WO2013168821A1 - 非水電解液、及びそれを用いた蓄電デバイス - Google Patents

非水電解液、及びそれを用いた蓄電デバイス Download PDF

Info

Publication number
WO2013168821A1
WO2013168821A1 PCT/JP2013/063340 JP2013063340W WO2013168821A1 WO 2013168821 A1 WO2013168821 A1 WO 2013168821A1 JP 2013063340 W JP2013063340 W JP 2013063340W WO 2013168821 A1 WO2013168821 A1 WO 2013168821A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
carbonate
atom
group
general formula
Prior art date
Application number
PCT/JP2013/063340
Other languages
English (en)
French (fr)
Inventor
圭 島本
雄一 古藤
敷田 庄司
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to EP13787043.2A priority Critical patent/EP2849272B1/en
Priority to CA2872599A priority patent/CA2872599A1/en
Priority to US14/400,180 priority patent/US9595737B2/en
Priority to CN201380024414.1A priority patent/CN104285332B/zh
Priority to KR1020147031534A priority patent/KR20150018513A/ko
Priority to JP2014514772A priority patent/JP6075374B2/ja
Publication of WO2013168821A1 publication Critical patent/WO2013168821A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a nonaqueous electrolytic solution that can improve electrochemical characteristics in a wide temperature range, and an electricity storage device using the same.
  • power storage devices particularly lithium secondary batteries
  • small electronic devices such as mobile phones and laptop computers
  • power sources for electric vehicles and power storage Since these electronic devices and automobiles may be used in a wide temperature range such as a high temperature in midsummer or a low temperature of extremely cold, it is required to improve electrochemical characteristics in a wide range of temperatures. In particular, in order to prevent global warming, there is an urgent need to reduce CO 2 emissions.
  • environmentally friendly vehicles equipped with power storage devices consisting of power storage devices such as lithium secondary batteries and capacitors
  • HEV hybrid electric vehicles
  • PHEV plug-in hybrid electric vehicles
  • BEV battery electric vehicles
  • lithium secondary battery Due to the long travel distance of automobiles, automobiles may be used in areas with a wide temperature range from extremely hot areas in the tropics to extremely cold areas. Therefore, in particular, these in-vehicle power storage devices are required not to deteriorate in electrochemical characteristics even when used in a wide temperature range from high temperature to low temperature.
  • the term lithium secondary battery is used as a concept including a so-called lithium ion secondary battery.
  • the lithium secondary battery is mainly composed of a positive electrode and a negative electrode containing a material capable of occluding and releasing lithium, a non-aqueous electrolyte composed of a lithium salt and a non-aqueous solvent, and the non-aqueous solvent includes ethylene carbonate (EC), Carbonates such as propylene carbonate (PC) are used.
  • EC ethylene carbonate
  • PC propylene carbonate
  • metal lithium metal compounds that can occlude and release lithium (metal simple substance, oxide, alloy with lithium, etc.) and carbon materials are known, and in particular, lithium can be occluded and released.
  • Lithium secondary batteries using carbon materials such as coke, artificial graphite and natural graphite have been widely put into practical use.
  • a lithium secondary battery using a highly crystallized carbon material such as natural graphite or artificial graphite as a negative electrode material is a decomposition product generated by reductive decomposition of a solvent in a non-aqueous electrolyte on the negative electrode surface during charging. It has been found that the gas interferes with the desired electrochemical reaction of the battery, resulting in poor cycle characteristics. Moreover, if the decomposition product of the nonaqueous solvent accumulates, it becomes impossible to smoothly occlude and release lithium from the negative electrode, and the electrochemical characteristics when used in a wide temperature range are likely to deteriorate.
  • lithium secondary batteries using lithium metal, alloys thereof, simple metals such as tin or silicon, and oxides as negative electrode materials have high initial capacities, but fine powders progress during the cycle.
  • reductive decomposition of a non-aqueous solvent occurs at an accelerated rate, and battery performance such as battery capacity and cycle characteristics is greatly reduced.
  • these anode materials are pulverized or non-aqueous solvent decomposition products accumulate, lithium cannot be absorbed and released smoothly into the anode, and the electrochemical characteristics when used over a wide temperature range are likely to deteriorate. .
  • a lithium secondary battery using, for example, LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiFePO 4, or the like as the positive electrode has a non-aqueous solvent in the non-aqueous electrolyte charged and a positive electrode material and a non-aqueous electrolyte.
  • the degradation products and gas generated by partial oxidative decomposition at the interface of the battery interfere with the desired electrochemical reaction of the battery, resulting in degradation of electrochemical characteristics when used in a wide temperature range. I know.
  • the battery performance has been deteriorated due to the movement of lithium ions or the expansion of the battery due to the decomposition product or gas when the non-aqueous electrolyte is decomposed on the positive electrode or the negative electrode.
  • electronic devices equipped with lithium secondary batteries are becoming more and more multifunctional and power consumption is increasing.
  • the capacity of lithium secondary batteries has been increasing, and the volume occupied by non-aqueous electrolyte in the battery has become smaller, such as increasing the electrode density and reducing the useless space volume in the battery. . Therefore, there is a situation in which the electrochemical characteristics when used in a wide temperature range are likely to deteriorate with a slight decomposition of the non-aqueous electrolyte.
  • Patent Document 1 proposes a non-aqueous electrolyte secondary battery containing a molten salt such as lithium acetate trifluoroborate or lithium methanesulfonate trifluoroborate in order to enhance safety. It is suggested that the safety is improved because it is liquid at a temperature around (° C.) and does not substantially evaporate because it uses almost no organic solvent.
  • Patent Document 2 discloses a nonaqueous electrolytic solution used for a secondary battery including a negative electrode active material having Si, Sn, or Pb, and includes a first and a second lithium salt. Non-aqueous electrolytes that can improve properties are disclosed.
  • An object of the present invention is to provide a nonaqueous electrolytic solution capable of improving electrochemical characteristics in a wide temperature range, and an electricity storage device using the same.
  • the present inventors have found that the non-aqueous electrolyte secondary battery of Patent Document 1 has a high viscosity because it uses almost no solvent and increases the liquid resistance. As a result, it was found that the effect of improving the electrochemical characteristics in a wide temperature range such as low-temperature discharge characteristics after high-temperature storage or after a high-temperature cycle could hardly be exhibited.
  • the non-aqueous electrolyte of Patent Document 2 is a non-aqueous electrolyte for a secondary battery including a negative electrode active material having Si, Sn, or Pb, but is added to the non-aqueous electrolyte of the present invention. There is no disclosure of acyclic lithium salts.
  • the present invention provides the following [1] and [2].
  • [1] In a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a nonaqueous solvent, one or more selected from the acyclic lithium salt represented by the following general formula (I) or (II) A non-aqueous electrolyte characterized by containing 0.001 to 5% by mass in the electrolyte.
  • M is 3 when Y is a boron atom, and m is 5 when Y is a phosphorus atom or an arsenic atom.
  • a 2 x (YFn) (Li) (II)
  • a 2 is a group represented by the following general formula (III), and a plurality of A 2 may be the same or different.
  • Y is a boron atom, phosphorus atom or arsenic atom, and F is fluorine.
  • x is an integer of 2 to 4
  • x + n is 4
  • Y is a phosphorus atom or an arsenic atom
  • x is an integer of 2 to 6 and x + n is 6.
  • R represents an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkylene group having 1 to 6 carbon atoms, or a halogen atom. (At least one of the hydrogen atoms may be substituted with a halogen atom.)
  • An electricity storage device comprising a non-aqueous electrolyte in which an electrolyte salt is dissolved in a positive electrode, a negative electrode, and a non-aqueous solvent, wherein the non-aqueous electrolyte is represented by the general formula (I) or (II) One or two or more selected from the acyclic lithium salts selected from the general formulas (XI) to (XIII) described later in 0.001 to 5
  • An electricity storage device comprising:
  • the non-aqueous electrolyte that can improve the electrochemical characteristics of an electricity storage device when used in a wide temperature range, particularly low-temperature discharge characteristics after high-temperature storage or high-temperature cycling, and a lithium battery using the non-aqueous electrolyte An electricity storage device can be provided.
  • the present invention relates to a nonaqueous electrolytic solution that can improve electrochemical characteristics in a wide temperature range, and an electricity storage device using the same.
  • the non-aqueous electrolyte of the present invention is a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, one or two selected from non-cyclic lithium salts represented by the following general formula (I) or (II)
  • M is 3 when Y is a boron atom, and m is 5 when Y is a phosphorus atom or an arsenic atom.
  • a 2 x (YFn) (Li) (II)
  • a 2 is a group represented by the following general formula (III), and a plurality of A 2 may be the same or different.
  • Y is a boron atom, phosphorus atom or arsenic atom, and F is fluorine.
  • x is an integer of 2 to 4
  • x + n is 4
  • Y is a phosphorus atom or an arsenic atom
  • x is an integer of 2 to 6 and x + n is 6.
  • R represents an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkylene group having 1 to 6 carbon atoms, or a halogen atom. (At least one of the hydrogen atoms may be substituted with a halogen atom.)
  • acyclic lithium salt represented by the general formula (I) or (II) is one or more selected from acyclic lithium salts represented by any one of the following general formulas (XI) to (XIII) Is preferred.
  • R 1 represents an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, or a halogen atom
  • M 1 represents a boron atom or a phosphorus atom
  • r represents an arsenic atom
  • r is an integer of 1 to 6
  • s is an integer of 0 to 5.
  • M 1 is a boron atom
  • r + s is 4
  • M 1 is a phosphorus atom or an arsenic atom
  • r + s is 6.
  • At least one hydrogen atom of R 1 may be substituted with a halogen atom.
  • R 1 is the same as above, Y 1 represents BF 3 , PF 5 or AsF 5 , and t is 1 to 3.
  • Y 1 is BF 3
  • t is 1 to 3.
  • T is 1 when Y 1 is PF 5 or AsF 5.
  • R 2 represents an alkylene group having 1 to 6 carbon atoms
  • Y 1 is the same as above, and u is 2 to 6.
  • u is 2 to 6.
  • Y 1 is PF 5 or AsF 5
  • u is 2.
  • At least one hydrogen atom of R 2 may be substituted with a halogen atom.
  • the reason why the nonaqueous electrolytic solution of the present invention can greatly improve the electrochemical characteristics of the electricity storage device in a wide temperature range is not necessarily clear, but is considered as follows.
  • the acyclic lithium salt represented by the general formula (I) or (II) or the acyclic lithium salt represented by any one of (XI) to (XIII) is used at a high concentration in the non-aqueous electrolyte. Then, since the viscosity of the electrolytic solution is significantly increased, the electrical conductivity is lowered and the charge / discharge characteristics at a low temperature are greatly lowered.
  • acyclic lithium salt represented by the general formula (I) or (II) or the acyclic lithium represented by any one of (XI) to (XIII) By adding a small amount to a non-aqueous electrolyte solution in which an electrolyte salt such as LiPF 6 is dissolved in a non-aqueous solvent, it is possible to decompose at the negative electrode and form a low resistance film without decreasing the electrical conductivity. It was found that the effect of improving the electrochemical properties over a wide temperature range is further enhanced.
  • R 1 represents an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, or a halogen atom
  • M 1 represents a boron atom or a phosphorus atom
  • r represents an arsenic atom
  • r is an integer of 1 to 6
  • s is an integer of 0 to 5.
  • M 1 is a boron atom
  • r + s is 4
  • M 1 is a phosphorus atom or an arsenic atom
  • r + s is 6.
  • At least one hydrogen atom of R 1 may be substituted with a halogen atom.
  • lithium salt represented by the general formula (XI) include a lithium salt represented by the general formula (XI-1) or (XI-2).
  • R 1 in the general formula (XI), (XI-1) or (XI-2) is an alkyl group having 1 to 6 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, at least one hydrogen
  • An aryl group having 6 to 10 atoms, a fluorine atom, and a chlorine atom are preferable, and an alkyl group having 1 or 2 carbon
  • R 1 examples include a straight chain alkyl group such as methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, isopropyl group, sec-butyl group, branched alkyl groups such as tert-butyl group and tert-amyl group, fluoroalkyl groups such as fluoromethyl group, difluoromethyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, vinyl group, Alkenyl such as 1-propenyl group, 2-propenyl group, 1-propen-2-yl group, 2-butenyl group, 3-butenyl group, 4-pentenyl group, 5-hexenyl group and 2-methyl-2-propenyl group Group, phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 4-tert-butylphenyl group,
  • methyl group, ethyl group, n-propyl group, n-butyl group, isopropyl group, sec-butyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, vinyl group, 2- Propenyl group, 1-propen-2-yl group, phenyl group, 4-methylphenyl group and fluorine atom are preferable, and methyl group, ethyl group, isopropyl group, vinyl group, 2-propenyl group and 4-methylphenyl group are more preferable. preferable.
  • lithium salt represented by the general formula (XI-1) or (XI-2) include the following compounds.
  • Lithium salt represented by general formula (XI-1) As lithium salt represented by general formula (XI-1), lithium bis (methanesulfonate) difluoroborate, lithium tris (methanesulfonate) fluoroborate, Lithium tetrakis (methanesulfonate) borate, lithium methanesulfonate trifluoroborate, lithium ethanesulfonate trifluoroborate, lithium propane-1-sulfonate trifluoroborate, lithium propane-2-sulfonate trifluoroborate, lithium butane-1-sulfonate trifluoroborate , Lithium butane-2-sulfonate trifluoroborate, lithium 2-methylpropane-2-sulfonate trifluoroborate, lithium pentane-1-sulfone Trifluoroborate, lithium hexane-1-sulfone
  • lithium salts represented by general formula (XI-1) lithium bis (methanesulfonate) difluoroborate, lithium tris (methanesulfonate) fluoroborate, lithium tetrakis (methanesulfonate) borate, lithium methanesulfonate trifluoroborate, lithium Ethanesulfonate trifluoroborate, lithium propane-1-sulfonate trifluoroborate, lithium propane-2-sulfonate trifluoroborate, lithium 2-methylpropane-2-sulfonate trifluoroborate, lithium trifluoromethanesulfonate trifluoroborate, lithium 2, 2,2-trifluoroethanesulfonate trifluoroborate, lithium vinyls Rufonate trifluoroborate, lithium 1-propen-1-ylsulfonate trifluoroborate, lithium 1-propen-2-ylsulfonate trifluoroborate, lithium 2-propen-1-ylsulfonate trifluorobo
  • the lithium salt represented by the general formula (XI-1) is a method of reacting a lithium sulfonate compound and a trifluoroborane ether complex, and a method of blowing a BF 3 gas in the presence or absence of a lithium sulfonate compound.
  • it can be prepared by a method of reacting lithium tetrafluoroborate with a trimethylsilylsulfonate compound.
  • Lithium salt represented by general formula (XI-2) As lithium salt represented by general formula (XI-2), lithium methanesulfonate pentafluorophosphate, lithium bis (methanesulfonate) tetrafluorophosphate, lithium Tris (methanesulfonate) trifluorophosphate, lithium tetrakis (methanesulfonate) difluorophosphate, lithium pentakis (methanesulfonate) fluorophosphate, lithium hexakis (methanesulfonate) fluorophosphate, lithium ethanesulfonate pentafluorophosphate, lithium propane-1-sulfonate penta Fluorophosphate, lithium propane-2-sulfonate Pentafluorophosphate, lithium butane-1-sulfonate Pentafluorophosphate, lithium butane-2-sulfonate pentafluorophosphate, lithium 2-methylpropane-2
  • lithium methanesulfonate pentafluorophosphate lithium methanesulfonate pentafluorophosphate, lithium ethanesulfonate pentafluorophosphate, lithium propane-1-sulfonate pentafluorophosphate, lithium propane-2-sulfonate pentafluorophosphate, Lithium 2-methylpropane-2-sulfonate pentafluorophosphate, lithium trifluoromethanesulfonate pentafluorophosphate, lithium 2,2,2-trifluoroethanesulfonate pentafluorophosphate, lithium vinyl sulfonate pentafluorophosphate, lithium 1-propene-1- Ylsulfonate pentafluorophosphate, lithium 1-propen-2-ylsulfonate Pentafluorophosphate, lithium 2-propen-1-ylsulfonate pentafluorophosphate, lithium benzenesulfon
  • the lithium salt represented by the general formula (XI-2) can be prepared by a method of introducing PF 5 or AsF 5 into a sulfonic acid lithium salt. It can also be prepared by a method of reacting lithium hexafluorophosphate or lithium hexafluoroarsenate with a trimethylsilyl sulfonate compound.
  • a unique effect is obtained that the electrochemical characteristics are synergistically improved in a wide temperature range.
  • R 1 is the same as above, Y 1 represents BF 3 , PF 5 or AsF 5 , and t is 1 to 3.
  • Y 1 is BF 3
  • t is 1 to 3.
  • T is 1 when Y 1 is PF 5 or AsF 5.
  • lithium salt represented by the general formula (XII) the lithium salt represented by the general formula (XII-1) may be preferably mentioned.
  • R 1 is as defined above, t 1 is 1 to 3, and the lower limit of t 1 is preferably 1.01 or more, more preferably 1.05 or more, and still more preferably 1.1 or more, and the upper limit is preferably 2 or less, more preferably 1.7 or less.
  • Specific examples, preferred examples of R 1 in the general formula (XII-1), the specific examples of R 1 in the general formula (XI-1), is the same as the preferred embodiment.
  • the bonding mode between the sulfonate anion and the boron trifluoride molecule is not particularly limited, and various bonding modes such as a direct bond and a coordination bond can be taken.
  • lithium salt represented by the general formula (XII-1) include the following compounds 1 to 30.
  • one or more selected from the above compounds 1 to 7, 11 to 16, 21, 23 to 26, 28, and 29 are preferable, and the following compounds 1, 2, 4, and 11 are preferable.
  • Compound 13, Compound 15, Compound 21, Compound 23, and Compound 26 are more preferable.
  • the lithium salt represented by the general formula (XII-1) is prepared by a method of reacting a lithium sulfonate with a boron trifluoride diethyl ether complex, and a method of introducing boron trifluoride into the lithium sulfonate. Can do. It can also be prepared by a method of reacting lithium tetrafluoroborate with a trimethylsilylsulfonate compound.
  • R 2 represents an alkylene group having 1 to 6 carbon atoms
  • Y 1 is the same as above, and u is 2 to 6.
  • u is 2 to 6.
  • Y 1 is PF 5 or AsF 5
  • u is 2.
  • At least one hydrogen atom of R 2 may be substituted with a halogen atom.
  • lithium salt represented by the general formula (XIII) include lithium salts represented by any one of the general formulas (XIII-1), (XIII-2), and (XIII-3).
  • R 2 is the same as defined above.
  • M 12 represents a phosphorus atom or an arsenic atom
  • R 2 is the same as described above.
  • R 2 is the same as defined above, and u 1 is 2-6.
  • the lower limit of u 1 is preferably 2.02 or more, more preferably 2.1 or more, still more preferably 2.2 or more, and the upper limit is preferably 4 or less, more preferably 3.4 or less.
  • the bonding mode between the sulfonate anion and the boron trifluoride molecule is not particularly limited, and various bonding modes such as a direct bond and a coordination bond can be taken.
  • R 2 in the general formula (XIII), (XIII-1), (XIII-2) or (XIII-3) has 1 to 6 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom.
  • An alkylene group is preferable, and an alkylene group having 1 or 2 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom is preferable.
  • R 2 include methylene group, fluoromethylene group, difluoromethylene group, ethane-1,2-diyl group, propane-1,3-diyl group, butane-1,4-diyl group, pentane-1 , 5-diyl group and hexane-1,6-diyl group are preferred, and more preferred are methylene group, difluoromethylene group, ethane-1,2-diyl group, and propane-1,3-diyl group. Particularly preferred are a methylene group and an ethane-1,2-diyl group.
  • the alkylene group in this specification is used as a concept including a methylene group.
  • Specific examples of the lithium salt represented by the general formula (XIII-1), (XIII-2) or (XIII-3) include the following compounds.
  • Lithium salt represented by general formula (XIII-1) As lithium salt represented by general formula (XIII-1), dilithium methane disulfonate bis (trifluoroborate), dilithium fluoromethane disulfonate bis ( Trifluoroborate), dilithium difluoromethane disulfonate bis (trifluoroborate), dilithium ethane-1,2-diyldisulfonate bis (trifluoroborate), dilithium propane-1,3-diyldisulfonate bis (trifluoroborate) Dilithium butane-1,4-diyldisulfonate bis (trifluoroborate), dilithium pentane-1,5-diyldisulfonate bis (trifluoroborate), dilithium hexane-1,6-diyldisulfonate bis (trifluoro) Borate), and the like.
  • lithium salts represented by the general formula (XIII-1) dilithium methane disulfonate bis (trifluoroborate), dilithium difluoromethane disulfonate bis (trifluoroborate), dilithium ethane-1,2-diyldisulfonate bis (Trifluoroborate) and dilithium propane-1,3-diyldisulfonate bis (trifluoroborate) are preferably selected from one or more, and dilithium methanedisulfonate bis (trifluoroborate) and dilithium ethane-1 , 2-diyldisulfonate Bis (trifluoroborate) is preferably selected from one or more.
  • the lithium salt represented by the general formula (XIII-1) includes a method of reacting a lithium sulfonate compound and a trifluoroborane ether complex, and a method of blowing a BF 3 gas in the presence or absence of a solvent of the lithium sulfonate compound. Can be prepared. Alternatively, it can be prepared by a method of reacting lithium tetrafluoroborate with a trimethylsilylsulfonate compound.
  • Lithium salt represented by general formula (XIII-2) As lithium salt represented by general formula (XIII-2), dilithium methane disulfonate bis (pentafluorophosphate), dilithium fluoromethane disulfonate bis ( Pentafluorophosphate), dilithium difluoromethane disulfonate bis (pentafluorophosphate), dilithium ethane-1,2-diyl disulfonate bis (pentafluorophosphate), dilithium propane-1,3-diyl disulfonate bis (pentafluorophosphate) Dilithium butane-1,4-diyldisulfonate bis (pentafluorophosphate), dilithium pentane-1,5-diyldisulfonate bis (pentafluorophosphate), dilithium hexane-1, 6-diyl disulfonate bis (pentafluorophosphate), Dilithium methane
  • lithium salts represented by the general formula (XIII-2) dilithium methane disulfonate bis (pentafluorophosphate), dilithium difluoromethane disulfonate bis (pentafluorophosphate), dilithium ethane-1,2-diyl disulfonate bis (Pentafluorophosphate), dilithium propane-1,3-diyl disulfonate bis (pentafluorophosphate), dilithium methane disulfonate bis (pentafluoroarsenate), dilithium difluoromethane disulfonate bis (pentafluoroarsenate), dilithium ethane -1,2-diyl disulfonate bis (pentafluoroarsenate) and dilithium propane-1,3-diyl disulfonate bis
  • dilithium methane disulfonate bis pentafluorophosphate
  • the lithium salt represented by the general formula (XIII-2) can be prepared by a method of introducing PF 5 or AsF 5 into a sulfonic acid lithium salt. It can also be prepared by a method of reacting lithium hexafluorophosphate or lithium hexafluoroarsenate with a trimethylsilyl sulfonate compound.
  • a unique effect of synergistically improving electrochemical characteristics in a wide temperature range is exhibited.
  • Lithium salt represented by the general formula (XIII-3) Specific examples of the lithium salt represented by the general formula (XIII-3) include the following compounds 31 to 38.
  • lithium salts represented by the general formula (XIII-3) one or more selected from the compounds 31, 34, and 35 are preferable, and one or two selected from the compounds 31 and 34 are more preferable. .
  • the lithium salt represented by the general formula (XIII-3) is prepared by a method of reacting a lithium sulfonate salt with boron trifluoride diethyl ether complex and a method of introducing boron trifluoride into the lithium sulfonate salt. Can do. It can also be prepared by a method of reacting lithium tetrafluoroborate with a trimethylsilylsulfonate compound.
  • the noncyclic lithium salt represented by the general formula (I) or (II) contained in the nonaqueous electrolytic solution more specifically, the general formulas (XI) to (XIII) ) Or an acyclic lithium salt represented by any of the above formulas (XI-1), (XI-2), (XII-1), (XIII-1), (XIII-2), and (XIII) -3)
  • the content of one or more selected from the acyclic lithium salt represented by any one of 3) is preferably 0.001 to 5% by mass in the non-aqueous electrolyte.
  • the content is more preferably 0.05% by mass or more, and further preferably 0.1% by mass or more in the non-aqueous electrolyte.
  • the upper limit is more preferably 3% by mass or less, and further preferably 1% by mass or less.
  • non-aqueous electrolyte of the present invention one or more selected from the non-cyclic lithium salt represented by any one of the above general formulas are combined with a non-aqueous solvent, an electrolyte salt, and other additives described below.
  • a unique effect of synergistically improving the electrochemical characteristics over a wide temperature range is exhibited.
  • Nonaqueous solvent examples include one or more selected from cyclic carbonates, chain esters, ethers, amides, sulfones, and lactones. Since electrochemical characteristics are synergistically improved over a wide temperature range, it is preferable to include a cyclic carbonate, and it is preferable to include a chain ester.
  • the chain ester preferably includes a chain carbonate, and more preferably includes both a cyclic carbonate and a chain carbonate.
  • chain ester is used as a concept including a chain carbonate and a chain carboxylic acid ester.
  • Cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 4-fluoro-1,3-dioxolan-2-one (FEC), trans or Cis-4,5-difluoro-1,3-dioxolan-2-one (hereinafter collectively referred to as “DFEC”), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and 4-ethynyl-1 , 3-dioxolan-2-one (EEC), ethylene carbonate, propylene carbonate, 4-fluoro-1,3-dioxolan-2-one, vinylene carbonate and 4-ethynyl- One selected from 1,3-dioxolan-2-one (EEC) Or two or more is more preferable.
  • the carbon-carbon double bond, unsaturated bond such as carbon-carbon triple bond, or cyclic carbonate having a fluorine atom because the low-temperature load characteristics after high-temperature charge storage are further improved. More preferably, both a cyclic carbonate having an unsaturated bond such as a carbon double bond or a carbon-carbon triple bond and a cyclic carbonate having a fluorine atom are included.
  • VC, VEC or EEC is more preferable
  • the cyclic carbonate having a fluorine atom FEC or DFEC is more preferable.
  • the content of the cyclic carbonate having an unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond is preferably 0.07% by volume or more, more preferably 0.8%, based on the total volume of the nonaqueous solvent. 2 vol% or more, more preferably 0.7 vol% or more, and the upper limit thereof is preferably 7 vol% or less, more preferably 4 vol% or less, further preferably 2.5 vol% or less. It is preferable because the stability of the coating during high temperature storage can be further increased without impairing the Li ion permeability at low temperatures.
  • the content of the cyclic carbonate having a fluorine atom is preferably 0.07% by volume or more, more preferably 4% by volume or more, still more preferably 7% by volume or more, based on the total volume of the nonaqueous solvent.
  • the upper limit is preferably 35% by volume or less, more preferably 25% by volume or less, and even more preferably 15% by volume or less, and the stability of the coating during storage at a high temperature is further reduced without impairing the Li ion permeability at low temperatures. Can be increased.
  • the carbon content relative to the content of the cyclic carbonate having a fluorine atom is preferably 0.2% by volume or more, more preferably 3% by volume or more, and further preferably 7% by volume or more.
  • the upper limit is preferably 40% by volume or less, more preferably 30% by volume or less, and even more preferably 15% by volume or less, and the coating during further high-temperature storage without impairing the Li ion permeability at low temperatures. It is particularly preferable because the stability of the can be increased. Moreover, since the resistance of the film formed on an electrode becomes small when a nonaqueous solvent contains both ethylene carbonate, propylene carbonate, or both ethylene carbonate and propylene carbonate, it is preferable.
  • the content of ethylene carbonate, propylene carbonate, or both ethylene carbonate and propylene carbonate is preferably at least 3% by volume, more preferably at least 5% by volume, even more preferably at least 7% by volume, based on the total volume of the nonaqueous solvent.
  • the upper limit thereof is preferably 45% by volume or less, more preferably 35% by volume or less, and still more preferably 25% by volume or less.
  • solvents may be used singly, and when used in combination of two or more, it is preferable because electrochemical characteristics in a wide temperature range are further improved, and it is particularly preferable to use a combination of three or more.
  • Preferred combinations of these cyclic carbonates include EC and PC, EC and VC, PC and VC, VC and FEC, EC and FEC, PC and FEC, FEC and DFEC, EC and DFEC, PC and DFEC, VC and DFEC , VEC and DFEC, VC and EEC, EC and EEC, EC and PC and VC, EC and PC and FEC, EC and VC and FEC, EC and VC and VEC, EC and VC and EEC, EC and EEC and FEC, PC And VC and FEC, EC and VC and DFEC, PC and VC and DFEC, EC and PC and VC and FEC, EC and PC and VC and FEC, EC and PC, VC and
  • one or more asymmetric chain carbonates selected from methyl ethyl carbonate (MEC), methyl propyl carbonate (MPC), methyl isopropyl carbonate (MIPC), methyl butyl carbonate, and ethyl propyl carbonate, dimethyl
  • MEC methyl ethyl carbonate
  • MPC methyl propyl carbonate
  • MIPC methyl isopropyl carbonate
  • DMC carbonate
  • DEC diethyl carbonate
  • dipropyl carbonate and dibutyl carbonate
  • pivalate esters such as methyl pivalate, ethyl pivalate, and propyl pivalate
  • propion Preferable examples include one or more chain carboxylic acid esters selected from methyl acid, ethyl propionate, methyl acetate, and ethyl acetate.
  • chain esters dimethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate, methyl propionate, acetic acid
  • a chain ester having a methyl group selected from methyl and ethyl acetate is preferable, and a chain carbonate having a methyl group is particularly preferable.
  • a non-aqueous electrolyte solution in a negative electrode by containing one or two or more types selected from lithium salts represented by any one of the above general formulas in a non-aqueous electrolyte solution using a chain carbonate having a methyl group. This is because decomposition of the metal hardly progresses and capacity deterioration can be remarkably suppressed. Moreover, when using the chain carbonate which has a methyl group, it is preferable to use 2 or more types. Further, it is more preferable that both a symmetric chain carbonate and an asymmetric chain carbonate are contained, and it is further more preferable that the content of the symmetric chain carbonate is more than that of the asymmetric chain carbonate.
  • the content of the chain ester is not particularly limited, but it is preferably used in the range of 60 to 90% by volume with respect to the total volume of the nonaqueous solvent. If the content is 60% by volume or more, the viscosity of the non-aqueous electrolyte does not become too high, and if it is 90% by volume or less, the electrical conductivity of the non-aqueous electrolyte is lowered and electrochemical characteristics in a wide temperature range. The above range is preferable because there is little risk of decrease.
  • the volume ratio of the symmetric chain carbonate in the chain carbonate is preferably 51% by volume or more, and more preferably 55% by volume or more. The upper limit is more preferably 95% by volume or less, and still more preferably 85% by volume or less.
  • the symmetric chain carbonate contains dimethyl carbonate.
  • the asymmetric chain carbonate preferably has a methyl group, and methyl ethyl carbonate is particularly preferable.
  • the above case is preferable because electrochemical characteristics in a wider temperature range are improved.
  • the ratio between the cyclic carbonate and the chain ester is preferably 10:90 to 45:55, and 15:85 to 40:55, from the viewpoint of improving electrochemical characteristics over a wide temperature range. 60 is more preferable, and 20:80 to 35:65 is still more preferable.
  • nonaqueous solvents include cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and 1,4-dioxane, chains such as 1,2-dimethoxyethane, 1,2-diethoxyethane and 1,2-dibutoxyethane.
  • Preferable examples include one or two or more selected from amides such as cyclic ethers, amides such as dimethylformamide, sulfones such as sulfolane, and lactones such as ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ -angelicalactone.
  • the above non-aqueous solvents are usually used as a mixture in order to achieve appropriate physical properties.
  • the combination includes, for example, a combination of a cyclic carbonate and a chain carbonate, a combination of a cyclic carbonate and a chain carboxylic acid ester, a combination of a cyclic carbonate, a chain carbonate and a lactone, and a combination of a cyclic carbonate, a chain carbonate and an ether.
  • a combination, a combination of a cyclic carbonate, a chain carbonate, and a chain carboxylate, and the like are preferable.
  • additives include the following compounds (A) to (J).
  • Aroma Compound. (C) selected from methyl isocyanate, ethyl isocyanate, butyl isocyanate, phenyl isocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, octamethylene diisocyanate, 1,4-phenylene diisocyanate, 2-isocyanatoethyl acrylate, and 2-isocyanatoethyl methacrylate
  • nitrile one or more selected from succinonitrile, glutaronitrile, adiponitrile, and pimelonitrile are more preferable.
  • aromatic compounds one or more selected from biphenyl, terphenyl (o-, m-, p-isomer), fluorobenzene, cyclohexylbenzene, tert-butylbenzene, and tert-amylbenzene are more preferable, and one or more selected from biphenyl, o-terphenyl, fluorobenzene, cyclohexylbenzene, and tert-amylbenzene are particularly preferable.
  • the content of the compounds (A) to (C) is preferably 0.01 to 7% by mass in the non-aqueous electrolyte. In this range, the coating film is sufficiently formed without becoming too thick, and the effect of improving the electrochemical characteristics over a wide temperature range is enhanced.
  • the content is more preferably 0.05% by mass or more, more preferably 0.1% by mass or more in the non-aqueous electrolyte, and the upper limit thereof is more preferably 5% by mass or less, further preferably 3% by mass or less. .
  • (D) Triple bond-containing compound, (E) Sultone, cyclic sulfite, sulfonic acid ester, cyclic S O group-containing compound selected from vinyl sulfone, (F) cyclic acetal compound, (G) Including a phosphorus-containing compound, (H) a cyclic acid anhydride, (I) a cyclic phosphazene compound, and (J) a dialkyl oxalate compound is preferable because electrochemical characteristics in a wider temperature range are further improved.
  • Triple bond-containing compounds include 2-propynyl methyl carbonate, 2-propynyl methacrylate, 2-propynyl methanesulfonate, 2-propynyl vinylsulfonate, 2-propynyl 2- (methanesulfonyloxy) propionate, di Preferably, one or more selected from (2-propynyl) oxalate, methyl 2-propynyl oxalate, ethyl 2-propynyl oxalate, and 2-butyne-1,4-diyl dimethanesulfonate, 2-propynyl methanesulfonate, One or more selected from 2-propynyl vinyl sulfonate, 2-propynyl 2- (methanesulfonyloxy) propionate, di (2-propynyl) oxalate, and 2-butyne-1,4-diyl dimethanesulfonate,
  • Examples of the cyclic S ⁇ O group-containing compound include 1,3-propane sultone, 1,3-butane sultone, 1,4-butane sultone, 2,4-butane sultone, 1,3-propene sultone, 2,2-dioxide- 1,2-oxathiolan-4-yl acetate, 5,5-dimethyl-1,2-oxathiolan-4-one 2,2-dioxide, methylene methane disulfonate, ethylene sulfite, and 4- (methylsulfonylmethyl)- One or more selected from 1,3,2-dioxathiolane 2-oxide are preferred.
  • the chain-like S ⁇ O group-containing compounds include butane-2,3-diyl dimethanesulfonate, butane-1,4-diyl dimethanesulfonate, dimethyl methane disulfonate, pentafluorophenyl methanesulfonate, divinylsulfone, And one or more selected from bis (2-vinylsulfonylethyl) ether are preferred.
  • cyclic or chain-containing S ⁇ O group-containing compounds 1,3-propane sultone, 1,4-butane sultone, 2,4-butane sultone, 2,2-dioxide-1,2-oxathiolan-4-yl acetate , And 5,5-dimethyl-1,2-oxathiolane-4-one 2,2-dioxide, butane-2,3-diyl dimethanesulfonate, pentafluorophenyl methanesulfonate, and divinylsulfone Is more preferable.
  • 1,3-dioxolane and 1,3-dioxane are preferable, and 1,3-dioxane is more preferable.
  • (G) Phosphorus-containing compounds include tris phosphate (2,2,2-trifluoroethyl), tris phosphate (1,1,1,3,3,3-hexafluoropropan-2-yl), methyl 2- (dimethylphosphoryl) acetate, ethyl 2- (dimethylphosphoryl) acetate, methyl 2- (diethylphosphoryl) acetate, ethyl 2- (diethylphosphoryl) acetate, 2-propynyl 2- (dimethylphosphoryl) acetate, 2-propynyl 2 -(Diethylphosphoryl) acetate, methyl 2- (dimethoxyphosphoryl) acetate, ethyl 2- (dimethoxyphosphoryl) acetate, methyl 2- (diethoxyphosphoryl) acetate, ethyl 2- (diethoxyphosphoryl) acetate, 2-propynyl 2- (Dimethoxyphosphoryl) Cetate, 2-propynyl 2- (diethoxyphosphoryl)
  • cyclic acid anhydride succinic anhydride, maleic anhydride and 3-allyl succinic anhydride are preferable, and one or two kinds selected from succinic anhydride and 3-allyl succinic anhydride are more preferable.
  • cyclic phosphazene compound cyclic phosphazene compounds such as methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene, phenoxypentafluorocyclotriphosphazene, etc.
  • the dialkyl oxalate compound is preferably one or more selected from dimethyl oxalate, diethyl oxalate, and diethyl methyl oxalate.
  • the content of the compounds (D) to (J) is preferably 0.001 to 5% by mass in the non-aqueous electrolyte. In this range, the coating film is sufficiently formed without becoming too thick, and the effect of improving the electrochemical characteristics over a wide temperature range is enhanced.
  • the content is more preferably 0.01% by mass or more, more preferably 0.1% by mass or more in the non-aqueous electrolyte, and the upper limit thereof is more preferably 3% by mass or less, and further preferably 2% by mass or less. .
  • Electrolyte salt Preferred examples of the electrolyte salt used in the present invention include the following lithium salts.
  • the lithium salt include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , Li 2 PO 3 F, LiBF 4 , LiClO 4 , FSO 3 Li, LiN (SO 2 F) 2 , and LiN (SO 2 CF 3 ) 2.
  • LiPF 6 , LiPO 2 F 2 , LiBF 4 , FSO 3 Li, LiN (SO 2 CF 3 ) 2 and LiN (SO 2 F) 2 bis [oxalate-O, O ']
  • LiBOB lithium borate
  • the concentration of the lithium salt is usually preferably 0.3 M or more, more preferably 0.7 M or more, and further preferably 1.1 M or more with respect to the non-aqueous solvent.
  • the upper limit is preferably 2.5M or less, more preferably 2.0M or less, and still more preferably 1.6M or less.
  • suitable combinations of these lithium salts include LiPF 6 , and LiPO 2 F 2 , LiBF 4 , FSO 3 Li, LiN (SO 2 F) 2 , bis [oxalate-O, O ′] boric acid. More preferably, it contains one or more selected from lithium (LiBOB) and difluorobis [oxalate-O, O ′] lithium phosphate (LiPFO).
  • the proportion of lithium salt other than LiPF 6 in the non-aqueous solvent is 0.001M or more, the effect of improving electrochemical characteristics at high temperatures is easily exhibited, and when it is 0.005M or less, electrochemical characteristics at high temperatures. This is preferable because there is little concern that the effect of improving the resistance will decrease.
  • it is 0.01M or more, Especially preferably, it is 0.03M or more, Most preferably, it is 0.04M or more.
  • the upper limit is preferably 0.4M or less, particularly preferably 0.2M or less.
  • the ratio of the molar concentration of the lithium salt used in the present invention to LiPF 6 is 0.0005 or more, and the effect of improving electrochemical properties at high temperatures is easily exhibited. .3 or less is preferable because the effect of improving electrochemical properties at high temperatures is less likely to be reduced.
  • the lower limit is more preferably 0.001 or more, and still more preferably 0.005 or more.
  • the upper limit is more preferably 0.2 or less, and still more preferably 0.1 or less.
  • the non-aqueous electrolyte of the present invention is, for example, a non-cyclic solvent represented by the general formula (I) or (II) with respect to the electrolyte salt and the non-aqueous electrolyte mixed with the non-aqueous solvent. It can be obtained by adding a lithium salt or an acyclic lithium salt represented by any one of (XI) to (XIII). At this time, it is preferable that the compound added to the non-aqueous solvent and the non-aqueous electrolyte to be used is one that is purified in advance and has as few impurities as possible within a range that does not significantly reduce the productivity.
  • the non-aqueous electrolyte of the present invention can be used in the following first to fourth power storage devices, and as the non-aqueous electrolyte, not only a liquid but also a gelled one can be used. Furthermore, the non-aqueous electrolyte of the present invention can be used for a solid polymer electrolyte. In particular, it is preferably used for the first electricity storage device (that is, for a lithium battery) or the fourth electricity storage device (that is, for a lithium ion capacitor) that uses a lithium salt as an electrolyte salt, and is used for a lithium battery. More preferably, it is more preferably used for a lithium secondary battery.
  • the lithium battery is a general term for a lithium primary battery and a lithium secondary battery.
  • the term lithium secondary battery is used as a concept including a so-called lithium ion secondary battery.
  • the lithium battery of the present invention comprises the nonaqueous electrolyte solution in which an electrolyte salt is dissolved in a positive electrode, a negative electrode, and a nonaqueous solvent.
  • Components other than the non-aqueous electrolyte, such as a positive electrode and a negative electrode can be used without particular limitation.
  • a composite metal oxide with lithium containing one or more selected from cobalt, manganese, and nickel is used as the positive electrode active material for a lithium secondary battery.
  • These positive electrode active materials can be used individually by 1 type or in combination of 2 or more types.
  • Examples of such lithium composite metal oxides include LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiCo 1-x Ni x O 2 (0.01 ⁇ x ⁇ 1), LiCo 1/3 Ni 1/3.
  • One type or two or more types selected from Mn 1/3 O 2 , LiNi 1/2 Mn 3/2 O 4 , and LiCo 0.98 Mg 0.02 O 2 may be mentioned.
  • LiCoO 2 and LiMn 2 O 4 , LiCoO 2 and LiNiO 2 , LiMn 2 O 4 and LiNiO 2 may be used in combination.
  • a part of the lithium composite metal oxide may be substituted with another element.
  • a part of cobalt, manganese, nickel is replaced with at least one element such as Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, Cu, Bi, Mo, La,
  • a part of O can be substituted with S or F, or a compound containing these other elements can be coated.
  • lithium composite metal oxides such as LiCoO 2 , LiMn 2 O 4 , and LiNiO 2 that can be used at a charged potential of the positive electrode in a fully charged state of 4.3 V or more on the basis of Li are preferable, and LiCo 1-x M x O 2 (where M is one or more elements selected from Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, and Cu, 0.001 ⁇ x ⁇ 0.
  • LiCo 1/3 Ni 1/3 Mn 1/3 O 2 LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiNi 1/2 Mn 3/2 O 4 , Li 2 MnO
  • a lithium composite metal oxide that can be used at 4.4 V or higher, such as a solid solution of 3 and LiMO 2 (M is a transition metal such as Co, Ni, Mn, and Fe).
  • M is a transition metal such as Co, Ni, Mn, and Fe
  • the lithium secondary battery according to the present invention Then, the deterioration of these electrochemical characteristics can be suppressed.
  • the resistance of the battery tends to increase with the elution of Mn ions from the positive electrode, so that the electrochemical characteristics when used in a wide temperature range tend to be lowered.
  • the lithium secondary battery according to the invention is preferable because it can suppress a decrease in these electrochemical characteristics.
  • lithium-containing olivine-type phosphate can also be used as the positive electrode active material.
  • lithium-containing olivine-type phosphate containing one or more selected from iron, cobalt, nickel and manganese is preferable. Specific examples thereof include one or more selected from LiFePO 4 , LiCoPO 4 , LiNiPO 4 , and LiMnPO 4 .
  • Some of these lithium-containing olivine-type phosphates may be substituted with other elements, and some of iron, cobalt, nickel, and manganese are replaced with Co, Mn, Ni, Mg, Al, B, Ti, V, and Nb.
  • Cu, Zn, Mo, Ca, Sr, W and Zr can be substituted with one or two or more elements selected from these, or can be coated with a compound or carbon material containing these other elements.
  • LiFePO 4 or LiMnPO 4 is preferable.
  • mold phosphate can also be mixed with the said positive electrode active material, for example, and can be used.
  • the positive electrode for lithium primary battery CuO, Cu 2 O, Ag 2 O, Ag 2 CrO 4, CuS, CuSO 4, TiO 2, TiS 2, SiO 2, SnO, V 2 O 5, V 6 O 12 , VO x , Nb 2 O 5 , Bi 2 O 3 , Bi 2 Pb 2 O 5 , Sb 2 O 3 , CrO 3 , Cr 2 O 3 , MoO 3 , WO 3 , SeO 2 , MnO 2 , Mn 2 O 3 , Fe 2 O 3 , FeO, Fe 3 O 4 , Ni 2 O 3 , NiO, CoO 3 , CoO and the like, oxides of one or more metal elements or chalcogen compounds, sulfur such as SO 2 and SOCl 2 Examples thereof include compounds, and fluorocarbons (fluorinated graphite) represented by the general formula (CF x ) n . Among these, MnO 2 , V 2 O 5 , graphite fluoride and the like are preferable.
  • the pH of the supernatant obtained when 10 g of the positive electrode active material is dispersed in 100 ml of distilled water is 10.0 to 12.5, the effect of improving the electrochemical characteristics in a wider temperature range can be easily obtained.
  • the case of 10.5 to 12.0 is more preferable.
  • impurities such as LiOH in the positive electrode active material tend to increase, an effect of improving electrochemical characteristics in a wider temperature range is more easily obtained.
  • the case where the atomic concentration of Ni in the substance is 5 to 25 atomic% is more preferable, and the case where it is 8 to 21 atomic% is particularly preferable.
  • the positive electrode conductive agent is not particularly limited as long as it is an electron conductive material that does not cause a chemical change.
  • graphite such as natural graphite (scaly graphite, etc.), graphite such as artificial graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, and one or more carbon blacks selected from thermal black It is done. Further, graphite and carbon black may be appropriately mixed and used.
  • the addition amount of the conductive agent to the positive electrode mixture is preferably 1 to 10% by mass, and particularly preferably 2 to 5% by mass.
  • the positive electrode is composed of a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), acrylonitrile and butadiene.
  • a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), acrylonitrile and butadiene.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • SBR styrene and butadiene
  • SBR styrene and butadiene
  • acrylonitrile and butadiene acrylonitrile and butadiene.
  • binder such as copolymer (NBR), carb
  • this positive electrode mixture was applied to a current collector aluminum foil, a stainless steel lath plate, etc., dried and pressure-molded, and then subjected to vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours. It can be manufactured by heat treatment.
  • the density of the part except the collector of the positive electrode is usually at 1.5 g / cm 3 or more, for further increasing the capacity of the battery, is preferably 2 g / cm 3 or more, more preferably 3 g / cm 3 or more More preferably, it is 3.6 g / cm 3 or more.
  • the upper limit is preferably 4 g / cm 3 or less.
  • Examples of the negative electrode active material for a lithium secondary battery include a negative electrode active material whose charging potential in a fully charged state is less than 1 V on a Li basis, and a negative electrode active material whose charging potential in a fully charged state is 1 V or higher on a Li basis.
  • Examples of the negative electrode active material in which the charging potential in the fully charged state is less than 1 V on the basis of Li include lithium metal, lithium alloy, and carbon materials capable of occluding and releasing lithium [graphitizable carbon, (002 ) Non-graphitizable carbon with a plane spacing of 0.37 nm or more, graphite with a (002) plane spacing of 0.34 nm or less], tin (single), tin compound, silicon (single), silicon compound, etc.
  • Examples of the negative electrode active material having a charging potential in the fully charged state of 1 V or more based on Li include lithium titanate compounds such as Li 4 Ti 5 O 12 . These negative electrode active materials can be used individually by 1 type or in combination of 2 or more types.
  • a negative electrode active material in which the charging potential in a fully charged state is less than 1 V on the basis of Li in terms of the ability to occlude and release lithium ions is preferable, and a highly crystalline carbon material such as artificial graphite or natural graphite is used. It is more preferable to use a carbon material having a graphite-type crystal structure in which the lattice spacing ( 002 ) (d 002 ) is 0.340 nm (nanometer) or less, particularly 0.335 to 0.337 nm. preferable.
  • artificial graphite particles having a massive structure in which a plurality of flat graphite fine particles are assembled or bonded non-parallel to each other, and mechanical action such as compressive force, frictional force, shearing force, etc. are repeatedly applied, and scaly natural graphite is spherical. It is preferable to use particles that have been treated.
  • the peak intensity I (110) of the (110) plane of the graphite crystal obtained from the X-ray diffraction measurement of the negative electrode sheet when the density of the portion excluding the current collector of the negative electrode is pressed to a density of 1.5 g / cm 3 or more.
  • the (004) plane peak intensity I (004) ratio I (110) / I (004) is preferably 0.01 or more because the electrochemical characteristics in a wider temperature range are further improved, and 0.05 or more. More preferably, it is more preferably 0.1 or more.
  • the upper limit of the peak intensity ratio I (110) / I (004) is preferably 0.5 or less. 3 or less is more preferable.
  • the highly crystalline carbon material (core material) is coated with a carbon material having lower crystallinity than the core material because electrochemical characteristics in a wide temperature range are further improved.
  • the crystallinity of the carbon material of the coating can be confirmed by TEM.
  • a highly crystalline carbon material reacts with the non-aqueous electrolyte during charging and tends to lower the electrochemical properties at low or high temperatures due to an increase in interfacial resistance, but in the lithium secondary battery according to the present invention, Excellent electrochemical characteristics over a wide temperature range.
  • Examples of the metal compound capable of inserting and extracting lithium as the negative electrode active material include Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, and Cu. , Zn, Ag, Mg, Sr, Ba, and other compounds containing at least one metal element.
  • These metal compounds may be used in any form such as a simple substance, an alloy, an oxide, a nitride, a sulfide, a boride, and an alloy with lithium, but any of a simple substance, an alloy, an oxide, and an alloy with lithium. Is preferable because the capacity can be increased.
  • those containing at least one element selected from Si, Ge and Sn are preferable, and those containing at least one element selected from Si and Sn are more preferable because the capacity of the battery can be increased.
  • the negative electrode is kneaded using the same conductive agent, binder, and high-boiling solvent as in the preparation of the positive electrode described above to form a negative electrode mixture, and then this negative electrode mixture is applied to the copper foil of the current collector. After being dried and pressure-molded, it can be produced by heat treatment under vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours.
  • the density of the portion excluding the current collector of the negative electrode is usually 1.1 g / cm 3 or more, and is preferably 1.5 g / cm 3 or more, more preferably 1.7 g in order to further increase the capacity of the battery. / Cm 3 or more.
  • the upper limit is preferably 2 g / cm 3 or less.
  • examples of the negative electrode active material for a lithium primary battery include lithium metal and lithium alloy.
  • the structure of the lithium battery is not particularly limited, and a coin-type battery, a cylindrical battery, a square battery, a laminated battery, or the like having a single-layer or multi-layer separator can be applied.
  • a separator for batteries The single layer or laminated microporous film of polyolefin, such as a polypropylene and polyethylene, a woven fabric, a nonwoven fabric, etc. can be used.
  • the lithium secondary battery according to the present invention has excellent electrochemical characteristics in a wide temperature range even when the end-of-charge voltage is 4.2 V or more, particularly 4.3 V or more, and the characteristics are also good at 4.4 V or more. is there.
  • the end-of-discharge voltage is usually 2.8 V or higher, and more preferably 2.5 V or higher, but the lithium secondary battery in the present invention can be 2.0 V or higher.
  • the current value is not particularly limited, but is usually used in the range of 0.1 to 30C.
  • the lithium battery in the present invention can be charged / discharged at ⁇ 40 to 100 ° C., preferably ⁇ 10 to 80 ° C.
  • a method of providing a safety valve on the battery lid or cutting a member such as a battery can or a gasket can be employed.
  • the battery lid can be provided with a current interruption mechanism that senses the internal pressure of the battery and interrupts the current.
  • Electrode double layer capacitor It is an electricity storage device that stores energy by using the electric double layer capacity at the interface between the electrolyte and the electrode.
  • An example of the present invention is an electric double layer capacitor.
  • the most typical electrode active material used for this electricity storage device is activated carbon. Double layer capacity increases roughly in proportion to surface area.
  • Examples of the positive electrode include those using an electric double layer between an activated carbon electrode and an electrolytic solution, and those using a ⁇ -conjugated polymer electrode doping / dedoping reaction.
  • the electrolyte contains at least a lithium salt such as LiPF 6 .
  • the novel lithium salt of the present invention is represented by any of the following general formulas (XII-2) and (XIII-3).
  • R 1 represents an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, or a halogen atom, and t 2 is 1.01 to 3) is there.
  • R 2 represents an alkylene group having 1 to 6 carbon atoms, and u 1 has 2 to 6.
  • R 2 may have at least one hydrogen atom substituted with a halogen atom.
  • Formula (XII-2) in the lower limit of t 2 is preferably 1.05 or more, more preferably 1.1 or more, the upper limit thereof is preferably 2 or less, more preferably 1.7 or less.
  • preferred examples of R 1 in the general formula (XII-2) are specific examples of R 1 in the general formula (XI-1), is the same as the preferred embodiment.
  • the bonding mode between the sulfonate anion and the boron trifluoride molecule is not particularly limited, and various bonding modes such as a direct bond and a coordination bond can be taken.
  • Preferable examples of the lithium salt represented by the general formula (XII-2) include the compounds 1 to 30 described above.
  • one or more selected from the above-mentioned compounds 1 to 7, 11 to 16, 21, 23 to 26, 28, and 29 are preferable.
  • One, two or more selected from 11, Compound 13, Compound 15, Compound 21, Compound 23, and Compound 26 are more preferable.
  • the compounds 1-30 of the, t 1 corresponding to t 2 is 1.01 1-3.
  • the preferred examples of the lithium salt represented by the general formula (XIII-3) are as described above.
  • the compound represented by the general formula (XII-2) or (XIII-3) can be synthesized by the following methods (a) to (c), but is not limited to these methods. .
  • the method (a) is a method in which a sulfonic acid lithium salt and a boron trifluoride complex are reacted in the presence or absence of a solvent.
  • the raw material lithium sulfonate can be synthesized by an existing method, for example, the method described in Tetrahedron Letters, Vol. 23, No. 43 (1983), page 4461.
  • the amount of the boron trifluoride complex used is preferably 0.8 to 10 mol, more preferably 0.9 to 5 mol, still more preferably 1 with respect to 1 mol of the lithium sulfonate. ⁇ 3 moles.
  • boron trifluoride complex As a boron trifluoride complex used as the method, boron trifluoride diethyl ale complex, boron trifluoride tetrahydrofuran complex, boron trifluoride methanol complex, boron trifluoride complex, boron trifluoride acetic acid Complex, boron trifluoride phosphate complex, boron trifluoride amine complex, boron trifluoride sulfide complex, boron trifluoride H 2 O complex, among others, from the viewpoint of easy removal, trifluoride Boron diethyl ale complex, boron trifluoride tetrahydrofuran complex, and boron trifluoride methanol complex are preferred.
  • the reaction proceeds without solvent, but a solvent can be used if it is inert to the reaction.
  • Solvents used are aliphatic hydrocarbons such as heptane and cyclohexane, halogenated hydrocarbons such as dichloromethane and dichloroethane, aromatic hydrocarbons such as toluene and xylene, halogenated aromatic hydrocarbons such as chlorobenzene and fluorobenzene, diisopropyl Ethers such as ether, dioxane and dimethoxyethane; esters such as ethyl acetate, butyl acetate, dimethyl carbonate and diethyl carbonate; sulfoxides such as dimethyl sulfoxide and sulfolane; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; Or a mixture thereof.
  • the amount of the solvent used is preferably 0 to 30 parts by mass, more preferably 1 to 10 parts by mass with respect to 1 part by mass of the sulfonic acid lithium salt.
  • the lower limit of the reaction temperature is preferably 0 ° C. or higher, more preferably 20 ° C. or higher, from the viewpoint of not reducing the reactivity.
  • the upper limit of the reaction temperature is preferably 150 ° C. or lower, more preferably 100 ° C. or lower.
  • reaction time can be appropriately changed depending on the reaction temperature and scale, but if the reaction time is too short, unreacted substances remain, and conversely if the reaction time is too long, there is a risk of decomposition of the reaction product or side reaction. , Preferably 0.1 to 24 hours, more preferably 0.2 to 12 hours.
  • Method (b) is a method in which boron trifluoride is introduced into a sulfonic acid lithium salt and reacted in the presence or absence of a solvent.
  • the amount of boron trifluoride used is preferably 0.8 to 10 mol, more preferably 0.9 to 5 mol, still more preferably 1 to 1 mol per mol of the lithium sulfonate. 3 moles.
  • the reaction proceeds without solvent, but a solvent can be used if it is inert to the reaction.
  • the solvent used examples include aliphatic hydrocarbons, halogenated hydrocarbons, aromatic hydrocarbons, halogenated aromatic hydrocarbons, ethers, sulfoxides, and mixtures thereof described in the method (a).
  • aromatic hydrocarbons such as toluene, ethyl acetate, dimethyl carbonate, and esters are preferable.
  • the amount of the solvent used is preferably 0 to 30 parts by mass, more preferably 1 to 10 parts by mass with respect to 1 part by mass of the lithium sulfonate.
  • the lower limit of the reaction temperature is preferably ⁇ 20 ° C. or higher, and more preferably 0 ° C. or higher from the viewpoint of not reducing the reactivity.
  • the upper limit of the reaction temperature is preferably 100 ° C., more preferably 80 ° C. or less.
  • the reaction time of the method (b) can be appropriately changed depending on the reaction temperature and scale. However, if the reaction time is too short, unreacted substances remain. Therefore, it is preferably 0.1 to 12 hours, more preferably 0.2 to 6 hours.
  • the number of moles of boron trifluoride molecules per mole of sulfonate anion contained in the obtained lithium salt can be determined by quantification by 1 H-NMR and 19 F-NMR.
  • Method (c) is a method in which lithium tetrafluoroborate and a sulfonic acid silyl ester compound are reacted in the presence or absence of a solvent.
  • the amount of the sulfonic acid silyl ester compound used is preferably 0.8 to 10 mol, more preferably 0.9 to 0.1 mol per 1 mol of lithium hexafluorophosphate or lithium hexafluoroarsenate. 5 moles, more preferably 1 to 3 moles.
  • Examples of the sulfonic acid silyl ester compound used in the method (c) include trimethylsilyl methanesulfonate, trimethylsilyl ethanesulfonate, trimethylsilyl propane-2-sulfonate, trimethylsilyl 4-methylbenzenesulfonate, triethylsilyl methanesulfonate, and the like.
  • the reaction proceeds without solvent, but a solvent can be used if it is inert to the reaction.
  • a solvent can be used if it is inert to the reaction.
  • the solvent used include aliphatic hydrocarbons, halogenated hydrocarbons, aromatic hydrocarbons, halogenated aromatic hydrocarbons, ethers, sulfoxides, and mixtures thereof described in the method (a).
  • aromatic hydrocarbons such as toluene, ethyl acetate, dimethyl carbonate, and esters are preferable.
  • the amount of the solvent used is preferably 0 to 30 parts by mass, more preferably 1 to 10 parts by mass with respect to 1 part by mass of lithium tetrafluoroborate.
  • the lower limit of the reaction temperature is preferably 0 ° C. or higher, more preferably 30 ° C. or higher, from the viewpoint of not reducing the reactivity.
  • the upper limit of the reaction temperature is preferably 150 ° C. or lower, more preferably 100 ° C. or lower.
  • the reaction time can be appropriately changed depending on the reaction temperature and scale, but if the reaction time is too short, unreacted substances remain, and conversely if the reaction time is too long, there is a risk of decomposition of the reaction product or side reaction. , Preferably 0.1 to 24 hours, more preferably 0.2 to 12 hours.
  • Examples A-1 to A-34, Comparative Example A-1 [Production of lithium ion secondary battery] LiNi 1/3 Mn 1/3 Co 1/3 O 2 (the positive electrode active material, the pH of the supernatant liquid when 10 g of the positive electrode active material is dispersed in 100 ml of distilled water is 10.8); 94% by mass, acetylene black ( Conductive agent); 3% by mass is mixed, and added to and mixed with a solution of polyvinylidene fluoride (binder); 3% by mass previously dissolved in 1-methyl-2-pyrrolidone. Prepared. This positive electrode mixture paste was applied to one side of an aluminum foil (current collector), dried and pressurized, punched out to a predetermined size, and a positive electrode sheet was produced.
  • LiNi 1/3 Mn 1/3 Co 1/3 O 2 the positive electrode active material, the pH of the supernatant liquid when 10 g of the positive electrode active material is dispersed in 100 ml of distilled water is 10.8
  • acetylene black Conductive agent
  • the density of the portion excluding the current collector of the positive electrode was 3.6 g / cm 3 .
  • This negative electrode mixture paste was applied to one side of a copper foil (current collector), dried and pressurized, and punched into a predetermined size to produce a negative electrode sheet.
  • the density of the portion excluding the current collector of the negative electrode was 1.5 g / cm 3 .
  • the ratio of the peak intensity I (110) of the (110) plane of the graphite crystal to the peak intensity I (004) of the (004) plane [I (110) / I (004)] was 0.1.
  • a positive electrode sheet, a microporous polyethylene film separator, and a negative electrode sheet were laminated in this order, and a non-aqueous electrolyte solution having the composition shown in Tables 1 to 3 was added to produce a 2032 type coin battery.
  • LiBOB is an abbreviation for bis [oxalate-O, O ′] lithium borate
  • LiPFO is an abbreviation for difluorobis [oxalate-O, O ′] lithium phosphate. The same applies to the following tables.
  • “Other additive” in Table 3 means “other additive” described in the specification, that is, (A) nitrile, (B) aromatic compound, (C) isocyanate compound, (D) triple bond. It means a compound of any group selected from a containing compound, (E) an S ⁇ O group-containing compound, (F) a cyclic acetal compound, (G) a phosphorus-containing compound, and (H) a cyclic acid anhydride.
  • Examples A-35 to A-36, Comparative Example A-2 In place of the negative electrode active material used in Example A-1, a negative electrode sheet was prepared using silicon (single element) (negative electrode active material). Silicon (single element): 80% by mass, acetylene black (conductive agent); 15% by mass were mixed, and polyvinylidene fluoride (binder); 5% by mass was previously dissolved in 1-methyl-2-pyrrolidone. In addition to the solution, mixing was performed to prepare a negative electrode mixture paste.
  • This negative electrode mixture paste was applied onto a copper foil (current collector), dried, pressed and punched to a predetermined size to produce a negative electrode sheet, and the composition of the non-aqueous electrolyte was changed to a predetermined one Except for the change, a coin battery was produced in the same manner as in Example A-1, and the battery was evaluated. The results are shown in Table 4.
  • a negative electrode sheet was prepared using lithium titanate Li 4 Ti 5 O 12 (negative electrode active material) instead of the negative electrode active material used in Example A-1.
  • Lithium titanate Li 4 Ti 5 O 12 80% by mass, acetylene black (conducting agent); 15% by mass are mixed, and polyvinylidene fluoride (binder); 5% by mass in 1-methyl-2-pyrrolidone
  • a negative electrode mixture paste was prepared by adding to the dissolved solution and mixing. This negative electrode mixture paste was applied onto a copper foil (current collector), dried and pressurized, punched out to a predetermined size, and a negative electrode sheet was prepared.
  • a coin battery was fabricated and evaluated in the same manner as in Example A-1, except that the discharge end voltage was 8 V, the discharge end voltage was 1.2 V, and the composition of the nonaqueous electrolyte was changed to a predetermined one. .
  • the results are shown in Table 5.
  • Examples A-41 to A-42, Comparative Example A-4 A positive electrode sheet was produced using LiFePO 4 (positive electrode active material) coated with amorphous carbon instead of the positive electrode active material used in Example A-1.
  • LiFePO 4 coated with amorphous carbon 90% by mass, acetylene black (conducting agent); 5% by mass are mixed, and polyvinylidene fluoride (binder);
  • the positive electrode mixture paste was prepared by adding to and mixing with the solution previously dissolved in the mixture. This positive electrode mixture paste was applied onto an aluminum foil (current collector), dried and pressurized, punched out to a predetermined size, and a positive electrode sheet was produced.
  • a coin battery was fabricated and evaluated in the same manner as in Example A-1, except that the discharge end voltage was 6 V, the discharge end voltage was 2.0 V, and the composition of the nonaqueous electrolyte was changed to a predetermined one. .
  • the results are shown in Table 6.
  • the lithium salt represented by the general formula (XI-1) or (XIII-1) is not added to the nonaqueous electrolytic solution of the present invention.
  • the electrochemical characteristics in a wide temperature range are remarkably improved.
  • the effect of the present invention is a characteristic effect when the non-aqueous electrolytic solution in which the electrolyte salt is dissolved in the non-aqueous solvent contains 0.001 to 5% by mass of the specific lithium salt of the present invention. It turned out to be. Further, the discharge capacity retention rate after 200 cycles at 60 ° C.
  • Example A-4 the discharge capacity retention rate after 200 cycles at 60 ° C. was significantly improved as compared with Comparative Example A-1. Further, the comparison between Examples A-35 to A-36 and Comparative Example A-2, Examples A-37 to A-40 and Comparative Example A-3, Examples A-41 to A-42 and Comparative Example A- From the comparison of 4, the same effect is seen when silicon (single) Si or lithium titanate is used for the negative electrode or when lithium-containing olivine-type iron phosphate is used for the positive electrode. It is clear that the effect is not dependent on the negative electrode.
  • non-aqueous electrolytes obtained in Examples A-1 to A-42 also have the effect of improving the discharge characteristics over a wide temperature range of the lithium primary battery.
  • Examples B-1 to B-32, Comparative Example B-1 [Production of lithium ion secondary battery] LiNi 0.85 Co 0.10 Al 0.05 O 2 (positive electrode active material, pH of supernatant when 1 g of positive electrode active material is dispersed in 100 ml of distilled water is 11.8); 94% by mass, acetylene black (conductive agent); 3% % Was mixed and added to a solution in which 3% by mass of polyvinylidene fluoride (binder) in advance was dissolved in 1-methyl-2-pyrrolidone, and mixed to prepare a positive electrode mixture paste.
  • This positive electrode mixture paste was applied to one side of an aluminum foil (current collector), dried and pressurized, punched out to a predetermined size, and a positive electrode sheet was produced.
  • Examples B-33 to B-35, Comparative Example B-2 instead of the negative electrode active material used in Example B-1, a negative electrode sheet was prepared using silicon (single element) (negative electrode active material). Silicon (simple substance): 80% by mass, acetylene black (conductive agent); 15% by mass were mixed, and polyvinylidene fluoride (binder); 5% by mass was previously dissolved in 1-methyl-2-pyrrolidone. In addition to the solution, mixing was performed to prepare a negative electrode mixture paste.
  • This negative electrode mixture paste was applied onto a copper foil (current collector), dried, pressed and punched to a predetermined size to produce a negative electrode sheet, and the composition of the non-aqueous electrolyte was changed to a predetermined one Except for the change, a coin battery was produced in the same manner as in Example B-1, and the battery was evaluated. The results are shown in Table 10.
  • Examples B-36 to B-39, Comparative Example B-3 A negative electrode sheet was produced using lithium titanate Li 4 Ti 5 O 12 (negative electrode active material) instead of the negative electrode active material used in Example B-1.
  • Lithium titanate Li 4 Ti 5 O 12 80% by mass, acetylene black (conducting agent); 15% by mass are mixed, and polyvinylidene fluoride (binder); 5% by mass in 1-methyl-2-pyrrolidone
  • a negative electrode mixture paste was prepared by adding to the dissolved solution and mixing. This negative electrode mixture paste was applied onto a copper foil (current collector), dried and pressurized, punched out to a predetermined size, and a negative electrode sheet was prepared.
  • a coin battery was fabricated and evaluated in the same manner as in Example B-1, except that the discharge end voltage was 8 V, the discharge end voltage was 1.2 V, and the composition of the nonaqueous electrolyte was changed to a predetermined one. .
  • the results are shown in Table 11.
  • Examples B-40 to B-42, Comparative Example B-4 A positive electrode sheet was produced using LiFePO 4 (positive electrode active material) coated with amorphous carbon instead of the positive electrode active material used in Example B-1.
  • LiFePO 4 coated with amorphous carbon 90% by mass, acetylene black (conducting agent); 5% by mass are mixed, and polyvinylidene fluoride (binder);
  • the positive electrode mixture paste was prepared by adding to and mixing with the solution previously dissolved in the mixture. This positive electrode mixture paste was applied onto an aluminum foil (current collector), dried and pressurized, punched out to a predetermined size, and a positive electrode sheet was produced.
  • a coin battery was fabricated and evaluated in the same manner as in Example B-1, except that the discharge end voltage was 6 V, the discharge end voltage was 2.0 V, and the composition of the nonaqueous electrolyte was changed to a predetermined one. .
  • the results are shown in Table 12.
  • the lithium salt represented by the general formula (XI-2) or (XIII-2) is not added to the nonaqueous electrolytic solution of the present invention.
  • the low-temperature characteristics after high-temperature charge storage are remarkably improved.
  • the effect of the present invention is a characteristic effect when the non-aqueous electrolytic solution in which the electrolyte salt is dissolved in the non-aqueous solvent contains 0.001 to 5% by mass of the specific lithium salt of the present invention. It turned out to be.
  • the lithium secondary battery produced in Example B-4 (without other additives) had a discharge capacity retention rate of 0 ° C.
  • non-aqueous electrolytes obtained in Examples B-1 to B-42 also have the effect of improving the discharge characteristics over a wide temperature range of the lithium primary battery.
  • Synthesis Example C-1 [Synthesis of Synthetic Compound C-1] 40.82 g (0.40 mol) of lithium methanesulfonate and 85.16 g (0.60 mol) of boron trifluoride diethyl ether complex were added to 60 ml of dimethyl carbonate, and the mixture was stirred at 50 ° C. for 1 hour. After distilling off ether and dimethyl carbonate under reduced pressure, the temperature was raised to 100 ° C., and excess boron trifluoride diethyl ether complex was distilled off to obtain the desired compound C-1: [CH 3 —SO 3 (BF 3 1.41 ] Li (77.48 g, yield 98%) was obtained.
  • Examples C-1 to C-27, Comparative Example C-1 [Production of lithium ion secondary battery] LiNi 0.5 Mn 0.3 Co 0.2 O 2 (the positive electrode active material, the pH of the supernatant liquid when 10 g of the positive electrode active material is dispersed in 100 ml of distilled water is 11.0); 94% by mass, acetylene black (conductive agent); 3% % Was mixed and added to a solution in which 3% by mass of polyvinylidene fluoride (binder) in advance was dissolved in 1-methyl-2-pyrrolidone, and mixed to prepare a positive electrode mixture paste.
  • the positive electrode active material the pH of the supernatant liquid when 10 g of the positive electrode active material is dispersed in 100 ml of distilled water is 11.0
  • acetylene black conductive agent
  • 3% % Was mixed and added to a solution in which 3% by mass of polyvinylidene fluoride (binder) in advance was dissolved in 1-methyl-2-pyrrol
  • This positive electrode mixture paste was applied to one side of an aluminum foil (current collector), dried and pressurized, punched out to a predetermined size, and a positive electrode sheet was produced.
  • the density of the portion excluding the current collector of the positive electrode was 3.6 g / cm 3 .
  • Examples C-28, C-29, Comparative Example C-2 In place of the negative electrode active material used in Example C-1, a negative electrode sheet was prepared using silicon (single element) (negative electrode active material). Silicon (single element): 80% by mass, acetylene black (conductive agent); 15% by mass were mixed, and polyvinylidene fluoride (binder); 5% by mass was previously dissolved in 1-methyl-2-pyrrolidone. In addition to the solution, mixing was performed to prepare a negative electrode mixture paste.
  • This negative electrode mixture paste was applied onto a copper foil (current collector), dried, pressed and punched to a predetermined size to produce a negative electrode sheet, and the composition of the non-aqueous electrolyte was changed to a predetermined one Except for the change, a coin battery was produced in the same manner as in Example C-1, and the battery was evaluated. The results are shown in Table 16.
  • Examples C-30, C-31, Comparative Example C-3 A negative electrode sheet was prepared using lithium titanate Li 4 Ti 5 O 12 (negative electrode active material) instead of the negative electrode active material used in Example C-1.
  • Lithium titanate Li 4 Ti 5 O 12 80% by mass, acetylene black (conducting agent); 15% by mass are mixed, and polyvinylidene fluoride (binder); 5% by mass in 1-methyl-2-pyrrolidone
  • a negative electrode mixture paste was prepared by adding to the dissolved solution and mixing. This negative electrode mixture paste was applied onto a copper foil (current collector), dried and pressurized, punched out to a predetermined size, and a negative electrode sheet was prepared.
  • a coin battery was fabricated and evaluated in the same manner as in Example C-1, except that the discharge end voltage was 8 V, the discharge end voltage was 1.2 V, and the composition of the nonaqueous electrolyte was changed to a predetermined one. .
  • the results are shown in Table 17.
  • Examples C-32, C-33, Comparative Example C-4 A positive electrode sheet was produced using LiFePO 4 (positive electrode active material) coated with amorphous carbon instead of the positive electrode active material used in Example C-1.
  • LiFePO 4 coated with amorphous carbon 90% by mass, acetylene black (conducting agent); 5% by mass are mixed, and polyvinylidene fluoride (binder);
  • the positive electrode mixture paste was prepared by adding to and mixing with the solution previously dissolved in the mixture. This positive electrode mixture paste was applied onto an aluminum foil (current collector), dried and pressurized, punched out to a predetermined size, and a positive electrode sheet was produced.
  • a coin battery was fabricated and evaluated in the same manner as in Example C-1, except that the discharge end voltage was 6 V, the discharge end voltage was 2.0 V, and the composition of the nonaqueous electrolyte was changed to a predetermined one. .
  • the results are shown in Table 18.
  • the lithium salt represented by the general formula (XII-1) or (XIII-3) is not added to the nonaqueous electrolytic solution of the present invention.
  • the low temperature characteristics after high temperature charge storage are remarkably improved. From the above, it has been found that the effect of the present invention is a unique effect when the compound of the present invention is contained in a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a nonaqueous solvent. Further, the lithium secondary battery produced in Example C-4 (without addition of other additives) had a 0 ° C.
  • non-aqueous electrolytes obtained in Examples C-1 to C-33 also have the effect of improving the discharge characteristics over a wide temperature range of the lithium primary battery.
  • the non-aqueous electrolyte of the present invention is used, an electricity storage device having excellent electrochemical characteristics in a wide temperature range can be obtained. Especially when used as a non-aqueous electrolyte for electricity storage devices such as lithium secondary batteries mounted on hybrid electric vehicles, plug-in hybrid electric vehicles, battery electric vehicles, etc., the electricity storage devices are unlikely to deteriorate in electrochemical characteristics over a wide temperature range. Can be obtained.
  • electricity storage devices such as lithium secondary batteries mounted on hybrid electric vehicles, plug-in hybrid electric vehicles, battery electric vehicles, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 本発明は、[1]非水溶媒に電解質塩が溶解されている非水電解液において、特定の非環状リチウム塩を、非水電解液中に0.001~5質量%含有することを特徴とする、広い温度範囲での電気化学特性を向上できる非水電解液、及び[2]正極、負極及び非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスであって、特定の非環状リチウム塩を非水電解液中に0.001~5質量%含有する蓄電デバイスである。

Description

非水電解液、及びそれを用いた蓄電デバイス
 本発明は、広い温度範囲での電気化学特性を向上できる非水電解液、及びそれを用いた蓄電デバイスに関する。
 近年、蓄電デバイス、特にリチウム二次電池は、携帯電話やノート型パソコン等の小型電子機器の電源、及び電気自動車や電力貯蔵用の電源として広く使用されている。これらの電子機器や自動車は、真夏の高温下や極寒の低温下等広い温度範囲で使用される可能性があるため、広い温度範囲でバランス良く電気化学特性を向上させることが求められている。
 特に地球温暖化防止のため、CO2排出量を削減することが急務となっており、リチウム二次電池やキャパシタ等の蓄電デバイスからなる蓄電装置を搭載した環境対応車の中でも、ハイブリッド電気自動車(HEV)、プラグインハイブリッド電気自動車(PHEV)、バッテリー電気自動車(BEV)の早期普及が求められている。自動車は移動距離が長いため、熱帯の非常に暑い地域から極寒の地域まで幅広い温度範囲の地域で使用される可能性がある。従って、特にこれらの車載用の蓄電デバイスは、高温から低温まで幅広い温度範囲で使用しても電気化学特性が低下しないことが要求されている。
 なお、本明細書において、リチウム二次電池という用語は、いわゆるリチウムイオン二次電池も含む概念として用いる。
 リチウム二次電池は、主にリチウムを吸蔵及び放出可能な材料を含む正極及び負極、リチウム塩と非水溶媒からなる非水電解液から構成され、非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等のカーボネートが使用されている。
 また、負極としては、金属リチウム、リチウムを吸蔵及び放出可能な金属化合物(金属単体、酸化物、リチウムとの合金等)や炭素材料が知られており、特にリチウムを吸蔵及び放出することが可能なコークス、人造黒鉛、天然黒鉛等の炭素材料を用いたリチウム二次電池が広く実用化されている。
 例えば、天然黒鉛や人造黒鉛等の高結晶化した炭素材料を負極材料として用いたリチウム二次電池は、非水電解液中の溶媒が充電時に負極表面で還元分解することにより発生した分解物やガスが電池の望ましい電気化学的反応を阻害するため、サイクル特性の低下を生じることが分かっている。また、非水溶媒の分解物が蓄積すると、負極へのリチウムの吸蔵及び放出がスムーズにできなくなり、広い温度範囲で使用した場合における電気化学特性が低下しやすくなる。
 更に、リチウム金属やその合金、スズ又はケイ素等の金属単体や酸化物を負極材料として用いたリチウム二次電池は、初期の容量は高いもののサイクル中に微粉化が進むため、炭素材料の負極に比べて非水溶媒の還元分解が加速的に起こり、電池容量やサイクル特性のような電池性能が大きく低下することが知られている。また、これらの負極材料の微粉化や非水溶媒の分解物が蓄積すると、負極へのリチウムの吸蔵及び放出がスムーズにできなくなり、広い温度範囲で使用した場合における電気化学特性が低下しやすくなる。
 一方、正極として、例えばLiCoO2、LiMn24、LiNiO2、LiFePO4等を用いたリチウム二次電池は、非水電解液中の非水溶媒が充電状態で正極材料と非水電解液との界面において、局部的に一部酸化分解することにより発生した分解物やガスが電池の望ましい電気化学的反応を阻害するため、やはり広い温度範囲で使用した場合における電気化学特性の低下を生じることが分かっている。
 以上のように、正極上や負極上で非水電解液が分解するときの分解物やガスにより、リチウムイオンの移動が阻害されたり、電池が膨れたりすることで電池性能が低下していた。そのような状況にも関わらず、リチウム二次電池が搭載されている電子機器の多機能化はますます進み、電力消費量が増大する流れにある。そのため、リチウム二次電池の高容量化はますます進んでおり、電極の密度を高めたり、電池内の無駄な空間容積を減らす等、電池内の非水電解液の占める体積が小さくなっている。従って、少しの非水電解液の分解で、広い温度範囲で使用した場合における電気化学特性が低下しやすい状況にある。
 特許文献1には、安全性を高めるためにリチウム アセテート トリフルオロボレートやリチウム メタンスルホネート トリフルオロボレート等の融解塩を含有する非水電解質二次電池が提案されており、これらの化合物が常温(25℃付近)で液体であり、ほとんど有機溶媒を使用しないため実質的に揮発しないため、安全性が高くなることが示唆されている。
 特許文献2には、Si、Sn又はPbを有する負極活物質を備えた二次電池に用いられる非水電解液であって、第1及び第2の2種類のリチウム塩を含有させることにより電池特性を向上できる非水電解液が開示されている。
特開2003-272703号 特開2007-317655号
 本発明は、広い温度範囲での電気化学特性を向上できる非水電解液、及びそれを用いた蓄電デバイスを提供することを目的とする。
 本発明者らは、上記従来技術の非水電解液の性能について詳細に検討した結果、前記特許文献1の非水電解質二次電池では、溶媒をほとんど使用しないため粘性が高く、液抵抗を増加させてしまい、高温保存後や高温サイクル後の低温放電特性等の広い温度範囲での電気化学特性を向上させるという課題に対しては、ほとんど効果を発揮できないことが分かった。また、エチレンカーボネートやプロピレンカーボネート等の環状カーボネート化合物に同質量のリチウム メタンスルホネート トリフルオロボレートやリチウム アセテート トリフルオロボレートを混合させた電解液においても同様に液抵抗を増加させてしまうため、高温保存後や高温サイクル後の低温放電特性等の広い温度範囲での電気化学特性を向上させるという課題に対しては、ほとんど効果を発揮できないのが実情であった。
 また、特許文献2の非水電解液は、Si、Sn又はPbを有する負極活物質を備えた二次電池用の非水電解液であるが、本発明の非水電解液に添加される特定の非環状リチウム塩についての開示はない。
 そこで、本発明者らは、上記課題を解決するために鋭意研究を重ね、非水溶媒に電解質塩が溶解されている非水電解液において、特定の非環状リチウム塩を一種又は二種以上、特定の添加量で含有することで、広い温度範囲で蓄電デバイスの電気化学特性、特にリチウム電池の電気化学特性を改善できることを見出し、本発明を完成した。このような効果は、前記特許文献1には全く示唆されていない。
 かかる状況において、本発明は、下記の[1]及び[2]を提供する。
[1]非水溶媒に電解質塩が溶解されている非水電解液において、下記一般式(I)又は(II)で表される非環状リチウム塩から選ばれる一種又は二種以上を、非水電解液中に0.001~5質量%含有することを特徴とする非水電解液。
  (A1)(YFm)p(Li)q   (I)
(式中、A1は下記一般式(III)又は(IV)で表される基であり、Yはホウ素原子、リン原子又はヒ素原子であり、Fはフッ素原子である。mは3又は5の整数、pは1~6、qは基A1の価数を示し1又は2である。ただし、基A1が1価(q=1)のとき、pは1~3であり、基A1が2価(q=2)のとき、pは2~6である。
 Yがホウ素原子のときmは3、Yがリン原子又はヒ素原子のときmは5である。)
  (A2)x(YFn)(Li)    (II)
(式中、A2は下記一般式(III)で表される基であり、複数のA2は同一でも異なっていてもよい。Yはホウ素原子、リン原子又はヒ素原子であり、Fはフッ素原子である。Yがホウ素原子のとき、xは2~4の整数、x+nは4であり、Yがリン原子又はヒ素原子のとき、xは2~6の整数、x+nは6である。)
Figure JPOXMLDOC01-appb-C000007
(式中、Rは炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数6~12のアリール基、炭素数1~6のアルキレン基又はハロゲン原子を示す。Rが有する水素原子の少なくとも一つはハロゲン原子で置換されていてもよい。)
[2]正極、負極及び非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスであって、前記非水電解液が、前記一般式(I)又は(II)で表される非環状リチウム塩、又は後記一般式(XI)~(XIII)のいずれかで表される非環状リチウム塩から選ばれる一種又は二種以上を、非水電解液中に0.001~5質量%含有することを特徴とする蓄電デバイス。
 本発明によれば、広い温度範囲で使用した場合における蓄電デバイスの電気化学特性、特に高温保存後や高温サイクル後の低温放電特性を向上できる非水電解液、及びそれを用いたリチウム電池等の蓄電デバイスを提供することができる。
 本発明は、広い温度範囲での電気化学特性を向上できる非水電解液、及びそれを用いた蓄電デバイスに関する。
〔非水電解液〕
 本発明の非水電解液は、非水溶媒に電解質塩が溶解されている非水電解液において、下記一般式(I)又は(II)で表される非環状リチウム塩から選ばれる一種又は二種以上を、非水電解液中に0.001~5質量%含有することを特徴とする非水電解液である。
  (A1)(YFm)p(Li)q   (I)
(式中、A1は下記一般式(III)又は(IV)で表される基であり、Yはホウ素原子、リン原子又はヒ素原子であり、Fはフッ素原子である。mは3又は5の整数、pは1~6、qは基A1の価数を示し1又は2である。ただし、基A1が1価(q=1)のとき、pは1~3であり、基A1が2価(q=2)のとき、pは2~6である。
 Yがホウ素原子のときmは3、Yがリン原子又はヒ素原子のときmは5である。)
  (A2)x(YFn)(Li)    (II)
(式中、A2は下記一般式(III)で表される基であり、複数のA2は同一でも異なっていてもよい。Yはホウ素原子、リン原子又はヒ素原子であり、Fはフッ素原子である。Yがホウ素原子のとき、xは2~4の整数、x+nは4であり、Yがリン原子又はヒ素原子のとき、xは2~6の整数、x+nは6である。)
Figure JPOXMLDOC01-appb-C000008
(式中、Rは炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数6~12のアリール基、炭素数1~6のアルキレン基又はハロゲン原子を示す。Rが有する水素原子の少なくとも一つはハロゲン原子で置換されていてもよい。)
 前記一般式(I)又は(II)で表される非環状リチウム塩としては、下記一般式(XI)~(XIII)のいずれかで表される非環状リチウム塩から選ばれる一種又は二種以上が好ましい。
Figure JPOXMLDOC01-appb-C000009
(式中、R1は、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数6~12のアリール基、又はハロゲン原子を示し、M1は、ホウ素原子、リン原子、又はヒ素原子を示し、rは1~6の整数、sは0~5の整数である。M1がホウ素原子のときr+sは4であり、M1がリン原子又はヒ素原子のときr+sは6である。R1が有する水素原子の少なくとも一つはハロゲン原子で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000010
(式中、R1は前記と同じであり、Y1は、BF3、PF5又はAsF5を示し、tは1~3である。Y1がBF3のときtは1~3であり、Y1がPF5又はAsF5のときtは1である。)
Figure JPOXMLDOC01-appb-C000011
(式中、R2は、炭素数1~6のアルキレン基を示し、Y1は、前記と同じであり、uは2~6である。Y1がBF3のときuは2~6であり、Y1がPF5又はAsF5のときuは2である。R2が有する水素原子の少なくとも一つはハロゲン原子で置換されていてもよい。)
 本発明の非水電解液が、広い温度範囲で蓄電デバイスの電気化学特性を大幅に改善できる理由は必ずしも明らかではないが、以下のように考えられる。
 前記一般式(I)又は(II)で表される非環状リチウム塩、又は(XI)~(XIII)のいずれかで表される非環状リチウム塩を、非水電解液中に高濃度で使用すると、電解液の粘度が大幅に上昇するため、電気伝導度が低下し低温での充放電特性が大きく低下してしまう。その一方で、前記一般式(I)又は(II)で表される非環状リチウム塩、又は(XI)~(XIII)のいずれかで表される非環状リチウムから選ばれる一種又は二種以上を、非水溶媒にLiPF6等の電解質塩が溶解されている非水電解液に少量添加することで、電気伝導度を低下させることなく、かつ負極で分解し抵抗の低い被膜を形成することで広い温度範囲での電気化学特性の改善効果がより一層高まることが判明した。
 以下、一般式(XI)~(XIII)のいずれかで表される非環状リチウム塩について、順次説明する。
(1)一般式(XI)で表されるリチウム塩
Figure JPOXMLDOC01-appb-C000012
(式中、R1は、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数6~12のアリール基、又はハロゲン原子を示し、M1は、ホウ素原子、リン原子、又はヒ素原子を示し、rは1~6の整数、sは0~5の整数である。M1がホウ素原子のときr+sは4であり、M1がリン原子又はヒ素原子のときr+sは6である。R1が有する水素原子の少なくとも一つはハロゲン原子で置換されていてもよい。)
 一般式(XI)で表されるリチウム塩としては、一般式(XI-1)又は(XI-2)で表されるリチウム塩が好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000013
 一般式(XI-1)中、R1は前記と同じであり、r1は1~4の整数、s1は0~3の整数を示し、r1+s1=4であり、r1は1又は2が好ましく、1がより好ましい。
Figure JPOXMLDOC01-appb-C000014
 一般式(XI-2)中、R1は前記と同じであり、M12はリン原子又はヒ素原子を示し、rは1~6の整数、sは0~5の整数を示し、r+s=6であり、rは1又は2が好ましく、1がより好ましい。
 前記一般式(XI)、(XI-1)又は(XI-2)のR1は少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数1~6のアルキル基、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数2~6のアルケニル基、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数6~12のアリール基、又はハロゲン原子を示し、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数1~4のアルキル基又は炭素数2~4のアルケニル基、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数6~10のアリール基、フッ素原子、塩素原子が好ましく、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数1又は2のアルキル基又は炭素数2~3のアルケニル基、炭素数6~8のアリール基が更に好ましい。
 前記R1の具体例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基等の直鎖のアルキル基、イソプロピル基、sec-ブチル基、tert-ブチル基、tert-アミル基等の分枝鎖のアルキル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基等のフルオロアルキル基、ビニル基、1-プロペニル基、2-プロペニル基、1-プロペン-2-イル基、2-ブテニル基、3-ブテニル基、4-ペンテニル基、5-ヘキセニル基、2-メチル-2-プロペニル基等のアルケニル基、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-tert-ブチルフェニル基、2-フルオロフェニル基、4-フルオロフェニル基、4-トリフルオロメチルフェニル基等のアリール基、フッ素原子、塩素原子等のハロゲン原子が好適に挙げられる。これらの中では、メチル基、エチル基、n-プロピル基、n-ブチル基、イソプロピル基、sec-ブチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、ビニル基、2-プロペニル基、1-プロペン-2-イル基、フェニル基、4-メチルフェニル基、フッ素原子が好ましく、メチル基、エチル基、イソプロピル基、ビニル基、2-プロペニル基、4-メチルフェニル基がより好ましい。
 前記一般式(XI-1)又は(XI-2)で表されるリチウム塩の具体例としては、以下の化合物が挙げられる。
(1)一般式(XI-1)で表されるリチウム塩
 一般式(XI-1)で表されるリチウム塩としては、リチウム ビス(メタンスルホネート) ジフルオロボレート、リチウム トリス(メタンスルホネート) フルオロボレート、リチウム テトラキス(メタンスルホネート) ボレート、リチウム メタンスルホネート トリフルオロボレート、リチウム エタンスルホネート トリフルオロボレート、リチウム プロパン-1-スルホネート トリフルオロボレート、リチウム プロパン-2-スルホネート トリフルオロボレート、リチウム ブタン-1-スルホネート トリフルオロボレート、リチウム ブタン-2-スルホネート トリフルオロボレート、リチウム 2-メチルプロパン-2-スルホネート トリフルオロボレート、リチウム ペンタン-1-スルホネート トリフルオロボレート、リチウム ヘキサン-1-スルホネート トリフルオロボレート、リチウム トリフルオロメタンスルホネート トリフルオロボレート、リチウム 2,2,2-トリフルオロエタンスルホネート トリフルオロボレート、リチウム ビニルスルホネート トリフルオロボレート、リチウム 1-プロペン-1-イルスルホネート トリフルオロボレート、リチウム 1-プロペン-2-イルスルホネート トリフルオロボレート、リチウム 2-プロペン-1-イルスルホネート トリフルオロボレート、リチウム 2-ブテン-1-イルスルホネート トリフルオロボレート、リチウム 3-ブテン-1-イルスルホネート トリフルオロボレート、リチウム 4-ペンテン-1-イルスルホネート トリフルオロボレート、リチウム 5-ヘキセン-1-イルスルホネート トリフルオロボレート、リチウム 2-メチル-2-プロペン-1-イルスルホネート トリフルオロボレート、リチウム ベンゼンスルホネート トリフルオロボレート、リチウム 2-メチルベンゼンスルホネート トリフルオロボレート、リチウム 3-メチルベンゼンスルホネート トリフルオロボレート、リチウム 4-メチルベンゼンスルホネート トリフルオロボレート、リチウム 4-tert-ブチルベンゼンスルホネート トリフルオロボレート、リチウム 2-フルオロベンゼンスルホネート トリフルオロボレート、リチウム 4-フルオロベンゼンスルホネート トリフルオロボレート、リチウム 4-トリフルオロメチルベンゼンスルホネート トリフルオロボレート、リチウム フルオロスルホネート トリフルオロボレート、リチウム クロロスルホネート トリフルオロボレート等が挙げられる。
 一般式(XI-1)で表されるリチウム塩の中でも、リチウム ビス(メタンスルホネート) ジフルオロボレート、リチウム トリス(メタンスルホネート) フルオロボレート、リチウム テトラキス(メタンスルホネート) ボレート、リチウム メタンスルホネート トリフルオロボレート、リチウム エタンスルホネート トリフルオロボレート、リチウム プロパン-1-スルホネート トリフルオロボレート、リチウム プロパン-2-スルホネート トリフルオロボレート、リチウム 2-メチルプロパン-2-スルホネート トリフルオロボレート、リチウム トリフルオロメタンスルホネート トリフルオロボレート、リチウム 2,2,2-トリフルオロエタンスルホネート トリフルオロボレート、リチウム ビニルスルホネート トリフルオロボレート、リチウム 1-プロペン-1-イルスルホネート トリフルオロボレート、リチウム 1-プロペン-2-イルスルホネート トリフルオロボレート、リチウム 2-プロペン-1-イルスルホネート トリフルオロボレート、リチウム ベンゼンスルホネート トリフルオロボレート、リチウム 2-メチルベンゼンスルホネート トリフルオロボレート、リチウム 3-メチルベンゼンスルホネート トリフルオロボレート、リチウム 4-メチルベンゼンスルホネート トリフルオロボレート、リチウム 2-フルオロベンゼンスルホネート トリフルオロボレート、リチウム 4-フルオロベンゼンスルホネート トリフルオロボレート、及びリチウム フルオロスルホネート トリフルオロボレートから選ばれる一種又は二種以上が好ましく、リチウム ビス(メタンスルホネート) ジフルオロボレート、リチウム トリス(メタンスルホネート) フルオロボレート、リチウム テトラキス(メタンスルホネート) ボレート、リチウム メタンスルホネート トリフルオロボレート、リチウム エタンスルホネート トリフルオロボレート、リチウム プロパン-2-スルホネート トリフルオロボレート、リチウム トリフルオロメタンスルホネート トリフルオロボレート、リチウム ビニルスルホネート トリフルオロボレート、リチウム 2-プロペン-1-イルスルホネート トリフルオロボレート、リチウム ベンゼンスルホネート トリフルオロボレート、リチウム 4-メチルベンゼンスルホネート トリフルオロボレート、及びリチウム フルオロスルホネート トリフルオロボレートから選ばれる一種又は二種以上がより好ましい。
 前記一般式(XI-1)で表されるリチウム塩は、リチウムスルホネート化合物とトリフルオロボランエーテル錯体を反応させる方法、及びリチウムスルホネート化合物を溶媒存在下、又は不存在下にBF3ガスを吹き込ませる方法により調製することができる。また、リチウム テトラフルオロボレートとトリメチルシリルスルホネート化合物と反応させる方法により調製することもできる。
 前記一般式(XI-1)で表されるリチウム塩を、非水電解液に含有することで広い温度範囲で電気化学特性が相乗的に向上するという特異な効果を発現する。
(2)一般式(XI-2)で表されるリチウム塩
 一般式(XI-2)で表されるリチウム塩としては、リチウム メタンスルホネート ペンタフルオロホスフェート、リチウム ビス(メタンスルホネート) テトラフルオロホスフェート、リチウム トリス(メタンスルホネート) トリフルオロホスフェート、リチウム テトラキス(メタンスルホネート) ジフルオロホスフェート、リチウム ペンタキス(メタンスルホネート) フルオロホスフェート、リチウム ヘキサキス(メタンスルホネート) フルオロホスフェート、リチウム エタンスルホネート ペンタフルオロホスフェート、リチウム プロパン-1-スルホネート ペンタフルオロホスフェート、リチウム プロパン-2-スルホネート ペンタフルオロホスフェート、リチウム ブタン-1-スルホネート ペンタフルオロホスフェート、リチウム ブタン-2-スルホネート ペンタフルオロホスフェート、リチウム 2-メチルプロパン-2-スルホネート ペンタフルオロホスフェート、リチウム ペンタン-1-スルホネート ペンタフルオロホスフェート、リチウム ヘキサン-1-スルホネート ペンタフルオロホスフェート、リチウム トリフルオロメタンスルホネート ペンタフルオロホスフェート、リチウム 2,2,2-トリフルオロエタンスルホネート ペンタフルオロホスフェート、リチウム ビニルスルホネート ペンタフルオロホスフェート、リチウム 1-プロペン-1-イルスルホネート ペンタフルオロホスフェート、リチウム 1-プロペン-2-イルスルホネート ペンタフルオロホスフェート、リチウム 2-プロペン-1-イルスルホネート ペンタフルオロホスフェート、リチウム 2-ブテン-1-イルスルホネート トペンタフルオロホスフェート、リチウム 3-ブテン-1-イルスルホネート ペンタフルオロホスフェート、リチウム 4-ペンテン-1-イルスルホネート ペンタフルオロホスフェート、リチウム 5-ヘキセン-1-イルスルホネート ペンタフルオロホスフェート、リチウム 2-メチル-2-プロペン-1-イルスルホネート ペンタフルオロホスフェート、リチウム ベンゼンスルホネート ペンタフルオロホスフェート、リチウム 2-メチルベンゼンスルホネート ペンタフルオロホスフェート、リチウム 3-メチルベンゼンスルホネート ペンタフルオロホスフェート、リチウム 4-メチルベンゼンスルホネート ペンタフルオロホスフェート、リチウム 4-tert-ブチルベンゼンスルホネート ペンタフルオロホスフェート、リチウム 2-フルオロベンゼンスルホネート ペンタフルオロホスフェート、リチウム 4-フルオロベンゼンスルホネート ペンタフルオロホスフェート、リチウム 4-トリフルオロメチルベンゼンスルホネート ペンタフルオロホスフェート、リチウム フルオロスルホネート ペンタフルオロホスフェート、リチウム クロロスルホネート ペンタフルオロホスフェート等が挙げられる。
 一般式(XI-2)で表されるリチウム塩の中でも、リチウム メタンスルホネート ペンタフルオロホスフェート、リチウム エタンスルホネート ペンタフルオロホスフェート、リチウム プロパン-1-スルホネート ペンタフルオロホスフェート、リチウム プロパン-2-スルホネート ペンタフルオロホスフェート、リチウム 2-メチルプロパン-2-スルホネート ペンタフルオロホスフェート、リチウム トリフルオロメタンスルホネート ペンタフルオロホスフェート、リチウム 2,2,2-トリフルオロエタンスルホネート ペンタフルオロホスフェート、リチウム ビニルスルホネート ペンタフルオロホスフェート、リチウム 1-プロペン-1-イルスルホネート ペンタフルオロホスフェート、リチウム 1-プロペン-2-イルスルホネート ペンタフルオロホスフェート、リチウム 2-プロペン-1-イルスルホネート ペンタフルオロホスフェート、リチウム ベンゼンスルホネート ペンタフルオロホスフェート、リチウム 2-メチルベンゼンスルホネート ペンタフルオロホスフェート、リチウム 3-メチルベンゼンスルホネート ペンタフルオロホスフェート、リチウム 4-メチルベンゼンスルホネート ペンタフルオロホスフェート、リチウム 2-フルオロベンゼンスルホネート ペンタフルオロホスフェート、リチウム 4-フルオロベンゼンスルホネート ペンタフルオロホスフェート、リチウム フルオロスルホネート ペンタフルオロホスフェート、リチウム メタンスルホネート ペンタフルオロアルセネート、リチウム エタンスルホネート ペンタフルオロアルセネート、リチウム トリフルオロメタンスルホネート ペンタフルオロアルセネート、
リチウム 2,2,2-トリフルオロエタンスルホネート ペンタフルオロアルセネート、リチウム ビニルスルホネート ペンタフルオロアルセネート、リチウム 1-プロペン-1-イルスルホネート ペンタフルオロアルセネート、リチウム 1-プロペン-2-イルスルホネート ペンタフルオロアルセネート、リチウム 2-プロペン-1-イルスルホネート ペンタフルオロアルセネート、リチウム ベンゼンスルホネート ペンタフルオロアルセネート、リチウム 2-メチルベンゼンスルホネート ペンタフルオロアルセネート、リチウム 3-メチルベンゼンスルホネート ペンタフルオロアルセネート、リチウム 4-メチルベンゼンスルホネート ペンタフルオロアルセネート、リチウム 2-フルオロベンゼンスルホネート ペンタフルオロアルセネート、リチウム 4-フルオロベンゼンスルホネート ペンタフルオロアルセネート、及びリチウム フルオロスルホネート ペンタフルオロアルセネートから選ばれる一種又は二種以上が好ましく、リチウム メタンスルホネート ペンタフルオロホスフェート、リチウム エタンスルホネート ペンタフルオロホスフェート、リチウム ビニルスルホネート ペンタフルオロホスフェート、リチウム 4-メチルベンゼンスルホネート ペンタフルオロホスフェート、リチウム メタンスルホネート ペンタフルオロアルセネート、リチウム エタンスルホネート ペンタフルオロアルセネート、リチウム ビニルスルホネート ペンタフルオロアルセネート、及びリチウム 4-メチルベンゼンスルホネート ペンタフルオロアルセネートから選ばれる一種又は二種以上がより好ましい。
 前記一般式(XI-2)で表されるリチウム塩は、スルホン酸リチウム塩にPF5又はAsF5を導入する方法により調製することができる。また、ヘキサフルオロリン酸リチウム又はヘキサフルオロヒ素酸リチウムとトリメチルシリルスルホネート化合物と反応させる方法により調製することもできる。
 前記一般式(XI-2)で表されるリチウム塩を、非水電解液に含有することで広い温度範囲で電気化学特性が相乗的に向上するという特異な効果を発現する。
(2)一般式(XII)で表されるリチウム塩
Figure JPOXMLDOC01-appb-C000015
(式中、R1は前記と同じであり、Y1は、BF3、PF5又はAsF5を示し、tは1~3である。Y1がBF3のときtは1~3であり、Y1がPF5又はAsF5のときtは1である。)
 一般式(XII)で表されるリチウム塩としては、一般式(XII-1)で表されるリチウム塩が好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000016
 一般式(XII-1)中、R1は前記と同じであり、t1は1~3であり、t1の下限は好ましくは1.01以上、より好ましくは1.05以上、更に好ましくは1.1以上であり、その上限は好ましくは2以下、より好ましくは1.7以下である。
 一般式(XII-1)のR1の具体例、好適例は、一般式(XI-1)のR1の具体例、好適例と同じである。
 一般式(XII-1)で表されるリチウム塩において、スルホン酸アニオンと三フッ化ホウ素分子の結合様式は特に限定されず、直接結合や配位結合等種々の結合様式をとることができる。
 前記一般式(XII-1)で表されるリチウム塩の具体例としては、以下の化合物1~30が挙げられる。
Figure JPOXMLDOC01-appb-C000017
 これらの化合物の中でも、上記化合物1~7、11~16、21、23~26、28、及び29から選ばれる一種又は二種以上が好ましく、下記の化合物1、化合物2、化合物4、化合物11、化合物13、化合物15、化合物21、化合物23、及び化合物26から選ばれる一種又は二種以上がより好ましい。
Figure JPOXMLDOC01-appb-C000018
 前記一般式(XII-1)で表されるリチウム塩はスルホン酸リチウム塩と三フッ化ホウ素ジエチルエーテル錯体を反応させる方法、及びスルホン酸リチウム塩に三フッ化ホウ素を導入する方法により調製することができる。また、テトラフルオロホウ酸リチウムとトリメチルシリルスルホネート化合物と反応させる方法により調製することもできる。
 前記一般式(XII-1)で表されるリチウム塩を、非水電解液に含有することで広い温度範囲で電気化学特性が相乗的に向上するという特異な効果を発現する。
(3)一般式(XIII)で表されるリチウム塩
Figure JPOXMLDOC01-appb-C000019
(式中、R2は、炭素数1~6のアルキレン基を示し、Y1は、前記と同じであり、uは2~6である。Y1がBF3のときuは2~6であり、Y1がPF5又はAsF5のときuは2である。R2が有する水素原子の少なくとも一つはハロゲン原子で置換されていてもよい。)
 一般式(XIII)で表されるリチウム塩としては、一般式(XIII-1)、(XIII-2)及び(XIII-3)のいずれかで表されるリチウム塩が好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000020
 一般式(XIII-1)中、R2は前記と同じである。
Figure JPOXMLDOC01-appb-C000021
 一般式(XIII-2)中、M12はリン原子又はヒ素原子を示し、R2は前記と同じである。
Figure JPOXMLDOC01-appb-C000022
 一般式(XIII-3)中、R2は前記と同じであり、u1は2~6である。u1の下限は好ましくは2.02以上、より好ましくは2.1以上、更に好ましくは2.2以上であり、上限は好ましくは4以下、より好ましくは3.4以下である。
 一般式(XIII-3)で表されるリチウム塩において、スルホン酸アニオンと三フッ化ホウ素分子の結合様式は特に限定されず、直接結合や配位結合等種々の結合様式をとることができる。
 前記一般式(XIII)、(XIII-1)、(XIII-2)又は(XIII-3)のR2は、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数1~6のアルキレン基を示し、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数1又は2のアルキレン基が好ましい。
 前記R2の具体例としては、メチレン基、フルオロメチレン基、ジフルオロメチレン基、エタン-1,2-ジイル基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基が好適に挙げられ、より好ましくは、メチレン基、ジフルオロメチレン基、エタン-1,2-ジイル基、プロパン-1,3-ジイル基であり、特に好ましくは、メチレン基、エタン-1,2-ジイル基である。
 上記のとおり、本明細書におけるアルキレン基とは、メチレン基も含む概念として用いる。
 前記一般式(XIII-1)、(XIII-2)又は(XIII-3)で表されるリチウム塩の具体例としては、以下の化合物が挙げられる。
(1)一般式(XIII-1)で表されるリチウム塩
 一般式(XIII-1)で表されるリチウム塩としては、ジリチウム メタンジスルホネート ビス(トリフルオロボレート)、ジリチウム フルオロメタンジスルホネート ビス(トリフルオロボレート)、ジリチウム ジフルオロメタンジスルホネート ビス(トリフルオロボレート)、ジリチウム エタン-1,2-ジイルジスルホネート ビス(トリフルオロボレート)、ジリチウム プロパン-1,3-ジイルジスルホネート ビス(トリフルオロボレート)、ジリチウム ブタン-1,4-ジイルジスルホネート ビス(トリフルオロボレート)、ジリチウム ペンタン-1,5-ジイルジスルホネート ビス(トリフルオロボレート)、ジリチウム ヘキサン-1,6-ジイルジスルホネート ビス(トリフルオロボレート)が挙げられる。
 一般式(XIII-1)で表されるリチウム塩の中でも、ジリチウム メタンジスルホネート ビス(トリフルオロボレート)、ジリチウム ジフルオロメタンジスルホネート ビス(トリフルオロボレート)、ジリチウム エタン-1,2-ジイルジスルホネート ビス(トリフルオロボレート)、及びジリチウム プロパン-1,3-ジイルジスルホネート ビス(トリフルオロボレート)から選ばれる一種又は二種以上が好ましく、ジリチウム メタンジスルホネート ビス(トリフルオロボレート)、及びジリチウム エタン-1,2-ジイルジスルホネート ビス(トリフルオロボレート)から選ばれる一種又は二種以上がより好ましい。
 前記一般式(XIII-1)で表されるリチウム塩は、リチウムスルホネート化合物とトリフルオロボランエーテル錯体を反応させる方法、及びリチウムスルホネート化合物を溶媒存在下、又は不存在下にBF3ガスを吹き込ませる方法により調製することができる。また、リチウム テトラフルオロボレートとトリメチルシリルスルホネート化合物と反応させる方法により調製することもできる。
 前記一般式(XIII-1)で表されるリチウム塩を、非水電解液に含有することで広い温度範囲で電気化学特性が相乗的に向上するという特異な効果を発現する。
(2)一般式(XIII-2)で表されるリチウム塩
 一般式(XIII-2)で表されるリチウム塩としては、ジリチウム メタンジスルホネート ビス(ペンタフルオロホスフェート)、ジリチウム フルオロメタンジスルホネート ビス(ペンタフルオロホスフェート)、ジリチウム ジフルオロメタンジスルホネート ビス(ペンタフルオロホスフェート)、ジリチウム エタン-1,2-ジイルジスルホネート ビス(ペンタフルオロホスフェート)、ジリチウム プロパン-1,3-ジイルジスルホネート ビス(ペンタフルオロホスフェート)、ジリチウム ブタン-1,4-ジイルジスルホネート ビス(ペンタフルオロホスフェート)、ジリチウム ペンタン-1,5-ジイルジスルホネート ビス(ペンタフルオロホスフェート)、ジリチウム ヘキサン-1,6-ジイルジスルホネート ビス(ペンタフルオロホスフェート)、
ジリチウム メタンジスルホネート ビス(ペンタフルオロアルセネート)、ジリチウム フルオロメタンジスルホネート ビス(ペンタフルオロアルセネート)、ジリチウム ジフルオロメタンジスルホネート ビス(ペンタフルオロアルセネート)、ジリチウム エタン-1,2-ジイルジスルホネート ビス(ペンタフルオロアルセネート)、ジリチウム プロパン-1,3-ジイルジスルホネート ビス(ペンタフルオロアルセネート)、ジリチウム ブタン-1,4-ジイルジスルホネート ビス(ペンタフルオロアルセネート)、ジリチウム ペンタン-1,5-ジイルジスルホネート ビス(ペンタフルオロアルセネート)、ジリチウム ヘキサン-1,6-ジイルジスルホネート ビス(ペンタフルオロアルセネート)が挙げられる。
 一般式(XIII-2)で表されるリチウム塩の中でも、ジリチウム メタンジスルホネート ビス(ペンタフルオロホスフェート)、ジリチウム ジフルオロメタンジスルホネート ビス(ペンタフルオロホスフェート)、ジリチウム エタン-1,2-ジイルジスルホネート ビス(ペンタフルオロホスフェート)、ジリチウム プロパン-1,3-ジイルジスルホネート ビス(ペンタフルオロホスフェート)、ジリチウム メタンジスルホネート ビス(ペンタフルオロアルセネート)、ジリチウム ジフルオロメタンジスルホネート ビス(ペンタフルオロアルセネート)、ジリチウム エタン-1,2-ジイルジスルホネート ビス(ペンタフルオロアルセネート)、及びジリチウム プロパン-1,3-ジイルジスルホネート ビス(ペンタフルオロアルセネート)、から選ばれる一種又は二種が好ましく、ジリチウム メタンジスルホネート ビス(ペンタフルオロホスフェート)、ジリチウム エタン-1,2-ジイルジスルホネート ビス(ペンタフルオロホスフェート)、ジリチウム メタンジスルホネート ビス(ペンタフルオロアルセネート)、及びジリチウム エタン-1,2-ジイルジスルホネート ビス(ペンタフルオロアルセネート)から選ばれる一種又は二種がより好ましい。
 前記一般式(XIII-2)で表されるリチウム塩は、スルホン酸リチウム塩にPF5又はAsF5を導入する方法により調製することができる。また、ヘキサフルオロリン酸リチウム又はヘキサフルオロヒ素酸リチウムとトリメチルシリルスルホネート化合物と反応させる方法により調製することもできる。
 前記一般式(XIII-2)で表されるリチウム塩を、非水電解液に含有することで広い温度範囲で電気化学特性が相乗的に向上するという特異な効果を発現する。
(3)一般式(XIII-3)で表されるリチウム塩
 前記一般式(XIII-3)で表されるリチウム塩としては、具体的に下記の化合物31~38が挙げられる。
Figure JPOXMLDOC01-appb-C000023
 一般式(XIII-3)で表されるリチウム塩の中でも、上記化合物31、34、及び35から選ばれる一種又は二種以上が好ましく、化合物31及び化合物34から選ばれる一種又は二種がより好ましい。
 前記一般式(XIII-3)で表されるリチウム塩はスルホン酸リチウム塩と三フッ化ホウ素ジエチルエーテル錯体を反応させる方法、及びスルホン酸リチウム塩に三フッ化ホウ素を導入する方法により調製することができる。また、テトラフルオロホウ酸リチウムとトリメチルシリルスルホネート化合物と反応させる方法により調製することもできる。
 前記一般式(XIII-3)で表されるリチウム塩を、非水電解液に含有することで広い温度範囲で電気化学特性が相乗的に向上するという特異な効果を発現する。
 本発明の非水電解液において、非水電解液に含有される前記一般式(I)又は(II)で表される非環状リチウム塩、より具体的には前記一般式(XI)~(XIII)のいずれかで表される非環状リチウム塩、又は前記一般式(XI-1)、(XI-2)、(XII-1)、(XIII-1)、(XIII-2)、及び(XIII-3)のいずれかで表される非環状リチウム塩から選ばれる一種又は二種以上の含有量は、非水電解液中に0.001~5質量%であることが好ましい。該含有量が5質量%以下であれば、電極上に過度に被膜が形成され低温特性が低下するおそれが少なく、また0.001質量%以上であれば被膜の形成が十分であり、高温保存特性の改善効果が高まるので上記範囲であることが好ましい。該含有量は、非水電解液中に0.05質量%以上がより好ましく、0.1質量%以上が更に好ましい。また、その上限は、3質量%以下がより好ましく、1質量%以下が更に好ましい。
 本発明の非水電解液において、前記一般式のいずれかで表される非環状リチウム塩から選ばれる一種又は二種以上を以下に述べる非水溶媒、電解質塩、更にその他の添加剤を組み合わせることにより、広い温度範囲で電気化学特性が相乗的に向上するという特異な効果を発現する。
〔非水溶媒〕
 本発明の非水電解液に使用される非水溶媒としては、環状カーボネート、鎖状エステル、エーテル、アミド、スルホン、及びラクトンから選ばれる一種又は二種以上が挙げられる。広い温度範囲で電気化学特性が相乗的に向上するため、環状カーボネートを含むことが好ましく、更に鎖状エステルが含まれることが好ましい。鎖状エステルとしては、鎖状カーボネートが含まれることが好ましく、環状カーボネートと鎖状カーボネートの両方が含まれることがより好ましい。
 なお、「鎖状エステル」なる用語は、鎖状カーボネート及び鎖状カルボン酸エステルを含む概念として用いる。
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、トランス又はシス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン(以下、両者を総称して「DFEC」という)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、及び4-エチニル-1,3-ジオキソラン-2-オン(EEC)から選ばれる一種又は二種以上が挙げられ、エチレンカーボネート、プロピレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン、ビニレンカーボネート及び4-エチニル-1,3-ジオキソラン-2-オン(EEC)から選ばれる一種又は二種以上がより好適である。
 また、前記炭素-炭素二重結合、炭素-炭素三重結合等の不飽和結合又はフッ素原子を有する環状カーボネートのうち少なくとも一種を使用すると高温充電保存後の低温負荷特性が一段と向上するので好ましく、炭素-炭素二重結合、炭素-炭素三重結合等の不飽和結合を含む環状カーボネートとフッ素原子を有する環状カーボネートを両方含むことがより好ましい。炭素-炭素二重結合、炭素-炭素三重結合等の不飽和結合を有する環状カーボネートとしては、VC、VEC、EECが更に好ましく、フッ素原子を有する環状カーボネートとしては、FEC、DFECが更に好ましい。
 炭素-炭素二重結合、炭素-炭素三重結合等の不飽和結合を有する環状カーボネートの含有量は、非水溶媒の総体積に対して、好ましくは0.07体積%以上、より好ましくは0.2体積%以上、更に好ましくは0.7体積%以上であり、また、その上限としては、好ましくは7体積%以下、より好ましくは4体積%以下、更に好ましくは2.5体積%以下であると、低温でのLiイオン透過性を損なうことなく一段と高温保存時の被膜の安定性を増すことができるので好ましい。
 フッ素原子を有する環状カーボネートの含有量は、非水溶媒の総体積に対して好ましくは0.07体積%以上、より好ましくは4体積%以上、更に好ましくは7体積%以上であり、また、その上限としては、好ましくは35体積%以下、より好ましくは25体積%以下、更に好ましくは15体積%以下であると、低温でのLiイオン透過性を損なうことなく一段と高温保存時の被膜の安定性を増すことができるので好ましい。
 非水溶媒が炭素-炭素二重結合、炭素-炭素三重結合等の不飽和結合を有する環状カーボネートとフッ素原子を有する環状カーボネートの両方を含む場合、フッ素原子を有する環状カーボネートの含有量に対する炭素-炭素二重結合、炭素-炭素三重結合等の不飽和結合を有する環状カーボネートの含有量は、好ましくは0.2体積%以上、より好ましくは3体積%以上、更に好ましくは7体積%以上であり、その上限としては、好ましくは40体積%以下、より好ましくは30体積%以下、更に好ましくは15体積%以下であると、低温でのLiイオン透過性を損なうことなく更に一段と高温保存時の被膜の安定性を増すことができるので特に好ましい。
 また、非水溶媒がエチレンカーボネート、プロピレンカーボネート、又はエチレンカーボネートとプロピレンカーボネートの両者を含むと電極上に形成される被膜の抵抗が小さくなるので好ましい。エチレンカーボネート、プロピレンカーボネート、又はエチレンカーボネートとプロピレンカーボネートの両者の含有量は、非水溶媒の総体積に対し、好ましくは3体積%以上、より好ましくは5体積%以上、更に好ましくは7体積%以上であり、また、その上限としては、好ましくは45体積%以下、より好ましくは35体積%以下、更に好ましくは25体積%以下である。
 これらの溶媒は一種で使用してもよく、また二種以上を組み合わせて使用した場合は、広い温度範囲での電気化学特性が更に向上するので好ましく、三種以上を組み合わせて使用することが特に好ましい。
 これらの環状カーボネートの好適な組合せとしては、ECとPC、ECとVC、PCとVC、VCとFEC、ECとFEC、PCとFEC、FECとDFEC、ECとDFEC、PCとDFEC、VCとDFEC、VECとDFEC、VCとEEC、ECとEEC、ECとPCとVC、ECとPCとFEC、ECとVCとFEC、ECとVCとVEC、ECとVCとEEC、ECとEECとFEC、PCとVCとFEC、ECとVCとDFEC、PCとVCとDFEC、ECとPCとVCとFEC、ECとPCとVCとDFEC等が好ましい。前記の組合せのうち、ECとVC、ECとFEC、PCとFEC、ECとPCとVC、ECとPCとFEC、ECとVCとFEC、ECとVCとEEC、ECとEECとFEC、PCとVCとFEC、ECとPCとVCとFEC等の組合せがより好ましい。
 鎖状エステルとしては、メチルエチルカーボネート(MEC)、メチルプロピルカーボネート(MPC)、メチルイソプロピルカーボネート(MIPC)、メチルブチルカーボネート、及びエチルプロピルカーボネートから選ばれる一種又は二種以上の非対称鎖状カーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート、及びジブチルカーボネートから選ばれる一種又は二種以上の対称鎖状カーボネート、ピバリン酸メチル、ピバリン酸エチル、ピバリン酸プロピル等のピバリン酸エステル、プロピオン酸メチル、プロピオン酸エチル、酢酸メチル、及び酢酸エチルから選ばれる一種又は二種以上の鎖状カルボン酸エステルが好適に挙げられる。
 満充電状態における充電電位がLi基準で1V未満となる負極を用いる場合、前記鎖状エステルの中でも、ジメチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、メチルブチルカーボネート、プロピオン酸メチル、酢酸メチル及び酢酸エチルから選ばれるメチル基を有する鎖状エステルが好ましく、特にメチル基を有する鎖状カーボネートが好ましい。前記一般式のいずれかで表されるリチウム塩から選ばれる一種又は二種以上を前記のメチル基を有する鎖状カーボネートを用いた非水電解液に含有させることにより、負極での非水電解液の分解が進行しにくく、著しく容量劣化を抑制できるためである。
 また、メチル基を有する鎖状カーボネートを用いる場合には、二種以上を用いることが好ましい。さらに対称鎖状カーボネートと非対称鎖状カーボネートの両方が含まれるとより好ましく、対称鎖状カーボネートの含有量が非対称鎖状カーボネートより多く含まれると更に好ましい。
 鎖状エステルの含有量は、特に制限されないが、非水溶媒の総体積に対して、60~90体積%の範囲で用いるのが好ましい。該含有量が60体積%以上であれば非水電解液の粘度が高くなりすぎず、90体積%以下であれば非水電解液の電気伝導度が低下して広い温度範囲での電気化学特性が低下するおそれが少ないので上記範囲であることが好ましい。
 鎖状カーボネート中に対称鎖状カーボネートが占める体積の割合は、51体積%以上が好ましく、55体積%以上がより好ましい。その上限としては、95体積%以下がより好ましく、85体積%以下であると更に好ましい。対称鎖状カーボネートにジメチルカーボネートが含まれると特に好ましい。また、非対称鎖状カーボネートはメチル基を有するとより好ましく、メチルエチルカーボネートが特に好ましい。
 上記の場合に一段と広い温度範囲での電気化学特性が向上するので好ましい。
 環状カーボネートと鎖状エステルの割合は、広い温度範囲での電気化学特性向上の観点から、環状カーボネート:鎖状エステル(体積比)が10:90~45:55が好ましく、15:85~40:60がより好ましく、20:80~35:65が更に好ましい。
 その他の非水溶媒としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン等の環状エーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタン等の鎖状エーテル、ジメチルホルムアミド等のアミド、スルホラン等のスルホン、及びγ-ブチロラクトン、γ-バレロラクトン、α-アンゲリカラクトン等のラクトンから選ばれる一種又は二種以上が好適に挙げられる。
 上記の非水溶媒は通常、適切な物性を達成するために、混合して使用される。その組合せは、例えば、環状カーボネートと鎖状カーボネートとの組合せ、環状カーボネートと鎖状カルボン酸エステルとの組合せ、環状カーボネートと鎖状カーボネートとラクトンとの組合せ、環状カーボネートと鎖状カーボネートとエーテルとの組合せ、環状カーボネートと鎖状カーボネートと鎖状カルボン酸エステルとの組み合わせ等が好適に挙げられる。
 一段と広い温度範囲での電気化学特性を向上させる目的で、非水電解液中に更にその他の添加剤を加えることが好ましい。
 その他の添加剤の具体例としては、以下の(A)~(J)の化合物が挙げられる。
 (A)アセトニトリル、プロピオニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、及びピメロニトリルから選ばれる一種又は二種以上のニトリル。
 (B)シクロヘキシルベンゼン、フルオロシクロヘキシルベンゼン化合物(1-フルオロ-2-シクロヘキシルベンゼン、1-フルオロ-3-シクロヘキシルベンゼン、1-フルオロ-4-シクロヘキシルベンゼン)、tert-ブチルベンゼン、tert-アミルベンゼン、1-フルオロ-4-tert-ブチルベンゼン等の分枝アルキル基を有する芳香族化合物や、ビフェニル、ターフェニル(o-、m-、p-体)、ジフェニルエーテル、フルオロベンゼン、ジフルオロベンゼン(o-、m-、p-体)、アニソール、2,4-ジフルオロアニソール、ターフェニルの部分水素化物(1,2-ジシクロヘキシルベンゼン、2-フェニルビシクロヘキシル、1,2-ジフェニルシクロヘキサン、o-シクロヘキシルビフェニル)等の芳香族化合物。
 (C)メチルイソシアネート、エチルイソシアネート、ブチルイソシアネート、フェニルイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、1,4-フェニレンジイソシアネート、2-イソシアナトエチル アクリレート、及び2-イソシアナトエチル メタクリレートから選ばれる一種又は二種以上のイソシアネート化合物。
 (D)2-プロピニル メチル カーボネート、酢酸 2-プロピニル、ギ酸 2-プロピニル、メタクリル酸 2-プロピニル、メタンスルホン酸 2-プロピニル、ビニルスルホン酸 2-プロピニル、2-(メタンスルホニルオキシ)プロピオン酸2-プロピニル、ジ(2-プロピニル)オギザレート、メチル 2-プロピニルオギザレート、エチル 2-プロピニルオギザレート、グルタル酸 ジ(2-プロピニル)、2-ブチン-1,4-ジイル ジメタンスルホネート、2-ブチン-1,4-ジイル ジホルメート、及び2,4-ヘキサジイン-1,6-ジイル ジメタンスルホネートから選ばれる一種又は二種以上の三重結合含有化合物。
 (E)1,3-プロパンスルトン、1,3-ブタンスルトン、2,4-ブタンスルトン、1,4-ブタンスルトン、1,3-プロペンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート、5,5-ジメチル-1,2-オキサチオラン-4-オン 2,2-ジオキシド等のスルトン、エチレンサルファイト、ヘキサヒドロベンゾ[1,3,2]ジオキサチオラン-2-オキシド(1,2-シクロヘキサンジオールサイクリックサルファイトともいう)、5-ビニル-ヘキサヒドロ1,3,2-ベンゾジオキサチオール-2-オキシド等の環状サルファイト、ブタン-2,3-ジイル ジメタンスルホネート、ブタン-1,4-ジイル ジメタンスルホネート、メチレンメタンジスルホネート等のスルホン酸エステル、ジビニルスルホン、1,2-ビス(ビニルスルホニル)エタン、ビス(2-ビニルスルホニルエチル)エーテル等のビニルスルホン化合物から選ばれる一種又は二種以上のS=O基含有化合物。
 (F)1,3-ジオキソラン、1,3-ジオキサン、及び1,3,5-トリオキサンから選ばれる一種又は二種以上の環状アセタール化合物。
 (G)リン酸トリメチル、リン酸トリブチル、及びリン酸トリオクチル、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸ビス(2,2,2-トリフルオロエチル)メチル、リン酸ビス(2,2,2-トリフルオロエチル)エチル、リン酸ビス(2,2,2-トリフルオロエチル)2,2-ジフルオロエチル、リン酸ビス(2,2,2-トリフルオロエチル)2,2,3,3-テトラフルオロプロピル、リン酸ビス(2,2-ジフルオロエチル)2,2,2-トリフルオロエチル、リン酸ビス(2,2,3,3-テトラフルオロプロピル)2,2,2-トリフルオロエチル及びリン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチル、リン酸トリス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル)、メチレンビスホスホン酸メチル、メチレンビスホスホン酸エチル、エチレンビスホスホン酸メチル、エチレンビスホスホン酸エチル、ブチレンビスホスホン酸メチル、ブチレンビスホスホン酸エチル、メチル 2-(ジメチルホスホリル)アセテート、エチル 2-(ジメチルホスホリル)アセテート、メチル 2-(ジエチルホスホリル)アセテート、エチル 2-(ジエチルホスホリル)アセテート、2-プロピニル 2-(ジメチルホスホリル)アセテート、2-プロピニル 2-(ジエチルホスホリル)アセテート、メチル 2-(ジメトキシホスホリル)アセテート、エチル 2-(ジメトキシホスホリル)アセテート、メチル 2-(ジエトキシホスホリル)アセテート、エチル 2-(ジエトキシホスホリル)アセテート、2-プロピニル 2-(ジメトキシホスホリル)アセテート、2-プロピニル 2-(ジエトキシホスホリル)アセテート、及びピロリン酸メチル、ピロリン酸エチルから選ばれる一種又は二種以上のリン含有化合物。
 (H)無水酢酸、無水プロピオン酸等の鎖状のカルボン酸無水物、無水コハク酸、無水マレイン酸、3-アリル無水コハク酸、無水グルタル酸、無水イタコン酸、3-スルホ-プロピオン酸無水物等の環状酸無水物から選ばれる一種又は二種以上。
 (I)メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼン、及びエトキシヘプタフルオロシクロテトラホスファゼンから選ばれる一種又は二種以上の環状ホスファゼン化合物。
 (J)シュウ酸ジメチル、シュウ酸ジエチル、シュウ酸ジプロピル、シュウ酸ジイソプロピル、シュウ酸ジブチル、シュウ酸ジヘキシル、シュウ酸ジオクチル、シュウ酸ジデシル、シュウ酸ジドデシル、シュウ酸エチルメチル、シュウ酸プロピルメチル、シュウ酸ブチルメチル、シュウ酸エチルプロピル、及びシュウ酸エチルブチルから選ばれる一種又は二種以上のシュウ酸ジアルキル化合物。
 上記の中でも、(A)ニトリル、(B)芳香族化合物、及び(C)イソシアネート化合物から選ばれる少なくとも1種以上を含むと一段と広い温度範囲での電気化学特性が向上するので好ましい。
 (A)ニトリルの中では、スクシノニトリル、グルタロニトリル、アジポニトリル、及びピメロニトリルから選ばれる一種又は二種以上がより好ましい。
 (B)芳香族化合物の中では、ビフェニル、ターフェニル(o-、m-、p-体)、フルオロベンゼン、シクロヘキシルベンゼン、tert-ブチルベンゼン、及びtert-アミルベンゼンから選ばれる一種又は二種以上がより好ましく、ビフェニル、o-ターフェニル、フルオロベンゼン、シクロヘキシルベンゼン、及びtert-アミルベンゼンから選ばれる一種又は二種以上が特に好ましい。
 (C)イソシアネート化合物の中では、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、2-イソシアナトエチル アクリレート、及び2-イソシアナトエチル メタクリレートから選ばれる一種又は二種以上がより好ましい。
 前記(A)~(C)の化合物の含有量は、非水電解液中に0.01~7質量%が好ましい。この範囲では、被膜が厚くなり過ぎずに十分に形成され、広い温度範囲での電気化学特性の改善効果が高まる。該含有量は、非水電解液中に0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、その上限は、5質量%以下がより好ましく、3質量%以下が更に好ましい。
 また、(D)三重結合含有化合物、(E)スルトン、環状サルファイト、スルホン酸エステル、ビニルスルホンから選ばれる環状又は鎖状のS=O基含有化合物、(F)環状アセタール化合物、(G)リン含有化合物、(H)環状酸無水物、(I)環状ホスファゼン化合物、及び(J)シュウ酸ジアルキル化合物を含むと一段と広い温度範囲での電気化学特性が向上するので好ましい。
 (D)三重結合含有化合物としては、2-プロピニル メチル カーボネート、メタクリル酸 2-プロピニル、メタンスルホン酸 2-プロピニル、ビニルスルホン酸 2-プロピニル、2-(メタンスルホニルオキシ)プロピオン酸2-プロピニル、ジ(2-プロピニル)オギザレート、メチル 2-プロピニル オギザレート、エチル 2-プロピニル オギザレート、及び2-ブチン-1,4-ジイル ジメタンスルホネートから選ばれる一種又は二種以上が好ましく、メタンスルホン酸 2-プロピニル、ビニルスルホン酸 2-プロピニル、2-(メタンスルホニルオキシ)プロピオン酸2-プロピニル、ジ(2-プロピニル)オギザレート、及び2-ブチン-1,4-ジイル ジメタンスルホネートから選ばれる一種又は二種以上が更に好ましい。
 (E)スルトン、環状サルファイト、スルホン酸エステル、ビニルスルホンから選ばれる環状又は鎖状のS=O基含有化合物(但し、三重結合含有化合物、及び前記一般式のいずれかで表される特定のリチウム塩は含まない)を用いることが好ましい。
 前記環状のS=O基含有化合物としては、1,3-プロパンスルトン、1,3-ブタンスルトン、1,4-ブタンスルトン、2,4-ブタンスルトン、1,3-プロペンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート、5,5-ジメチル-1,2-オキサチオラン-4-オン 2,2-ジオキシド、メチレン メタンジスルホネート、エチレンサルファイト、及び4-(メチルスルホニルメチル)-1,3,2-ジオキサチオラン 2-オキシドから選ばれる一種又は二種以上が好適に挙げられる。
 また、鎖状のS=O基含有化合物としては、ブタン-2,3-ジイル ジメタンスルホネート、ブタン-1,4-ジイル ジメタンスルホネート、ジメチル メタンジスルホネート、ペンタフルオロフェニル メタンスルホネート、ジビニルスルホン、及びビス(2-ビニルスルホニルエチル)エーテルから選ばれる一種又は二種以上が好適に挙げられる。
 前記環状又は鎖状のS=O基含有化合物の中でも、1,3-プロパンスルトン、1,4-ブタンスルトン、2,4-ブタンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート、及び5,5-ジメチル-1,2-オキサチオラン-4-オン 2,2-ジオキシド、ブタン-2,3-ジイル ジメタンスルホネート、ペンタフルオロフェニル メタンスルホネート、ジビニルスルホンから選ばれる一種又は二種以上が更に好ましい。
 (F)環状アセタール化合物としては、1,3-ジオキソラン、1,3-ジオキサンが好ましく、1,3-ジオキサンが更に好ましい。
 (G)リン含有化合物としては、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル)、メチル 2-(ジメチルホスホリル)アセテート、エチル 2-(ジメチルホスホリル)アセテート、メチル 2-(ジエチルホスホリル)アセテート、エチル 2-(ジエチルホスホリル)アセテート、2-プロピニル 2-(ジメチルホスホリル)アセテート、2-プロピニル 2-(ジエチルホスホリル)アセテート、メチル 2-(ジメトキシホスホリル)アセテート、エチル 2-(ジメトキシホスホリル)アセテート、メチル 2-(ジエトキシホスホリル)アセテート、エチル 2-(ジエトキシホスホリル)アセテート、2-プロピニル 2-(ジメトキシホスホリル)アセテート、2-プロピニル 2-(ジエトキシホスホリル)アセテートが好ましく、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル)、エチル 2-(ジエチルホスホリル)アセテート、2-プロピニル 2-(ジメチルホスホリル)アセテート、2-プロピニル 2-(ジエチルホスホリル)アセテート、エチル 2-(ジエトキシホスホリル)アセテート、2-プロピニル 2-(ジメトキシホスホリル)アセテート、及び2-プロピニル 2-(ジエトキシホスホリル)アセテートから選ばれる一種又は二種以上が更に好ましい。
 (H)環状酸無水物としては、無水コハク酸、無水マレイン酸、3-アリル無水コハク酸が好ましく、無水コハク酸、及び3-アリル無水コハク酸から選ばれる一種又は二種が更に好ましい。
 (I)環状ホスファゼン化合物としては、メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼン等の環状ホスファゼン化合物が好ましく、メトキシペンタフルオロシクロトリホスファゼン、及びエトキシペンタフルオロシクロトリホスファゼンから選ばれる一種又は二種が更に好ましい。
 (J)シュウ酸ジアルキル化合物としては、シュウ酸ジメチル、シュウ酸ジエチル、及びシュウ酸ジエチルメチルから選ばれる一種又は二種以上が好ましい。
 前記(D)~(J)の化合物の含有量は、非水電解液中に0.001~5質量%が好ましい。この範囲では、被膜が厚くなり過ぎずに十分に形成され、広い温度範囲での電気化学特性の改善効果が高まる。該含有量は、非水電解液中に0.01質量%以上がより好ましく、0.1質量%以上が更に好ましく、その上限は、3質量%以下がより好ましく、2質量%以下が更に好ましい。
〔電解質塩〕
 本発明に使用される電解質塩としては、下記のリチウム塩が好適に挙げられる。
 リチウム塩としては、LiPF6、LiPO22、Li2PO3F、LiBF4、LiClO4、FSO3Li、LiN(SO2F)2等の無機リチウム塩、LiN(SO2CF32、LiN(SO2252、LiCF3SO3、LiC(SO2CF33、LiPF4(CF32、LiPF3(C253、LiPF3(CF33、LiPF3(iso-C373、LiPF5(iso-C37)等の鎖状のフッ化アルキル基を含有するリチウム塩や、(CF22(SO22NLi、(CF23(SO22NLi等の環状のフッ化アルキレン鎖を有するリチウム塩、ビス[オキサレート-O,O’]ホウ酸リチウム(LiBOB)やジフルオロ[オキサレート-O,O’]ホウ酸リチウム、ジフルオロビス[オキサレート-O,O’]リン酸リチウム(LiPFO)及びテトラフルオロ[オキサレート-O,O’]リン酸リチウム等のオキサレート錯体をアニオンとするリチウム塩が好適に挙げられ、これらの一種又は二種以上を混合して使用することができる。
 これらの中でも、LiPF6、LiPO22、Li2PO3F、LiBF4、FSO3Li、LiN(SO2F)2、LiN(SO2CF32、LiN(SO2252、ビス[オキサレート-O,O’]ホウ酸リチウム(LiBOB)、ジフルオロビス[オキサレート-O,O’]リン酸リチウム(LiPFO)、及びテトラフルオロ[オキサレート-O,O’]リン酸リチウムから選ばれる一種又は二種以上が好ましく、LiPF6、LiPO22、LiBF4、FSO3Li、LiN(SO2CF32及びLiN(SO2F)2、ビス[オキサレート-O,O’]ホウ酸リチウム(LiBOB)、ジフルオロビス[オキサレート-O,O’]リン酸リチウム(LiPFO)から選ばれる一種又は二種以上が更に好ましく、LiPF6を用いることが最も好ましい。
 リチウム塩の濃度は、前記の非水溶媒に対して、通常0.3M以上が好ましく、0.7M以上がより好ましく、1.1M以上が更に好ましい。またその上限は、2.5M以下が好ましく、2.0M以下がより好ましく、1.6M以下が更に好ましい。
 また、これらのリチウム塩の好適な組み合わせとしては、LiPF6を含み、更にLiPO22、LiBF4、FSO3Li、LiN(SO2F)2、ビス[オキサレート-O,O’]ホウ酸リチウム(LiBOB)、ジフルオロビス[オキサレート-O,O’]リン酸リチウム(LiPFO)から選ばれる一種又は二種以上を含むことが更に好ましい。
 LiPF6以外のリチウム塩が非水溶媒中に占める割合は、0.001M以上であると、高温での電気化学特性の向上効果発揮されやすく、0.005M以下であると高温での電気化学特性の向上効果が低下する懸念が少ないので好ましい。好ましくは0.01M以上、特に好ましくは0.03M以上、最も好ましくは0.04M以上である。その上限は、好ましくは0.4M以下、特に好ましくは0.2M以下である。
 非水電解液にLiPF6を含む場合、本発明に用いられるリチウム塩のLiPF6に対するモル濃度の比は、0.0005以上であると高温での電気化学特性の向上効果が発揮されやすく、0.3以下であると高温での電気化学特性の向上効果が低下するおそれが少ないので好ましい。その下限は0.001以上がより好ましく、0.005以上が更に好ましい。また、その上限は、0.2以下がより好ましく、0.1以下が更に好ましい。
〔非水電解液の製造〕
 本発明の非水電解液は、例えば、前記の非水溶媒を混合し、これに前記の電解質塩及び該非水電解液に対して前記一般式(I)又は(II)で表される非環状リチウム塩、又は(XI)~(XIII)のいずれかで表される非環状リチウム塩を添加することにより得ることができる。
 この際、用いる非水溶媒及び非水電解液に加える化合物は、生産性を著しく低下させない範囲内で、予め精製して、不純物が極力少ないものを用いることが好ましい。
 本発明の非水電解液は、下記の第1~第4の蓄電デバイスに使用することができ、非水電解質として、液体状のものだけでなくゲル化されているものも使用し得る。更に本発明の非水電解液は固体高分子電解質用としても使用できる。中でも電解質塩にリチウム塩を使用する第1の蓄電デバイス用(即ち、リチウム電池用)又は第4の蓄電デバイス用(即ち、リチウムイオンキャパシタ用)として用いることが好ましく、リチウム電池用として用いることがより好ましく、リチウム二次電池用として用いることが更に好ましい。
〔第1の蓄電デバイス(リチウム電池)〕
 本明細書においてリチウム電池とは、リチウム一次電池及びリチウム二次電池の総称である。また、本明細書において、リチウム二次電池という用語は、いわゆるリチウムイオン二次電池も含む概念として用いる。本発明のリチウム電池は、正極、負極及び非水溶媒に電解質塩が溶解されている前記非水電解液からなる。非水電解液以外の正極、負極等の構成部材は特に制限なく使用できる。
 例えば、リチウム二次電池用正極活物質としては、コバルト、マンガン及びニッケルから選ばれる一種又は二種以上を含有するリチウムとの複合金属酸化物が使用される。これらの正極活物質は、一種単独で又は二種以上を組み合わせて用いることができる。
 このようなリチウム複合金属酸化物としては、例えば、LiCoO2、LiMn24、LiNiO2、LiCo1-xNix2(0.01<x<1)、LiCo1/3Ni1/3Mn1/32、LiNi1/2Mn3/24、及びLiCo0.98Mg0.022から選ばれる一種又は二種以上が挙げられる。また、LiCoO2とLiMn24、LiCoO2とLiNiO2、LiMn24とLiNiO2のように併用してもよい。
 また、過充電時の安全性やサイクル特性を向上したり、4.3V以上の充電電位での使用を可能にするために、リチウム複合金属酸化物の一部は他元素で置換してもよい。例えば、コバルト、マンガン、ニッケルの一部をSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、Cu、Bi、Mo、La等の少なくとも一種以上の元素で置換したり、Oの一部をSやFで置換したり、又はこれらの他元素を含有する化合物を被覆することもできる。
 これらの中では、LiCoO2、LiMn24、LiNiO2のような満充電状態における正極の充電電位がLi基準で4.3V以上で使用可能なリチウム複合金属酸化物が好ましく、LiCo1-xx2(但し、MはSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、及びCuから選ばれる一種又は二種以上の元素、0.001≦x≦0.05)、LiCo1/3Ni1/3Mn1/32、LiNi0.5Mn0.3Co0.22、LiNi0.85Co0.10Al0.052、LiNi1/2Mn3/24、Li2MnO3とLiMO2(Mは、Co、Ni、Mn、Fe等の遷移金属)との固溶体のような4.4V以上で使用可能なリチウム複合金属酸化物がより好ましい。高充電電圧で動作するリチウム複合金属酸化物を使用すると、充電時における電解液との反応により特に広い温度範囲で使用した場合における電気化学特性が低下しやすいが、本発明に係るリチウム二次電池ではこれらの電気化学特性の低下を抑制することができる。
 特にMnを含む正極の場合に正極からのMnイオンの溶出に伴い電池の抵抗が増加しやすい傾向にあるため、広い温度範囲で使用した場合における電気化学特性が低下しやすい傾向にあるが、本発明に係るリチウム二次電池ではこれらの電気化学特性の低下を抑制することができるので好ましい。
 更に、正極活物質として、リチウム含有オリビン型リン酸塩を用いることもできる。特に鉄、コバルト、ニッケル及びマンガンから選ばれる一種又は二種以上を含有するリチウム含有オリビン型リン酸塩が好ましい。その具体例としては、LiFePO4、LiCoPO4、LiNiPO4、及びLiMnPO4から選ばれる一種又は二種以上が挙げられる。
 これらのリチウム含有オリビン型リン酸塩の一部は他元素で置換してもよく、鉄、コバルト、ニッケル、マンガンの一部をCo、Mn、Ni、Mg、Al、B、Ti、V、Nb、Cu、Zn、Mo、Ca、Sr、W及びZr等から選ばれる一種又は二種以上の元素で置換したり、又はこれらの他元素を含有する化合物や炭素材料で被覆することもできる。これらの中では、LiFePO4又はLiMnPO4が好ましい。
 また、リチウム含有オリビン型リン酸塩は、例えば前記の正極活物質と混合して用いることもできる。
 また、リチウム一次電池用正極としては、CuO、Cu2O、Ag2O、Ag2CrO4、CuS、CuSO4、TiO2、TiS2、SiO2、SnO、V25、V612、VOx、Nb25、Bi23、Bi2Pb25,Sb23、CrO3、Cr23、MoO3、WO3、SeO2、MnO2、Mn23、Fe23、FeO、Fe34、Ni23、NiO、CoO3、CoO等の、一種又は二種以上の金属元素の酸化物又はカルコゲン化合物、SO2、SOCl2等の硫黄化合物、一般式(CFxnで表されるフッ化炭素(フッ化黒鉛)等が挙げられる。これらの中でも、MnO2、V25、フッ化黒鉛等が好ましい。
 上記の正極活物質10gを蒸留水100mlに分散させた時の上澄み液のpHとしては10.0~12.5である場合、一段と広い温度範囲での電気化学特性の改善効果が得られやすいので好ましく、更に10.5~12.0である場合が好ましい。
 また、正極中に元素としてNiが含まれる場合、正極活物質中のLiOH等の不純物が増える傾向があるため、一段と広い温度範囲での電気化学特性の改善効果が得られやすいので好ましく、正極活物質中のNiの原子濃度が5~25atomic%である場合が更に好ましく、8~21atomic%である場合が特に好ましい。
 正極の導電剤は、化学変化を起こさない電子伝導材料であれば特に制限はない。例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等のグラファイト、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、及びサーマルブラックから選ばれる一種又は二種以上のカーボンブラック等が挙げられる。また、グラファイトとカーボンブラックを適宜混合して用いてもよい。導電剤の正極合剤への添加量は、1~10質量%が好ましく、特に2~5質量%が好ましい。
 正極は、前記の正極活物質をアセチレンブラック、カーボンブラック等の導電剤、及びポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)、エチレンプロピレンジエンターポリマー等の結着剤と混合し、これに1-メチル-2-ピロリドン等の高沸点溶剤を加えて混練して正極合剤とした後、この正極合剤を集電体のアルミニウム箔やステンレス製のラス板等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で2時間程度真空下で加熱処理することにより作製することができる。
 正極の集電体を除く部分の密度は、通常は1.5g/cm3以上であり、電池の容量をさらに高めるため、好ましくは2g/cm3以上であり、より好ましくは3g/cm3以上であり、更に好ましくは3.6g/cm3以上である。なお、その上限としては、4g/cm3以下が好ましい。
 リチウム二次電池用負極活物質としては、満充電状態における充電電位がLi基準で1V未満となる負極活物質と、満充電状態における充電電位がLi基準で1V以上の負極活物質が挙げられる。
 前記の満充電状態における充電電位がLi基準で1V未満となる負極活物質としては、リチウム金属やリチウム合金、及びリチウムを吸蔵及び放出することが可能な炭素材料〔易黒鉛化炭素や、(002)面の面間隔が0.37nm以上の難黒鉛化炭素や、(002)面の面間隔が0.34nm以下の黒鉛等〕、スズ(単体)、スズ化合物、ケイ素(単体)、ケイ素化合物等が挙げられ、前記の満充電状態における充電電位がLi基準で1V以上の負極活物質としては、Li4Ti512等のチタン酸リチウム化合物等が挙げられる。これらの負極活物質は一種単独で又は二種以上を組み合わせて用いることができる。
 これらの中では、リチウムイオンの吸蔵及び放出能力において、満充電状態における充電電位がLi基準で1V未満となる負極活物質が好ましく、人造黒鉛や天然黒鉛等の高結晶性の炭素材料を使用することがより好ましく、格子面(002)の面間隔(d002)が0.340nm(ナノメータ)以下、特に0.335~0.337nmである黒鉛型結晶構造を有する炭素材料を使用することが更に好ましい。
 特に複数の扁平状の黒鉛質微粒子が互いに非平行に集合又は結合した塊状構造を有する人造黒鉛粒子や、圧縮力、摩擦力、剪断力等の機械的作用を繰り返し与え、鱗片状天然黒鉛を球形化処理した粒子、を用いることが好ましい。
 負極の集電体を除く部分の密度を1.5g/cm3以上の密度に加圧成形したときの負極シートのX線回折測定から得られる黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比I(110)/I(004)が0.01以上となると一段と広い温度範囲での電気化学特性が向上するので好ましく、0.05以上となることがより好ましく、0.1以上となることが更に好ましい。また、過度に処理し過ぎて結晶性が低下し電池の放電容量が低下する場合があるので、ピーク強度の比I(110)/I(004)の上限は0.5以下が好ましく、0.3以下がより好ましい。
 また、高結晶性の炭素材料(コア材)はコア材よりも低結晶性の炭素材料によって被膜されていると、広い温度範囲での電気化学特性が一段と良好となるので好ましい。被覆の炭素材料の結晶性は、TEMにより確認することができる。
 高結晶性の炭素材料を使用すると、充電時において非水電解液と反応し、界面抵抗の増加によって低温又は高温における電気化学特性を低下させる傾向があるが、本発明に係るリチウム二次電池では広い温度範囲での電気化学特性が良好となる。
 また、負極活物質としてのリチウムを吸蔵及び放出可能な金属化合物としては、Si、Ge、Sn、Pb、P、Sb、Bi、Al、Ga、In、Ti、Mn、Fe、Co、Ni、Cu、Zn、Ag、Mg、Sr、Ba等の金属元素を少なくとも一種含有する化合物が挙げられる。これらの金属化合物は単体、合金、酸化物、窒化物、硫化物、硼化物、リチウムとの合金等、何れの形態で用いてもよいが、単体、合金、酸化物、リチウムとの合金の何れかが高容量化できるので好ましい。中でも、Si、Ge及びSnから選ばれる少なくとも一種の元素を含有するものが好ましく、Si及びSnから選ばれる少なくとも一種の元素を含むものが電池を高容量化できるのでより好ましい。
 負極は、上記の正極の作製と同様な導電剤、結着剤、高沸点溶剤を用いて混練して負極合剤とした後、この負極合剤を集電体の銅箔等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で2時間程度真空下で加熱処理することにより作製することができる。
 負極の集電体を除く部分の密度は、通常は1.1g/cm3以上であり、電池の容量をさらに高めるため、好ましくは1.5g/cm3以上であり、より好ましくは1.7g/cm3以上である。なお、その上限としては、2g/cm3以下が好ましい。
 また、リチウム一次電池用の負極活物質としては、リチウム金属又はリチウム合金が挙げられる。
 リチウム電池の構造には特に限定はなく、単層又は複層のセパレータを有するコイン型電池、円筒型電池、角型電池、ラミネート電池等を適用できる。
 電池用セパレータとしては、特に制限はないが、ポリプロピレン、ポリエチレン等のポリオレフィンの単層又は積層の微多孔性フィルム、織布、不織布等を使用できる。
 本発明におけるリチウム二次電池は、充電終止電圧が4.2V以上、特に4.3V以上の場合にも広い温度範囲での電気化学特性に優れ、更に、4.4V以上においても特性は良好である。放電終止電圧は、通常2.8V以上、更には2.5V以上とすることができるが、本願発明におけるリチウム二次電池は、2.0V以上とすることができる。電流値については特に限定されないが、通常0.1~30Cの範囲で使用される。また、本発明におけるリチウム電池は、-40~100℃、好ましくは-10~80℃で充放電することができる。
 本発明においては、リチウム電池の内圧上昇の対策として、電池蓋に安全弁を設けたり、電池缶やガスケット等の部材に切り込みを入れる方法も採用することができる。また、過充電防止の安全対策として、電池の内圧を感知して電流を遮断する電流遮断機構を電池蓋に設けることができる。
〔第2の蓄電デバイス(電気二重層キャパシタ)〕
 電解液と電極界面の電気二重層容量を利用してエネルギーを貯蔵する蓄電デバイスである。本発明の一例は、電気二重層キャパシタである。この蓄電デバイスに用いられる最も典型的な電極活物質は、活性炭である。二重層容量は概ね表面積に比例して増加する。
〔第3の蓄電デバイス〕
 電極のドープ/脱ドープ反応を利用してエネルギーを貯蔵する蓄電デバイスである。この蓄電デバイスに用いられる電極活物質として、酸化ルテニウム、酸化イリジウム、酸化タングステン、酸化モリブデン、酸化銅等の金属酸化物や、ポリアセン、ポリチオフェン誘導体等のπ共役高分子が挙げられる。これらの電極活物質を用いたキャパシタは、電極のドープ/脱ドープ反応にともなうエネルギー貯蔵が可能である。
〔第4の蓄電デバイス(リチウムイオンキャパシタ)〕
 負極であるグラファイト等の炭素材料へのリチウムイオンのインターカレーションを利用してエネルギーを貯蔵する蓄電デバイスである。リチウムイオンキャパシタ(LIC)と呼ばれる。正極は、例えば活性炭電極と電解液との間の電気ニ重層を利用したものや、π共役高分子電極のドープ/脱ドープ反応を利用したもの等が挙げられる。電解液には少なくともLiPF6等のリチウム塩が含まれる。
〔リチウム塩〕
 本発明の新規なリチウム塩は、下記一般式(XII-2)及び(XIII-3)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000024
(式中、R1は、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数6~12のアリール基、又はハロゲン原子を示し、t2は1.01~3である。)
Figure JPOXMLDOC01-appb-C000025
(式中、R2は、炭素数1~6のアルキレン基を示し、u1は2~6である。R2が有する水素原子の少なくとも一つはハロゲン原子で置換されていてもよい。)
 一般式(XII-2)中、t2の下限は好ましくは1.05以上、より好ましくは1.1以上であり、その上限は好ましくは2以下、より好ましくは1.7以下である。
 一般式(XII-2)のR1の具体例、好適例は、一般式(XI-1)のR1の具体例、好適例と同じである。
 一般式(XII-2)で表されるリチウム塩において、スルホン酸アニオンと三フッ化ホウ素分子の結合様式は特に限定されず、直接結合や配位結合等種々の結合様式をとることができる。
 前記一般式(XII-2)で表されるリチウム塩の好適例としては、前記の化合物1~30が挙げられる。これらの化合物の中でも、前記の化合物1~7、11~16、21、23~26、28、及び29から選ばれる一種又は二種以上が好ましく、前記の化合物1、化合物2、化合物4、化合物11、化合物13、化合物15、化合物21、化合物23、及び化合物26から選ばれる一種又は二種以上がより好ましい。ただし、前記の化合物1~30において、t2に相当するt1は1.01~3である。
 また、前記一般式(XIII-3)で表されるリチウム塩の好適例は、前記のとおりである。
 前記一般式(XII-2)又は(XIII-3)で表される化合物は、下記の(a)~(c)の方法により合成することができるが、これらの方法に限定されるものではない。
[(a)法]
 (a)法は、スルホン酸リチウム塩と三フッ化ホウ素錯体とを溶媒の存在下又は不存在下で反応させる方法である。なお、原料のスルホン酸リチウム塩は既存の方法、例えばテトラヘドロン レターズ,23巻,43号(1983年),4461ページに記載の方法により合成することができる。
 (a)法の反応において、三フッ化ホウ素錯体の使用量はスルホン酸リチウム塩1モルに対して、好ましくは0.8~10モル、より好ましくは0.9~5モル、更に好ましくは1~3モルである。
 (a)法として使用される三フッ化ホウ素錯体としては、三フッ化ホウ素ジエチルエール錯体、三フッ化ホウ素テトラヒドロフラン素錯体、三フッ化ホウ素メタノール錯体、三フッ化ホウ素錯体、三フッ化ホウ素酢酸錯体、三フッ化ホウ素リン酸錯体、三フッ化ホウ素アミン錯体、三フッ化ホウ素スルフィド錯体、三フッ化ホウ素H2O錯体が挙げられ、中でも、除去のしやすさの観点から、三フッ化ホウ素ジエチルエール錯体、三フッ化ホウ素テトラヒドロフラン素錯体、三フッ化ホウ素メタノール錯体が好ましい。
 (a)法の反応においては、無溶媒で反応は進行するが、反応に不活性であれば、溶媒を使用することができる。使用される溶媒は、ヘプタン、シクロヘキサン等の脂肪族炭化水素、ジクロロメタン、ジクロロエタン等のハロゲン化炭化水素、トルエン、キシレン等の芳香族炭化水素、クロロベンゼン、フルオロベンゼン等のハロゲン化芳香族炭化水素、ジイソプロピルエーテル、ジオキサン、ジメトキシエタン等のエーテル、酢酸エチル、酢酸ブチル、炭酸ジメチル、炭酸ジエチル等のエステル、ジメチルスルホキシド、スルホラン等のスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド、又はこれらの混合物が挙げられる。これらの中では、トルエン、酢酸エチル、炭酸ジメチル等の芳香族炭化水素又はエステルが好ましい。
 前記、溶媒の使用量は、スルホン酸リチウム塩1質量部に対して、好ましくは0~30質量部、より好ましくは1~10質量部である。
 (a)法の反応において、反応温度の下限は、反応性を低下させない観点から、好ましくは0℃以上、より好ましくは20℃以上である。また副反応や生成物の分解を抑制する観点から、反応温度の上限は好ましくは150℃以下、より好ましくは100℃以下である。
 また、反応時間は前記反応温度やスケールにより適宜変更しうるが、反応時間が短すぎると未反応物が残り、逆に反応時間が長すぎると反応生成物の分解や副反応の恐れが生じるため、好ましくは0.1~24時間、より好ましくは0.2~12時間である。
[(b)法]
 (b)法は、スルホン酸リチウム塩に三フッ化ホウ素を導入し、溶媒の存在下又は不存在下で反応させる方法である。
 (b)法の反応において、三フッ化ホウ素の使用量はスルホン酸リチウム塩1モルに対して、好ましくは0.8~10モル、より好ましくは0.9~5モル、更に好ましくは1~3モルである。
 (b)法の反応においては、無溶媒で反応は進行するが、反応に不活性であれば、溶媒を使用することができる。使用される溶媒は、(a)法において記述した脂肪族炭化水素、ハロゲン化炭化水素、芳香族炭化水素、ハロゲン化芳香族炭化水素、エーテル、スルホキシド、又はこれらの混合物が挙げられる。これらの中では、トルエン、酢酸エチル、炭酸ジメチル等の芳香族炭化水素、エステルが好ましい。
 前記溶媒の使用量は、スルホン酸リチウム塩1質量部に対して、好ましくは0~30質量部、より好ましくは1~10質量部である。
 (b)法の反応において、反応温度の下限は、好ましくは-20℃以上、反応性を低下させない観点から、より好ましくは0℃以上である。また副反応や生成物の分解を抑制する観点から、反応温度の上限は好ましくは100℃、より好ましくは80℃以下である。
 (b)法の反応時間は反応温度やスケールにより適宜変更しうるが、反応時間が短すぎると未反応物が残り、逆に反応時間が長すぎると反応生成物の分解や副反応の恐れが生じるため、好ましくは0.1~12時間、より好ましくは0.2~6時間である。
 得られたリチウム塩に含有されるスルホン酸アニオン1モルに対する、三フッ化ホウ素分子の含有モル数は、1H-NMR及び19F-NMRによる定量により求めることができる。
[(c)法]
 (c)法は、テトラフルオロホウ酸リチウムとスルホン酸シリルエステル化合物とを溶媒の存在下又は不存在下で反応させる方法である。
 (c)法の反応において、スルホン酸シリルエステル化合物の使用量はヘキサフルオロリン酸リチウムまたはヘキサフルオロヒ素酸リチウム1モルに対して、好ましくは0.8~10モル、より好ましくは0.9~5モル、更に好ましくは1~3モルである。
 (c)法として使用されるスルホン酸シリルエステル化合物としては、トリメチルシリル メタンスルホネート、トリメチルシリル エタンスルホネート、トリメチルシリル プロパン-2-スルホネート、トリメチルシリル 4-メチルベンゼンスルホネート、トリエチルシリル メタンスルホネート等が挙げられる。
 (c)法の反応においては、無溶媒で反応は進行するが、反応に不活性であれば、溶媒を使用することができる。使用される溶媒は、(a)法において記述した脂肪族炭化水素、ハロゲン化炭化水素、芳香族炭化水素、ハロゲン化芳香族炭化水素、エーテル、スルホキシド、又はこれらの混合物が挙げられる。これらの中では、トルエン、酢酸エチル、炭酸ジメチル等の芳香族炭化水素、エステルが好ましい。
 前記、溶媒の使用量は、テトラフルオロホウ酸リチウム1質量部に対して、好ましくは0~30質量部、より好ましくは1~10質量部である。
 (c)法の反応において、反応温度の下限は、反応性を低下させない観点から、好ましくは0℃以上、より好ましくは30℃以上である。また副反応や生成物の分解を抑制する観点から、反応温度の上限は好ましくは150℃以下、より好ましくは100℃以下である。
 また、反応時間は前記反応温度やスケールにより適宜変更しうるが、反応時間が短すぎると未反応物が残り、逆に反応時間が長すぎると反応生成物の分解や副反応の恐れが生じるため、好ましくは0.1~24時間、より好ましくは0.2~12時間である。
 以下、本発明のリチウム塩を用いた電解液の実施例、化合物の合成例を示すが、本発明は、これらの実施例及び合成例に限定されるものではない。
 A.次に、一般式(XI-1)又は(XIII-1)で表されるリチウム塩の添加効果を実施例により、詳細に説明する。
実施例A-1~A-34、比較例A-1
〔リチウムイオン二次電池の作製〕
 LiNi1/3Mn1/3Co1/32(正極活物質、正極活物質10gを蒸留水100mlに分散させた時の上澄み液のpHは10.8);94質量%、アセチレンブラック(導電剤);3質量%を混合し、予めポリフッ化ビニリデン(結着剤);3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製した。正極の集電体を除く部分の密度は3.6g/cm3であった。
 また、人造黒鉛(d002=0.335nm、負極活物質)95質量%を、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き負極シートを作製した。負極の集電体を除く部分の密度は1.5g/cm3であった。また、この電極シートを用いてX線回折測定した結果、黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比〔I(110)/I(004)〕は0.1であった。
 そして、正極シート、微多孔性ポリエチレンフィルム製セパレータ、負極シートの順に積層し、表1~3に記載の組成の非水電解液を加えて、2032型コイン電池を作製した。
 なお、電解質塩の組成において、LiBOBは、ビス[オキサレート-O,O’]ホウ酸リチウムの略号であり、LiPFOは、ジフルオロビス[オキサレート-O,O’]リン酸リチウムの略号である。以下の表においても同様である。
〔高温充電保存後の低温特性の評価〕
<初期の放電容量>
 上記の方法で作製したコイン電池を用いて、25℃の恒温槽中、1Cの定電流及び定電圧で、終止電圧4.2Vまで3時間充電し、0℃に恒温槽の温度を下げ、1Cの定電流下終止電圧2.75Vまで放電して、初期の0℃の放電容量を求めた。
<高温充電保存試験>
 次に、このコイン電池を60℃の恒温槽中、1Cの定電流及び定電圧で終止電圧4.2Vまで3時間充電し、4.2Vに保持した状態で7日間保存を行った。その後、25℃の恒温槽に入れ、一旦1Cの定電流下終止電圧2.75Vまで放電した。
<高温充電保存後の放電容量>
 更にその後、初期の放電容量の測定と同様にして、高温充電保存後の0℃の放電容量を求めた。
<高温充電保存後の低温特性>
 高温充電保存後の低温特性を下記の0℃放電容量の維持率より求めた。
 高温充電保存後の0℃放電容量維持率(%)=(高温充電保存後の0℃の放電容量/初期の0℃の放電容量)×100
<高温サイクル特性>
 上記の方法で作製した電池を用いて60℃の恒温槽中、1Cの定電流及び定電圧で、終止電圧4.2Vまで3時間充電し、次に1Cの定電流下、放電電圧3.0Vまで放電することを1サイクルとし、これを200サイクルに達するまで繰り返した。そして、以下の式によりサイクル後の放電容量維持率を求めた。
 放電容量維持率(%)=(200サイクル後の放電容量/1サイクル目の放電容量)×100
 電池特性を表1~3に示す。
 なお、表3における「その他の添加剤」とは、明細書に記載の「その他の添加剤」、すなわち(A)ニトリル、(B)芳香族化合物、(C)イソシアネート化合物、(D)三重結合含有化合物、(E)S=O基含有化合物、(F)環状アセタール化合物、(G)リン含有化合物、及び(H)環状酸無水物から選ばれるいずれかのグループの化合物を意味する。
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
実施例A-35~A-36、比較例A-2
 実施例A-1で用いた負極活物質に変えて、ケイ素(単体)(負極活物質)を用いて、負極シートを作製した。ケイ素(単体);80質量%、アセチレンブラック(導電剤);15質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、負極シートを作製したこと、非水電解液の組成を所定のものに変えたことの他は、実施例A-1と同様にコイン電池を作製し、電池評価を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000029
実施例A-37~A-40、及び比較例A-3
 実施例A-1で用いた負極活物質に変えて、チタン酸リチウムLi4Ti512(負極活物質)を用いて、負極シートを作製した。チタン酸リチウムLi4Ti512;80質量%、アセチレンブラック(導電剤);15質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、負極シートを作製したこと、電池評価の際の充電終止電圧を2.8V、放電終止電圧を1.2Vとしたこと、非水電解液の組成を所定のものに変えたことの他は、実施例A-1と同様にコイン電池を作製し、電池評価を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000030
実施例A-41~A-42、比較例A-4
 実施例A-1で用いた正極活物質に変えて、非晶質炭素で被覆されたLiFePO4(正極活物質)を用いて、正極シートを作製した。非晶質炭素で被覆されたLiFePO4;90質量%、アセチレンブラック(導電剤);5質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製したこと、電池評価の際の充電終止電圧を3.6V、放電終止電圧を2.0Vとしたこと、非水電解液の組成を所定のものに変えたことの他は、実施例A-1と同様にコイン電池を作製し、電池評価を行った。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000031
 上記実施例A-1~A-42のリチウム二次電池は何れも、本発明の非水電解液において一般式(XI-1)又は(XIII-1)で表されるリチウム塩を添加しなかった場合の比較例A-1のリチウム二次電池に比べ、広い温度範囲での電気化学特性が顕著に向上している。以上より、本発明の効果は、非水溶媒に電解質塩が溶解されている非水電解液において、本願発明の特定のリチウム塩を0.001~5質量%含有させた場合に特有の効果であることが判明した。また、実施例A-4(その他の添加剤の添加なし)で作製したリチウム二次電池の60℃200サイクル後の放電容量維持率は76%であり、実施例A-23~A-34(その他の添加剤の添加あり)と同様に、比較例A-1に対して、60℃200サイクル後の放電容量維持率も顕著に向上した。
 また、実施例A-35~A-36と比較例A-2の対比、実施例A-37~A-40と比較例A-3、実施例A-41~A-42と比較例A-4の対比から、負極にケイ素(単体)Siやチタン酸リチウムを用いた場合や、正極にリチウム含有オリビン型リン酸鉄塩を用いた場合にも同様な効果がみられることから、特定の正極や負極に依存した効果でないことは明らかである。
 更に、実施例A-1~A-42で得られた非水電解液は、リチウム一次電池の広い温度範囲での放電特性を改善する効果も有する。
 B.次に、一般式(XI-2)又は(XIII-2)で表されるリチウム塩の添加効果を実施例により、詳細に説明する。
実施例B-1~B-32、比較例B-1
〔リチウムイオン二次電池の作製〕
 LiNi0.85Co0.10Al0.052(正極活物質、正極活物質10gを蒸留水100mlに分散させた時の上澄み液のpHは11.8);94質量%、アセチレンブラック(導電剤);3質量%を混合し、予めポリフッ化ビニリデン(結着剤);3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製した。正極の集電体を除く部分の密度は3.6g/cm3であった。
 また、人造黒鉛(d002=0.335nm、負極活物質)を用いて、実施例A-1と同様にして負極シート(ピーク強度比〔I(110)/I(004)〕=0.1)を作製した。そして、正極シート、微多孔性ポリエチレンフィルム製セパレータ、負極シートの順に積層し、表7~9に記載の組成の非水電解液を加えて、2032型コイン電池を作製した。
〔高温充電保存後の低温特性の評価〕
 初期の放電容量、高温充電保存試験、高温充電保存後の放電容量、高温充電保存後の低温特性は、実施例A-1と同様にして評価した。
〔高温サイクル後の低温特性の評価〕
 上記の方法で作製した電池を用いて45℃の恒温槽中、1Cの定電流及び定電圧で、終止電圧4.3Vまで3時間充電し、次に1Cの定電流下、放電電圧3.0Vまで放電することを1サイクルとし、これを200サイクルに達するまで繰り返した。そして、上記と同様に高温サイクル後の低温特性を下記の0℃放電容量の維持率より求めた。
 高温サイクル後の0℃放電容量維持率(%)=(高温サイクル後の0℃の放電容量/初期の0℃の放電容量)×100
 電池特性を表7~9に示す。
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
実施例B-33~B-35、比較例B-2
 実施例B-1で用いた負極活物質に変えて、ケイ素(単体)(負極活物質)を用いて、負極シートを作製した。ケイ素(単体);80質量%、アセチレンブラック(導電剤);15質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、負極シートを作製したこと、非水電解液の組成を所定のものに変えたことの他は、実施例B-1と同様にコイン電池を作製し、電池評価を行った。結果を表10に示す。
Figure JPOXMLDOC01-appb-T000035
実施例B-36~B-39、比較例B-3
 実施例B-1で用いた負極活物質に変えて、チタン酸リチウムLi4Ti512(負極活物質)を用いて、負極シートを作製した。チタン酸リチウムLi4Ti512;80質量%、アセチレンブラック(導電剤);15質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、負極シートを作製したこと、電池評価の際の充電終止電圧を2.8V、放電終止電圧を1.2Vとしたこと、非水電解液の組成を所定のものに変えたことの他は、実施例B-1と同様にコイン電池を作製し、電池評価を行った。結果を表11に示す。
Figure JPOXMLDOC01-appb-T000036
実施例B-40~B-42、比較例B-4
 実施例B-1で用いた正極活物質に変えて、非晶質炭素で被覆されたLiFePO4(正極活物質)を用いて、正極シートを作製した。非晶質炭素で被覆されたLiFePO4;90質量%、アセチレンブラック(導電剤);5質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製したこと、電池評価の際の充電終止電圧を3.6V、放電終止電圧を2.0Vとしたこと、非水電解液の組成を所定のものに変えたことの他は、実施例B-1と同様にコイン電池を作製し、電池評価を行った。結果を表12に示す。
Figure JPOXMLDOC01-appb-T000037
 上記実施例B-1~B-42のリチウム二次電池は何れも、本発明の非水電解液において一般式(XI-2)又は(XIII-2)で表されるリチウム塩を添加しなかった場合の比較例B-1のリチウム二次電池に比べ、高温充電保存後の低温特性が顕著に向上している。以上より、本発明の効果は、非水溶媒に電解質塩が溶解されている非水電解液において、本願発明の特定のリチウム塩を0.001~5質量%含有させた場合に特有の効果であることが判明した。また、実施例B-4(その他の添加剤なし)で作製したリチウム二次電池の高温サイクル後の0℃放電容量維持率は78%であり、実施例B-21~B32(その他の添加剤あり)と同様に、比較例B-1に対して、高温サイクル後の低温特性も顕著に向上した。
 更に、実施例B-33~B-35と比較例B-2の対比、実施例B-36~B-38と比較例B-3、実施例B-40~B-42と比較例B-4の対比から、負極にケイ素(単体)Siやチタン酸リチウムを用いた場合や、正極にリチウム含有オリビン型リン酸鉄塩を用いた場合にも同様な効果がみられることから、特定の正極や負極に依存した効果でないことは明らかである。
 更に、実施例B-1~B-42で得られた非水電解液は、リチウム一次電池の広い温度範囲での放電特性を改善する効果も有する。
 C.次に、一般式(XII-1)又は(XIII-3)で表されるリチウム塩の添加効果を実施例により、詳細に説明する。
 合成例C-1〔合成化合物C-1の合成〕
 メタンスルホン酸リチウム40.82g(0.40mol)と三フッ化ホウ素ジエチルエーテル錯体85.16g(0.60mol)を炭酸ジメチル60mlに加え、50℃で1時間撹拌した。減圧下にエーテルと炭酸ジメチルを留去した後、100℃に昇温し、過剰の三フッ化ホウ素ジエチルエーテル錯体を留去し、目的の化合物C-1:[CH3-SO3(BF31.41]Li 77.48g(収率98%)を得た。
 得られた合成化合物C-1について、1H-NMRの測定を行い、その構造を確認した。結果を以下に示す。
1H-NMR(400MHz,CDCl3):δ= 2.41( s, 3H )
 また、1H-NMRと19F-NMRによる定量により、メタンスルホン酸アニオン1モルに対する、三フッ化ホウ素分子の含有量は1.41モルであった。
実施例C-1~C-27、比較例C-1
〔リチウムイオン二次電池の作製〕
 LiNi0.5Mn0.3Co0.22(正極活物質、正極活物質10gを蒸留水100mlに分散させた時の上澄み液のpHは11.0);94質量%、アセチレンブラック(導電剤);3質量%を混合し、予めポリフッ化ビニリデン(結着剤);3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製した。正極の集電体を除く部分の密度は3.6g/cm3であった。
 また、実施例A-1と同様にして負極シート(ピーク強度比〔I(110)/I(004)〕=0.1)を作製した。そして、正極シート、微多孔性ポリエチレンフィルム製セパレータ、負極シートの順に積層し、表13~15に記載の組成の非水電解液を加えて、2032型コイン電池を作製した。
〔高温充電保存後の低温特性の評価〕
 初期の放電容量、高温充電保存試験、高温充電保存後の放電容量、高温充電保存後の低温特性は、実施例Iと同様にして評価した。
〔高温サイクル後の低温特性の評価〕
 上記の方法で作製した電池を用いて45℃の恒温槽中、1Cの定電流及び定電圧で、終止電圧4.3Vまで3時間充電し、次に1Cの定電流下、放電電圧3.0Vまで放電することを1サイクルとし、これを200サイクルに達するまで繰り返した。そして、上記と同様に高温サイクル後の低温特性を下記の0℃放電容量の維持率より求めた。
 高温サイクル後の0℃放電容量維持率(%)=(高温サイクル後の0℃の放電容量/初期の0℃の放電容量)×100
 電池特性を表13~15に示す。
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
実施例C-28、C-29、比較例C-2
 実施例C-1で用いた負極活物質に変えて、ケイ素(単体)(負極活物質)を用いて、負極シートを作製した。ケイ素(単体);80質量%、アセチレンブラック(導電剤);15質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、負極シートを作製したこと、非水電解液の組成を所定のものに変えたことの他は、実施例C-1と同様にコイン電池を作製し、電池評価を行った。結果を表16に示す。
Figure JPOXMLDOC01-appb-T000041
実施例C-30、C-31、比較例C-3
 実施例C-1で用いた負極活物質に変えて、チタン酸リチウムLi4Ti512(負極活物質)を用いて、負極シートを作製した。チタン酸リチウムLi4Ti512;80質量%、アセチレンブラック(導電剤);15質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、負極シートを作製したこと、電池評価の際の充電終止電圧を2.8V、放電終止電圧を1.2Vとしたこと、非水電解液の組成を所定のものに変えたことの他は、実施例C-1と同様にコイン電池を作製し、電池評価を行った。結果を表17に示す。
Figure JPOXMLDOC01-appb-T000042
実施例C-32、C-33、比較例C-4
 実施例C-1で用いた正極活物質に変えて、非晶質炭素で被覆されたLiFePO4(正極活物質)を用いて、正極シートを作製した。非晶質炭素で被覆されたLiFePO4;90質量%、アセチレンブラック(導電剤);5質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製したこと、電池評価の際の充電終止電圧を3.6V、放電終止電圧を2.0Vとしたこと、非水電解液の組成を所定のものに変えたことの他は、実施例C-1と同様にコイン電池を作製し、電池評価を行った。結果を表18に示す。
Figure JPOXMLDOC01-appb-T000043
 上記実施例C-1~C-33のリチウム二次電池は何れも、本発明の非水電解液において一般式(XII-1)又は(XIII-3)で表されるリチウム塩を添加しなかった場合の比較例C-1のリチウム二次電池に比べ、高温充電保存後の低温特性が顕著に向上している。以上より、本発明の効果は、非水溶媒に電解質塩が溶解されている非水電解液において、本願発明の化合物を含有させた場合に特有の効果であることが判明した。また、実施例C-4(その他の添加剤の添加なし)で作製したリチウム二次電池の高温サイクル後の0℃放電容量維持率は83%であり、実施例C-17~実施例C-27(その他の添加剤の添加あり)と同様に、比較例C-1に対して、高温サイクル後の0℃放電容量維持率も顕著に向上した。
 更に、実施例C-28,C-29と比較例C-2の対比、実施例C-30、C-31と比較例C-3、実施例C-32、C-33と比較例C-4の対比から、負極にケイ素(単体)Siやチタン酸リチウムを用いた場合や、正極にリチウム含有オリビン型リン酸鉄塩を用いた場合にも同様な効果がみられることから、特定の正極や負極に依存した効果でないことは明らかである。
 更に、実施例C-1~C-33で得られた非水電解液は、リチウム一次電池の広い温度範囲での放電特性を改善する効果も有する。
 本発明の非水電解液を使用すれば、広い温度範囲における電気化学特性に優れた蓄電デバイスを得ることができる。特にハイブリッド電気自動車、プラグインハイブリッド電気自動車、バッテリー電気自動車等に搭載されるリチウム二次電池等の蓄電デバイス用の非水電解液として使用すると、広い温度範囲で電気化学特性が低下しにくい蓄電デバイスを得ることができる。

Claims (17)

  1.  非水溶媒に電解質塩が溶解されている非水電解液において、下記一般式(I)又は(II)で表される非環状リチウム塩から選ばれる一種又は二種以上を、非水電解液中に0.001~5質量%含有することを特徴とする非水電解液。
      (A1)(YFm)p(Li)q   (I)
    (式中、A2は下記一般式(III)又は(IV)で表される基であり、Yはホウ素原子、リン原子又はヒ素原子であり、Fはフッ素原子である。mは3又は5の整数、pは1~6、qは基A2の価数を示し1~3の整数である。ただし、基A2が1価(q=1)のとき、pは1~3であり、基A2が2価(q=2)のとき、pは2~6である。
     Yがホウ素原子のときmは3、Yがリン原子又はヒ素原子のときmは5である。)
      (A2)x(YFn)(Li)    (II)
    (式中、A2は下記一般式(III)で表される基であり、複数のA2は同一でも異なっていてもよい。Yはホウ素原子、リン原子又はヒ素原子であり、Fはフッ素原子である。Yがホウ素原子のとき、xは2~4の整数、x+nは4であり、Yがリン原子又はヒ素原子のとき、xは2~6の整数、x+nは6である。)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数6~12のアリール基、炭素数1~6のアルキレン基又はハロゲン原子を示す。Rが有する水素原子の少なくとも一つはハロゲン原子で置換されていてもよい。)
  2.  一般式(I)又は(II)で表される非環状リチウム塩が、下記一般式(XI)~(XIII)のいずれかで表される非環状リチウム塩から選ばれる一種又は二種以上である、請求項1に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1は、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数6~12のアリール基、又はハロゲン原子を示し、M1は、ホウ素原子、リン原子、又はヒ素原子を示し、rは1~6の整数、sは0~5の整数である。M1がホウ素原子のときr+sは4であり、M1がリン原子又はヒ素原子のときr+sは6である。R1が有する水素原子の少なくとも一つはハロゲン原子で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1は前記と同じであり、Y1は、BF3、PF5又はAsF5を示し、tは1~3である。Y1がBF3のときtは1~3であり、Y1がPF5又はAsF5のときtは1である。)

    Figure JPOXMLDOC01-appb-C000004
    (式中、R2は、炭素数1~6のアルキレン基を示し、Y1は、前記と同じであり、uは2~6である。Y1がBF3のときuは2~6であり、Y1がPF5又はAsF5のときuは2である。R2が有する水素原子の少なくとも一つはハロゲン原子で置換されていてもよい。)
  3.  一般式(XI)で表されるリチウム塩が、リチウム ビス(メタンスルホネート) ジフルオロボレート、リチウム トリス(メタンスルホネート) フルオロボレート、リチウム テトラキス(メタンスルホネート) ボレート、リチウム メタンスルホネート トリフルオロボレート、リチウム エタンスルホネート トリフルオロボレート、リチウム プロパン-2-スルホネート トリフルオロボレート、リチウム トリフルオロメタンスルホネート トリフルオロボレート、リチウム ビニルスルホネート トリフルオロボレート、リチウム 2-プロペン-1-イルスルホネート トリフルオロボレート、リチウム ベンゼンスルホネート トリフルオロボレート、リチウム 4-メチルベンゼンスルホネート トリフルオロボレート、リチウム フルオロスルホネート トリフルオロボレート、リチウム メタンスルホネート ペンタフルオロホスフェート、リチウム エタンスルホネート ペンタフルオロホスフェート、リチウム ビニルスルホネート ペンタフルオロホスフェート、リチウム 4-メチルベンゼンスルホネート ペンタフルオロホスフェート、リチウム メタンスルホネート ペンタフルオロアルセネート、リチウム エタンスルホネート ペンタフルオロアルセネート、リチウム ビニルスルホネート ペンタフルオロアルセネート、及びリチウム 4-メチルベンゼンスルホネート ペンタフルオロアルセネート、から選ばれる1種又は2種以上である、請求項2に記載の非水電解液。
  4.  一般式(XII)で表されるリチウム塩が、下記の化合物1、化合物2、化合物4、化合物11、化合物13、化合物15、化合物21、化合物23、及び化合物26から選ばれる一種又は二種以上である、請求項2に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000005
    (式中、t1は1~3である。)
  5.  一般式(XIII)で表されるリチウム塩が、ジリチウム メタンジスルホネート ビス(トリフルオロボレート)、ジリチウム エタン-1,2-ジイルジスルホネート ビス(トリフルオロボレート)、ジリチウム メタンジスルホネート ビス(ペンタフルオロホスフェート)、ジリチウム エタン-1,2-ジイルジスルホネート ビス(ペンタフルオロホスフェート)、ジリチウム メタンジスルホネート ビス(ペンタフルオロアルセネート)、及びジリチウム エタン-1,2-ジイルジスルホネート ビス(ペンタフルオロアルセネート)から選ばれる1種又は2種以上である、請求項2に記載の非水電解液。
  6.  一般式(XIII)で表されるリチウム塩が、一般式(XIII-3)で表される化合物から選ばれる1種又は2種以上である、請求項2に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000006
    (式中、R2は前記と同じであり、u1は2~6である。)
  7.  非水溶媒が少なくとも1種の環状カーボネートを含む、請求項1~6のいずれかに記載の非水電解液。
  8.  環状カーボネートが、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン、トランス又はシス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、ビニレンカーボネート、ビニルエチレンカーボネート、及び4-エチニル-1,3-ジオキソラン-2-オンから選ばれる一種又は二種以上である、請求項7に記載の非水電解液。
  9.  非水溶媒が、更に鎖状エステルを含有する、請求項1~8のいずれかに記載の非水電解液。
  10.  鎖状エステルが、メチルエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、メチルブチルカーボネート、及びエチルプロピルカーボネートから選ばれる非対称鎖状カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、及びジブチルカーボネートから選ばれる対称鎖状カーボネート、及び鎖状カルボン酸エステルから選ばれる一種又は二種以上である、請求項9に記載の非水電解液。
  11.  非水電解液が、更に、ニトリル、芳香族化合物、イソシアネート化合物、三重結合含有化合物、S=O基含有化合物、環状アセタール化合物、リン含有化合物、環状酸無水物、及び環状ホスファゼン化合物から選ばれる一種又は二種以上を含有する、請求項1~10のいずれかに記載の非水電解液。
  12.  電解質塩が、LiPF6、LiPO22、Li2PO3F、LiBF4、FSO3Li、LiN(SO2F)2、LiN(SO2CF32、LiN(SO2252、ビス[オキサレート-O,O’]ホウ酸リチウム、ジフルオロビス[オキサレート-O,O’]リン酸リチウム、及びテトラフルオロ[オキサレート-O,O’]リン酸リチウムから選ばれる一種又は二種以上のリチウム塩を含む、請求項1~11のいずれかに記載の非水電解液。
  13.  リチウム塩が、LiPF6を含み、更にLiPO22、LiN(SO2F)2、LiBF4、ビス[オキサレート-O,O’]ホウ酸リチウム(LiBOB)、ジフルオロビス[オキサレート-O,O’]リン酸リチウム(LiPFO)、FSO3Liから選ばれる一種又は二種以上を含む、請求項12に記載の非水電解液。
  14.  リチウム塩の濃度が、非水溶媒に対して、0.3~2.5Mである、請求項1~13のいずれかに記載の非水電解液。
  15.  正極、負極及び非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスであって、前記非水電解液が、前記一般式(I)又は(II)で表される非環状リチウム塩、又は(XI)~(XIII)のいずれかで表される非環状リチウム塩から選ばれる一種又は二種以上を、非水電解液中に0.001~5質量%含有することを特徴とする蓄電デバイス。
  16.  正極の活物質が、コバルト、マンガン、及びニッケルから選ばれる一種又は二種以上を含有するリチウムとの複合金属酸化物、又は鉄、コバルト、ニッケル、及びマンガンから選ばれる一種又は二種以上を含有するリチウム含有オリビン型リン酸塩である、請求項15に記載の蓄電デバイス。
  17.  負極の活物質が、リチウム金属、リチウム合金、リチウムを吸蔵及び放出することが可能な炭素材料、スズ、スズ化合物、ケイ素、ケイ素化合物、及びチタン酸リチウム化合物から選ばれる一種又は二種以上を含有する、請求項15又は16に記載の蓄電デバイス。
PCT/JP2013/063340 2012-05-11 2013-05-13 非水電解液、及びそれを用いた蓄電デバイス WO2013168821A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP13787043.2A EP2849272B1 (en) 2012-05-11 2013-05-13 Non-aqueous electrolyte and power storage device using same
CA2872599A CA2872599A1 (en) 2012-05-11 2013-05-13 Non-aqueous electrolyte and power storage device using same
US14/400,180 US9595737B2 (en) 2012-05-11 2013-05-13 Non-aqueous electrolyte and power storage device using same
CN201380024414.1A CN104285332B (zh) 2012-05-11 2013-05-13 非水电解液以及使用了非水电解液的蓄电设备
KR1020147031534A KR20150018513A (ko) 2012-05-11 2013-05-13 비수 전해액 및 그것을 이용한 축전 디바이스
JP2014514772A JP6075374B2 (ja) 2012-05-11 2013-05-13 非水電解液、及びそれを用いた蓄電デバイス

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2012109996 2012-05-11
JP2012-109996 2012-05-11
JP2012136084 2012-06-15
JP2012-136023 2012-06-15
JP2012-136084 2012-06-15
JP2012136023 2012-06-15
JP2012158912 2012-07-17
JP2012-158912 2012-07-17
JP2012164696 2012-07-25
JP2012-164677 2012-07-25
JP2012-164696 2012-07-25
JP2012164677 2012-07-25
JP2012-177658 2012-08-10
JP2012177658 2012-08-10
JP2013002880 2013-01-10
JP2013-002880 2013-01-10

Publications (1)

Publication Number Publication Date
WO2013168821A1 true WO2013168821A1 (ja) 2013-11-14

Family

ID=49550850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063340 WO2013168821A1 (ja) 2012-05-11 2013-05-13 非水電解液、及びそれを用いた蓄電デバイス

Country Status (7)

Country Link
US (1) US9595737B2 (ja)
EP (1) EP2849272B1 (ja)
JP (1) JP6075374B2 (ja)
KR (1) KR20150018513A (ja)
CN (1) CN104285332B (ja)
CA (1) CA2872599A1 (ja)
WO (1) WO2013168821A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063710A (ja) * 2012-08-29 2014-04-10 Sekisui Chem Co Ltd 電解液及びリチウムイオン二次電池
WO2015050142A1 (ja) * 2013-10-04 2015-04-09 旭化成株式会社 電解液及びリチウムイオン二次電池
WO2015107832A1 (ja) * 2014-01-16 2015-07-23 株式会社カネカ 非水電解質二次電池およびその組電池
JP2016207447A (ja) * 2015-04-22 2016-12-08 株式会社デンソー 非水電解液二次電池
JPWO2014088009A1 (ja) * 2012-12-06 2017-01-05 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
WO2017061464A1 (ja) * 2015-10-09 2017-04-13 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
WO2018116529A1 (en) 2016-12-22 2018-06-28 Murata Manufacturing Co., Ltd. Secondary battery
EP3176864A4 (en) * 2014-08-01 2018-08-15 UBE Industries, Ltd. Non-aqueous electrolyte and power storage device using same
WO2019049775A1 (ja) * 2017-09-05 2019-03-14 三井化学株式会社 硫酸ホウ素リチウム化合物、リチウム二次電池用添加剤、電池用非水電解液、及びリチウム二次電池
JP2020503383A (ja) * 2016-12-23 2020-01-30 エスセエ フランス ホウ素族からの元素をベースにした化合物、および電解質組成物中でのその使用
WO2020246540A1 (ja) 2019-06-04 2020-12-10 三菱ケミカル株式会社 非水系電解液及び非水系電解液電池
JP2022133342A (ja) * 2018-03-23 2022-09-13 富山薬品工業株式会社 蓄電デバイス用電解質及び非水電解液

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5902047B2 (ja) * 2012-06-20 2016-04-13 富士フイルム株式会社 非水二次電池用電解液および非水電解液二次電池
CN104466248B (zh) * 2014-12-17 2017-06-16 东莞新能源科技有限公司 一种电解液及使用该电解液的锂离子电池
US10707526B2 (en) 2015-03-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
KR102068707B1 (ko) * 2015-10-27 2020-01-22 주식회사 엘지화학 비수성 전해질 및 이를 포함하는 리튬 이차전지
CN106025339B (zh) * 2016-06-20 2018-05-22 惠州市豪鹏科技有限公司 一种锂离子电池用电解液及含有该电解液的锂离子电池
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US20210226251A1 (en) * 2020-01-22 2021-07-22 Enevate Corporation Silicon-based energy storage devices with electrolyte containing crown ether based compounds
KR102498193B1 (ko) * 2017-12-12 2023-02-09 샌트랄 글래스 컴퍼니 리미티드 비수전해액 전지용 전해액 및 그것을 이용한 비수전해액 전지
WO2019245325A1 (ko) * 2018-06-21 2019-12-26 파낙스 이텍(주) 이차전지용 전해액 및 이를 포함하는 이차전지
CN110233289B (zh) * 2019-04-04 2023-06-20 李秀艳 一种高电压添加剂和含有该添加剂的电解液及电池
CN112194601A (zh) * 2019-07-08 2021-01-08 杉杉新材料(衢州)有限公司 一种合成硫酸单烃基酯盐衍生物的方法
CN112390732A (zh) * 2019-08-19 2021-02-23 杉杉新材料(衢州)有限公司 一种硫酸单烃基酯锂盐衍生物的合成方法
CN112531207B (zh) * 2019-09-17 2022-06-03 杉杉新材料(衢州)有限公司 高电压锂离子电池用电解液及含该电解液的锂离子电池
CN111029653A (zh) * 2019-12-20 2020-04-17 东莞市杉杉电池材料有限公司 一种锂离子电池电解液及含有该电解液的锂离子电池
JP7337267B2 (ja) * 2019-12-24 2023-09-01 寧徳時代新能源科技股▲分▼有限公司 二次電池、及び該二次電池を備えた装置
US11949072B2 (en) 2020-02-03 2024-04-02 Enevate Corporation Silicon-based energy storage devices with electrolyte containing cyanate based compounds
CN111816921B (zh) * 2020-08-31 2021-08-03 珠海冠宇电池股份有限公司 电解液添加剂、电解液和电池
CN112117493B (zh) * 2020-10-19 2022-05-06 珠海冠宇电池股份有限公司 一种锂离子电池用电解液及包括该电解液的锂离子电池
CN114695960A (zh) * 2020-12-31 2022-07-01 浙江蓝天环保高科技股份有限公司 一种兼具高低温性能的新型添加剂、其制备方法及应用
CN114614094A (zh) * 2022-03-28 2022-06-10 杭州瀛拓科技有限公司 一种电解质及锂离子电池电解液

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307123A (ja) * 1998-02-20 1999-11-05 Hitachi Ltd リチウム2次電池とその電解液及び電気機器
JP2003272703A (ja) 2002-03-20 2003-09-26 Fuji Photo Film Co Ltd 電解質および非水電解質二次電池
JP2007317655A (ja) 2006-04-27 2007-12-06 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
JP2012243696A (ja) * 2011-05-24 2012-12-10 Hitachi Maxell Energy Ltd 非水二次電池
JP2012243485A (ja) * 2011-05-18 2012-12-10 Hitachi Maxell Energy Ltd 非水二次電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW434923B (en) 1998-02-20 2001-05-16 Hitachi Ltd Lithium secondary battery and liquid electrolyte for the battery
DE19951804A1 (de) * 1999-10-28 2001-05-03 Merck Patent Gmbh Komplexsalze zur Anwendung in elektrochemischen Zellen
DE10008955C2 (de) * 2000-02-25 2002-04-25 Merck Patent Gmbh Lithiumfluoralkylphosphate, Verfahren zu ihrer Herstellung und deren Verwendung als Leitsalze
EP3621141A1 (en) * 2006-04-27 2020-03-11 Mitsubishi Chemical Corporation Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery
EP2533344B1 (en) 2010-02-03 2016-07-20 Ube Industries, Ltd. Non-aqueous electrolytic solution, electrochemical element using the same, and alkynyl compound used therefor
CN103052592B (zh) 2010-08-04 2016-02-24 索尔维公司 从POF3或PF5制造LiPO2F2

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307123A (ja) * 1998-02-20 1999-11-05 Hitachi Ltd リチウム2次電池とその電解液及び電気機器
JP2003272703A (ja) 2002-03-20 2003-09-26 Fuji Photo Film Co Ltd 電解質および非水電解質二次電池
JP2007317655A (ja) 2006-04-27 2007-12-06 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
JP2012243485A (ja) * 2011-05-18 2012-12-10 Hitachi Maxell Energy Ltd 非水二次電池
JP2012243696A (ja) * 2011-05-24 2012-12-10 Hitachi Maxell Energy Ltd 非水二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2849272A4

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063710A (ja) * 2012-08-29 2014-04-10 Sekisui Chem Co Ltd 電解液及びリチウムイオン二次電池
JPWO2014088009A1 (ja) * 2012-12-06 2017-01-05 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
US10050306B2 (en) 2013-10-04 2018-08-14 Asahi Kasei Kabushiki Kaisha Electrolyte and lithium-ion secondary battery
WO2015050142A1 (ja) * 2013-10-04 2015-04-09 旭化成株式会社 電解液及びリチウムイオン二次電池
US20160240888A1 (en) 2013-10-04 2016-08-18 Asahi Kasei Kabushiki Kaisha Electrolyte and lithium-ion secondary battery
WO2015107832A1 (ja) * 2014-01-16 2015-07-23 株式会社カネカ 非水電解質二次電池およびその組電池
US10283760B2 (en) 2014-01-16 2019-05-07 Kaneka Corporation Nonaqueous electrolyte secondary battery and battery pack of same
JPWO2015107832A1 (ja) * 2014-01-16 2017-03-23 株式会社カネカ 非水電解質二次電池およびその組電池
EP3176864A4 (en) * 2014-08-01 2018-08-15 UBE Industries, Ltd. Non-aqueous electrolyte and power storage device using same
JP2016207447A (ja) * 2015-04-22 2016-12-08 株式会社デンソー 非水電解液二次電池
WO2017061464A1 (ja) * 2015-10-09 2017-04-13 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
EP3955346A1 (en) 2016-12-22 2022-02-16 Murata Manufacturing Co., Ltd. Secondary battery
WO2018116529A1 (en) 2016-12-22 2018-06-28 Murata Manufacturing Co., Ltd. Secondary battery
JP2020503383A (ja) * 2016-12-23 2020-01-30 エスセエ フランス ホウ素族からの元素をベースにした化合物、および電解質組成物中でのその使用
US11228057B2 (en) 2016-12-23 2022-01-18 Sce France Compounds based on an element from the boron group, and use thereof in electrolyte compositions
JP7055817B2 (ja) 2016-12-23 2022-04-18 エスセエ フランス ホウ素族からの元素をベースにした化合物、および電解質組成物中でのその使用
WO2019049775A1 (ja) * 2017-09-05 2019-03-14 三井化学株式会社 硫酸ホウ素リチウム化合物、リチウム二次電池用添加剤、電池用非水電解液、及びリチウム二次電池
JPWO2019049775A1 (ja) * 2017-09-05 2020-10-29 三井化学株式会社 硫酸ホウ素リチウム化合物、リチウム二次電池用添加剤、電池用非水電解液、及びリチウム二次電池
JP2022133342A (ja) * 2018-03-23 2022-09-13 富山薬品工業株式会社 蓄電デバイス用電解質及び非水電解液
JP7421199B2 (ja) 2018-03-23 2024-01-24 富山薬品工業株式会社 蓄電デバイス用電解質及び非水電解液
WO2020246540A1 (ja) 2019-06-04 2020-12-10 三菱ケミカル株式会社 非水系電解液及び非水系電解液電池
KR20220002636A (ko) 2019-06-04 2022-01-06 미쯔비시 케미컬 주식회사 비수계 전해액 및 비수계 전해액 전지

Also Published As

Publication number Publication date
US9595737B2 (en) 2017-03-14
CN104285332A (zh) 2015-01-14
EP2849272A1 (en) 2015-03-18
US20150125761A1 (en) 2015-05-07
CN104285332B (zh) 2016-08-24
JPWO2013168821A1 (ja) 2016-01-07
EP2849272A4 (en) 2015-10-21
CA2872599A1 (en) 2013-11-14
EP2849272B1 (en) 2017-01-11
KR20150018513A (ko) 2015-02-23
JP6075374B2 (ja) 2017-02-08

Similar Documents

Publication Publication Date Title
JP6075374B2 (ja) 非水電解液、及びそれを用いた蓄電デバイス
JP5979150B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
US9620816B2 (en) Non-aqueous electrolyte solution and electricity-storage device using same
JP6380392B2 (ja) 非水電解液、それを用いた蓄電デバイス、及びそれに用いられるビフェニル基含有カーボネート化合物
JP6035684B2 (ja) 非水電解液及びそれを用いた電気化学素子
JP5907070B2 (ja) リチウム電池又はリチウムイオンキャパシタ用の非水電解液及びそれを用いた電気化学素子
JP6414077B2 (ja) 非水電解液、それを用いた蓄電デバイス、及びそれに用いられるホスホノぎ酸化合物
KR20140116154A (ko) 비수 전해액 및 그것을 이용한 축전 디바이스
WO2015174455A1 (ja) 非水電解液、それを用いた蓄電デバイス、及びそれに用いるリチウム塩
JPWO2017047554A1 (ja) 蓄電デバイス用非水電解液及びそれを用いた蓄電デバイス
JP5822070B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP5589796B2 (ja) 非水電解液、それを用いた電気化学素子、及びそれに用いられるトリアルキルシリルオキシ基含有化合物
JP6015673B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP5704277B1 (ja) 非水電解液およびそれを用いた蓄電デバイス
JP2019169238A (ja) 非水電解液用カチオン、非水電解液、それを用いた蓄電デバイス、及びそれに用いるホスホニウム塩
CN116057745A (zh) 非水电解液和使用其的蓄电设备
JP2016046242A (ja) 非水電解液およびそれを用いた蓄電デバイス
JP7488167B2 (ja) 蓄電デバイス用非水電解液およびそれを用いた蓄電デバイス
JP6303507B2 (ja) 非水電解液およびそれを用いた蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787043

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014514772

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2872599

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2013787043

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013787043

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147031534

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14400180

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE