WO2014156387A1 - コンバイン - Google Patents

コンバイン Download PDF

Info

Publication number
WO2014156387A1
WO2014156387A1 PCT/JP2014/054025 JP2014054025W WO2014156387A1 WO 2014156387 A1 WO2014156387 A1 WO 2014156387A1 JP 2014054025 W JP2014054025 W JP 2014054025W WO 2014156387 A1 WO2014156387 A1 WO 2014156387A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
grain
grain tank
stored
shutter
Prior art date
Application number
PCT/JP2014/054025
Other languages
English (en)
French (fr)
Inventor
井上大嗣
高原一浩
池田博
松藤和憲
加藤勝秀
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013067034A external-priority patent/JP6037912B2/ja
Priority claimed from JP2013067032A external-priority patent/JP6029509B2/ja
Priority claimed from JP2013067033A external-priority patent/JP5908425B2/ja
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to EP14773116.0A priority Critical patent/EP2979537B1/en
Priority to US14/780,069 priority patent/US9820436B2/en
Priority to CN201480023850.1A priority patent/CN105163575B/zh
Priority to KR1020157030450A priority patent/KR102234179B1/ko
Publication of WO2014156387A1 publication Critical patent/WO2014156387A1/ja
Priority to US15/730,467 priority patent/US10143132B2/en
Priority to US16/177,801 priority patent/US10945367B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/1208Tanks for grain or chaff
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • A01D41/1271Control or measuring arrangements specially adapted for combines for measuring crop flow
    • A01D41/1272Control or measuring arrangements specially adapted for combines for measuring crop flow for measuring grain flow
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • A01D41/1274Control or measuring arrangements specially adapted for combines for drives
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • A01D41/1275Control or measuring arrangements specially adapted for combines for the level of grain in grain tanks
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • A01D41/1277Control or measuring arrangements specially adapted for combines for measuring grain quality

Definitions

  • This invention relates to the combine provided with the grain tank which stores a grain.
  • Patent Document 1 An example of a conventional combine is described in Patent Document 1, for example.
  • the combine shown in Patent Document 1 includes a weight measuring unit (“Load Cell” in Patent Document 1) that measures the weight of the grain stored in the grain tank (“Glenn Tank” in Patent Document 1). ing.
  • Patent Document 2 An example of a conventional combine is described in Patent Document 2, for example.
  • the combine shown in Patent Document 2 includes a level sensor that can detect a plurality of storage levels with different heights for detecting the amount of stored grains in a grain tank ("Glen tank” in Patent Document 2) (patent Document 2 is provided with a “haze sensor”).
  • the driver is notified that the grain in the grain tank has reached a certain amount, for example, that the grain is full. be able to.
  • Patent Document 3 An example of a conventional combine is described in Patent Document 3, for example.
  • the combine shown by patent document 3 crushes the grain which flows in from the grain supply port provided in the grain tank ("Glenn tank” in patent document 3), and the quality of the crushed grain is improved. It is configured so that it can be measured.
  • JP10-164967A Japanese Patent Laid-Open No. 10-164967 (JP10-164967A) (paragraph numbers [0009], [0010], [FIG. 1]) Japanese Patent No. 5098277 (JP5098277B2) Japanese Unexamined Patent Publication No. 2006-246831 (JP2006-246831A)
  • [Problem 1] corresponding to [Background Art 1] is as follows.
  • the weight of the grain stored in the grain tank can be measured even when the combine is in a working state.
  • the grain tank may vibrate due to the work, and the result of the weight measurement may vary.
  • [Problem 2] corresponding to [Background Art 2] is as follows.
  • the storage volume of the grain that can be detected in the grain tank is determined by the height at which the level sensor is arranged.
  • the threshold was fixed. For this reason, for example, it was not possible to perform a flexible cutting operation such as notifying that an amount of grain that could be stored in a container or grain bag having a predetermined capacity was stored.
  • [Problem 3] corresponding to [Background Art 3] is as follows. Unlike the conventional grain quality measurement in a combine combine, it is considered that the grain tank is equipped with a shutter that can be controlled to open and close, and the grain is temporarily stored on the shutter to measure the grain quality. It has been. In the method of measuring the quality of the grain using such a shutter, when the grain in the grain tank increases, the opening / closing operation of the shutter may be hindered by the grain.
  • the combine according to the present invention includes a traveling device that supports the traveling body, A cutting part for cutting planted cereals; A threshing device for threshing the harvested cereal meal; A grain tank for storing the grain threshed by the threshing device; A weight measuring unit for measuring the weight of the grains stored in the grain tank; A measurement instruction unit for outputting a weight measurement signal; From the state of the traveling device, the reaping unit, and the threshing device, a work state determination unit that performs a work state determination as to whether it is a working state or a non-working state; A control unit that commands the weight measurement unit to perform the weight measurement based on the weight measurement signal, When the weight measurement signal is output from the measurement instruction unit, the control unit instructs the work state determination unit to perform the work state determination, and when it is determined that the state is the work state, the weight measurement unit The weight measurement is not commanded.
  • the working state when a weight measurement signal is output from the measurement support unit to measure the weight of the grain stored in the grain tank, from the state of the traveling device, the cutting unit, and the threshing device, the working state The working state is determined as to whether it is a non-working state. And if it determines with it being a working state, the weight measurement of the grain stored in the grain tank by a weight measurement part will not be performed.
  • the weight stored in the grain tank is not measured by the weight measuring unit when the grain tank is in a working state, so the grains in the grain tank are not The possibility that a value lacking accuracy is measured as the weight of the grain is eliminated, and as a result, the weight of the grain stored in the grain tank can be measured with high accuracy.
  • an attitude detection unit that detects the inclination of the traveling machine body; An attitude detection unit that performs an attitude determination as to whether or not the inclination of the traveling machine body is within a predetermined inclination allowable range; and
  • the control unit instructs the posture detection unit to perform the posture determination, and the inclination of the traveling machine body is within a predetermined inclination allowable range. If it is determined that the weight measurement unit is instructed to perform the weight measurement, and if it is determined that the inclination of the traveling machine body is not within the allowable inclination range, the weight measurement unit is not instructed to perform the weight measurement. It is preferable.
  • the weight measured with the traveling aircraft tilted may not be accurate.
  • the grain in the grain tank by the weight measuring unit is further determined after it is determined that the inclination of the traveling machine body is within the predetermined allowable tilt range.
  • the weight is measured.
  • permissible_range the measurement of the weight of the grain in a grain tank by a weight measurement part will not be performed. Therefore, the possibility that a value lacking in accuracy is measured as the weight of the grain in the grain tank is eliminated, and as a result, the weight of the grain stored in the grain tank can be measured with high accuracy.
  • a left-right posture changing unit for changing a left-right inclined posture of the traveling machine body
  • a left / right inclination angle detection unit that detects a right / left inclination angle of the traveling machine body is provided
  • the control unit does not instruct the weight measurement to the weight measurement unit, and the left / right tilt angle is It is preferable that the left / right posture changing unit is controlled so as to be within the left / right tilt allowable range, and the weight measurement is instructed to the weight measuring unit after the left / right tilt angle is within the left / right tilt allowable range.
  • the left / right inclination angle detection unit that detects the right / left inclination angle of the traveling machine body is provided, and when it is determined that the right / left inclination is not within the predetermined right / left inclination allowable range, The right / left posture changing unit is controlled so that is within a left / right tilt allowable range. Then, the weight of the grain in the grain tank is measured by the weight measuring unit after the right / left inclination angle falls within the right / left inclination allowable range.
  • the left and right inclination angle of the traveling machine body is large, the right and left inclination angle is automatically adjusted, so that accurate weight measurement by the weight measuring unit can be smoothly executed.
  • a front / rear posture changing unit for changing the front / rear tilt posture of the traveling machine body
  • a front / rear inclination angle detection unit for detecting a front / rear inclination angle of the traveling aircraft body
  • the control unit does not command the weight measurement to the weight measurement unit, and the front / rear tilt angle is It is preferable that the front / rear posture changing unit is controlled so as to be within a front / rear tilt allowable range, and the weight measurement is instructed to the weight measuring unit after the front / rear tilt angle is within the front / rear tilt allowable range.
  • the front / rear inclination angle detection unit that detects the front / rear inclination angle of the traveling machine body is provided, and when it is determined that the front / rear inclination is not within the predetermined front / rear inclination allowable range, first, the front / rear inclination angle is determined.
  • the front / rear posture changing unit is controlled so that is within the allowable range of front / rear inclination.
  • the weight of the grain in the grain tank is measured by the weight measuring unit after the forward / backward tilt angle is within the allowable forward / backward tilt range.
  • a vehicle speed sensor for detecting a traveling speed of the traveling device is provided, It is preferable that the working state determination unit determines that the non-working state is set on the condition that at least the traveling speed is zero.
  • the traveling speed of the traveling device When the traveling speed of the traveling device is other than zero, that is, during traveling, the vibration of the grain tank increases, so that the error in weight measurement may increase.
  • the traveling speed of the traveling device detected by the vehicle speed sensor is other than zero, it is not determined as a non-working state, and the weight measuring unit measures the weight of the grain in the grain tank. Is not done. Therefore, the possibility that a value lacking in accuracy is measured as the weight of the grain in the grain tank is eliminated, and as a result, the weight of the grain stored in the grain tank can be measured with high accuracy.
  • a threshing clutch for turning power transmission to and from the threshing device.
  • the working state determination unit is preferably determined to be in the non-working state on the condition that at least the threshing clutch is in a disengaged state.
  • the operation of the threshing device is in a state where vibration is transmitted to the grain tank, which may increase the error in weight measurement.
  • the threshing clutch that turns power transmission to and from the threshing device is not in the disengaged state, that is, when the threshing clutch is in the on state, the non-working state is not determined, No grain weight measurement is performed. Therefore, the possibility that a value lacking in accuracy is measured as the weight of the grain in the grain tank is eliminated, and as a result, the weight of the grain stored in the grain tank can be measured with high accuracy.
  • a culm sensor that is provided in the reaper and detects the presence of the reaped culm
  • the working state determination unit is preferably determined to be in the non-working state on the condition that at least the harvested cereal is not present in the cutting unit.
  • the cutting unit is supported by the traveling machine body so as to be movable up and down, A cutting height sensor for detecting the vertical position of the cutting unit is provided, Even if it is determined that the non-working state is determined by the work state determination unit, it is preferable that the control unit does not instruct the weight measurement unit to perform the weight measurement when the vertical position is lower than a predetermined height. is there.
  • the weight of the grain stored in the grain tank is measured by the weight measuring unit when the cutting position is higher than the predetermined height in the non-working state.
  • the vertical auger connected to the grain tank, and the grain connected to the vertical auger and stored in the grain tank can be discharged from one end to the outside, and can be swung up and down.
  • An unloader having a lateral auger that is pivotable between a storage position and a working position;
  • An auger receiver for supporting the horizontal auger at the storage position;
  • a storage detection unit that detects whether or not the horizontal auger is stored in the auger receiver; and
  • the control unit confirms a detection result of the storage detection unit, and when the storage state is detected, the weight measurement unit If the weight measurement is instructed and the storage state is not detected, it is preferable that the weight measurement is not instructed to the weight measuring unit.
  • the unloader's horizontal auger is cantilevered by the vertical auger, and the grain is divided between the state where the horizontal auger is properly stored in the auger receiver and the state where the horizontal auger is not properly stored in the auger receiver.
  • the position of the center of gravity in the grain tank changes and the result of the weight measurement is different.
  • the weight measurement of the grain in the grain tank by the weight measuring unit is performed. Done.
  • the weight measurement of the grain in the grain tank is not performed by the weight measuring unit. . In this way, when the horizontal auger is properly stored in the auger receiver, the weight measurement of the grain in the grain tank is performed by the weight measuring unit, so that a highly accurate weight value can be obtained. it can.
  • a vertical swing drive unit that swings the horizontal auger up and down; A turning drive for turning the horizontal auger, and
  • the control unit does not command the weight measurement to the weight measurement unit, and the vertical swing drive unit and the swivel drive so as to be in the storage state It is preferable that the weight measurement is instructed to the weight measuring unit after the unit is controlled and the storage state is reached.
  • the weight measuring unit measures the weight of the grain in the grain tank after the horizontal auger is properly stored in the auger receiver. Is done.
  • the horizontal auger is automatically correctly stored in the auger receiver and the weight measurement is performed, so that accurate weight measurement by the weight measurement unit can be smoothly executed.
  • the vertical auger connected to the grain tank, and the grain connected to the vertical auger and stored in the grain tank can be discharged from one end to the outside, and can be swung up and down.
  • An unloader having a lateral auger that is pivotable between a storage position and a working position; A vertically swinging drive unit that swings the horizontal auger up and down; An auger receiver that supports the horizontal auger at the storage position; and
  • the control unit controls the vertical swing drive unit to lower the lateral auger for a predetermined time, and then moves the weight measurement unit.
  • the weight measurement is commanded.
  • the horizontal auger of the unloader tends to shift in the vertical position due to vibration during traveling, etc., rather than the swiveling position.
  • the weight of the kernel in the kernel is measured by lowering the horizontal auger for a predetermined time. .
  • the horizontal auger is properly stored in the auger receptacle.
  • the horizontal auger is automatically correctly stored in the auger receiver and the weight measurement is performed, so that accurate weight measurement by the weight measurement unit can be smoothly executed.
  • control unit notifies the driver of information related to measurement when the weight measurement unit is not instructed to perform the weight measurement.
  • the driver can quickly confirm that the weight measurement cannot be performed, and can take various measures.
  • the combine according to the present invention includes a harvesting unit that harvests planted cereals, A threshing section for threshing the harvested cereal meal; A grain tank for storing the grain threshed by the threshing unit; A measurement sensor for measuring the volume of stored grain stored in the grain tank; A determination unit that determines whether the storage volume measured by the measurement sensor exceeds a preset threshold; When the determination unit determines that the stored volume amount exceeds the threshold value, a notification unit that notifies the driver of information related to the amount of the grain exceeding the threshold value; And a changing unit capable of changing the threshold value.
  • the driver since the determination unit and the notification unit are provided, the driver can know that a predetermined amount of grain has been stored. Further, since the changing unit is provided, notification according to the capacity of the discharge destination container or the like can be performed.
  • the measurement sensor is preferably a weight sensor that measures the weight of the grain stored in the grain tank.
  • the measurement sensor is a weight sensor that measures the weight of the grain stored in the grain tank
  • the height is obtained when obtaining the storage volume of the grain stored in the grain tank. It is possible to obtain a finer value than the fixed level sensor. For this reason, it is possible to finely change the threshold value by the changing unit, and it is possible to flexibly change the threshold value.
  • a quality sensor that measures at least a moisture value of the grain stored in the grain tank
  • a calculation unit that calculates the stored volume based on the moisture value of the grain detected by the quality sensor and the weight of the grain stored in the kernel tank measured by the weight sensor;
  • the threshold is preferably set in volume units.
  • the stored volume amount is calculated based on the moisture value of the kernel detected by the quality sensor and the weight of the kernel stored in the kernel tank measured by the weight sensor
  • Accurate storage volume can be calculated in consideration of the actual quality of the grain. For example, by measuring at least the moisture value of the grain stored in the grain tank by the quality sensor, the approximate specific gravity of the grain can be known, so that the grain stored in the grain tank measured by the weight sensor From the weight, it is possible to obtain an accurate storage volume that matches the properties of the actual kernel stored in the grain tank, and the calculated storage volume can be compared with a threshold set in volume units. Further, since the threshold value can be set in volume units, for example, it is easier to imagine the storage degree than in the case where the threshold value is set in weight units.
  • a level sensor for measuring a storage level of the grain stored in the grain tank is provided,
  • the threshold is preferably set in volume units.
  • the threshold value of the stored volume of the grain stored in the grain tank which is a reference for notifying the driver, can be arbitrarily changed.
  • the storage level of the grain stored in the grain tank is measured by the level sensor, and it is determined whether or not the measured storage level has reached the threshold value.
  • the level sensor includes, for example, a first sensor, a second sensor, a third sensor, and a fourth sensor, which are arranged in order from the bottom and have different heights.
  • the change unit detects that the third sensor having a lower height than the fourth sensor detects the grain.
  • the threshold can be changed.
  • the storage volume of the grain in the grain tank which performs notification can be arbitrarily changed.
  • the threshold value can be set in volume units, for example, it is easier to imagine the storage degree than in the case where the threshold value is set in weight units.
  • a communication unit that communicates with an external server is provided, It is preferable that the changing unit is configured to be able to change the threshold based on data received from the external server.
  • the threshold value can be changed from an external server disposed in a remote management center or the like, and the storage volume amount from the outside can be managed.
  • a communication unit that communicates with an external server.
  • the communication unit is preferably configured to transmit a change result to the external server when the threshold is changed by the changing unit.
  • the change result when the threshold value is changed by the changing unit, the change result can be transmitted to the external server via the communication unit.
  • the change result of the threshold value can be confirmed in the external server, so that various inconveniences can be avoided.
  • the driver sets the threshold value on an external server. Since the changed change result can be confirmed, it is possible to take appropriate measures such as prompting the threshold to be changed again.
  • old data when the threshold value is collectively managed by an external server, old data can be automatically rewritten to new data.
  • the determination unit is configured to be able to set a plurality of the threshold values.
  • the determination unit can set a plurality of threshold values, it is possible to notify the driver of the storage volume of the grains in the grain tank in a plurality of stages. That is, for example, if the determination unit sets a first threshold value of a desired amount and a second threshold value that is smaller than the first threshold value, when the storage volume amount reaches the second threshold value, the desired amount of storage is soon reached. It is possible to perform a preliminary notification to the effect that the vehicle is made, and to notify the driver that the desired amount has been stored when the storage volume reaches the first threshold. For this reason, it becomes easy for the driver to grasp the storage state of the grains.
  • a display unit that displays the stored volume amount;
  • a drainage auger provided at the bottom of the grain tank and discharging the grain stored in the grain tank to the outside; It is preferable that the storage volume before the start of the discharge auger is continuously displayed on the display unit after the discharge auger is operated until the next cutting operation is performed.
  • the combine according to the present invention is a grain tank that stores the grain that has been conveyed from the threshing device, A discharge auger that is provided at the bottom of the grain tank and discharges the grain stored in the grain tank to the outside; A temporary storage part that is provided in the grain tank and has an intake port, and temporarily stores a part of the grain that has been conveyed from the threshing device, A quality measuring unit for detecting the quality of the grains stored in the temporary storage unit; An outlet capable of discharging the grain formed and stored in the temporary storage unit into the grain tank; A shutter that can be repositioned between an open position for opening the discharge port and a closed position for closing the discharge port; When the measurement by the quality measuring unit is finished, the shutter is set to the open position, and when all the grains of the temporary storage unit are discharged to the grain tank, the shutter is set to the closed position.
  • the grain taken in from the intake port is temporarily stored in the temporary storage unit formed on the shutter that is in the closed position, and the quality measuring unit for the grain stored in the temporary storage unit
  • the shutter is opened and the grain whose quality measurement is finished is discharged from the outlet.
  • such shutter opening / closing control is basically performed, and grain quality measurement is performed.
  • the opening / closing control of the shutter is stopped.
  • the stored grain does not hinder the opening / closing operation of the shutter, so that the quality measurement of the grain can be performed without any trouble.
  • the control unit controls the shutter to the open position even when the measurement by the quality measurement unit is completed. It is preferable not to carry out.
  • the opening operation of the shutter may be hindered by the stored grain.
  • the discharge number securing unit that communicates with the temporary storage unit via the discharge port, and whose side part is partitioned from the internal space of the grain tank and whose lower part communicates with the internal space, It is preferable to be provided adjacent to the lower side of the shutter.
  • the discharge number securing unit communicates with the internal space in the lower part, it is partitioned from the internal space, so even if the storage level of the grains stored in the internal space increases, the number of discharges Above the lower part of the securing part, it is not affected by the grains stored in the internal space. That is, the increase in the storage level in the discharge number securing unit greatly depends on the amount of the grains discharged from the temporary storage unit. Therefore, with this configuration, it is possible to balance the number of times of quality measurement and the degree of storage in the internal space by appropriately setting the size of the discharge number securing unit.
  • a volume measuring unit for detecting the storage volume is provided, When the volume measuring unit detects that the storage volume exceeds a preliminary value that is lower than the predetermined value, and the number of times the shutter is opened after the detection exceeds a predetermined number, It is preferable that the determination unit determines that the storage volume has exceeded the predetermined value.
  • the volume measuring unit can detect a preliminary value lower than a predetermined value that may cause grain interference in the opening / closing operation of the shutter. For this reason, when the storage volume of the grain stored in the grain tank exceeds the reserve value, it can be seen that the remaining volume of the volume remaining in the discharge number securing unit is limited to some extent. Therefore, with this configuration, when the storage volume of the kernel stored in the kernel tank exceeds the preliminary value and the number of times the shutter is opened exceeds the predetermined number, the storage is stored in the kernel tank. Assuming that the storage volume of the grain exceeds a predetermined value, the opening / closing control of the shutter can be stopped before the grain interferes with the opening / closing operation of the shutter.
  • a volume measuring unit for detecting the storage volume is provided, When the volume measuring unit detects that the storage volume exceeds a preliminary value that is lower than the predetermined value, and the predetermined time has elapsed after the detection, the determination unit Is preferably determined to exceed the predetermined value.
  • the volume measuring unit can detect a preliminary value lower than a predetermined value that may cause grain interference in the opening / closing operation of the shutter. For this reason, when the storage volume of the grain stored in the grain tank exceeds the reserve value, it can be seen that the remaining volume of the volume remaining in the discharge number securing unit is limited to some extent.
  • the shutter is opened a predetermined number of times after the stored volume of the grain stored in the grain tank exceeds the reserve value, and the predetermined time when there is no room in the discharge number securing unit
  • the opening / closing control of the shutter can be stopped before the grain interferes with the opening / closing operation of the shutter.
  • a discharge clutch for turning on and off the driving force transmission to the discharge auger is provided,
  • the control unit restarts the opening / closing control.
  • the discharge auger when the discharge clutch is in the engaged state, the discharge auger operates to reduce the grains in the grain tank, and the grains existing under the shutter also decrease. For this reason, even if the opening / closing operation of the shutter is resumed, the grains do not interfere with the opening / closing operation of the shutter. Therefore, the quality measurement of the grain can be resumed quickly by resuming the opening / closing control of the shutter when the discharge clutch is in the engaged state.
  • a necessary amount measuring unit that detects whether or not the amount of grain necessary for measurement by the quality measuring unit is stored in the temporary storage unit is provided, In the opening / closing control, the control unit, when the shutter is in the open position, when the amount of grains necessary for the quality measurement unit has not been stored in the temporary storage unit for a predetermined time, It is preferable to control the shutter to the closed position.
  • the shutter is set to the open position, it is confirmed that the amount of grains necessary for the quality measurement unit is not stored in the temporary storage unit based on the detection of the necessary amount measurement unit.
  • the shutter is controlled to the closed position. Therefore, since the shutter closing control is performed after confirming that the grain is reliably discharged from the temporary storage unit by setting the shutter to the open position, it is possible to improve the reliability of grain quality measurement.
  • a volume measuring unit for detecting the storage volume a level measuring device for detecting a storage level of the kernel in the kernel tank is provided, It is preferable that the storage volume is determined based on the detection result of the level measuring device.
  • the level measuring device for example, if the level measuring device is used with a simple contact sensor or the like, it becomes possible to detect the storage volume of the grain stored in the grain tank at a low cost, and the level measuring device The detection result can be suitably used for shutter opening / closing control.
  • a weight measuring device for measuring the weight of the grain stored in the grain tank is provided as a volume measuring unit for detecting the stored volume, It is preferable that the storage volume is determined based on the detection result of the weight measuring device.
  • the storage volume of the grain stored in the grain tank can be calculated from the weight of the grain stored in the grain tank based on the measurement result of the weight measuring device. For example, if a weight measuring device capable of accurately measuring the weight of the grain stored in the grain tank is used, it is possible to finely determine the storage volume of the grain stored in the grain tank.
  • the detection result can be suitably used for shutter opening / closing control.
  • the grain stored in the grain tank is discharged from the rear part of the grain tank by the discharge auger,
  • the temporary storage unit is preferably provided in a front part of the grain tank.
  • the storage level of the grain in the front part of the grain tank tends to decrease relatively quickly.
  • the discharge auger is operated due to the provision of the temporary storage part at the front part of the grain tank, the storage level of the grain below the temporary storage part is quickly reduced, and the shutter opening / closing control is performed. Can be resumed quickly.
  • the grain tank which stores the grain conveyed from the threshing apparatus,
  • a discharge auger that is provided at the bottom of the grain tank and discharges the grain stored in the grain tank to the outside;
  • a temporary storage part that is provided in the grain tank and has an intake port, and temporarily stores a part of the grain that has been conveyed from the threshing device,
  • a quality measuring unit for detecting the quality of the grains stored in the temporary storage unit;
  • a shutter that can be repositioned between an open position for opening the discharge port and a closed position for closing the discharge port; When the measurement by the quality measuring unit is finished, the shutter is set to the open position, and when all the grains of the temporary storage unit are discharged to the grain tank, the shutter is set to the closed position.
  • a control unit for controlling opening and closing;
  • a discharge clutch for turning on and off the driving force transmission to the discharge auger, When the discharge clutch is engaged, the control unit controls the
  • the grain taken in from the take-in port is temporarily stored in the temporary storage unit formed on the shutter that is in the closed position, and the quality measurement unit uses the grain stored in the temporary storage unit.
  • the shutter is in the open position, and the grain whose quality measurement is finished is discharged from the outlet.
  • such shutter opening / closing control is basically performed, and grain quality measurement is performed.
  • the discharge clutch is engaged and the discharge auger is driven and all the grains in the grain tank are discharged to the outside
  • the shutter is controlled to the open position, and the temporary storage section The grain is discharged into the internal space.
  • the fact that the discharge clutch is turned off and the discharge auger is stopped means that the discharge of the grains in the grain tank has been completed. For this reason, a shutter can be controlled to a closed position, without interfering with a grain.
  • control unit performs control to set the shutter to the open position, the control unit performs control to set the shutter to the closed position.
  • the combine 10 is a crawler traveling self-removing combine. As shown in FIGS.
  • the combine 10 includes a traveling machine body 11, a pair of left and right crawler traveling devices 12 that support the traveling machine body 11, and A reaping part 13 for reaping the planted cereal, a threshing device 14 for threshing the harvested cereal, a grain tank 15 for storing the grain threshed by the threshing apparatus 14, and a grain in the grain tank 15 Is provided with an unloader 16 for discharging the vehicle to the outside, and a driving control unit 17 on which the driver is boarded.
  • the traveling machine body 11 includes a left / right inclination sensor 19 (corresponding to a “left / right inclination angle detection unit”) and a front / rear inclination sensor 20 (“front / rear direction sensor”) as posture detection parts for detecting the inclination of the traveling machine body 11. Equivalent to the “inclination angle detector”).
  • the left / right tilt sensor 19 is configured to detect the left / right tilt angle of the traveling machine body 11.
  • the front / rear tilt sensor 20 is configured to detect the front / rear tilt angle of the traveling machine body 11.
  • the crawler traveling device 12 on the right side is provided with a track frame 21 that is movable up and down with respect to the traveling machine body 11.
  • One end of a front link mechanism 22 is connected to the front side of the track frame 21 so as to be rotatable around a horizontal axis.
  • One end of a first hydraulic cylinder 23 is connected to the other end of the front link mechanism 22 so as to be rotatable around a horizontal axis.
  • the other end of the first hydraulic cylinder 23 is connected to a part of the traveling machine body 11.
  • One end of a rear link mechanism 25 is connected to the rear side of the track frame 21 so as to be rotatable around a horizontal axis.
  • One end of a second hydraulic cylinder 27 is connected to the other end of the rear link mechanism 25 so as to be rotatable around a horizontal axis.
  • the other end of the second hydraulic cylinder 27 is connected to a part of the traveling machine body 11 different from the part to which the first hydraulic cylinder 23 is connected.
  • the crawler traveling device 12 on the left side also has a symmetrical structure with the crawler traveling device 12 on the right side.
  • the left crawler travel device 12 includes a third hydraulic cylinder 29 and a fourth hydraulic cylinder 31.
  • the third hydraulic cylinder 29 When the third hydraulic cylinder 29 is extended, the left front portion side of the traveling machine body 11 is lowered, and when the third hydraulic cylinder 29 is retracted, the left front portion side of the traveling machine body 11 is raised.
  • the fourth hydraulic cylinder 31 is extended, the left rear side of the traveling machine body 11 is raised, and when the fourth hydraulic cylinder 31 is retracted, the left rear part side of the traveling machine body 11 is lowered.
  • the first hydraulic cylinder 23, the second hydraulic cylinder 27, the third hydraulic cylinder 29, and the fourth hydraulic cylinder 31 constitute a “front / rear posture changing unit” that changes the front / rear tilt posture of the traveling machine body 11.
  • the first hydraulic cylinder 23, the second hydraulic cylinder 27, the third hydraulic cylinder 29, and the fourth hydraulic cylinder 31 constitute a “left / right posture changing unit” that changes the left / right inclined posture of the traveling machine body 11.
  • the combine 10 is provided with a vehicle speed sensor 33 for detecting the traveling speed (see FIG. 3).
  • the cutting unit 13 is supported by the traveling machine body 11 and can be moved up and down around the horizontal axis P of the traveling machine body 11 by an elevating cylinder 34.
  • the mowing unit 13 is provided with a stock sensor 35 (corresponding to a “grain candy sensor”) (see FIG. 3).
  • the stock element sensor 35 is configured to detect the stock origin of the harvested cereal meal taken into the harvesting unit 13 and detect the presence of the harvested grain meal in the harvesting part 13.
  • the cutting unit 13 is provided with a cutting height sensor 36 configured to detect the vertical position of the cutting unit 13 (see FIG. 3).
  • the threshing device 14 is disposed behind the reaping portion 13, and power transmission is turned on and off by a threshing clutch 37 (see FIG. 3). That is, when the threshing clutch 37 is turned on, the threshing device 14 is operated, and when the threshing clutch 37 is turned off, the threshing device 14 is stopped.
  • the grain tank 15 is provided on the side of the threshing device 14, and the threshed grain flowing from the threshing device 14 is stored.
  • a discharge auger 38 for sending the grain stored in the grain tank 15 to the unloader 16 and discharging it to the outside is provided.
  • the discharge auger 38 operates when a discharge clutch (not shown) is turned on to send the grain stored in the grain tank 15 to the unloader 16 to be discharged to the outside, and when the discharge clutch (not shown) is turned off. Stopped.
  • a load cell 39 (corresponding to a “weight measuring unit”) is provided.
  • the load cell 39 is arrange
  • the unloader 16 includes a vertical auger 40 and a horizontal auger 41.
  • the vertical auger 40 is connected to the grain tank 15.
  • the horizontal auger 41 is connected to the vertical auger 40 and is cantilevered by the vertical auger 40.
  • the horizontal auger 41 is configured to be able to discharge the grain stored in the grain tank 15 from one end to the outside.
  • the horizontal auger 41 is configured to be swingable up and down and turnable between a storage position and a work position. At the storage position for storing the horizontal auger 41, an auger receiver 42 for receiving and supporting the horizontal auger 41 is provided.
  • the unloader 16 includes a first potentiometer 43 and a second potentiometer 44.
  • the first potentiometer 43 is configured to detect the vertical swing angle of the lateral auger 41.
  • the second potentiometer 44 is configured to detect the turning angle of the lateral auger 41.
  • a motor 46 that rotates the horizontal auger 41 (corresponding to a “swing drive unit”) and a swing cylinder 47 that swings the horizontal auger 41 up and down (“vertical swing drive unit”). Equivalent).
  • the driving control unit 17 includes a driver seat 48 on which a driver is seated, a remote controller 49 used for operating the unloader 16, a display 50 capable of displaying various information, and audio. are provided.
  • the remote control 49 includes an automatic left turn switch 55, an automatic right turn switch 56, an automatic rear turn switch 57, an automatic storage switch 58, a discharge switch 59, a stop switch 60, an up switch 62, and a down switch. 63, a manual left turn switch 64, a manual right turn switch 65, and a measurement switch 66 (corresponding to a “measurement instruction unit”).
  • the horizontal auger 41 When the automatic left turn switch 55 is pressed, the horizontal auger 41 is automatically turned left to a predetermined left discharge position.
  • the automatic right turn switch 56 When the automatic right turn switch 56 is pushed, the horizontal auger 41 is automatically turned right to a predetermined right discharge position.
  • the automatic turn switch 57 When the automatic turn switch 57 is pushed, the lateral auger 41 is automatically turned to a predetermined rear discharge position.
  • the automatic storage switch 58 is pushed, the horizontal auger 41 is automatically turned and swung up and down and stored in the auger receiver 42.
  • the discharge switch 59 When the discharge switch 59 is pushed, the discharge clutch is engaged, the discharge auger 38 is operated, and the grain is discharged from the grain tank 15 through the unloader 16 to the outside.
  • the stop switch 60 When the stop switch 60 is pushed, the discharge auger 38 is stopped and the discharge of the grain from the grain tank 15 is stopped.
  • the horizontal auger 41 is raised while the raising switch 62 is being pressed. While the lowering switch 63 is being pressed, the lateral auger 41 is lowered. While the manual left turn switch 64 is being pressed, the horizontal auger 41 turns left. While the manual right turn switch 65 is pushed, the horizontal auger 41 turns right.
  • the measurement switch 66 When the measurement switch 66 is pushed, it outputs a “weight measurement signal” instructing the load cell 39 to measure the weight of the grain in the grain tank 15. Since a measurement switch 66 for instructing weight measurement is provided on the remote controller 49 for instructing the posture change of the unloader 16 and turning on / off of the discharge auger 38, a switch for instructing devices related to the same grain tank 15 Can be centrally arranged to improve operability.
  • the combine 10 includes an ECU 18 that controls weight measurement and the like.
  • the ECU 18 includes a work state determination unit 71, a posture determination unit 72, a storage detection unit 73, a cutting height detection unit 74, a weight measurement determination unit 75 (corresponding to a “control unit”), and a weight acquisition unit 76.
  • a calculation storage unit 77 and a notification command unit 78 are provided.
  • the work state determination unit 71 is connected to the vehicle speed sensor 33, the stock sensor 35, the threshing clutch 37, and the weight measurement determination unit 75.
  • the work state determination unit 71 inputs a work state determination command from the weight measurement determination unit 75, whether the work state determination unit 71 is in a work state or a non-work state from the states of the crawler traveling device 12, the mowing unit 13, and the threshing device 14. The work state is determined.
  • the work state determination unit 71 inputs a work state determination command from the weight measurement determination unit 75, the traveling speed detected by the vehicle speed sensor 33 is zero, the threshing clutch 37 is disengaged, the stock sensor 35 is not detected, When all the conditions are satisfied, it is determined that the state is the non-working state, and a “non-working signal” is output to the weight measurement determination unit 75.
  • the work state determination unit 71 inputs a command for determining the work state from the weight measurement determination unit 75, the traveling speed detected by the vehicle speed sensor 33 is zero, the threshing clutch 37 is disengaged, and the stock sensor 35 is If any of the conditions of the non-detection state is not satisfied, it is determined that the state is the working state, and the “non-working signal” is not output to the weight measurement determining unit 75.
  • the posture determination unit 72 is connected to the front / rear tilt sensor 20, the left / right tilt sensor 19, and the weight measurement determination unit 75.
  • the posture determination unit 72 receives a posture determination command from the weight measurement determination unit 75, the posture determination unit 72 is based on the left / right inclination angle input from the left / right inclination sensor 19 and the front / rear inclination angle input from the front / rear inclination sensor 20.
  • the posture is determined whether or not the inclination is within a predetermined allowable tilt range.
  • the posture determination unit 72 When the posture determination unit 72 receives a posture determination command from the weight measurement determination unit 75, the right / left tilt angle input from the left / right tilt sensor 19 is within the left / right tilt allowable range and is input from the front / rear tilt sensor 20. If the forward / backward tilt angle is within the allowable forward / backward tilt range, it is determined that the posture of the traveling machine body 11 is appropriate, and an “appropriate posture signal” is output to the weight measurement determining unit 75.
  • the posture determination unit 72 outputs the “right posture signal” to the weight measurement determination unit 75, and when the posture determination unit 72 determines that the posture of the traveling machine body 11 is proper, the left / right tilt angle input from the left / right tilt sensor 19 The front / rear inclination angle input from the front / rear inclination sensor 20 is also output to the weight measurement determination unit 75.
  • the posture determination unit 72 receives a posture determination command from the weight measurement determination unit 75 and the left / right tilt angle input from the left / right tilt sensor 19 is not within the left / right tilt allowable range, the left / right tilt angle is Determined to be inappropriate. Further, in this case, the posture determination unit 72 determines whether or not the right / left inclination angle is within a range that can be adjusted within the allowable right / left inclination range. The posture determination unit 72 outputs an “unadjustable signal” to the weight measurement determination unit 75 when the right / left tilt angle is not within the adjustable range.
  • the posture determination unit 72 receives a posture determination command from the weight measurement determination unit 75 and the left / right tilt angle is within an adjustable range
  • the third hydraulic cylinder 29 and the fourth hydraulic cylinder 31 are driven to output a “left / right tilt adjustment signal” to the weight measurement determining unit 75 so as to control the left / right tilt angle of the traveling machine body 11 to be within the allowable tilt range.
  • the posture determination unit 72 When the posture determination unit 72 receives a posture determination command from the weight measurement determination unit 75 and the front-rear tilt angle input from the front-rear tilt sensor 20 is not within the front-rear tilt allowable range, the front-rear tilt angle is Determined to be inappropriate. Furthermore, in this case, the posture determination unit 72 determines whether or not the front / rear inclination angle is within an adjustable range within the front / rear inclination allowable range. The posture determination unit 72 outputs an “unadjustable signal” to the weight measurement determination unit 75 when the front / rear inclination angle is not within the adjustable range.
  • the posture determination unit 72 receives a posture determination command from the weight measurement determination unit 75 and the tilt angle is within an adjustable range
  • the third hydraulic cylinder 29 and the fourth hydraulic cylinder 31 are driven to output a “front / rear inclination adjustment signal” to the weight measurement determination unit 75 so as to control the traveling body 11 so that the front / rear inclination angle is within the allowable front / rear inclination range.
  • the storage detection unit 73 is connected to the first potentiometer 43 and the second potentiometer 44.
  • the storage detection unit 73 receives the horizontal angle based on the swing angle input from the first potentiometer 43 and the turning angle input from the second potentiometer 44. It is determined whether or not the auger 41 is properly stored in the auger receiver 42.
  • the storage detection unit 73 determines that the storage is appropriate when the lateral auger 41 is in the storage position when a storage determination command is input from the weight measurement determination unit 75, and the weight measurement determination unit 75 determines that the storage Outputs “appropriate signal”.
  • the storage measurement unit 73 includes the motor 46 and the swing cylinder 47 in the weight measurement determination unit 75. It drives to output a “storage adjustment signal” for instructing control so that the horizontal auger 41 is properly stored in the auger receiver 42.
  • the cutting height detection unit 74 is connected to the cutting height sensor 36 and the weight measurement determination unit 75. When the cutting height detection unit 74 receives a cutting height determination command from the weight measurement determination unit 75, the cutting height detection unit 74 determines whether the vertical position of the cutting unit 13 is lower than a predetermined height.
  • the cutting height detection unit 74 When the cutting height detection unit 74 receives a cutting height determination command from the weight measurement determination unit 75 and the cutting height input from the cutting height sensor 36 is not lower than a predetermined height, the cutting height detection unit 74 It is determined that the height is appropriate, and a “reaper cutting height signal” is output to the weight measurement determination unit 75. On the other hand, when the cutting height detection unit 74 receives a cutting height determination command from the weight measurement determination unit 75 and the cutting height input from the cutting height sensor 36 is lower than a predetermined height, The cutting height is determined to be inappropriate, and the “reaching height appropriate signal” is not output to the weight measurement determination unit 75.
  • the weight measurement determination unit 75 includes a measurement switch 66, a work state determination unit 71, a posture determination unit 72, a storage detection unit 73, a cutting height detection unit 74, a load cell 39, a calculation storage unit 77, a notification command unit 78, and a first hydraulic pressure.
  • the cylinder 23, the second hydraulic cylinder 27, the third hydraulic cylinder 29, the fourth hydraulic cylinder 31, the motor 46, and the swing cylinder 47 are connected.
  • the weight measurement determination unit 75 determines whether or not to permit weight measurement by the load cell 39, adjusts the attitude of the traveling machine body 11, adjusts the position of the unloader 16, and issues a notification.
  • the weight measurement determination unit 75 When the “weight measurement signal” is input from the measurement switch 66, the weight measurement determination unit 75 outputs a command requesting the work state determination unit 71 to determine the work state, and whether the “non-work signal” is responded. Confirm whether or not. When the “non-work signal” is not responded, the weight measurement determination unit 75 outputs a “working signal” to the notification command unit 78. When the weight measurement determining unit 75 confirms that the “non-work signal” has been responded, the weight measurement determining unit 75 then outputs a command requesting the cutting height detection unit 74 to determine the cutting height, and the “cutting height signal” is output. Check if it is answered.
  • the weight measurement determination unit 75 If the “cutting height signal” is not responded, the weight measurement determination unit 75 outputs a “cutting height incorrect signal” to the notification command unit 78. On the other hand, when the weight measurement determining unit 75 confirms that the “cutting height signal” is responded, the weight measurement determining unit 75 next outputs a command requesting the posture determination to the posture determination unit 72 and confirms the response. Upon confirming that the “posture appropriate signal” and the right / left tilt angle and the front / rear tilt angle are responded from the posture determination unit 72, the weight measurement determination unit 75 outputs the left / right tilt angle and the front / rear tilt angle to the calculation storage unit 77. Next, a storage determination command is input to the storage detection unit 73 and a response is confirmed.
  • the weight measurement determination unit 75 confirms that the “adjustment impossible signal” is responded from the posture determination unit 72, the weight measurement determination unit 75 outputs a “non-horizontal signal” to the notification command unit 78.
  • the weight measurement determination unit 75 confirms that the “right / left tilt adjustment signal” or “front / rear tilt adjustment signal” is responded from the posture determination unit 72, the first hydraulic cylinder 23, the second hydraulic cylinder 27, the third The hydraulic cylinder 29 and the fourth hydraulic cylinder 31 are driven, and control is performed so that the left-right inclination angle or the front-rear inclination angle of the traveling machine body 11 approaches horizontal.
  • the weight measurement determination unit 75 When the weight measurement determination unit 75 confirms that the “accommodation proper signal” has been returned from the storage detection unit 73, the weight measurement determination unit 75 instructs the load cell 39 to measure the weight and output it to the weight acquisition unit 76 for a predetermined time. The “normal measurement signal” is output to the notification command unit 78. On the other hand, when the weight measurement determination unit 75 confirms that the “storage adjustment signal” is responded from the storage detection unit 73, the weight measurement determination unit 75 does not command weight measurement by the load cell 39 and drives the motor 46 and the swing cylinder 47, Control is performed so that the posture of the horizontal auger 41 is correctly changed to the storage position, and the position of the horizontal auger 41 is adjusted to the storage position.
  • the weight acquisition unit 76 is connected to the load cell 39 and the calculation storage unit 77.
  • the weight acquisition unit 76 acquires the weight of the grain tank 15 from the load cell 39, the weight acquisition unit 76 acquires the weight of the grain tank 15 for a predetermined time, calculates the averaged measurement data, and calculates the measurement data.
  • the data is output to the storage unit 77.
  • the calculation storage unit 77 is connected to the weight measurement determination unit 75, the weight acquisition unit 76, and the notification command unit 78.
  • the calculation storage unit 77 subtracts the tare weight of the grain tank 15 from the measurement data input from the weight acquisition unit 76 to obtain an approximate weight value of the grain in the grain tank 15.
  • the calculation storage unit 77 further calculates the corrected weight value by correcting the approximate weight value based on the left and right inclination angles and the front and rear inclination angles of the traveling machine body 11 input from the weight measurement determination unit 75, The corrected weight value is stored.
  • the notification command unit 78 is connected to the weight measurement determination unit 75, the calculation storage unit 77, the display 50, and the speaker 51.
  • the notification command unit 78 displays, for example, a display such as “The weight cannot be measured because of work” or an audio output on the display 50, the speaker 51, or the like. To inform the driver.
  • a display such as “The cutting height is too low to measure the weight” is displayed on the display 50, the speaker 51, and the like. Or a voice output to notify the driver.
  • the notification command unit 78 inputs an “adjustment impossible signal” from the weight measurement determination unit 75, the display 50, the speaker 51, or the like displays a message such as “Please measure the weight in a horizontal place.” An output is made to notify the driver.
  • the notification command unit 78 reads the corrected weight value stored in the calculation storage unit 77 after the elapse of time for performing the weight measurement, and displays the “corrected weight value”, that is, “grain” on the display 50, the speaker 51, and the like.
  • the driver displays the weight of the grain in the grain tank 15 and outputs a voice to notify the driver.
  • step # 1 A procedure for measuring the weight of the grain in the grain tank 15 realized by the ECU 18 as described above will be described with reference to flowcharts shown in FIGS.
  • step # 1 if the measurement switch 66 is not operated and input (# 1: No), the process returns to step # 1. If it is confirmed in step # 1 that the measurement switch 66 has been input (# 1: Yes), it is next determined whether or not the traveling speed of the traveling machine body 11 is zero (step # 2). If it is determined in step # 2 that the traveling speed of the traveling machine body 11 is not zero (# 2: No), a notification that measurement is impossible is made (step # 3), and the process is terminated.
  • step # 4 it is then determined whether or not the threshing clutch 37 is in a disengaged state (step # 4). ). If it is determined in step # 4 that the threshing clutch 37 is not in the disengaged state (# 4: No), the process proceeds to step # 3. On the other hand, if it is determined in step # 4 that the threshing clutch 37 is in the disengaged state (# 4: Yes), it is next determined whether or not the stock source sensor 35 is in the non-detected state (step # 5). .
  • step # 5 If it is determined in step # 5 that the stock sensor 35 is not in the non-detection state (# 5: No), the process proceeds to step # 3. On the other hand, if it is determined in step # 5 that the stock sensor 35 is in a non-detection state (# 5: Yes), it is next determined whether or not the cutting unit 13 is lower than a predetermined height ( Step # 6).
  • step # 6 If it is determined in step # 6 that the cutting unit 13 is not higher than the predetermined height (# 6: No), the process proceeds to step # 3. On the other hand, if it is determined in step # 6 that the cutting unit 13 is higher than the predetermined height (# 6: Yes), it is next determined whether or not the left and right inclination angle of the traveling machine body 11 is within the left and right inclination allowable range. Determination is made (step # 7).
  • step # 7 If it is determined in step # 7 that the left-right inclination angle of the traveling machine body 11 is not within the left-right inclination allowable range (# 7: No), it is next determined whether the left-right inclination angle of the traveling machine body 11 can be adjusted. (Step # 8). If it is determined in step # 8 that the left-right inclination angle of the traveling machine body 11 cannot be adjusted (# 8: No), a notification that adjustment is not possible is made (step # 9). In step # 9, for example, as shown in FIG. 7, a message such as “Please measure in a horizontal position” is displayed on the display 50, or voice is output from the speaker 51, etc.
  • step # 8 If it is determined in step # 8 that the left and right inclination angle of the traveling machine body 11 can be adjusted (# 8: Yes), the left and right inclination angle of the traveling machine body 11 is adjusted (step # 10), and the process returns to step # 7.
  • step # 7 If it is determined in step # 7 that the left-right inclination angle of the traveling machine body 11 is within the allowable left-right inclination range (# 7: Yes), then the front-rear inclination angle of the traveling machine body 11 is within the allowable front-back inclination range. Is determined (step # 11). If it is determined in step # 11 that the forward / backward inclination angle of the traveling machine body 11 is not within the allowable forward / backward inclination range (# 11: No), it is next determined whether or not the forward / backward inclination angle of the traveling machine body 11 can be adjusted. (Step # 12).
  • step # 12 If it is determined in step # 12 that the forward / backward tilt angle of the traveling machine body 11 is not adjustable (# 12: No), the process proceeds to step # 9. If it is determined in step # 12 that the front and rear inclination angle of the traveling machine body 11 can be adjusted (# 12: Yes), the front and rear inclination angle of the traveling machine body 11 is adjusted (step # 13), and the process returns to step # 11.
  • step # 11 If it is determined in step # 11 that the forward / backward inclination angle of the traveling machine body 11 is within the allowable forward / backward inclination range (# 11: Yes), it is next determined whether or not the lateral auger 41 is in an appropriate storage position. (Step # 14).
  • step # 14 If it is determined in step # 14 that the horizontal auger 41 is not in the proper storage position (# 14: No), control is performed to move the horizontal auger 41 to the proper storage position (step # 15), and step # 15. 14 If it is determined in step # 14 that the horizontal auger 41 is in the proper storage position (# 14: Yes), then the weight measurement by the load cell 39 is executed (step # 16). Subsequent to step # 16, weight correction is performed to calculate a correction value in which the measured weight is corrected (step # 17). Subsequent to step # 17, notification by a display or the like is made (step # 18), and the process is terminated.
  • the example of determining whether or not the cutting height is lower than the predetermined height is shown as an example.
  • the present invention is not limited to this, and the determination about the cutting height is performed. It does not have to be done.
  • the horizontal auger 41 is lowered for a predetermined time (step ## 15). Moreover, in the said embodiment, although what determined whether the horizontal auger 41 was accommodated appropriately was mentioned as an example, it is not restricted to this, The determination whether the horizontal auger 41 is accommodated appropriately is determined. It does not have to be done.
  • the driver when the weight measurement by the load cell 39 is not performed, the driver is notified of information related to the measurement.
  • the present invention is not limited to this, and the weight by the load cell 39 is not limited thereto. Even if the measurement is not performed, the driver may not be notified of information related to the measurement.
  • the crawler travel type self-removing combine is shown as an example. However, the present invention is not limited to this. Other combine may be sufficient.
  • the combine 110 is a crawler travel type self-removable combine, and as shown in FIGS. 10 to 12, the combine 110 includes a pair of left and right crawler travel devices 112 as a travel mechanism that is rotationally driven by an engine 111, and A traveling machine configured to be self-propelled by the crawler traveling device 112, a reaping unit 113 for reaping the planted cereal culm, a threshing unit 114 for threshing the reaped sorghum harvested by the reaping unit 113, and a threshing unit A grain tank 115 for storing the grain threshed by 114, an unloader 116 capable of discharging the grain stored in the grain tank 115 to the outside, a driving control unit 118 for the driver to operate, and a control device
  • the ECU 119 and a communication unit 120 capable of communicating with the outside are provided.
  • a rotation sensor 123 for detecting the rotation of a rotating shaft (not shown) in the crawler traveling device 112 is provided.
  • the rotation sensor 123 is used for detecting the traveling speed.
  • the cutting unit 113 is supported on the front part of the machine body frame 125 of the traveling machine body so as to be movable up and down.
  • the harvested cereals harvested by the harvesting unit 113 are sent to the threshing unit 114.
  • the mowing unit 113 is operated by the power of the engine 111.
  • the harvesting unit 113 is provided with a stock sensor 126 (see FIG. 12) configured to detect the stock of the harvested rice straw existing in the harvesting unit 113 as a grain straw sensor. The fact that the stock source of the cereal is detected by the stock sensor 126 means that the cutting unit 113 is operating.
  • the threshing portion 114 is supported by the rear portion of the body frame 125.
  • the threshing unit 114 threshs the grains from the harvested cereals harvested by the reaping unit 113, and sends the threshed grains to the grain tank 115.
  • the threshing unit 114 is operated by the power of the engine 111.
  • the grain tank 115 is located on the right side of the machine body with respect to the threshing portion 114 of the machine body frame 125, and is disposed behind the engine 111.
  • a quality sensor 127 capable of measuring the moisture value, protein value, etc. of the grain stored in the grain tank 115 is arranged.
  • the quality sensor 127 measures quality (taste) such as a moisture value and a protein value for a part of the grain sent from the threshing unit 114 to the grain tank 115.
  • a weight sensor 128 is provided below the grain tank 115.
  • the weight sensor 128 is configured to measure the weight of the grain tank 115 in which the grains are stored. That is, the weight sensor 128 is used to measure the weight of the grain stored in the grain tank 115, and the weight of the grain stored in the grain tank 115 based on the measurement by the weight sensor 128 is the grain This is used for calculating the “storage volume” of the grains stored in the tank 115.
  • a level sensor 135 capable of measuring the storage level of the grains stored in the grain tank 115 is provided.
  • the level sensor 135 is composed of one or a plurality of contact sensors having different arrangement heights.
  • the first sensor 136, the second sensor 137, the third sensor 138, and the fourth sensor 139 are arranged at different heights in this order from the bottom to the top.
  • the first sensor 136 is provided on the rear inner surface in the grain tank 115.
  • the second sensor 137, the third sensor 138, and the fourth sensor 139 are provided on the front inner surface side in the grain tank 115.
  • a discharge auger 141 is provided at the bottom of the grain tank 115.
  • the discharge auger 141 operates when the discharge clutch 142 (see FIG. 12) is turned on, and discharges the grain to the outside through the unloader 116, and stops when the discharge clutch 142 is turned off, and discharges the grain. It is configured not to do.
  • the discharge auger 141 is operated by the power of the engine 111.
  • the driving control unit 118 includes a driver seat 143 on which the driver is seated, an input device 144 capable of operating and inputting a “new threshold value” for the “reserved volume”, and various types.
  • a display 145 that can display information (corresponding to a “display unit”), a speaker 146 that can output various sounds, and the like are provided.
  • the display 145 can display a “reserved volume display mode” for displaying the “reserved volume” of the grain stored in the grain tank 115 and a “fuel consumption” that is an integrated value of the fuel injection amount in the engine 111.
  • a plurality of display modes such as “fuel consumption display mode” are provided.
  • the display 145 is configured to be able to sequentially switch from a specific display mode to another display mode by a short press operation of a changeover switch (not shown).
  • the control configuration includes a selection unit 150, a calculation unit 151, a determination unit 152, a communication unit 153, a change unit 154, a display command unit 155, and a notification unit 156.
  • the selection unit 150, the calculation unit 151, the determination unit 152, the change unit 154, the display command unit 155, and the notification unit 156 are provided in the ECU 119.
  • the display command unit 155 is provided with a storage unit 157.
  • the communication unit 153 can transmit and receive information to and from the external server 160 disposed in the management center or the like by wireless communication such as Wi-Fi standard, and is provided in the communication unit 120.
  • the selection unit 150 displays the real-time “reserved volume” and the determined “reserved volume” on the display 145 in the “reserved amount display mode” in accordance with the status of the discharge clutch 142, stock sensor 126, and rotation sensor 123. ”Is selected.
  • the selection unit 150 is connected to the discharge clutch 142, the stock sensor 126, the rotation sensor 123, and the calculation unit 151.
  • the selection unit 150 normally continues to output the “real time display signal” to the calculation unit 151. However, when it is confirmed that the discharge clutch 142 has changed from the disengaged state to the engaged state, a “memory command signal” is output to the computing unit 151 and a “confirmed display signal” is substituted for the “real time display signal”.
  • the computing unit 151 computes the “storage volume” of the grain stored in the grain tank 115 based on the information from the weight sensor 128 and the quality sensor 127.
  • the calculation unit 151 is connected to the weight sensor 128, the quality sensor 127, the determination unit 152, and the display command unit 155.
  • the calculation unit 151 subtracts the tare weight of the grain tank 115 from the weight of the grain tank 115 measured by the weight sensor 128 to calculate the “approximate weight” of the grain stored in the grain tank 115. Is configured to do. Then, based on the moisture value and protein value of the grain measured by the quality sensor 127, the computing unit 151 “specific gravity value” corresponding to the moisture value, protein value, etc.
  • the calculation unit 151 determines the “estimated weight” of the grain stored in the grain tank 115 based on the measurement by the weight sensor 128 and the moisture value, protein value, etc. of the grain detected by the quality sensor 127. On the basis of the “specific gravity value”, the “reserved volume” of the grain stored in the grain tank 115 is calculated.
  • the calculation unit 151 is configured to continue outputting “reserved volume” to the determination unit 152 and the display command unit 155 in real time while the “real time display signal” is input from the selection unit 150.
  • the calculation unit 151 calculates the storage volume calculated immediately before the discharge clutch 142 is switched from the on state to the cut state, that is, immediately before the discharge auger 141 is operated.
  • the storage unit 157 stores the determined “reserved volume”.
  • the calculation unit 151 is configured to continue outputting the “read display signal” to the display command unit 155 while the “determined display signal” is input from the selection unit 150.
  • the determination unit 152 determines whether the “reserved volume” exceeds the “threshold value”.
  • the determination unit 152 is connected to the calculation unit 151, the change unit 154, and the notification unit 156.
  • the determination unit 152 stores a “threshold value” set in volume units.
  • the determination unit 152 is configured to be able to set a plurality of “threshold values” as “threshold values”. For example, as the “threshold value”, a “first threshold value” that is a desired target value to be stored in the grain tank 115, a “second threshold value” that is smaller than the desired target value, and the like can be arbitrarily set. .
  • the determination unit 152 is configured to determine whether the “reserved volume” input from the calculation unit 151 exceeds a preset “threshold value”. The determination unit 152 compares the “reserved volume” input from the calculation unit 151 with the “threshold”, and outputs the “notification signal” to the notification unit 156 when the “reserved volume” exceeds the “threshold”. .
  • the communication unit 153 is configured to output the “new threshold value” to the changing unit 154 when receiving information including “new threshold value” or the like from the external server 160.
  • the communication unit 153 is configured to transmit the change result to the external server 160 when the “threshold value” is changed by the changing unit 154.
  • the communication unit 153 is configured to transmit to the external server 160 information on the change result including the fact that the “threshold” has been changed by the input device 144 and the “new threshold” after the change. .
  • the change unit 154 changes the “threshold value” set in the determination unit 152 to “new threshold value”.
  • the change unit 154 is connected to the input device 144, the determination unit 152, and the communication unit 153.
  • the change unit 154 is configured to change the “threshold value” set in the determination unit 152 to the “new threshold value” when the input device 144 inputs “new threshold value”.
  • the changing unit 154 is configured to be able to change the “threshold value” based on the included information such as “new threshold value” input from the external server 160 via the communication unit 153.
  • the changing unit 154 is configured to change the “threshold value” set in the determination unit 152 to “new threshold value” when a new “threshold value” is input from the communication unit 153.
  • the changing unit 154 changes the “threshold value” set in the determination unit 152 to the “new threshold value” input from the communication unit 153.
  • the changing unit 154 includes the fact that the “threshold” has been changed by the input device 144 in the communication unit 153, the “new threshold” after the change, and the like.
  • the information of the changed result is output to the communication unit 153.
  • the display command unit 155 displays the real-time “reserved volume” or the determined “reserved volume” on the display 145 in the “reserved volume display mode”.
  • the display command unit 155 is connected to the calculation unit 151 and the display 145.
  • the storage unit 157 provided in the display command unit 155 is configured to be able to store and delete various types of information.
  • the storage unit 157 stores a “specific gravity value” for each stored moisture value and protein value of the grain.
  • the storage unit 157 stores the determined “reserved volume” input from the calculation unit 151.
  • the storage unit 157 is configured to store “fuel consumption” that is an integrated value of the fuel injection amount in the engine 111 in real time.
  • the display command unit 155 displays the real-time “reserved volume” on the display 145 in the “reserved volume display mode” in the “reserved volume display mode”. To continue to be displayed on the display 145.
  • the display command unit 155 displays the determined “reserved volume” stored in the storage unit 157 in the “reserved amount display mode” while the “read display signal” is input from the calculation unit 151. 145 continues to be displayed.
  • the notification unit 156 notifies the driver when the “reserved volume” exceeds the “threshold value”.
  • the notification unit 156 is connected to the determination unit 152, the display 145, and the speaker 146.
  • the notification unit 156 receives the “notification signal” from the determination unit 152, the notification unit 156 causes the display 145 to display information related to “the amount of grain has exceeded the threshold value” and the speaker 146 indicates that the “grain amount is the threshold value”. Buzzer sound or the like indicating that “has been exceeded” is output. That is, when the determination unit 152 determines that the “storage volume” of the kernel in the kernel tank 115 has exceeded the “threshold value”, the notification unit 156 informs the driver of the kernel in the kernel tank 115.
  • Information on the fact that the “reserved volume” exceeds the “threshold value” is notified.
  • a notification mode for example, a character, a symbol, or a picture such as “The harvesting of the target storage volume has been completed” is displayed on the display 145, or a buzzer is sounded by the speaker 146.
  • Various aspects can be taken.
  • the driver inputs an arbitrary “new threshold value” such as a “threshold value” corresponding to the capacity of a container or a grain bag by the input device 144 before or during the cutting operation. Then, the “threshold value” in the determination unit 152 is changed to “new threshold value”, and the change result is transmitted to the external server 160 via the communication unit 153 of the communication unit 120. Further, when information including “new threshold” is received from the external server 160 by the communication unit 153 of the communication unit 120, the “threshold” in the determination unit 152 is changed to “new threshold”.
  • the “storage volume” of the grain in the kernel 115 is displayed in real time on the display 145 in the “storage volume mode”. It will continue to be updated and displayed. Then, when the “reserved volume” of the grain exceeding the “new threshold” is stored in the grain tank 115, a desired “ It is notified that the “reserved volume” grain has been stored.
  • the “storage” before the start of the discharge auger 141 is performed after the discharge auger 141 is operated until the next cutting operation is performed.
  • the “volume” continues to be displayed on the display 145 in the “reserved volume mode”. Whether the next cutting operation is performed is determined by both the stock sensor 126 and the rotation sensor 123 being in the detection state.
  • the display 145 in the “storage volume mode” returns to the state in which the “storage volume” of the grain in the kernel tank 115 is updated and displayed in real time.
  • the “threshold value” is set by volume, but the present invention is not limited to this, and the “threshold value” may be set by weight.
  • the determination unit 152 compares the “approximate weight” and “threshold value” of the grain stored in the grain tank 115 based on the measurement by the weight sensor 128.
  • the level sensor 135 is used as a “measurement sensor”, and the grain stored in the grain tank 115 is stored on the basis of the storage level of the grain stored in the grain tank 115 measured by the level sensor 135.
  • “Stored volume” may be calculated.
  • the ECU 119 calculates the “reserved volume” of the grain stored in the grain tank 115 based on the storage level measured by the level sensor 135, as shown in FIG.
  • An arithmetic unit 251 is provided.
  • Detection signals from the first sensor 136, the second sensor 137, the third sensor 138, and the fourth sensor 139 as the level sensor 135 are input to the calculation unit 251, respectively.
  • the calculation unit 251 calculates the volume from the bottom of the grain tank 115 to the position of the first sensor 136 as the “reserved volume” of the grain in the grain tank 115. ] Is calculated.
  • the calculation unit 251 calculates the volume from the bottom of the grain tank 115 to the position of the second sensor 137 in the grain tank 115. Calculated as “reserved volume” of grain.
  • the calculation unit 251 calculates the volume from the bottom of the grain tank 115 to the position of the third sensor 138. It is calculated as the “storage volume” of the grain in the grain tank 115.
  • the calculation unit 251 calculates the volume from the bottom of the grain tank 115 to the position of the fourth sensor 139 in the grain tank 115.
  • the “threshold value” of the determination unit 152 can be set in units of volume in four stages corresponding to the first sensor 136 to the fourth sensor 139, for example, and the change unit 154 It is preferable that the “threshold value” is configured to be arbitrarily changeable from four stages. Note that the number of level sensors 135 is not limited to four, and one to three, or five or more level sensors may be provided.
  • the quality sensor 127 is one that measures the quality of the moisture content, protein, etc. of the grain.
  • the present invention is not limited to this, and the quality sensor 127 is at least What can measure the moisture value of a grain is sufficient.
  • the fact that the next cutting operation is performed is determined when both the stock sensor 126 and the rotation sensor 123 are in the detection state.
  • An example is shown, but the present invention is not limited to this. It may be determined that the next cutting operation is performed when the stock sensor 126 or the rotation sensor 123 is in a detection state independently.
  • the determination unit 152 uses a “first threshold” that is a desired target value to be stored in the grain tank 115 as a “threshold” or a desired target value.
  • a “second threshold” or the like having a small value can be set is shown, the present invention is not limited to this.
  • the number of threshold values that can be set in the determination unit 152 may be one or three or more.
  • the crawler travel type self-removing combine is shown as an example. However, the present invention is not limited to this. Other combine may be sufficient.
  • the combine 310 is a crawler travel type self-removing combine. As shown in FIGS. 14 and 15, the combine 310 is configured to self-run by a pair of left and right crawler travel devices 312 driven by an engine 311. A traveling aircraft is provided. The combine 310 is threshed by the threshing unit 315 that harvests the planted cereal grains supported by the front part of the body frame 313 of the traveling machine body, the threshing device 315 that threshs the harvested cereal grains, and the threshing device 315.
  • the grain tank 316 is arranged on the right side of the machine body with respect to the threshing device 315 in the machine frame 313, and is located behind the engine 311.
  • a grain raising device 324 is provided on the left side of the grain tank 316.
  • the whipping device 324 is disposed on the left side of the machine body in the grain tank 316.
  • the cerealing device 324 lifts the grain conveyed from the threshing device 315 to the discharge port 327 by the lifting screw 326.
  • the grain lifted up to the discharge port 327 is splashed from the discharge port 327 by a rotary blade 328 that is provided integrally with the lifting screw 326 and is driven to rotate counterclockwise.
  • the bottom of the grain tank 316 has a discharge auger that is configured to discharge the grains stored in the grain tank 316 to the outside.
  • the discharge auger 332 is operated by the driving force of the engine 311 and is provided with a discharge clutch 333 (see FIG. 23) for turning on and off the transmission of the driving force to the discharge auger 332.
  • the discharge clutch 333 When the discharge clutch 333 is turned on, the discharge auger 332 is operated, and the grain stored in the grain tank 316 is discharged from the rear part of the grain tank 316 by the discharge auger 332, and is shown in FIGS. 14 and 15. It is discharged to the outside through the unloader 317.
  • the discharge clutch 333 is turned off, the operation of the discharge auger 332 is stopped.
  • the front part of the grain tank 316 is configured to measure the weight of the grain in the grain tank 316 based on the weight of the grain tank 316.
  • a load cell 335 which is a weight sensor, is provided.
  • the grain tank 316 is provided with a level sensor 337 for detecting the storage level of the grain in the grain tank 316.
  • a first sensor 340, a second sensor 341, a third sensor 342, and a fourth sensor 343 are arranged from below to above.
  • the first sensor 340, the second sensor 341, the third sensor 342, and the fourth sensor 343 are arranged at different heights in this order.
  • the first sensor 340 is provided on the rear inner surface side in the grain tank 316.
  • the second sensor 341, the third sensor 342, and the fourth sensor 343 are provided on the front inner surface side in the grain tank 316.
  • the third sensor 342 is provided as a “level measuring device” that is an example of a “volume measuring unit” that detects a stored volume.
  • the measurement unit 330 is fitted and fixed to the mounting hole 345 ⁇ / b> A of the front wall 345 of the grain tank 316 via a vibration-proof rubber 347 for sealing.
  • the measurement unit 330 includes a box-shaped measurement chamber forming body 352 having a built-in quality sensor 350 (corresponding to a “quality measurement unit”) that measures the quality of the grain, And a cylindrical holding portion forming body 353 through which the grain for which quality measurement is performed by the sensor 350 is passed.
  • the measurement chamber forming body 352 is provided with a housing 355 that houses the quality sensor 350.
  • the housing 355 includes a main body case 356 that houses the quality sensor 350 and a filter case 357 that is detachable from the main body case 356.
  • an air exhaust port 360 is formed in the upper portion of the main body case 356, and an air inlet 361 is formed on the filter case 357 side of the main body case 356.
  • a guide tube 363 bent so as to discharge air introduced from the exhaust port 360 downward from the tip hole 362 is detachably attached to the exhaust port 360.
  • the guide tube 363 is attached to the main body case 356 so that the distal end hole 362 is positioned closer to the center of the main body case 356 than the exhaust port 360.
  • a discharge-side net 364 that is formed in a net shape and prevents passage of water, dust, and the like is detachably attached to the exhaust port 360 of the main body case 356.
  • a suction-side net body 365 that is formed in a net shape and prevents passage of water, dust, and the like is detachably attached to the introduction port 361.
  • the filter case 357 is configured to be detachably connected to the main body case 356 by a buckle-type connector 366.
  • the coupling tool 366 is provided at each of an upper end portion and a lower end portion of the main body case 356, and is configured to be connected to and disconnected from the upper end portion and the lower end portion of the filter case 357, respectively.
  • the filter case 357 is formed with an intake port 368 for taking in air on the back side of the housing 355. Inside the filter case 357, a filter 370 that covers a surface facing the main body case 356 is disposed.
  • Dust and the like are removed from the air sucked from the intake port 368 by the filter 370, passes through the inlet 361, passes through the suction side network 365, cools the quality sensor 350, and passes through the discharge side network 364. , Passes through the exhaust port 360, passes through the guide tube 363, and is discharged from the tip hole 362. At this time, even if a part of the filter 370 is clogged, the part clogged with air bypasses and passes through the part of the filter 370 that is not clogged. For this reason, the entire region of the filter 370 can be used.
  • the main body case 356 has the suction side network 365 attached to the introduction port 361 and the discharge side network 364 attached to the exhaust port 360, so that the guide tube 363 and the filter case 357 are removed, for example, the combine It is possible to prevent water and dust from entering the main body case 356 when the vehicle 310 is washed.
  • the holding portion forming body 353 is partially partitioned from the internal space M in which the grain is mainly stored in the grain tank 316, and the grain quality is obtained by taking the grain.
  • a sampling space S in which measurement is performed is formed.
  • the temporary storage part T in which the grains are temporarily stored for quality measurement, and the grains that are formed below the temporary storage part T and for which quality measurement has been completed are discharged to the internal space M.
  • a discharge number securing unit E is included.
  • the temporary storage unit T is provided on the inner surface of the front part in the grain tank 316, and the grain that has been transported from the threshing device 315 and jumped off by the rotary blade 328.
  • a part of is configured to be temporarily stored.
  • the temporary storage part T is formed with an upper intake 372 for taking in the grains and a lower outlet 373 for discharging the grains.
  • the temporary storage part T takes in a part of the grain conveyed from the threshing device 315 from the intake port 372 formed in the upper part of the temporary storage part T, temporarily stores it, and in the lower part of the temporary storage part T It is comprised so that the grain stored in the temporary storage part T can be discharged
  • FIG. A proximity sensor 375 (corresponding to a “necessary amount measuring unit”) that detects the grain is provided on the inner wall 374 of the holding unit forming body 353 at the upper part of the temporary storage unit T.
  • a shutter 376 for closing or opening the outlet 373 is provided below the temporary storage unit T.
  • the quality sensor 350 that detects the quality of the grains stored in the temporary storage unit T and the amount of kernels necessary for measurement by the quality sensor 350 are stored in the temporary storage unit T.
  • the quality sensor 350 is disposed in the vicinity of the temporary storage unit T.
  • the quality sensor 350 uses the grain located above the shutter 376 in the closed position and below the detection position of the proximity sensor 375 as a detection target.
  • the discharge number securing unit E is provided below the temporary storage unit T and adjacent to the shutter 376. That is, the discharge number securing unit E communicates with the upper temporary storage unit T via the discharge port 373.
  • the discharge number securing portion E has a side portion partitioned from the internal space M by the partition member 377 of the holding portion forming body 353 and a lower portion thereof in communication with the internal space M near the lower end portion of the partition member 377. ing. For this reason, the number-of-discharges securing unit E differs from the internal space M of the grain tank 316 in the degree of grain accumulation.
  • the third sensor 342 is arranged so as to have the same height as the lower end of the partition member 377 and the detected height of the grain.
  • the discharge number securing part E has a height range from the lower end when the shutter 376 is in the open position to the lower end of the partition member 377 as a storable volume capable of storing grains.
  • the storable volume of the discharge count securing unit E is configured to be larger than the temporary storage volume that can be stored in the temporary storage unit T.
  • the storable volume of the discharge number securing unit E is set to be twice or more the volume of the grain dropped from the temporary storage unit T when the shutter 376 is set to the open position.
  • the quality sensor 350 when the measurement unit 330 is fitted and fixed in the grain tank 316, the quality sensor 350 is positioned in the grain tank 316. That is, the quality sensor 350 is provided in the grain tank 316. The quality of the grain stored in the grain tank 316 is measured by the quality sensor 350.
  • the quality sensor 350 performs quality measurement on the grain temporarily stored in the temporary storage unit T of the sampling space S, and uses the position below the proximity sensor 375 and the position above the shutter 376 as the grain detection range. .
  • the quality sensor 350 is an optical detection method, and is configured to be able to measure the internal quality such as the moisture value and protein value of a stationary grain without contact.
  • the proximity sensor 375 is configured to detect the grain that has reached the detection height of the proximity sensor 375 in the temporary storage unit T. That is, the proximity sensor 375 is configured to detect whether or not the amount of grain necessary for measurement by the quality sensor 350 is stored in the temporary storage unit T.
  • the shutter 376 is configured as a plate-like rocking type.
  • the shutter 376 can be switched between a closed position for closing the discharge port 373 and an open position for opening the discharge port 373 by a switching mechanism 380 configured by a cam or the like by driving the motor 378. That is, the shutter 376 is controlled to be in the closed position and to be in the open position by driving the motor 378.
  • the shutter 376 is provided in the vicinity of the lower portion of the temporary storage portion T, and is configured to be changeable between an open position where the discharge port 373 is opened and a closed position where the discharge port 373 is closed.
  • the shutter 376 is configured to be swingable about a lateral support shaft 381 that intersects with the opening / closing direction of the shutter 376 so that the posture can be changed between an open position and a closed position.
  • the support shaft 381 is supported by the inner wall 374 of the holding portion forming body 353.
  • the shutter 376 is configured to swing around a lateral support shaft 381 supported by the inner wall 374 of the holding portion forming body 353 and to change its posture between a closed position and an open position.
  • the shutter 376 When the shutter 376 is in the closed position, the shutter 376 is in a horizontal posture, closes the discharge port 373, and stores the kernel on the upper surface of the shutter 376 in the horizontal posture, thereby storing the kernel in the temporary storage unit T. .
  • the shutter 376 When in the closed position, the shutter 376 is formed to have an upward convex bent shape when viewed in the axial direction of the support shaft 381. And when it becomes an open position, the shutter 376 becomes a vertical orientation, opens the discharge port 373, and is comprised so that the grain stored by the temporary storage part T can be discharged
  • the shutter 376 is pushed up by the switching mechanism 380 to change the position from the open position to the closed position. Further, the shutter 376 is moved from the closed position to the open position when the switching mechanism 380 is not pushed up.
  • the combine 310 is provided with an ECU 320 that controls opening and closing of the shutter.
  • the ECU 320 includes a determination unit 390, a determination unit 391, and a control unit 392.
  • the determination unit 390 determines whether or not the storage volume of the kernel in the kernel tank 316 has reached the “preliminary value” or has reached the “predetermined value”.
  • the determination unit 390 is connected to the third sensor 342 and the control unit 392. When the storage level of the kernel is detected by the third sensor 342, the determination unit 390 determines that the storage volume of the kernel in the kernel tank 316 has reached the “preliminary value”, and sends the determination to the control unit 392. "Reserved value arrival signal" is output. Further, after determining that the storage volume of the kernel in the kernel tank 316 has reached the “preliminary value”, the determination unit 390 inputs that the shutter has been opened a predetermined number of times from the control unit 392.
  • a “predetermined value arrival signal” is output to the control unit 392. That is, the determination unit 390 detects that the storage volume exceeds the “preliminary value” that is a value lower than the “predetermined value” by the level sensor 337 as the volume measuring unit, and the shutter 376 is opened after the detection. It is determined that the storage volume has exceeded a “predetermined value” when the number of times that it has been exceeded exceeds the predetermined number.
  • Determination unit 391 determines whether or not the grain is stored in temporary storage unit T and determines whether or not the grain is discharged from temporary storage unit T.
  • the determination unit 391 is connected to the proximity sensor 375 and the control unit 392. When the proximity sensor 375 detects the grain from the non-detection state (OFF state) to the detection state (ON state) where the grain is not detected, and the detection state (ON state) continues for a predetermined time, the determination unit 391 performs control.
  • the “storage completion signal” is output to the unit 392.
  • the determination unit 391 changes from a detection state (ON state) in which the proximity sensor 375 does not detect the grain to a non-detection state (OFF state) in which the grain is detected, and the non-detection state (OFF state) continues for a predetermined time. Then, a “discharge completion signal” is output to the control unit 392.
  • the control unit 392 controls the motor 378 that operates the shutter 376 and instructs the quality sensor 350 of measurement timing.
  • the control unit 392 is connected to the determination unit 390, the determination unit 391, the discharge clutch 333, the motor 378, and the quality sensor 350.
  • the control unit 392 instructs the quality sensor 350 to perform grain quality measurement, and when a predetermined time necessary for quality measurement by the quality sensor 350 has elapsed, the motor 378 To move the shutter 376 to the open position.
  • the controller 392 opens and closes the shutter 376 and, after the shutter 376 is in the open position, a state where the amount of grains necessary for measurement by the quality sensor 350 is not stored in the temporary storage unit continues for a predetermined time. Control to close the shutter 376 is performed. Basically, the control unit 392 executes such opening / closing control of the shutter 376.
  • the control unit 392 continuously inputs the number of times of driving the motor 378 and controlling the shutter 376 to the open position after inputting the “preliminary value arrival signal”. To the determination unit 390.
  • the control unit 392 stops driving the motor 378 and the shutter 376. Stops opening / closing control. That is, when the determination unit 390 determines that the storage volume has exceeded the “predetermined value”, the control unit 392 does not perform control to open the shutter 376 even when measurement by the quality sensor 350 is completed. .
  • the control unit 392 resumes the opening / closing control of the shutter 376 when the discharge clutch 333 is engaged after the opening / closing control of the shutter 376 is stopped.
  • step # 101 it is determined whether or not the proximity sensor 375 is in a detection state (ON state) for a predetermined time in a state where the shutter 376 is in the closed position (step # 101).
  • step # 101 if the proximity sensor 375 has not been detected for a predetermined time (# 101: NO), the process returns to step # 101.
  • step # 101 if the proximity sensor 375 is in a detection state for a predetermined time (# 101: Yes), it can be understood that the temporary storage unit T stores an amount of grain necessary for measurement by the quality sensor 350. Therefore, quality measurement is then performed on the grains stored in the temporary storage unit T over a predetermined time by the quality sensor 350 (step # 102).
  • Step # 103 it is determined whether or not the storage volume of the grains stored in the grain tank 316 exceeds the “preliminary value” (step # 103).
  • Step # 103 specifically, if the grain is detected by the third sensor 342, it is considered that the storage volume of the grain stored in the grain tank 316 exceeds the “preliminary value”.
  • step # 103 if the storage volume of the grain stored in the grain tank 316 does not exceed the “preliminary value” (# 103: Yes), the shutter 376 does not move even if the shutter 376 is controlled to the open position. Since it can be seen that there is no interference with the grains, next, control is performed to open the shutter 376 (step # 104).
  • step # 104 it is determined whether or not proximity sensor 375 has been in a non-detection state (OFF state) for a predetermined time (step # 105). If the proximity sensor 375 is not in the non-detection state for a predetermined time in step # 105 (# 105: No), the process returns to step # 105. If the proximity sensor 375 is in a non-detected state for a predetermined time in step # 105 (# 105: Yes), it is understood that the grain whose quality measurement has been completed is discharged from the temporary storage unit T to the discharge number securing unit E. Therefore, control for closing the shutter 376 is performed (step # 106). When step # 106 ends, the process returns to perform the next quality measurement.
  • Step # 107 if the storage volume of the grain stored in the grain tank 316 exceeds the “preliminary value” in Step # 103 (# 103: No), then the number N of times the shutter 376 is opened is calculated. It is determined whether or not the predetermined number of times A or less (step # 107). In step # 107, if the number N of times the shutter 376 is opened is equal to or less than the predetermined number A (# 107: Yes), the discharge number securing unit E still has a volume, and the shutter 376 is controlled to the open position. Since the shutter 376 does not interfere with the grain, the shutter 376 is then controlled to the open position (step # 108).
  • step # 108 the grains corresponding to the shutter 376 once opened are dropped to the discharge number securing section E. Therefore, after step # 108, "1" is added to the number N of times the shutter 376 is opened. (Step # 109). When step # 109 ends, the process proceeds to step # 105 to perform the next quality measurement.
  • step # 107 if the number N of times the shutter 376 is opened exceeds the predetermined number A (# 107: No), the storage volume of the grain stored in the grain tank 316 is “preliminary value”. It can be seen that the shutter 376 has been opened a predetermined number of times after exceeding this time, and there is no more volume in the discharge number securing section E. For this reason, when the shutter 376 is controlled to the open position, the shutter 376 may interfere with the grains stored in the discharge number securing unit E. Therefore, the opening / closing control of the shutter 376 is temporarily suspended, and the shutter 376 is in the closed position. The control is not performed for the open position.
  • step # 110 it is determined whether or not the discharge clutch 333 has been engaged (ON state) (step # 110). If it is determined in step # 110 that the discharge clutch 333 is not engaged (# 110: No), the process returns to step # 110.
  • step # 110 when the discharge clutch 333 is in the engaged state (# 110: Yes), the kernel is discharged to the outside by the discharge auger 332 from the grain tank 316, and the storage level of the kernel in the discharge count securing unit E is increased. It turns out that it falls.
  • step # 111 it is determined whether or not a predetermined time has elapsed. If the predetermined time has not elapsed (# 111: No), step # 111 is determined. Return to. In step # 111, when a predetermined time has elapsed (# 111: Yes), it can be seen that the storage level of the grains in the discharge number securing unit E has sufficiently decreased. For this reason, it can be seen that there is no problem even if the opening / closing control of the shutter 376 is restarted. Next, when it is determined Yes in step # 111, the shutter 376 is controlled to the open position (step # 112). Following step # 112, the number N of times the shutter 376 is opened is reset to "0" (step # 113). When step # 113 ends, the process proceeds to step # 105 to perform the next quality measurement.
  • a predetermined time has elapsed since the storage volume of the grains stored in the grain tank 316 exceeded the “preliminary value”. It may be determined whether or not. In this case, if the storage volume of the grain stored in the grain tank 316 exceeds the “preliminary value” in step # 103 (# 103: No), then the grain tank It is determined whether or not a predetermined time has elapsed since the storage volume of the grains stored in 316 exceeded the “preliminary value”.
  • the process proceeds to step # 105 in order to perform the next quality measurement. .
  • a predetermined time has elapsed since the storage volume of the grain stored in the grain tank 316 exceeds the “preliminary value”
  • the shutter 376 is opened a predetermined number of times, and the discharge number securing unit E If the shutter 376 is controlled to the open position, the shutter 376 may interfere with the stored grain. For this reason, the storage volume of the grain stored in the grain tank 316 is “having a predetermined time after the storage volume of the grain stored in the grain tank 316 exceeds the“ preliminary value ”.
  • the opening / closing control of the shutter 376 is temporarily suspended, and the shutter 376 is closed. It is left as it is, and control to make it an open position is not performed. That is, when a predetermined time elapses after the storage volume of the grains stored in the grain tank 316 exceeds the “preliminary value”, the opening / closing control of the shutter 376 is performed until the discharge clutch 333 is turned on (ON state). Suspended.
  • Step # 110 the determination unit 390 detects that the stored volume has exceeded the “preliminary value” that is a value lower than the “predetermined value” by the third sensor 342 serving as a volume measuring unit, and performs predetermined processing after the detection.
  • the time has elapsed, it is determined that the storage volume of the kernel in the kernel tank 316 has exceeded the “predetermined value”.
  • step # 111 may be omitted in the procedure of the first embodiment.
  • the control (step # 112) for opening the shutter 376 may be performed so that the opening / closing control of the shutter 376 is immediately resumed.
  • step # 201 it is determined whether or not the proximity sensor 375 is in a detection state (ON state) for a predetermined time in a state where the shutter 376 is in the closed position (step # 201).
  • step # 201 if the proximity sensor 375 has not been detected for a predetermined time (# 201: No), the process returns to step # 201.
  • step # 201 if the proximity sensor 375 is in the detection state for a predetermined time (# 201: Yes), it can be understood that the amount of grains necessary for measurement by the quality sensor 350 is stored in the temporary storage unit T. Therefore, quality measurement is then performed on the grains stored in the temporary storage unit T over a predetermined time by the quality sensor 350 (step # 202).
  • step # 203 it is determined whether or not the storage volume of the grains stored in the grain tank 316 exceeds the “predetermined value” (step # 203). When the “predetermined value” is not exceeded, the shutter 376 does not interfere with the grain even if the shutter 376 is controlled to the open position. If the stored volume of the grain stored in the grain tank 316 does not exceed the “predetermined value” in Step # 203 (# 203: Yes), control is performed to open the shutter 376 (Step # 203). 204). Following step # 204, it is determined whether proximity sensor 375 has been in a non-detection state (OFF state) for a predetermined time (step # 205).
  • OFF state non-detection state
  • step # 205 if the proximity sensor 375 has not been detected for a predetermined time (# 205: No), the process returns to step # 205.
  • step # 205 if the proximity sensor 375 is in a non-detection state for a predetermined time (# 205: Yes), it is known that the grain whose quality measurement has been completed is discharged from the temporary storage unit T. Therefore, next to step # 205, it is once again determined whether or not the storage volume of the grains stored in the grain tank 316 exceeds the “predetermined value” (step # 206). This is because the shutter 376 in the open position may be buried in the grain dropped from the temporary storage unit T.
  • step # 206 if the storage volume of the grains stored in the grain tank 316 does not exceed the “predetermined value” (# 206: Yes), the shutter 376 can be closed even if control is performed to close the shutter 376. Since it can be understood that 376 does not interfere with the stored grain, control for closing the shutter 376 is performed (step # 207). When step # 207 ends, the process returns to perform the next quality measurement.
  • step # 206 when the storage volume of the grains stored in the grain tank 316 exceeds the “predetermined value” (# 206: No), the shutter 376 is controlled to be closed when the shutter 376 is controlled to the closed position. Since it turns out that the grain stored in the securing part E is caught up and lifted, the closing control of the shutter 376 is temporarily suspended, the shutter 376 is left in the open position, and the control to make the closed position is not performed. That is, if it is determined No in step # 206, the closing control of the shutter 376 is temporarily interrupted until the discharge clutch 333 is engaged (ON state). Therefore, next, when it is determined No in step # 206, it is determined whether or not the discharge clutch 333 has been engaged (ON state) (step # 208).
  • step # 208 If the discharge clutch 333 is not in the engaged state at step # 208 (# 208: No), the process returns to step # 208.
  • step # 208 when the discharge clutch 333 is in the engaged state (# 208: Yes), the kernel is discharged to the outside by the discharge auger 332 from the grain tank 316, and the storage level of the kernel in the discharge count securing unit E is increased. It turns out that it falls. Then, when it is determined Yes in step # 208, it is determined whether or not a predetermined time has elapsed (step # 209). If the predetermined time has not elapsed (# 209: No), step # 209 is determined. Return to.
  • step # 209 when the predetermined time has elapsed (# 209: Yes), it can be seen that the storage level of the grains in the discharge number securing unit E has sufficiently decreased. For this reason, it can be seen that there is no problem even if the shutter 376 is controlled to the closed position.
  • step # 207 the shutter 376 is controlled to the closed position (step # 207).
  • step # 207 ends, the process returns to perform the next quality measurement.
  • step # 203 when the storage volume of the grains stored in the grain tank 316 exceeds the “predetermined value” (# 203: No), when the shutter 376 is controlled to the open position, the shutter 376 is discharged. Since there is a possibility of interfering with the grains stored in the securing unit E, the opening control of the shutter 376 is temporarily interrupted, and the shutter 376 remains in the closed position, and the control for setting the open position is not performed. That is, if it is determined No in step # 203, the opening control of the shutter 376 is temporarily interrupted until the discharge clutch 333 is engaged (ON state). Therefore, after it is determined No in step # 203, it is determined whether or not the discharge clutch 333 has been engaged (ON state) (step # 210).
  • step # 210 if the discharge clutch 333 is not in the engaged state (# 210: No), the process returns to step # 210.
  • step # 210 when the discharge clutch 333 is in the engaged state (# 210: Yes), the kernel is discharged from the kernel tank 316 to the outside by the discharge auger 332, and the storage level of the kernel in the discharge count securing unit E is increased. It turns out that it falls. Then, when it is determined Yes in step # 210, it is determined whether or not a predetermined time has elapsed (step # 211). If the predetermined time has not elapsed (# 211: No), step # 211 is determined. Return to.
  • step # 211 when a predetermined time has elapsed (# 211: Yes), it can be seen that the storage level of the grains in the discharge number securing unit E has sufficiently decreased. For this reason, it can be seen that there is no problem even if the shutter 376 is controlled to the open position, and the shutter 376 is controlled to the open position after it is determined Yes in step # 211 (step # 212).
  • step # 212 it is determined whether proximity sensor 375 has been in a non-detection state (OFF state) for a predetermined time (step # 213).
  • step # 213 if the proximity sensor 375 has not been in the non-detection state for a predetermined time (# 213: No), the process returns to step # 213.
  • step # 213, if the proximity sensor 375 has not been detected for a predetermined time (# 213: Yes) the process proceeds to step # 207 in order to perform the next quality measurement.
  • step # 107 in the first embodiment if the number N of times the shutter 376 is opened exceeds a predetermined number A (# 107: No), or in step # 203 in the second embodiment, step # 203.
  • step # 203 if the storage volume of the grain stored in the grain tank 316 exceeds the “predetermined value” (# 203: No), it is determined whether or not the discharge clutch 333 is in the engaged state (ON state). Determination is made (step # 301). If it is determined in step # 301 that the discharge clutch 333 is not engaged (# 301: No), the process returns to step # 301.
  • step # 301 when the discharge clutch 333 is in the engaged state (# 301: Yes), next, control is performed to open the shutter 376 (step # 302). Then, after step # 302, it is determined whether or not the discharge clutch 333 has been turned off (OFF state) (step # 303). If the discharge clutch 333 is not disengaged (# 303: No), the process returns to step # 303. Here, since the shutter 376 remains in the open position until the discharge clutch 333 is turned off (OFF state), all the grains in the temporary storage unit T can be discharged without remaining. In step # 303, when the discharge clutch 333 is disengaged (# 303: Yes), it is next determined whether or not a predetermined time has passed (step # 304).
  • step # 304 If the predetermined time has not elapsed in step # 304 (# 304: No), the process returns to step # 304.
  • step # 304 when a predetermined time has elapsed (# 304: Yes), the shutter 376 is controlled to the closed position (step # 305). When step # 305 ends, the process returns.
  • the control unit 392 controls the motor 378 to open the shutter 376, and the grain is stored in the temporary storage unit T when the grain is discharged by the discharge auger 332. Do not remain.
  • step # 304 may be omitted.
  • the process proceeds to step # 305, and control for immediately closing the shutter 376 is performed.
  • the control for setting the shutter 376 to the open position is performed in step # 305, and then it is determined whether or not a predetermined time has passed since the control for setting the shutter 376 to the open position was performed. May be. When it is determined that a predetermined time has elapsed since the control for setting the shutter 376 to the open position, the process proceeds to # 305, and the shutter 376 is controlled to be closed.
  • the determination based on “preliminary value” or “predetermined value” is performed. However, in the third embodiment, the determination based on “preliminary value” or “predetermined value” may not be performed. Good.
  • a load cell 335 is provided as a “weight measuring device” which is an example of a “volume measuring unit”.
  • the fourth embodiment is the same as the first to third embodiments except for the parts described below.
  • a load cell 335 that measures the weight of the grain stored in the grain tank 316 is provided as a volume measuring unit that detects the storage volume of the grain stored in the grain tank 316, and is based on the detection result of the load cell 335. Thus, the storage volume of the grains stored in the grain tank 316 is determined.
  • the ECU 320 includes a calculation unit 493 and another determination unit 490 instead of the determination unit 390.
  • the calculation unit 493 is connected to the quality sensor 350 and the load cell 335.
  • the calculation unit 493 calculates the storage volume of the kernel in the kernel tank 316 based on the moisture value input from the quality sensor 350 and the weight value input from the load cell 335 and outputs the calculated volume to the determination unit 490.
  • the determination unit 490 determines whether or not the storage volume input from the calculation unit 493 exceeds “preliminary value” and “predetermined value”.
  • the determination unit 490 is connected to the calculation unit 493 and the control unit 392.
  • the determination unit 490 outputs a “preliminary value arrival signal” and a “predetermined value arrival signal” to the control unit 392, respectively. .
  • the proximity sensor 375 is shown as an example of the necessary amount measuring unit.
  • the present invention is not limited to this, and it is possible to detect a grain such as a contact sensor. Other required amount measurement units may be used.
  • the discharge side network 364 is attached to the exhaust port 360 and the suction side network 365 is attached to the introduction port 361.
  • the discharge-side network 464 may be attached to the distal end hole 362 of the guide tube 363, and the suction-side network 465 may be attached to the intake port 368 of the filter case 357.
  • the discharge side net body 464 and the suction side net body 465 are prevented from entering the main body case 356 by the discharge side net body 464 and the suction side net body 465.
  • the shutter 376 that is pushed up by the switching mechanism 380 by the drive of the motor 378 to change the position from the closed position to the closed position is shown as an example. Absent. For example, there may be a shutter 376 that does not have the switching mechanism 380 and is directly controlled to open and close by driving the motor 378.
  • the discharge number securing unit E is provided adjacent to the lower side of the shutter 376.
  • the present invention is not limited to this.
  • the discharge number securing unit E may not be provided, and the lower part of the shutter 376 may be directly communicated with the internal space M of the grain tank 316.
  • the “predetermined value” may be directly measured by a level measuring device such as the third sensor 342 or a weight measuring device such as the load cell 335 without providing the “preliminary value”.
  • the grain stored in the grain tank 316 is shown as an example discharged from the rear part of the grain tank 316 by the discharge auger 332. Not limited to this.
  • the grain stored in the grain tank 316 may be discharged from the side part or front part of the grain tank 316.
  • the temporary storage part T showed what was provided in the front part of the grain tank 316 as an example, the temporary storage part T may be provided in the center part and the rear part of the grain tank 316. .
  • the self-removing combine is shown as an example.
  • the present invention is not limited to this, and another combine such as a full throw-in combine may be used.
  • the crawler travel combine is shown as an example, but the present invention is not limited to this, and another combine such as a wheel travel combine may be used.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Threshing Machine Elements (AREA)
  • Combines (AREA)

Abstract

 穀粒タンクに貯留された穀粒の重量を精度よく測定できるコンバインが開示される。測定スイッチ66から重量測定信号が出力されると、重量測定決定部75は、作業状態判定部71に作業状態判定を指令し、作業状態であることが判定されると、ロードセル39に重量測定を指令しない。

Description

コンバイン
 本発明は、穀粒を貯留する穀粒タンクが備えられているコンバインに関する。
 [背景技術1]
 従来のコンバインの一例が例えば特許文献1に記載されている。特許文献1に示されたコンバインには、穀粒タンク(特許文献1では「グレンタンク」)に貯留された穀粒の重量測定を行う重量測定部(特許文献1では「ロードセル」)が備えられている。
 [背景技術2]
 従来のコンバインの一例が例えば特許文献2に記載されている。特許文献2に示されたコンバインには、穀粒タンク(特許文献2では「グレンタンク」)内における穀粒の溜り具合を検知する高さの異なる複数段の貯留レベルを検出できるレベルセンサ(特許文献2では「籾センサ」)が備えられている。このようなコンバインでは、例えば、最上段の計測センサが穀粒を検知した際に、穀粒タンク内の穀粒が一定量に達した旨、例えば満量である旨の報知を運転者へ行うことができる。
 [背景技術3]
 従来のコンバインの一例が例えば特許文献3に記載されている。特許文献3に示されたコンバインは、穀粒タンク(特許文献3では「グレンタンク」)内に設けられた穀粒供給口から流入する穀粒を圧砕して、圧砕された穀粒の品質を計測できるように構成されている。
日本国特開平10-164967号公報(JP10-164967A)(段落番号[0009]、[0010]、[図1]) 日本国特許第5098277号公報(JP5098277B2) 日本国特開2006-246831号公報(JP2006-246831A)
 上記[背景技術1]に対応する[課題1]は、以下のとおりである。
 従来のコンバインでは、コンバインが作業状態にあるときでも穀粒タンクに貯留された穀粒の重量測定を行えるようになっている。しかし、測定する際に、作業が行われていると、作業によって穀粒タンクが振動し、重量測定の結果にバラツキが生じるおそれがある。
 このような実情に鑑み、穀粒タンクに貯留された穀粒の重量を精度よく測定できるコンバインの提供が望まれていた。
 また、上記[背景技術2]に対応する[課題2]は、以下のとおりである。
 従来の技術では、穀粒タンク内において検出可能な穀粒の貯留体積量は、レベルセンサが配置される高さで決まるため、報知を行うための穀粒タンク内の穀粒の貯留体積量の閾値は固定されていた。このため、例えば、容量が決まっているコンテナや穀粒袋等に丁度収納できる量の穀粒が貯留されたことを報知するというような柔軟な刈取作業は行えなかった。
 このような実情に鑑み、穀粒タンク内に所定量の穀粒が貯留されたことを報知することが可能であり、かつ、その所定量を任意に変更できるコンバインの提供が望まれている。
 また、上記[背景技術3]に対応する[課題3]は、以下のとおりである。
 従来のコンバインにおける穀粒の品質計測とは異なり、穀粒タンク内に開閉制御が可能なシャッターを備えて、シャッター上に穀粒を一時的に貯留して穀粒の品質計測を行う手法が考えられている。このようなシャッターを用いて穀粒の品質計測を行う手法においては、穀粒タンク内の穀粒が増加してくると、穀粒にシャッターの開閉動作が妨げられるおそれがあった。
 このような実情に鑑み、穀粒の品質計測のために穀粒を一時的に貯留可能なシャッターの開閉を穀粒に妨げられることなく好適に行うことができるコンバインの提供が望まれていた。
 上記[課題1]に対応する解決手段は、以下のとおりである。
 すなわち、本発明に係るコンバインは、走行機体を支持する走行装置と、
 植立穀稈を刈取る刈取部と、
 刈取穀稈を脱穀処理する脱穀装置と、
 前記脱穀装置によって脱穀された穀粒を貯留する穀粒タンクと、
 前記穀粒タンクに貯留された穀粒の重量測定を行う重量測定部と、
 重量測定信号を出力する測定指示部と、
 前記走行装置、前記刈取部、及び前記脱穀装置の状態から、作業状態であるか非作業状態であるかの作業状態判定を行う作業状態判定部と、
 前記重量測定信号に基づいて前記重量測定部に前記重量測定を指令する制御部と、が備えられ、
 前記測定指示部から前記重量測定信号が出力されると、前記制御部は、前記作業状態判定部に前記作業状態判定を指令し、前記作業状態であることが判定されると、前記重量測定部に前記重量測定を指令しないものである。
 本発明によると、穀粒タンクに貯留された穀粒の重量測定を行うために、測定支持部から重量測定信号が出力されると、走行装置、刈取部、及び脱穀装置の状態から、作業状態であるか非作業状態であるかの作業状態判定が行われる。そして、作業状態であると判定されると、重量測定部による穀粒タンクに貯留された穀粒の重量測定は行われない。つまり、本発明によれば、穀粒タンクに振動が生じている作業状態のときには、重量測定部による穀粒タンクに貯留された穀粒の重量測定は行われないので、穀粒タンク内の穀粒の重量として正確性に欠く値が測定されてしまう可能性が排除され、結果として、穀粒タンクに貯留された穀粒の重量を精度よく測定できる。
 上記構成において、前記走行機体の傾きを検出する姿勢検出部と、
 前記走行機体の傾きが所定の傾斜許容範囲内にあるか否かの姿勢判定を行う姿勢検出部と、が備えられ、
 前記作業状態判定部によって前記非作業状態であることが判定されると、前記制御部は、前記姿勢検出部に前記姿勢判定を指令し、前記走行機体の傾きが所定の傾斜許容範囲内にあることが判定された場合、前記重量測定部に前記重量測定を指令し、前記走行機体の傾きが前記傾斜許容範囲内にないことが判定された場合、前記重量測定部に前記重量測定を指令しないと好適である。
 走行機体が傾くことにより穀粒タンクも傾くので、走行機体が傾いた状態で測定される重量は正確でないおそれがある。しかし、本構成によれば、非作業状態であると判定された後に、さらに、走行機体の傾きが所定の傾斜許容範囲内にあると判定されてから重量測定部による穀粒タンク内の穀粒の重量の測定が行われる。そして、走行機体の傾きが傾斜許容範囲内にないと判定されると重量測定部による穀粒タンク内の穀粒の重量の測定が行われない。したがって、穀粒タンク内の穀粒の重量として正確性に欠く値が測定されてしまう可能性が排除され、結果として、穀粒タンクに貯留された穀粒の重量を精度よく測定できる。
 上記構成において、前記走行機体の左右傾斜姿勢を変更する左右姿勢変更部が備えられ、
 前記姿勢検出部として、前記走行機体の左右傾斜角度を検出する左右傾斜角度検出部が備えられ、
 前記姿勢検出部によって前記左右の傾きが所定の左右傾斜許容範囲内にないことが判定された場合、前記制御部は、前記重量測定部に前記重量測定を指令せずに、前記左右傾斜角度が前記左右傾斜許容範囲内になるように前記左右姿勢変更部を制御し、前記左右傾斜角度が前記左右傾斜許容範囲内になった後に、前記重量測定部に前記重量測定を指令すると好適である。
 本構成によれば、走行機体の左右傾斜角度を検出する左右傾斜角度検出部が備えられており、左右の傾きが所定の左右傾斜許容範囲内にないと判定されると、まず、左右傾斜角度が左右傾斜許容範囲内になるように左右姿勢変更部が制御される。そして、左右傾斜角度が左右傾斜許容範囲内になってから、重量測定部による穀粒タンク内の穀粒の重量の測定が行われる。このように、本構成であれば、走行機体の左右傾斜角度が大きなときは、自動的に左右傾斜角度の調整が行われるので、重量測定部による正確な重量測定をスムーズに実行できる。
 上記構成において、前記走行機体の前後傾斜姿勢を変更する前後姿勢変更部が備えられ、
 前記姿勢検出部として、前記走行機体の前後傾斜角度を検出する前後傾斜角度検出部が備えられ、
 前記姿勢検出部によって前記前後傾斜角度が所定の前後傾斜許容範囲内にないことが判定された場合、前記制御部は、前記重量測定部に前記重量測定を指令しないと共に、前記前後傾斜角度が前記前後傾斜許容範囲内になるように前記前後姿勢変更部を制御し、前記前後傾斜角度が前記前後傾斜許容範囲内になった後に、前記重量測定部に前記重量測定を指令すると好適である。
 本構成によれば、走行機体の前後傾斜角度を検出する前後傾斜角度検出部が備えられており、前後の傾きが所定の前後傾斜許容範囲内にないと判定されると、まず、前後傾斜角度が前後傾斜許容範囲内になるように前後姿勢変更部が制御される。そして、前後傾斜角度が前後傾斜許容範囲内になってから、重量測定部による穀粒タンク内の穀粒の重量の測定が行われる。このように、本構成であれば、走行機体の前後傾斜角度が大きなときは、自動的に前後傾斜角度の調整が行われるので、重量測定部による正確な重量測定をスムーズに実行できる。
 上記構成において、前記走行装置の走行速度を検出する車速センサが備えられ、
 前記作業状態判定部は、少なくとも前記走行速度がゼロであることを条件に、前記非作業状態であると判定すると好適である。
 走行装置の走行速度がゼロ以外のとき、すなわち走行中は、穀粒タンクの振動が大きくなるため重量測定の誤差が大きくなるおそれがある。しかし、本構成によれば、車速センサにより検出される走行装置の走行速度がゼロ以外のときは、非作業状態とは判定されず、重量測定部による穀粒タンク内の穀粒の重量の測定が行われない。したがって、穀粒タンク内の穀粒の重量として正確性に欠く値が測定されてしまう可能性が排除され、結果として、穀粒タンクに貯留された穀粒の重量を精度よく測定できる。
 上記構成において、前記脱穀装置へ動力伝達を入り切りする脱穀クラッチが備えられ、
 前記作業状態判定部は、少なくとも前記脱穀クラッチが切り状態であることを条件に、前記非作業状態であると判定すると好適である。
 脱穀クラッチが入り状態のときは脱穀装置の作動により穀粒タンクへ振動が伝達される状態となるため重量測定の誤差が大きくなるおそれがある。しかし、本構成によれば、脱穀装置へ動力伝達を入り切りする脱穀クラッチが切り状態でないとき、すなわち脱穀クラッチが入り状態のときには、非作業状態とは判定されず、重量測定部による穀粒タンク内の穀粒の重量の測定が行われない。したがって、穀粒タンク内の穀粒の重量として正確性に欠く値が測定されてしまう可能性が排除され、結果として、穀粒タンクに貯留された穀粒の重量を精度よく測定できる。
 上記構成において、前記刈取部に設けられて刈取穀稈の存在を検出する穀稈センサが備えられ、
 前記作業状態判定部は、少なくとも前記刈取部に刈取穀稈が存在していないことを条件に、前記非作業状態であると判定すると好適である。
 刈取部に穀稈が存在しており穀稈センサによって刈取穀稈が検出されている状態のとき、つまり、刈取部が作動しているときは、作動する刈取部から穀粒タンクへ振動が伝達され、重量測定の誤差が大きくなるおそれがある。しかし、本構成によれば、少なくとも刈取部に刈取穀稈が存在していないことを非作業状態であると判定する条件としているので、穀粒タンク内の穀粒の重量として正確性に欠く値が測定されてしまう可能性が排除され、結果として、穀粒タンクに貯留された穀粒の重量を精度よく測定できる。
 上記構成において、前記刈取部は前記走行機体に上下昇降可能に支持され、
 前記刈取部の上下位置を検出する刈取高さセンサが備えられ、
 前記作業状態判定部によって前記非作業状態であることが判定されても、前記上下位置が所定の高さよりも低い場合、前記制御部は、前記重量測定部に前記重量測定を指令しないと好適である。
 本構成によれば、非作業状態であって、刈取部の上下位置が、所定の高さよりも高い場合に、重量測定部による穀粒タンクに貯留された穀粒の重量測定が行われる。これにより、例えば、重量測定が行われる前に走行機体を水平化する制御が行われて走行機体が下降するような場合に、刈取部の先端等が不測に圃場に接触してしまうというような不都合を回避できる。
 上記構成において、前記穀粒タンクに接続された縦オーガ、及び、前記縦オーガに接続されて前記穀粒タンクに貯留された穀粒を一端から外部へ排出可能であると共に、上下揺動可能かつ収納位置と作業位置との間で旋回可能な横オーガを有するアンローダと、
 前記横オーガを前記収納位置に支持するオーガ受けと、
 前記横オーガが前記オーガ受けに収納されている収納状態であるか否かを検出する収納検出部と、が備えられ、
 前記作業状態判定部によって前記非作業状態であることが判定されると、前記制御部は、前記収納検出部の検出結果を確認し、前記収納状態が検出されている場合は、前記重量測定部に前記重量測定を指令し、前記収納状態が検出されていない場合は、前記重量測定部に前記重量測定を指令しないと好適である。
 アンローダの横オーガは縦オーガに片持ち支持されているものであり、横オーガがオーガ受けに適正に収納されている状態と、横オーガがオーガ受けに適正に収納されていない状態とでは、穀粒タンクにおける重心位置が変化して、重量測定の結果が異なるおそれがある。本構成によれば、非作業状態であると判定されてから、横オーガがオーガ受けに適正に収納されていると判定されると、重量測定部による穀粒タンク内の穀粒の重量測定は行われる。しかし、非作業状態であると判定されたとしても、横オーガがオーガ受けに適正に収納されていないと判定されると、重量測定部による穀粒タンク内の穀粒の重量測定は行われない。このように、横オーガがオーガ受けに適正に収納された安定状態のときに、重量測定部による穀粒タンク内の穀粒の重量測定を行うので、正確性の高い重量の値を得ることができる。
 上記構成において、前記横オーガを上下揺動させる上下揺動駆動部と、
 前記横オーガを旋回させる旋回駆動部と、が備えられ、
 前記収納検出部によって前記収納状態が検出されていない場合、前記制御部は、前記重量測定部に前記重量測定を指令しないと共に、前記収納状態となるように前記上下揺動駆動部及び前記旋回駆動部を制御し、前記収納状態になった後に、前記重量測定部に前記重量測定を指令すると好適である。
 本構成によれば、横オーガが収納位置のオーガ受けに適正に収納されていない場合、横オーガがオーガ受けに適正に収納されてから重量測定部による穀粒タンク内の穀粒の重量の測定が行われる。このように、本構成であれば、自動的に横オーガが正しくオーガ受けに収納されて重量測定が行われるので、重量測定部による正確な重量測定をスムーズに実行できる。
 上記構成において、前記穀粒タンクに接続された縦オーガ、及び、前記縦オーガに接続されて前記穀粒タンクに貯留された穀粒を一端から外部へ排出可能であると共に、上下揺動可能かつ収納位置と作業位置との間で旋回可能な横オーガを有するアンローダと、
 前記横オーガを上下揺動させる上下揺動駆動部と、
 前記横オーガを前記収納位置に支持するオーガ受けと、が備えられ、
 前記作業状態判定部によって前記非作業状態であることが判定されると、前記制御部は、前記上下揺動駆動部を制御して前記横オーガを所定時間下降させた後に、前記重量測定部に前記重量測定を指令すると好適である。
 アンローダの横オーガは、旋回位置がずれるよりも、走行時の振動等によって上下位置がずれることの方が多い傾向にある。本構成によれば、横オーガが収納位置のオーガ受けに適正に収納されていない場合、横オーガを所定時間下降させてから重量測定部による穀粒タンク内の穀粒の重量の測定が行われる。このような場合には、横オーガを所定時間下降させれば、横オーガはオーガ受けに適正に収納される。このように、本構成であれば、自動的に横オーガが正しくオーガ受けに収納されて重量測定が行われるので、重量測定部による正確な重量測定をスムーズに実行できる。
 上記構成において、前記制御部は、前記重量測定部に前記重量測定を指令しない場合は、運転者に、測定に関する情報を報知すると好適である。
 本構成によれば、重量測定部に重量測定を指令しない場合には、測定に関する情報、例えば、重量測定を行うことができない旨の情報を運転者に報知できる。これにより、運転者は、重量測定ができないことを速やかに確認でき、種々の対応をとり得る。
 上記[課題2]に対応する解決手段は、以下のとおりである。
 すなわち、本発明に係るコンバインは、植立穀稈を刈取る刈取部と、
 刈取穀稈を脱穀処理する脱穀部と、
 前記脱穀部によって脱穀された穀粒を貯留する穀粒タンクと、
 前記穀粒タンクに貯留された穀粒の貯留体積量を計測する計測センサと、
 前記計測センサによって計測された前記貯留体積量が、予め設定された閾値を超えたか否かを判定する判定部と、
 前記判定部によって前記貯留体積量が前記閾値を超えたと判定されると、運転者に、前記穀粒の量が前記閾値を超えたことに関する情報を報知する報知部と、
 前記閾値を変更可能な変更部と、が備えられているものである。
 本発明によると、判定部と報知部とが備えられているので、所定量の穀粒が貯留されたことを運転者が知ることができる。さらに、本発明であると、変更部が備えられているので、排出先の容器等の容量に応じた報知が可能となる。
 上記構成において、前記計測センサは、前記穀粒タンクに貯留された穀粒の重量を計測する重量センサであると好適である。
 本構成によれば、計測センサが、穀粒タンクに貯留された穀粒の重量を計測する重量センサであるので、穀粒タンクに貯留された穀粒の貯留体積量を得る際に、高さの固定されたレベルセンサよりも、より細かな値を得ることが可能となる。このため、変更部による閾値の変更も細かく行うことが可能となり、閾値の変更を柔軟に行うことができる。
 上記構成において、前記穀粒タンクに貯留された穀粒の少なくとも水分値を計測する品質センサと、
 前記品質センサにより検出された穀粒の水分値、および、前記重量センサにより計測された前記穀粒タンクに貯留された穀粒の重量、に基づいて前記貯留体積量を演算する演算部と、が備えられ、
 前記閾値は、体積単位で設定されると好適である。
 本構成によれば、品質センサにより検出された穀粒の水分値、および、重量センサにより計測された穀粒タンクに貯留された穀粒の重量、に基づいて貯留体積量が演算されるので、穀粒の実際の品質が考慮された精度のよい貯留体積量を演算できる。例えば、品質センサによって穀粒タンクに貯留された穀粒の少なくとも水分値を計測することにより、穀粒のおおよその比重が分かるので、重量センサにより計測された穀粒タンクに貯留された穀粒の重量から、穀粒タンクに貯留された実際の穀粒の性状に合致する正確な貯留体積量を得ることが可能となり、演算された貯留体積量と体積単位で設定される閾値とを比較できる。また、体積単位で閾値を設定できるので、例えば、重量単位で設定するのに比較して貯留度合をイメージし易く閾値の設定が行い易くなる。
 上記構成において、前記穀粒タンクに貯留された穀粒の貯留レベルを計測するレベルセンサが備えられ、
 前記閾値は、体積単位で設定されると好適である。
 本構成によれば、運転者に報知を行う基準となる、穀粒タンクに貯留された穀粒の貯留体積量の閾値を任意に変更できる。この場合、レベルセンサによって穀粒タンクに貯留された穀粒の貯留レベルが計測され、計測された貯留レベルが閾値に達したかどうかが判定される。レベルセンサには、例えば、下から順に配置された高さの異なる第1センサ、第2センサ、第3センサ、第4センサが備えられているとする。例えば、第4センサが穀粒を検知する、という閾値が予め設定されている場合、変更部によって、第4センサよりも配置された高さの低い第3センサが穀粒を検知する、という新たな閾値に変更できる。このようにして、報知を行う穀粒タンク内の穀粒の貯留体積量を任意に変更できる。また、体積単位で閾値を設定できるので、例えば、重量単位で設定するのに比較して貯留度合をイメージし易く閾値の設定が行い易くなる。
 上記構成において、外部サーバとの通信を行う通信部が備えられ、
 前記変更部は、前記外部サーバから受信したデータに基づいて前記閾値を変更可能に構成されていると好適である。
 本構成によれば、例えば、遠隔の管理センタ等に配置された外部サーバから閾値を変更することができ、外部からの貯留体積量の管理が可能となる。
 上記構成において、外部サーバとの通信を行う通信部が備えられ、
 前記通信部は、前記変更部によって前記閾値が変更された場合、変更結果を前記外部サーバへ送信するように構成されていると好適である。
 本構成によれば、変更部によって閾値が変更された場合、変更結果が通信部を介して外部サーバに送信できる。これにより、例えば、運転者が誤って閾値を変更した場合でも、外部サーバにおいて、閾値の変更結果を確認できるので、種々の不都合を回避できる。一例を挙げると、管理センタ等における穀粒の乾燥機等の受け入れ可能な容量が決まっている場合、閾値の変更が望ましくない場合もあり、このような場合に、外部サーバにおいて運転者が閾値を変更した変更結果を確認できるので、閾値の再変更を促す等の適切な対処をとることができる。また、外部サーバによって、閾値を一括管理している場合等に、古いデータを新しいデータに自動的に書き換えることも可能となる。
 上記構成において、前記判定部は、複数の前記閾値を設定可能に構成されていると好適である。
 本構成によれば、判定部は、複数の閾値が設定可能とされているので、穀粒タンク内における穀粒の貯留体積量について、複数段階で運転者に報知を行うことが可能となる。つまり、例えば、判定部において、所望量の第1閾値と、第1閾値よりも小さな第2閾値を設定しておいたとすると、第2閾値に貯留体積量が達すると、もうすぐ所望量の貯留がなされる旨の予備報知を運転者に行い、その後、第1閾値に貯留体積量が達すると、所望量の貯留がなされた旨の本報知を運転者に行うといったことができる。このため、運転者にとっては穀粒の貯留状況の把握が行い易くなる。
 上記構成において、前記貯留体積量を表示する表示部と、
 前記穀粒タンクの底部に設けられ、前記穀粒タンクに貯留された穀粒を外部に排出する排出オーガと、が備えられ、
 前記排出オーガが作動されてから次の刈取作業が行われるまでの間、前記排出オーガの始動前における前記貯留体積量が前記表示部に表示され続けるようになっていると好適である。
 本構成によれば、運転者が前回の貯留量を忘れてしまった場合等に次の刈取作業を行うまでは簡単に前回の貯留量を確認できる。
 上記[課題3]に対応する解決手段は、以下のとおりである。
 すなわち、本発明に係るコンバインは、脱穀装置から搬送されてきた穀粒を貯留する穀粒タンクと、
 前記穀粒タンクの底部に設けられ、前記穀粒タンクに貯留された穀粒を外部に排出する排出オーガと、
 前記穀粒タンク内に設けられると共に取込口が形成され、前記脱穀装置から搬送されてきた穀粒の一部を前記取込口から取り込んで一時的に貯留する一時貯留部と、
 前記一時貯留部に貯留された穀粒の品質を検出する品質計測部と、
 前記一時貯留部に形成されて貯留された穀粒を前記穀粒タンクに排出可能な排出口と、
 前記排出口を開放する開位置と前記排出口を閉塞する閉位置とに位置変更可能なシャッターと、
 前記品質計測部による計測が終了されると、前記シャッターを前記開位置にし、かつ、前記一時貯留部の穀粒の全てが前記穀粒タンクに排出されると、前記シャッターを前記閉位置にする開閉制御を行う制御部と、
 前記穀粒タンクに貯留された穀粒の貯留体積が所定値を超えたか否かを判定する判定部と、が備えられ、
 前記判定部によって前記貯留体積が所定値を超えたことが判定されると、前記制御部は前記開閉制御を停止するものである。
 本発明によると、取込口から取り込まれた穀粒が、閉位置となったシャッター上に形成される一時貯留部に一時的に貯留され、一時貯留部に貯留された穀粒について品質計測部による品質計測が行われ、品質計測が終了すると、シャッターが開位置となって品質計測の終了した穀粒が排出口から排出される。本発明によると、このようなシャッター開閉制御が基本的に行われて、穀粒の品質計測が行われる。そして、本発明では、穀粒タンクに貯留された穀粒の貯留体積が所定値を超えると、シャッターの開閉制御が停止される。シャッターの開閉動作に穀粒の干渉が生じるおそれのある所定値に設定すると、貯留された穀粒によってシャッターの開閉動作が妨げられることがないので、穀粒の品質計測を支障なく行える。このように、本発明によれば、穀粒の品質計測のために穀粒を一時的に貯留可能なシャッターの開閉を穀粒に妨げられることなく好適に行うことができる。
 上記構成において、前記判定部によって前記貯留体積が所定値を超えたことが判定されると、前記制御部は、前記品質計測部による計測が終了しても、前記シャッターを前記開位置にする制御を行わないと好適である。
 穀粒タンクに貯留された穀粒の貯留体積が所定値を超えていると、貯留された穀粒によってシャッターの開動作が妨げられる可能性がある。本構成であれば、このような場合は、品質計測部による計測が終了しても、シャッターを開位置にする制御を行わない。これにより、シャッターが開かないという不都合を回避できる。
 上記構成において、前記排出口を介して前記一時貯留部と連通し、かつ、側部が前記穀粒タンクの内部空間と区画されると共に下部が前記内部空間と連通する排出回数確保部が、前記シャッターの下方に隣接して備えられていると好適である。
 本構成によれば、排出回数確保部は、その下部において内部空間と連通するものの、内部空間と区画されているので、内部空間に貯留された穀粒の貯留レベルが上昇してきても、排出回数確保部の下部よりも上方では、内部空間に貯留された穀粒の影響を受けない。つまり、排出回数確保部における貯留レベルの上昇は、一時貯留部から排出された穀粒の量に大きく依存することとなる。したがって、本構成であると、排出回数確保部の大きさ等をうまく設定することにより、品質計測の回数と、内部空間への貯留度合いとのバランスをとることができる。
 上記構成において、前記貯留体積を検出する体積計測部が備えられ、
 前記体積計測部によって前記貯留体積が前記所定値よりも低い値である予備値を超えたことが検出され、かつ、その検出後に前記シャッターが開放された回数が所定回数を超えたときに、前記判定部は、前記貯留体積が前記所定値を超えたと判定すると好適である。
 本構成によれば、シャッターの開閉動作に穀粒の干渉が生じるおそれのある所定値よりも低い予備値を体積計測部によって検出できる。このため、穀粒タンクに貯留された穀粒の貯留体積が予備値を超えると、排出回数確保部において残された体積の余裕がある程度限られた状態にあることがわかる。したがって、本構成であれば、穀粒タンクに貯留された穀粒の貯留体積が予備値を超えてから、シャッターが開放された回数が所定回数を超えたときに、穀粒タンクに貯留された穀粒の貯留体積が所定値を超えたとみなして、シャッターの開閉動作に穀粒が干渉する前にシャッターの開閉制御を停止できる。
 上記構成において、前記貯留体積を検出する体積計測部が備えられ、
 前記体積計測部によって前記貯留体積が前記所定値よりも低い値である予備値を超えたことが検出され、かつ、その検出後から所定時間が経過したときに、前記判定部は、前記貯留体積が前記所定値を超えたと判定すると好適である。
 本構成によれば、シャッターの開閉動作に穀粒の干渉が生じるおそれのある所定値よりも低い予備値を体積計測部により検出できる。このため、穀粒タンクに貯留された穀粒の貯留体積が予備値を超えると、排出回数確保部において残された体積の余裕がある程度限られた状態にあることがわかる。したがって、本構成であれば、穀粒タンクに貯留された穀粒の貯留体積が予備値を超えてから、例えばシャッターが所定回数だけ開放動作して排出回数確保部における体積の余裕がなくなる所定時間が経過したときに、穀粒タンクに貯留された穀粒の貯留体積が所定値を超えたとみなして、シャッターの開閉動作に穀粒が干渉する前にシャッターの開閉制御を停止できる。
 上記構成において、前記排出オーガへの駆動力伝達を入り切りする排出クラッチが備えられ、
 前記開閉制御が停止された後、前記排出クラッチが入り状態になると、前記制御部は、前記開閉制御を再開すると好適である。
 本構成によれば、排出クラッチが入り状態になると、排出オーガが作動して穀粒タンク内の穀粒が減少してゆき、シャッターの下方に存在する穀粒も減少してゆく。このため、シャッターの開閉動作を再開しても、シャッターの開閉動作に穀粒が干渉しなくなる。よって、排出クラッチが入り状態になったことをもって、シャッターの開閉制御を再開することで、穀粒の品質計測を迅速に再開できる。
 上記構成において、前記品質計測部による計測に必要な量の穀粒が前記一時貯留部に貯留されているか否かを検知する必要量測定部が備えられ、
 前記制御部は、前記開閉制御において、前記シャッターを前記開位置にした後に、前記品質計測部に必要な量の穀粒が前記一時貯留部に貯留されていない状態が所定時間継続したときに、前記シャッターを前記閉位置にする制御を行うと好適である。
 本構成によれば、シャッターが開位置にされた後に、必要量測定部の検知に基づいて品質計測部に必要な量の穀粒が前記一時貯留部に貯留されていない状態が確認されると、シャッターが閉位置に制御される。よって、シャッターを開位置にしたことにより一時貯留部から穀粒が確実に排出されたことを確認してからシャッターの閉制御が行われるので、穀粒の品質計測の信頼性を向上できる。
 上記構成において、前記貯留体積を検出する体積計測部として、前記穀粒タンク内における穀粒の貯留レベルを検出するレベル計測装置が備えられ、
 前記レベル計測装置の検出結果に基づいて、前記貯留体積が確定されると好適である。
 本構成によれば、例えば、簡素な接触式センサ等によってレベル計測装置を用いれば、穀粒タンクに貯留された穀粒の貯留体積の検出を安価に行うことが可能になり、レベル計測装置による検出結果をシャッターの開閉制御に好適に利用できる。
 上記構成において、前記貯留体積を検出する体積計測部として、前記穀粒タンクに貯留された穀粒の重量を計測する重量計測装置が備えられ、
 前記重量計測装置の検出結果に基づいて、前記貯留体積が確定されると好適である。
 本構成によれば、重量計測装置の計測結果に基づいて穀粒タンクに貯留された穀粒の重量から穀粒タンクに貯留された穀粒の貯留体積を演算できる。例えば、穀粒タンクに貯留された穀粒の重量を精度良く計測できる重量計測装置を用いれば、穀粒タンクに貯留された穀粒の貯留体積を細かく求めることが可能になり、重量計測装置による検出結果をシャッターの開閉制御に好適に利用できる。
 上記構成において、前記穀粒タンクに貯留された穀粒は、前記排出オーガによって前記穀粒タンクの後部から排出され、
 前記一時貯留部は、前記穀粒タンクの前部に設けられていると好適である。
 本構成によれば、排出オーガによって穀粒タンクの後部から貯留された穀粒が排出される際、穀粒タンクの前部における穀粒の貯留レベルが比較的早く低下する傾向にある。このため、穀粒タンクの前部に一時貯留部が設けられていることにより、排出オーガが作動されると、一時貯留部の下方の穀粒の貯留レベルが速やかに低下され、シャッターの開閉制御を迅速に再開できる。
 また、本発明に係るコンバインは、脱穀装置から搬送されてきた穀粒を貯留する穀粒タンクと、
 前記穀粒タンクの底部に設けられ、前記穀粒タンクに貯留された穀粒を外部に排出する排出オーガと、
 前記穀粒タンク内に設けられると共に取込口が形成され、前記脱穀装置から搬送されてきた穀粒の一部を前記取込口から取り込んで一時的に貯留する一時貯留部と、
 前記一時貯留部に貯留された穀粒の品質を検出する品質計測部と、
 前記一時貯留部に形成されて貯留された穀粒を前記穀粒タンクに排出可能な排出口と、
 前記排出口を開放する開位置と前記排出口を閉塞する閉位置とに位置変更可能なシャッターと、
 前記品質計測部による計測が終了されると、前記シャッターを前記開位置にし、かつ、前記一時貯留部の穀粒の全てが前記穀粒タンクに排出されると、前記シャッターを前記閉位置にする開閉制御を行う制御部と、
 前記排出オーガへの駆動力伝達を入り切りする排出クラッチと、が備えられ、
 前記排出クラッチが入り状態になると、前記制御部は、前記シャッターを前記開位置にする制御を行う。
 本発明によると、取込口から取り込まれた穀粒が閉位置となったシャッター上に形成される一時貯留部に一時的に貯留され、一時貯留部に貯留された穀粒について品質計測部による品質計測が行われ、品質計測が終了すると、シャッターが開位置となって品質計測の終了した穀粒が排出口から排出される。本発明によると、このようなシャッターの開閉制御が基本的に行われて、穀粒の品質計測が行われる。そして、本発明では、排出クラッチが入り状態となって排出オーガが駆動されて穀粒タンク内の穀粒が全て外部へ排出される際は、シャッターが開位置に制御されて、一時貯留部の穀粒が内部空間へ排出される。また、本発明であれば、一時貯留部に穀粒が残存することを防止できる。このように、本発明によれば、穀粒の品質計測のために穀粒を一時的に貯留可能なシャッターの開閉を穀粒に妨げられることなく好適に行うことができる。
 上記構成において、前記制御部が前記シャッターを前記開位置にする制御を行った後、前記排出クラッチが切り状態になると、前記制御部は、前記シャッターを前記閉位置にする制御を行うと好適である。
 本構成によれば、排出クラッチが切り状態となって排出オーガが停止されるということは、穀粒タンク内の穀粒の排出が完了したことを意味する。このため、穀粒に干渉することなくシャッターを閉位置に制御することができる。
 上記構成において、前記制御部が前記シャッターを前記開位置にする制御を行った後、所定時間が経過すると、前記制御部は、前記シャッターを前記閉位置にする制御を行うと好適である。
 本構成によれば、仮に、シャッターを開位置にした際に、シャッターが穀粒に埋もれた状態になったとしても、排出クラッチが入り状態になっているので、シャッターを開位置にしてから所定時間が経過すると、穀粒の貯留レベルが低下し、シャッターが穀粒に埋もれていない状態になる。このため、排出クラッチが入り状態になってからシャッターを開位置にしてから所定時間が経過してからシャッターを閉位置に制御することで、穀粒との干渉を回避してシャッターを閉位置に制御できる。
第1実施形態におけるコンバインの全体側面図である。 第1実施形態におけるコンバインの全体平面図である。 第1実施形態における制御構成を示すブロック図である。 第1実施形態における制御の概略を示すフローチャートである。 第1実施形態における制御の概略を示すフローチャートである。 第1実施形態におけるリモコンの説明図である。 第1実施形態におけるディスプレイへの表示例を示す説明図である。 第1実施形態の別実施形態におけるフローチャートである。 第1実施形態の別実施形態におけるフローチャートである。 第2実施形態におけるコンバインの全体側面図である。 第2実施形態におけるコンバインの全体平面図である。 第2実施形態における制御構成を示すブロック図である。 第2実施形態の別実施形態における制御構成を示すブロック図である。 第3実施形態のうちの第1実施例におけるコンバインの全体側面図である。 第3実施形態のうちの第1実施例におけるコンバインの全体平面図である。 第3実施形態のうちの第1実施例における穀粒タンクの前部を示す横断平面図である。 第3実施形態のうちの第1実施例における穀粒タンク内のレベルセンサの配置を示す説明図である。 第3実施形態のうちの第1実施例におけるシャッターが閉位置のときのサンプリング部を示す縦断側面図である。 第3実施形態のうちの第1実施例におけるシャッターが開位置のときのサンプリング部を示す縦断側面図である。 第3実施形態のうちの第1実施例における穀粒タンクへの品質計測装置の取り付けを説明する説明図である。 第3実施形態のうちの第1実施例における品質計測装置の概略構造を示す一部切欠き背面断面図である。 第3実施形態のうちの第1実施例における品質計測装置の概略構造を示す一部切欠き平面断面図である。 第3実施形態のうちの第1実施例における制御構成を示すブロック図である。 第3実施形態のうちの第1実施例における制御の概略を示すフローチャートである。 第3実施形態のうちの第2実施例における制御の概略を示すフローチャートである。 第3実施形態のうちの第3実施例における制御の概略を示すフローチャートである。 第3実施形態のうちの第4実施例における制御構成を示すブロック図である。 第3実施形態のうちのその他の実施例における品質計測装置の概略構造を示す一部切欠き背面断面図である。 第3実施形態のうちのその他の実施例における品質計測装置の概略構造を示す一部切欠き平面断面図である。
 [第1実施形態]
 以下、本発明の第1実施形態を図面に基づいて説明する。
 [コンバインの概略構成]
 コンバイン10は、クローラ走行式の自脱型コンバインであり、図1~図3に示すように、コンバイン10には、走行機体11と、走行機体11を支持する左右一対のクローラ走行装置12と、植立穀稈を刈取る刈取部13と、刈取穀稈を脱穀処理する脱穀装置14と、脱穀装置14によって脱穀された穀粒を貯留する穀粒タンク15と、穀粒タンク15内の穀粒を外部に排出するアンローダ16と、運転者が搭乗する運転操縦部17と、が備えられている。
 走行機体11には、走行機体11の傾きを検出する姿勢検出部として、図3に示すように、左右傾斜センサ19(「左右傾斜角度検出部」に相当)と、前後傾斜センサ20(「前後傾斜角度検出部」に相当)と、が備えられている。左右傾斜センサ19は、走行機体11の左右傾斜角度を検出するように構成されている。前後傾斜センサ20は、走行機体11の前後傾斜角度を検出するように構成されている。
 図1、図2に示すように、右側のクローラ走行装置12には、走行機体11に対して昇降自在なトラックフレーム21が備えられている。トラックフレーム21の前部側には、前リンク機構22の一端が横軸芯周りに回動自在に連結されている。前リンク機構22の他端には、第1油圧シリンダ23の一端が横軸心周りに回動自在に連結されている。第1油圧シリンダ23の他端は、走行機体11の一部に連結されている。第1油圧シリンダ23を伸長させると、走行機体11の右前部側が下降し、第1油圧シリンダ23を縮退させると、走行機体11の右前部側が上昇するように構成されている。トラックフレーム21の後部側には、後リンク機構25の一端が横軸芯回りに回動自在に連結されている。後リンク機構25の他端には、第2油圧シリンダ27の一端が横軸心周りに回動自在に連結されている。第2油圧シリンダ27の他端は、第1油圧シリンダ23が連結された部位とは異なる走行機体11の一部に連結されている。第2油圧シリンダ27を伸長させると、走行機体11の右後部側が上昇し、第2油圧シリンダ27を縮退させると、走行機体11の右後部側が下降するように構成されている。
 詳しく図示はしないが左側のクローラ走行装置12についても、右側のクローラ走行装置12と左右対称の構造になっている。ただし、左側のクローラ走行装置12には、第3油圧シリンダ29と、第4油圧シリンダ31と、が備えられている。第3油圧シリンダ29を伸長させると、走行機体11の左前部側が下降し、第3油圧シリンダ29を縮退させると、走行機体11の左前部側が上昇するように構成されている。第4油圧シリンダ31を伸長させると、走行機体11の左後部側が上昇し、第4油圧シリンダ31を縮退させると、走行機体11の左後部側が下降するように構成されている。
 第1油圧シリンダ23、第2油圧シリンダ27、第3油圧シリンダ29、第4油圧シリンダ31によって、走行機体11の前後傾斜姿勢を変更する「前後姿勢変更部」が構成されている。また、第1油圧シリンダ23、第2油圧シリンダ27、第3油圧シリンダ29、第4油圧シリンダ31によって、走行機体11の左右傾斜姿勢を変更する「左右姿勢変更部」が構成されている。
 また、コンバイン10には、走行速度を検出する車速センサ33が備えられている(図3参照)。
 図1、図2に示すように、刈取部13は、走行機体11に支持され、昇降シリンダ34によって走行機体11の横軸P周りに上下昇降可能とされている。刈取部13には、株元センサ35(「穀稈センサ」に相当)が設けられている(図3参照)。株元センサ35は、刈取部13に取り込まれた刈取穀稈の株元を検出して、刈取部13における刈取穀稈の存在を検出するように構成されている。また、刈取部13には、刈取部13の上下位置を検出するように構成されている刈取高さセンサ36が備えられている(図3参照)。
 図1、図2に示すように、脱穀装置14は、刈取部13の後方に配置されており、脱穀クラッチ37(図3参照)により動力伝達の入り切りが行われる。つまり、脱穀クラッチ37が入り状態にされると脱穀装置14が作動され、脱穀クラッチ37が切り状態にされると脱穀装置14は停止される。
 図1、図2に示すように、穀粒タンク15は、脱穀装置14の横側に備えられており、脱穀装置14から流入される脱穀された穀粒が貯留される。穀粒タンク15の底部には、穀粒タンク15内に貯留された穀粒をアンローダ16へ送って外部へ排出するための排出オーガ38が備えられている。排出オーガ38は、不図示の排出クラッチを入り状態にすると作動して穀粒タンク15内に貯留された穀粒をアンローダ16へ送って外部へ排出し、不図示の排出クラッチを切り状態にすると停止される。穀粒タンク15の近傍には、ロードセル39(「重量測定部」に相当)が備えられている。ロードセル39は、穀粒タンク15の下方に配置されており、穀粒タンク15に貯留された穀粒の重量測定を行うことが可能に構成されている。
 図1、図2に示すように、アンローダ16には、縦オーガ40と、横オーガ41と、が備えられている。縦オーガ40は、穀粒タンク15に接続されている。横オーガ41は、縦オーガ40に接続されて縦オーガ40に片持ち支持されており、穀粒タンク15に貯留された穀粒を一端から外部へ排出可能に構成されている。そして、横オーガ41は、上下揺動可能かつ収納位置と作業位置との間で旋回可能に構成されている。横オーガ41を収納する収納位置には、横オーガ41を受け止め支持するオーガ受け42が備えられている。アンローダ16には、図3に示すように、第1ポテンショメータ43と、第2ポテンショメータ44と、が備えられている。第1ポテンショメータ43は、横オーガ41の上下揺動角度を検出するように構成されている。第2ポテンショメータ44は、横オーガ41の旋回角度を検出するように構成されている。
 図1、図2に示すように、横オーガ41を旋回させるモータ46(「旋回駆動部」に相当)と、横オーガ41を上下揺動させる揺動シリンダ47(「上下揺動駆動部」に相当)が備えられている。
 図1、図2に示すように、運転操縦部17には、運転者が着座する運転座席48と、アンローダ16の操作等に用いられるリモコン49と、各種情報を表示可能なディスプレイ50と、音声を出力可能なスピーカ51等が備えられている。
 [リモコン]
 図6に示すように、リモコン49には、自動左旋回スイッチ55、自動右旋回スイッチ56、自動後旋回スイッチ57、自動収納スイッチ58、排出スイッチ59、停止スイッチ60、上昇スイッチ62、下降スイッチ63、手動左旋回スイッチ64、手動右旋回スイッチ65、測定スイッチ66(「測定指示部」に相当)が備えられている。
 自動左旋回スイッチ55が押操作されると、横オーガ41が所定の左側排出位置まで自動で左旋回される。自動右旋回スイッチ56が押操作されると、横オーガ41が所定の右側排出位置まで自動で右旋回される。自動後旋回スイッチ57が押操作されると、横オーガ41が所定の後側排出位置まで自動で旋回される。自動収納スイッチ58が押操作されると、横オーガ41が自動的に旋回、上下揺動され、オーガ受け42に収納される。排出スイッチ59が押操作されると、排出クラッチが入り状態となり、排出オーガ38が作動されて穀粒タンク15からアンローダ16を介して穀粒が外部へ排出される。停止スイッチ60が押操作されると、排出オーガ38が停止されて、穀粒タンク15からの穀粒の排出が停止される。
 上昇スイッチ62が押操作されている間、横オーガ41は上昇する。下降スイッチ63が押操作されている間、横オーガ41は下降する。手動左旋回スイッチ64が押操作されている間、横オーガ41は左旋回する。手動右旋回スイッチ65が押操作されている間、横オーガ41は右旋回する。
 測定スイッチ66は、押操作されると、ロードセル39による穀粒タンク15内の穀粒の重量の測定を指示する『重量測定信号』を出力する。アンローダ16の姿勢変更や排出オーガ38の入り切りを指示するリモコン49上に、重量測定を指示する測定スイッチ66が備えられているので、同じ穀粒タンク15に関係する機器に対して指示を行うスイッチを集約配置でき、操作性が向上される。
 [ECU]
 コンバイン10には、図3に示すように、重量測定の制御等を行うECU18が備えられている。ECU18には、作業状態判定部71と、姿勢判定部72と、収納検出部73と、刈取高さ検出部74と、重量測定決定部75(「制御部」に相当)と、重量取得部76と、演算記憶部77と、報知指令部78と、が備えられている。
 作業状態判定部71は、車速センサ33、株元センサ35、脱穀クラッチ37、重量測定決定部75、に接続されている。作業状態判定部71は、重量測定決定部75から作業状態判定の指令を入力すると、クローラ走行装置12、刈取部13、及び脱穀装置14の状態から、作業状態であるか非作業状態であるかの作業状態判定を行うように構成されている。
 作業状態判定部71は、重量測定決定部75から作業状態判定の指令を入力すると、車速センサ33により検出された走行速度がゼロ、脱穀クラッチ37が切り状態、株元センサ35が非検出状態、の全ての条件を満たすときに、非作業状態であると判定して、重量測定決定部75に『非作業信号』を出力する。一方、作業状態判定部71は、重量測定決定部75から作業状態判定の指令を入力しても、車速センサ33による検出された走行速度がゼロ、脱穀クラッチ37が切り状態、株元センサ35が非検出状態、の何れかの条件が満たされていないときは、作業状態であると判定して、重量測定決定部75に『非作業信号』を出力しない。
 姿勢判定部72は、前後傾斜センサ20と、左右傾斜センサ19と、重量測定決定部75と、に接続されている。姿勢判定部72は、重量測定決定部75から姿勢判定の指令を入力すると、左右傾斜センサ19から入力される左右傾斜角度および前後傾斜センサ20から入力される前後傾斜角度に基づいて、走行機体11の傾きが所定の傾斜許容範囲内にあるか否かの姿勢判定を行うように構成されている。
 姿勢判定部72は、重量測定決定部75から姿勢判定の指令を入力した際に、左右傾斜センサ19から入力される左右傾斜角度が左右傾斜許容範囲内にあり、かつ、前後傾斜センサ20から入力される前後傾斜角度が前後傾斜許容範囲内にある場合は、走行機体11の姿勢が適正であると判定して、重量測定決定部75に『姿勢適正信号』を出力する。また、姿勢判定部72は、重量測定決定部75に『姿勢適正信号』を出力するときに、走行機体11の姿勢が適正であると判定した時の左右傾斜センサ19から入力された左右傾斜角度、前後傾斜センサ20から入力された前後傾斜角度も併せて重量測定決定部75に出力する。
 一方、姿勢判定部72は、重量測定決定部75から姿勢判定の指令を入力した際に、左右傾斜センサ19から入力される左右傾斜角度が左右傾斜許容範囲内にない場合は、左右傾斜角度が不適切であると判定する。さらに、この場合、姿勢判定部72は、左右傾斜角度が左右傾斜許容範囲内に調整可能な範囲内にあるか否かを判定する。姿勢判定部72は、左右傾斜角度が調整可能な範囲内にない場合、重量測定決定部75に『調整不可信号』を出力する。一方、姿勢判定部72は、重量測定決定部75から姿勢判定の指令を入力した際に、左右傾斜角度が調整可能な範囲内にあるときは、第1油圧シリンダ23、第2油圧シリンダ27、第3油圧シリンダ29、第4油圧シリンダ31を駆動して、走行機体11の左右傾斜角度を左右傾斜許容範囲内に収める制御をするように重量測定決定部75に『左右傾斜調整信号』を出力する。
 そして、姿勢判定部72は、重量測定決定部75から姿勢判定の指令を入力した際に、前後傾斜センサ20から入力される前後傾斜角度が前後傾斜許容範囲内にない場合は、前後傾斜角度が不適切であると判定する。さらに、この場合、姿勢判定部72は、前後傾斜角度が前後傾斜許容範囲内に調整可能な範囲内にあるか否かを判定する。姿勢判定部72は、前後傾斜角度が調整可能な範囲内にない場合、重量測定決定部75に『調整不可信号』を出力する。一方、姿勢判定部72は、重量測定決定部75から姿勢判定の指令を入力した際に、前後傾斜角度が調整可能な範囲内にあるときは、第1油圧シリンダ23、第2油圧シリンダ27、第3油圧シリンダ29、第4油圧シリンダ31を駆動して、走行機体11の前後傾斜角度が前後傾斜許容範囲内収める制御をするように重量測定決定部75に『前後傾斜調整信号』を出力する。
 収納検出部73は、第1ポテンショメータ43と、第2ポテンショメータ44とに接続されている。収納検出部73は、重量測定決定部75から収納判定の指令を入力すると、第1ポテンショメータ43から入力される揺動角度と、第2ポテンショメータ44から入力される旋回角度と、に基づいて、横オーガ41がオーガ受け42に適正に収納されたか否かを判定する。
 収納検出部73は、重量測定決定部75から収納判定の指令を入力した際に、横オーガ41が収納位置にある場合は、収納適正であると判定し、重量測定決定部75に、『収納適正信号』を出力する。一方、収納検出部73は、重量測定決定部75から収納判定の指令を入力した際に、横オーガ41が収納位置にない場合は、重量測定決定部75に、モータ46および揺動シリンダ47を駆動して、横オーガ41がオーガ受け42に適正に収納されるように制御を行うように指令する『収納調整信号』を出力する。
 刈取高さ検出部74は、刈取高さセンサ36と、重量測定決定部75とに接続されている。刈取高さ検出部74は、重量測定決定部75から刈取高さ判定の指令を入力すると、刈取部13の上下位置が所定の高さよりも低くないか否かを判定する。
 刈取高さ検出部74は、重量測定決定部75から刈取高さ判定の指令を入力した際に、刈取高さセンサ36から入力される刈取高さが所定の高さよりも低くない場合は、刈取高さが適正であると判定し、重量測定決定部75に『刈取高さ適正信号』を出力する。一方、刈取高さ検出部74は、重量測定決定部75から刈取高さ判定の指令を入力した際に、刈取高さセンサ36から入力される刈取高さが所定の高さよりも低い場合は、刈取高さが不適であると判定し、重量測定決定部75に『刈取高さ適正信号』を出力しない。
 重量測定決定部75は、測定スイッチ66、作業状態判定部71、姿勢判定部72、収納検出部73、刈取高さ検出部74、ロードセル39、演算記憶部77、報知指令部78、第1油圧シリンダ23、第2油圧シリンダ27、第3油圧シリンダ29、第4油圧シリンダ31、モータ46、揺動シリンダ47、に接続されている。重量測定決定部75は、ロードセル39による重量測定の許否決定、走行機体11の姿勢調整、アンローダ16の位置調整、報知の指令を行う。
 重量測定決定部75は、測定スイッチ66から『重量測定信号』が入力されると、作業状態判定部71に作業状態の判定を要求する指令を出力し、『非作業信号』が応答されるか否かを確認する。重量測定決定部75は、『非作業信号』が応答されないと、報知指令部78に『作業中信号』を出力する。重量測定決定部75は、『非作業信号』が応答されたことを確認すると、次に、刈取高さ検出部74に刈取高さ判定を要求する指令を出力し、『刈取高さ信号』が応答されるか否かを確認する。
 重量測定決定部75は、『刈取高さ信号』が応答されないと、報知指令部78に『刈取高さ不正信号』を出力する。一方、重量測定決定部75は、『刈取高さ信号』が応答されたことを確認すると、次に、姿勢判定部72に姿勢の判定を要求する指令を出力し、応答を確認する。重量測定決定部75は、姿勢判定部72から『姿勢適正信号』と、左右傾斜角度及び前後傾斜角度が応答されたことを確認すると、演算記憶部77に左右傾斜角度及び前後傾斜角度を出力し、次に、収納検出部73に、収納判定の指令を入力し、応答を確認する。
 一方、重量測定決定部75は、姿勢判定部72から『調整不可信号』が応答されたことを確認すると、『非水平信号』を報知指令部78に出力する。
 また、重量測定決定部75は、姿勢判定部72から『左右傾斜調整信号』あるいは『前後傾斜調整信号』が応答されたことを確認すると、第1油圧シリンダ23、第2油圧シリンダ27、第3油圧シリンダ29、第4油圧シリンダ31を駆動して、走行機体11の左右傾斜角度あるいは前後傾斜角度が水平に近づくように制御する。
 重量測定決定部75は、収納検出部73から『収納適正信号』が応答されたことを確認すると、ロードセル39に重量を測定して所定時間の間、重量取得部76へ出力するよう指令すると共に、報知指令部78に『正常測定信号』を出力する。一方、重量測定決定部75は、収納検出部73から『収納調整信号』が応答されたことを確認すると、ロードセル39による重量測定を指令しないと共に、モータ46および揺動シリンダ47を駆動して、横オーガ41が収納位置に正しく姿勢変更されるように制御を行い、横オーガ41を収納位置に位置調整する。
 重量取得部76は、ロードセル39、演算記憶部77、に接続されている。重量取得部76は、ロードセル39から穀粒タンク15の重量を取得すると、所定時間の間、その穀粒タンク15の重量を取得して平均処理された測定データを演算し、その測定データを演算記憶部77に出力する。
 演算記憶部77は、重量測定決定部75、重量取得部76、報知指令部78、に接続されている。演算記憶部77は、重量取得部76から入力された測定データから穀粒タンク15の風袋重量を減算して、穀粒タンク15内の穀粒の概算重量値を取得する。そして、演算記憶部77は、さらに、概算重量値を、重量測定決定部75から入力された走行機体11の左右傾斜角度及び前後傾斜角度に基づいて、補正して補正重量値を演算し、その補正重量値を記憶する。
 報知指令部78は、重量測定決定部75、演算記憶部77、ディスプレイ50、スピーカ51に接続されている。報知指令部78は、重量測定決定部75から『作業中信号』を入力すると、例えば、ディスプレイ50やスピーカ51等に、「作業中のため重量を測定できません。」等の表示や音声の出力をさせて、運転者への報知を行う。また、報知指令部78は、重量測定決定部75から『刈取高さ不正信号』を入力すると、ディスプレイ50やスピーカ51等に、「刈取高さが低すぎるため重量を測定できません。」等の表示や音声の出力をさせて、運転者への報知を行う。また、報知指令部78は、重量測定決定部75から『調整不可信号』を入力すると、ディスプレイ50やスピーカ51等に、「水平な場所で重量を測定して下さい。」等の表示や音声の出力をさせて、運転者への報知を行う。
 また、報知指令部78は、重量測定を行う時間の経過後、演算記憶部77に記憶された補正重量値を読み出して、ディスプレイ50やスピーカ51等に、「補正重量値」、すなわち、「穀粒タンク15内の穀粒の重量」を表示や音声の出力を行わせて、運転者への報知を行う。
 [フローチャート]
 上記のようなECU18によって実現される、穀粒タンク15内の穀粒の重量測定の手順を、図4、図5で合せて示すフローチャートを用いて説明する。
 まず、測定スイッチ66が操作入力されたか否かが確認される(ステップ♯1)。ステップ♯1において、測定スイッチ66が操作入力されていないと(♯1:No)、ステップ♯1へ戻る。ステップ♯1において、測定スイッチ66が操作入力されたことが確認されると(♯1:Yes)、次に、走行機体11の走行速度がゼロか否かが判定される(ステップ♯2)。ステップ♯2において、走行機体11の走行速度がゼロでないと判定されると(♯2:No)、測定不可の報知がなされ(ステップ♯3)、終了となる。一方、ステップ♯2において、走行機体11の走行速度がゼロであると判定されると(ステップ♯2:Yes)、次に、脱穀クラッチ37が切り状態か否かが判定される(ステップ♯4)。ステップ♯4において、脱穀クラッチ37が切り状態でないと判定されると(♯4:No)、ステップ♯3へ移行する。一方、ステップ♯4において、脱穀クラッチ37が切り状態である判定されると(♯4:Yes)、次に、株元センサ35が非検出状態である否かが判定される(ステップ♯5)。ステップ♯5において、株元センサ35が非検出状態でないと判定されると(♯5:No)、ステップ♯3へ移行する。一方、ステップ♯5において、株元センサ35が非検出状態であると判定されると(♯5:Yes)、次に、刈取部13が所定の高さより低くないか否かが判定される(ステップ♯6)。
 ステップ♯6において、刈取部13が所定の高さより高くないと判定されると(♯6:No)、ステップ♯3へ移行する。一方、ステップ♯6において、刈取部13が所定の高さより高いと判定されると(♯6:Yes)、次に、走行機体11の左右傾斜角度が左右傾斜許容範囲内であるか否かが判定される(ステップ♯7)。
 ステップ♯7において、走行機体11の左右傾斜角度が左右傾斜許容範囲内でないと判定されると(♯7:No)、次に、走行機体11の左右傾斜角度を調整可能か否かが判定される(ステップ♯8)。ステップ♯8において、走行機体11の左右傾斜角度が調整不可と判定されると(♯8:No)、調整不可の報知がなされる(ステップ♯9)。ステップ♯9では、例えば、図7に示すように、ディスプレイ50に「水平な場所で測定して下さい」等のメッセージを表示したり、スピーカ51により音声を出力する等して、運転手に対応を促す報知がなされる。ステップ♯8において、走行機体11の左右傾斜角度が調整可能と判定されると(♯8:Yes)、走行機体11の左右傾斜角度が調整され(ステップ♯10)、ステップ♯7へ戻る。
 ステップ♯7において、走行機体11の左右傾斜角度が左右傾斜許容範囲内であると判定されると(♯7:Yes)、次に、走行機体11の前後傾斜角度が前後傾斜許容範囲内であるか否かが判定される(ステップ♯11)。ステップ♯11において、走行機体11の前後傾斜角度が前後傾斜許容範囲内でないと判定されると(♯11:No)、次に、走行機体11の前後傾斜角度を調整可能か否かが判定される(ステップ♯12)。ステップ♯12において、走行機体11の前後傾斜角度が調整不可と判定されると(♯12:No)、ステップ♯9へ移行する。ステップ♯12において、走行機体11の前後傾斜角度が調整可能と判定されると(♯12:Yes)、走行機体11の前後傾斜角度が調整され(ステップ♯13)、ステップ♯11へ戻る。
 ステップ♯11において、走行機体11の前後傾斜角度が前後傾斜許容範囲内であると判定されると(♯11:Yes)、次に、横オーガ41が適正な収納位置にあるか否かが判定される(ステップ♯14)。
 ステップ♯14において、横オーガ41が適正な収納位置にないと判定されると(♯14:No)、横オーガ41を適正な収納位置へ移動させる制御が行われ(ステップ♯15)、ステップ♯14へ移行する。ステップ♯14において、横オーガ41が適正な収納位置にあると判定されると(♯14:Yes)、次に、ロードセル39による重量測定が実行される(ステップ♯16)。ステップ♯16の次に、測定された重量が補正された補正値を演算する重量補正が実行される(ステップ♯17)。ステップ♯17の次に、ディスプレイ等による報知がなされ(ステップ♯18)、終了となる。
 [第1実施形態の別実施形態]
 (1-1)上記第1実施形態では、車速センサ33により検出された走行速度がゼロ、脱穀クラッチ37が切り状態、株元センサ35が非検出状態、の全ての条件を満たすときに、非作業状態であるとの判定を行うものを一例に示したが、これに限られない。例えば、車速センサ33から入力される走行速度がゼロ、脱穀クラッチ37が切り状態、株元センサ35が非検出状態、のうち少なくとも何れか1つ、または、2つの条件を満たすときに、非作業状態との判定を行うものであってもよい。
 (1-2)上記第1実施形態では、刈取高さが所定の高さよりも低くないか否かの判定を行うものを一例に示したが、これに限られず、刈取高さについての判定を行われなくてもよい。
 (1-3)上記第1実施形態では、前後傾斜角度が前後傾斜許容範囲内であるか否かの判定を行うものを一例に挙げたが、これに限られず、前後傾斜角度が前後傾斜許容範囲内であるか否かの判定を行われなくてもよい。
 (1-4)上記第1実施形態では、左右傾斜角度が左右傾斜許容範囲内であるか否かの判定を行うものを一例に挙げたが、これに限られず、左右傾斜角度が左右傾斜範囲内であるか否かの判定を行われなくてもよい。
 (1-5)上記第1実施形態では、横オーガ41が収納位置にないと判定されたとき、横オーガ41を収納位置へ移動させる制御をするようにしている例を示したが、これに限られない。例えば、横オーガ41の旋回位置が自動的に正しい位置へ制御されるような構成であるときは、横オーガ41の上下方向の位置のみが正しくない位置となる。つまり、重量測定決定部75は、作業状態判定部71によって非作業状態であることが判定されると、モータ46を制御して横オーガ41を所定時間下降させた後に、ロードセル39に重量測定を指令する。図8、図9で合せて示すように、フローチャートにおいては、図4、図5におけるステップ♯14、ステップ♯15に代えて、横オーガ41を所定時間下降させるようにする(ステップ♯♯15)。また上記実施形態では、横オーガ41が適正に収納されているか否かの判定を行うものを一例に挙げたが、これに限られず、横オーガ41が適正に収納されているか否かの判定を行われなくてもよい。
 (1-6)上記第1実施形態では、ロードセル39による重量測定を行わない場合は、運転者に、測定に関する情報を報知するものを一例に示したが、これに限られず、ロードセル39による重量測定を行わない場合であっても、運転者に、測定に関する情報の報知が行われないものでもよい。
 (1-7)上記第1実施形態では、クローラ走行式の自脱型コンバインを1例に示したが、これに限られず、ホイール走行式の自脱型コンバインや、全稈投入型コンバイン等の他のコンバインであってもよい。
 [第2実施形態]
 以下、本発明の第2実施形態を図面に基づいて説明する。
 [コンバインの概略構成]
 コンバイン110は、クローラ走行式の自脱型コンバインであり、図10~図12に示すように、コンバイン110には、エンジン111によって回転駆動される走行機構としての左右一対のクローラ走行装置112と、クローラ走行装置112によって自走するように構成された走行機体と、植立穀稈を刈取る刈取部113と、刈取部113により刈り取られた刈取穀稈を脱穀処理する脱穀部114と、脱穀部114によって脱穀された穀粒を貯留する穀粒タンク115と、穀粒タンク115に貯留された穀粒を外部へ排出可能なアンローダ116と、運転者が操縦を行う運転操縦部118と、制御装置であるECU119と、外部との通信が可能な通信ユニット120と、が備えられている。
 クローラ走行装置112の近傍には、クローラ走行装置112における不図示の回転軸の回転を検出する回転センサ123(図12参照)が備えられている。回転センサ123は、走行速度の検出に利用される。
 図10、図11に示すように、刈取部113は、走行機体の機体フレーム125の前部に上下昇降自在に支持されている。刈取部113により刈り取られた刈取穀稈は、脱穀部114へと送り込まれる。刈取部113はエンジン111の動力によって作動される。刈取部113には、穀稈センサとして、刈取部113に存在する刈取穀稈の株元を検出するように構成されている株元センサ126(図12参照)が備えられている。株元センサ126により穀稈の株元が検出されることは、刈取部113が作動していることを意味する。
 図10、図11に示すように、脱穀部114は、機体フレーム125の後部に支持されている。脱穀部114は、刈取部113により刈り取られた刈取穀稈から穀粒を脱穀し、脱穀された穀粒を穀粒タンク115へと送り込む。脱穀部114はエンジン111の動力によって作動される。
 図10、図11に示すように、穀粒タンク115は、機体フレーム125のうちの脱穀部114に対して機体右横側に位置しており、エンジン111の後方に配置されている。穀粒タンク115内の前部側には、穀粒タンク115に貯留された穀粒の水分値、タンパク値等を計測可能な品質センサ127が配置されている。品質センサ127は、脱穀部114から穀粒タンク115に送り込まれた穀粒の一部につき、水分値、タンパク値等の品質(食味)の測定を行うものである。また、穀粒タンク115の下部には、重量センサ128(「計測センサ」の一例)が備えられている。重量センサ128は、穀粒が貯留された穀粒タンク115の重量を計測できるように構成されている。つまり、重量センサ128は、穀粒タンク115に貯留された穀粒の重量を計測するために用いられ、重量センサ128による測定に基づく穀粒タンク115に貯留された穀粒の重量は、穀粒タンク115に貯留された穀粒の『貯留体積量』の演算に用いられる。
 また、穀粒タンク115内には、穀粒タンク115内に貯留された穀粒の貯留レベルを計測可能なレベルセンサ135が備えられている。レベルセンサ135は、1つ、または、配置高さの異なる複数の接触式センサから構成されている。例えば、レベルセンサ135として、下方から上方に向けて、第1センサ136、第2センサ137、第3センサ138、第4センサ139が順に異なる高さに配置されている。第1センサ136は、穀粒タンク115内の後側内面に設けられている。第2センサ137、第3センサ138、第4センサ139は、穀粒タンク115内の前側内面側に設けられている。
 また、穀粒タンク115の底部には、排出オーガ141が設けられている。排出オーガ141は、排出クラッチ142(図12参照)を入り状態にすると作動してアンローダ116を通じて穀粒を外部へ排出し、また、排出クラッチ142を切り状態にすると停止して穀粒の排出を行わないように構成されている。排出オーガ141はエンジン111の動力によって作動される。
 図10、図11に示すように、運転操縦部118には、運転者が着座する運転座席143と、『貯留体積量』についての『新たな閾値』を操作入力可能な入力装置144と、各種情報を表示可能なディスプレイ145(「表示部」に相当)と、各種音声を出力可能なスピーカ146等が備えられている。
 ディスプレイ145は、穀粒タンク115に貯留された穀粒の『貯留体積量』を表示する『貯留量表示モード』、エンジン111における燃料噴射量の積算値である『燃料消費量』を表示可能な『燃料消費量表示モード』等の複数の表示モードが備えられている。ディスプレイ145は、不図示の切替スイッチの短押操作によって特定の表示モードから他の表示モードへと、順繰りに切替可能に構成されている。
 [ECU、通信ユニット]
 図12に示すように、制御構成として、選択部150、演算部151、判定部152、通信部153、変更部154、表示指令部155、報知部156、が備えられている。選択部150、演算部151、判定部152、変更部154、表示指令部155、報知部156は、ECU119に備えられている。表示指令部155には、記憶部157が備えられている。通信部153は、管理センタ等に配置された外部サーバ160との間で、Wi-Fi規格等の無線通信により情報の送受信が可能とされており、通信ユニット120に備えられている。
 選択部150は、排出クラッチ142、株元センサ126、回転センサ123の各状況に応じて、『貯留量表示モード』におけるディスプレイ145に、リアルタイムの『貯留体積量』、確定された『貯留体積量』の何れを表示させるべきかを選択する。選択部150は、排出クラッチ142、株元センサ126、回転センサ123、演算部151に接続されている。選択部150は、通常、『リアルタイム表示信号』を演算部151に出力し続けている。但し、排出クラッチ142が切り状態から入り状態になったことを確認すると、『記憶指令信号』を演算部151へ出力すると共に、『リアルタイム表示信号』の代わりに『確定表示信号』を演算部151へ出力し続ける。そして、選択部150は、この状態から、株元センサ126が検出状態になり、かつ、回転センサ123が駆動軸の回転を検出している検出状態になると、再び、『確定表示信号』の代わりに『リアルタイム表示信号』を演算部151へ出力し続ける状態へ復帰する。
 演算部151は、重量センサ128および品質センサ127からの情報に基づいて穀粒タンク115内に貯留された穀粒の『貯留体積量』を演算する。演算部151は、重量センサ128、品質センサ127、判定部152、表示指令部155に接続されている。演算部151は、重量センサ128により計測された穀粒タンク115の重量から、穀粒タンク115の風袋重量を減算して、穀粒タンク115内に貯留された穀粒の『概算重量』を演算するように構成されている。そして、演算部151は、品質センサ127により測定された穀粒の水分値やタンパク値に基づいて、記憶部157に予め記憶された穀粒の水分値やタンパク値等に対応した『比重値』を読み出す。そして、演算部151は、重量センサ128による計測に基づく穀粒タンク115内に貯留された穀粒の『概算重量』と、品質センサ127により検出された穀粒の水分値やタンパク値等により決定される『比重値』と、に基づいて、穀粒タンク115内に貯留された穀粒の『貯留体積量』を演算する。演算部151は、選択部150から『リアルタイム表示信号』を入力している間は、『貯留体積量』をリアルタイムに判定部152および表示指令部155へ出力し続けるように構成されている。また、演算部151は、選択部150から『確定表示信号』を入力すると、排出クラッチ142が入り状態から切り状態になる直前、すなわち、排出オーガ141が作動される直前時に演算した貯留体積量を確定された『貯留体積量』として記憶部157に記憶させる。そして、演算部151は、選択部150から『確定表示信号』を入力している間は、表示指令部155に、『読出表示信号』を出力し続けるように構成されている。
 判定部152は、『貯留体積量』が『閾値』を超えたか否かを判定する。判定部152は、演算部151、変更部154、報知部156、に接続されている。判定部152には、体積単位で設定される『閾値』が記憶されている。判定部152は、『閾値』として、複数の『閾値』を設定可能に構成されている。例えば、『閾値』として、穀粒タンク115内に貯留されるべき所望の目標値である『第1閾値』や、所望の目標値よりも値の小さな『第2閾値』等を任意に設定できる。判定部152は、演算部151から入力される『貯留体積量』が、予め設定された『閾値』を超えたか否かを判定するように構成されている。判定部152は、演算部151から入力される『貯留体積量』と『閾値』を比較して、『貯留体積量』が『閾値』を超えると、報知部156へ『報知信号』を出力する。
 通信部153は、外部サーバ160から『新たな閾値』等を含む情報を受信すると、その『新たな閾値』を変更部154へ出力するように構成されている。また、通信部153は、変更部154によって『閾値』が変更された場合、その変更結果を外部サーバ160へ送信するように構成されている。つまり、通信部153は、入力装置144によって『閾値』が変更された事実および変更後の『新たな閾値』等が含まれた変更結果の情報を外部サーバ160へ送信するように構成されている。
 変更部154は、判定部152に設定された『閾値』を『新たな閾値』に変更する。変更部154は、入力装置144、判定部152、通信部153、に接続されている。変更部154は、入力装置144から『新たな閾値』の入力があると、判定部152において設定されている『閾値』を『新たな閾値』へ変更できるように構成されている。変更部154は、外部サーバ160から通信部153を介して入力された『新たな閾値』等の含まれた情報に基づいて『閾値』を変更可能に構成されている。つまり、変更部154は、通信部153から新たな『閾値』が入力されると、判定部152において設定されている『閾値』を『新たな閾値』へ変更できるように構成されている。変更部154は、入力装置144と通信部153とから同時に『新たな閾値』の入力があると、判定部152において設定されている『閾値』を、通信部153から入力された『新たな閾値』へ変更する。また、変更部154は、入力装置144から『新たな閾値』が入力されると、通信部153に入力装置144によって『閾値』が変更された事実および変更後の『新たな閾値』等が含まれた変更結果の情報を通信部153へ出力する。
 表示指令部155は、リアルタイムの『貯留体積量』、あるいは、確定された『貯留体積量』を、『貯留量表示モード』におけるディスプレイ145に表示させる。表示指令部155は、演算部151、ディスプレイ145、に接続されている。表示指令部155に備えられている記憶部157は、各種情報を記憶・消去可能に構成されている。記憶部157には、記憶された穀粒の水分値やタンパク値毎の『比重値』が予め記憶されている。また、記憶部157には、演算部151から入力される確定された『貯留体積量』が記憶される。また、詳細は省略するが、記憶部157には、エンジン111における燃料噴射量の積算値である『燃料消費量』がリアルタイムに記憶されるように構成されている。表示指令部155は、演算部151からリアルタイムの『貯留体積量』を入力している間は、『貯留量表示モード』におけるディスプレイ145に、そのリアルタイムの『貯留体積量』を『貯留量表示モード』におけるディスプレイ145に表示させ続ける。そして、表示指令部155は、演算部151から『読出表示信号』を入力している間は、記憶部157に記憶されている確定された『貯留体積量』を『貯留量表示モード』におけるディスプレイ145に表示させ続ける。
 報知部156は、『貯留体積量』が『閾値』を超えた際に、運転者へ報知を行う。報知部156は、判定部152、ディスプレイ145、スピーカ146に接続されている。報知部156は、判定部152から『報知信号』を入力すると、ディスプレイ145に「穀粒の量が閾値を超えたこと」に関する情報を表示させると共に、スピーカ146により、「穀粒の量が閾値を超えたこと」を示すブザー音等の音声を出力させる。つまり、報知部156は、判定部152によって穀粒タンク115内の穀粒の『貯留体積量』が『閾値』を超えたと判定されると、運転者に、穀粒タンク115内の穀粒の『貯留体積量』が『閾値』を超えたことに関する情報を報知する。報知の態様としては、例えば、「目的とする貯留体積量の収穫が完了しました。」等の文字、記号、絵をディスプレイ145に表示したり、スピーカ146にてブザー音等を鳴らしたりする等の種々の態様をとりうる。
 〔動作説明〕
 上記ECU119、通信ユニット120が備えられたコンバイン110の動作を以下に説明する。
 例えば刈取作業前や刈取作業中に、例えばコンテナや穀粒袋の容量に相当する『閾値』等の任意の『新たな閾値』を運転者が入力装置144により操作入力する。すると、判定部152における『閾値』が『新たな閾値』に変更されると共に、その変更結果が通信ユニット120の通信部153を介して外部サーバ160へ送信される。また、外部サーバ160から『新たな閾値』を含む情報が通信ユニット120の通信部153によって受信されると、判定部152における『閾値』が『新たな閾値』に変更される。
 判定部152に『新たな閾値』が設定された状態で、刈取作業を進めると、『貯留体積量モード』におけるディスプレイ145に、穀粒タンク115内における穀粒の『貯留体積量』がリアルタイムに更新されて表示され続ける。そして、穀粒タンク115内に『新たな閾値』を超える『貯留体積量』の穀粒が貯留されると、ディスプレイ145やスピーカ146により表示や音声によって運転者に穀粒タンク115に所望の『貯留体積量』の穀粒が貯留されたことが報知される。
 そして、穀粒を外部へ排出するに際し、排出オーガ141が作動されると、排出オーガ141が作動されてから、次の刈取作業が行われるまでの間は、排出オーガ141の始動前における『貯留体積量』が『貯留体積量モード』におけるディスプレイ145に表示され続ける。次の刈取作業が行われるということは、株元センサ126および回転センサ123の何れもが検出状態になったことにより判断される。次の刈取作業が行われると、『貯留体積量モード』におけるディスプレイ145は、再び、穀粒タンク115内における穀粒の『貯留体積量』がリアルタイムに更新されて表示される状態に復帰する。
 [燃料消費量のリセット]
 ディスプレイ145が、『燃料消費量モード』になっているときには、切替スイッチの短押操作よりも押し時間の長い長押操作によって、記憶部157に格納されている『燃料消費量』の値をゼロにリセットできるように構成されている。そして、リセットされた『燃料消費量』は、ゼロから再カウントされる。このように『燃料消費量』をリセット可能にしていることにより、『燃料消費量モード』におけるディスプレイ145によって、例えば刈取作業を行う圃場毎、運転者毎で、どの位燃料の消費量に違いがあったか等の判断が行い易くなる。
 [第2実施形態の別の実施形態]
 (2-1)上記第2実施形態では、『閾値』が体積単位で設定されるものを一例に示したが、これに限られず、『閾値』が重量単位で設定されていてもよい。この場合、判定部152において、重量センサ128による計測に基づく穀粒タンク115内に貯留された穀粒の『概算重量』と『閾値』が比較される。
 (2-2)上記第2実施形態では、「計測センサ」としての重量センサ128および品質センサ127に基づいて、穀粒タンク115内に貯留された穀粒の『貯留体積量』を演算する例を示したが、これに限られない。例えば、レベルセンサ135を「計測センサ」として用い、レベルセンサ135により計測される穀粒タンク115内に貯留された穀粒の貯留レベルに基づいて穀粒タンク115内に貯留された穀粒の『貯留体積量』を演算してもよい。この場合、ECU119において演算部151の代わりに、図13に示すように、レベルセンサ135により測定された貯留レベルに基づいて穀粒タンク115内に貯留された穀粒の『貯留体積量』を演算する演算部251が備えられている。演算部251には、レベルセンサ135としての第1センサ136、第2センサ137、第3センサ138、第4センサ139からの検出信号が夫々入力されている。演算部251は、第1センサ136のみから検出信号が入力されている場合、穀粒タンク115の底部から第1センサ136の位置までの体積を穀粒タンク115内における穀粒の『貯留体積量』として演算する。また、演算部251は、第1センサ136および第2センサ137から検出信号が入力されている場合、穀粒タンク115の底部から第2センサ137の位置までの体積を穀粒タンク115内における穀粒の『貯留体積量』として演算する。また、演算部251は、第1センサ136、第2センサ137、および、第3センサ138から検出信号が入力されている場合、穀粒タンク115の底部から第3センサ138の位置までの体積を穀粒タンク115内における穀粒の『貯留体積量』として演算する。また、演算部251は、第1センサ136~第4センサ139の全てから検出信号が入力されている場合、穀粒タンク115の底部から第4センサ139の位置までの体積を穀粒タンク115内における穀粒の『貯留体積量』として演算する。そして、この場合、判定部152の『閾値』としては、例えば、第1センサ136~第4センサ139に対応して4段階にて体積単位で設定可能とされ、変更部154によって判定部152における『閾値』を4段階のうちから任意に変更可能に構成されていると好適である。なお、レベルセンサ135は4つに限られず、1つ~3つ、または、5つ以上設けられていてもよい。
 (2-3)上記第2実施形態では、品質センサ127は、穀粒の水分値、タンパク質等の品質の測定を行うものを一例に示したが、これに限られず、品質センサ127は、少なくとも穀粒の水分値が測定できるものであればよい。
 (2-4)上記第2実施形態では、次の刈取作業が行われるということが、株元センサ126および回転センサ123の何れもが検出状態になったことにより判断されるようにされている例を示したが、これに限られるものではない。株元センサ126または回転センサ123が単独で検出状態になったことにより、次の刈取作業が行われるということが判断されてもよい。
 (2-5)上記第2実施形態では、判定部152において、『閾値』として、穀粒タンク115内に貯留されるべき所望の目標値である『第1閾値』や、所望の目標値よりも値の小さな『第2閾値』等を設定できる例を示したがこれに限られない。例えば、判定部152において設定可能な閾値の数は、1つまたは3つ以上であってもよい。
 (2-6)上記第2実施形態では、通信部153が通信ユニット120に備えられている例を示したが、これに限られず、ECU119に通信部153が備えられていてもよい。
 (2-7)上記第1実施形態では、クローラ走行式の自脱型コンバインを1例に示したが、これに限られず、ホイール走行式の自脱型コンバインや、全稈投入型コンバイン等の他のコンバインであってもよい。
 以下、本発明の第3実施形態を図面に基づいて説明する。
 [第3実施形態]
 [第1実施例]
 まず、第3実施形態のうちの第1実施例について説明する。
 [コンバインの概略構成]
 コンバイン310は、クローラ走行式の自脱型コンバインであり、図14および図15に示すように、コンバイン310には、エンジン311によって駆動される左右一対のクローラ走行装置312によって自走するように構成された走行機体が備えられている。そしてコンバイン310には、走行機体の機体フレーム313の前部に支持された植立穀稈を刈取る刈取部314と、刈取穀稈を脱穀処理する脱穀装置315と、脱穀装置315によって脱穀された穀粒を貯留する穀粒タンク316と、穀粒タンク316内の穀粒を外部に排出するアンローダ317と、運転者が着座する運転座席318等が備えられた運転操縦部319と、が備えられている。
 [穀粒タンク]
 図14および図15に示すように、穀粒タンク316は、機体フレーム313のうち脱穀装置315に対して機体右横側に配置され、エンジン311の後方に位置する。穀粒タンク316の左横側部には、揚穀装置324が備えられている。揚穀装置324は、穀粒タンク316内の機体左横部に配置されている。図14~図16に示すように、揚穀装置324は、脱穀装置315から搬送されてきた穀粒を、揚送スクリュー326によって吐出口327まで揚送する。吐出口327まで揚送された穀粒は、揚送スクリュー326と一体に設けられて反時計まわりに回転駆動される回転羽根328によって吐出口327から跳ね飛ばされて、穀粒タンク316内に広範囲に拡散されて供給される。吐出口327から供給された穀粒のうちの殆どは穀粒タンク316内の内部空間Mに供給される(図18、図19参照)。吐出口327から供給された穀粒の一部は、穀粒タンク316の前部に配置され、穀粒タンク316内に貯留される穀粒の品質計測を行う計測ユニット330へ供給される(図18、図19参照)。このようにして、脱穀装置315から搬送されてきた穀粒が、穀粒タンク316内に貯留される。
 図14、図15、図17に示すように、穀粒タンク316内の底部には、穀粒タンク316に貯留された穀粒を外部に排出するように構成されている機体前後向きの排出オーガ332が設けられている。排出オーガ332は、エンジン311の駆動力により作動され、排出オーガ332への駆動力伝達を入り切りするための排出クラッチ333(図23参照)が備えられている。排出クラッチ333を入り状態にすると排出オーガ332が作動して、排出オーガ332によって、穀粒タンク316に貯留された穀粒が、穀粒タンク316の後部から排出され、図14、図15に示されるアンローダ317を通じて外部へ排出される。排出クラッチ333を切状態にすると、排出オーガ332の作動は停止される。
 図14、図15に示すように、穀粒タンク316の前部の下方位置には、穀粒タンク316内の穀粒の重量を穀粒タンク316の重量に基づいて計測するように構成されている重量センサであるロードセル335が備えられている。
 図14、図17に示すように、穀粒タンク316内には、穀粒タンク316内における穀粒の貯留レベルを検出するレベルセンサ337が備えられている。レベルセンサ337は、下方から上方に向けて、第1センサ340、第2センサ341、第3センサ342、第4センサ343が配置されている。第1センサ340、第2センサ341、第3センサ342、第4センサ343が順に異なる高さに配置されている。第1センサ340は、穀粒タンク316内の後側内面側に設けられている。第2センサ341、第3センサ342、第4センサ343は、穀粒タンク316内の前部内面側に設けられている。第3センサ342は、貯留体積を検出する「体積計測部」の一例である「レベル計測装置」として備えられている。
 [計測ユニット]
 図20に示すように、計測ユニット330は、穀粒タンク316の前壁345の取付孔345Aに、シール用の防振ゴム347を介して、嵌め込み固定されている。図14~図22に示すように、計測ユニット330には、穀粒の品質計測を行う品質センサ350(「品質計測部」に相当)が内蔵された箱状の計測室形成体352と、品質センサ350による品質計測を行う穀粒を通過させる筒状の保持部形成体353と、が備えられている。
 図21、図22に示すように、計測室形成体352には、品質センサ350を収納する筐体355が取付けられている。筐体355には、品質センサ350を収納する本体ケース356と、本体ケース356に着脱自在とされるフィルタケース357と、が備えられている。
 図21、図22に示すように、本体ケース356の上部には、空気の排気口360が形成され、本体ケース356におけるフィルタケース357側には空気の導入口361が形成されている。排気口360には、排気口360から導入された空気を先端孔362から下向きに排出するよう屈曲された案内管363が着脱自在に取り付けられている。案内管363は、先端孔362が排気口360よりも本体ケース356の中央部寄りに位置するように本体ケース356に取り付けられている。本体ケース356の排気口360には、網状に形成され、水や埃等の通過を防止する排出側網体364が着脱自在に取り付けられている。また、導入口361には、網状に形成され、水や埃等の通過を防止する吸入側網体365が着脱自在に取り付けられている。
 図20に示すように、フィルタケース357は、バックル式の連結具366によって本体ケース356に対して着脱自在に連結するように構成されている。連結具366は、本体ケース356の上端部及び下端部に夫々備えられており、フィルタケース357の上端部と下端部に夫々連結・連結解除可能に構成されている。図21、図22に示すように、フィルタケース357には、筐体355の背面側に空気を吸気する吸気口368が形成されている。フィルタケース357の内部には、本体ケース356側に対向する面をカバーするフィルタ370が配置されている。吸気口368から吸い込まれた空気は、フィルタ370によって埃等が除去され、導入口361を通過し、吸入側網体365を通過し、品質センサ350を冷却し、排出側網体364を通過し、排気口360を通過し、案内管363を通過し、先端孔362より排出される。このとき、フィルタ370の一部に目詰まりを生じても、空気が目詰まりした部分を迂回し、フィルタ370の目詰まりしていない部分を通過する。このため、フィルタ370の全領域を用いることができる。また、本体ケース356には、導入口361に吸入側網体365が取り付けられ、排気口360に排出側網体364が取り付けられているので、案内管363やフィルタケース357を取り外して、例えばコンバイン310の洗車等を行うときに、本体ケース356内に水や埃が侵入することを防止できる。
 図18、図19に示すように、保持部形成体353には、穀粒タンク316内において主として穀粒が貯留される内部空間Mとは一部分が区画され、穀粒を取り込んで穀粒の品質計測が行われるサンプリング空間Sが形成されている。サンプリング空間Sには、品質計測のために一時的に穀粒が貯留される一時貯留部Tと、一時貯留部Tの下方に形成され、品質計測の終了した穀粒を内部空間Mへ排出する排出回数確保部Eと、が含まれている。
 図18、図19に示すように、一時貯留部Tは、穀粒タンク316内の前部の内面に設けられており、脱穀装置315から搬送されてきて回転羽根328によって跳ね飛ばされた穀粒の一部を、一時的に貯留可能に構成されている。具体的には、一時貯留部Tには、穀粒を取り込む上部の取込口372と、穀粒を排出する下部の排出口373と、が形成されている。一時貯留部Tは、一時貯留部Tの上部に形成された取込口372から脱穀装置315より搬送されてきた穀粒の一部を取り込んで一時的に貯留し、一時貯留部Tの下部に形成された排出口373から一時貯留部Tに貯留された穀粒を穀粒タンク316内の内部空間Mへ排出可能なように構成されている。一時貯留部Tの上部には、保持部形成体353の内壁374に穀粒を検知する近接センサ375(「必要量測定部」に相当)が備えられている。一時貯留部Tの下部には、排出口373を閉塞または開放するシャッター376が備えられている。また、一時貯留部T内には、一時貯留部Tに貯留された穀粒の品質を検出する上記の品質センサ350と、品質センサ350による計測に必要な量の穀粒が一時貯留部Tに貯留されているか否かを検知する近接センサ375と、が備えられている。品質センサ350は、一時貯留部Tの近傍に配置されている。品質センサ350は、閉位置のシャッター376の上方、かつ、近接センサ375の検知位置の下方に位置する穀粒を検出対象としている。
 図18、図19に示すように、排出回数確保部Eは、一時貯留部Tの下方、かつ、シャッター376の下方に隣接して備えられている。つまり、排出回数確保部Eは、排出口373を介して上方の一時貯留部Tと連通している。排出回数確保部Eは、その側部が、保持部形成体353の仕切部材377によって内部空間Mと区画されると共に、仕切部材377の下端部の付近で、その下部が内部空間Mと連通されている。このため、排出回数確保部Eは、穀粒タンク316の内部空間Mとは、穀粒の溜り具合が異なる。仕切部材377の下端部と同程度の高さを、第3センサ342は穀粒の検知高さとするように配置されている。排出回数確保部Eは、シャッター376が開位置となった際の下端部から仕切部材377の下端部に至る高さ範囲を、穀粒を貯留可能な貯留可能体積として有している。排出回数確保部Eの貯留可能体積は、一時貯留部Tに貯留可能な一時貯留体積よりも大きくなるように構成されている。好ましくは、排出回数確保部Eの貯留可能体積は、シャッター376を開位置にしたときに一時貯留部Tから落下される穀粒の体積の2倍以上とされている。
 図18、図19に示すように、穀粒タンク316内に計測ユニット330が嵌め込み固定されると、品質センサ350は、穀粒タンク316内に位置するようになる。つまり、品質センサ350は、穀粒タンク316内に備えられている。品質センサ350によって、穀粒タンク316内に貯留される穀粒の品質が計測される。品質センサ350は、サンプリング空間Sの一時貯留部Tに一時的に貯留された穀粒について品質計測を行い、近接センサ375の下方位置、かつ、シャッター376の上方位置を穀粒の検出範囲としている。品質センサ350は、光学式の検知方式とされ、静止した穀粒の水分値やタンパク値等の内部の品質を非接触で計測可能に構成されている。
 図18、図19に示すように、近接センサ375は、一時貯留部Tにおいて、近接センサ375の検知高さに達した穀粒を検知するように構成されている。つまり、近接センサ375は、品質センサ350による計測に必要な量の穀粒が一時貯留部Tに貯留されているか否かを検知するように構成されている。
 [シャッター]
 図18、図19に示すように、シャッター376は、板状の揺動式に構成されている。シャッター376は、モータ378を駆動してカム等によって構成される切換機構380によって、排出口373を閉塞する閉位置と、排出口373を開放する開位置と、が切り替えられえる。つまり、シャッター376は、モータ378の駆動によって閉位置にする制御および開位置にする制御が行われる。シャッター376は、一時貯留部Tの下部付近に設けられており、排出口373を開放する開位置と、排出口373を閉塞する閉位置と、に位置変更可能に構成されている。シャッター376は、シャッター376の開閉方向と交差する横向きの支軸381周りに揺動して開位置と閉位置との間で姿勢変更可能に構成されている。支軸381は、保持部形成体353の内壁374に支持されている。シャッター376は、保持部形成体353の内壁374に支持された横向きの支軸381周りに揺動して、閉位置と開位置との間で姿勢変更されるように構成されている。シャッター376は、閉位置となった際に、横向き姿勢となって排出口373を閉塞して、横向き姿勢のシャッター376の上面に穀粒を貯めることによって、一時貯留部Tに穀粒を貯留する。シャッター376は、閉位置にあるとき、支軸381の軸方向視において上向き凸の屈曲形状となるように形成されている。そして、シャッター376は、開位置となった際に縦向き姿勢となって排出口373を開放し、一時貯留部Tに貯留された穀粒を下方へ排出できるように構成されている。シャッター376は、切換機構380によって押し上げられて開位置から閉位置に位置変更される。また、シャッター376は、切換機構380の押し上げがなくなることで、閉位置から開位置に位置変更される。
 [ECU]
 図23に示すように、コンバイン310には、シャッターの開閉制御を行うECU320が備えられている。ECU320には、判定部390と、判断部391と、制御部392と、が備えられている。
 判定部390は、穀粒タンク316内の穀粒の貯留体積が『予備値』に達したか否か、あるいは『所定値』に達したか否かが判定される。判定部390は、第3センサ342、制御部392、に接続されている。判定部390は、第3センサ342によって穀粒の貯留レベルが検出されると、穀粒タンク316内の穀粒の貯留体積が『予備値』に到達したと判定して、制御部392へ『予備値到達信号』を出力する。また、判定部390は、穀粒タンク316内の穀粒の貯留体積が『予備値』に到達したと判定した後に、制御部392から所定回数だけシャッターの開放がなされたことを入力すると、穀粒タンク316内の穀粒の貯留体積が『所定値』に到達したと判定し、制御部392へ『所定値到達信号』を出力する。つまり、判定部390は、体積計測部としてのレベルセンサ337によって貯留体積が『所定値』よりも低い値である『予備値』を超えたことが検出され、かつ、その検出後にシャッター376が開放された回数が所定回数を超えたときに、貯留体積が『所定値』を超えたと判定する。
 判断部391は、一時貯留部Tに穀粒が貯留されているか否かの判定、および、一時貯留部Tから穀粒が排出されたか否かの判定を行う。判断部391は、近接センサ375、制御部392、に接続されている。判断部391は、近接センサ375が穀粒を検出する非検出状態(OFF状態)から穀粒を検出しない検出状態(ON状態)になり、検出状態(ON状態)が所定時間だけ継続すると、制御部392へ『貯留完了信号』を出力する。また、判断部391は、近接センサ375が穀粒を検出しない検出状態(ON状態)から穀粒を検出する非検出状態(OFF状態)になり、非検出状態(OFF状態)が所定時間だけ継続すると、制御部392へ『排出完了信号』を出力する。
 制御部392は、シャッター376を動作させるモータ378の制御および品質センサ350への計測タイミングの指示を行う。制御部392は、判定部390、判断部391、排出クラッチ333、モータ378、品質センサ350、に接続されている。制御部392は、判断部391から『貯留完了信号』を入力すると、品質センサ350に穀粒の品質計測を行う指示を行い、品質センサ350による品質計測に必要な所定時間が経過すると、モータ378を駆動してシャッター376を開位置にする。そして、判断部391から『排出完了信号』を入力すると、一時貯留部Tの穀粒の全てが穀粒タンク316内の排出回数確保部Eへ排出されたとみなして、モータ378を駆動してシャッター376を閉位置にする。つまり、制御部392は、開閉制御において、シャッター376を開位置にした後に、品質センサ350による計測に必要な量の穀粒が一時貯留部に貯留されていない状態が所定時間継続したときに、シャッター376を閉位置にする制御を行う。基本的に、制御部392は、このようなシャッター376の開閉制御を実行する。
 一方、制御部392は、判定部390から『予備値到達信号』を入力すると、『予備値到達信号』を入力してからモータ378を駆動してシャッター376を開位置へ制御した回数を継続的に、判定部390へ出力する。制御部392は、判定部390によって貯留体積が『所定値』を超えたことが判定されて判定部390から『所定値到達信号』を入力されると、モータ378の駆動を停止してシャッター376の開閉制御を停止する。つまり、制御部392は、判定部390によって貯留体積が『所定値』を超えたことが判定されると、品質センサ350による計測が終了しても、シャッター376を開位置にする制御を行わない。また、制御部392は、シャッター376の開閉制御が停止された後、排出クラッチ333が入り状態になると、シャッター376の開閉制御を再開する。
 [フローチャート]
 上記のようなECU320によるシャッター376の開閉制御の手順を、図24のフローチャートを用いて説明する。
 まず、シャッター376が閉位置となった状態において、近接センサ375が所定時間だけ検出状態(ON状態)になったか否かが判定される(ステップ♯101)。ステップ♯101において、近接センサ375が所定時間だけ検出状態になっていなければ(♯101:NO)、ステップ♯101へ戻る。ステップ♯101において、近接センサ375が所定時間だけ検出状態になっていれば(♯101:Yes)、一時貯留部Tに品質センサ350による計測に必要な量の穀粒が貯留されているとわかるので、次に、品質センサ350によって所定時間をかけて一時貯留部Tに貯留された穀粒について品質計測が行われる(ステップ♯102)。ステップ♯102の次には、穀粒タンク316内に貯留された穀粒の貯留体積が『予備値』を超えていないか否かが判定される(ステップ♯103)。ステップ♯103では、具体的には、第3センサ342により穀粒が検出されていれば、穀粒タンク316内に貯留された穀粒の貯留体積が『予備値』を超えたとみなされる。ステップ♯103において、穀粒タンク316内に貯留された穀粒の貯留体積が『予備値』を超えていなければ(♯103:Yes)、シャッター376を開位置に制御してもシャッター376が穀粒に干渉しないとわかるので、次に、シャッター376を開位置にする制御が行われる(ステップ♯104)。ステップ♯104の次には、近接センサ375が所定時間だけ非検出状態(OFF状態)になったか否かが判定される(ステップ♯105)。ステップ♯105において、近接センサ375が所定時間だけ非検出状態になっていなければ(♯105:No)、ステップ♯105へ戻る。ステップ♯105において、近接センサ375が所定時間だけ非検出状態になっていれば(♯105:Yes)、一時貯留部Tから品質計測の終了した穀粒が排出回数確保部Eに排出されたとわかるので、シャッター376を閉位置にする制御が行われる(ステップ♯106)。ステップ♯106が終了すると、次の品質計測を行うために、リターンする。
 一方、ステップ♯103において、穀粒タンク316内に貯留された穀粒の貯留体積が『予備値』を超えていると(♯103:No)、次に、シャッター376が開放された回数Nが所定回数A以下か否かが判定される(ステップ♯107)。ステップ♯107において、シャッター376が開放された回数Nが所定回数A以下であると(♯107:Yes)、排出回数確保部Eに未だ体積の余裕があり、シャッター376を開位置に制御しても、シャッター376が穀粒に干渉しないことがわかるので、次に、シャッター376を開位置に制御される(ステップ♯108)。ステップ♯108では、シャッター376を1回開放した分の穀粒が排出回数確保部Eに落下されるので、ステップ♯108の次には、シャッター376が開放された回数Nに『1』が加算される(ステップ♯109)。ステップ♯109が終了すると、次の品質計測を行うために、ステップ♯105へ移行する。
 また、ステップ♯107において、シャッター376が開放された回数Nが所定回数Aを超えていると(♯107:No)、穀粒タンク316内に貯留された穀粒の貯留体積が『予備値』を超えてからシャッター376が所定回数だけ開放されて、排出回数確保部Eに体積の余裕が無くなったとわかる。このため、シャッター376を開位置に制御すると、シャッター376が排出回数確保部Eに貯留された穀粒に干渉するおそれがあるので、シャッター376の開閉制御が一時中断され、シャッター376が閉位置のままとされて、開位置にする制御が行われない。つまり、ステップ♯107にてNoと判断されると、排出クラッチ333が入り状態(ON状態)になるまでシャッター376の開閉制御が一時中断される。そのため、ステップ♯107にてNoと判断された次には、排出クラッチ333が入り状態(ON状態)になったか否かが判定される(ステップ♯110)。ステップ♯110において、排出クラッチ333が入り状態になっていないと(♯110:No)、ステップ♯110へ戻る。ステップ♯110において、排出クラッチ333が入り状態になると(♯110:Yes)、穀粒タンク316から排出オーガ332によって穀粒が外部へ排出されて、排出回数確保部Eにおける穀粒の貯留レベルが低下することがわかる。そして、ステップ♯110においてYesと判断された次には、所定時間が経過したか否かが判定され(ステップ♯111)、所定時間が経過していないと(♯111:No)、ステップ♯111へ戻る。ステップ♯111において、所定時間が経過すると(♯111:Yes)、排出回数確保部Eにおける穀粒の貯留レベルが十分に低下したことが分かる。このため、シャッター376の開閉制御を再開しても問題ないことがわかるので、ステップ♯111においてYesと判断された次には、シャッター376が開位置に制御される(ステップ♯112)。ステップ♯112の次には、シャッター376が開放された回数Nが『0』にリセットされる(ステップ♯113)。ステップ♯113が終了すると、次の品質計測を行うために、ステップ♯105へ移行する。
 なお、上記第1実施例の手順において、ステップ♯107~ステップ♯109に代えて、穀粒タンク316内に貯留された穀粒の貯留体積が『予備値』を超えてから所定時間が経過したか否かを判定するようにしてもよい。この場合、ステップ♯103において、『予備値』を穀粒タンク316内に貯留された穀粒の貯留体積が『予備値』を超えていると(♯103:No)、次に、穀粒タンク316内に貯留された穀粒の貯留体積が『予備値』を超えてから所定時間が経過したか否かが判定される。ここで、穀粒タンク316内に貯留された穀粒の貯留体積が『予備値』を超えてから所定時間が経過していなければ、次の品質計測を行うために、ステップ♯105へ移行する。また、穀粒タンク316内に貯留された穀粒の貯留体積が『予備値』を超えてから所定時間が経過していれば、例えばシャッター376が所定回数だけ開放されて、排出回数確保部Eに体積の余裕が無くなっており、シャッター376を開位置に制御すると、シャッター376が貯留された穀粒に干渉するおそれがある。このため、穀粒タンク316内に貯留された穀粒の貯留体積が『予備値』を超えてから所定時間が経過したことをもって、穀粒タンク316内に貯留された穀粒の貯留体積が『所定値』に達したことがわかる。このため、穀粒タンク316内に貯留された穀粒の貯留体積が『予備値』を超えてから所定時間が経過していれば、シャッター376の開閉制御が一時中断され、シャッター376が閉位置のままとされて、開位置にする制御が行われない。つまり、穀粒タンク316内に貯留された穀粒の貯留体積が『予備値』を超えてから所定時間が経過すると、排出クラッチ333が入り状態(ON状態)になるまでシャッター376の開閉制御が一時中断される。そして、穀粒タンク316内に貯留された穀粒の貯留体積が『予備値』を超えてから所定時間が経過した後には、排出クラッチ333が入り状態(ON状態)になったか否かが判定される(ステップ♯110)。この場合、判定部390は、体積計測部である第3センサ342によって貯留体積が『所定値』よりも低い値である『予備値』を超えたことが検出され、かつ、その検出後から所定時間が経過したときに、穀粒タンク316内の穀粒の貯留体積が『所定値』を超えたと判定される。
 また、上記第1実施例の手順において、ステップ♯111を省略してもよい。つまり、排出クラッチ333が入り状態(ON状態)になると、すぐにシャッター376の開閉制御を再開すべく、シャッター376を開位置にする制御(ステップ♯112)を行ってもよい。
 [第2実施例]
 次に、第3実施形態のうちの第2実施例について説明する。
 上記第1実施例では、シャッター376の開閉制御のうち、特に、シャッター376を開き位置にする制御を停止する判断を行っていた。以下の第2実施例に示すように、シャッター376の開閉制御のうち、特に、シャッター376を閉じ位置にする制御を停止する判断を行うようにしてもよい。第2実施例における制御の手順を図25のフローチャートに基づいて説明する。なお、第2実施例は、以下に説明する部分以外は、第1実施例と同一である。
 まず、シャッター376が閉位置となった状態において、近接センサ375が所定時間だけ検出状態(ON状態)になったか否かが判定される(ステップ♯201)。ステップ♯201において、近接センサ375が所定時間だけ検出状態になっていなければ(♯201:No)、ステップ♯201へ戻る。ステップ♯201において、近接センサ375が所定時間だけ検出状態になっていれば(♯201:Yes)、一時貯留部Tに品質センサ350による計測に必要な量の穀粒が貯留されているとわかるので、次に、品質センサ350によって所定時間をかけて一時貯留部Tに貯留された穀粒について品質計測が行われる(ステップ♯202)。ステップ♯202の次には、穀粒タンク316内に貯留された穀粒の貯留体積が『所定値』を超えていないか否かが判定される(ステップ♯203)。『所定値』を超えていない場合は、シャッター376を開位置に制御してもシャッター376が穀粒に干渉しない。ステップ♯203において、穀粒タンク316内に貯留された穀粒の貯留体積が『所定値』を超えていなければ(♯203:Yes)、シャッター376を開位置にする制御が行われる(ステップ♯204)。ステップ♯204の次には、近接センサ375が所定時間だけ非検出状態(OFF状態)になったか否かが判定される(ステップ♯205)。ステップ♯205において、近接センサ375が所定時間だけ非検出状態になっていなければ(♯205:No)、ステップ♯205へ戻る。ステップ♯205において、近接センサ375が所定時間だけ非検出状態になっていれば(♯205:Yes)、一時貯留部Tから品質計測の終了した穀粒が排出されたとわかる。そこで、ステップ♯205の次には、もう一度、穀粒タンク316内に貯留された穀粒の貯留体積が『所定値』を超えていないか否かが判定される(ステップ♯206)。開位置になったシャッター376が、一時貯留部Tから落下された穀粒に埋もれてしまう場合があるためである。ステップ♯206において、穀粒タンク316内に貯留された穀粒の貯留体積が『所定値』を超えていなければ(♯206:Yes)、シャッター376を閉位置にする制御を行っても、シャッター376が貯留された穀粒に干渉しないとわかるので、シャッター376を閉位置にする制御が行われる(ステップ♯207)。ステップ♯207が終了すると、次の品質計測を行うために、リターンする。
 ステップ♯206において、穀粒タンク316内に貯留された穀粒の貯留体積が『所定値』を超えていると(♯206:No)、シャッター376を閉位置に制御すると、シャッター376が排出回数確保部Eに貯留された穀粒を巻き込んで持ち上げてしまうとわかるので、シャッター376の閉制御が一時中断され、シャッター376が開位置のままとされて、閉位置にする制御が行われない。つまり、ステップ♯206にてNoと判断されると、排出クラッチ333が入り状態(ON状態)になるまでシャッター376の閉制御が一時中断される。そのため、ステップ♯206にてNoと判断された次には、排出クラッチ333が入り状態(ON状態)になったか否かが判定される(ステップ♯208)。ステップ♯208において、排出クラッチ333が入り状態になっていないと(♯208:No)、ステップ♯208へ戻る。ステップ♯208において、排出クラッチ333が入り状態になると(♯208:Yes)、穀粒タンク316から排出オーガ332によって穀粒が外部へ排出されて、排出回数確保部Eにおける穀粒の貯留レベルが低下することがわかる。そして、ステップ♯208においてYesと判断された次には、所定時間が経過したか否かが判定され(ステップ♯209)、所定時間が経過していないと(♯209:No)、ステップ♯209へ戻る。ステップ♯209において、所定時間が経過すると(♯209:Yes)、排出回数確保部Eにおける穀粒の貯留レベルが十分に低下したことが分かる。このため、シャッター376を閉位置に制御しても問題ないことがわかるので、ステップ♯209においてYesと判断された次には、シャッター376が閉位置に制御される(ステップ♯207)。ステップ♯207が終了すると、次の品質計測を行うために、リターンする。
 ステップ♯203において、穀粒タンク316内に貯留された穀粒の貯留体積が『所定値』を超えていると(♯203:No)、シャッター376を開位置に制御すると、シャッター376が排出回数確保部Eに貯留された穀粒に干渉するおそれがあるので、シャッター376の開制御が一時中断され、シャッター376が閉位置のままとされて、開位置にする制御が行われない。つまり、ステップ♯203にてNoと判断されると、排出クラッチ333が入り状態(ON状態)になるまでシャッター376の開制御が一時中断される。そのため、ステップ♯203にてNoと判断された次には、排出クラッチ333が入り状態(ON状態)になったか否かが判定される(ステップ♯210)。ステップ♯210において、排出クラッチ333が入り状態になっていないと(♯210:No)、ステップ♯210へ戻る。ステップ♯210において、排出クラッチ333が入り状態になると(♯210:Yes)、穀粒タンク316から排出オーガ332によって穀粒が外部へ排出されて、排出回数確保部Eにおける穀粒の貯留レベルが低下することがわかる。そして、ステップ♯210においてYesと判断された次には、所定時間が経過したか否かが判定され(ステップ♯211)、所定時間が経過していないと(♯211:No)、ステップ♯211へ戻る。ステップ♯211において、所定時間が経過すると(♯211:Yes)、排出回数確保部Eにおける穀粒の貯留レベルが十分に低下したことが分かる。このため、シャッター376を開位置に制御しても問題ないことがわかるので、ステップ♯211においてYesと判断された次には、シャッター376が開位置に制御される(ステップ♯212)。ステップ♯212の次には、近接センサ375が所定時間だけ非検出状態(OFF状態)になったか否かが判定される(ステップ♯213)。ステップ♯213において、近接センサ375が所定時間だけ非検出状態になっていなければ(♯213:No)、ステップ♯213へ戻る。ステップ♯213において、近接センサ375が所定時間だけ非検出状態になっていれば(♯213:Yes)、次の品質計測を行うために、ステップ♯207へ移行する。
 [第3実施例]
 次に、第3実施形態のうちの第3実施例について説明する。
 第3実施例は、第1実施例または第2実施例においてシャッター376を閉位置に制御するタイミングを変更したものである。第3実施例における制御の手順を図26のフローチャートに基づいて説明する。なお、第3実施例は、以下に説明する部分以外は、第1実施例または第2実施例と同一である。
 例えば、第1実施例におけるステップ♯107において、シャッター376が開放された回数Nが所定回数Aを超えていると(♯107:No)、あるいは、第2実施例におけるステップ♯203において、ステップ♯203において、穀粒タンク316内に貯留された穀粒の貯留体積が『所定値』を超えていると(♯203:No)、排出クラッチ333が入り状態(ON状態)になったか否かが判定される(ステップ♯301)。ステップ♯301において、排出クラッチ333が入り状態になっていないと(♯301:No)、ステップ♯301へ戻る。ステップ♯301において、排出クラッチ333が入り状態になると(♯301:Yes)、次に、シャッター376を開位置にする制御が行われる(ステップ♯302)。そして、ステップ♯302の次には、排出クラッチ333が切り状態(OFF状態)になったか否かが判定される(ステップ♯303)。排出クラッチ333が切り状態になっていないと(♯303:No)、ステップ♯303へ戻る。ここでは、排出クラッチ333が切り状態(OFF状態)になるまでシャッター376は開位置のままとされるので、一時貯留部Tの穀粒を残存させることなく全て排出できる。ステップ♯303において、排出クラッチ333が切り状態になると(♯303:Yes)、次に、所定時間が経過したか否かが判定される(ステップ♯304)。ステップ♯304において、所定時間が経過していないと(♯304:No)、ステップ♯304へ戻る。ステップ♯304において、所定時間が経過すると(♯304:Yes)、シャッター376が閉位置に制御される(ステップ♯305)。ステップ♯305が終了すると、リターンする。
 この場合、制御部392は、排出クラッチ333が入り状態になると、モータ378を駆動してシャッター376を開位置にする制御を行い、排出オーガ332による穀粒の排出時に一時貯留部Tに穀粒が残留しないようにする。
 なお、上記第3実施例では、ステップ♯304が省略されていてもよい。この場合は、ステップ♯303において、排出クラッチ333が切り状態になると(♯303:Yes)、ステップ♯305に移行し、すぐにシャッター376を閉位置にする制御が行われる。
 また、上記第3実施例において、ステップ♯305でシャッター376を開位置にする制御を行い、続いて、シャッター376が開位置にする制御が行われてから所定時間が経過したか否かを判定してもよい。シャッター376が開位置にする制御が行われてから所定時間が経過したと判定されると、♯305に移行し、シャッター376が閉制御される。
 なお、上記第3実施例では、『予備値』や『所定値』に基づく判定を行っているが、第3実施例において、『予備値』や『所定値』に基づく判定を行わないものでもよい。
 [第4実施例]
 次に、第3実施形態のうちの第4実施例について説明する。
 第4実施例では、第1実施例~第3実施例における第3センサ342に代えて、ロードセル335が「体積計測部」の一例である「重量計測装置」として備えられている。なお、第4実施例は、以下に説明する部分以外は、第1実施例~第3実施例と同一である。
 穀粒タンク316内に貯留された穀粒の貯留体積を検出する体積計測部として、穀粒タンク316に貯留された穀粒の重量を計測するロードセル335が備えられ、ロードセル335の検出結果に基づいて、穀粒タンク316内に貯留された穀粒の貯留体積が確定される。この場合、図27に示すブロック図のように、ECU320において判定部390の代わりに、演算部493と、他の判定部490と、が備えられる。演算部493は、品質センサ350、ロードセル335、に接続されている。演算部493は、品質センサ350から入力される水分値と、ロードセル335から入力される重量値と、に基づいて、穀粒タンク316内の穀粒の貯留体積を演算して判定部490へ出力するように構成されている。判定部490は、演算部493から入力された貯留体積が『予備値』、『所定値』を超えているか否かを判定する。判定部490は、演算部493と、制御部392と、に接続されている。判定部490は、演算部493から入力された貯留体積が『予備値』、『所定値』を超えると、夫々、制御部392へ『予備値到達信号』、『所定値到達信号』を出力する。
 [第3実施形態のうちのその他の実施例]
 (3-1)上記第1実施例~第4実施例では、必要量測定部として近接センサ375を一例に示したが、これに限られず、接触式のセンサ等の穀粒の検出が可能な他の必要量測定部であってもよい。
 (3-2)上記第1実施例~第4実施例では、排出側網体364を排気口360に取り付け、吸入側網体365を導入口361に取り付けているものを一例に示したがこれに限られない。例えば、図28、図29に示すように、案内管363の先端孔362に排出側網体464を取り付け、フィルタケース357の吸気口368に吸入側網体465を取り付けられていてもよい。この場合、例えば、コンバイン310の洗車等を行う際に、本体ケース356内に水や埃が侵入することが排出側網体464および吸入側網体465によって防止される。
 (3-3)上記第1実施例~第4実施例では、モータ378の駆動により切換機構380で押し上げて閉位置から閉位置に位置変更するシャッター376を一例に示したが、これに限られない。例えば、切換機構380がなく、モータ378の駆動により直接開閉制御されるシャッター376であってもよい。
 (3-4)上記第1実施例~第4実施例では、排出回数確保部Eが、シャッター376の下方に隣接して備えられているものを一例に示したが、これに限られない。例えば、排出回数確保部Eが設けられておらず、シャッター376の下方が、穀粒タンク316の内部空間Mに直接連通されていてもよい。この場合、『予備値』を設けずに、『所定値』を第3センサ342等のレベル計測装置やロードセル335等の重量計測装置等で直接計測するようにするとよい。
 (3-5)上記第1実施例~第4実施例では、穀粒タンク316に貯留された穀粒は、排出オーガ332によって穀粒タンク316の後部から排出されるものを一例に示したが、これに限られない。例えば、穀粒タンク316に貯留された穀粒が穀粒タンク316の側部や前部などから排出されてもよい。また、一時貯留部Tは、穀粒タンク316の前部に設けられているものを一例に示したが、一時貯留部Tが、穀粒タンク316の中央部や後部に設けられていてもよい。
 (3-6)上記第3実施形態では、自脱型のコンバインを一例に示したが、これに限られず、全稈投入型コンバイン等の他のコンバインであってもよい。上記第3実施形態では、クローラ走行式のコンバインを一例に示したが、これに限られず、ホイール走行式のコンバイン等の他のコンバインであってもよい。
[第1実施形態]
10   :コンバイン
11   :走行機体
12   :クローラ走行装置
13   :刈取部
14   :脱穀装置
15   :穀粒タンク
16   :アンローダ
19   :左右傾斜センサ(左右傾斜角度検出部)
20   :前後傾斜センサ(前後傾斜角度検出部)
23   :第1油圧シリンダ(左右姿勢変更部、前後姿勢変更部)
27   :第2油圧シリンダ(左右姿勢変更部、前後姿勢変更部)
29   :第3油圧シリンダ(左右姿勢変更部、前後姿勢変更部)
31   :第4油圧シリンダ(左右姿勢変更部、前後姿勢変更部)
33   :車速センサ
35   :株元センサ(穀稈センサ)
36   :刈取高さセンサ
37   :脱穀クラッチ
38   :排出オーガ
39   :ロードセル(重量測定部)
40   :縦オーガ
41   :横オーガ
42   :オーガ受け
46   :モータ(旋回駆動部)
47   :揺動シリンダ(上下揺動駆動部)
66   :測定スイッチ(測定指示部)
71   :作業状態判定部
72   :姿勢判定部
73   :収納検出部
75   :重量測定決定部(制御部)
[第2実施形態]
110   :コンバイン
113   :刈取部
114   :脱穀部
115   :穀粒タンク
127   :品質センサ
128   :重量センサ(計測センサ)
135   :レベルセンサ
145   :ディスプレイ(表示部)
151   :演算部
152   :判定部
153   :通信部
154   :変更部
156   :報知部
160   :外部サーバ
[第3実施形態]
310   :コンバイン
315   :脱穀装置
316   :穀粒タンク
332   :排出オーガ
333   :排出クラッチ
335   :ロードセル(重量計測装置)
342   :第3センサ(レベル計測装置)
350   :品質センサ(品質計測部)
372   :取込口
373   :排出口
375   :近接センサ(必要量測定部)
376   :シャッター
390   :判定部
392   :制御部
490  :判定部
E    :排出回数確保部
M    :内部空間
T    :一時貯留部

Claims (33)

  1.  走行機体を支持する走行装置と、
     植立穀稈を刈取る刈取部と、
     刈取穀稈を脱穀処理する脱穀装置と、
     前記脱穀装置によって脱穀された穀粒を貯留する穀粒タンクと、
     前記穀粒タンクに貯留された穀粒の重量測定を行う重量測定部と、
     重量測定信号を出力する測定指示部と、
     前記走行装置、前記刈取部、及び前記脱穀装置の状態から、作業状態であるか非作業状態であるかの作業状態判定を行う作業状態判定部と、
     前記重量測定信号に基づいて前記重量測定部に前記重量測定を指令する制御部と、が備えられ、
     前記測定指示部から前記重量測定信号が出力されると、前記制御部は、前記作業状態判定部に前記作業状態判定を指令し、前記作業状態であることが判定されると、前記重量測定部に前記重量測定を指令しないコンバイン。
  2.  前記走行機体の傾きを検出する姿勢検出部と、
     前記走行機体の傾きが所定の傾斜許容範囲内にあるか否かの姿勢判定を行う姿勢検出部と、が備えられ、
     前記作業状態判定部によって前記非作業状態であることが判定されると、前記制御部は、前記姿勢検出部に前記姿勢判定を指令し、前記走行機体の傾きが所定の傾斜許容範囲内にあることが判定された場合、前記重量測定部に前記重量測定を指令し、前記走行機体の傾きが前記傾斜許容範囲内にないことが判定された場合、前記重量測定部に前記重量測定を指令しない請求項1に記載のコンバイン。
  3.  前記走行機体の左右傾斜姿勢を変更する左右姿勢変更部が備えられ、
     前記姿勢検出部として、前記走行機体の左右傾斜角度を検出する左右傾斜角度検出部が備えられ、
     前記姿勢検出部によって前記左右の傾きが所定の左右傾斜許容範囲内にないことが判定された場合、前記制御部は、前記重量測定部に前記重量測定を指令せずに、前記左右傾斜角度が前記左右傾斜許容範囲内になるように前記左右姿勢変更部を制御し、前記左右傾斜角度が前記左右傾斜許容範囲内になった後に、前記重量測定部に前記重量測定を指令する請求項2に記載のコンバイン。
  4.  前記走行機体の前後傾斜姿勢を変更する前後姿勢変更部が備えられ、
     前記姿勢検出部として、前記走行機体の前後傾斜角度を検出する前後傾斜角度検出部が備えられ、
     前記姿勢検出部によって前記前後傾斜角度が所定の前後傾斜許容範囲内にないことが判定された場合、前記制御部は、前記重量測定部に前記重量測定を指令しないと共に、前記前後傾斜角度が前記前後傾斜許容範囲内になるように前記前後姿勢変更部を制御し、前記前後傾斜角度が前記前後傾斜許容範囲内になった後に、前記重量測定部に前記重量測定を指令する請求項2または3に記載のコンバイン。
  5.  前記走行装置の走行速度を検出する車速センサが備えられ、
     前記作業状態判定部は、少なくとも前記走行速度がゼロであることを条件に、前記非作業状態であると判定する請求項1から4の何れか一項に記載のコンバイン。
  6.  前記脱穀装置へ動力伝達を入り切りする脱穀クラッチが備えられ、
     前記作業状態判定部は、少なくとも前記脱穀クラッチが切り状態であることを条件に、前記非作業状態であると判定する請求項1から5の何れか一項に記載のコンバイン。
  7.  前記刈取部に設けられて刈取穀稈の存在を検出する穀稈センサが備えられ、
     前記作業状態判定部は、少なくとも前記刈取部に刈取穀稈が存在していないことを条件に、前記非作業状態であると判定する請求項1から6の何れか一項に記載のコンバイン。
  8.  前記刈取部は前記走行機体に上下昇降可能に支持され、
     前記刈取部の上下位置を検出する刈取高さセンサが備えられ、
     前記作業状態判定部によって前記非作業状態であることが判定されても、前記上下位置が所定の高さよりも低い場合、前記制御部は、前記重量測定部に前記重量測定を指令しない請求項1に記載のコンバイン。
  9.  前記穀粒タンクに接続された縦オーガ、及び、前記縦オーガに接続されて前記穀粒タンクに貯留された穀粒を一端から外部へ排出可能であると共に、上下揺動可能かつ収納位置と作業位置との間で旋回可能な横オーガを有するアンローダと、
     前記横オーガを前記収納位置に支持するオーガ受けと、
     前記横オーガが前記オーガ受けに収納されている収納状態であるか否かを検出する収納検出部と、が備えられ、
     前記作業状態判定部によって前記非作業状態であることが判定されると、前記制御部は、前記収納検出部の検出結果を確認し、前記収納状態が検出されている場合は、前記重量測定部に前記重量測定を指令し、前記収納状態が検出されていない場合は、前記重量測定部に前記重量測定を指令しない請求項1から8の何れか一項に記載のコンバイン。
  10.  前記横オーガを上下揺動させる上下揺動駆動部と、
     前記横オーガを旋回させる旋回駆動部と、が備えられ、
     前記収納検出部によって前記収納状態が検出されていない場合、前記制御部は、前記重量測定部に前記重量測定を指令しないと共に、前記収納状態となるように前記上下揺動駆動部及び前記旋回駆動部を制御し、前記収納状態になった後に、前記重量測定部に前記重量測定を指令する請求項9に記載のコンバイン。
  11.  前記穀粒タンクに接続された縦オーガ、及び、前記縦オーガに接続されて前記穀粒タンクに貯留された穀粒を一端から外部へ排出可能であると共に、上下揺動可能かつ収納位置と作業位置との間で旋回可能な横オーガを有するアンローダと、
     前記横オーガを上下揺動させる上下揺動駆動部と、
     前記横オーガを前記収納位置に支持するオーガ受けと、が備えられ、
     前記作業状態判定部によって前記非作業状態であることが判定されると、前記制御部は、前記上下揺動駆動部を制御して前記横オーガを所定時間下降させた後に、前記重量測定部に前記重量測定を指令する請求項1から8の何れか一項に記載のコンバイン。
  12.  前記制御部は、前記重量測定部に前記重量測定を指令しない場合は、運転者に、測定に関する情報を報知する請求項1から11の何れか一項に記載のコンバイン。
  13.  植立穀稈を刈取る刈取部と、
     刈取穀稈を脱穀処理する脱穀部と、
     前記脱穀部によって脱穀された穀粒を貯留する穀粒タンクと、
     前記穀粒タンクに貯留された穀粒の貯留体積量を計測する計測センサと、
     前記計測センサによって計測された前記貯留体積量が、予め設定された閾値を超えたか否かを判定する判定部と、
     前記判定部によって前記貯留体積量が前記閾値を超えたと判定されると、運転者に、前記穀粒の量が前記閾値を超えたことに関する情報を報知する報知部と、
     前記閾値を変更可能な変更部と、が備えられているコンバイン。
  14.  前記計測センサは、前記穀粒タンクに貯留された穀粒の重量を計測する重量センサである請求項13に記載のコンバイン。
  15.  前記穀粒タンクに貯留された穀粒の少なくとも水分値を計測する品質センサと、
     前記品質センサにより検出された穀粒の水分値、および、前記重量センサにより計測された前記穀粒タンクに貯留された穀粒の重量、に基づいて前記貯留体積量を演算する演算部と、が備えられ、
     前記閾値は、体積単位で設定される請求項14に記載のコンバイン。
  16.  前記穀粒タンクに貯留された穀粒の貯留レベルを計測するレベルセンサが備えられ、
     前記閾値は、体積単位で設定される請求項13に記載のコンバイン。
  17.  外部サーバとの通信を行う通信部が備えられ、
     前記変更部は、前記外部サーバから受信したデータに基づいて前記閾値を変更可能に構成されている請求項13から16の何れか一項に記載のコンバイン。
  18.  外部サーバとの通信を行う通信部が備えられ、
     前記通信部は、前記変更部によって前記閾値が変更された場合、変更結果を前記外部サーバへ送信するように構成されている請求項13から17の何れか一項に記載のコンバイン。
  19.  前記判定部は、複数の前記閾値を設定可能に構成されている請求項13から18の何れか一項に記載のコンバイン。
  20.  前記貯留体積量を表示する表示部と、
     前記穀粒タンクの底部に設けられ、前記穀粒タンクに貯留された穀粒を外部に排出する排出オーガと、が備えられ、
     前記排出オーガが作動されてから次の刈取作業が行われるまでの間、前記排出オーガの始動前における前記貯留体積量が前記表示部に表示され続ける請求項13から19の何れか一項に記載のコンバイン。
  21.  脱穀装置から搬送されてきた穀粒を貯留する穀粒タンクと、
     前記穀粒タンクの底部に設けられ、前記穀粒タンクに貯留された穀粒を外部に排出する排出オーガと、
     前記穀粒タンク内に設けられると共に取込口が形成され、前記脱穀装置から搬送されてきた穀粒の一部を前記取込口から取り込んで一時的に貯留する一時貯留部と、
     前記一時貯留部に貯留された穀粒の品質を検出する品質計測部と、
     前記一時貯留部に形成されて貯留された穀粒を前記穀粒タンクに排出可能な排出口と、
     前記排出口を開放する開位置と前記排出口を閉塞する閉位置とに位置変更可能なシャッターと、
     前記品質計測部による計測が終了されると、前記シャッターを前記開位置にし、かつ、前記一時貯留部の穀粒の全てが前記穀粒タンクに排出されると、前記シャッターを前記閉位置にする開閉制御を行う制御部と、
     前記穀粒タンクに貯留された穀粒の貯留体積が所定値を超えたか否かを判定する判定部と、が備えられ、
     前記判定部によって前記貯留体積が所定値を超えたことが判定されると、前記制御部は前記開閉制御を停止するコンバイン。
  22.  前記判定部によって前記貯留体積が所定値を超えたことが判定されると、前記制御部は、前記品質計測部による計測が終了しても、前記シャッターを前記開位置にする制御を行わない請求項21に記載のコンバイン。
  23.  前記排出口を介して前記一時貯留部と連通し、かつ、側部が前記穀粒タンクの内部空間と区画されると共に下部が前記内部空間と連通する排出回数確保部が、前記シャッターの下方に隣接して備えられている請求項21または22に記載のコンバイン。
  24.  前記貯留体積を検出する体積計測部が備えられ、
     前記体積計測部によって前記貯留体積が前記所定値よりも低い値である予備値を超えたことが検出され、かつ、その検出後に前記シャッターが開放された回数が所定回数を超えたときに、前記判定部は、前記貯留体積が前記所定値を超えたと判定する請求項23に記載のコンバイン。
  25.  前記貯留体積を検出する体積計測部が備えられ、
     前記体積計測部によって前記貯留体積が前記所定値よりも低い値である予備値を超えたことが検出され、かつ、その検出後から所定時間が経過したときに、前記判定部は、前記貯留体積が前記所定値を超えたと判定する請求項23に記載のコンバイン。
  26.  前記排出オーガへの駆動力伝達を入り切りする排出クラッチが備えられ、
     前記開閉制御が停止された後、前記排出クラッチが入り状態になると、前記制御部は、前記開閉制御を再開する請求項21から25の何れか一項に記載のコンバイン。
  27.  前記品質計測部による計測に必要な量の穀粒が前記一時貯留部に貯留されているか否かを検知する必要量測定部が備えられ、
     前記制御部は、前記開閉制御において、前記シャッターを前記開位置にした後に、前記品質計測部に必要な量の穀粒が前記一時貯留部に貯留されていない状態が所定時間継続したときに、前記シャッターを前記閉位置にする制御を行う請求項21から26の何れか一項に記載のコンバイン。
  28.  前記貯留体積を検出する体積計測部として、前記穀粒タンク内における穀粒の貯留レベルを検出するレベル計測装置が備えられ、
     前記レベル計測装置の検出結果に基づいて、前記貯留体積が確定される請求項21から27の何れか一項に記載のコンバイン。
  29.  前記貯留体積を検出する体積計測部として、前記穀粒タンクに貯留された穀粒の重量を計測する重量計測装置が備えられ、
     前記重量計測装置の検出結果に基づいて、前記貯留体積が確定される請求項21から27の何れか一項に記載のコンバイン。
  30.  前記穀粒タンクに貯留された穀粒は、前記排出オーガによって前記穀粒タンクの後部から排出され、
     前記一時貯留部は、前記穀粒タンクの前部に設けられている請求項21から29の何れか一項に記載のコンバイン。
  31.  脱穀装置から搬送されてきた穀粒を貯留する穀粒タンクと、
     前記穀粒タンクの底部に設けられ、前記穀粒タンクに貯留された穀粒を外部に排出する排出オーガと、
     前記穀粒タンク内に設けられると共に取込口が形成され、前記脱穀装置から搬送されてきた穀粒の一部を前記取込口から取り込んで一時的に貯留する一時貯留部と、
     前記一時貯留部に貯留された穀粒の品質を検出する品質計測部と、
     前記一時貯留部に形成されて貯留された穀粒を前記穀粒タンクに排出可能な排出口と、
     前記排出口を開放する開位置と前記排出口を閉塞する閉位置とに位置変更可能なシャッターと、
     前記品質計測部による計測が終了されると、前記シャッターを前記開位置にし、かつ、前記一時貯留部の穀粒の全てが前記穀粒タンクに排出されると、前記シャッターを前記閉位置にする開閉制御を行う制御部と、
     前記排出オーガへの駆動力伝達を入り切りする排出クラッチと、が備えられ、
     前記排出クラッチが入り状態になると、前記制御部は、前記シャッターを前記開位置にする制御を行うコンバイン。
  32.  前記制御部が前記シャッターを前記開位置にする制御を行った後、前記排出クラッチが切り状態になると、前記制御部は、前記シャッターを前記閉位置にする制御を行う請求項31に記載のコンバイン。
  33.  前記制御部が前記シャッターを前記開位置にする制御を行った後、所定時間が経過すると、前記制御部は、前記シャッターを前記閉位置にする制御を行う請求項31に記載のコンバイン。
PCT/JP2014/054025 2013-03-27 2014-02-20 コンバイン WO2014156387A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14773116.0A EP2979537B1 (en) 2013-03-27 2014-02-20 Combine
US14/780,069 US9820436B2 (en) 2013-03-27 2014-02-20 Combine for measuring the weight of grain retained in a grain tank
CN201480023850.1A CN105163575B (zh) 2013-03-27 2014-02-20 联合收割机
KR1020157030450A KR102234179B1 (ko) 2013-03-27 2014-02-20 콤바인
US15/730,467 US10143132B2 (en) 2013-03-27 2017-10-11 Combine
US16/177,801 US10945367B2 (en) 2013-03-27 2018-11-01 Combine having a temporary retention unit and a shutter

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-067034 2013-03-27
JP2013067034A JP6037912B2 (ja) 2013-03-27 2013-03-27 コンバイン
JP2013-067032 2013-03-27
JP2013067032A JP6029509B2 (ja) 2013-03-27 2013-03-27 コンバイン
JP2013-067033 2013-03-27
JP2013067033A JP5908425B2 (ja) 2013-03-27 2013-03-27 コンバイン

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/780,069 A-371-Of-International US9820436B2 (en) 2013-03-27 2014-02-20 Combine for measuring the weight of grain retained in a grain tank
US15/730,467 Continuation US10143132B2 (en) 2013-03-27 2017-10-11 Combine

Publications (1)

Publication Number Publication Date
WO2014156387A1 true WO2014156387A1 (ja) 2014-10-02

Family

ID=51623388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054025 WO2014156387A1 (ja) 2013-03-27 2014-02-20 コンバイン

Country Status (5)

Country Link
US (3) US9820436B2 (ja)
EP (1) EP2979537B1 (ja)
KR (1) KR102234179B1 (ja)
CN (1) CN105163575B (ja)
WO (1) WO2014156387A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017018014A (ja) * 2015-07-08 2017-01-26 井関農機株式会社 コンバイン
EP3272204A4 (en) * 2015-03-18 2019-02-20 Kubota Corporation COMBINE

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9934538B2 (en) 2014-09-24 2018-04-03 Deere & Company Recalling crop-specific performance targets for controlling a mobile machine
US9901031B2 (en) * 2014-09-24 2018-02-27 Deere & Company Automatic tuning of an intelligent combine
EP3218679A4 (en) * 2014-11-14 2018-12-19 Bitsrata Systems Inc. System and method for measuring grain cart weight
CN107111843B (zh) 2015-03-16 2021-03-09 株式会社久保田 谷粒管理系统以及联合收割机
EP3272205B1 (en) 2015-03-18 2022-11-09 Kubota Corporation Combine, and grain-evaluation control device for combine
US20160345746A1 (en) * 2015-05-29 2016-12-01 L&P Property Management Company Methods, Systems, and Computer Program Products For Tracking Operation of A Comfort Product
JP6460971B2 (ja) * 2015-12-18 2019-01-30 株式会社クボタ コンバイン
CN106973620B (zh) * 2015-12-25 2022-08-23 株式会社久保田 联合收割机
CN105660038A (zh) * 2016-01-22 2016-06-15 济南大学 基于dsp的智能化玉米联合收获机故障监测系统
JP6697964B2 (ja) * 2016-06-27 2020-05-27 株式会社クボタ コンバイン
US10288472B2 (en) * 2016-11-15 2019-05-14 Digi-Star, Llc Method and apparatus for compensation of wind effects on measured weights
KR102579435B1 (ko) * 2016-12-19 2023-09-18 가부시끼 가이샤 구보다 콤바인
DE102017109849A1 (de) * 2017-05-08 2018-11-08 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Abarbeitung eines landwirtschaftlichen Ernteprozesses
EP3459339B1 (en) * 2017-09-21 2021-06-23 CNH Industrial Belgium NV Operator adjustable continuous bin level measurement
US10645875B2 (en) * 2017-10-19 2020-05-12 Cnh Industrial America Llc Method and system for unloading harvested crop from an agricultural harvester
WO2019103089A1 (ja) * 2017-11-24 2019-05-31 株式会社クボタ 収穫機、限界走行距離算出プログラム、限界走行距離算出プログラムを記録した記録媒体、限界走行距離算出方法、農作業車、旋回制御プログラム、旋回制御プログラムを記録した記録媒体、旋回制御方法、コンバイン制御システム、コンバイン制御プログラム、コンバイン制御プログラムを記録した記録媒体、コンバイン制御方法
US10701861B2 (en) 2018-07-19 2020-07-07 Cnh Industrial America Llc Modular sensor array for bulk material detection
DE202018105801U1 (de) * 2018-10-10 2020-01-15 Trioliet B. V. Landwirtschaftliches Transportfahrzeug mit Wiegesystem
CA3116429A1 (en) 2018-10-24 2020-04-30 Bitstrata Systems Inc. Machine operational state and material movement tracking
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11240961B2 (en) * 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11483970B2 (en) * 2018-11-28 2022-11-01 Cnh Industrial America Llc System and method for adjusting the orientation of an agricultural harvesting implement based on implement height
US10677637B1 (en) 2019-04-04 2020-06-09 Scale Tec, Ltd. Scale controller with dynamic weight measurement
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
CN110648429B (zh) * 2019-08-30 2021-07-20 安徽中科智能感知产业技术研究院有限责任公司 一种多重判断条件的农业机械作业行驶状态远程检测方法
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11737394B2 (en) * 2020-05-29 2023-08-29 Deere & Company Crop flow nozzle
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11871697B2 (en) 2020-10-09 2024-01-16 Deere & Company Crop moisture map generation and control system
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11650093B2 (en) 2021-01-19 2023-05-16 Scale-Tec Ltd. Material weight measurement system with automatic tare associated with object presence detection
US11756396B2 (en) * 2021-07-13 2023-09-12 Philip KUHNS Systems and methods for reducing grain theft in harvesting operations

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267814A (ja) * 1991-02-21 1992-09-24 Kubota Corp コンバイン
JPH10164967A (ja) 1997-12-02 1998-06-23 Yanmar Agricult Equip Co Ltd コンバインの穀粒重量測定装置
JP2002186348A (ja) * 2000-12-20 2002-07-02 Yanmar Agricult Equip Co Ltd 穀物貯蔵施設への穀物運搬システム
JP2005024381A (ja) * 2003-07-02 2005-01-27 Yanmar Agricult Equip Co Ltd 穀物検出装置
JP2006081490A (ja) * 2004-09-17 2006-03-30 Yanmar Co Ltd コンバイン
JP2006246845A (ja) * 2005-03-14 2006-09-21 Yanmar Co Ltd コンバイン
JP2006246831A (ja) 2005-03-14 2006-09-21 Yanmar Co Ltd コンバイン
JP2010227078A (ja) * 2009-03-30 2010-10-14 Yanmar Co Ltd コンバイン
JP2011036193A (ja) * 2009-08-12 2011-02-24 Yanmar Co Ltd コンバイン
JP2011077980A (ja) * 2009-10-01 2011-04-14 Yanmar Co Ltd 農作業機械における処理条件の自動設定
US8175775B2 (en) * 2008-06-11 2012-05-08 Cnh America Llc System and method employing short range communications for establishing performance parameters of an exemplar agricultural machine among a plurality of like-purpose agricultural machines
JP5098277B2 (ja) 2006-09-29 2012-12-12 井関農機株式会社 コンバイン
WO2013012080A1 (ja) * 2011-07-20 2013-01-24 ヤンマー株式会社 コンバイン
JP2013118858A (ja) * 2011-12-08 2013-06-17 Kubota Corp コンバイン
JP2013118857A (ja) * 2011-12-08 2013-06-17 Kubota Corp コンバイン
JP2014068561A (ja) * 2012-09-27 2014-04-21 Kubota Corp コンバイン
JP2014068562A (ja) * 2012-09-27 2014-04-21 Kubota Corp コンバイン

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3644084A (en) 1968-11-25 1972-02-22 Gillette Co Treatment of keratin fibers
US3714818A (en) * 1971-03-10 1973-02-06 W Relph Method and means of measuring the moisture content of grain
JPS56114748A (en) * 1980-02-14 1981-09-09 Satake Eng Co Ltd Grain moisture measuring device
JPS56128449A (en) * 1980-03-13 1981-10-07 Kaneko Agricult Mach Co Ltd Method and apparatus for automatic detection of moisture
JPS58216943A (ja) * 1982-06-11 1983-12-16 Iseki & Co Ltd 穀粒乾燥機の水分測定装置
US4487278A (en) * 1983-08-24 1984-12-11 Trebor Industries, Inc. Instrument for providing automatic measurement of test weight
JPS6440056U (ja) * 1987-09-04 1989-03-09
US5092819A (en) * 1990-05-17 1992-03-03 Schroeder Michael J Method and apparatus for qualitatively measuring characteristics of grain to be harvested
US5173079A (en) * 1991-02-28 1992-12-22 Gerrish Steven R Crop testing and evaluation system
US5327708A (en) * 1991-02-28 1994-07-12 Gerrish Steven R Crop testing and evaluation system
JP3186102B2 (ja) 1991-07-17 2001-07-11 井関農機株式会社 コンバインの刈取部
JP3787396B2 (ja) 1996-08-20 2006-06-21 ヤンマー農機株式会社 コンバイン
JP2736884B2 (ja) 1996-08-27 1998-04-02 ヤンマー農機株式会社 収穫機の車速制御装置
US5991025A (en) 1997-02-27 1999-11-23 Pioneer Hi-Bred International, Inc. Near infrared spectrometer used in combination with an agricultural implement for real time grain and forage analysis
US5751421A (en) 1997-02-27 1998-05-12 Pioneer Hi-Bred International, Inc. Near infrared spectrometer used in combination with a combine for real time grain analysis
US6483583B1 (en) 1997-02-27 2002-11-19 Textron Systems Corporation Near infrared spectrometry for real time analysis of substances
US5957773A (en) * 1997-04-02 1999-09-28 Dekalb Genetics Corporation Method and apparatus for measuring grain characteristics
DE19744485A1 (de) * 1997-10-09 1999-04-15 Claas Selbstfahr Erntemasch Vorrichtung zur Feuchtemessung in Erntemaschinen
TR200001149T2 (tr) 1997-10-28 2000-08-21 Unilever N.V. Oda sıcaklığında niteliği bozulmayan niteliği bozulmayan ve esası çay olan bir içecek
US6845326B1 (en) * 1999-11-08 2005-01-18 Ndsu Research Foundation Optical sensor for analyzing a stream of an agricultural product to determine its constituents
US6460008B1 (en) * 2000-07-19 2002-10-01 Ivan E. Hardt Yield monitoring system for grain harvesting combine
JP2002223629A (ja) 2001-02-05 2002-08-13 Seirei Ind Co Ltd コンバインのグレンタンク構造
JP2003189733A (ja) 2001-12-27 2003-07-08 Mitsubishi Agricult Mach Co Ltd コンバインにおける水分測定装置
JP2003289712A (ja) 2002-04-05 2003-10-14 Yanmar Agricult Equip Co Ltd コンバインの管理システム
US6820459B2 (en) * 2002-09-18 2004-11-23 Deere & Company Automatic mass-flow sensor calibration for a yield monitor
JP2004129522A (ja) 2002-10-08 2004-04-30 Yanmar Agricult Equip Co Ltd コンバイン
JP2005080549A (ja) 2003-09-08 2005-03-31 Yanmar Co Ltd コンバインにおける制御装置
JP2005087155A (ja) 2003-09-19 2005-04-07 Yanmar Agricult Equip Co Ltd コンバイン
US7507917B2 (en) * 2004-08-25 2009-03-24 Kaltenheuser Steven R Apparatus and method for weighing crop on board a harvester
JP4578907B2 (ja) 2004-09-16 2010-11-10 ヤンマー株式会社 コンバイン
JP2006081485A (ja) * 2004-09-17 2006-03-30 Yanmar Co Ltd コンバイン
JP2006081480A (ja) 2004-09-17 2006-03-30 Yanmar Co Ltd 農業情報管理システム
JP4493014B2 (ja) * 2004-09-17 2010-06-30 ヤンマー株式会社 コンバイン
JP4895515B2 (ja) 2005-03-14 2012-03-14 ヤンマー株式会社 コンバイン
JP2007074963A (ja) 2005-09-13 2007-03-29 Iseki & Co Ltd コンバイン
DE102005047335A1 (de) * 2005-09-30 2007-04-12 Claas Selbstfahrende Erntemaschinen Gmbh Selbstfahrende Erntemaschine und Betriebsverfahren dafür
JP2009044995A (ja) 2007-08-20 2009-03-05 Mitsubishi Agricult Mach Co Ltd コンバイン
DE102008001783A1 (de) * 2008-05-15 2009-11-19 Deere & Company, Moline Messanordnung zur Bestimmung der Inhaltsstoffe einer aus einem Erntegutstrom entnommenen Probe
US8032255B2 (en) * 2008-06-30 2011-10-04 Deere & Company Monitoring of bin level for an agricultural product
US7877181B2 (en) * 2009-05-11 2011-01-25 Deere & Company Scalable grain tank fill level display
US8082809B2 (en) * 2009-10-08 2011-12-27 Pioneer Hi-Bred International, Inc. Combine harvester and associated method for selectively gathering grain test data
ES2675393T3 (es) * 2010-12-22 2018-07-11 Precision Planting Llc Métodos, sistemas y aparatos para monitorizar rendimiento y vehículo
US9043096B2 (en) 2011-03-31 2015-05-26 Ag Leader Technology Combine bin level monitoring system
WO2013059602A1 (en) * 2011-10-21 2013-04-25 Pioneer Hi-Bred International, Inc. Combine harvester and associated method for gathering grain
DE102013106131A1 (de) * 2012-07-16 2014-06-12 Claas Selbstfahrende Erntemaschinen Gmbh Fahrerassistenzsystem für landwirtschaftliche Arbeitsmaschine
US20140095032A1 (en) * 2012-10-01 2014-04-03 Ryan Mulder Real time scale communication between material handling devices
JP6073714B2 (ja) * 2013-03-13 2017-02-01 ヤンマー株式会社 作業機の表示装置
US9372109B2 (en) * 2013-03-15 2016-06-21 Raven Industires, Inc. Harvester elevator in-flow weight sensor and methods for the same
US9187259B2 (en) * 2013-03-15 2015-11-17 Unverferth Manufacturing Company, Inc. Method for controlling an unload operation on a mobile farm implement
US9272853B2 (en) * 2013-03-15 2016-03-01 Unverferth Manufacturing Company, Inc. Weight-based chute control for a farm implement
AT513625B1 (de) * 2013-03-18 2014-06-15 Wintersteiger Ag Wiegevorrichtung für einen Parzellenmähdrescher
JP5980162B2 (ja) * 2013-04-26 2016-08-31 株式会社クボタ コンバイン
US9810567B2 (en) * 2013-05-03 2017-11-07 Dickey-John Corporation Calibration-free continuous bin level sensor
CA2854497C (en) * 2013-06-14 2023-01-24 Larry Chanasyk System and method for tracking agricultural commodities, e.g. crop inventories
US9671273B2 (en) * 2014-02-05 2017-06-06 Juniper Systems, Inc. Grain measurement apparatus
US9702753B2 (en) * 2014-06-27 2017-07-11 Deere & Company Grain mass flow estimation
US9645006B2 (en) * 2014-06-27 2017-05-09 Deere & Company Calibration of grain mass measurement
US9916505B2 (en) * 2014-09-22 2018-03-13 Deere & Company Method and system for collecting image data
JP5973521B2 (ja) * 2014-10-15 2016-08-23 株式会社クボタ 光学式穀粒評価装置
CN107111843B (zh) * 2015-03-16 2021-03-09 株式会社久保田 谷粒管理系统以及联合收割机
US9872433B2 (en) * 2015-05-14 2018-01-23 Raven Industries, Inc. System and method for adjusting harvest characteristics
US10371558B2 (en) * 2016-08-31 2019-08-06 Deere & Company System and method for measuring a bin level via an electromagnetic signal

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267814A (ja) * 1991-02-21 1992-09-24 Kubota Corp コンバイン
JPH10164967A (ja) 1997-12-02 1998-06-23 Yanmar Agricult Equip Co Ltd コンバインの穀粒重量測定装置
JP2002186348A (ja) * 2000-12-20 2002-07-02 Yanmar Agricult Equip Co Ltd 穀物貯蔵施設への穀物運搬システム
JP2005024381A (ja) * 2003-07-02 2005-01-27 Yanmar Agricult Equip Co Ltd 穀物検出装置
JP2006081490A (ja) * 2004-09-17 2006-03-30 Yanmar Co Ltd コンバイン
JP2006246845A (ja) * 2005-03-14 2006-09-21 Yanmar Co Ltd コンバイン
JP2006246831A (ja) 2005-03-14 2006-09-21 Yanmar Co Ltd コンバイン
JP5098277B2 (ja) 2006-09-29 2012-12-12 井関農機株式会社 コンバイン
US8175775B2 (en) * 2008-06-11 2012-05-08 Cnh America Llc System and method employing short range communications for establishing performance parameters of an exemplar agricultural machine among a plurality of like-purpose agricultural machines
JP2010227078A (ja) * 2009-03-30 2010-10-14 Yanmar Co Ltd コンバイン
JP2011036193A (ja) * 2009-08-12 2011-02-24 Yanmar Co Ltd コンバイン
JP2011077980A (ja) * 2009-10-01 2011-04-14 Yanmar Co Ltd 農作業機械における処理条件の自動設定
WO2013012080A1 (ja) * 2011-07-20 2013-01-24 ヤンマー株式会社 コンバイン
JP2013118858A (ja) * 2011-12-08 2013-06-17 Kubota Corp コンバイン
JP2013118857A (ja) * 2011-12-08 2013-06-17 Kubota Corp コンバイン
JP2014068561A (ja) * 2012-09-27 2014-04-21 Kubota Corp コンバイン
JP2014068562A (ja) * 2012-09-27 2014-04-21 Kubota Corp コンバイン

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3272204A4 (en) * 2015-03-18 2019-02-20 Kubota Corporation COMBINE
JP2017018014A (ja) * 2015-07-08 2017-01-26 井関農機株式会社 コンバイン

Also Published As

Publication number Publication date
CN105163575B (zh) 2021-08-03
EP2979537B1 (en) 2019-08-28
EP2979537A4 (en) 2017-03-15
US10945367B2 (en) 2021-03-16
KR20150133819A (ko) 2015-11-30
US20160029559A1 (en) 2016-02-04
EP2979537A1 (en) 2016-02-03
US20180042175A1 (en) 2018-02-15
KR102234179B1 (ko) 2021-03-31
US9820436B2 (en) 2017-11-21
US10143132B2 (en) 2018-12-04
US20190069482A1 (en) 2019-03-07
CN105163575A (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
WO2014156387A1 (ja) コンバイン
JP6037912B2 (ja) コンバイン
US6834484B2 (en) Automatic control initiation for a harvester
JP6029509B2 (ja) コンバイン
JP5908425B2 (ja) コンバイン
JP6521926B2 (ja) コンバイン
JP6300592B2 (ja) 収穫機
JP5171684B2 (ja) コンバイン
KR102521831B1 (ko) 콤바인
WO2015152362A1 (ja) コンバイン
JP2017063658A (ja) コンバイン
JP6022519B2 (ja) コンバイン
CN106973620B (zh) 联合收割机
JP6257676B2 (ja) コンバイン
JP2005224222A (ja) コンバインの収穫作業方法
EP3811760B1 (en) System and method for sensing harvested crop levels utilizing a stowable sensor array
JP6850440B2 (ja) コンバイン
JP2003009644A (ja) 穀粒排出装置
JP2018086019A (ja) 収穫機
JP2018171012A (ja) コンバイン
JP2019129762A (ja) コンバイン
JP2002176845A (ja) コンバインのグレンタンク
JP2018171011A (ja) コンバイン
JPH10295168A (ja) コンバインの脱穀装置
JPH0622638A (ja) 脱穀選別機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480023850.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773116

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14780069

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157030450

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014773116

Country of ref document: EP