WO2014092518A1 - 액정 소자 - Google Patents

액정 소자 Download PDF

Info

Publication number
WO2014092518A1
WO2014092518A1 PCT/KR2013/011680 KR2013011680W WO2014092518A1 WO 2014092518 A1 WO2014092518 A1 WO 2014092518A1 KR 2013011680 W KR2013011680 W KR 2013011680W WO 2014092518 A1 WO2014092518 A1 WO 2014092518A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
layer
compound
polymer network
crystal layer
Prior art date
Application number
PCT/KR2013/011680
Other languages
English (en)
French (fr)
Inventor
민성준
유정선
오동현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/652,323 priority Critical patent/US9840668B2/en
Priority to CN201380072911.9A priority patent/CN104995554B/zh
Priority to EP13862601.5A priority patent/EP2933677B1/en
Priority to JP2015547865A priority patent/JP6137764B2/ja
Publication of WO2014092518A1 publication Critical patent/WO2014092518A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/602Dicarboxylic acid esters having at least two carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D135/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D135/02Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/02Liquid crystal materials characterised by optical, electrical or physical properties of the components, in general
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/02Liquid crystal materials characterised by optical, electrical or physical properties of the components, in general
    • C09K19/0208Twisted Nematic (T.N.); Super Twisted Nematic (S.T.N.); Optical Mode Interference (O.M.I.)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/009Thermal properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K2019/548Macromolecular compounds stabilizing the alignment; Polymer stabilized alignment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13345Network or three-dimensional gels

Definitions

  • This application relates to a liquid crystal element, a polymerizable composition, a method for producing a liquid crystal element, a manufacturing apparatus for a liquid crystal element, and a use of a liquid crystal element.
  • LCD Liquid Crystal Display orientates a nematic or smectic liquid crystal compound in a certain direction, and switches an orientation through application of a voltage to implement an image.
  • the manufacturing process of LCD is an expensive process requiring a complicated process, and requires a large production line and equipment.
  • PDLC Polymer Dispersed Liquid Crystal
  • PNLC Polymer Network Liquid Crystal
  • PSLC Polymer Stabilized Liquid Crystal
  • the liquid crystal compound usually exists in an unaligned state in PDLC.
  • PDLC is a cloudy opaque state when no voltage is applied, and this state is called a scattering mode.
  • the liquid crystal compounds are aligned accordingly, thereby making it possible to switch between the transmission mode and the scattering mode.
  • Patent Document 1 Korean Laid-Open Patent No. 193-0013794
  • This application provides a liquid crystal element, a polymerizable composition, a manufacturing method of a liquid crystal element, the manufacturing apparatus of a liquid crystal element, and the use of a liquid crystal element.
  • Exemplary liquid crystal devices include a liquid crystal layer comprising an oriented polymer network and a liquid crystal compound.
  • the liquid crystal compound may be dispersed in the liquid crystal layer in phase separation from the alignment polymer network.
  • the term oriented polymer network means a polymer network formed to orientate a liquid crystal compound.
  • the polymer network which can orientate a liquid crystal compound can be formed by the method mentioned later.
  • the liquid crystal compound which may be dispersed and present in the alignment polymer network may exist in a state aligned in one direction by the action of the alignment polymer network or the like.
  • the alignment direction of the liquid crystal compound present in the aligned state in one direction may be changed by external action.
  • the term external action in the present application means all kinds of actions performed to change the alignment of the liquid crystal compound, and a representative example is the application of voltage.
  • the term initial orientation or normal orientation may refer to the alignment or alignment direction of the liquid crystal compound in the absence of the external action or the optical axis of the liquid crystal layer formed by the liquid crystal compound.
  • the term initial state or normal state may mean a state of the liquid crystal device having no external action. In the liquid crystal device, the alignment direction of the liquid crystal compound in the initial alignment state may be converted by an external action, and when the external action disappears, the liquid crystal compound may return to the initial alignment state.
  • the liquid crystal element may further include an alignment film.
  • the alignment film may be disposed adjacent to the liquid crystal layer, for example.
  • the alignment layer disposed adjacent to the liquid crystal layer may mean that the alignment layer is disposed at a position that may affect the alignment of the liquid crystal layer.
  • the alignment layer may be formed in contact with the liquid crystal layer.
  • the two layers do not necessarily have to be in contact with each other.
  • 1 includes an alignment layer 101 and a liquid crystal layer 102 formed on one surface of the alignment layer 101 as a structure of an exemplary element, and the liquid crystal layer 102 includes a polymer network 1021 and a liquid crystal region 1022. It is an example of the liquid crystal element containing).
  • the alignment layer 101 exists only on one surface of the liquid crystal layer 102, but the alignment layer 101 may exist on both surfaces of the liquid crystal layer.
  • the liquid crystal region refers to a region in which a liquid crystal compound is present in the polymer network.
  • the liquid crystal region may include a liquid crystal compound, and may refer to a region dispersed in the network in a phase-separated state from the polymer network. Can be.
  • the liquid crystal compound in the liquid crystal region 1022 is indicated by an arrow.
  • the liquid crystal device may include a polarization layer disposed on one side or both sides of the liquid crystal layer.
  • the polarizing layer is not particularly limited to conventional materials used in conventional LCDs, for example, PVA (poly (vinyl alcohol)) polarizing films, and the like, lyotropic liquid crystal (LLC) or reactive liquid crystal (RM:
  • a polarizing layer implemented by a coating method such as a polarizing coating layer including a reactive mesogen and a dichroic dye may be used.
  • the polarizing layer implemented by the coating method as described above may be referred to as a polarizing coating layer.
  • the coating layer may further include a protective layer protecting the layer of the breast liquid crystal.
  • the breast liquid crystal a known liquid crystal can be used without particular limitation, and for example, a breast liquid crystal capable of forming a breast liquid crystal layer having a dichroic ratio of about 30 to 40 can be used.
  • the polarizing coating layer includes a reactive liquid crystal (RM) and a dichroic dye
  • a linear dye or a discotic dye may be used as the dichroic dye. It may be.
  • the polarization layer is present, the arrangement of the light absorption axis is not particularly limited.
  • the polarization layer may be selected in consideration of the normal orientation of the liquid crystal layer and the mode of the device.
  • two polarizing layers are disposed on both sides of the liquid crystal layer, and the light absorption axes of the respective polarizing layers are within a range of 80 to 100 degrees of each other. It may be arranged at an angle, for example perpendicular to each other.
  • two polarizing layers are disposed on both sides of the liquid crystal layer, and the light absorption axes of the respective polarizing layers are within a range of -10 degrees to 10 degrees of each other. It may be arranged at any angle, for example to be horizontal to each other.
  • the normal alignment of the liquid crystal layer may be arranged to form any angle within the range of 40 degrees to 50 degrees with the light absorption axis of the two polarizing layers, for example, about 45 degrees.
  • the liquid crystal device may include one or two or more base layers.
  • the liquid crystal layer may be disposed between two substrate layers arranged oppositely.
  • the alignment layer may be disposed inside the substrate layer, for example, between the liquid crystal layer and the substrate layer.
  • the liquid crystal element further includes a base layer facing each other, and the liquid crystal layer may be present between the opposite base layer.
  • an alignment layer may be present between the liquid crystal layer and the base layer.
  • FIG. 2 shows an exemplary liquid crystal element in which the alignment layer 101 and the liquid crystal layer 102 exist between the base layers 201A and 201B which are spaced apart from each other at predetermined intervals and are disposed to face each other.
  • the above-mentioned polarizing layer may normally exist outside the base layer, but if necessary, the polarizing layer may exist inside the base layer, that is, between the liquid crystal layer and the base layer.
  • the use of the above-mentioned polarizing coating layer may be advantageous.
  • a base material layer a well-known raw material can be used without a restriction
  • inorganic films, plastic films, etc. such as a glass film, a crystalline or amorphous silicon film, a quartz, or an Indium Tin Oxide (ITO) film, can be used.
  • the optically isotropic base material layer the optically anisotropic base material layer like a retardation layer, a polarizing plate, a color filter substrate, etc. can be used.
  • the polarizing layer is present inside the base layer, that is, between the liquid crystal layer and the base layer, even when an anisotropic base layer is used as the base layer, an element having an appropriate performance can be realized.
  • plastic substrate layer examples include triacetyl cellulose (TAC); COP (cyclo olefin copolymer) such as norbornene derivatives; Poly (methyl methacrylate); PC (polycarbonate); PE (polyethylene); PP (polypropylene); PVA (polyvinyl alcohol); DAC (diacetyl cellulose); Pac (Polyacrylate); PES (poly ether sulfone); PEEK (polyetheretherketon PPS (polyphenylsulfone), PEI (polyetherimide); PEN (polyethylenemaphthatlate); PET (polyethyleneterephtalate); PI (polyimide); PSF (polysulfone); PAR (polyarylate) or amorphous fluorine resin
  • the substrate layer may include a coating layer of a silicon compound such as gold, silver, silicon dioxide or silicon monoxide, or a coating layer such as an antireflection layer, if necessary.
  • the electrode layer may be included on the surface of the substrate layer, for example, the surface of the liquid crystal layer side of the substrate layer (for example, the surface of the substrate layer 201A or 201B in contact with the alignment layer 101 or the liquid crystal layer 102 in FIG. 2).
  • the electrode layer may be formed by, for example, depositing a conductive polymer, a conductive metal, a conductive nanowire, or a metal oxide such as indium tin oxide (ITO), etc.
  • ITO indium tin oxide
  • the electrode layer may be formed to have transparency. In this field, various materials and formation methods capable of forming a transparent electrode layer are known, and all of these methods can be applied.If necessary, the electrode layer formed on the surface of the base layer may be appropriately patterned. have.
  • the liquid crystal compound may exist in a normal state, for example, in a state in which there is no external action such as application of voltage, and aligned in one direction, and the alignment direction may be an external action, eg, application of external voltage.
  • a device capable of mutual switching between a white mode and a black mode may be implemented.
  • the transmission mode in a state in which there is no external action (ie, initial state or normal state), the transmission mode is implemented, the external mode is switched to the blocking mode, and when the external action is removed, the device is switched back to the transmission mode.
  • the absence of an external action i.e.
  • the blocking mode is implemented and switched to the transmission mode under external action.
  • the device may be switched back to the blocking mode (these devices may be referred to as devices in a normal blocking mode for convenience).
  • the alignment between the polarizing layers of the polarizing layer and the optical absorbing axes of the polarizing layers is usually 40 between the two polarizing layers arranged such that the optical absorption axes are at an angle within 80 to 100 degrees, for example, perpendicular to each other.
  • the liquid crystal layer is positioned at an angle within, for example, 45 degrees, for example, FIGS. 50 to 50 degrees, a device in a normally transparent mode may be implemented.
  • the optical absorption axes of the polarizing layers and the optical absorption axes of the polarizing layers are generally aligned between two polarizing layers arranged such that the optical absorption axes are disposed at an angle of -10 degrees to 10 degrees, for example, horizontally.
  • a device in a normally black mode may be implemented.
  • the blocking mode may be implemented by changing the alignment state of the liquid crystal compound to a vertical alignment state by applying a voltage.
  • black mode is a concept that is distinct from the so-called scattering mode in conventional PDLC.
  • the haze in the blocking mode is 10% or less, 8% or less, 6% or less, or 5%. It is as follows.
  • the haze in the transmission mode of the device of the present application is also 10% or less, 8% or less, 6% or less, or 5% or less.
  • the haze may be a percentage of the transmittance of the diffused light to the transmittance of the total transmitted light passing through the measurement object.
  • the haze can be evaluated using a haze meter (NDH-5000SP). Haze can be evaluated in the following manner using the haze meter. In other words, the light is transmitted through the measurement target and is incident into the integrating sphere.
  • the liquid crystal device of the present application may exhibit excellent transparency in the transmission mode.
  • the liquid crystal device may exhibit a light transmittance of 80% or more, 85% or more, 90% or more or 95% or more in a normal alignment state, that is, in a state in which there is no external action such as a voltage-free state. have.
  • the above-mentioned light transmittance may be exhibited in the state in which external action such as voltage application is present.
  • the light transmittance may be light transmittance for any wavelength in the visible light region, for example, in the range of about 400 nm to 700 nm.
  • the liquid crystal device can exhibit a high contrast ratio.
  • the term contrast ratio may mean a ratio (T / B) of the luminance T in the transmission mode and the luminance B in the blocking mode.
  • the liquid crystal device includes two liquid crystal layers, that is, first and second polarization layers disposed on both sides of the liquid crystal layer and the liquid crystal layer, and the maximum value of the contrast ratio is 200 or more, 250 or more, Or 300 or more.
  • the contrast ratio may be 600 or less, 550 or less, 500 or less, 450 or less, or 400 or less. This contrast ratio can be achieved by implementing the device using the oriented polymer network and the polarizing layer as described above.
  • the liquid crystal device can be driven through low energy consumption, for example, through a low drive voltage.
  • the liquid crystal device may have a required voltage for realizing a light transmittance of 10% or a light transmittance of 90% of 30 V or less, 25 V or less, or 20 V or less. That is, in the case of a device in a normally transparent mode, the blocking mode may be realized by changing the alignment direction of the liquid crystal compound by applying a voltage. In this process, a voltage required to make the light transmittance 10% is achieved. It may be in the above range. On the contrary, in the case of a device in a normally black mode, the transmission mode may be realized by changing the alignment direction of the liquid crystal compound by applying a voltage.
  • the voltage required to make the light transmittance 90% It may be in the above range.
  • the lower the required voltage the more excellent the performance of the device is. Therefore, the lower limit of the required voltage is not particularly limited.
  • the required voltage may be 5 V or more.
  • Such a low driving voltage can be achieved by implementing the device using the oriented polymer network and polarizing layer as described above.
  • the liquid crystal layer of the liquid crystal element may include a polymer network and a liquid crystal compound dispersed in the polymer network, and may exhibit excellent thermal stability.
  • the liquid crystal layer may satisfy the following formula A before and after heat treatment maintained at 70 ° C. for 200 hours.
  • X 1 is a phase difference of the liquid crystal layer before the heat treatment
  • X 2 is a phase difference of the liquid crystal layer after the heat treatment.
  • the absolute value of the rate of change of the phase difference before and after the heat treatment may be 10% or less.
  • the absolute value of the rate of change shows that the lower the numerical value, the better the liquid crystal layer has excellent thermal stability.
  • the lower limit is not particularly limited.
  • the polymer network may be, for example, a network of precursors comprising a polymerizable compound.
  • the polymer network may comprise the polymerizable compound in a polymerized state.
  • a non-liquid crystalline compound which does not exhibit liquid crystallinity may be used. If necessary, a liquid crystalline compound may be used as the polymerizable compound, but in such a case, the birefringence of the polymer network described later may be considered.
  • the composition of the polymerizable compound forming the polymer network may be controlled so that the polymer network exhibits orientation.
  • the polymer network or the precursor may comprise at least one of a bifunctional acrylate compound, a trifunctional or higher polyfunctional acrylate compound, and a monofunctional acrylate compound.
  • the polymer network may comprise the compound in a crosslinked or polymerized state.
  • the term acrylate compound refers to a compound including an acryloyl group or a methacryloyl group, the compound containing one functional group is a monofunctional acrylate compound, the compound containing two or more polyfunctional acrylic Rate compound.
  • the compound containing two functional groups below is referred to as a bifunctional acrylate compound, and the trifunctional or higher functional group, that is, the acrylate compound including three or more functional groups, is simply referred to as a polyfunctional acrylate compound.
  • the multifunctional acrylate compound may include, for example, 3 to 8, 3 to 7, 3 to 6, 3 to 5 or 3 to 4 functional groups.
  • the polymer network or a precursor thereof may include at least one of the difunctional, polyfunctional and monofunctional acrylate compounds to satisfy the following formulas 1 to 3 to implement a suitable oriented polymer network.
  • A, B, and C are each obtained by converting the sum of the weights of the difunctional acrylate, the polyfunctional acrylate compound, and the monofunctional acrylate compound present in the precursor or the polymer network into 100, respectively. It is the weight ratio between compounds. For example, if only bifunctional acrylate compounds are present in the precursor or polymer network, then in Formulas 1 to 3 A is 100 and B and C are each 0. In another example, if only bi- and monofunctional acrylate compounds are present in the precursor or polymer network, then in Formulas 1 to 3 A and C are each 50 and B is 0.
  • the numerical value A-1.3B obtained by subtracting 1.3 ⁇ B from A in Equation 1 may be about 0.5 to 100 or about 1 to 100.
  • the numerical value A-C obtained by subtracting C from A in Equation 2 may be 0 to 100.
  • the numerical value A-0.6 (B + C) obtained by subtracting 0.6 ⁇ (B + C) from A in Equation 3 may be 2 to 100, 3 to 100, or 4 to 100.
  • the polymer network or a precursor thereof may include at least one compound of the di-functional, multi-functional and monofunctional acrylate compounds to satisfy the following Equations 4 to 6.
  • Equations 4 to 6 A, B and C are the same as defined in Equations 1 to 3, respectively.
  • the kind of the acrylate compound contained in the polymer network or its precursor is not particularly limited, and any kind may be used as long as it can exhibit orientation in a range satisfying the above-described formula.
  • bifunctional acrylate compound a compound represented by the following formula (1) can be used.
  • each R is independently hydrogen or an alkyl group having 1 to 4 carbon atoms
  • X is an alkylene group or alkylidene group having 1 to 20 carbon atoms.
  • the compound represented by following formula (2) can be used as said polyfunctional acrylate compound.
  • N is a number of 3 or more
  • m is a number of 0 to 5
  • each R is independently hydrogen or an alkyl group having 1 to 4 carbon atoms
  • X is a (m + n) valence radical
  • Y is hydrogen or an alkyl group to be.
  • the compound represented by following formula (3) can be used as said monofunctional acrylate compound.
  • R is hydrogen or an alkyl group having 1 to 4 carbon atoms
  • X is an alkyl group having 1 to 20 carbon atoms.
  • Examples of the alkyl group which may be present in R or Y in Formulas 1 to 3 include a methyl group or an ethyl group.
  • the alkylene group or alkylidene group of X is, for example, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 10 carbon atoms, 1 to 8 carbon atoms, 2 to 8 carbon atoms or 4 to 8 alkylene groups or alkyl. It may be a leaden group.
  • the alkylene group or alkylidene group may be, for example, linear, branched or cyclic.
  • n may be any one of 3 or more, 3 to 8, 3 to 7, 3 to 6, 3 to 5 or 3 to 4 in the range.
  • m in Formula 2 may be any number in the range of 0 to 5, 0 to 4, 0 to 3, 0 to 2 or 0 to 1.
  • X in formula (2) is a (m + n) valent radical, for example, a hydrocarbon having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms or 2 to 6 carbon atoms, for example
  • (m + n) derived from straight or branched alkanes may be a radical.
  • the alkyl group of X may be, for example, a straight or branched chain alkyl group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 4 to 12 carbon atoms, and 6 to 12 carbon atoms.
  • Substituents defined in Chemical Formulas 1 to 3, for example, an alkyl group, an alkylene group, an alkylidene group or a (m + n) radical, etc., may be substituted by one or more substituents, if necessary.
  • an alkyl group, an alkoxy group, an epoxy group, an oxo group, an oxetanyl group, a thiol group, a cyano group, a carboxyl group, or an aryl group may be exemplified, but is not limited thereto.
  • the polymer network or precursor thereof may be a solvent, radicals or cationic initiators capable of inducing polymerization of the polymerizable liquid crystal compound, basic substances, other reactive compounds capable of forming a network, in addition to the aforementioned compounds, or Additives such as surfactants may be further included.
  • the polymer network or precursor thereof may comprise a liquid crystalline compound, such as a reactive liquid crystalline compound. Even in this case, the ratio of the liquid crystal compound is appropriately adjusted in small amounts.
  • the polymer network may have a birefringence of 30 nm or less or 20 nm or less. That is, the polymer network may be an isotropic polymer network or a network having birefringence within the above range. Therefore, even when the liquid crystal compound is included, it is preferable that the polymer network is included in a range capable of exhibiting the above-mentioned birefringence.
  • the birefringence may mean, for example, a phase retardation calculated by Equation 6 below or a phase difference in the thickness direction calculated by Equation 7 below, and a lower limit thereof may be 0 nm.
  • Rin d ⁇ (nx-ny)
  • Rin is a retardation in plane
  • Rth is a retardation in thickness
  • d is a thickness of the polymer network
  • nx is a refractive index in the slow axis direction on the plane of the polymer network
  • ny is a fast axis direction on the plane of the polymer network. Is the refractive index of nz
  • nz is the refractive index in the thickness direction of the polymer network.
  • the polymer network may satisfy the following formula B together with the liquid crystal compound in the liquid crystal region.
  • Equation B a is any number in the range of 0 to 0.5, n o is the normal refractive index of the liquid crystal compound, n e is the extraordinary refractive index of the liquid crystal compound, and n p is Refractive index of the polymer network.
  • the term refractive index, retardation or birefringence may be a refractive index, retardation or birefringence measured for light having a wavelength of 550 nm, unless otherwise specified.
  • the term refractive index of the polymer network means the normal refractive index of the network.
  • a may be, for example, less than 0.4, less than 0.3, less than 0.2 or less than 0.1, or 0.
  • the polymer network may have a dielectric anisotropy of at least 3, at least 3.5 or at least 4. It is possible to maintain excellent driving voltage characteristics of the liquid crystal element within such a dielectric constant range.
  • the upper limit of the dielectric constant is not particularly limited and may be, for example, about 20 or less, about 15 or less, or about 10 or less.
  • the liquid crystal region dispersed in the polymer network contains a liquid crystal compound.
  • a liquid crystal compound any kind of compound can be used as long as it can be phase separated in the polymer network and exist in a state oriented by the polymer network.
  • a smectic liquid crystal compound, a nematic liquid crystal compound, or a cholesteric liquid crystal compound may be used as the liquid crystal compound.
  • the liquid crystal compound is phase-separated and not bonded to the polymer network, and may be in a form in which the orientation may be changed under an external action such as a voltage from the outside.
  • the liquid crystal compound may be a compound having no polymerizable group or crosslinkable group.
  • a nematic liquid crystal compound may be used as the liquid crystal compound.
  • a nematic liquid crystal compound can be used as a liquid crystal compound which satisfy
  • n e is the abnormal refractive index of the liquid crystal compound
  • n o is the normal refractive index of the liquid crystal compound
  • b is any number within the range of 0.1 to 1.
  • liquid crystal compound that satisfies the formula (B)
  • it can be provided an element that exhibits excellent transparency in the transmission mode while ensuring a high contrast ratio.
  • b may be 0.1 to 0.9, 0.1 to 0.7, 0.1 to 0.5, or 0.1 to 0.3 in another example.
  • the liquid crystal compound may have a difference between an abnormal dielectric constant ( ⁇ e , an extraordinary dielectric anisotropy) and a normal dielectric constant ( ⁇ o , an ordinary dielectric anisotropy, a dielectric constant in a short axis direction) of 4 or more, 6 or more, 8 or more, or 10 or more. . Having such a dielectric constant can provide a device having excellent driving voltage characteristics.
  • the difference in permittivity is that the higher the value, the more the device can exhibit appropriate characteristics, and its upper limit is not particularly limited.
  • the liquid crystal compound has an ideal dielectric constant ( ⁇ e , extraordinary dielectric anisotropy) of about 6 to 50, and a normal dielectric constant ( ⁇ o , ordinary dielectric anisotropy, dielectric constant in the uniaxial direction) of about 2.5 to 7 Phosphorus compounds can be used.
  • ⁇ e extraordinary dielectric anisotropy
  • ⁇ o normal dielectric constant
  • the liquid crystal layer or the polymerizable composition described later may include 5 parts by weight to 50 parts by weight of the polymer network (or a polymer network precursor described later) and 50 parts by weight to 95 parts by weight of the liquid crystal compound.
  • the liquid crystal layer or the polymerizable composition described later may include 5 parts by weight to 45 parts by weight of a polymer network (or a polymer network precursor described later), 55 parts by weight to 95 parts by weight of a liquid crystal compound, a polymer network (or a polymer network described later).
  • the term weight part may mean a ratio of weight between components. Within this range of weight ratio
  • the phase difference Rc of the liquid crystal layer is determined by the mode or structure of the device to be implemented, and is not particularly limited.
  • the liquid crystal layer may exhibit a phase difference of about 240 nm to 310 nm, 245 nm to 305 nm, and 250 nm to 300 nm with respect to the 550 nm wavelength.
  • This range of phase difference may be suitable for implementing an element of a normal transmission mode, for example, between two polarizing layers.
  • the liquid crystal layer may satisfy the following formula D, for example.
  • Equation D d is the thickness of the liquid crystal layer (unit: nm), n e is the abnormal refractive index of the liquid crystal compound, n o is the normal refractive index of the liquid crystal compound, and A is the total weight (T) of the polymer network and the liquid crystal compound.
  • the numerical value calculated by ⁇ d x (n e -n o ) ⁇ x A in Equation D is the theoretical phase difference of the liquid crystal layer.
  • the theoretical phase difference of the liquid crystal layer is more suitable as it is closer to the phase difference (actual phase difference) of the liquid crystal layer described above.
  • the absolute value of the difference between the numerical value calculated by ⁇ d ⁇ (n e -n o ) ⁇ ⁇ A in the formula D and the measured phase difference of the liquid crystal layer is about 15 nm or less, 10 nm or less, 8 nm or less, or 5 or less than nm.
  • the liquid crystal layer satisfying Equation D may be suitable for implementing an element of a transmission mode, for example, between two polarizing layers.
  • (N e -n o ) in Equation D may be, for example, 0.05 to 0.20.
  • (N e -n o ) may be 0.07 or more in another example.
  • (n e -n o ) may be 0.18 or less or 0.15 or less.
  • A is the ratio (L / T) of the weight (L) of the liquid crystal compound or the volume (VL) of the liquid crystal compound in the total volume (TV) of the liquid crystal layer based on the total weight (T) of the polymer network and the liquid crystal compound.
  • Ratio (VL / TV) and may be, for example, in the range of 0.5 to 0.98.
  • the ratio (L / T or VL / TV) may be 0.6 or more or 0.7 or more in another example.
  • the thickness of the liquid crystal layer is not particularly limited as long as it is set to satisfy the above description, and may be, for example, within a range of about 1 ⁇ m to about 10 ⁇ m.
  • the alignment film containing a photo-alignment compound can be used, for example.
  • the term photo-orientation compound is aligned in a predetermined direction through irradiation of light or the like, and in the aligned state, adjacent liquid crystal compounds are moved in a predetermined direction through an interaction such as anisotropic interaction. It can mean a compound that can be oriented.
  • the photo-orientation compound may exist in an aligned state to have orientation.
  • the photo-alignment compound may be a monomolecular compound, a monomeric compound, an oligomeric compound or a high molecular compound.
  • the photoalignable compound may be a compound including a photosensitive moiety.
  • Various photo-alignment compounds that can be used for the alignment of the liquid crystal compound are known.
  • Photo-alignment compounds include, for example, compounds aligned by trans-cis photoisomerization; Compounds aligned by photo-destruction, such as chain scission or photo-oxidation; Compounds ordered by photocrosslinking or photopolymerization such as [2 + 2] addition cyclization ([2 + 2] cycloaddition), [4 + 4] addition cyclization or photodimerization; Compounds aligned by photo-Fries rearrangement or compounds aligned by ring opening / closure reaction may be used.
  • azo compounds or stilbenes such as sulfated diazo dyes or azo polymers
  • cyclobutane tetracarboxylic dianhydride cyclobutane-1,2,3,4-tetracarboxylic dianhydride
  • aromatic polysilane or polyester polystyrene or polyimide and the like
  • polystyrene or polyimide and the like can be exemplified.
  • a compound aligned by photocrosslinking or photopolymerization a cinnamate compound, a coumarin compound, a cinnanam compound, a tetrahydrophthalimide compound, a maleimide compound , Benzophenone compounds, diphenylacetylene compounds, compounds having chalconyl residues (hereinafter referred to as chalconyl compounds) or compounds having anthracenyl residues (hereinafter referred to as anthracenyl compounds) as photosensitive residues;
  • chalconyl compounds compounds having chalconyl residues
  • anthracenyl compounds compounds having anthracenyl residues
  • examples of the compounds aligned by the optical freeze rearrangement include aromatic compounds such as benzoate compounds, benzoamide compounds, and methacrylamidoaryl methacrylate compounds.
  • the compound aligned by the ring-opening / ring-closure reaction such as a spiropyran A [4 + 2] ⁇ - electron system ([4 + 2] ⁇ -electronic system), but may be exemplified by compounds such as sorting by a ring opening / ring-closure reaction of, without being limited thereto.
  • the photo-alignment compound may be a monomolecular compound, a monomeric compound, an oligomeric compound, or a high molecular compound, or may be in the form of a blend of the photo-alignment compound and the polymer.
  • the oligomeric or polymeric compound as described above may have a residue derived from the above-described photoalignable compound or a photosensitive residue described above in the main chain or in the side chain.
  • Polymers having residues or photosensitive residues derived from photo-alignment compounds or that can be mixed with the photo-alignment compounds include polynorbornene, polyolefins, polyarylates, polyacrylates, poly (meth) acrylates, poly Examples include mead, poly (amic acid), polymaleimide, polyacrylamide, polymethacrylamide, polyvinyl ether, polyvinyl ester, polystyrene, polysiloxane, polyacrylonitrile or polymethacrylonitrile It may be, but is not limited thereto.
  • Polymers that may be included in the oriented compound include, for example, polynorbornene cinnamate, polynorbornene alkoxy cinnamate, polynorbornene allylyloxy cinnamate, polynorbornene fluorinated cinnamate, polynorbornene chlorinated cinnamate or Polynorbornene discinnamate and the like can be exemplified, but is not limited thereto.
  • the oriented compound is a polymeric compound
  • the compound may have, for example, a number average molecular weight of about 10,000 g / mol to about 500,000 g / mol, but is not limited thereto.
  • the alignment layer may be formed by, for example, mixing and coating necessary additives such as a photoinitiator to the photoalignable compound and then irradiating polarized ultraviolet rays and the like in a desired direction.
  • the present application also relates to polymerizable compositions.
  • the polymerizable composition can be used, for example, in forming the liquid crystal layer of the liquid crystal element described above. That is, the polymerizable composition may be a precursor composition of the liquid crystal layer.
  • the polymerizable composition may include at least one of the bifunctional acrylate compound, the trifunctional or higher polyfunctional acrylate compound, and the monofunctional acrylate compound so as to satisfy the above Formulas 1 to 3 and, if necessary, the above Formulas 1 to 6.
  • Precursors and liquid crystal compounds of the oriented polymer network may include at least one of the bifunctional acrylate compound, the trifunctional or higher polyfunctional acrylate compound, and the monofunctional acrylate compound so as to satisfy the above Formulas 1 to 3 and, if necessary, the above Formulas 1 to 6.
  • the polymerizable composition may include 50 parts by weight to 95 parts by weight of a precursor of an oriented polymer network comprising at least one of a bifunctional acrylate compound, a trifunctional or higher polyfunctional acrylate compound, and a monofunctional acrylate compound. And 5 parts by weight to 50 parts by weight of the liquid crystal compound.
  • Exemplary polymerizable compositions may include precursors and liquid crystal compounds of an oriented polymer network.
  • the precursor may be formulated to form an oriented polymer network, for example the oriented polymer network described above.
  • the precursor may comprise a polymerizable compound, for example the bifunctional, polyfunctional and / or monofunctional acrylate compound.
  • the precursor may include the acrylate compound in a ratio that satisfies Equations 1 to 6 described above, and other kinds of acrylate compounds, dielectric constant, and matters related to Equation B may be equally applied.
  • the type of liquid crystal compound included in the precursor is not particularly limited, and the above description may be applied, including, for example, Formula C. In addition, the above information may also be applied to the ratio of the precursor and the liquid crystal compound.
  • the polymerizable composition may include a ball-shaped spacer in an appropriate ratio in order to properly maintain the gap of the formed liquid crystal layer.
  • the shape, size, and the like of the spacer are not particularly limited, and may be selected to secure a gap of a desired liquid crystal layer.
  • the proportion of the spacer is not particularly limited and may be included, for example, in the range of about 0,1% to 5% by weight in the total polymerizable composition.
  • the polymerizable composition may be prepared by dissolving other necessary additives (eg, an initiator, etc.) in addition to the precursor and the liquid crystal compound in a suitable solvent.
  • a suitable solvent such as toluene, xylene, cyclopentanone or cyclohexanone can be used.
  • the polymerizable composition may be composed of a solventless type.
  • the polymerizable composition formed in the solventless type may be advantageous for application in the squeeze coating method described below.
  • the manner in which the polymerizable composition is prepared in the non-solvent type is not particularly limited, and may be prepared by adjusting the viscosity or ratio of other components without using a solvent among the components of the composition described above.
  • the present application also relates to a method of manufacturing a liquid crystal device.
  • the manufacturing method may include forming a liquid crystal layer including a liquid crystal compound dispersed in a polymer network by polymerizing a layer including a polymerizable composition, for example, a layer formed by coating the polymerizable composition.
  • a polymerizable composition for example, the precursor composition of the liquid crystal layer described above can be used.
  • the polymerization may be carried out by irradiating an appropriate energy, for example, light that can induce polymerization.
  • the method of forming the layer comprising the polymerizable composition is not particularly limited, and known coatings such as roll coating, printing, inkjet coating, slit nozzle method, bar coating, comma coating, spin coating or gravure coating, etc.
  • the layer including the polymerizable composition may be formed by a squeeze coating method.
  • the above-described solvent-free composition can be used as the polymerizable composition.
  • the squeeze coating method it is possible to form a more uniform liquid crystal layer, and it is possible to directly bond the above without applying a separate adhesive layer to the bonding of the liquid crystal layer and the base layer. And the like may be advantageous.
  • the layer comprising the polymerizable composition may be, for example, positioned between the two substrate layers, for example, the above-mentioned substrate layer, and applied pressure to at least one of the substrate layers. Can be formed.
  • the method of applying the pressure is not particularly limited, and for example, a pressure roller or the like may be used. Pressing may be performed simultaneously or sequentially on the front surface of the substrate layer.
  • 3 is a view showing the squeeze coating method by way of example. As shown in FIG. 3, first, the polymerizable composition 301, for example, the above-described solventless composition is placed at a predetermined portion of the base layer 201A, and the base layer 201B is again placed on the top thereof.
  • the pressure roller 302 may be positioned on at least one of the substrate layers to sequentially press the substrate layers.
  • the above-described electrode layer and / or alignment layer may be positioned inside the substrate layers 201A and 201B, for example, on the side which will finally come into contact with the liquid crystal layer.
  • the polymerization may be simultaneously performed in the pressing process or may be performed after the pressing is finished.
  • the polymerization can be carried out on the alignment film to form a suitable alignment polymer network.
  • a liquid crystal layer can be formed by forming a layer containing the polymerizable composition on the alignment film, or polymerizing by applying energy after forming the layer between two oppositely arranged alignment films.
  • the alignment layer may include, for example, a photo-alignment compound, for example, the photo-alignment compound described above.
  • Such an alignment layer may be formed by coating an alignment layer precursor on a suitable substrate, for example, the substrate layer, and exposing the alignment layer to the photoalignable compound. 4 schematically shows a process of forming the alignment film 101 by irradiating light to the precursor of the alignment film formed on the substrate layer 201A.
  • the precursor of the alignment film may further contain an appropriate amount of an initiator in addition to the photo-alignment compound, and may also include other additives such as a surfactant if necessary.
  • the precursor layer of the alignment layer may be formed by coating the precursor by a conventional coating method such as bar coating, comma coating, inkjet coating, or spin coating.
  • the above-mentioned transparent electrode layer may be formed in the surface of the base material layer in which the precursor layer is formed, for example.
  • energy may be applied to the layer by irradiation of light or the like.
  • Irradiation of light can be performed, for example, when a precursor contains a solvent etc., after drying the formed layer under suitable conditions and making the solvent volatilize. Such drying may be performed, for example, at a temperature of about 60 ° C. to 130 ° C. for about 1 minute to 5 minutes, but is not limited thereto.
  • Irradiation of light may be performed so that the alignment compound included in the layer of the precursor can be aligned.
  • the alignment of the orienting compound can be performed using linearly polarized light.
  • the wavelength or intensity of the irradiated light can be selected to provide for proper alignment of the oriented compound.
  • photoalignable compounds are aligned by visible or near ultraviolet light, but far ultraviolet or near infrared light may be used if necessary.
  • FIG. 5 schematically shows a process of forming a liquid crystal layer 102 by irradiating light to a layer including a polymerizable composition present on the surface of the alignment film 101 formed in FIG. 4.
  • the liquid crystal layer is formed on one alignment layer. However, if necessary, the liquid crystal layer may be formed between two alignment layers as described above.
  • polymerization of the polymer network precursor and phase separation of the liquid crystal compound may occur to form the polymer network and the liquid crystal region.
  • the polymerization may be carried out in a state in which a layer of the liquid crystal layer precursor, that is, a layer comprising the polymerizable composition described above, is maintained in a liquid crystal phase, for example, a nematic phase, for the formation of a suitable oriented network. If the layer is formed in a state in which the layer is not a nematic phase, for example, an isotropic phase, proper orientation may not be ensured. In order to maintain the nematic phase, the polymerization may be performed at a temperature below the nematic temperature Tni of the layer of the liquid crystal layer precursor, that is, the layer including the polymerizable composition.
  • nematic temperature in the present application means a temperature at which the layer transitions from a nematic state to an isotropic state, and the range of the temperature may be determined according to the composition of the layer.
  • the temperature is not particularly limited as long as the polymerization is carried out below the nematic temperature of the layer, that is, while the layer is in a nematic phase.
  • Conditions for application of energy for polymerization are not particularly limited as long as the polymerizable compound is polymerized to form a polymer network and the liquid crystal compound is phase separated to form a liquid crystal region. If necessary, an appropriate heat application or exposure process may be performed before or after the light irradiation process or at the same time to further promote the formation of the polymer network.
  • a process of disposing a polarizing layer on one side or both sides of the liquid crystal layer formed if necessary may be further performed.
  • the polarization layer is disposed on both sides of the liquid crystal layer so as to form an angle within the range of 80 degrees to 100 degrees, for example, perpendicular to each other, or the light absorption axis is
  • a process of arranging the polarizing layers so as to form an angle within the range of -10 degrees to 10 degrees with each other, for example, horizontally, may be further performed.
  • the present application also relates to a manufacturing apparatus for producing a liquid crystal element, for example, the liquid crystal element described above.
  • the manufacturing apparatus may include, for example, a polymerization inducing means installed to provide energy for inducing polymerization of the precursor of the liquid crystal layer, for example, the polymerizable composition described above.
  • a polymerization inducing means installed to provide energy for inducing polymerization of the precursor of the liquid crystal layer, for example, the polymerizable composition described above.
  • the details described above may be equally applied to the polymer network precursor and the liquid crystal compound included in the precursor of the liquid crystal layer.
  • the kind of polymerization inducing means is not particularly limited either, and heating or light irradiation means can be used to enable the application or irradiation of energy, for example, heat or light, to the precursor.
  • the manufacturing apparatus may also include mounting means installed to hold the liquid crystal layer precursor layer.
  • the liquid crystal layer may be formed by polymerizing in the state of maintaining the layer of the precursor by such a mounting means.
  • the kind of mounting means is not particularly limited as long as it can mount the liquid crystal layer precursor.
  • the mounting means may be provided to maintain the surface of the precursor layer at a curved surface at least during the polymerization of the liquid crystal layer precursor.
  • An example of such a mounting means is a roll.
  • the manufacturing apparatus is a so-called roll-to-roll manufacturing apparatus, and is a manufacturing apparatus including one or more guide rolls formed to move a layer of the precursor of the liquid crystal layer, and the layer is formed by the guide roll.
  • the liquid crystal element can be manufactured continuously by conveying.
  • the polymerization may proceed while the surface of the layer is kept curved on the guide roll, in which case the guide roll may act as the mounting means.
  • the guide roll may act as the mounting means.
  • the unwinding roll which can be introduced to the polymerization induction means side while unwinding the layer or the base layer on which the layer is to be formed, or the liquid crystal element in which the manufacturing process such as polymerization is completed, is recovered. It may further comprise a take-up roll.
  • the manufacturing apparatus may include temperature control means provided to maintain a temperature at which the polymerizable compound maintains a liquid crystal phase, such as the nematic phase described above, during the polymerization process, that is, at least the polymerizable compound is polymerized. .
  • the temperature regulating means is not particularly limited as long as it is formed so as to maintain an appropriate temperature, and may be configured using, for example, a temperature regulating drum and / or an inert gas purging chamber.
  • a temperature control drum for example, a cooling drum
  • the guide roll which may also act as the mounting means, so that the temperature is maintained in an appropriate range in the polymerization process. can do.
  • the device may be configured to include a region in which the polymerization is carried out while being mounted on the guide roll in the inert purging chamber, and a polymerization inducing means or the like is included in the purging chamber.
  • Figure 6 is an exemplary view showing a predetermined portion of the manufacturing apparatus implemented as described above, a guide roll (A) including a temperature control means such as a cooling drum; And an inert gas purging chamber B installed to allow the layer C of the precursor of the liquid crystal layer moving through the guide roll A to be introduced.
  • a guide roll A includes the temperature adjusting means and the chamber B is also formed, but any one of the two may be omitted if an appropriate temperature is maintained.
  • a polymerization inducing means for example, an UV lamp as shown in FIG. 6, may be further included so as to apply energy to the layer of the precursor moving by the guide roll A. , For example, may be present in the chamber (B).
  • the roll-to-roll apparatus moves the base material layer (for example, the base material layer 201A in FIGS. 2 and 3) by one or more guide rolls, inputted by conventional input means such as a take-up roll or the like.
  • the formation of the electrode layer, the formation of the alignment layer, the formation of the layer containing the polymerizable composition (for example, the layer of the polymerizable composition may be formed by the squeeze coating method) and the polymerization process of the layer.
  • the product finally manufactured through the bonding or forming process of the polarizing layer may be configured to be recovered by a recovery means such as a take-up roll.
  • the present application also relates to the use of the liquid crystal device.
  • An exemplary liquid crystal element can be produced simply and continuously through a roll-to-roll process or the like, for example.
  • the liquid crystal device can also be implemented as a flexible device, and can secure an excellent contrast ratio.
  • the present application relates to an optical modulation device including the liquid crystal device.
  • the optical modulation device a smart window, a window protective film, a flexible display device, an active retarder for viewing 3D images, a viewing angle adjusting film, or the like may be exemplified, but is not limited thereto.
  • the manner of configuring the above optical modulation device is not particularly limited, and a conventional manner may be applied as long as the liquid crystal element is used.
  • the liquid crystal device of the present application is, for example, a device capable of implementing a normally transparent mode or a normally black mode, exhibiting a high contrast ratio, driving at a low driving voltage, and excellent thermal stability. It can represent the durability of.
  • the liquid crystal device may be applied to various light modulation devices, such as a smart window, a window protective film, a flexible display device, an active retarder for viewing 3D images, or a viewing angle control film.
  • 1 and 2 show exemplary liquid crystal devices.
  • 3 and 5 are diagrams for explaining an exemplary device manufacturing process.
  • FIG. 6 is a view showing an exemplary liquid crystal device manufacturing apparatus.
  • 201A and 201B substrate layer
  • a mixture of polynorbornene (PNBCi, molecular weight (Mw): 85,000, polydispersity index (PDI): about 4.75) and a photoinitiator (Igacure 907) comprising a repeating unit of formula (A) as an oriented compound (polynorbornene: photoinitiator 2 : 0.25 (weight ratio)) was dissolved in a toluene solvent so that the solid content concentration of polynorbornene was 2% by weight to prepare an alignment film precursor.
  • the alignment layer precursor is applied to a transparent electrode layer of a polycarbonate (PC) film having an indium tin oxide (ITO) transparent electrode layer formed on a surface thereof, and linearly polarized ultraviolet rays (1,200 mJ / cm 2 ) through a WGP (Wire Grid Polarizer) Was irradiated to form an alignment film.
  • PC polycarbonate
  • ITO indium tin oxide
  • 1,6-hexanediol diacrylate and a liquid crystal compound (Merck, MAT-12-529, ne: 1.6092, no: 1.4820) were weight ratio of 1: 9 (polymer network precursor: liquid crystal compound).
  • a liquid crystal layer precursor polymerizable composition
  • Tni matic temperature
  • the precursor of the liquid crystal layer was coated on the surface of the prepared alignment layer so that the thickness of the final liquid crystal layer was 2.5 ⁇ m.
  • the alignment film surface of the PC film in which the alignment film was formed on one surface was laminated in contact with the coating layer in the same manner as described in the above-described alignment film formation, and then irradiated with ultraviolet (300mW / cm 2 ) to the polymer network.
  • the precursor was polymerized to form a liquid crystal layer.
  • the temperature at the time of ultraviolet irradiation was maintained at about 25 degreeC, and the liquid crystal layer precursor was made to maintain the nematic phase.
  • the refractive index of the polymer network forming the liquid crystal layer was measured to be about 1.456, and the phase difference (actual phase difference) of the liquid crystal layer was measured using the Axostep (Axometrics) equipment based on the wavelength of 550 nm according to the manufacturer's manual. The result was about 288 nm.
  • FIG. 7 is an optical microscope image of the liquid crystal layer
  • FIG. 8 is a scanning electron microscope (SEM) image of the liquid crystal layer.
  • a liquid crystal layer was formed in the same manner as in Example 1, except that 50 parts by weight of 1.6-hexanediol diacrylate and 50 parts by weight of 2-ethylhexyl acrylate were mixed as the polymer network precursor.
  • the nematic temperature Tni of the liquid crystal layer precursor was about 45 ° C., and the irradiation of ultraviolet rays was performed at 25 ° C., which is a temperature at which the precursor maintains the nematic phase.
  • the refractive index of the polymer network in the formed liquid crystal layer was about 1.446, and the measured phase difference of the liquid crystal layer was about 286.7 nm.
  • Example 2 In the same manner as in Example 1, except that 40 parts by weight of 1.6-hexanediol diacrylate, 20 parts by weight of trimethylolpropane triacrylate and 40 parts by weight of 2-ethylhexyl acrylate were used as a polymer network precursor.
  • a liquid crystal layer was formed.
  • the nematic temperature Tni of the liquid crystal layer precursor was about 45 ° C., and the irradiation of ultraviolet rays was performed at 25 ° C., which is a temperature at which the precursor maintains the nematic phase.
  • the refractive index of the polymer network in the formed liquid crystal layer was about 1.452, and the measured phase difference of the liquid crystal layer was about 285.3 nm.
  • Example 2 In the same manner as in Example 1, except that 40 parts by weight of 1.6-hexanediol diacrylate, 30 parts by weight of trimethylolpropane triacrylate and 30 parts by weight of 2-ethylhexyl acrylate were used as a polymer network precursor.
  • a liquid crystal layer was formed.
  • the nematic temperature Tni of the liquid crystal layer precursor was about 50 ° C., and the irradiation of ultraviolet rays was performed at 25 ° C., which is a temperature at which the precursor maintains the nematic phase.
  • the refractive index of the polymer network in the formed liquid crystal layer was about 1.455, and the measured phase difference of the liquid crystal layer was about 286.1 nm.
  • a liquid crystal layer was formed in the same manner as in Example 1, except that 70 parts by weight of 1.6-hexanediol diacrylate and 30 parts by weight of trimethylolpropane triacrylate were mixed as the polymer network precursor.
  • the nematic temperature Tni of the liquid crystal layer precursor was about 50 ° C., and the irradiation of ultraviolet rays was performed at 25 ° C., which is a temperature at which the precursor maintains the nematic phase.
  • the refractive index of the polymer network in the formed liquid crystal layer was about 1.461, and the measured phase difference of the liquid crystal layer was about 287 nm.
  • polymer network precursor As a polymer network precursor, a mixture of 40 parts by weight of 1.6-hexanediol diacrylate and 60 parts by weight of 2-ethylhexyl acrylate was used, and the polymer network precursor and the liquid crystal compound were mixed at 10:90 (polymer network precursor: liquid crystal).
  • a liquid crystal layer was formed in the same manner as in Example 1, except that the compound was mixed in a weight ratio of 1).
  • the nematic temperature Tni of the liquid crystal layer precursor was about 45 ° C., and the irradiation of ultraviolet rays was performed at 25 ° C., which is a temperature at which the precursor maintains the nematic phase.
  • the refractive index of the polymer network in the formed liquid crystal layer was about 1.444, and the measured phase difference of the liquid crystal layer was about 124 nm.
  • the polymer network precursor As the polymer network precursor, a mixture of 30 parts by weight of 1.6-hexanediol diacrylate, 20 parts by weight of trimethylolpropane triacrylate and 50 parts by weight of 2-ethylhexyl acrylate was used, and the polymer network precursor and the liquid crystal compound were used. A liquid crystal layer was formed in the same manner as in Example 1, except that the mixture was mixed at a weight ratio of 10:90 (polymer network precursor: liquid crystal compound).
  • the nematic temperature Tni of the liquid crystal layer precursor was about 45 ° C., and the irradiation of ultraviolet rays was performed at 25 ° C., which is a temperature at which the precursor maintains the nematic phase.
  • the refractive index of the polymer network in the formed liquid crystal layer was about 1.450, and the measured phase difference of the liquid crystal layer was about 162 nm.
  • the polymer network precursor As the polymer network precursor, a mixture of 30 parts by weight of 1.6-hexanediol diacrylate, 40 parts by weight of trimethylolpropane triacrylate and 30 parts by weight of 2-ethylhexyl acrylate was used, and the polymer network precursor and the liquid crystal compound were used. A liquid crystal layer was formed in the same manner as in Example 1, except that the mixture was mixed at a weight ratio of 10:90 (polymer network precursor: liquid crystal compound).
  • the nematic temperature Tni of the liquid crystal layer precursor was about 45 ° C., and the irradiation of ultraviolet rays was performed at 25 ° C., which is a temperature at which the precursor maintains the nematic phase.
  • the refractive index of the polymer network in the formed liquid crystal layer was about 1.457, and the measured phase difference of the liquid crystal layer was about 166 nm.
  • the polymer network precursor As the polymer network precursor, a mixture of 40 parts by weight of 1.6-hexanediol diacrylate, 40 parts by weight of trimethylolpropane triacrylate and 20 parts by weight of 2-ethylhexyl acrylate was used, and the polymer network precursor and the liquid crystal compound were used. A liquid crystal layer was formed in the same manner as in Example 1, except that the mixture was mixed at a weight ratio of 10:90 (polymer network precursor: liquid crystal compound).
  • the nematic temperature Tni of the liquid crystal layer precursor was about 50 ° C., and the irradiation of ultraviolet rays was performed at 25 ° C., which is a temperature at which the precursor maintains the nematic phase.
  • the refractive index of the polymer network in the formed liquid crystal layer was about 1.459, and the measured phase difference of the liquid crystal layer was about 157 nm.
  • polymer network precursor As a polymer network precursor, a mixture of 60 parts by weight of 1.6-hexanediol diacrylate and 40 parts by weight of trimethylolpropane triacrylate was used, and the polymer network precursor and the liquid crystal compound were mixed at 10:90 (polymer network precursor: liquid crystal).
  • a liquid crystal layer was formed in the same manner as in Example 1, except that the compound was mixed in a weight ratio of 1).
  • the nematic temperature Tni of the liquid crystal layer precursor was about 50 ° C., and the irradiation of ultraviolet rays was performed at 25 ° C., which is a temperature at which the precursor maintains the nematic phase.
  • the refractive index of the polymer network in the formed liquid crystal layer was about 1.463, and the measured phase difference of the liquid crystal layer was about 182 nm.
  • a liquid crystal layer was formed in the same manner as in Example 1 except that a liquid crystal layer was formed by injecting only a liquid crystal compound between the PC films having the alignment layer without using a polymer network precursor.
  • the measured phase difference of the liquid crystal layer was about 319 nm.
  • a liquid crystal layer precursor mixed with 40 parts by weight of a polymer network precursor (PN-393, manufactured by Merck) and 60 parts by weight of a liquid crystal compound is used as a precursor capable of forming an element capable of switching between scattering and transmission modes.
  • a liquid crystal layer having a thickness of about 25 ⁇ m was formed between two PC films on which the alignment film was not formed, thereby forming a liquid crystal layer for switching between the scattering mode and the transmission mode.
  • the haze in the scattering mode of the liquid crystal layer thus formed was about 92.91%, and the phase difference was about 65 nm.
  • a liquid crystal layer was formed in the same manner as in Example 1, except that a liquid crystal layer precursor obtained by mixing 20 parts by weight of 1,6-hexanediol diacrylate and 80 parts by weight of the liquid crystal compound was used as the polymer network precursor.
  • the nematic temperature (Tni) of the liquid crystal layer precursor was about 10 ° C., and the irradiation of ultraviolet rays was performed at 25 ° C., which is a temperature at which the precursor maintains isotropy.
  • the retardation (actual retardation) of the liquid crystal layer was measured according to the manufacturer's manual based on the wavelength of 550 nm using Axostep (Axometrics) equipment, and was about 139 nm.
  • a liquid crystal layer was formed in the same manner as in Example 1, except that ultraviolet rays were irradiated at about 60 ° C., which is a temperature at which the liquid crystal layer precursor maintains isotropy.
  • the measured refractive index of the polymer network in the manufactured liquid crystal layer was about 1.456, and the phase difference (actual phase difference) of the liquid crystal layer was measured according to the manufacturer's manual based on the wavelength of 550nm using Axostep (Axometrics) equipment. The result was about 88 nm. 17 shows Axostep measurement data of the liquid crystal layer.
  • a liquid crystal layer was formed in the same manner as in Example 1 except that a PC film without a photoalignment film was used.
  • the measured refractive index of the polymer network in the manufactured liquid crystal layer was about 1.456, and the phase difference (actual phase difference) of the liquid crystal layer was measured according to the manufacturer's manual based on the wavelength of 550nm using Axostep (Axometrics) equipment. The result was about 46 nm. 17 shows Axostep measurement data of the liquid crystal layer.
  • a liquid crystal layer was formed in the same manner as in Example 1 except that the liquid crystal layer precursor was prepared by blending the polymer network precursor and the liquid crystal compound so that the weight ratio was 4: 6 (polymer network precursor: liquid crystal compound).
  • the retardation (actual retardation) of the liquid crystal layer was measured according to the manufacturer's manual based on the wavelength of 550 nm using Axostep (Axometrics) equipment, and was about 139 nm.
  • the liquid crystal layer prepared in the embodiment is positioned between two polarizing plates arranged so that the light absorption axes are perpendicular to each other or between two polarizing plates arranged so that the light absorption axes form 45 degrees from each other, and the liquid crystal layer is rotated while transmitting.
  • the orientation was evaluated by checking whether the mode was switched between the) mode and the black mode.
  • it can be evaluated that the liquid crystal compound is oriented in the liquid crystal layer by the orientation of the polymer network.
  • the results of the confirmation for Comparative Examples 1 to 5 and Comparative Examples 9 to 12 did not show the orientation of the polymer network.
  • FIG. 9 shows evaluation results for Examples 1 to 5
  • FIG. 10 shows evaluation results for Comparative Examples 1 to 5.
  • FIG. FIG. 16 is a view showing a comparison between Example 1 and Comparative Example 9, and as confirmed from the drawing, in the case of Example 1 in which the formation of the liquid crystal layer was formed on a nematic precursor, in the state of forming the polarization axis at 45 degrees
  • the precursor forms 45 degrees with the polarization axis (left). It can be seen that the light is blocked in both 90 ° and 90 ° states, and switching between transmission and blocking modes is impossible.
  • the retardation, haze, and transmittance of the liquid crystal layers prepared in Examples 1 to 5 were evaluated.
  • the phase difference (measurement wavelength: 550 nm) was measured according to the manufacturer's manual on the basis of 550 nm wavelength using Axostep (Axometrics, Inc.) equipment, and the haze and transmittance were also manufactured using a hazemeter (NDH-5000SP).
  • the retardation was evaluated in the state where no voltage was applied to the liquid crystal layer, and the haze and transmittance were evaluated while applying the driving voltage.
  • 11 is a view showing a result of evaluating the phase difference with respect to the embodiment
  • Figure 12 is a view showing a result of evaluating the haze and transmittance with respect to the embodiment.
  • 15 shows AXO-STEP measurement data for Example 1 and Comparative Example 1.
  • Contrast ratio was evaluated by evaluating luminance while applying voltage stepwise to the liquid crystal layers prepared in Examples and Comparative Examples.
  • the luminance and contrast ratio were evaluated by converting the values measured by LCMS-200 equipment (serious optoelectronics).
  • the distance between the measurement object and the light receiving part (detector) was maintained at about 10 cm, and the light receiving part (detector) was used having a diameter of about 1.5 mm. 13 shows the evaluation results for Example 1, Comparative Example 1, and Comparative Example 7.
  • Example 1 and Comparative Example 1 were evaluated by being positioned between two polarizing plates arranged so that the light absorption axes were perpendicular to each other, and a polarizing plate was used in Comparative Example 7 configured to switch between a scattering mode and a transmission mode. Instead, the contrast ratio between the scattering mode and the transmission mode was evaluated.
  • the maximum contrast ratio of 350 or more was shown in Example 1, but the contrast ratio of 100 or less was shown in Comparative Examples 1 and 7.
  • the maximum contrast ratios of Examples 2 to 5 were all 350 or more, and the maximum contrast ratios of Comparative Examples 2 to 6 and 9 were all less than 100.
  • Example 1 the transmittance according to the driving voltage was evaluated.
  • the liquid crystal layer is disposed between the two polarizing plates having the light absorption axes perpendicular to each other such that the alignment direction of the liquid crystal layer is 45 degrees to the light absorption axis of the polarizing plate so that the transparent mode is normally transparent.
  • mode was configured to transmit a voltage while switching to the black mode by applying a voltage
  • Comparative Example 7 the voltage was applied to the device in a scattering mode in a normal state without using a polarizing plate.
  • the drive voltage was measured while switching to the transmission mode. 14 shows the measurement results, as can be seen from FIG.
  • Example 14 in Example 1, the driving voltage at which a transmittance of 10% was realized was 16.5 V, and in Comparative Example 7, the driving voltage at which 90% transmittance was realized. This was 92.4 V. On the other hand, in the case of Examples 2 to 5, the driving voltage for which the transmittance of 10% was realized was less than 30 V, and for Comparative Examples 1 to 6 and 9, the driving voltages for implementing the 10% transmittance were all 90 V or more. This was.
  • the thermal stability of the liquid crystal layer prepared in Example 1 (measured phase difference: 288 nm) and the liquid crystal layer prepared in Comparative Example 6 (measured phase difference: 319 nm) were evaluated. Specifically, the thermal stability was evaluated by holding each liquid crystal layer in an oven at 70 ° C. for 200 hours and evaluating the phase difference. After leaving the oven, the minimum phase difference and the maximum phase difference of Example 1 were 254.4 nm and 278.9 nm, respectively, and the average phase difference was 263 nm, and the phase difference change rate was 8.7%, but the minimum phase difference and the maximum phase difference of Comparative Example 6 were 226.2 nm and 273.9 nm, respectively. The average phase difference was 254.2 nm with a phase difference change rate of 20.4%. In addition, as a result of evaluating thermal stability in the same manner with respect to Examples 2 to 5, the retardation change rate was less than 10%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

본 출원은, 액정 소자, 중합성 조성물, 액정 소자의 제조 방법 및 액정 소자의 제조 장치 및 액정 소자의 용도에 대한 것이다. 본 출원의 액정 소자는, 예를 들면, 통상 투과 모드 또는 통상 차단 모드를 구현할 수 있는 소자로서 높은 콘트라스트 비율을 나타내면서 낮은 구동 전압으로 구동하며, 탁월한 열안정성 등의 내구성을 나타낼 수 있다. 이러한 액정 소자는 스마트 윈도우, 윈도우 보호막, 플렉서블 디스플레 소자, 3D 영상 표시용 액티브 리타더(active retarder) 또는 시야각 조절 필름 등과 같은 다양한 광변조 장치에 적용될 수 있다.

Description

액정 소자
본 출원은, 액정 소자, 중합성 조성물, 액정 소자의 제조 방법 및 액정 소자의 제조 장치 및 액정 소자의 용도에 관한 것이다.
LCD(Liquid Crystal Display)는, 네마틱 또는 스멕틱 액정 화합물을 일정 방향으로 배향시키고, 전압의 인가를 통해 배향을 스위칭시켜서 화상을 구현한다. LCD의 제조 공정은 복잡한 공정이 요구되는 고비용의 공정이고, 대형의 생산 라인 및 설비가 필요하다.
고분자 매트릭스 내에 액정을 분산시켜서 구현되는 소위 PDLC(Polymer Dispersed Liquid Crystal, 본 명세서에서 용어 PDLC는 소위 PNLC(Polymer Network Liquid Crystal)나 PSLC(Polymer Stabilized Liquid Crystal) 등을 포함하는 상위 개념이다.) 소자가 알려져 있다. PDLC는, 액정 용액의 코팅을 통하여 제조가 가능하므로, 기존 LCD 대비 간단한 공정으로 제조할 수 있다.
특허문헌 1 등에 기재된 바와 같이 PDLC 내에서 통상 액정 화합물은 배향되어 있지 않은 상태로 존재한다. 따라서 PDLC는 전압이 인가되지 않은 상태에서는 뿌연 불투명 상태이고, 이러한 상태는 소위 산란 모드로 호칭된다. PDLC에 전압이 인가되면, 액정 화합물이 그에 따라 정렬되어 투명한 상태가 되는데, 이를 이용하여 투과 모드와 산란 모드의 스위칭이 가능하다.
<선행기술문헌>
<특허문헌>
(특허문헌 1) 한국공개특허 제1993-0013794호
본 출원은, 액정 소자, 중합성 조성물, 액정 소자의 제조 방법 및 액정 소자의 제조 장치 및 액정 소자의 용도를 제공한다.
예시적인 액정 소자(liquid crystal device)는, 배향성 폴리머 네트워크와 액정 화합물을 포함하는 액정층을 포함한다. 하나의 예시에서 상기 액정 화합물은 상기 배향성 폴리머 네트워크와 상분리된 상태로 상기 액정층 내에 분산되어 있을 수 있다. 본 출원에서 용어 배향성 폴리머 네트워크는 액정 화합물을 배향시킬 수 있도록 형성된 폴리머 네트워크를 의미한다. 액정 화합물을 배향시킬 수 있는 폴리머 네트워크는 후술하는 방식에 의해 형성할 수 있다. 배향성 폴리머 네트워크 내에 분산되어 존재할 수 있는 액정 화합물은, 상기 배향성 폴리머 네트워크 등의 작용에 의해 일 방향으로 정렬된 상태로 존재할 수 있다. 또한, 이와 같이 일 방향으로 정렬된 상태로 존재하는 액정 화합물은 외부 작용에 의해 그 정렬 방향이 변환될 수 있다. 본 출원에서 용어 외부 작용은, 액정 화합물의 정렬을 변경시킬 수 있도록 수행되는 모든 종류의 작용을 의미하고, 대표적인 예로는 전압의 인가가 있다. 본 출원에서 용어 초기 배향 또는 통상 배향은 상기 외부 작용이 없는 상태에서의 상기 액정 화합물의 배향 또는 정렬 방향이나 상기 액정 화합물에 의해 형성되는 액정층의 광축을 의미할 수 있다. 또한, 본 출원에서 용어 초기 상태 또는 통상 상태는 상기 외부 작용이 없는 상기 액정 소자의 상태를 의미할 수 있다. 상기 액정 소자에서 액정 화합물은 상기 초기 배향 상태의 액정 화합물의 정렬 방향이 외부 작용에 의해 변환될 수 있고, 외부 작용이 사라지면 다시 초기 배향 상태로 액정 화합물이 복귀할 수 있다.
액정 소자는, 배향막을 추가로 포함할 수 있다. 배향막은, 예를 들면, 액정층과 인접하여 배치되어 있을 수 있다. 배향막이 액정층과 인접하여 배치되어 있다는 것은, 배향막이 액정층의 배향에 영향을 미칠 수 있는 위치에 배치되어 있음을 의미하고, 하나의 예시에서 배향막과 액정층이 접하여 형성되어 있음을 의미할 수 있지만, 배향막이 액정층의 배향에 영향을 미칠 수 있는 위치에 존재하는 한 반드시 양자가 접하여 위치하여야 하는 것은 아니다. 도 1은, 예시적인 소자의 구조로서 배향막(101) 및 상기 배향막(101)의 일면에 형성된 액정층(102)을 포함하고, 상기 액정층(102)은 폴리머 네트워크(1021) 및 액정 영역(1022)을 포함하는 액정 소자의 예시이다. 도 1에서는 배향막(101)이 액정층(102)의 일면에만 존재하나, 배향막은 액정층의 양면에 존재할 수도 있다. 본 출원에서 액정 영역은 폴리머 네트워크 내에 액정 화합물이 존재하는 영역을 의미하고, 예를 들면, 액정 화합물을 포함하는 영역으로서, 상기 폴리머 네트워크와는 상분리된 상태로 상기 네트워크 내에 분산되어 있는 영역을 의미할 수 있다. 도 1에서 액정 영역(1022) 내의 액정 화합물은 화살표로 표시되어 있다.
액정 소자는 상기 액정층의 일측 또는 양측에 배치된 편광층을 포함할 수 있다. 편광층으로는 특별한 제한 없이 기존 LCD 등에서 사용되는 통상의 소재, 예를 들면, PVA(poly(vinyl alcohol)) 편광 필름 등이나, 유방성 액정(LLC: Lyotropic Liquid Cystal)이나, 반응성 액정(RM: Reactive Mesogen)과 이색성 색소(dichroic dye)를 포함하는 편광 코팅층과 같이 코팅 방식으로 구현한 편광층을 사용할 수 있다. 본 명세서에서 상기와 같이 코팅 방식으로 구현된 편광층은 편광 코팅층으로 호칭될 수 있다. 편광 코팅층이 유방성 액정을 포함하는 경우에 상기 코팅층은, 상기 유방성 액정의 층을 보호하는 보호층을 추가로 포함할 수 있다. 유방성 액정으로는 특별한 제한 없이 공지의 액정을 사용할 수 있으며, 예를 들면, 이색성비(dichroic ratio)가 30 내지 40 정도인 유방성 액정층을 형성할 수 있는 유방성 액정을 사용할 수 있다. 한편, 편광 코팅층이 반응성 액정(RM: Reactive Mesogen)과 이색성 색소(dichroic dye)를 포함하는 경우에 상기 이색성 색소로는 선형의 색소를 사용하거나, 혹은 디스코팅상의 색소(discotic dye)가 사용될 수도 있다. 편광층이 존재할 경우에 광흡수축의 배치 등은 특별히 제한되지 않으며, 예를 들면, 액정층의 통상 배향 등과 소자의 모드 등을 고려하여 선택될 수 있다. 예를 들어, 통상 투과 모드(normally transparent mode)의 소자의 구현을 위해서는, 액정층의 양측에 2개의 편광층을 배치하되, 상기 각 편광층의 광흡수축이 서로 80도 내지 100도의 범위 내의 어느 한 각도, 예를 들면 서로 수직을 이루도록 배치할 수 있다. 또한, 예를 들어, 통상 차단 모드(normally black mode)의 구현을 위해서는, 액정층의 양측에 2개의 편광층을 배치하되, 상기 각 편광층의 광흡수축이 서로 -10도 내지 10도의 범위 내의 어느 한 각도, 예를 들면 서로 수평을 이루도록 배치할 수 있다. 이러한 상태에서 액정층의 통상 배향은 상기 2개의 편광층의 광흡수축과 40도 내지 50도의 범위 내의 어느 한 각도, 예를 들면 약 45도를 이루도록 배치될 수 있다.
액정 소자는, 하나 또는 2개 이상의 기재층을 포함할 수 있다. 통상적으로 액정층은 대향 배치된 2개의 기재층의 사이에 배치될 수 있다. 이러한 구조에서 기재층의 내측, 예를 들면, 액정층과 기재층의 사이에 상기 배향막이 배치될 수 있다. 예를 들면, 액정 소자는 서로 대향되어 있는 기재층을 추가로 포함하고, 상기 액정층이 상기 대향되어 있는 기재층의 사이에 존재할 수 있다. 경우에 따라서 배향층이 상기 액정층과 기재층의 사이에 존재할 수도 있다. 도 2는, 서로 소정 간격으로 이격되어 대향 배치되어 있는 기재층(201A, 201B)의 사이에 존재하고, 배향막(101)과 액정층(102)이 존재하는 예시적인 액정 소자를 나타내고 있다. 기재층이 존재하는 경우, 상기 언급한 편광층은 통상 기재층의 외측에 존재할 수 있으나, 필요한 경우에 편광층은 기재층의 내측, 즉 액정층과 기재층의 사이에 존재할 수도 있다. 이러한 경우에 편광층으로서, 상기 언급한 편광 코팅층의 사용이 유리할 수 있다.
기재층으로는, 특별한 제한 없이 공지의 소재를 사용할 수 있다. 예를 들면, 유리 필름, 결정성 또는 비결정성 실리콘 필름, 석영 또는 ITO(Indium Tin Oxide) 필름 등의 무기계 필름이나 플라스틱 필름 등을 사용할 수 있다. 기재층으로는, 광학적으로 등방성인 기재층이나, 위상차층과 같이 광학적으로 이방성인 기재층 또는 편광판이나 컬러 필터 기판 등을 사용할 수 있다. 예를 들어, 편광층이 기재층의 내측, 즉 액정층과 기재층의 사이에 존재하는 경우에는 기재층으로서 이방성 기재층이 사용되는 경우에도 적절한 성능의 소자가 구현될 수 있다.
플라스틱 기재층으로는, TAC(triacetyl cellulose); 노르보르넨 유도체 등의 COP(cyclo olefin copolymer); PMMA(poly(methyl methacrylate); PC(polycarbonate); PE(polyethylene); PP(polypropylene); PVA(polyvinyl alcohol); DAC(diacetyl cellulose); Pac(Polyacrylate); PES(poly ether sulfone); PEEK(polyetheretherketon); PPS(polyphenylsulfone), PEI(polyetherimide); PEN(polyethylenemaphthatlate); PET(polyethyleneterephtalate); PI(polyimide); PSF(polysulfone); PAR(polyarylate) 또는 비정질 불소 수지 등을 포함하는 기재층을 사용할 수 있지만 이에 제한되는 것은 아니다. 기재층에는, 필요에 따라서 금, 은, 이산화 규소 또는 일산화 규소 등의 규소 화합물의 코팅층이나, 반사 방지층 등의 코팅층이 존재할 수도 있다.
기재층의 표면, 예를 들면, 기재층의 액정층측의 표면(예를 들면, 도 2에서 배향막(101) 또는 액정층(102)과 접하는 기재층(201A 또는 201B)의 표면에는 전극층이 포함될 수 있다. 전극층은, 예를 들면, 전도성 고분자, 전도성 금속, 전도성 나노와이어 또는 ITO(Indium Tin Oxide) 등의 금속 산화물 등을 증착하여 형성할 수 있다. 전극층은, 투명성을 가지도록 형성될 수 있다. 이 분야에서는, 투명 전극층을 형성할 수 있는 다양한 소재 및 형성 방법이 공지되어 있고, 이러한 방법은 모두 적용될 수 있다. 필요한 경우에, 기재층의 표면에 형성되는 전극층은, 적절하게 패턴화되어 있을 수도 있다.
액정층 내에서 액정 화합물은 통상 상태, 예를 들면 전압의 인가와 같은 외부 작용이 없는 상태에서 일 방향으로 정렬된 상태로 존재할 수 있고, 이러한 정렬 방향은 외부 작용, 예를 들면, 외부 전압의 인가에 의해 변화될 수 있다. 이에 따라 본 출원에서는 투과 모드(white mode)와 차단 모드(black mode)간의 상호 전환이 가능한 소자가 구현될 수 있다. 예를 들어, 본 출원의 소자는 외부 작용이 없는 상태(즉, 초기 상태 또는 통상 상태)에서는 투과 모드가 구현되고, 외부 작용 하에 차단 모드로 전환되며, 외부 작용이 제거되면 다시 투과 모드로 전환되는 소자이거나(이러한 소자를 편의상 통상 투과 모드의 소자로 호칭할 수 있다.), 혹은 반대로 외부 작용이 없는 상태(즉, 초기 상태 또는 통상 상태)에서는 차단 모드가 구현되고, 외부 작용 하에 투과 모드로 전환되며, 외부 작용이 제거되면 다시 차단 모드로 전환되는 소자(이러한 소자를 편의상 통상 차단 모드의 소자로 호칭할 수 있다.)일 수 있다. 예를 들어, 상기 언급한 바와 같이 광흡수축이 서로 80도 내지 100도 내의 어느 한 각도, 예를 들면 수직하도록 배치된 2장의 편광층의 사이에 통상 배향이 상기 편광층의 광흡수축과 40도 내지 50도 내의 어느 한 각도, 예를 들면, 45도를 이루도록 액정층이 위치하는 경우에 통상 투과 모드(normally transparent mode)의 소자가 구현될 수 있다. 다른 예시에서 상기 언급한 바와 같이 광흡수축이 서로 -10도 내지 10도 내의 어느 한 각도, 예를 들면 수평하도록 배치된 2장의 편광층의 사이에 통상 배향이 상기 편광층의 광흡수축과 40도 내지 50도 내의 어느 한 각도, 예를 들면, 45도를 이루도록 액정층이 위치하는 경우에 통상 차단 모드(normally black mode)의 소자가 구현될 수 있다. 상기 상태에서 전압의 인가에 의해 액정 화합물의 배향 상태를, 예를 들면 수직 배향 상태로 변경하여 차단 모드를 구현할 수 있다. 본 출원에서 용어 차단 모드(black mode)는 통상적인 PDLC에서의 소위 산란 모드와는 구별되는 개념으로, 예를 들면, 차단 모드에서의 헤이즈는 10% 이하, 8% 이하, 6% 이하 또는 5% 이하이다. 또한, 본 출원의 소자의 투과 모드에서의 헤이즈도 10% 이하, 8% 이하, 6% 이하 또는 5% 이하이다. 상기 헤이즈는 측정 대상을 투과하는 전체 투과광의 투과율에 대한 확산광의 투과율의 백분율일 수 있다. 상기 헤이즈는, 헤이즈미터(hazemeter, NDH-5000SP)를 사용하여 평가할 수 있다. 헤이즈는 상기 헤이즈미터를 사용하여 다음의 방식으로 평가할 수 있다. 즉, 광을 측정 대상을 투과시켜 적분구 내로 입사시킨다. 이 과정에서 광은 측정 대상에 의하여 확산광(DT)과 평행광(PT)으로 분리되는데, 이 광들은 적분구 내에서 반사되어 수광 소자에 집광되고, 집광되는 광을 통해 상기 헤이즈의 측정이 가능하다. 즉, 상기 과정에 의한 전 투과광(TT)는 상기 확산광(DT)과 평행광(PT)의 총합(DT+PT)이고, 헤이즈는 상기 전체 투과광에 대한 확산광의 백분율(Haze(%) = 100×DT/TT)로 규정될 수 있다. 또한, 본 출원의 액정 소자는 투과 모드에서 우수한 투명성을 나타낼 수 있다. 예를 들면, 액정 소자는, 통상 투과 모드인 경우에는 통상 배향 상태, 즉 전압 무인가 상태와 같이 외부 작용이 없는 상태에서 80% 이상, 85% 이상, 90% 이상 또는 95% 이상의 광투과율을 나타낼 수 있다. 또한, 통상 차단 모드인 경우에는 전압 인가와 같은 외부 작용이 존재하는 상태에서 상기 언급한 광투과율을 나타낼 수 있다. 상기 광투과율은, 가시광 영역, 예를 들면, 약 400 nm 내지 700 nm 범위 내의 어느 한 파장에 대한 광투과율일 수 있다.
액정 소자는 높은 콘트라스트 비율을 나타낼 수 있다. 본 출원에서 용어 콘트라스트 비율은, 상기 투과 모드에서의 휘도(T)와 차단 모드에서의 휘도(B)의 비율(T/B)을 의미할 수 있다. 하나의 예시에서 액정 소자는, 상기 액정층과 액정층의 양측에 배치되어 있는 2개의 편광층, 즉 제 1 및 제 2 편광층을 포함하고, 상기 콘트라스트 비율의 최대값이 200 이상, 250 이상, 300 이상 또는 350 이상일 수 있다. 콘트라스트 비율이 높을수록 소자의 성능이 우수한 것을 의미하므로, 상기 콘트라스트 비율의 상한은 특별히 제한되지 않는다. 예를 들면, 콘트라스트 비율은 600 이하, 550 이하, 500 이하, 450 이하 또는 400 이하일 수 있다. 이러한 콘트라스트 비율은 전술한 바와 같은 배향성 폴리머 네트워크와 편광층 등을 사용하여 소자를 구현함으로써 달성할 수 있다.
액정 소자는 낮은 에너지 소비를 통해, 예를 들면, 낮은 구동 전압을 통해 구동이 가능하다. 예를 들면, 액정 소자는 10%의 광투과율 또는 90%의 광투과율을 구현하기 위한 요구 전압이 30 V 이하, 25 V 이하 또는 20 V 이하일 수 있다. 즉, 통상 투과 모드(normally transparent mode)의 소자의 경우, 전압의 인가에 의해 액정 화합물의 정렬 방향을 변화시켜 차단 모드를 구현할 수 있는데, 이러한 과정에서 광투과율이 10%가 되도록 하기 위해 요구되는 전압이 상기 범위 내일 수 있다. 반대로 통상 차단 모드(normally black mode)의 소자의 경우, 전압의 인가에 의해 액정 화합물의 정렬 방향을 변화시켜 투과 모드를 구현할 수 있는데, 이러한 과정에서 광투과율이 90%가 되도록 하기 위해 요구되는 전압이 상기 범위 내일 수 있다. 상기 요구 전압은, 낮을수록 소자의 성능이 우수한 것을 의미하므로, 상기 요구 전압의 하한은 특별히 제한되지 않는다. 예를 들면, 상기 요구 전압은 5 V 이상일 수 있다. 이러한 낮은 구동 전압은 전술한 바와 같은 배향성 폴리머 네트워크와 편광층 등을 사용하여 소자를 구현함으로써 달성할 수 있다.
액정 소자의 액정층은, 폴리머 네트워크와 그 폴리머 네트워크 내부에 분산되어 있는 액정 화합물을 포함하여, 우수한 열안정성을 나타낼 수 있다. 예를 들면, 액정층은, 70℃에서 200 시간 동안 유지되는 열처리 전후에 하기 수식 A를 만족할 수 있다.
[수식 A]
┃100 × (X2-X1)/X1┃ ≤ 10%
수식 A에서 X1은 상기 열처리 전 액정층의 위상차이고, X2는 상기 열처리 후 액정층의 위상차이다.
즉, 액정 소자의 액정층은 상기 열처리 전후의 위상차의 변화율의 절대값이 10% 이하일 수 있다. 이러한 변화율의 절대값은 그 수치가 낮을수록 액정층이 우수한 열안정성을 가지는 점을 보여주는 것으로 그 하한은 특별히 제한되지 않는다.
폴리머 네트워크는, 예를 들면, 중합성 화합물을 포함하는 전구 물질의 네트워크일 수 있다. 따라서, 폴리머 네트워크는 중합 상태의 상기 중합성 화합물을 포함할 수 있다. 중합성 화합물로는, 액정성을 나타내지 않는 비액정성 화합물이 사용될 수 있다. 필요한 경우에 중합성 화합물로서 액정성 화합물이 사용될 수도 있으나, 그러한 경우에 후술하는 폴리머 네트워크의 복굴절이 고려될 수 있다.
폴리머 네트워크가 배향성을 나타내기 위해서 폴리머 네트워크를 형성하는 상기 중합성 화합물의 조성이 조절될 수 있다. 예를 들면, 폴리머 네트워크 또는 상기 전구 물질은 이관능성 아크릴레이트 화합물, 3관능 이상의 다관능성 아크릴레이트 화합물 및 단관능성 아크릴레이트 화합물 중 적어도 하나를 포함할 수 있다. 폴리머 네트워크는 상기 화합물을 가교 또는 중합된 상태로 포함할 수 있다. 본 출원에서 용어 아크릴레이트 화합물은, 아크릴로일기 또는 메타크릴로일기를 포함하는 화합물을 의미하고, 상기 관능기를 하나 포함하는 화합물은 단관능성 아크릴레이트 화합물이고, 2개 이상 포함하는 화합물은 다관능성 아크릴레이트 화합물이다. 구별의 편의를 위하여 이하에서 상기 관능기를 2개 포함하는 화합물은 이관능성 아크릴레이트 화합물로 호칭하며, 3관능 이상, 즉 상기 관능기를 3개 이상 포함하는 아크릴레이트 화합물은, 단순히 다관능성 아크릴레이트 화합물로 호칭한다. 다관능성 아크릴레이트 화합물은, 상기 관능기를 예를 들면, 3개 내지 8개, 3개 내지 7개, 3개 내지 6개, 3개 내지 5개 또는 3개 내지 4개 포함할 수 있다.
적절한 배향성 폴리머 네트워크의 구현을 위해서 상기 폴리머 네트워크 또는 그 전구물질은 상기 이관능성, 다관능성 및 단과능성 아크릴레이트 화합물 중 적어도 하나의 화합물을 하기 수식 1 내지 3을 만족하도록 포함할 수 있다.
[수식 1]
A ≥ 1.3 × B
[수식 2]
A ≥ C
[수식 3]
A ≥ 0.6 × (B+C)
수식 1 내지 3에서 A, B 및 C는 각각 전구 물질 또는 폴리머 네트워크 내에 존재하는 상기 이관능성 아크릴레이트, 다관능성 아크릴레이트 화합물 및 단관능성 아크릴레이트 화합물의 중량의 총합을 100으로 환산하였을 때 구해지는 각 화합물간의 중량 비율이다. 예를 들어, 전구 물질 또는 폴리머 네트워크 내에 이관능성 아크릴레이트 화합물만이 존재한다면, 수식 1 내지 3에서 A는 100이고, B 및 C는 각각 0이다. 다른 예시에서 전구 물질 또는 폴리머 네트워크 내에 이관능성 및 단관능성 아크릴레이트 화합물만이 존재한다면, 수식 1 내지 3에서 A 및 C는 각각 50이고, B는 0이다.
적절한 배향성의 확보를 위해서 예를 들면, 수식 1에서 A에서 1.3 × B를 차감한 수치(A-1.3B)는 약 0.5 내지 100 또는 약 1 내지 100일 수 있다. 또한, 적절한 배향성의 확보를 위해서, 예를 들면, 수식 2에서 A에서 C를 차감한 수치(A-C)는 0 내지 100일 수 있다. 또한, 적절한 배향성의 확보를 위해서 수식 3에서 A에서 0.6 × (B+C)를 차감한 수치(A-0.6(B+C))는 2 내지 100, 3 내지 100 또는 4 내지 100일 수 있다.
적절한 배향성의 확보를 위해서 상기 폴리머 네트워크 또는 그 전구물질은 상기 이관능성, 다관능성 및 단과능성 아크릴레이트 화합물 중 적어도 하나의 화합물을 하기 수식 4 내지 6을 만족하도록 포함할 수 있다.
[수식 4]
A ≥ 40
[수식 5]
B ≤ 30
[수식 6]
C ≤ 50
수식 4 내지 6에서 A, B 및 C는 각각 수식 1 내지 3에서 정의한 바와 같다.
상기와 같은 범위 내에서 폴리머 네트워크에 적절한 배향성을 확보할 수 있다.
폴리머 네트워크 또는 그 전구 물질에 포함되는 아크릴레이트 화합물의 종류는 특별히 제한되지 않고, 예를 들면, 상기 기재한 수식을 만족하는 범위에서 배향성을 나타낼 수 있는 것이라면 어떠한 종류도 사용될 수 있다.
예를 들면, 상기 이관능성 아크릴레이트 화합물로는, 하기 화학식 1로 표시되는 화합물을 사용할 수 있다.
[화학식 1]
Figure PCTKR2013011680-appb-I000001
화학식 1에서 R은 각각 독립적으로 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 탄소수 1 내지 20의 알킬렌기 또는 알킬리덴기이다.
또한, 예를 들면, 상기 다관능성 아크릴레이트 화합물로는 하기 화학식 2로 표시되는 화합물을 사용할 수 있다.
[화학식 2]
Figure PCTKR2013011680-appb-I000002
화학식 2에서 n은 3 이상의 수이고, m은 0 내지 5의 수이며, R은 각각 독립적으로 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 (m+n)가의 라디칼이며, Y는 수소 또는 알킬기이다.
또한, 예를 들면, 상기 단관능성 아크릴레이트 화합물로는 하기 화학식 3으로 표시되는 화합물을 사용할 수 있다.
[화학식 3]
Figure PCTKR2013011680-appb-I000003
화학식 3에서 R은 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 탄소수 1 내지 20의 알킬기이다.
화학식 1 내지 3에서 R 또는 Y에 존재할 수 있는 알킬기의 예로는 메틸기 또는 에틸기를 들 수 있다.
화학식 1에서 X의 알킬렌기 또는 알킬리덴기는, 예를 들면, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 10, 탄소수 1 내지 8, 탄소수 2 내지 8 또는 탄소수 4 내지 8의 알킬렌기 또는 알킬리덴기일 수 있다. 상기 알킬렌기 또는 알킬리덴기는, 예를 들면, 직쇄, 분지쇄 또는 고리형일 수 있다.
화학식 2에서 n은, 3 이상, 3 내지 8, 3 내지 7, 3 내지 6, 3 내지 5 또는 3 내지 4의 범위 내의 어느 하나의 수일 수 있다. 또한, 화학식 2에서 m은 0 내지 5, 0 내지 4, 0 내지 3, 0 내지 2 또는 0 내지 1의 범위 내의 어느 하나의 수일 수 있다.
화학식 2에서 X는 (m+n)가의 라디칼이고, 예를 들면, 예들 들면, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 6의 하이드로카본, 예를 들면, 직쇄 또는 분지쇄의 알칸으로부터 유도된 (m+n)가 라디칼일 수 있다.
한편, 화학식 3에서 X의 알킬기는, 예를 들면, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 4 내지 12, 탄소수 6 내지 12의 직쇄 또는 분지쇄 알킬기일 수 있다.
화학식 1 내지 3에서 정의된 치환기, 예를 들면, 알킬기, 알킬렌기, 알킬리덴기 또는 (m+n)가 라디칼 등은, 필요하다면 하나 이상의 치환기에 의해 치환되어 있을 수 있고, 이 때 치환기로는, 예를 들면, 알킬기, 알콕시기, 에폭시기, 옥소기, 옥세타닐기, 티올기, 시아노기, 카복실기 또는 아릴기 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
폴리머 네트워크 또는 그 전구 물질은, 상기 언급한 화합물에 추가로 필요한 경우에 용매, 상기 중합성 액정 화합물의 중합을 유도할 수 있는 라디칼 또는 양이온 개시제, 염기성 물질, 네트워크를 형성할 수 있는 기타 반응성 화합물 또는 계면 활성제 등의 첨가제를 추가로 포함할 수 있다.
폴리머 네트워크 또는 그 전구 물질은 액정성 화합물, 예를 들면, 반응성 액정 화합물을 포함할 수 있다. 이러한 경우에도 상기 액정성 화합물의 비율은 소량으로 조절되는 것이 적절하다. 하나의 예시에서 상기 폴리머 네트워크는 복굴절이 30 nm 이하 또는 20 nm 이하일 수 있다. 즉, 상기 폴리머 네트워크는 등방성 폴리머 네트워크이거나, 복굴절이 상기 범위 내에 있는 네트워크일 수 있다. 따라서, 액정성 화합물이 포함되는 경우에도 폴리머 네트워크가 상기 언급한 복굴절을 나타낼 수 있는 범위에서 포함되는 것이 좋다. 상기 복굴절은, 예를 들면, 하기 수식 6으로 계산되는 면상 위상차 또는 하기 수식 7로 계산되는 두께 방향의 위상차를 의미할 수 있고, 그 하한은 0 nm일 수 있다.
[수식 6]
Rin = d × (nx - ny)
[수식 7]
Rth = d × (nz - ny)
수식 6 및 7에서 Rin은 면상 위상차이고, Rth는 두께 방향 위상차이며, d는 폴리머 네트워크의 두께이고, nx는 폴리머 네트워크의 면상에서 지상축 방향의 굴절률이며, ny는 폴리머 네트워크의 면상에서 진상축 방향의 굴절률이고, nz는 폴리머 네트워크의 두께 방향의 굴절률이다.
폴리머 네트워크는 액정 영역의 액정 화합물과 함께 하기 수식 B를 만족할 수 있다.
[수식 B]
(1 - a) × {(2no 2+ne 2)/3}0.5 ≤ np ≤ (1+a) × ne
수식 B에서 a는 0 내지 0.5의 범위 내의 어느 하나의 수이고, no는 액정 화합물의 정상 굴절률(ordinary refractive index)이며, ne는 액정 화합물의 이상 굴절률(extraordinary refractive index)이고, np는 폴리머 네트워크의 굴절률이다.
본 명세서에서 용어 굴절률, 위상차 또는 복굴절은, 특별히 달리 규정하지 않는 한, 550 nm의 파장의 광에 대하여 측정된 굴절률, 위상차 또는 복굴절일 수 있다. 또한, 폴리머 네트워크의 정상 굴절률과 이상 굴절률이 상이한 경우에는, 용어 폴리머 네트워크의 굴절률은 상기 네트워크의 정상 굴절률을 의미한다. 폴리머 네트워크와 액정 화합물을 상기 수식 B를 만족하도록 선택함으로써, 투과 모드에서 우수한 투명성을 나타내면서 높은 콘트라스트 비율이 확보되는 소자가 제공될 수 있다.
수식 B에서 a는, 예를 들면, 0.4 미만, 0.3 미만, 0.2 미만 또는 0.1 미만이거나, 0일 수 있다.
폴리머 네트워크는, 3 이상, 3.5 이상 또는 4 이상의 유전율(dielectric anisotropy)을 가질 수 있다. 이러한 유전율의 범위에서 액정 소자의 구동 전압 특성을 우수하게 유지할 수 있다. 상기 유전율의 상한은 특별히 제한되지 않고, 예를 들면, 20 이하, 15 이하 또는 10 이하 정도일 수 있다.
폴리머 네트워크에 분산되어 있는 액정 영역은, 액정 화합물을 포함한다. 액정 화합물로는, 폴리머 네트워크 내에서 상분리되고, 폴리머 네트워크에 의하여 배향된 상태로 존재할 수 있는 것이라면, 모든 종류의 화합물을 사용할 수 있다. 예를 들면, 액정 화합물로는 스멕틱(smectic) 액정 화합물, 네마틱(nematic) 액정 화합물 또는 콜레스테릭(cholesteric) 액정 화합물 등을 사용할 수 있다. 액정 화합물은, 상분리되어 폴리머 네트워크와는 결합되어 있지 않으며, 외부에서 전압과 같은 외부 작용 하에서 배향이 변경될 수 있는 형태일 수 있다. 이를 위하여, 예를 들면, 액정 화합물은, 중합성기 또는 가교성기를 가지지 않는 화합물일 수 있다.
하나의 예시에서 액정 화합물로는, 네마틱 액정 화합물을 사용할 수 있다. 상기 화합물로는, 예를 들면, 하기 수식 C를 만족하는 액정 화합물로서, 예를 들면 네마틱 액정 화합물을 사용할 수 있다.
[수식 C]
(ne+no)/2 - b ≤ {(2no 2 + ne 2)/3}0.5 ≤ (ne+no)/2 + b
수식 C에서 ne는 액정 화합물의 이상 굴절률이고, no는 액정 화합물의 정상 굴절률이며, b는 0.1 내지 1의 범위 내의 어느 한 수이다.
수식 B를 만족하는 액정 화합물을 선택하여, 투과 모드에서 우수한 투명성을 나타내면서 높은 콘트라스트 비율이 확보되는 소자가 제공될 수 있다.
수식 2에서 b는 다른 예시에서는 0.1 내지 0.9, 0.1 내지 0.7, 0.1 내지 0.5 또는 0.1 내지 0.3일 수 있다.
액정 화합물은 이상 유전율(εe, extraordinary dielectric anisotropy, 장축 방향의 유전율)과 정상 유전율(εo, ordinary dielectric anisotropy, 단축 방향의 유전율)의 차이가 4 이상, 6 이상, 8 이상 또는 10 이상일 수 있다. 이러한 유전율을 가지면 구동 전압 특성이 우수한 소자를 제공할 수 있다. 상기 유전율의 차이는, 그 수치가 높을수록 소자가 적절한 특성을 나타낼 수 있는 것으로, 그 상한은 특별히 제한되지 않는다. 예를 들어, 액정 화합물로는 이상 유전율(εe, extraordinary dielectric anisotropy, 장축 방향의 유전율)이 6 내지 50 정도이고, 정상 유전율(εo, ordinary dielectric anisotropy, 단축 방향의 유전율)이 2.5 내지 7 정도인 화합물을 사용할 수 있다.
액정층 또는 후술하는 중합성 조성물은, 폴리머 네트워크(또는 후술하는 폴리머 네트워크 전구 물질) 5 중량부 내지 50 중량부 및 액정 화합물 50 중량부 내지 95 중량부를 포함할 수 있다. 다른 예시에서 액정층 또는 후술하는 중합성 조성물은, 폴리머 네트워크(또는 후술하는 폴리머 네트워크 전구 물질) 5 중량부 내지 45 중량부 및 액정 화합물 55 중량부 내지 95 중량부, 폴리머 네트워크(또는 후술하는 폴리머 네트워크 전구 물질) 5 중량부 내지 40 중량부 및 액정 화합물 60 중량부 내지 95 중량부, 폴리머 네트워크(또는 후술하는 폴리머 네트워크 전구 물질) 5 중량부 내지 35 중량부 및 액정 화합물 65 중량부 내지 95 중량부, 폴리머 네트워크(또는 후술하는 폴리머 네트워크 전구 물질) 5 중량부 내지 30 중량부 및 액정 화합물 70 중량부 내지 95 중량부, 폴리머 네트워크(또는 후술하는 폴리머 네트워크 전구 물질) 5 중량부 내지 25 중량부 및 액정 화합물 75 중량부 내지 95 중량부, 폴리머 네트워크(또는 후술하는 폴리머 네트워크 전구 물질) 20 중량부 내지 50 중량부 및 액정 화합물 80 중량부 내지 95 중량부 또는 폴리머 네트워크(또는 후술하는 폴리머 네트워크 전구 물질) 5 중량부 내지 15 중량부 및 액정 화합물 85 중량부 내지 95 중량부을 포함할 수 있다. 본 출원에서 용어 중량부는, 각 성분간의 중량의 비율을 의미할 수 있다. 이러한 중량 비율의 범위 내에서 폴리머 네트워크의 배향성이 적절하게 유지될 수 있다.
액정층의 위상차(Rc)는, 구현하고자 하는 소자의 모드 또는 구조에 따라 결정되는 것으로 특별히 제한되지 않는다. 예를 들면, 액정층은 550 nm 파장에 대하여 약 240 nm 내지 310 nm, 245 nm 내지 305 nm, 250 nm 내지 300 nm의 위상차를 나타낼 수 있다. 이러한 범위의 위상차는, 예를 들면, 2개의 편광층의 사이에서 통상 투과 모드의 소자를 구현함에 적절할 수 있다.
액정층은, 예를 들면, 하기 수식 D를 만족할 수 있다.
[수식 D]
247 nm ≤ {d × (ne - no)} × A ≤ 302 nm
수식 D에서 d는 액정층의 두께(단위: nm)이고, ne는 액정 화합물의 이상 굴절률이며, no는 액정 화합물의 정상 굴절률이고, A는 폴리머 네트워크와 액정 화합물의 합계 중량(T)을 기준으로 한 액정 화합물의 중량(L)의 비율(L/T) 또는 액정층의 전체 부피(TV)에서 액정 화합물이 차지하는 부피(VL)의 비율(VL/TV)이다.
수식 D에서 {d × (ne - no)} × A로 계산되는 수치는 액정층의 이론 위상차이다. 액정층의 이론 위상차는 상기 기술한 액정층의 위상차(실측 위상차)와 근접할수록 적절하다. 예를 들면, 수식 D에서 {d × (ne - no)} × A로 계산되는 수치와 액정층의 실측 위상차의 차이의 절대값은 약 15 nm 이하, 10 nm 이하, 8 nm 이하 또는 5 nm 이하일 수 있다. 수식 D를 만족하는 액정층은, 예를 들면, 2개의 편광층의 사이에서 통상 투과 모드의 소자를 구현함에 적절할 수 있다.
수식 D에서 (ne-no)은, 예를 들면, 0.05 내지 0.20일 수 있다. 상기 (ne-no)은 다른 예시에서 0.07 이상일 수 있다. 또 다른 예시에서 상기 (ne-no)은, 0.18 이하 또는 0.15 이하일 수 있다.
수식 D에서 A는 폴리머 네트워크와 액정 화합물의 합계 중량(T)을 기준으로 액정 화합물의 중량(L)의 비율(L/T) 또는 액정층의 전체 부피(TV)에서 액정 화합물이 차지하는 부피(VL)의 비율(VL/TV)이고, 예를 들면, 0.5 내지 0.98의 범위 내에 있을 수 있다. 상기 비율(L/T 또는 VL/TV)은 다른 예시에서 0.6 이상 또는 0.7 이상일 수 있다.
액정층의 두께는 상기 기술한 내용을 만족하도록 설정되는 한 특별히 제한되지 않으며, 예를 들면, 1㎛ 내지 10㎛ 정도의 범위 내에 있을 수 있다.
액정 소자가 배향막을 포함하는 경우에 배향막으로는, 예를 들면, 광배향성 화합물을 포함하는 배향막을 사용할 수 있다. 본 출원에서 용어 광배향성 화합물은, 광의 조사 등을 통하여 소정 방향으로 정렬(orientationally ordered)되고, 상기 정렬된 상태에서 이방성 상호 작용(anisotropic interaction) 등의 상호 작용을 통하여 인접하는 액정 화합물을 소정 방향으로 배향시킬 수 있는 화합물을 의미할 수 있다. 배향막에서 광배향성 화합물은, 방향성을 가지도록 정렬된 상태로 존재할 수 있다. 광배향성 화합물은, 단분자 화합물, 단량체성 화합물, 올리고머성 화합물 또는 고분자성 화합물일 수 있다.
광배향성 화합물은, 광감응성 잔기(photosensitive moiety)를 포함하는 화합물일 수 있다. 액정 화합물의 배향에 사용될 수 있는 광배향성 화합물은 다양하게 공지되어 있다. 광배향성 화합물로는, 예를 들면, 트랜스-시스 광이성화(trans-cis photoisomerization)에 의해 정렬되는 화합물; 사슬 절단(chain scission) 또는 광산화(photo-oxidation) 등과 같은 광분해(photo-destruction)에 의해 정렬되는 화합물; [2+2] 첨가 환화([2+2] cycloaddition), [4+4] 첨가 환화 또는 광이량화(photodimerization) 등과 같은 광가교 또는 광중합에 의해 정렬되는 화합물; 광 프리즈 재배열(photo-Fries rearrangement)에 의해 정렬되는 화합물 또는 개환/폐환(ring opening/closure) 반응에 의해 정렬되는 화합물 등을 사용할 수 있다. 트랜스-시스 광이성화에 의해 정렬되는 화합물로는, 예를 들면, 술포화 디아조 염료(sulfonated diazo dye) 또는 아조고분자(azo polymer) 등의 아조 화합물이나 스틸벤 화합물(stilbenes) 등이 예시될 수 있고, 광분해에 의해 정렬되는 화합물로는, 시클로부탄 테트라카복실산 이무수물(cyclobutane-1,2,3,4-tetracarboxylic dianhydride), 방향족 폴리실란 또는 폴리에스테르, 폴리스티렌 또는 폴리이미드 등이 예시될 수 있다. 또한, 광가교 또는 광중합에 의해 정렬되는 화합물로는, 신나메이트(cinnamate) 화합물, 쿠마린(coumarin) 화합물, 신남아미드(cinnamamide) 화합물, 테트라히드로프탈이미드(tetrahydrophthalimide) 화합물, 말레이미드(maleimide) 화합물, 벤조페논 화합물 또는 디페닐아세틸렌(diphenylacetylene) 화합물이나 광감응성 잔기로서 찰코닐(chalconyl) 잔기를 가지는 화합물(이하, 찰콘 화합물) 또는 안트라세닐(anthracenyl) 잔기를 가지는 화합물(이하, 안트라세닐 화합물) 등이 예시될 수 있고, 광 프리즈 재배열에 의해 정렬되는 화합물로는 벤조에이트(benzoate) 화합물, 벤조아미드(benzoamide) 화합물, 메타아크릴아미도아릴 (메타)아크릴레이트(methacrylamidoaryl methacrylate) 화합물 등의 방향족 화합물이 예시될 수 있으며, 개환/폐환 반응에 의해 정렬하는 화합물로는 스피로피란 화합물 등과 같이 [4+2] π-전자 시스템([4+2] π-electronic system)의 개환/폐환 반응에 의해 정렬하는 화합물 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
광배향성 화합물은, 단분자 화합물, 단량체성 화합물, 올리고머성 화합물 또는 고분자성 화합물이거나, 상기 광배향성 화합물과 고분자의 블랜드(blend) 형태일 수 있다. 상기에서 올리고머성 또는 고분자성 화합물은, 상기 기술한 광배향성 화합물로부터 유도된 잔기 또는 상기 기술한 광감응성 잔기를 주쇄 내 또는 측쇄에 가질 수 있다.
광배향성 화합물로부터 유도된 잔기 또는 광감응성 잔기를 가지거나, 상기 광배향성 화합물과 혼합될 수 있는 고분자로는, 폴리노르보넨, 폴리올레핀, 폴리아릴레이트, 폴라아크릴레이트, 폴리(메타)아크릴레이트, 폴리이미드, 폴리암산(poly(amic acid)), 폴리말레인이미드, 폴리아크릴아미드, 폴리메타크릴아미드, 폴리비닐에테르, 폴리비닐에스테르, 폴리스티렌, 폴리실록산, 폴리아크릴니트릴 또는 폴리메타크릴니트릴 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
배향성 화합물에 포함될 수 있는 고분자로는, 대표적으로는 폴리노르보넨 신나메이트, 폴리노르보넨 알콕시 신나메이트, 폴리노르보넨 알릴로일옥시 신나메이트, 폴리노르보넨 불소화 신나메이트, 폴리노르보넨 염소화 신나메이트 또는 폴리노르보넨 디신나메이트 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
배향성 화합물이 고분자성 화합물인 경우에 상기 화합물은, 예를 들면, 약 10,000 g/mol 내지 500,000 g/mol 정도의 수평균분자량을 가질 수 있지만, 이에 제한되는 것은 아니다.
배향막은, 예를 들면, 상기 광배향성 화합물에 광개시제 등 필요한 첨가제를 배합하여 코팅한 후에 원하는 방향의 편광 자외선 등을 조사하여 형성할 수 있다.
본 출원은 또한 중합성 조성물에 대한 것이다. 중합성 조성물은, 예를 들면, 상기 기술한 액정 소자의 액정층의 형성에 사용될 수 있다. 즉, 상기 중합성 조성물은 상기 액정층의 전구 조성물일 수 있다.
예를 들면, 중합성 조성물은 이관능성 아크릴레이트 화합물, 3관능 이상의 다관능성 아크릴레이트 화합물 및 단관능성 아크릴레이트 화합물 중 적어도 하나를 상기 수식 1 내지 3, 필요하다면 상기 수식 1 내지 6을 만족하도록 포함하는 배향성 폴리머 네트워크의 전구 물질 및 액정 화합물을 포함할 수 있다.
또한, 예를 들면, 중합성 조성물은, 이관능성 아크릴레이트 화합물, 3관능 이상의 다관능성 아크릴레이트 화합물 및 단관능성 아크릴레이트 화합물 중 적어도 하나를 포함하는 배향성 폴리머 네트워크의 전구 물질 50 중량부 내지 95 중량부 및 액정 화합물 5 중량부 내지 50 중량부를 포함할 수 있다.
예시적인 중합성 조성물은, 배향성 폴리머 네트워크의 전구 물질과 액정 화합물을 포함할 수 있다. 상기 전구 물질은, 배향성 폴리머 네트워크, 예를 들면, 전술한 배향성 폴리머 네트워크를 형성할 수 있도록 조성될 수 있다. 전구 물질은 중합성 화합물, 예를 들면, 상기 이관능성, 다관능성 및/또는 단과능성 아크릴레이트 화합물을 포함할 수 있다. 전구 물질은 상기 아크릴레이트 화합물을 전술한 수식 1 내지 6 등을 만족하는 비율로 포함할 수 있고, 기타 아크릴레이트 화합물의 종류나 유전율, 수식 B와 관련된 사항도 동일하게 적용될 수 있다. 전구 물질에 포함되는 액정 화합물의 종류도 특별히 제한되지 않고, 예를 들면, 상기 수식 C 등에 대한 사항을 포함하여 상기 기술한 내용이 적용될 수 있다. 또한, 전구 물질과 액정 화합물의 비율에 대한 사항도 상기 내용이 적용될 수 있다.
중합성 조성물은 필요하다면, 형성된 액정층의 간격의 적절한 유지 등을 위하여 볼(ball) 형태의 스페이서를 적정 비율로 포함할 수 있다. 스페이서의 형태, 크기 등은 특별히 제한되지 않고, 목적하는 액정층의 간격을 확보할 수 있도록 선택될 수 있다. 스페이서의 비율은 특별히 제한되지 않고, 예를 들면, 전체 중합성 조성물 내에 약 0,1 중량% 내지 5 중량% 정도로 포함될 수 있다.
중합성 조성물은 상기 전구 물질과 액정 화합물에 추가로 기타 필요한 첨가제(예를 들면, 개시제 등)를 적절한 용매에 용해시켜 제조할 수 있다. 용매로는 톨루엔, 크실렌, 시클로펜타논 또는 시클로헥사논 등의 공지의 용매의 사용이 가능하다.
하나의 예시에서 상기 중합성 조성물은 무용제 타입으로 조성될 수 있다. 무용제 타입으로 조성된 중합성 조성물은 후술하는 스퀴즈 코팅(squeeze coating) 방식으로의 적용에 유리할 수 있다. 무용제 타입으로 중합성 조성물을 제조하는 방식은 특별히 제한되지 않고, 전술한 조성물의 성분 중에서 용매를 사용하지 않고, 다른 성분들의 점도나 비율 등을 조절하여 제조할 수 있다.
본 출원은 또한 액정 소자의 제조 방법에 대한 것이다. 상기 제조 방법은 중합성 조성물을 포함하는 층, 예를 들면, 중합성 조성물을 코팅하여 형성된 층을 중합시켜서 폴리머 네트워크 내에 분산되어 있는 액정 화합물을 포함하는 액정층을 형성하는 것을 포함할 수 있다. 상기에서 중합성 조성물로는, 예를 들면, 상기 기술한 액정층의 전구 조성물이 사용될 수 있다. 상기에서 중합은, 중합을 유도할 수 있는 적절한 에너지, 예를 들면 광을 조사하여 수행할 수 있다.
중합성 조성물을 포함하는 층을 형성하는 방법은 특별히 제한되지 않고, 예를 들면, 롤 코팅, 인쇄법, 잉크젯 코팅, 슬릿 노즐법, 바 코팅, 콤마 코팅, 스핀 코팅 또는 그라비어 코팅 등과 같은 공지의 코팅 방식을 통한 코팅에 의해 형성할 수 있다. 하나의 예시에서 중합성 조성물을 포함하는 층은 스퀴즈 코팅(squeeze coating) 방식으로 형성할 수 있다. 스퀴즈 코팅 방식의 적용을 위해서 중합성 조성물로서 전술한 무용제형의 조성물을 사용할 수 있다. 스퀴즈 코팅 방식의 적용을 통해 보다 균일한 액정층의 형성이 가능하고, 액정층과 기재층의 합착에 별도의 접착층 등을 적용하지 않고, 상기를 직접 합착할 수 있게 되고, 이러한 점은 구동 전압 측면 등에서 유리할 수 있다.
스퀴즈 코팅 방식에서 중합성 조성물을 포함하는 층은, 예를 들면, 2개의 기재층, 예를 들면 상기 언급한 기재층의 사이에 중합성 조성물을 위치시키고, 상기 기재층 중 적어도 하나에 압력을 인가하여 형성할 수 있다. 이 때 압력을 인가하는 방식은 특별히 제한되지 않고, 예를 들면, 가압 롤러 등이 이용될 수 있다. 가압은 기재층의 전면에 동시 또는 순차적으로 수행될 수 있다. 도 3은, 상기 스퀴즈 코팅 방식을 예시적으로 보여주는 도면이다. 도 3과 같이 우선 기재층(201A)의 소정 부위에 중합성 조성물(301), 예를 들면, 전술한 무용제형 조성물을 위치시키고 그 상부에 다시 기재층(201B)을 위치시킨다. 이어서 기재층 중 적어도 하나에 가압 롤러(302)를 위치시켜서 순차적으로 기재층을 가압할 수 있다. 도면에는 도시되어 있지 않지만, 도 3에서 기재층(201A, 201B)의 내측, 예를 들면 최종적으로 액정층과 접하게 될 측에는 전술한 전극층 및/또는 배향막이 위치할 수 있다. 스퀴즈 코팅 방식에서 중합은 상기 가압 과정에서 동시에 수행되거나, 가압 종료 후 수행될 수 있다.
적절한 배향성 폴리머 네트워크의 형성을 위해서 상기 중합은 배향막상에 수행될 수 있다. 예를 들면, 배향막상에 상기 중합성 조성물을 포함하는 층을 형성하거나, 혹은 2개의 대향 배치된 배향막의 사이에 상기 층을 형성한 후에 에너지를 인가하여 중합함으로써 액정층을 형성할 수 있다.
배향막은, 예를 들면, 광배향성 화합물, 예를 들면, 상기 기술한 광배향성 화합물을 포함할 수 있다. 이러한 배향막은 배향막 전구체를 적절한 기판, 예를 들면, 상기 기재층에 코팅하고, 노광하여 광배향성 화합물을 정렬시켜서 형성할 수 있다. 도 4는, 기재층(201A)에 형성된 배향막의 전구체에 광을 조사하여 배향막(101)을 형성하는 과정을 모식적으로 보여준다.
배향막의 전구체는, 예를 들면, 상기 광배향성 화합물에 추가로 개시제를 적정량으로 포함할 수 있고, 필요한 경우에 계면활성제 등의 다른 첨가제도 포함할 수 있다. 배향막의 전구체의 층은, 예를 들어, 상기 전구체를 바 코팅, 콤마 코팅, 잉크젯 코팅 또는 스핀 코팅 등의 통상의 코팅 방식으로 코팅하여 형성할 수 있다. 전구체의 층이 형성되는 기재층의 표면에는, 예를 들면, 상기 기술한 투명 전극층이 형성되어 있을 수 있다.
전구체의 층을 형성한 후에 상기 층에 광의 조사 등의 방식으로 에너지를 인가할 수 있다. 광의 조사는, 예를 들어, 전구체가 용매 등을 포함하는 경우에는, 형성된 층을 적절한 조건에서 건조하여 용매를 휘발시킨 후에 수행할 수 있다. 이러한 건조는 예를 들면, 약 60℃ 내지 130℃의 온도에서 약 1분 내지 5분 동안 수행할 수 있으나, 이에 제한되는 것은 아니다.
광의 조사는, 전구체의 층에 포함되는 배향성 화합물이 정렬될 수 있도록 수행될 수 있다. 통상적으로 배향성 화합물의 정렬은 직선 편광된 광을 사용하여 수행될 수 있다. 조사되는 광의 파장이나 세기는 배향성 화합물의 적절한 정렬을 제공할 수 있도록 선택될 수 있다. 전형적으로 광배향성 화합물은, 가시광이나 근자외선(near ultraviolet) 범위의 광에 의해 정렬하지만, 필요한 경우에 원자외선(far ultraviolet)이나 근적외선(near Infrared) 범위의 광이 사용될 수도 있다.
배향막의 형성 후에 상기 배향막에 인접하여, 예를 들면, 전술한 스퀴즈 코팅의 방식으로 중합성 조성물을 포함하는 층을 형성할 수 있다. 도 5는, 도 4에서 형성된 배향막(101)의 표면에 존재하는 중합성 조성물을 포함하는 층에 광을 조사하여 액정층(102)을 형성하는 과정을 모식적으로 보여준다. 도 5에서는 하나의 배향막상에서 액정층이 형성되는 경우를 보여주고 있으나, 필요한 경우에 상기 액정층은 전술한 바와 같이 2개의 배향막의 사이에서 형성될 수도 있다.
상기 과정을 통해 폴리머 네트워크 전구 물질의 중합과 액정 화합물의 상 분리가 발생하여 폴리머 네트워크 및 액정 영역이 형성될 수 있다.
적절한 배향성 네트워크의 형성을 위해 중합은 액정층 전구체의 층, 즉 상기 기술한 중합성 조성물을 포함하는 층을 액정상, 예를 들면, 네마틱상(nematic phase)으로 유지한 상태에서 수행될 수 있다. 상기 층이 네마틱상이 아닌 상태, 예를 들면, 등방성상(isotropic phase)에서 층이 형성되면 적절한 배향성이 확보되지 않을 수 있다. 네마틱상의 유지를 위해 상기 중합은 액정층 전구체의 층, 즉 상기 중합성 조성물을 포함하는 층의 네마틱 온도(Tni) 미만의 온도에서 수행될 수 있다. 본 출원에서 용어 네마틱 온도는 상기 층이 네마틱 상태에서 등방성 상태로 전이되는 온도를 의미하고, 이 온도의 범위는 상기 층의 조성에 따라서 결정될 수 있다. 상기 중합이 상기 층의 네마틱 온도 미만, 즉 상기 층이 네마틱상인 상태에서 수행되는 한 그 온도는 특별히 제한되지 않는다.
중합을 위한 에너지의 인가, 예를 들면, 광의 조사의 조건은, 중합성 화합물이 중합되어 폴리머 네트워크가 형성되고, 액정 화합물이 상분리되어 액정 영역을 형성할 수 있도록 수행되는 한 특별히 제한되지 않는다. 필요한 경우에 폴리머 네트워크의 형성 등을 보다 촉진하기 위하여 상기 광의 조사 공정의 전 또는 후, 또는 그와 동시에 적절한 열의 인가 또는 노광 공정을 수행할 수 있다.
상기 과정을 통하여 액정층을 형성한 후에 필요한 경우에 형성된 액정층에 일측 또는 양측에 편광층을 배치하는 공정 등이 추가로 진행될 수 있다. 예를 들면, 액정층의 형성 이후에 상기 액정층의 양측에 광흡수축이 서로 80도 내지 100도의 범위 내의 어느 한 각도를 이루도록, 예를 들면 수직하도록 편광층을 배치하거나, 혹은 광흡수축이 서로 -10도 내지 10도의 범위 내의 어느 한 각도를 이루도록, 예를 들면, 수평하도록 편광층을 배치하는 공정 등이 추가로 진행될 수 있다.
본 출원은 또한 액정 소자, 예를 들면, 상기 기술한 액정 소자를 제조하기 위한 제조 장치에 대한 것이다.
상기 제조 장치는, 예를 들면, 액정층의 전구체, 예를 들면, 전술한 중합성 조성물의 중합을 유도할 수 있는 에너지를 제공할 수 있도록 설치된 중합 유도 수단을 포함할 수 있다. 상기에서 액정층의 전구체에 포함되는 폴리머 네트워크 전구 물질과 액정 화합물에 대한 구체적이 사항에 대해서는 이미 기술한 내용이 동일하게 적용될 수 있다.
중합 유도 수단의 종류도 특별히 제한되지 않고, 전구체에 에너지, 예를 들면 열 또는 광을 인가 또는 조사할 수 있도록 하는 가열 또는 광 조사 수단을 사용할 수 있다.
상기 제조 장치는 또한 상기 액정층 전구체 층을 유지할 수 있도록 설치된 거치 수단을 포함할 수 있다. 이러한 거치 수단에 의해 전구체의 층을 유지한 상태에서 중합시켜 상기 액정층의 형성이 가능할 수 있다.
거치 수단의 종류는 액정층 전구체의 거치가 가능한 것이라면 특별히 제한되지 않는다. 예를 들면, 거치 수단은 적어도 액정층 전구체의 중합 과정에서 상기 전구체의 층의 표면을 곡면으로 유지할 수 있도록 설치되어 있을 수 있다. 이러한 거치 수단의 예로는, 롤(roll)을 들 수 있다.
즉, 하나의 예시에서 상기 제조 장치는 소위 롤투롤 제조 장치로서, 상기 액정층의 전구체의 층을 이동시킬 수 있도록 형성되어 있는 하나 이상의 가이드롤을 포함하는 제조 장치이고, 상기 가이드롤에 의해 상기 층을 이송하며서 연속적으로 액정 소자를 제조할 수 있다. 또한, 가이드롤상에서 상기 층의 표면이 곡면으로 유지된 상태에서 상기 중합이 진행될 수 있고, 이러한 경우에 상기 가이드롤이 상기 거치 수단으로 작용할 수 있다. 이와 같이 가이드롤 등에 의해 액정층의 표면을 곡면으로 유지한 상태에서 중합을 수행하면 보다 균일한 액정층의 형성이 가능할 수 있다. 롤투롤 장치의 경우, 예를 들면, 상기 층 또는 상기 층이 형성될 기재층을 풀면서 중합 유도 수단측으로 도입할 수 있는 권출롤이나, 중합 등의 제조 공정이 종료된 액정 소자를 감아서 회수할 수 있는 권취롤을 추가로 포함할 수 있다.
상기 제조 장치는, 상기 중합 과정, 즉 적어도 상기 중합성 화합물이 중합되는 동안 상기 중합성 화합물이 이미 기술한 네마틱상과 같은 액정상을 유지하는 온도를 유지할 수 있도록 설치된 온도 조절 수단을 포함할 수 있다.
온도 조절 수단은, 적절한 온도를 유지할 수 있도록 형성되는 한 특별히 제한되지 않으며, 예를 들면, 온도 조절 드럼 및/또는 비활성 가스 퍼징 챔버 등을 사용하여 구성할 수 있다.
예를 들어, 상기 제조 장치가 전술한 롤투롤 장치라면, 상기 거치 수단으로도 작용할 수 있는 가이드롤에 온도 조절 드럼, 예를 들면, 냉각 드럼을 포함시켜 상기 중합 과정에서 온도가 적정 범위로 유지되도록 할 수 있다. 필요하다면, 이러한 가이드롤에 거치된 상태로 중합이 수행되는 영역 등을 비활성 퍼징 챔버 내에 포함되도록 구성하고, 상기 퍼징 챔버 내에 중합 유도 수단 등을 포함시켜서 장치를 구성할 수 있다.
도 6은 상기와 같이 구현된 제조 장치의 소정 부위를 보여주는 예시적인 도면이고, 냉각 드럼과 같은 온도 조절 수단을 포함하는 가이드롤(A); 및 상기 가이드롤(A)을 통해 이동하는 액정층의 전구체의 층(C)이 도입될 수 있도록 설치된 비활성 가스 퍼징 챔버(B)를 포함하는 경우를 예시적으로 보여준다. 도 6에는 가이드롤(A)이 온도 조절 수단을 포함하고, 챔버(B)도 형성되어 있는 경우를 보여주나, 적절한 온도가 유지된다면 상기 2개 중 어느 하나는 생략될 수도 있다. 이러한 구성에서 가이드롤(A)에 의해 이동하는 상기 전구체의 층에 에너지를 인가할 수 있도록 설치된 중합 유도 수단, 예를 들면, 도 6에 나타난 바와 같은 자외선 램프(UV lamp)가 추가로 포함될 수 있고, 상기는 예를 들면, 상기 챔버(B)의 내부에 존재할 수도 있다.
제조 장치에서 상기 기술한 구성 외의 다른 수단들의 구체적인 종류는 특별히 제한되지 않는다. 예를 들어, 해당 분야에는 롤투롤 장치를 구현하는 다양한 방식이 알려져 있고, 이러한 방식은 필요한 경우에 적절히 변형되어 상기 장치에 적용될 수 있다.
예를 들면, 상기 롤투롤 장치는, 권출롤 등과 같은 통상적인 입력 수단에 의해 입력된 기재층(예를 들면, 도 2 및 3에서의 기재층(201A))을 하나 이상의 가이드롤에 의해 이동시키면서, 전극층의 형성, 배향막의 형성, 중합성 조성물을 포함하는 층의 형성(예를 들면, 상기 스퀴즈 코팅 방식으로 중합성 조성물의 층을 형성할 수 있다. ) 및 상기 층의 중합 과정을 순차 수행하고, 필요하다면 편광층의 합착 내지는 형성 공정을 거쳐서 최종적으로 제조된 제품이 권취롤과 같은 회수 수단에 의해 회수되도록 구성될 수 있다.
본 출원은 또한, 상기 액정 소자의 용도에 대한 것이다. 예시적인 액정 소자는, 예를 들면, 롤투롤 공정 등을 통하여 간단하고 연속적으로 제조할 수 있다. 액정 소자는 또한 플렉서블 소자로 구현될 수 있으며, 우수한 콘트라스트 비율을 확보할 수 있다.
예를 들면, 본 출원은 상기 액정 소자를 포함하는 광변조 장치에 대한 것이다. 광변조 장치로는, 스마트 윈도우, 윈도우 보호막, 플렉서블 디스플레 소자, 3D 영상 표시용 액티브 리타더(active retarder) 또는 시야각 조절 필름 등이 예시될 수 있으나, 이에 제한되는 것은 아니다. 상기와 같은 광 변조 장치를 구성하는 방식은 특별히 제한되지 않고, 상기 액정 소자가 사용되는 한 통상적인 방식이 적용될 수 있다.
본 출원의 액정 소자는, 예를 들면, 통상 투과 모드(normally transparent mode) 또는 통상 차단 모드(normally black mode)를 구현할 수 있는 소자로서 높은 콘트라스트 비율을 나타내면서 낮은 구동 전압으로 구동하며, 탁월한 열안정성 등의 내구성을 나타낼 수 있다. 이러한 액정 소자는 스마트 윈도우, 윈도우 보호막, 플렉서블 디스플레 소자, 3D 영상 표시용 액티브 리타더(active retarder) 또는 시야각 조절 필름 등과 같은 다양한 광변조 장치에 적용될 수 있다.
도 1 및 2는 예시적인 액정 소자를 보여준다.
도 3 및 5는, 예시적인 소자 제조 과정을 설명하기 위한 도면이다.
도 6는, 예시적인 액정 소자의 제조 장치를 보여주는 도면이다.
도 7 내지 17은, 실시예 및 비교예에서의 액정 소자 등에 대한 평가 결과를 보여준다.
<부호의 설명>
101: 배향막
102: 액정층
1021: 폴리머 네트워크
1022: 액정 영역
201A, 201B: 기재층
301: 중합성 조성물
302: 가압 롤러
이하 실시예 및 비교예를 통하여 상기 기술한 내용을 보다 구체적으로 설명하지만, 본 출원의 범위가 하기 제시된 내용에 의해 제한되는 것은 아니다.
실시예 1.
배향막의 형성
배향성 화합물로서 하기 화학식 A의 반복 단위를 포함하는 폴리노르보넨(PNBCi, 분자량(Mw): 85,000, PDI(polydispersity index): 약 4.75) 및 광개시제(Igacure 907)의 혼합물(폴리노르보넨:광개시제 = 2:0.25(중량비))을 톨루엔 용매에 폴리노르보넨의 고형분 농도가 2 중량%가 되도록 용해시켜 배향막 전구체를 제조하였다. 표면에 ITO(Indium Tin Oxide) 투명 전극층이 형성되어 있는 PC(Polycarbonate) 필름의 투명 전극층에 상기 배향막 전구체를 도포하고, WGP(Wire Grid Polarizer)를 매개로 직선 편광된 자외선(1,200 mJ/cm2)을 조사하여 배향막을 형성하였다.
[화학식 A]
Figure PCTKR2013011680-appb-I000004
액정 소자의 제조
폴리머 네트워크 전구 물질로서, 1,6-헥산디올 디아크릴레이트와 액정 화합물(Merck, MAT-12-529, ne: 1.6092, no: 1.4820)을 1:9의 중량 비율(폴리머 네트워크 전구 물질:액정 화합물)로 혼합하고, 이를 적정량의 개시제와 함께 톨루엔에 용해시켜 액정층 전구체(중합성 조성물)(네마틱 온도(Tni): 약 50℃)를 제조하였다. 그 후, 상기 제조된 배향막의 표면에 상기 액정층의 전구체를 최종 액정층의 두께가 2.5 ㎛가 되도록 코팅하였다. 코팅된 액정층 전구체상에 상기 배향막 형성 항목에서 기술한 것과 동일한 방식으로 일면에 배향막을 형성한 PC 필름의 배향막면을 상기 코팅층과 접하도록 적층한 후에 자외선(300mW/cm2)을 조사하여 폴리머 네트워크 전구 물질을 중합시켜 액정층을 형성하였다. 자외선의 조사 시의 온도는 약 25℃ 정도로 유지하여 액정층 전구체가 네마틱상을 유지하도록 하였다. 액정층을 형성하는 폴리머 네트워크의 굴절률을 프리즘 커플러로 측정한 결과 약 1.456 정도였으며, 액정층의 위상차(실측 위상차)를 Axostep(Axometrics社) 장비를 사용하여 550nm 파장 기준으로 제조사의 매뉴얼에 따라 측정한 결과 약 288 nm 정도였다. 도 7은 상기 액정층의 광학 마이크로현미경(optical microscope) 이미지이고, 도 8은 상기 액정층의 SEM(Scanning electron microscope) 이미지이다.
실시예 2.
폴리머 네트워크 전구 물질로서 1.6-헥산디올 디아크릴레이트 50 중량부 및 2-에틸헥실 아크릴레이트 50 중량부를 혼합한 것을 사용한 것을 제외하고는 실시예 1과 동일한 방식으로 액정층을 형성하였다. 상기에서 액정층 전구체의 네마틱 온도(Tni)는 약 45℃였으며, 자외선의 조사는 상기 전구체가 네마틱상을 유지하는 온도인 25℃에서 수행하였다. 형성된 액정층 내의 폴리머 네트워크의 굴절률은 약 1.446 정도였고, 액정층의 실측 위상차는 약 286.7 nm 정도였다.
실시예 3.
폴리머 네트워크 전구 물질로서 1.6-헥산디올 디아크릴레이트 40 중량부, 트리메틸롤프로판 트리아크릴레이트 20 중량부 및 2-에틸헥실 아크릴레이트 40 중량부를 혼합한 것을 사용한 것을 제외하고는 실시예 1과 동일한 방식으로 액정층을 형성하였다. 상기에서 액정층 전구체의 네마틱 온도(Tni)는 약 45℃였으며, 자외선의 조사는 상기 전구체가 네마틱상을 유지하는 온도인 25℃에서 수행하였다. 형성된 액정층 내의 폴리머 네트워크의 굴절률은 약 1.452 정도였고, 액정층의 실측 위상차는 약 285.3 nm 정도였다.
실시예 4.
폴리머 네트워크 전구 물질로서 1.6-헥산디올 디아크릴레이트 40 중량부, 트리메틸롤프로판 트리아크릴레이트 30 중량부 및 2-에틸헥실 아크릴레이트 30 중량부를 혼합한 것을 사용한 것을 제외하고는 실시예 1과 동일한 방식으로 액정층을 형성하였다. 상기에서 액정층 전구체의 네마틱 온도(Tni)는 약 50℃였으며, 자외선의 조사는 상기 전구체가 네마틱상을 유지하는 온도인 25℃에서 수행하였다. 형성된 액정층 내의 폴리머 네트워크의 굴절률은 약 1.455 정도였고, 액정층의 실측 위상차는 약 286.1 nm 정도였다.
실시예 5.
폴리머 네트워크 전구 물질로서 1.6-헥산디올 디아크릴레이트 70 중량부 및 트리메틸롤프로판 트리아크릴레이트 30 중량부를 혼합한 것을 사용한 것을 제외하고는 실시예 1과 동일한 방식으로 액정층을 형성하였다. 상기에서 액정층 전구체의 네마틱 온도(Tni)는 약 50℃였으며, 자외선의 조사는 상기 전구체가 네마틱상을 유지하는 온도인 25℃에서 수행하였다. 형성된 액정층 내의 폴리머 네트워크의 굴절률은 약 1.461 정도였고, 액정층의 실측 위상차는 약 287 nm 정도였다.
비교예 1.
폴리머 네트워크 전구 물질로서 1.6-헥산디올 디아크릴레이트 40 중량부 및 2-에틸헥실 아크릴레이트 60 중량부를 혼합한 것을 사용하고, 상기 폴리머 네트워크 전구 물질과 액정 화합물을 10:90(폴리머 네트워크 전구 물질:액정 화합물)의 중량 비율로 혼합한 것을 제외하고는 실시예 1과 동일한 방식으로 액정층을 형성하였다. 상기에서 액정층 전구체의 네마틱 온도(Tni)는 약 45℃였으며, 자외선의 조사는 상기 전구체가 네마틱상을 유지하는 온도인 25℃에서 수행하였다. 형성된 액정층 내의 폴리머 네트워크의 굴절률은 약 1.444 정도였고, 액정층의 실측 위상차는 약 124 nm 정도였다.
비교예 2.
폴리머 네트워크 전구 물질로서 1.6-헥산디올 디아크릴레이트 30 중량부, 트리메틸롤프로판 트리아크릴레이트 20 중량부 및 2-에틸헥실 아크릴레이트 50 중량부를 혼합한 것을 사용하고, 상기 폴리머 네트워크 전구 물질과 액정 화합물을 10:90(폴리머 네트워크 전구 물질:액정 화합물)의 중량 비율로 혼합한 것을 제외하고는 실시예 1과 동일한 방식으로 액정층을 형성하였다. 상기에서 액정층 전구체의 네마틱 온도(Tni)는 약 45℃였으며, 자외선의 조사는 상기 전구체가 네마틱상을 유지하는 온도인 25℃에서 수행하였다. 형성된 액정층 내의 폴리머 네트워크의 굴절률은 약 1.450 정도였고, 액정층의 실측 위상차는 약 162 nm 정도였다.
비교예 3.
폴리머 네트워크 전구 물질로서 1.6-헥산디올 디아크릴레이트 30 중량부, 트리메틸롤프로판 트리아크릴레이트 40 중량부 및 2-에틸헥실 아크릴레이트 30 중량부를 혼합한 것을 사용하고, 상기 폴리머 네트워크 전구 물질과 액정 화합물을 10:90(폴리머 네트워크 전구 물질:액정 화합물)의 중량 비율로 혼합한 것을 제외하고는 실시예 1과 동일한 방식으로 액정층을 형성하였다. 상기에서 액정층 전구체의 네마틱 온도(Tni)는 약 45℃였으며, 자외선의 조사는 상기 전구체가 네마틱상을 유지하는 온도인 25℃에서 수행하였다. 형성된 액정층 내의 폴리머 네트워크의 굴절률은 약 1.457 정도였고, 액정층의 실측 위상차는 약 166 nm 정도였다.
비교예 4.
폴리머 네트워크 전구 물질로서 1.6-헥산디올 디아크릴레이트 40 중량부, 트리메틸롤프로판 트리아크릴레이트 40 중량부 및 2-에틸헥실 아크릴레이트 20 중량부를 혼합한 것을 사용하고, 상기 폴리머 네트워크 전구 물질과 액정 화합물을 10:90(폴리머 네트워크 전구 물질:액정 화합물)의 중량 비율로 혼합한 것을 제외하고는 실시예 1과 동일한 방식으로 액정층을 형성하였다. 상기에서 액정층 전구체의 네마틱 온도(Tni)는 약 50℃였으며, 자외선의 조사는 상기 전구체가 네마틱상을 유지하는 온도인 25℃에서 수행하였다. 형성된 액정층 내의 폴리머 네트워크의 굴절률은 약 1.459 정도였고, 액정층의 실측 위상차는 약 157 nm 정도였다.
비교예 5.
폴리머 네트워크 전구 물질로서 1.6-헥산디올 디아크릴레이트 60 중량부 및 트리메틸롤프로판 트리아크릴레이트 40 중량부를 혼합한 것을 사용하고, 상기 폴리머 네트워크 전구 물질과 액정 화합물을 10:90(폴리머 네트워크 전구 물질:액정 화합물)의 중량 비율로 혼합한 것을 제외하고는 실시예 1과 동일한 방식으로 액정층을 형성하였다. 상기에서 액정층 전구체의 네마틱 온도(Tni)는 약 50℃였으며, 자외선의 조사는 상기 전구체가 네마틱상을 유지하는 온도인 25℃에서 수행하였다. 형성된 액정층 내의 폴리머 네트워크의 굴절률은 약 1.463 정도였고, 액정층의 실측 위상차는 약 182 nm 정도였다.
비교예 6.
폴리머 네트워크 전구 물질을 사용하지 않고, 배향막이 형성된 PC 필름의 사이에 액정 화합물만을 주입하여 액정층을 형성한 것을 제외하고는 실시예 1과 동일한 방식으로 액정층을 형성하였다. 상기에서 액정층의 실측 위상차는 약 319 nm였다.
비교예 7.
산란 및 투과 모드의 사이를 스위칭할 수 있는 소자를 형성할 수 있는 전구 물질로서, 폴리머 네트워크 전구 물질(PN-393, Merck사제) 40 중량부와 액정 화합물 60 중량부를 혼합한 액정층 전구체를 사용하여 배향막이 형성되지 않은 2장의 PC 필름의 사이에 두께가 약 25 ㎛ 정도인 액정층을 형성하여 산란 모드와 투과 모드 사이를 스위칭하는 액정층을 형성하였다. 이와 같이 형성된 액정층의 산란 모드에서의 헤이즈는 약 92.91%였으며, 위상차는 약 65 nm였다.
비교예 9.
폴리머 네트워크 전구 물질로서 1,6-헥산디올 디아크릴레이트 20 중량부와 액정 화합물 80 중량부를 혼합한 액정층 전구체를 사용한 것을 제외하고는 실시예 1과 동일한 방식으로 액정층을 형성하였다. 상기에서 액정층 전구체의 네마틱 온도(Tni)는 약 10℃였으며, 자외선의 조사는 상기 전구체가 등방성을 유지하는 온도인 25℃에서 수행하였다. 액정층의 위상차(실측 위상차)를 Axostep(Axometrics社) 장비를 사용하여 550nm 파장 기준으로 제조사의 매뉴얼에 따라 측정한 결과 약 139 nm 정도였다.
비교예 10.
액정층 전구체가 등방성을 유지하는 온도인 약 60℃에서 자외선을 조사한 것을 제외하고는 실시예 1과 동일한 방식으로 액정층을 형성하였다. 제조된 액정층에서 폴리머 네트워크의 굴절률을 프리즘 커플러로 측정한 결과 약 1.456 정도였으며, 액정층의 위상차(실측 위상차)를 Axostep(Axometrics社) 장비를 사용하여 550nm 파장 기준으로 제조사의 매뉴얼에 따라 측정한 결과 약 88 nm 정도였다. 도 17은 상기 액정층의 Axostep 측정 데이터를 보여준다,
비교예 11.
광배향막을 형성하지 않은 PC 필름을 사용한 것을 제외하고는 실시예 1과 동일한 방식으로 액정층을 형성하였다. 제조된 액정층에서 폴리머 네트워크의 굴절률을 프리즘 커플러로 측정한 결과 약 1.456 정도였으며, 액정층의 위상차(실측 위상차)를 Axostep(Axometrics社) 장비를 사용하여 550nm 파장 기준으로 제조사의 매뉴얼에 따라 측정한 결과 약 46 nm 정도였다. 도 17은 상기 액정층의 Axostep 측정 데이터를 보여준다.
비교예 12.
폴리머 네트워크 전구 물질과 액정 화합물의 중량 비율이 4:6(폴리머 네트워크 전구 물질:액정 화합물)이 되도록 배합하여 액정층 전구체를 제조한 것을 제외하고는 실시예 1과 동일한 방식으로 액정층을 형성하였다. 액정층의 위상차(실측 위상차)를 Axostep(Axometrics社) 장비를 사용하여 550nm 파장 기준으로 제조사의 매뉴얼에 따라 측정한 결과 약 139 nm 정도였다.
시험예 1. 폴리머 네트워크의 배향성 평가
실시예에서 제조된 액정층을 광흡수축이 서로 직교하도록 배치된 두 장의 편광판 사이 또는 광흡수축이 서로 45도를 이루도록 배치된 두 장의 편광판의 사이에 위치시키고, 액정층을 회전시키면서 투과(white) 모드와 차단(black) 모드 사이를 스위칭하는 지 여부를 확인하여 배향성을 평가하였다. 상기 과정을 통해 투과 및 차단 모드 사이를 스위칭하는 경우, 폴리머 네트워크의 배향성에 의해 액정 화합물이 액정층 내에서 배향되어 있는 것으로 평가할 수 있다. 평가 결과, 실시예 1 내지 5의 경우, 투과 및 차단 모드 사이에서의 스위칭이 확인되었으나, 비교예 1 내지 5 및 비교예 9 내지 12에 대한 확인 결과 폴리머 네트워크가 배향성을 나타내지 않았다. 도 9는 실시예 1 내지 5에 대한 평가 결과를 나타내고, 도 10은 비교예 1 내지 5에 대한 평가 결과를 나타낸다. 또한, 도 16은 실시예 1과 비교예 9의 비교를 보여주는 도면이고, 도면으로부터 확인되는 바와 같이 액정층의 형성이 전구체가 네마틱상에서 이루어진 실시예 1의 경우, 편광축과 45도를 이루는 상태에서 투과 모드(좌측)가 구현되고, 90도인 상태에서 차단 모드(우측)가 구현되나, 액정층의 형성이 전구체가 등방성인 상태에서 이루어진 비교예 9의 경우에는 편광축과 45도를 이루는 상태(좌측)와 90도를 이루는 상태(우측) 모두에서 광이 차단되어 투과 및 차단 모드간의 스위칭이 불가능함을 알 수 있다.
시험예 2. 액정층의 위상차, 헤이즈 및 투과율 평가
실시예 1 내지 5에서 제조된 액정층의 위상차, 헤이즈 및 투과율을 평가하였다. 상기에서 위상차(측정 파장: 550 nm)는 Axostep(Axometrics社) 장비를 사용하여 550nm 파장 기준으로 제조사의 매뉴얼에 따라 측정하였으며, 헤이즈 및 투과율은 헤이즈미터(hazemeter, NDH-5000SP)를 사용하여 역시 제조사의 매뉴얼에 따라 측정하였다.. 상기에서 위상차는 액정층에 전압을 인가하지 않은 상태에서 평가하였고, 헤이즈와 투과율은 구동 전압을 인가하면서 평가하였다. 도 11은 실시예에 대하여 위상차를 평가한 결과를 보여주는 도면이고, 도 12는 실시예에 대하여 헤이즈와 투과율을 평가한 결과를 보여주는 도면이다. 도 15는 실시예 1 및 비교예 1에 대한 AXO-STEP 측정 데이터를 보여준다.
시험예 3.
실시예 및 비교예에서 제조된 액정층에 전압을 단계적으로 인가하면서 휘도를 평가하여 콘트라스트 비율을 평가하였다. 휘도 및 콘트라스트 비율은, LCMS-200 장비(세심광전자)로 측정한 값을 환산하여 평가하였다. 평가 과정에서 측정 대상과 수광부(디텍터)의 간격은 약 10 cm 정도로 유지하였고, 수광부(디텍터)로는 직경이 약 1.5 mm 정도인 것을 사용하였다. 도 13은 실시예 1, 비교예 1 및 비교예 7에 대한 상기 평가 결과를 보여준다. 실시예 1과 비교예 1의 액정층은 광흡수축이 서로 직교하도록 배치된 2장의 편광판의 사이에 위치시켜 평가하였고, 산란 모드와 투과 모드의 사이를 스위칭하도록 구성된 비교예 7의 경우 편광판을 사용하지 않고, 산란 모드와 투과 모드 사이의 콘트라스트 비율을 평가하였다. 도면으로부터 확인되는 바와 같이 실시예 1의 경우 최대 350 이상의 콘트라스트 비율을 나타내었지만, 비교예 1과 비교예 7의 경우 100 이하의 콘트라스트 비율을 나타내었다. 한편, 실시예 2 내지 5의 최대 콘트라스트 비율은 모두 350 이상이었으며, 비교예 2 내지 6 및 9의 최대 콘트라스트 비율은 모두 100 미만이였다.
시험예 4.
실시예 1과 비교예 7에 대하여 구동 전압에 따른 투과율을 평가하였다. 실시예 1의 경우, 액정층을 광흡수축이 서로 직교하도록 배치된 2장의 편광판의 사이에 액정층의 배향 방향이 편광판의 광흡수축과 45도를 이루도록 배치하여 통상 상태에서 투과 모드(normally transparent mode)를 구현하는 소자를 구성하여 전압을 인가하여 차단 모드(black mode)로 스위칭하면서 투과율을 평가하였고, 비교예 7의 경우, 편광판을 사용하지 않고, 통상 상태에서 산란 모드인 소자에 전압을 인가하여 투과 모드로 전환시키면서 구동 전압을 측정하였다. 도 14는 상기 측정 결과를 보여주면, 도 14로부터 알 수 있는 바와 같이 실시예 1의 경우, 투과율 10%가 구현되는 구동 전압이 16.5 V였으며, 비교예 7의 경우 투과율 90%가 구현되는 구동 전압이 92.4 V였다. 한편, 실시예 2 내지 5의 경우 동일하게 평가한 결과 투과율 10%가 구현되는 구동 전압이 모두 30 V 미만이었고, 비교예 1 내지 6 및 9의 경우 투과율 10%가 구현되는 구동 전압이 모두 90V 이상이였다.
시험예 5. 열안정성 평가
실시예 1에서 제조된 액정층(실측 위상차: 288 nm)과 비교예 6에서 제조된 액정층(실측 위상차: 319 nm)의 열안정성을 평가하였다. 열안정성은, 구체적으로는 각 액정층을 70℃의 오븐에 각각 200 시간 동안 유지한 후에 위상차를 평가하여 평가하였다. 오븐 방치 후 실시예 1의 최소 위상차와 최대 위상차는 각각 254.4 nm 및 278.9 nm였고, 평균 위상차는 263 nm로서 위상차 변화율이 8.7%였으나, 비교예 6의 최소 위상차와 최대 위상차는 각각 226.2 nm 및 273.9 nm였고, 평균 위상차는 254.2 nm로서 위상차 변화율이 20.4%였다. 또한, 실시예 2 내지 5에 대하여 각각 동일한 방식으로 열안정성을 평가한 결과 위상차 변화율은 모두 10% 미만이었다.

Claims (16)

  1. 배향성 폴리머 네트워크 및 상기 폴리머 네트워크 내에 일 방향으로 정렬된 상태로 존재하고, 상기 정렬 방향이 외부 작용에 의해 변화될 수 있도록 포함된 액정 화합물을 포함하는 액정층을 포함하고, 상기 액정 화합물의 정렬 방향의 따라 광투과 모드 및 광차단 모드간의 전환이 가능하도록 형성되어 있는 액정 소자.
  2. 제 1 항에 있어서, 광투과 및 광차단 모드에서의 헤이즈가 10% 이하인 액정 소자.
  3. 제 1 항에 있어서, 광투과 모드에서의 휘도(T)와 광차단 모드에서의 휘도(B)의 비율(T/B)의 최대값이 200 이상인 액정 소자.
  4. 제 1 항에 있어서, 통상 투과 모드 또는 통상 차단 모드가 유지되도록 구현된 액정 소자.
  5. 제 4 항에 있어서, 통상 투과 모드에서 10%의 광투과율을 구현하기 위한 요구 전압 또는 통상 차단 모드에서 90%의 광투과율을 구현하기 위한 요구 전압이 30 V 이하인 액정 소자.
  6. 제 1 항에 있어서, 액정층은, 70℃에서 200 시간 동안 유지되는 열처리 후에 하기 수식 A를 만족하는 액정 소자:
    [수식 A]
    ┃100 × (X2-X1)/X1┃ ≤ 10%
    수식 A에서 X1은 상기 열처리 전 액정층의 위상차이고, X2는 상기 열처리 후 액정층의 위상차이다.
  7. 제 1 항에 있어서, 하기 수식 B를 만족하는 액정 소자:
    [수식 B]
    (1 - a) × {(2no 2+ne 2)/3}0.5 ≤ np ≤ (1+a) × ne
    수식 B에서 a는 0 내지 0.5의 범위 내의 어느 하나의 수이고, no는 액정 화합물의 정상 굴절률이며, ne는 액정 화합물의 이상 굴절률이고, np는 폴리머 네트워크의 굴절률이다.
  8. 제 1 항에 있어서, 하기 수식 C를 만족하는 액정 소자:
    [수식 C]
    (ne+no)/2 - b ≤ {(2no 2 + ne 2)/3}0.5 ≤ (ne+no)/2 + b
    수식 C에서 ne는 액정 화합물의 이상 굴절률이고, no는 액정 화합물의 정상 굴절률이며, b는 0.1 내지 1의 범위 내의 어느 한 수이다.
  9. 제 1 항에 있어서, 액정층과 인접하여 배치된 배향막을 추가로 포함하는 액정 소자.
  10. 제 1 항에 있어서, 액정층의 양측에 배치된 편광층을 추가로 포함하는 액정 소자.
  11. 제 1 항에 있어서, 폴리머 네트워크는 이관능성 아크릴레이트 화합물, 3관능 이상의 다관능성 아크릴레이트 화합물 및 단관능성 아크릴레이트 화합물 중 적어도 하나의 화합물을 하기 수식 1 내지 3을 만족할 수 있도록 포함하는 전구 물질의 네트워크인 액정 소자:
    [수식 4]
    A ≥ 1.3 × B
    [수식 5]
    A ≥ C
    [수식 6]
    A ≥ 0.6 × (B+C)
    수식 1 내지 3에서 A, B 및 C는 각각 전구 물질 내에 존재하는 상기 이관능성 아크릴레이트, 3관능 이상의 다관능성 아크릴레이트 화합물 및 단관능성 아크릴레이트 화합물의 중량의 총합을 100으로 환산하였을 때 구해지는 각 화합물간의 중량 비율이다.
  12. 제 11 항에 있어서, 전구 물질은 이관능성 아크릴레이트 화합물, 3관능 이상의 다관능성 아크릴레이트 화합물 및 단관능성 아크릴레이트 화합물 중 적어도 하나를 하기 수식 7 내지 9를 추가로 만족할 수 있도록 포함하는 액정 소자:
    [수식 4]
    A ≥ 40
    [수식 5]
    B ≤ 30
    [수식 6]
    C ≤ 50
    수식 4 내지 6에서 A, B 및 C는 각각 전구 물질 내에 존재하는 상기 이관능성 아크릴레이트, 3관능 이상의 다관능성 아크릴레이트 화합물 및 단관능성 아크릴레이트 화합물의 중량의 총합을 100으로 환산하였을 때 구해지는 각 화합물간의 중량 비율이다.
  13. 제 1 항에 있어서, 배향성 폴리머 네트워크는 복굴절이 20 nm 이하인 액정 소자.
  14. 제 1 항에 있어서, 서로 대향하여 배치된 2개의 기재층을 추가로 포함하고, 액정층이 상기 기재층의 사이에 형성되어 있는 액정 소자.
  15. 제 14 항에 있어서, 적어도 하나의 기재층의 액정층측면에는 전극층이 형성되어 있는 액정 소자.
  16. 제 1 항의 액정 소자를 포함하는 광 변조 장치.
PCT/KR2013/011680 2012-12-14 2013-12-16 액정 소자 WO2014092518A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/652,323 US9840668B2 (en) 2012-12-14 2013-12-16 Liquid crystal device
CN201380072911.9A CN104995554B (zh) 2012-12-14 2013-12-16 液晶器件
EP13862601.5A EP2933677B1 (en) 2012-12-14 2013-12-16 Liquid crystal element
JP2015547865A JP6137764B2 (ja) 2012-12-14 2013-12-16 液晶素子(Liquid Crystal Element)およびこれを含む光変調装置

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR20120146671 2012-12-14
KR10-2012-0146671 2012-12-14
KR10-2013-0156784 2013-12-16
KR10-2013-0156788 2013-12-16
KR1020130156788A KR101499364B1 (ko) 2012-12-14 2013-12-16 액정 소자
KR1020130156787A KR101499363B1 (ko) 2012-12-14 2013-12-16 액정 소자
KR1020130156789A KR101618926B1 (ko) 2012-12-14 2013-12-16 액정 소자
KR10-2013-0156789 2013-12-16
KR10-2013-0156787 2013-12-16
KR1020130156784A KR101505751B1 (ko) 2012-12-14 2013-12-16 액정 소자

Publications (1)

Publication Number Publication Date
WO2014092518A1 true WO2014092518A1 (ko) 2014-06-19

Family

ID=51129673

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2013/011680 WO2014092518A1 (ko) 2012-12-14 2013-12-16 액정 소자
PCT/KR2013/011682 WO2014092520A1 (ko) 2012-12-14 2013-12-16 액정 소자

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011682 WO2014092520A1 (ko) 2012-12-14 2013-12-16 액정 소자

Country Status (7)

Country Link
US (3) US9828550B2 (ko)
EP (2) EP2933676B1 (ko)
JP (3) JP6048901B2 (ko)
KR (11) KR101618926B1 (ko)
CN (3) CN104995552B (ko)
TW (3) TWI510506B (ko)
WO (2) WO2014092518A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107667314A (zh) * 2015-08-25 2018-02-06 株式会社Lg化学 液晶单元

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
WO2016020630A2 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Waveguide laser illuminator incorporating a despeckler
US9933684B2 (en) * 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
JP6048901B2 (ja) 2012-12-14 2016-12-21 エルジー・ケム・リミテッド 液晶素子(LiquidCrystalElement)
EP2950137B1 (en) * 2013-01-25 2019-06-26 LG Chem, Ltd. Liquid crystal device
TWI529081B (zh) * 2015-01-06 2016-04-11 威宇全球科技股份有限公司 防眩後視鏡
CN107873086B (zh) 2015-01-12 2020-03-20 迪吉伦斯公司 环境隔离的波导显示器
KR20170104614A (ko) * 2015-01-23 2017-09-15 메르크 파텐트 게엠베하 광 변조 소자
US9632226B2 (en) 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
KR102001609B1 (ko) * 2015-03-05 2019-07-18 주식회사 엘지화학 액정 필름
KR101999967B1 (ko) * 2015-03-23 2019-07-15 주식회사 엘지화학 액정 조성물
KR101872719B1 (ko) 2015-03-27 2018-06-29 주식회사 엘지화학 액정셀
KR101864927B1 (ko) * 2015-03-31 2018-07-04 주식회사 엘지화학 액정 소자
KR101839780B1 (ko) 2015-03-31 2018-03-19 주식회사 엘지화학 액정 소자
CN105044965B (zh) * 2015-07-09 2018-09-18 深圳市三利谱光电科技股份有限公司 智能窗户及其制造方法
KR102039976B1 (ko) 2016-01-28 2019-11-05 주식회사 엘지화학 액정셀
CN105182586B (zh) * 2015-09-24 2018-12-11 京东方科技集团股份有限公司 柔性液晶显示面板、显示器、可穿戴设备及面板制作方法
CN106873209B (zh) * 2015-09-30 2021-05-11 乐金显示有限公司 光控制装置、包括其的透明显示装置及其制造方法
WO2017060665A1 (en) 2015-10-05 2017-04-13 Milan Momcilo Popovich Waveguide display
KR102227240B1 (ko) * 2015-11-30 2021-03-12 엘지디스플레이 주식회사 나노캡슐 액정층 및 이를 구비한 액정표시장치
KR102024266B1 (ko) * 2016-01-04 2019-09-23 주식회사 엘지화학 광학 필름
WO2017162999A1 (en) 2016-03-24 2017-09-28 Popovich Milan Momcilo Method and apparatus for providing a polarization selective holographic waveguide device
CN106019449A (zh) * 2016-05-27 2016-10-12 京东方科技集团股份有限公司 偏光膜层、显示装置及其制作方法
CN105866953A (zh) * 2016-06-07 2016-08-17 北京行云时空科技有限公司 基于智能眼镜的通透率控制方法、装置以及智能眼镜
KR102442066B1 (ko) * 2016-09-07 2022-09-13 메르크 파텐트 게엠베하 액정 매질 및 광 변조 소자
CN106249461B (zh) * 2016-10-10 2019-05-14 南京中电熊猫液晶显示科技有限公司 液晶聚合物以及液晶显示面板
KR102475431B1 (ko) * 2016-10-14 2022-12-08 덴카 주식회사 조성물
WO2018129398A1 (en) 2017-01-05 2018-07-12 Digilens, Inc. Wearable heads up displays
CN111033369B (zh) * 2017-08-15 2023-04-04 凸版印刷株式会社 调光装置
EP3671341B1 (en) * 2017-08-18 2022-07-20 LG Chem, Ltd. Substrate
KR102166478B1 (ko) 2017-12-22 2020-10-16 주식회사 엘지화학 액정셀
KR102184391B1 (ko) 2017-12-22 2020-11-30 주식회사 엘지화학 액정셀
JP7404243B2 (ja) 2018-01-08 2023-12-25 ディジレンズ インコーポレイテッド 導波管セル内のホログラフィック格子の高スループット記録のためのシステムおよび方法
US20190212588A1 (en) 2018-01-08 2019-07-11 Digilens, Inc. Systems and Methods for Manufacturing Waveguide Cells
CN108761886A (zh) * 2018-03-21 2018-11-06 青岛海信电器股份有限公司 一种显示装置
US11402801B2 (en) 2018-07-25 2022-08-02 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
US20200133060A1 (en) * 2018-10-30 2020-04-30 Sharp Kabushiki Kaisha Thin circular polarizer for display applications
KR102253503B1 (ko) * 2018-11-05 2021-05-18 주식회사 엘지화학 광변조 소자
KR102290713B1 (ko) 2018-11-05 2021-08-18 주식회사 엘지화학 광변조 소자
KR102253499B1 (ko) 2018-11-05 2021-05-18 주식회사 엘지화학 광변조 소자
KR102354935B1 (ko) 2018-11-05 2022-01-24 주식회사 엘지화학 광변조 소자
EP3924759A4 (en) 2019-02-15 2022-12-28 Digilens Inc. METHODS AND APPARATUS FOR MAKING A HOLOGRAPHIC WAVEGUIDE DISPLAY WITH INTEGRATED GRIDINGS
JP6760427B2 (ja) * 2019-03-19 2020-09-23 凸版印刷株式会社 調光シート、調光装置、および、調光シートの管理方法
US20200386947A1 (en) 2019-06-07 2020-12-10 Digilens Inc. Waveguides Incorporating Transmissive and Reflective Gratings and Related Methods of Manufacturing
CN110441933A (zh) * 2019-07-19 2019-11-12 武汉华星光电技术有限公司 显示面板的制造方法及使用该方法所制造的显示面板
KR20220054386A (ko) 2019-08-29 2022-05-02 디지렌즈 인코포레이티드. 진공 브래그 격자 및 이의 제조 방법
CN111524471B (zh) * 2020-04-29 2022-08-12 京东方科技集团股份有限公司 基板及其制作方法
TWI733480B (zh) * 2020-06-03 2021-07-11 友達光電股份有限公司 顯示裝置
KR102619980B1 (ko) * 2020-07-28 2024-01-02 주식회사 엘지화학 광변조 디바이스

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930013794A (ko) 1991-12-20 1993-07-22 김정배 액정 베시클 및 이를 사용한 pdlc
KR20060041921A (ko) * 2004-02-16 2006-05-12 후지 샤신 필름 가부시기가이샤 액정표시장치
US20080198316A1 (en) * 2004-12-22 2008-08-21 Fujifilm Corporation Liquid Crystal Display
JP2011095407A (ja) * 2009-10-28 2011-05-12 Casio Computer Co Ltd 表示素子
JP2011170278A (ja) * 2010-02-22 2011-09-01 Lintec Corp 光散乱型液晶シート、液晶表示シート、及び液晶表示装置
KR20120125859A (ko) * 2011-05-09 2012-11-19 삼성디스플레이 주식회사 액정 표시 장치 및 액정 표시 장치의 제조 방법

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304323A (en) * 1987-10-20 1994-04-19 Dainippon Ink And Chemicals, Inc. Liquid crystal devices and process for producing the same
US4891152A (en) 1987-12-28 1990-01-02 Hughes Aircraft Company Dispersion of liquid crystal droplets in a photopolymerized matrix and devices made therefrom
KR100204745B1 (ko) * 1989-10-02 1999-06-15 플레믹 크리스티안 전광 액정 시스템
EP0484972B1 (en) 1990-11-09 1997-03-12 Canon Kabushiki Kaisha Liquid crystal device, display apparatus using same and display method using same
KR100193354B1 (ko) 1991-05-02 1999-06-15 유젠 웬닝거 액정 광 변조 장치 및 재료
JPH05257126A (ja) 1992-03-11 1993-10-08 Teijin Ltd 液晶表示膜
EP0564869A1 (en) 1992-03-31 1993-10-13 MERCK PATENT GmbH Electrooptical liquid crystal systems
JP3207282B2 (ja) * 1992-05-15 2001-09-10 富士通株式会社 ポリマー分散型液晶表示装置の製造方法
KR100320567B1 (ko) 1992-05-18 2002-06-20 액정광변조장치및재료
JP2881073B2 (ja) 1992-07-29 1999-04-12 シャープ株式会社 電界複屈折制御型液晶素子及びその製法
JP2880354B2 (ja) 1992-08-19 1999-04-05 シャープ株式会社 液晶表示素子及びその製造方法
JP2933805B2 (ja) * 1992-09-30 1999-08-16 シャープ株式会社 高分子分散型液晶複合膜および液晶表示素子並びにその製造方法
JPH06175113A (ja) 1992-12-02 1994-06-24 Asahi Glass Co Ltd 液晶表示素子およびその製造方法
JPH07175051A (ja) 1993-03-31 1995-07-14 Ricoh Co Ltd 液晶/プレポリマー組成物およびそれを用いた液晶表示素子
US5434690A (en) 1993-07-27 1995-07-18 Kabushiki Kaisha Toshiba Liquid crystal device with pixel electrodes in an opposed striped form
JP3329565B2 (ja) 1994-03-14 2002-09-30 日本放送協会 液晶光変調器
JPH08240796A (ja) * 1995-03-02 1996-09-17 Idemitsu Kosan Co Ltd 液晶組成物、それを用いた液晶素子及びその製造法
KR0163885B1 (ko) * 1995-11-22 1999-01-15 김광호 고분자 분산형 액정 표시 장치 및 그 제조 방법
JPH09179102A (ja) * 1995-12-26 1997-07-11 Matsushita Electric Ind Co Ltd 液晶光学素子
US5750213A (en) 1996-02-26 1998-05-12 Sharp Kabushiki Kaisha Polymerizable compound and liquid crystal display device using the same
JPH1048602A (ja) 1996-08-07 1998-02-20 Mitsubishi Electric Corp 液晶表示装置およびその製造方法
TW594190B (en) * 1996-09-13 2004-06-21 Matsushita Electric Ind Co Ltd Polymer dispersion type liquid crystal display element and producing method therefor
JP3357803B2 (ja) 1996-10-30 2002-12-16 タレックス光学工業株式会社 眼鏡用偏光膜および偏光眼鏡
JPH11101964A (ja) * 1997-08-01 1999-04-13 Sony Corp 偏光素子及び表示装置
KR100244731B1 (ko) 1997-09-11 2000-02-15 구본준, 론 위라하디락사 2도메인 평행배향 액정표시소자
GB2329481A (en) 1997-09-19 1999-03-24 Sharp Kk Supertwist nematic liquid crystal
JPH11258579A (ja) * 1998-03-11 1999-09-24 Idemitsu Kosan Co Ltd 液晶素子およびカラー液晶素子
US6124907A (en) * 1998-04-24 2000-09-26 Ois Optical Imaging Systems, Inc. Liquid crystal display with internal polarizer and method of making same
KR100321397B1 (ko) 1998-10-28 2002-08-09 한국화학연구원 고분자매트릭스를개질한전기광학적특성고분자분산액정복합필름및그의제조방법
EP1175639A4 (en) 1999-04-06 2006-04-19 Reveo Inc ELECTRO-OPTICAL GLAZING STRUCTURES HAVING DIFFUSION AND TRANSPARENCY OPERATING MODES
TW513598B (en) * 2000-03-29 2002-12-11 Sharp Kk Liquid crystal display device
JP2003107438A (ja) 2000-09-12 2003-04-09 Canon Inc 液晶素子
JP3877129B2 (ja) * 2000-09-27 2007-02-07 シャープ株式会社 液晶表示装置
KR100752507B1 (ko) 2000-12-22 2007-08-28 엘지.필립스 엘시디 주식회사 강유전성 액정표시장치 및 그의 제조방법
CN1862326A (zh) * 2001-06-26 2006-11-15 索尼公司 反射液晶显示装置、显示设备、投影光学系统和投影显示系统
JP2003207642A (ja) * 2001-11-09 2003-07-25 Dainippon Printing Co Ltd 光学素子
JP3757956B2 (ja) 2002-05-17 2006-03-22 セイコーエプソン株式会社 液晶表示装置及びその製造方法、並びに電子機器
DE10251861A1 (de) 2002-11-07 2004-05-19 Consortium für elektrochemische Industrie GmbH Polymerisierbare Mischungen
JP2004198505A (ja) 2002-12-16 2004-07-15 Sony Corp 調光装置及びその駆動方法、並びに撮像装置
JP4399212B2 (ja) 2003-02-24 2010-01-13 日本放送協会 液晶光変調器とその製造方法、および液晶表示装置
JP4504626B2 (ja) * 2003-03-31 2010-07-14 シャープ株式会社 液晶表示装置及びその製造方法
US7070838B2 (en) * 2003-06-23 2006-07-04 Chisso Petrochemical Corporation Liquid crystalline compound, liquid crystal composition and their polymers
JP4592711B2 (ja) * 2003-09-24 2010-12-08 シャープ株式会社 液晶表示装置
CN100451693C (zh) * 2003-11-06 2009-01-14 住友化学株式会社 包括取向的聚合物薄膜的二色性宾-主起偏振器
WO2005081051A1 (ja) 2004-02-20 2005-09-01 Asahi Glass Company, Limited 液晶光変調素子
KR20050094011A (ko) * 2004-03-17 2005-09-26 비오이 하이디스 테크놀로지 주식회사 고분자 네크워크 액정 배열 방법
TWI268372B (en) * 2004-03-26 2006-12-11 Nitto Denko Corp IPS mode liquid crystal display to realize a high contrast ratio over a wide range by laminating a polarizing plate and a retardation film to form an optical film
JP5269284B2 (ja) * 2004-04-30 2013-08-21 独立行政法人科学技術振興機構 高分子とキラリティーを有する液晶材料とからなる複合材料、該複合材料の製造方法、および該複合材料を用いる光素子
JP4663285B2 (ja) * 2004-09-22 2011-04-06 富士フイルム株式会社 液晶表示装置
JP2006267562A (ja) 2005-03-24 2006-10-05 Nippon Hoso Kyokai <Nhk> 液晶光変調器の製造方法、液晶光変調器および液晶表示装置
JP5320660B2 (ja) 2005-03-29 2013-10-23 三菱化学株式会社 In−Cell型偏光子用組成物、In−Cell型偏光子及びIn−Cell型積層偏光子、並びにそれらを用いた液晶素子
TWI263834B (en) * 2005-04-29 2006-10-11 Au Optronics Corp Liquid crystal display panel
WO2007007615A1 (ja) 2005-07-13 2007-01-18 Nitto Denko Corporation 光学補償層付偏光板およびその製造方法、ならびに、光学補償層付偏光板を用いた液晶パネル、液晶表示装置および画像表示装置
JP2007065230A (ja) 2005-08-31 2007-03-15 Oki Electric Ind Co Ltd 電流ドライバ回路及びそれを用いた表示装置
US7919648B2 (en) 2005-12-08 2011-04-05 Chisso Corporation Lateral α-substituted acrylate compound and polymer thereof
US7652731B2 (en) * 2006-05-16 2010-01-26 Kent State University Polymer enhanced cholesteric electro-optical devices
US7952661B2 (en) * 2006-08-31 2011-05-31 Sharp Kabushiki Kaisha Reflection type display device and its manufacturing method
JP2009025354A (ja) 2007-07-17 2009-02-05 Sharp Corp 液晶表示パネルおよび液晶表示装置
JP4991486B2 (ja) 2007-10-31 2012-08-01 ソニー株式会社 光学シートおよびその製造方法ならびに表示装置
CN101429436B (zh) 2007-11-05 2013-03-20 比亚迪股份有限公司 用于制备聚合物分散液晶的组合物和薄膜及其制备方法
KR101563029B1 (ko) 2008-03-25 2015-10-23 메르크 파텐트 게엠베하 액정 디스플레이
JP5184944B2 (ja) 2008-04-01 2013-04-17 日東電工株式会社 偏光解消フィルム、その製造方法、光学フィルムおよび液晶表示装置
US8339567B2 (en) 2008-07-04 2012-12-25 Lg Chem, Ltd. Radial-shaped liquid crystal compound, and optical film and liquid crystal display device comprising the same
JP5321298B2 (ja) * 2008-08-29 2013-10-23 Jnc株式会社 重合性液晶組成物およびそれを用いた光学異方性フィルム
KR100988434B1 (ko) 2008-11-05 2010-10-18 전북대학교산학협력단 유방성 크로모닉 액정 조성물
US7837897B2 (en) * 2009-04-27 2010-11-23 Polytronix, Inc. Polymeric dispersed liquid crystal light shutter device
KR101099932B1 (ko) * 2009-07-13 2011-12-28 도레이첨단소재 주식회사 고분자 분산형 액정 복합막용 프리폴리머 조성물 및 이에 의해 형성된 고분자 분산형 액정 복합막
JP5437744B2 (ja) 2009-08-28 2014-03-12 富士フイルム株式会社 二色性色素組成物、偏光膜、液晶セル、及び表示装置
JP5884258B2 (ja) * 2009-09-18 2016-03-15 Jnc株式会社 液晶配向剤、液晶配向膜、液晶配向膜の製造方法および液晶表示素子
KR101616508B1 (ko) 2009-09-23 2016-04-28 삼성전자주식회사 이색성 염료를 포함하는 고분자 분산형 액정 필름의 형성 방법
JP2011069922A (ja) 2009-09-24 2011-04-07 Fujifilm Corp 液晶表示装置
WO2011158569A1 (ja) 2010-06-15 2011-12-22 シャープ株式会社 調光素子、表示装置、照明装置及び調光素子の製造方法
US9557605B2 (en) 2010-10-14 2017-01-31 Merck Patent Gmbh Method of producing liquid crystal display device
US20130271713A1 (en) 2010-10-14 2013-10-17 Sharp Kabushiki Kaisha Liquid crystal display device and method for manufacturing liquid crystal display device
KR101273719B1 (ko) * 2010-12-31 2013-06-12 코오롱인더스트리 주식회사 휘도 증강 필름 및 그를 포함하는 백라이트 유닛
KR101676894B1 (ko) * 2011-01-25 2016-11-29 주식회사 엘지화학 액정 필름
US8855194B2 (en) * 2011-05-09 2014-10-07 Texas Instruments Incorporated Updating non-shadow registers in video encoder
WO2013085315A1 (ko) * 2011-12-06 2013-06-13 주식회사 엘지화학 액정셀
TWI480636B (zh) * 2011-12-06 2015-04-11 Lg化學股份有限公司 液晶單元
JP6048901B2 (ja) 2012-12-14 2016-12-21 エルジー・ケム・リミテッド 液晶素子(LiquidCrystalElement)
EP2950137B1 (en) * 2013-01-25 2019-06-26 LG Chem, Ltd. Liquid crystal device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930013794A (ko) 1991-12-20 1993-07-22 김정배 액정 베시클 및 이를 사용한 pdlc
KR20060041921A (ko) * 2004-02-16 2006-05-12 후지 샤신 필름 가부시기가이샤 액정표시장치
US20080198316A1 (en) * 2004-12-22 2008-08-21 Fujifilm Corporation Liquid Crystal Display
JP2011095407A (ja) * 2009-10-28 2011-05-12 Casio Computer Co Ltd 表示素子
JP2011170278A (ja) * 2010-02-22 2011-09-01 Lintec Corp 光散乱型液晶シート、液晶表示シート、及び液晶表示装置
KR20120125859A (ko) * 2011-05-09 2012-11-19 삼성디스플레이 주식회사 액정 표시 장치 및 액정 표시 장치의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2933677A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107667314A (zh) * 2015-08-25 2018-02-06 株式会社Lg化学 液晶单元
CN107667314B (zh) * 2015-08-25 2020-09-04 株式会社Lg化学 液晶单元

Also Published As

Publication number Publication date
TWI647520B (zh) 2019-01-11
EP2933677A1 (en) 2015-10-21
TW201443519A (zh) 2014-11-16
EP2933676A1 (en) 2015-10-21
KR20140077863A (ko) 2014-06-24
KR20140077857A (ko) 2014-06-24
KR20140077862A (ko) 2014-06-24
JP6225357B2 (ja) 2017-11-08
KR20140077856A (ko) 2014-06-24
EP2933676B1 (en) 2019-02-20
KR101598673B1 (ko) 2016-03-02
KR101499364B1 (ko) 2015-03-05
TW201437237A (zh) 2014-10-01
TW201443518A (zh) 2014-11-16
US10370591B2 (en) 2019-08-06
US9840668B2 (en) 2017-12-12
CN104995218A (zh) 2015-10-21
TWI547735B (zh) 2016-09-01
WO2014092520A1 (ko) 2014-06-19
KR20140077864A (ko) 2014-06-24
KR20140077861A (ko) 2014-06-24
CN104995552A (zh) 2015-10-21
JP2016502144A (ja) 2016-01-21
JP2016502145A (ja) 2016-01-21
EP2933677A4 (en) 2016-07-06
US20150331264A1 (en) 2015-11-19
US20150368559A1 (en) 2015-12-24
JP6048901B2 (ja) 2016-12-21
CN104995554A (zh) 2015-10-21
KR101505751B1 (ko) 2015-03-26
US9828550B2 (en) 2017-11-28
CN104995218B (zh) 2018-08-31
KR101530134B1 (ko) 2015-06-19
JP2016502146A (ja) 2016-01-21
KR20140077858A (ko) 2014-06-24
KR101598674B1 (ko) 2016-03-02
KR20140077860A (ko) 2014-06-24
KR101593757B1 (ko) 2016-02-18
JP6137764B2 (ja) 2017-05-31
CN104995552B (zh) 2017-08-29
KR20140077855A (ko) 2014-06-24
EP2933677B1 (en) 2019-02-13
KR20140077859A (ko) 2014-06-24
EP2933676A4 (en) 2016-07-06
KR101551549B1 (ko) 2015-09-09
KR20140077854A (ko) 2014-06-24
KR101499363B1 (ko) 2015-03-05
US20150338689A1 (en) 2015-11-26
KR101551548B1 (ko) 2015-09-09
KR101510565B1 (ko) 2015-04-08
TWI510506B (zh) 2015-12-01
CN104995554B (zh) 2017-12-01
KR101618926B1 (ko) 2016-05-09

Similar Documents

Publication Publication Date Title
WO2014092518A1 (ko) 액정 소자
WO2014116076A1 (ko) 액정 소자
WO2016200199A1 (ko) 표시 소자
WO2017105051A1 (ko) 액정 윈도우 및 이를 포함하는 광학 소자
WO2017095176A1 (ko) 광학 소자
WO2017074007A1 (ko) 광학 소자
WO2009091225A2 (en) Composition for liquid crystal alignment layer, preparation method of liquid crystal alignment layer using the same, and optical film comprising the liquid crystal alignment layer
WO2012008814A2 (ko) 액정 필름
KR101415127B1 (ko) 액정셀
WO2021091207A1 (ko) 광변조 디바이스의 제조 방법
WO2013115628A1 (ko) 액정 조성물
WO2016159601A1 (ko) 반사형 액정 소자 및 이의 용도
WO2013022256A2 (ko) 광학 필터
WO2014084690A1 (ko) 주기적인 마이크로 패턴을 갖는 fpr
WO2019066456A1 (ko) 광학 소자의 구동 방법
WO2013085315A1 (ko) 액정셀
WO2014092519A1 (ko) 중합성 조성물
WO2020180086A1 (ko) 광변조 소자
WO2020145672A1 (ko) 광학 이방성 필름의 제조 방법
WO2018080089A1 (ko) 투과도 가변 필름
WO2014092326A1 (ko) 위상차층, 편광판 및 이를 포함하는 편광판과 화상 표시 장치
WO2012064139A2 (ko) 액정 필름
WO2013032283A2 (ko) 액정셀
WO2019124964A1 (ko) 액정 조성물 및 이의 용도
WO2019146994A1 (ko) 다층 액정 필름, 편광판 및 편광판의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862601

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015547865

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013862601

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14652323

Country of ref document: US