どちら一方だけを動作させてもよい。また、動作をさせない回路をゲート電圧制御部49は備えていなくてもよい。
 図23Aは、本実施形態のインバータにおいて、負荷短絡などで、半導体装置に順方向過電流が流れた場合における、保護動作に関するタイミングチャートであり、ある特定の半導体装置のゲート信号などを示している。時刻0からt1はゲートがオンであり、このとき該当する半導体装置に流れる順方向電流は増え続けるため、順方向電流に対応する出力電圧値は減少する。時刻t1からt2はゲートがオフになるので、該当する半導体装置の電流は流れないため、出力電圧値は変化しない。時刻t2で再びゲートがオンになるが、負荷短絡などの事故で電流が急増することにより出力電圧値が減少し、時刻t3においてあらかじめ設定した順方向基準電圧値を超えると、過電流判定回路52の出力がオンとなり、半導体装置の電流を遮断するような、ゲート信号が出力される。瞬時にゲートをオフにすると、誘導性負荷の逆起電力が発生するため、徐々にオフにすることが好ましい。このようにして、半導体装置の順方向電流は減少してゼロとなる。
 図23Bは、モーターが減速することによって、回生電流がモーターから平滑コンデンサに流れ込んでいるときの保護動作に関するタイミングチャートである。時刻t4でゲート信号はオフになり、一旦電流はゼロになるが、時刻t5において回生電流と思われる逆方向電流が流れ始める。この逆方向電流によって、平滑コンデンサが充電され、その両端の電圧値が上昇する。時刻t6で平滑コンデンサの電圧が、あらかじめ設定した基準電圧値を超えると、回生電流判定回路53の出力がオンになり、時刻t7において回生抵抗スイッチゲート信号をオンにする。回生電流は、回生抵抗に流れ、熱となって回生エネルギーが消費される。その結果、回生電流は減少して、ゼロになる。平滑コンデンサの過電圧は解消される。
 図23Cは回生エネルギーを回生抵抗だけでなく、インバータの半導体装置でも消費させる保護動作を示すタイムチャートである。時刻t6で回生電流判定回路53の出力がオンになると、回生抵抗スイッチゲート信号がオンになるだけでなく、該当の半導体装置のゲート電圧をゼロから、負にする。負のゲート電圧は例えば-5Vである。ゲート電圧が負になることにより、チャネルダイオードの抵抗が増加する。回生抵抗及びチャネルダイオードの抵抗により回生エネルギーが消費される。その結果、回生電流は減少して、ゼロとなり、平滑コンデンサの過電圧は解消される。
 図14に示すように、本明細書において開示される半導体装置は、ゲート電圧を負側に変化させることにより、半導体装置のチャネルダイオードの抵抗を増加させることができる。これにより、半導体装置のチャネルダイオードでの導通損失が増大するので、チャネルダイオードにおいても回生電力を消費することが可能である。このとき、シリコンを用いた半導体装置の場合であれば、回生電力を消費するときの熱により半導体装置の温度が上昇し、絶対最大定格温度を超えて動作不能になる可能性がある。それに対して、本明細書において開示される半導体装置は、耐熱性に優れた炭化珪素を用いているので、回生電力を消費するときの熱により半導体装置が動作不能となることを抑制することができる。
 図24は、本明細書において開示される半導体装置の逆方向のIV曲線の温度特性を示すグラフである。図24において、横軸はドレイン‐ソース間電圧Vds、縦軸は逆方向のドレイン電流を示す。また、破線で表すデータは室温での測定結果を示し、一点鎖線で表すデータは75℃での測定結果を示し、実線で表すデータは150℃での測定結果を示している。図24から、本明細書において開示される半導体装置は、150℃の高温でもダイオードとして動作していることがわかる。
 このように、半導体装置のゲート電圧を負側に変化させることにより、チャネルダイオードにおいて回生電力を消費するようにすると、回生電力消費回路410における抵抗46で消費する電力が減るので、抵抗46及び抵抗46に設けられている放熱機構を小型化することができる。
(第4の実施形態)
 次に、本開示の第4の実施形態に係るインバータについて、図面を参照して説明する。本実施形態のインバータは、回生電流を平滑コンデンサの電圧によって検出するのでなく、半導体装置を流れる逆方向電流によって検出する点で第3の実施の形態と異なる。
 図25は本実施の形態における、ゲート電圧制御部49を示す機能ブロック図である。ゲート電圧制御部49は、順方向過電流判定回路52Aおよび逆方向過電流判定回路52Bを含んでいる。通常の動作状態では、PWM信号発生回路の出力が、インバータのトランジスタのゲート信号として出力される。
 電流電圧変換部48の出力、すなわちドレインパッドと第2のソースパッドとの間に流れる電流の値に対応した値の電圧がゲート電圧制御部49に入力される。電流電圧変換部48の出力電圧は、順方向過電流判定回路52Aと逆方向過電流判定回路52Bの両方に入力される。
 順方向過電流判定回路52Aは、あらかじめ設定された順方向基準電圧値と電流電圧変換部48の出力電圧の値とを比較し、電流電圧変換部48の出力電圧の絶対値の方が順方向基準電圧値よりも大きい場合は、順方向の過電流と判定する。この場合、順方向過電流判定回路52Aは、トランジスタ遮断信号発生回路54およびゲート信号切替回路57へ信号を出力する。信号を受け取ったゲート信号切替回路57が、トランジスタ遮断信号発生回路54の出力を選択することによって、ゲート電圧制御部49は、トランジスタ遮断信号発生回路54で生成したトランジスタを遮断するための低いゲート電圧を出力する。これにより、過電流が検出されたレグのトランジスタを遮断し、負荷45に過電流が流れるのを抑制することができる。
 逆方向過電流判定回路52Bは、あらかじめ設定された逆方向基準電圧値と電流電圧変換部48の出力電圧の値とを比較し、電流電圧変換部48の出力電圧の絶対値が逆方向基準電圧値よりも大きい場合、回生電流が生成していると判定する。この場合、逆方向過電流判定回路52Bは、第3の実施形態と同様、回生抵抗用スイッチ制御信号発生回路56に信号を出力する。信号を受け取った回生抵抗用スイッチ制御信号発生回路56は、回生電力消費回路410に設けられたスイッチング素子47を導通させる信号を出力する。
 また、逆方向過電流判定回路52Bは、ゲート負バイアス信号発生回路55およびゲート信号切替回路57に信号を出力する。信号を受け取ったゲート信号切替回路57が、ゲート負バイアス信号発生回路55の出力を選択することにより、ゲート電圧制御部49は、ゲート負バイアス信号発生回路55で生成した負のゲート電圧を出力する。これにより、レグ440、442、444の半導体装置であるトランジスタは逆方向の抵抗値が増え、レグ440、442、444の半導体装置においても、より多くの回生電流が熱に変換され、消費される。
 なお、本実施形態では、ゲート電圧制御部49は、ゲート負バイアス信号発生回路55および回生抵抗用スイッチ制御信号発生回路56の両方を備え、電流電圧変換部48の出力電圧の値に基づき回生電流が所定の値以上であると判断した場合、ゲート負バイアス信号発生回路55および回生抵抗用スイッチ制御信号発生回路56の両方を動作させている。しかし、どちら一方だけを動作させてもよい。また、動作をさせない回路をゲート電圧制御部49は備えていなくてもよい。
 図26は本実施形態のインバータにおいて、逆方向に過電流が流れているときの保護動作を示すタイムチャートである。時刻0からt8においては半導体装置のゲートがオンになっており、順方向電流が流れている。時刻t8において、ゲート信号がオフになり、半導体装置に流れる電流は一旦ゼロになるが、時刻t9から逆方向電流が流れ始め(電流電圧変換部48の出力電圧の値が負となる)、出力電圧の値が時刻t10において、あらかじめ設定した逆方向基準電圧値を超えると逆方向過電流判定回路がオンになり、回生抵抗用のスイッチング素子47のゲートをオンにする。回生電流は抵抗46を流れ、回生抵抗で回生エネルギーが消費されるので、電流は序々に減少し、流れなくなる。
 負荷45であるモータが、例えば強制的に逆回転方向に駆動させられた場合、インバータ402に逆方向の過電流が流れることがある。逆方向の過電流が流れると、平滑コンデンサ43の電圧が急激に上昇し、平滑コンデンサ43が破壊する恐れがある。本実施形態によれば、逆方向の過電流が検出されると、回生電力は抵抗46またはチャネルダイオードの抵抗において熱に変換されることにより消費される。このため、平滑コンデンサ43の電圧、すなわち一次側電源の電圧が過剰に高圧になることがなくなるので、平滑コンデンサ43が過電圧によって破壊されることを防止することができる。
(比較例)
 図27はチャネルダイオードの機能を有しない、従来の電流検出機能付の半導体装置501aから501fを用いたインバータのブロック図を示す。チャネルダイオードがないので、外付けの還流ダイオード502を各アームの半導体装置に逆並列に接続する必要がある。従来の電流検出機能付の半導体装置501は、順方向電流の検出はできるものの、外付けの還流ダイオードに流れる逆方向電流の検出は出来ない。したがって本開示の第4の実施形態のように、回生電流の検出を直接行うことはできず、平滑コンデンサの電圧を電圧検出部420で検出するか、外付け還流ダイオード用の電流検出器を別途設けないと、回生電流が流れているとの判断ができない。
 一方本開示の半導体装置は、外付けの還流ダイオードを設けずとも逆方向電流も同じ半導体装置のチャネルを流れ、またメイン領域に流れる順方向電流と逆方向電流の両方をセンス領域に流れる小電流から間接的に検出することができる。
 なお、以上の実施形態においては、第1導電型がn型であり、第2導電型がp型である例について示したが、これに限定されない。第1導電型がp型であり、第2導電型がn型であってもよい。
 本明細書において開示される技術は、例えば、電力変換器に用いられる半導体デバイス用途において有用である。特に、車載用、産業機器用等の電力変換器に搭載するためのパワー半導体デバイス用途において有用である。
 1、301 半導体装置
 2   メイン領域ソースパッド
 3   センス領域ソースパッド
 4   ゲートパッド
 5   半導体基板
 6   第1の炭化珪素半導体層
 7   ボディ領域(ウェル領域)
 8   ソース領域
 9   コンタクト領域
 10  ソース電極
 11  第2の炭化珪素半導体層
 12  ゲート絶縁膜
 13  ゲート電極
 14  層間絶縁膜
 15  上部配線
 16  ドレイン電極
 17  裏面電極
 18、19 終端ベース領域
 20、320  メイン領域
 21、321  センス領域
 22  Vcc電源
 23  ゲートドライバ
 24  ゲートドライバ電源
 25  パルス信号発生器
 26  ゲート抵抗
 27  大電流プローブ
 28  小電流プローブ
 29  電圧計
 30  スイッチング用FET
 31  Vdd電源ライン
 32  リターンライン
 33  メイン領域
 34  センス領域
 35  演算増幅器
 36  センス抵抗
 37、45  負荷
 40  交流電源
 41  チョークコイル
 42  整流ダイオード
 43  平滑コンデンサ
 44a、44c、44e 上アーム
 44b、44d、44f 下アーム
 46  抵抗
 47  スイッチング素子
 48  電流電圧変換部
 48U 電流電圧変換部(上アーム用)
 48L 電流電圧変換部(下アーム用)
 49  ゲート電圧制御部
 70、90、200 測定系
 72  基板
 74、204 ドレイン端子
 76、206 ゲート端子
 78、208 メイン領域ソース端子
 79、209 センス領域ソース端子
 80、210 ケルビン端子
 110 素子分離領域
 111、311 単位セル
 112 トレンチ
 113 多結晶シリコン膜
 114 ヴィアホール
 400、500 負荷駆動システム
 402 インバータ
 404 整流回路
 406 ダイオードブリッジ回路
 408 3相ブリッジ回路
 410 回生電力消費回路
 420 電圧検出部
 440、442、444 レグ
 501a、501b、501c、501d、501e、501f 従来の電流検出機能付き半導体素子
 502 外付け還流ダイオード

Claims (15)

  1.  メイン領域およびセンス領域を含む第1導電型の半導体基板と、
     前記第1導電型の半導体基板の前記メイン領域および前記センス領域にそれぞれ設けられており、金属-絶縁体-半導体電界効果トランジスタを有する複数の単位セルであって、前記センス領域に含まれる単位セルの数は、前記メイン領域に含まれる単位セルの数よりも小さく、前記メイン領域および前記センス領域のそれぞれにおいて、前記金属-絶縁体-半導体電界効果トランジスタが並列に接続された複数の単位セルと、
     前記半導体基板の主面側に配置されたゲートパッドと
     互いに絶縁された第1のソースパッドおよび第2のソースパッドと、
     前記半導体基板の裏面側に配置されたドレインパッドと、
    を備え、
     各金属-絶縁体-半導体電界効果トランジスタは、
     前記半導体基板の主面上に位置する第1導電型の第1の炭化珪素半導体層と、
     前記第1の炭化珪素半導体層に接する第2導電型のボディ領域と、
     前記ボディ領域に接する第1導電型のソース領域と、
     前記第1の炭化珪素半導体層上でかつ前記ボディ領域及び前記ソース領域の少なくとも一部に接して配置された第2の炭化珪素半導体層と、
     前記第2の炭化珪素半導体層上のゲート絶縁膜と、
     前記ゲート絶縁膜上のゲート電極と、
     前記ソース領域に接触するソース電極と、
     前記半導体基板の裏面側に配置されたドレイン電極と
    を含み、
     前記ソース電極の電位を基準とする前記ドレイン電極の電位をVds、
     前記ソース電極の電位を基準とする前記ゲート電極の電位をVgs、
     前記金属-絶縁体-半導体電界効果トランジスタのゲート閾値電圧をVthとすると、
     前記Vdsが正の場合、前記金属-絶縁体-半導体電界効果トランジスタは、前記Vgsが前記Vth以上のとき、前記ドレイン電極から前記ソース電極へ電流を流し、
     前記Vdsが負の場合、前記金属-絶縁体-半導体電界効果トランジスタは、前記VgsがVth未満のとき、前記ソース電極から前記ドレイン電極へ電流を流すダイオードとして機能し、
     前記ダイオードの立ち上がり電圧の絶対値は、前記ボディ領域と前記第1の炭化珪素半導体層とにより構成されるボディダイオードの立ち上がり電圧の絶対値よりも小さく、
     前記メイン領域に含まれる前記単位セルにおける前記ゲート電極及び前記センス領域に含まれる前記単位セルにおける前記ゲート電極は、前記ゲートパッドに電気的に接続され、
     前記メイン領域に含まれる前記単位セルにおける前記ドレイン電極及び前記センス領域に含まれる前記単位セルにおける前記ドレイン電極は、前記ドレインパッドに電気的に接続され、
     前記メイン領域に含まれる前記単位セルにおける前記ソース電極は、前記第1のソースパッドに電気的に接続され、
     前記センス領域に含まれる前記単位セルにおける前記ソース電極は、前記第2のソースパッドに電気的に接続されている半導体装置。
  2.  前記ボディ領域のうち、少なくとも前記第2の炭化珪素半導体層に接する領域の不純物濃度が1×1018cm-3以上であり、
     前記第2の炭化珪素半導体層の不純物濃度は1×1017cm-3以上4×1018cm-3以下であり、
     前記第2の炭化珪素半導体層の厚さは20nm以上70nm以下である請求項1記載の半導体装置。
  3.  前記メイン領域と前記センス領域との境界に位置し、前記半導体基板上に位置する第1導電型の前記第1の炭化珪素半導体層と、
     前記第1の炭化珪素半導体層に設けられた第2導電型の素子分離領域と
    をさらに備え、
     前記素子分離領域上には第2の炭化珪素半導体層が配置されていない請求項1または2のいずれかに記載の半導体装置。
  4.  前記ボディ領域及び前記ソース領域を貫通し、前記第1の炭化珪素半導体層に達するトレンチをさらに備える、請求項1から3のいずれかに記載の半導体装置。
  5.  前記センス領域に流れる電流が100mA以下である、請求項1から4のいずれかに記載の半導体装置。
  6.  上アーム及び下アームにより構成されるレグであって、前記上アーム及び下アームのうち少なくとも一方が、請求項1から5のいずれかに記載の半導体装置であるレグと、
     前記半導体装置の前記第2のソースパッドに接続され、前記ドレインパッドと前記第2のソースパッドとの間に流れる電流の値に対応した値の電圧を出力する電流電圧変換部と、
     前記電流電圧変換部から出力される前記電圧に基づいて、前記半導体装置の前記ゲートパッドに印加する電圧を制御するゲート電圧制御部と
    を備えるインバータ。
  7.  前記電流電圧変換部は、
     反転入力端子、非反転入力端子及び出力端子を有する演算増幅器と、
     前記反転入力端子と前記出力端子とを接続する抵抗と、
    を含む、請求項6に記載のインバータ。
  8.  前記演算増幅器は両電源タイプである、請求項7に記載のインバータ。
  9.  前記レグと並列に接続された平滑コンデンサと、
     前記平滑コンデンサの電圧を検出する電圧検出部と、
     負荷から前記インバータへ流れる回生電流を熱として消費するための抵抗および前記抵抗に流す回生電流を制御するスイッチング素子を含む回生電力消費回路と、
    をさらに備え、
     前記ゲート電圧制御部は、前記電圧検出部により検出された前記平滑コンデンサの電圧と、基準電圧値とを比較し、前記平滑コンデンサの電圧が前記基準電圧値を超えた場合、前記抵抗に前記回生電流が流れるように、前記スイッチング素子を制御する、請求項6から8のいずれかに記載のインバータ。
  10.  前記レグと並列に接続された平滑コンデンサと、
     前記平滑コンデンサの電圧を検出する電圧検出部と
    をさらに備え、
     前記ゲート電圧制御部は、前記電圧検出部により検出された前記平滑コンデンサの電圧と、基準電圧値とを比較し、前記平滑コンデンサの電圧が前記基準電圧値を超えた場合、前記ゲートパッドに印加する電圧を負にする、請求項6から9のいずれかに記載のインバータ。
  11.  前記レグと並列に接続された平滑コンデンサと、
     負荷から前記インバータへ流れる回生電流を熱として消費するための抵抗および前記抵抗に流す回生電流を制御するスイッチング素子を含む回生電力消費回路と
    をさらに備え、
     前記ゲート電圧制御部は、前記電流電圧変換部から出力される出力電圧の値と、逆方向基準電圧値とを比較し、前記出力電圧の絶対値が前記逆方向基準電圧値を超えた場合、前記抵抗に前記回生電流が流れるように、前記スイッチング素子の動作を制御する、請求項6から8のいずれかに記載のインバータ。
  12. 前記レグと並列に接続された平滑コンデンサをさらに備え、
     前記ゲート電圧制御部は、前記電流電圧変換部から出力される出力電圧の値と、逆方向基準電圧値とを比較し、前記出力電圧の絶対値が前記逆方向基準電圧値を超えた場合、前記ゲートパッドに印加する電圧を負にする、請求項6から8のいずれかに記載のインバータ。
  13.  上アーム及び下アームにより構成されるレグであって、前記上アーム及び下アームのうち少なくとも一方が、請求項1から5のいずれかに記載の半導体装置であるレグと、前記レグと並列に接続された平滑コンデンサとを備えたインバータの制御方法であって、
     前記平滑コンデンサの電圧を検出するステップと、
     前記平滑コンデンサの電圧と、基準電圧値とを比較し、前記平滑コンデンサの電圧が前記基準電圧値を超えた場合、前記ゲートパッドに印加する電圧を負にするステップと、
    を含むインバータの制御方法。
  14.  上アーム及び下アームにより構成されるレグであって、前記上アーム及び下アームのうち少なくとも一方が、請求項1から5のいずれかに記載の半導体装置であるレグと、前記レグと並列に接続された平滑コンデンサと、前記半導体装置の前記第2のソースパッドに接続され、前記ドレインパッドと前記第2のソースパッドとの間に流れる電流の値に対応した値の電圧を出力する電流電圧変換部と、負荷から前記インバータへ流れる回生電流を熱として消費するための抵抗および前記抵抗に流す回生電流を制御するスイッチング素子を含む回生電力消費回路とを備えたインバータの制御方法であって、
     前記電流電圧変換部から出力される出力電圧の値を検出するステップと、
     前記電流電圧変換部から出力される出力電圧の値と、逆方向基準電圧値とを比較し、前記出力電圧の絶対値が前記逆方向基準電圧値を超えた場合、前記抵抗に前記回生電流が流れるように、前記スイッチング素子を動作させるステップと
    を含むインバータの制御方法。
  15.  上アーム及び下アームにより構成されるレグであって、前記上アーム及び前記下アームのうち少なくとも一方が、請求項1から5のいずれかに記載の半導体装置であるレグと、前記レグと並列に接続された平滑コンデンサと、前記半導体装置の前記第2のソースパッドに接続され、前記ドレインパッドと前記第2のソースパッドとの間に流れる電流の値に対応した値の電圧を出力する電流電圧変換部とを備えたインバータの制御方法であって、
     前記電流電圧変換部から出力される出力電圧の値を検出するステップと、
     前記電流電圧変換部から出力される出力電圧の値と、逆方向基準電圧値とを比較し、前記出力電圧の絶対値が前記逆方向基準電圧値を超えた場合、前記ゲートパッドに印加する電圧を負にするステップと
    を含むインバータの制御方法。
PCT/JP2014/003561 2013-07-10 2014-07-04 半導体装置、及びそれを用いたインバータ WO2015004891A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480002917.3A CN104781923B (zh) 2013-07-10 2014-07-04 半导体装置及使用其的逆变器、逆变器的控制方法
JP2015526160A JP5979570B2 (ja) 2013-07-10 2014-07-04 半導体装置、及びそれを用いたインバータ
US14/440,341 US9543858B2 (en) 2013-07-10 2014-07-04 Semiconductor device and inverter using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013144245 2013-07-10
JP2013-144245 2013-07-10

Publications (1)

Publication Number Publication Date
WO2015004891A1 true WO2015004891A1 (ja) 2015-01-15

Family

ID=52279597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003561 WO2015004891A1 (ja) 2013-07-10 2014-07-04 半導体装置、及びそれを用いたインバータ

Country Status (4)

Country Link
US (1) US9543858B2 (ja)
JP (1) JP5979570B2 (ja)
CN (1) CN104781923B (ja)
WO (1) WO2015004891A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016181881A (ja) * 2015-03-25 2016-10-13 株式会社デンソー スイッチング素子の駆動装置
JP2018026450A (ja) * 2016-08-10 2018-02-15 富士電機株式会社 半導体装置
JP2018037577A (ja) * 2016-09-01 2018-03-08 パナソニックIpマネジメント株式会社 半導体装置
WO2020179121A1 (ja) * 2019-03-04 2020-09-10 株式会社日立製作所 半導体装置
JP2020177957A (ja) * 2019-04-15 2020-10-29 富士電機株式会社 半導体装置
WO2022210033A1 (ja) * 2021-03-31 2022-10-06 ローム株式会社 半導体装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017069412A (ja) * 2015-09-30 2017-04-06 ルネサスエレクトロニクス株式会社 半導体装置
US9866245B2 (en) * 2015-11-18 2018-01-09 Linear Technology Corporation Active differential resistors with reduced noise
TWI571025B (zh) * 2016-01-21 2017-02-11 旺玖科技股份有限公司 負電壓保護系統
US10403623B2 (en) * 2017-07-06 2019-09-03 General Electric Company Gate networks having positive temperature coefficients of resistance (PTC) for semiconductor power conversion devices
JP7127279B2 (ja) 2017-12-14 2022-08-30 富士電機株式会社 炭化シリコン半導体装置及びその製造方法
CN112234030B (zh) * 2019-07-15 2023-07-21 珠海格力电器股份有限公司 一种三相逆变功率芯片及其制备方法
US11476084B2 (en) * 2019-09-10 2022-10-18 Applied Materials, Inc. Apparatus and techniques for ion energy measurement in pulsed ion beams
DE102021129145A1 (de) 2021-11-09 2023-05-11 Audi Aktiengesellschaft Verfahren zum aktiven Entladen eines elektrischen Energiespeichers, Steuereinrichtung, elektrische Schaltungseinrichtung und Kraftfahrzeug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243656A (ja) * 2002-02-14 2003-08-29 Toyota Industries Corp 電流検出機能付mos型電界効果トランジスタ
JP2007014059A (ja) * 2005-06-28 2007-01-18 Toyota Motor Corp スイッチング回路
WO2010125819A1 (ja) * 2009-04-30 2010-11-04 パナソニック株式会社 半導体素子、半導体装置および電力変換器
JP2011198891A (ja) * 2010-03-18 2011-10-06 Renesas Electronics Corp 半導体基板および半導体装置
JP2012156564A (ja) * 2008-12-24 2012-08-16 Denso Corp 半導体装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2737211B2 (ja) 1989-03-08 1998-04-08 松下電器産業株式会社 三相交流電動機の可変速駆動装置
JP3215164B2 (ja) 1992-06-19 2001-10-02 東洋電機製造株式会社 電圧形インバータ装置
KR950022023A (ko) 1993-12-09 1995-07-26 김무 전동기 발전 제동 제어장치
JPH0866056A (ja) * 1994-08-24 1996-03-08 Mitsubishi Electric Corp インバータ装置
JP3481813B2 (ja) 1997-02-28 2003-12-22 Nec化合物デバイス株式会社 半導体装置
JP3357627B2 (ja) * 1999-04-09 2002-12-16 株式会社三社電機製作所 アーク加工装置用電源装置
JP3635988B2 (ja) 1999-05-27 2005-04-06 富士電機デバイステクノロジー株式会社 半導体装置
JP3484133B2 (ja) * 2000-03-03 2004-01-06 株式会社日立製作所 内燃機関用点火装置および内燃機関点火用1チップ半導体
JP3997126B2 (ja) 2002-08-29 2007-10-24 株式会社ルネサステクノロジ トレンチゲート型半導体装置
JP4622214B2 (ja) 2003-07-30 2011-02-02 トヨタ自動車株式会社 電流センシング機能を有する半導体装置
JP4001120B2 (ja) * 2004-02-19 2007-10-31 トヨタ自動車株式会社 電圧変換装置
JP4144541B2 (ja) * 2004-03-19 2008-09-03 日産自動車株式会社 電圧駆動型半導体素子用駆動回路
JP4601044B2 (ja) * 2004-08-30 2010-12-22 日立アプライアンス株式会社 電力変換装置およびその電力変換装置を備えた空気調和機
JP4640200B2 (ja) * 2006-02-10 2011-03-02 トヨタ自動車株式会社 電圧変換装置および電圧変換器の制御方法
JP4778055B2 (ja) * 2006-06-29 2011-09-21 三菱電機株式会社 回生制動装置
JP4905208B2 (ja) * 2006-10-25 2012-03-28 株式会社デンソー 過電流検出回路
JP4924086B2 (ja) * 2007-02-21 2012-04-25 三菱電機株式会社 半導体装置
DE102008045410B4 (de) * 2007-09-05 2019-07-11 Denso Corporation Halbleitervorrichtung mit IGBT mit eingebauter Diode und Halbleitervorrichtung mit DMOS mit eingebauter Diode
JP4506808B2 (ja) 2007-10-15 2010-07-21 株式会社デンソー 半導体装置
JP5045733B2 (ja) 2008-12-24 2012-10-10 株式会社デンソー 半導体装置
JP4877337B2 (ja) 2009-02-17 2012-02-15 トヨタ自動車株式会社 半導体装置
JP5289580B2 (ja) * 2009-10-20 2013-09-11 三菱電機株式会社 半導体装置
WO2012029652A1 (ja) * 2010-09-03 2012-03-08 三菱電機株式会社 半導体装置
JP5724281B2 (ja) * 2010-10-08 2015-05-27 富士電機株式会社 パワー半導体デバイスの電流検出回路
JP5170208B2 (ja) * 2010-10-22 2013-03-27 富士電機株式会社 パワー半導体デバイスの電流検出回路
JP5694119B2 (ja) 2010-11-25 2015-04-01 三菱電機株式会社 炭化珪素半導体装置
EP2733844B1 (en) * 2011-07-12 2017-03-29 Toyota Jidosha Kabushiki Kaisha Vehicle and method for controlling vehicle
JP2014527302A (ja) * 2011-08-17 2014-10-09 ラムゴス インコーポレイテッド 酸化物半導体基板上の縦型電界効果トランジスタおよびその製造方法
JP5720641B2 (ja) * 2012-08-21 2015-05-20 株式会社デンソー スイッチングモジュール
CN104620381B (zh) * 2012-09-06 2017-04-19 三菱电机株式会社 半导体装置
JP2014138532A (ja) * 2013-01-18 2014-07-28 Fuji Electric Co Ltd 電力変換装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243656A (ja) * 2002-02-14 2003-08-29 Toyota Industries Corp 電流検出機能付mos型電界効果トランジスタ
JP2007014059A (ja) * 2005-06-28 2007-01-18 Toyota Motor Corp スイッチング回路
JP2012156564A (ja) * 2008-12-24 2012-08-16 Denso Corp 半導体装置
WO2010125819A1 (ja) * 2009-04-30 2010-11-04 パナソニック株式会社 半導体素子、半導体装置および電力変換器
JP2011198891A (ja) * 2010-03-18 2011-10-06 Renesas Electronics Corp 半導体基板および半導体装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016181881A (ja) * 2015-03-25 2016-10-13 株式会社デンソー スイッチング素子の駆動装置
JP2018026450A (ja) * 2016-08-10 2018-02-15 富士電機株式会社 半導体装置
JP2018037577A (ja) * 2016-09-01 2018-03-08 パナソニックIpマネジメント株式会社 半導体装置
WO2020179121A1 (ja) * 2019-03-04 2020-09-10 株式会社日立製作所 半導体装置
JP2020145211A (ja) * 2019-03-04 2020-09-10 株式会社日立製作所 半導体装置
JP7030734B2 (ja) 2019-03-04 2022-03-07 株式会社日立製作所 半導体装置
US11967624B2 (en) 2019-03-04 2024-04-23 Hitachi, Ltd. Semiconductor device
JP2020177957A (ja) * 2019-04-15 2020-10-29 富士電機株式会社 半導体装置
JP7342408B2 (ja) 2019-04-15 2023-09-12 富士電機株式会社 半導体装置
WO2022210033A1 (ja) * 2021-03-31 2022-10-06 ローム株式会社 半導体装置

Also Published As

Publication number Publication date
US20150280611A1 (en) 2015-10-01
JP5979570B2 (ja) 2016-08-24
CN104781923B (zh) 2017-06-16
US9543858B2 (en) 2017-01-10
CN104781923A (zh) 2015-07-15
JPWO2015004891A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
JP5979570B2 (ja) 半導体装置、及びそれを用いたインバータ
US8785931B2 (en) Semiconductor device
JP6498363B2 (ja) 炭化珪素半導体装置および電力変換装置
US8410489B2 (en) Semiconductor element, semiconductor device, and power converter
JP4955128B2 (ja) 半導体素子、半導体装置および電力変換器
WO2017208734A1 (ja) 半導体装置
US9450084B2 (en) Wide band gap semiconductor device
JP5830669B2 (ja) 半導体装置
CN107924950A (zh) 具有集成mos二极管的碳化硅mosfet
KR20130023278A (ko) 전력용 반도체 장치
US20200312995A1 (en) Silicon carbide semiconductor device and power converter
JP2012099630A (ja) 半導体装置および電力変換器
JP5547022B2 (ja) 半導体装置
JP2012104856A (ja) 半導体素子、半導体装置および電力変換器
JP2019161181A (ja) 半導体装置、パワーモジュールおよび電力変換装置
JP6715736B2 (ja) 半導体装置および電力変換装置
US20230282741A1 (en) Silicon carbide semiconductor device and power conversion device
JP4918626B2 (ja) 半導体素子、半導体装置および電力変換器
JP6976489B2 (ja) 炭化珪素半導体装置および電力変換装置
JP6152860B2 (ja) 半導体装置
US20230139229A1 (en) Semiconductor device and power converter
JP7113386B2 (ja) 半導体装置
JP6750589B2 (ja) 半導体装置
JP2014093499A (ja) 半導体装置の評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822868

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14440341

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015526160

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14822868

Country of ref document: EP

Kind code of ref document: A1