WO2020246540A1 - 非水系電解液及び非水系電解液電池 - Google Patents

非水系電解液及び非水系電解液電池 Download PDF

Info

Publication number
WO2020246540A1
WO2020246540A1 PCT/JP2020/022088 JP2020022088W WO2020246540A1 WO 2020246540 A1 WO2020246540 A1 WO 2020246540A1 JP 2020022088 W JP2020022088 W JP 2020022088W WO 2020246540 A1 WO2020246540 A1 WO 2020246540A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
mass ppm
less
positive electrode
ion
Prior art date
Application number
PCT/JP2020/022088
Other languages
English (en)
French (fr)
Inventor
立彦 本多
浩之 徳田
川上 大輔
山口 亮
Original Assignee
三菱ケミカル株式会社
Muアイオニックソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社, Muアイオニックソリューションズ株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN202080041062.0A priority Critical patent/CN113906604B/zh
Priority to KR1020217039322A priority patent/KR20220002636A/ko
Priority to EP20818861.5A priority patent/EP3982445A4/en
Priority to JP2021524899A priority patent/JPWO2020246540A1/ja
Publication of WO2020246540A1 publication Critical patent/WO2020246540A1/ja
Priority to US17/457,102 priority patent/US20220093973A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0563Liquid materials, e.g. for Li-SOCl2 cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte solution and a non-aqueous electrolyte battery, and more particularly, a non-aqueous electrolyte solution containing a specific amount of a specific compound and a specific amount of ions of a specific metal element, and a non-aqueous electrolyte solution using the non-aqueous electrolyte solution.
  • a non-aqueous electrolyte solution containing a specific amount of a specific compound and a specific amount of ions of a specific metal element
  • a non-aqueous electrolyte solution using the non-aqueous electrolyte solution Regarding water-based electrolyte batteries.
  • non-aqueous electrolyte batteries such as lithium secondary batteries have been put into practical use in applications of in-vehicle power supplies for driving such as for electric vehicles.
  • Patent Document 1 contains at least one fluorosulfonate represented by M (FSO 3 ) x for the purpose of improving the initial charge capacity and input / output characteristics of a non-aqueous electrolyte secondary battery.
  • a nonaqueous electrolyte further adding to LiPF 6, and the nonaqueous electrolyte and a nonaqueous electrolyte secondary battery according to a specific range of ratio between the fluorosulfonic acid salt and LiPF 6 is disclosed.
  • Patent Document 2 provides a non-aqueous electrolyte solution capable of improving electrochemical properties in a wide temperature range, and a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent for the purpose of providing a storage device using the non-aqueous electrolyte solution.
  • a non-aqueous electrolytic solution containing 0.001 to 5% by mass of a specific acyclic lithium salt in the non-aqueous electrolytic solution, and a power storage device using the non-aqueous electrolytic solution.
  • Patent Document 3 aims to provide a non-aqueous electrolyte secondary battery in which a stable film is formed on the surface of a negative electrode active material (graphite material) and can exhibit higher battery performance.
  • a non-aqueous electrolyte secondary battery comprising an electrode body containing, and a non-aqueous electrolyte solution; the negative electrode includes a negative electrode active material layer mainly composed of a graphite material, and the amount of acidic functional groups of the graphite material. Is 1 ⁇ eq / m 2 or more, and a film containing a sulfur (S) atom and a charge carrier is formed on the surface of the graphite material, and the non-aqueous electrolyte secondary battery is disclosed. Has been done.
  • Patent Document 4 provides a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, and a non-aqueous electrolyte for the purpose of providing a lithium ion secondary battery having excellent durability.
  • a lithium ion secondary battery is disclosed in which tungsten is present on the surface of the substance and lithium fluorosulfonate is added to the non-aqueous electrolyte. According to the document, due to the above configuration, even if the battery is used for a long period of time, the metal element attached to the surface of the positive electrode does not elute into the non-aqueous electrolyte, and a low reaction resistance is maintained for a long period of time. It is stated that it is possible to provide a lithium ion battery having excellent durability.
  • the present invention is excellent in a non-aqueous electrolyte solution and a high-temperature environment, which can improve the charge storage characteristics of the non-aqueous electrolyte battery in a high-temperature environment, even though it is a non-aqueous electrolyte solution containing FSO 3 Li.
  • a non-aqueous electrolyte battery having a charge storage property.
  • the present inventor has further obtained nickel ions (a), cobalt ions (b), copper ions (c), and manganese ions (c) for non-aqueous electrolyte solutions containing FSO 3 Li. It contains at least one metal ion selected from the group consisting of d) and aluminum ion (e), and the content of any of the metal ions (a) to (e) is within a specific range. As a result, they have found that the charge storage characteristics of a non-aqueous electrolyte battery in a high temperature environment can be improved, and have reached the present invention.
  • the concentration of (a) is 1 mass ppm or more and 500 mass ppm or less (ii)
  • the concentration of (b) is 1 mass ppm or more and 500 mass ppm or less (iii)
  • the concentration of (c) is 1 mass ppm or more 500 mass ppm or less (iv)
  • Concentration of the above (d) is 1 mass ppm or more and 100 mass ppm or less (v)
  • Concentration of the above (e) is 1 mass ppm or more and 100 mass ppm or less [2]
  • At least nickel ion (a) The non-aqueous electrolyte solution according to [1].
  • a non-aqueous electrolyte battery comprising a positive electrode and a negative electrode capable of occluding and releasing metal ions and a non-aqueous electrolyte solution, wherein the non-aqueous electrolyte solution contains (1a) FSO 3 Li.
  • (1b) Contains at least one metal ion selected from the group consisting of nickel ion (a), cobalt ion (b), copper ion (c), manganese ion (d) and aluminum ion (e), and (1c).
  • a non-aqueous electrolyte battery which is a non-aqueous electrolyte that satisfies at least one of the following conditions (i) to (v).
  • the concentration of (a) is 1 mass ppm or more and 500 mass ppm or less (ii)
  • the concentration of (b) is 1 mass ppm or more and 500 mass ppm or less (iii)
  • the concentration of (c) is 1 mass ppm or more 500 mass ppm or less (iv)
  • the concentration of (d) is 1 mass ppm or more and 100 mass ppm or less (v)
  • the concentration of (e) is 1 mass ppm or more and 100 mass ppm or less [7]
  • the positive electrode is a current collector and
  • the non-aqueous electrolyte battery according to [6] which has a positive electrode active material layer provided on the current collector, and the positive positive active material is a metal oxide represented by the following composition formula (1).
  • the positive electrode has a current collector and a positive electrode active material layer provided on the current collector, and the positive electrode active material is a metal oxide represented by the following composition formula (2). 7] The non-aqueous electrolyte battery. Li a2 Ni b2 Co c2 M d2 O 2 ...
  • the present inventor has made that the electrolytic solution containing FSO 3 Li further contains nickel ions and the nickel ion content is within a specific range.
  • the charge storage characteristics of a non-aqueous electrolyte battery in a high temperature environment can be improved by using a liquid, and have reached aspect A of the present invention.
  • the aspect A of the present invention provides the specific aspects shown in the following [A1] to [A8].
  • [A1] A non-aqueous electrolyte solution containing FSO 3 Li and containing nickel ions of 1 mass ppm or more and 500 mass ppm or less.
  • [A2] The non-aqueous electrolyte solution according to [A1], wherein the content of FSO 3 Li is 0.001% by mass or more and 10.0% by mass or less.
  • a non-aqueous electrolyte battery comprising a positive electrode and a negative electrode capable of occluding and releasing metal ions and a non-aqueous electrolyte solution, wherein the non-aqueous electrolyte solution contains FSO 3 Li and contains 1 mass ppm or more of nickel ions.
  • a non-aqueous electrolyte battery which is a non-aqueous electrolyte containing 500 mass ppm or less.
  • the positive electrode has a current collector and a positive electrode active material layer provided on the current collector, and the positive electrode active material is a metal oxide represented by the following composition formula (1).
  • the positive electrode has a current collector and a positive electrode active material layer provided on the current collector, and the positive electrode active material is a metal oxide represented by the following composition formula (2).
  • [A7] The non-aqueous electrolyte battery according to [A3], [A5] or [A6], wherein the positive electrode is an NMC positive electrode, and the content of nickel element in the NMC positive electrode is 40 mol% or more.
  • [A8] The non-aqueous electrolyte battery according to any one of [A3] to [A7], wherein the content of FSO 3 Li in the non-aqueous electrolyte is 0.001% by mass or more and 10.0% by mass or less. ..
  • the present inventor has made that the non-aqueous electrolyte solution containing FSO 3 Li further contains cobalt ions and the cobalt ion content is within a specific range.
  • the charge storage characteristics of a non-aqueous electrolyte battery in a high temperature environment can be improved by using an aqueous electrolyte, and have reached aspect B of the present invention.
  • the aspect B of the present invention provides the specific aspects shown in the following [B1] to [B8].
  • [B1] A non-aqueous electrolyte solution containing FSO 3 Li and containing cobalt ions of 1 mass ppm or more and 500 mass ppm or less.
  • [B2] The non-aqueous electrolyte solution according to [B1], wherein the content of FSO 3 Li is 0.001% by mass or more and 10.0% by mass or less.
  • a non-aqueous electrolyte battery comprising a positive electrode and a negative electrode capable of occluding and releasing metal ions and a non-aqueous electrolyte solution, wherein the non-aqueous electrolyte solution contains FSO 3 Li and contains 1 mass ppm or more of cobalt ions.
  • a non-aqueous electrolyte battery which is a non-aqueous electrolyte containing 500 mass ppm or less.
  • the positive electrode has a current collector and a positive electrode active material layer provided on the current collector, and the positive electrode active material is a metal oxide represented by the following composition formula (1). B3]. The non-aqueous electrolyte battery.
  • the positive electrode has a current collector and a positive electrode active material layer provided on the current collector, and the positive electrode active material is a metal oxide represented by the following composition formula (2). B3].
  • the non-aqueous electrolyte battery Li a2 Ni b2 Co c2 M d2 O 2 ...
  • the present inventor has found that the non-aqueous electrolyte solution containing FSO 3 Li further contains copper ions and the copper ion content is within a specific range.
  • the charge storage characteristics of a non-aqueous electrolyte battery in a high temperature environment can be improved by using an aqueous electrolyte, and have reached aspect C of the present invention.
  • the aspect C of the present invention provides the specific aspects shown in the following [C1] to [C8].
  • [C1] A non-aqueous electrolyte solution containing FSO 3 Li and containing copper ions of 1 mass ppm or more and 500 mass ppm or less.
  • [C2] The non-aqueous electrolyte solution according to [C1], wherein the content of FSO 3 Li is 0.001% by mass or more and 10.0% by mass or less.
  • a non-aqueous electrolyte battery comprising a positive electrode and a negative electrode capable of occluding and releasing metal ions and a non-aqueous electrolyte solution, wherein the non-aqueous electrolyte solution contains FSO 3 Li and contains 1 mass ppm or more of copper ions.
  • a non-aqueous electrolyte battery which is a non-aqueous electrolyte containing 500 mass ppm or less.
  • the positive electrode has a current collector and a positive electrode active material layer provided on the current collector, and the positive electrode active material is a metal oxide represented by the following composition formula (1). C3].
  • the non-aqueous electrolyte battery comprising a positive electrode and a negative electrode capable of occluding and releasing metal ions and a non-aqueous electrolyte solution, wherein the non-aqueous electrolyte solution contains FSO 3 Li and contains 1 mass ppm or more of copper ions.
  • the positive electrode has a current collector and a positive electrode active material layer provided on the current collector, and the positive electrode active material is a metal oxide represented by the following composition formula (2). C3].
  • the non-aqueous electrolyte battery Li a2 Ni b2 Co c2 M d2 O 2 ...
  • the present inventor has made that the non-aqueous electrolyte solution containing FSO 3 Li further contains manganese ions and the manganese ion content is within a specific range.
  • the charge storage characteristics of a non-aqueous electrolyte battery in a high temperature environment can be improved by using an aqueous electrolyte, and have reached aspect D of the present invention.
  • the aspect D of the present invention provides the specific aspects shown in the following [D1] to [D8].
  • [D1] A non-aqueous electrolyte solution containing FSO 3 Li and containing manganese ions of 1 mass ppm or more and 100 mass ppm or less.
  • [D2] The non-aqueous electrolyte solution according to [D1], wherein the content of FSO 3 Li is 0.001% by mass or more and 10.0% by mass or less.
  • a non-aqueous electrolyte battery comprising a positive electrode and a negative electrode capable of occluding and releasing metal ions and a non-aqueous electrolyte solution, wherein the non-aqueous electrolyte solution contains FSO 3 Li and contains manganese ions in an amount of 1 mass ppm or more.
  • a non-aqueous electrolyte battery which is a non-aqueous electrolyte containing 100% by mass or less.
  • the positive electrode has a current collector and a positive electrode active material layer provided on the current collector, and the positive electrode active material is a metal oxide represented by the following composition formula (1). D3].
  • the non-aqueous electrolyte battery comprising a positive electrode and a negative electrode capable of occluding and releasing metal ions and a non-aqueous electrolyte solution, wherein the non-aqueous electrolyte solution contains FSO 3 Li and contains manganese ions in an amount of 1 mass ppm or
  • the positive electrode has a current collector and a positive electrode active material layer provided on the current collector, and the positive electrode active material is a metal oxide represented by the following composition formula (2). D3].
  • the non-aqueous electrolyte battery Li a2 Ni b2 Co c2 M d2 O 2 ...
  • [D7] The non-aqueous electrolyte battery according to [D3], [D5] or [D6], wherein the positive electrode is an NMC positive electrode, and the content of nickel element in the NMC positive electrode is 40 mol% or more.
  • [D8] The non-aqueous electrolyte battery according to any one of [D3] to [D7], wherein the content of FSO 3 Li in the non-aqueous electrolyte is 0.001% by mass or more and 10.0% by mass or less. ..
  • the present inventor has determined that the non-aqueous electrolyte solution containing FSO 3 Li further contains aluminum ions and the content of aluminum ions is within a specific range. As a result, it was found that the charge storage characteristics of the non-aqueous electrolyte battery in a high temperature environment can be improved, and the aspect E of the present invention was reached.
  • the aspect E of the present invention provides the specific aspects shown in the following [E1] to [E8].
  • [E1] A non-aqueous electrolyte solution containing FSO 3 Li and containing aluminum ions in an amount of 1 mass ppm or more and 100 mass ppm or less.
  • [E2] The non-aqueous electrolyte solution according to [E1], wherein the content of FSO 3 Li is 0.001% by mass or more and 10.0% by mass or less.
  • a non-aqueous electrolyte battery comprising a positive electrode and a negative electrode capable of occluding and releasing metal ions and a non-aqueous electrolyte solution, wherein the non-aqueous electrolyte solution contains FSO 3 Li and contains 1 mass ppm or more of aluminum ions.
  • a non-aqueous electrolyte battery which is a non-aqueous electrolyte containing 100% by mass or less.
  • the positive electrode has a current collector and a positive electrode active material layer provided on the current collector, and the positive electrode active material is a metal oxide represented by the following composition formula (1).
  • the positive electrode has a current collector and a positive electrode active material layer provided on the current collector, and the positive electrode active material is a metal oxide represented by the following composition formula (2).
  • non-aqueous electrolyte solution of the present invention it is possible to obtain a non-aqueous electrolyte battery having improved charge storage characteristics in a high temperature environment.
  • Non-aqueous electrolyte solution contains FSO 3 Li and contains ions of a specific metal element in an amount in a specific range.
  • the non-aqueous electrolyte solution according to the embodiment of the present invention will be described in detail. The description of each item of the present specification is applicable to all aspects except the description regarding ions of a specific metal element.
  • the non-aqueous electrolyte solution of this embodiment contains FSO 3 Li.
  • the content of FSO 3 Li is preferably 0.001% by mass or more, more preferably 0.005% by mass or more, still more preferably 0.010% by mass or more, and particularly preferably 0.10% by mass in the non-aqueous electrolyte solution.
  • % Or more while the upper limit is not particularly limited, but is preferably 10.0% by mass or less, more preferably 7.0% by mass or less, still more preferably 5.0% by mass or less, and particularly still more preferable. Is 4.0% by mass or less, particularly preferably 3.0% by mass or less.
  • FSO 3 Li When the content of FSO 3 Li is 10.0% by mass or less in the non-aqueous electrolyte solution, the negative electrode reduction reaction does not increase as the internal resistance of the non-aqueous electrolyte battery increases, which is preferable. When it is 0.001% by mass or more, it is preferable because the effect of the present application of containing FSO 3 Li is produced. Therefore, within the above range, the charge storage characteristics in a high temperature environment can be improved by suppressing the negative electrode reduction reaction in a high temperature environment.
  • FSO 3 Li may be synthesized and used by a known method, or a commercially available product may be obtained and used.
  • detection method suppressor with conductivity detection method (12.5mM H 2 SO 4)
  • detects a SO 4 2-ions separated by, FSO 3 - ions of SO 4 2-ions from the calibration curve, the molar sensitivity ratio [k (SO 4 2-) / k (FSO 3 -)] 2.0 in terms as FSO 3 - can be quantified ions.
  • FSO 3 - can be regarded as the amount of ions to the amount of FSO 3 Li.
  • a compound containing FSO 3 - ion can be used as a specific metal ion source.
  • Al (FSO 3 ) 3 may be used as the aluminum ion source.
  • the amount of FSO 3 Li may be obtained by subtracting the amount of FSO 3 ⁇ ions derived from Al (FSO 3 ) 3 from the total amount of FSO 3 ⁇ ions in the non-aqueous electrolyte solution.
  • FSO 3 nonaqueous electrolytic solution - the amount of ions may be regarded as the amount of FSO 3 Li.
  • the non-aqueous electrolyte solution according to one embodiment of the present invention is selected from the group consisting of nickel ions (a), cobalt ions (b), copper ions (c), manganese ions (d), and aluminum ions (e). It contains at least one metal ion and satisfies at least one of the following conditions (i) to (v).
  • the concentration of (a) is 1 mass ppm or more and 500 mass ppm or less (ii)
  • the concentration of (b) is 1 mass ppm or more and 500 mass ppm or less (iii)
  • the concentration of (c) is 1 mass ppm or more and 500 mass ppm or less below (iv)
  • the concentration of (d) is 1 mass ppm or more and 100 mass ppm or less (v)
  • the concentration of (e) is 1 mass ppm or more and 100 mass ppm or less
  • the specific ion (a) in the non-aqueous electrolyte solution )-(E) is the concentration of the ion of a specific metal element in the non-aqueous electrolyte solution (100% by mass).
  • the valence of the ions of a specific metal element may be any valence, or may be a combination of metal ions having different valences. Further, it may contain a plurality of types of metal ions.
  • a member containing the non-aqueous electrolyte can be taken out from the non-aqueous electrolyte battery, and the non-aqueous electrolyte can be extracted and measured.
  • the non-aqueous electrolyte solution can be extracted by a centrifuge, or the non-aqueous electrolyte solution can be extracted using an organic solvent.
  • Metal elements ie metal ions
  • ICP-AES inductively coupled high frequency plasma emission spectroscopy
  • iCAP 7600duo inductively coupled high frequency plasma emission spectroscopy
  • the non-aqueous electrolyte solution according to the embodiment of the present invention contains nickel ions in an amount of 1 mass ppm or more and 500 mass ppm or less.
  • the content of nickel ions in the non-aqueous electrolyte solution is the concentration of nickel element ions in the non-aqueous electrolyte solution.
  • the valence of nickel ions contained in the non-aqueous electrolyte solution is not particularly limited, and may be divalent or trivalent. Further, the non-aqueous electrolyte solution according to the embodiment of the present invention may contain both divalent nickel ions (Ni 2+ ) and trivalent nickel ions (Ni 3+ ) in an arbitrary ratio.
  • the content of nickel ions in the non-aqueous electrolyte solution is usually 1 mass ppm or more, preferably 2 mass ppm or more, more preferably 3 mass ppm or more, still more preferably 5 mass ppm or more, and particularly preferably 10 mass ppm or more. It is ppm or more, particularly preferably 25 mass ppm or more, while the upper limit is usually 500 mass ppm or less, preferably 400 mass ppm or less, more preferably 350 mass ppm or less, still more preferably 300 mass ppm or less, particularly still more preferable. Is 220 mass ppm or less, particularly preferably 150 mass ppm or less.
  • the compound serving as a nickel ion source one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • Examples of the ligand include elements constituting the battery, such as cyclic carbonates such as ethylene carbonate, propylene carbonate and fluoroethylene carbonate, dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate, which are used as non-aqueous solvents.
  • examples thereof include chain carbonates, carboxylic acid esters such as methyl acetate, ether compounds, and organic solvents such as sulfone compounds.
  • Examples thereof include nickel halides such as Ni (CH 3 COO) 2 , Ni (OH) 2 , NiO, NiCO 3 , NiSO 4 , and nickel chloride.
  • the nickel ions may be those eluted from the constituent elements of the battery, such as a positive electrode active material, a negative electrode active material, a positive electrode current collector, a negative electrode current collector or an exterior body, which may contain a nickel element.
  • Nickel ions usually form a salt with a counter anion in a non-aqueous electrolyte solution.
  • counter anions other than FSO 3 - ion may be coordinated with nickel ions to form a complex, or a salt may be formed with one or more counter anions.
  • the counter anion include preferably elements constituting the battery, e.g., PF 6 from LiPF 6 - ions, LiPO 2 F 2 from the PO 2 F 2 - and ion-fluoro phosphate ion, from FSO 3 Li
  • FSO 3 - ion fluoride ion, carbonate ion, carboxylate ion, sulfonate ion, sulfonylimide ion, (oxalate) borate ion and the like, and more preferably, PF 6 - ion, FSO 3 - ion or foot.
  • Examples include compound ions.
  • FSO 3 - ion is particularly preferable because it has a higher coordinating power to nickel ion than PF 6 - ion.
  • FSO 3 - ions are coordinated or interact with nickel ions to withstand reduction of nickel ions. It is presumed that the charge storage characteristics in a high temperature environment can be improved by improving the properties and suppressing the negative electrode reduction reaction in a high temperature environment.
  • the non-aqueous electrolyte solution according to the embodiment of the present invention contains cobalt ions of 1 mass ppm or more and 500 mass ppm or less.
  • the content of cobalt ions in the non-aqueous electrolyte solution is the concentration of cobalt element ions in the non-aqueous electrolyte solution.
  • the valence of the cobalt ion contained in the non-aqueous electrolyte solution is not particularly limited, and may be divalent or trivalent.
  • the non-aqueous electrolyte solution according to the embodiment of the present invention may contain both divalent cobalt ions (Co 2+ ) and trivalent cobalt ions (Co 3+ ) in an arbitrary ratio.
  • the content of cobalt ions in the non-aqueous electrolyte solution is usually 1 mass ppm or more, preferably 2 mass ppm or more, more preferably 3 mass ppm or more, still more preferably 5 mass ppm or more, and particularly preferably 10 mass ppm or more.
  • ppm or more is usually 500 mass ppm or less, preferably 400 mass ppm or less, more preferably 350 mass ppm or less, still more preferably 300 mass ppm or less, particularly still more preferable.
  • the compound serving as a cobalt ion source one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the ligand include elements constituting the battery, such as cyclic carbonates such as ethylene carbonate, propylene carbonate and fluoroethylene carbonate, dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate, which are used as non-aqueous solvents.
  • Examples thereof include chain carbonates, carboxylic acid esters such as methyl acetate, ether compounds, and organic solvents such as sulfone compounds.
  • cobalt halides such as cobalt fluoride (II), cobalt fluoride (III), cobalt bromide (II) and cobalt chloride (II).
  • the cobalt ion may be one eluted from a battery component such as a positive electrode active material, a negative electrode active material, a positive electrode current collector, a negative electrode current collector or an exterior body, which may contain a cobalt element.
  • Cobalt ions usually form salts with counter anions in non-aqueous electrolytes.
  • counter anions other than FSO 3 - ion may coordinate with cobalt ions to form a complex, or may form a salt with one or more counter anions.
  • the counter anion include preferably elements constituting the battery, e.g., PF 6 from LiPF 6 - ions, LiPO 2 F 2 from the PO 2 F 2 - and ion-fluoro phosphate ion, from FSO 3 Li
  • FSO 3 - ion fluoride ion, carbonate ion, carboxylate ion, sulfonate ion, sulfonylimide ion, (oxalate) borate ion and the like, and more preferably, PF 6 - ion, FSO 3 - ion or foot.
  • Examples include compound ions.
  • FSO 3 - ion is particularly preferable because it has a higher coordinating power to cobalt ion than PF 6 - ion.
  • FSO 3 - ion coordinates or interacts with cobalt ion, thereby reducing the reduction of cobalt ion. It is presumed that the charge storage characteristics in a high temperature environment can be improved by improving the properties and suppressing the negative electrode reduction reaction in a high temperature environment.
  • the non-aqueous electrolyte solution according to the embodiment of the present invention contains copper ions in an amount of 1 mass ppm or more and 500 mass ppm or less.
  • the content of copper ions in the non-aqueous electrolyte solution is the concentration of copper element ions in the non-aqueous electrolyte solution.
  • the valence of copper ions contained in the non-aqueous electrolyte solution is not particularly limited, and may be monovalent or divalent. Further, the non-aqueous electrolyte solution according to the embodiment of the present invention may contain both monovalent copper ions (Cu + ) and divalent copper ions (Cu 2+ ) in an arbitrary ratio.
  • the content of copper ions in the non-aqueous electrolyte solution is usually 1 mass ppm or more, preferably 2 mass ppm or more, more preferably 3 mass ppm or more, still more preferably 5 mass ppm or more, and particularly preferably 10 mass ppm or more. It is ppm or more, particularly preferably 25 mass ppm or more, while the upper limit is usually 500 mass ppm or less, preferably 400 mass ppm or less, more preferably 350 mass ppm or less, still more preferably 300 mass ppm or less, particularly still more preferable. Is 220 mass ppm or less, particularly preferably 150 mass ppm or less.
  • the compound serving as a copper ion source one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the ligand examples include elements constituting the battery, such as cyclic carbonates such as ethylene carbonate, propylene carbonate and fluoroethylene carbonate, dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate, which are used as non-aqueous solvents.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate and fluoroethylene carbonate
  • dimethyl carbonate ethyl methyl carbonate and diethyl carbonate
  • non-aqueous solvents examples include chain carbonates, carboxylic acid esters such as methyl acetate, ether compounds, and organic solvents such as sulfone compounds.
  • the copper ions may be those eluted from the constituent elements of the battery, such as a positive electrode active material, a negative electrode active material, a positive electrode current collector, a negative electrode current collector or an exterior body, which may contain a copper element. Copper ions usually form salts with counter anions in non-aqueous electrolytes.
  • counter anions other than FSO 3 - ion may be coordinated with copper ions to form a complex, or a salt may be formed with one or more counter anions.
  • the counter anion include preferably elements constituting the battery, e.g., PF 6 from LiPF 6 - ions, LiPO 2 F 2 from the PO 2 F 2 - and ion-fluoro phosphate ion, from FSO 3 Li Examples thereof include FSO 3 - ion, fluoride ion, carbonate ion, carboxylate ion, sulfonate ion, sulfonylimide ion, (oxalate) borate ion and the like, and more preferably, PF 6 - ion, FSO 3 - ion or foot.
  • Examples include compound ions.
  • FSO 3 - ion is particularly preferable because it has a higher coordination force with copper ion than PF 6 - ion.
  • FSO 3 - ions fluorosulfonic acid ions
  • the reduction resistance of copper ions is improved and the negative electrode reduction reaction in a high temperature environment is suppressed, so that the charge storage characteristics in a high temperature environment can be improved.
  • the non-aqueous electrolyte solution according to the embodiment of the present invention contains manganese ions in an amount of 1 mass ppm or more and 100 mass ppm or less.
  • the content of manganese ions in the non-aqueous electrolyte solution is the concentration of manganese element ions in the non-aqueous electrolyte solution.
  • the valence of manganese ions contained in the non-aqueous electrolyte solution is not particularly limited, and may be divalent or trivalent.
  • the non-aqueous electrolyte solution according to the embodiment of the present invention may contain both divalent manganese ions (Mn 2+ ) and trivalent manganese ions (Mn 3+ ) in an arbitrary ratio.
  • the content of manganese ions in the non-aqueous electrolyte solution is usually 1 mass ppm or more, preferably 2 mass ppm or more, more preferably 3 mass ppm or more, still more preferably 5 mass ppm or more, and particularly preferably 10 mass ppm or more.
  • ppm or more is ppm or more, particularly preferably 25 mass ppm or more, while the upper limit is usually 100 mass ppm or less, preferably 95 mass ppm or less, more preferably 90 mass ppm or less, still more preferably 85 mass ppm or less, particularly still more preferable.
  • the compound serving as a manganese ion source one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the ligand include elements constituting the battery, such as cyclic carbonates such as ethylene carbonate, propylene carbonate and fluoroethylene carbonate, dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate, which are used as non-aqueous solvents.
  • Examples thereof include chain carbonates, carboxylic acid esters such as methyl acetate, ether compounds, and organic solvents such as sulfone compounds.
  • the manganese ion may be eluted from a battery component such as a positive electrode active material, a negative electrode active material, a positive electrode current collector, a negative electrode current collector or an exterior body which may contain a manganese element.
  • a battery component such as a positive electrode active material, a negative electrode active material, a positive electrode current collector, a negative electrode current collector or an exterior body which may contain a manganese element.
  • Manganese ions usually form salts with counter anions in non-aqueous electrolytes.
  • counter anions other than FSO 3 - ion may be coordinated with manganese ions to form a complex, or a salt may be formed with one or more counter anions.
  • the counter anion include preferably elements constituting the battery, e.g., PF 6 from LiPF 6 - ions, LiPO 2 F 2 from the PO 2 F 2 - and ion-fluoro phosphate ion, from FSO 3 Li
  • FSO 3 - ion fluoride ion, carbonate ion, carboxylate ion, sulfonate ion, sulfonylimide ion, (oxalate) borate ion and the like, and more preferably, PF 6 - ion, FSO 3 - ion or foot.
  • Examples include compound ions.
  • FSO 3 - ion is particularly preferable because it has a higher coordination force with manganese ion than PF 6 - ion.
  • FSO 3 - ion coordinates or interacts with manganese ion, thereby reducing reduction of manganese ion. It is presumed that the charge storage characteristics in a high temperature environment can be improved by improving the properties and suppressing the negative electrode reduction reaction in a high temperature environment.
  • the non-aqueous electrolyte solution according to the embodiment of the present invention contains aluminum ions in an amount of 1 mass ppm or more and 100 mass ppm or less.
  • the content of aluminum ions in the non-aqueous electrolyte solution is the concentration of aluminum element ions in the non-aqueous electrolyte solution.
  • the content of aluminum ions in the non-aqueous electrolyte solution is usually 1 mass ppm or more, preferably 2 mass ppm or more, more preferably 3 mass ppm or more, still more preferably 5 mass ppm or more, and particularly preferably 10 mass ppm or more.
  • ppm or more is ppm or more, particularly preferably 25 mass ppm or more, while the upper limit is usually 100 mass ppm or less, preferably 90 mass ppm or less, more preferably 80 mass ppm or less, still more preferably 70 mass ppm or less, particularly preferably. It is 60 mass ppm or less.
  • the content of aluminum ions is higher than 100 mass ppm, the internal resistance of the non-aqueous electrolyte battery increases due to the increase in the negative electrode reduction reaction, while when the content is lower than 1 mass ppm, aluminum ions are contained. The effect is low because the difference from the case without it is small.
  • the compound serving as an aluminum ion source one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the ligand elements constituting the battery are preferably mentioned, and for example, cyclic carbonates such as ethylene carbonate, propylene carbonate and fluoroethylene carbonate used as non-aqueous solvents; dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate and the like.
  • Examples thereof include organic solvents such as chain carbonates; carboxylic acid esters such as methyl acetate; ether compounds; and sulfone compounds ;.
  • the compounds that serve as aluminum ion sources include Al (FSO 3 ) 3 ; Al (CH 3 COO) 3 ; Al (CF 3 COO) 3 ; Al (CF 3 SO 3 ) 3 ; Tris (2,4-pentangio).
  • Aluminum alkoxides such as aluminum, aluminum ethoxydo, aluminum isopropoxide, aluminum-n-butoxide; alkylaluminum such as trimethylaluminum; Al halides such as aluminum chloride; and other aluminum salts can also be mentioned.
  • the aluminum ion may be eluted from a battery component such as a positive electrode active material, a negative electrode active material, a positive electrode current collector, a negative electrode current collector or an exterior body, which may contain an aluminum element.
  • a battery component such as a positive electrode active material, a negative electrode active material, a positive electrode current collector, a negative electrode current collector or an exterior body, which may contain an aluminum element.
  • Aluminum ions usually form a salt with a counter anion in a non-aqueous electrolyte solution.
  • FSO 3 - counter anion other than ion is coordinated to the aluminum ion may form a complex, and aluminum ions and one or more counter anions may form a salt ..
  • the counter anion, elements constituting the battery also preferably mentioned, for example, LiPF 6 from the PF 6 - ions, LiPO 2 F 2 from the PO 2 F 2 - and ion-fluoro phosphate ions, derived from FSO 3 Li
  • LiPF 6 from the PF 6 - ions LiPO 2 F 2 from the PO 2 F 2 - and ion-fluoro phosphate ions, derived from FSO 3 Li
  • FSO 3 - ion, fluoride ion, carbonate ion, carboxylic acid ion, sulfonate ion, sulfonylimide ion, (oxalate) borate ion and the like and more preferably, PF 6 - ion and FSO 3 - and ion or fluoride ion.
  • FSO 3 - ion is particularly preferable because it has a higher coordinating power to aluminum ion than PF 6 - ion.
  • FSO 3 - ions coordinate or interact with the aluminum ions to withstand reduction of the aluminum ions. It is presumed that the charge storage characteristics in a high temperature environment can be improved by improving the properties and suppressing the negative electrode reduction reaction in a high temperature environment.
  • a member containing the non-aqueous electrolyte can be taken out from the non-aqueous electrolyte battery, and the non-aqueous electrolyte can be extracted and measured.
  • the non-aqueous electrolyte solution can be extracted by a centrifuge, or the non-aqueous electrolyte solution can be extracted by using an organic solvent.
  • the extracted non-aqueous electrolyte solution is used to quantify Li and acid concentration matching calibration curves for Li and acid concentration matching calibration curves by inductively coupled high frequency plasma emission spectroscopy (ICP-AES, eg Thermo Fisher Scientific, iCAP 7600duo).
  • ICP-AES inductively coupled high frequency plasma emission spectroscopy
  • the non-aqueous electrolyte solution contains at least one metal ion selected from the group consisting of nickel ion, cobalt ion, copper ion, manganese ion, and aluminum ion, the total of the metal ions.
  • the content is usually 1 mass ppm or more, preferably 2 mass ppm or more, more preferably 3 mass ppm or more, still more preferably 5 mass ppm or more, and particularly still more preferably 10 mass ppm or more in the non-aqueous electrolyte solution.
  • the non-aqueous electrolyte solution according to the embodiment of the present invention contains at least nickel ions, and preferably contains nickel ions in an amount of 30% by mass or more, more preferably 40% by mass or more, based on the total amount of the above five types of metal ions. Including.
  • non-aqueous electrolyte solution contains a plurality of metal ions selected from the group consisting of nickel ions, cobalt ions, copper ions, manganese ions, and aluminum ions, at least the following It is preferable to include a combination of metal ions shown in.
  • each metal ion in the above particularly preferred combination is as follows.
  • Nickel ion and cobalt ion; nickel ion is usually 1 mass ppm or more, preferably 10 mass ppm or more, more preferably 20 mass ppm or more, further preferably 25 mass ppm or more, and usually 300 mass ppm or less, preferably 220 mass ppm or more. It is ppm or less, more preferably 150 mass ppm or less, and cobalt ions are usually 1 mass ppm or more, preferably 5 mass ppm or more, more preferably 10 mass ppm or more, usually 300 mass ppm or less, preferably 220 mass ppm or less. Hereinafter, it is more preferably 150 mass ppm or less.
  • Nickel ion and copper ion are usually 1 mass ppm or more, preferably 10 mass ppm or more, more preferably 20 mass ppm or more, usually 300 mass ppm or less, preferably 220 mass ppm or less, more preferably 150 mass ppm or more. It is usually 1 mass ppm or less, and the copper ion is usually 1 mass ppm or more, preferably 10 mass ppm or more, more preferably 25 mass ppm or more, usually 300 mass ppm or less, preferably 220 mass ppm or less, more preferably 150 mass ppm or less. It is as follows.
  • Nickel ion and manganese ion are usually 1 mass ppm or more, preferably 10 mass ppm or more, preferably 25 mass ppm or more, usually 300 mass ppm or less, preferably 220 mass ppm or less, more preferably 150 mass ppm or more.
  • the manganese ion is usually 1 mass ppm or more, preferably 2 mass ppm or more, usually 100 mass ppm or less, preferably 80 mass ppm or less, and more preferably 75 mass ppm or less.
  • Is 150 mass ppm or less, and cobalt ions are usually 1 mass ppm or more, preferably 5 mass ppm or more, more preferably 10 mass ppm or more, usually 300 mass ppm or less, preferably 220 mass ppm or less, more preferably.
  • the manganese ion is preferably 1 mass ppm or more, usually 100 mass ppm or less, preferably 80 mass ppm or less, and more preferably 75 mass ppm or less.
  • Nickel ion, copper ion and manganese ion; nickel ion is usually 1 mass ppm or more, preferably 5 mass ppm or more, more preferably 10 mass ppm or more, usually 300 mass ppm or less, preferably 220 mass ppm or less, more preferably.
  • Is 150 mass ppm or less, copper ions are usually 1 mass ppm or more, preferably 10 mass ppm or more, usually 300 mass ppm or less, preferably 220 mass ppm or less, preferably 150 mass ppm or less, and manganese ions.
  • Copper ions are usually 1 mass ppm or more, preferably 5 mass ppm or more, more preferably 10 mass ppm or more, usually 300 mass ppm or less, preferably 220 mass ppm or less, preferably 150 mass ppm or less, and manganese ions. Is preferably 1 mass ppm or more, usually 100 mass ppm or less, preferably 80 mass ppm or less, and more preferably 75 mass ppm or less.
  • the non-aqueous electrolyte solution of the present embodiment usually contains an electrolyte as a component thereof, like a general non-aqueous electrolyte solution.
  • the electrolyte used in the non-aqueous electrolyte solution of the present embodiment is not particularly limited, and known electrolytes can be used. Hereinafter, specific examples of the electrolyte will be described in detail.
  • the lithium salt is not particularly limited as long as it is known to be used for this purpose, and any one or more lithium salts can be used, and specific examples thereof include the following.
  • lithium fluoroborate salts such as LiBF 4 ; Lithium fluorophosphates such as LiPF 6 and LiPO 2 F 2 ; Lithium tungstic acid salts such as LiWOF 5 ; Lithium carboxylic acid salts such as CF 3 CO 2 Li; Lithium sulfonic acid salts such as CH 3 SO 3 Li; Lithium imide salts such as LiN (FSO 2 ) 2 and LiN (CF 3 SO 2 ) 2 ; Licymethide salts such as LiC (FSO 2 ) 3 ; Lithium oxalate salts such as lithium difluorooxalate borate; In addition, fluorine-containing organic lithium salts such as LiPF 4 (CF 3 ) 2 ; And so on.
  • Lithium fluoroborate salts, lithium fluorophosphate salts, lithium sulfonate salts from the viewpoint of further enhancing the effect of improving charge / discharge rate characteristics and impedance characteristics in addition to the effect of improving charge storage characteristics in a high temperature environment obtained by the present invention.
  • the total concentration of these electrolytes in the non-aqueous electrolyte solution is not particularly limited, but is usually 8% by mass or more, preferably 8.5% by mass or more, more preferably 9% by mass, based on the total amount of the non-aqueous electrolyte solution. % Or more.
  • the upper limit thereof is usually 18% by mass or less, preferably 17% by mass or less, and more preferably 16% by mass or less.
  • the non-aqueous electrolyte solution of the present embodiment usually contains a non-aqueous solvent that dissolves the above-mentioned electrolyte as its main component.
  • the non-aqueous solvent used here is not particularly limited, and a known organic solvent can be used.
  • the organic solvent include saturated cyclic carbonates, chain carbonates, carboxylic acid esters, ether compounds, sulfone compounds and the like. Although not particularly limited to these, a saturated cyclic carbonate, a chain carbonate or a carboxylic acid ester is preferable, and a saturated cyclic carbonate or a chain carbonate is more preferable.
  • a combination of two or more non-aqueous solvents a combination of two or more selected from the group consisting of saturated cyclic carbonate, chain carbonate, and carboxylic acid ester is preferable, and a combination of saturated cyclic carbonate or chain carbonate is more preferable. ..
  • saturated cyclic carbonate usually include those having an alkylene group having 2 to 4 carbon atoms, and a saturated cyclic carbonate having 2 to 3 carbon atoms is preferably used from the viewpoint of improving battery characteristics resulting from an improvement in the degree of lithium ion dissociation. .. Further, the saturated cyclic carbonate may be a cyclic carbonate having a fluorine atom such as monofluoroethylene carbonate.
  • saturated cyclic carbonate examples include ethylene carbonate, propylene carbonate, butylene carbonate and the like. Of these, ethylene carbonate and propylene carbonate are preferable, and ethylene carbonate, which is difficult to be oxidized and reduced, is more preferable.
  • saturated cyclic carbonate one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the content of the saturated cyclic carbonate is not particularly limited and is arbitrary as long as the effect of the present invention is not significantly impaired, but the lower limit is usually 3% by volume or more, preferably 5 by volume, based on the total amount of the solvent of the non-aqueous electrolyte solution. It is more than% by volume. By setting this range, the decrease in electrical conductivity due to the decrease in the dielectric constant of the non-aqueous electrolyte solution is avoided, and the large current discharge characteristics, stability with respect to the negative electrode, and cycle characteristics of the non-aqueous electrolyte battery are in a good range. It becomes easy to do.
  • the upper limit is usually 90% by volume or less, preferably 85% by volume or less, and more preferably 80% by volume or less.
  • the volume% in the present invention means the volume at 25 ° C. and 1 atm.
  • Chain carbonate As the chain carbonate, one having 3 to 7 carbon atoms is usually used, and in order to adjust the viscosity of the electrolytic solution in an appropriate range, a chain carbonate having 3 to 5 carbon atoms is preferably used.
  • chain carbonate dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, diisopropyl carbonate, n-propylisopropyl carbonate, ethylmethyl carbonate, methyl-n-propyl carbonate, n-butylmethyl carbonate, etc.
  • examples thereof include isobutylmethyl carbonate, t-butylmethyl carbonate, ethyl-n-propyl carbonate, n-butylethyl carbonate, isobutylethyl carbonate, t-butylethyl carbonate and the like.
  • dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, diisopropyl carbonate, n-propylisopropyl carbonate, ethylmethyl carbonate and methyl-n-propyl carbonate are preferable, and dimethyl carbonate, diethyl carbonate and ethylmethyl carbonate are particularly preferable. is there.
  • chain carbonates having a fluorine atom can also be preferably used.
  • the number of fluorine atoms contained in the fluorinated chain carbonate is not particularly limited as long as it is 1 or more, but is usually 6 or less, preferably 4 or less.
  • the fluorinated chain carbonate has a plurality of fluorine atoms, they may be bonded to the same carbon or different carbons.
  • the fluorinated chain carbonate include a fluorinated dimethyl carbonate derivative, a fluorinated ethyl methyl carbonate derivative, and a fluorinated diethyl carbonate derivative.
  • fluorinated dimethyl carbonate derivative examples include fluoromethylmethyl carbonate, difluoromethylmethyl carbonate, trifluoromethylmethyl carbonate, bis (fluoromethyl) carbonate, bis (difluoro) methyl carbonate, bis (trifluoromethyl) carbonate and the like.
  • fluorinated ethyl methyl carbonate derivative examples include 2-fluoroethyl methyl carbonate, ethyl fluoromethyl carbonate, 2,2-difluoroethyl methyl carbonate, 2-fluoroethyl fluoromethyl carbonate, ethyl difluoromethyl carbonate, and 2,2,2-tri.
  • fluorinated diethyl carbonate derivative examples include ethyl- (2-fluoroethyl) carbonate, ethyl- (2,2-difluoroethyl) carbonate, bis (2-fluoroethyl) carbonate, and ethyl- (2,2,2-trifluoro).
  • Ethyl) carbonate 2,2-difluoroethyl-2'-fluoroethyl carbonate, bis (2,2-difluoroethyl) carbonate, 2,2,2-trifluoroethyl-2'-fluoroethyl carbonate, 2,2 Examples thereof include 2-trifluoroethyl-2', 2'-difluoroethyl carbonate and bis (2,2,2-trifluoroethyl) carbonate.
  • chain carbonate one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the content of the chain carbonate is not particularly limited, but is usually 15% by volume or more, preferably 20% by volume or more, and more preferably 25% by volume or more with respect to the total amount of the solvent of the non-aqueous electrolyte solution. Further, it is usually 90% by volume or less, preferably 85% by volume or less, and more preferably 80% by volume or less.
  • the battery performance can be significantly improved.
  • the content of ethylene carbonate is not particularly limited and is arbitrary as long as the effect of the present invention is not significantly impaired, but the non-aqueous electrolyte solution It is usually 15% by volume or more, preferably 20% by volume, and usually 45% by volume or less, preferably 40% by volume or less with respect to the total amount of the solvent, and the content of dimethyl carbonate is based on the total amount of the solvent of the non-aqueous electrolyte solution.
  • ethylmethyl carbonate It is usually 20% by volume or more, preferably 30% by volume or more, and usually 50% by volume or less, preferably 45% by volume or less, and the content of ethylmethyl carbonate is usually 20% by volume or more, preferably 30% by volume or more. In addition, it is usually 50% by volume or less, preferably 45% by volume or less.
  • Ether compounds a chain ether having 3 to 10 carbon atoms and a cyclic ether having 3 to 6 carbon atoms are preferable.
  • the ether compound one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the content of the ether compound is not particularly limited and is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 1% by volume or more, preferably 2% by volume or more, more preferably in 100% by volume of the non-aqueous solvent. Is 3% by volume or more, and usually 30% by volume or less, preferably 25% by volume or less, and more preferably 20% by volume or less.
  • the total amount of the ether compounds may satisfy the above range.
  • the content of the ether-based compound is within the above-mentioned preferable range, it is easy to secure the effect of improving the lithium ion dissociation degree of the chain ether and improving the ionic conductivity due to the decrease in viscosity. Further, when the negative electrode active material is a carbonaceous material, the phenomenon that the chain ether is co-inserted together with the lithium ions can be suppressed, so that the input / output characteristics and the charge / discharge rate characteristics can be set in an appropriate range.
  • the sulfone compound is not particularly limited even if it is a cyclic sulfone or a chain sulfone, but in the case of a cyclic sulfone, the number of carbon atoms is usually 3 to 6, preferably 3 to 5, and in the case of a chain sulfone. , Usually, a compound having 2 to 6 carbon atoms, preferably 2 to 5 carbon atoms is preferable. The number of sulfonyl groups in one molecule of the sulfone compound is not particularly limited, but is usually 1 or 2.
  • cyclic sulfone examples include trimethylene sulfones, tetramethylene sulfones, hexamethylene sulfones, which are monosulfone compounds; trimethylene disulfones, tetramethylene disulfones, hexamethylene disulfones, etc., which are disulfone compounds.
  • trimethylene sulfones, tetramethylene disulfones, hexamethylene sulfones and hexamethylene disulfones are more preferable, and tetramethylene sulfones (sulfolanes) are particularly preferable.
  • sulfolanes As the sulfolanes, sulfolanes or sulfolane derivatives (hereinafter, sulfolanes may be abbreviated as "sulfolanes") are preferable.
  • the sulfolane derivative is preferably one in which one or more hydrogen atoms bonded on the carbon atom constituting the sulfolane ring are substituted with a fluorine atom or an alkyl group.
  • the sulfone compound one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the content of the sulfone compound is not particularly limited and is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.3% by volume or more, preferably 0. It is 5% by volume or more, more preferably 1% by volume or more, and usually 40% by volume or less, preferably 35% by volume or less, more preferably 30% by volume or less.
  • the total amount of the sulfone compounds may satisfy the above range.
  • an electrolytic solution having excellent high temperature storage stability tends to be obtained.
  • the carboxylic acid ester is preferably a chain carboxylic acid ester, and more preferably a saturated chain carboxylic acid ester.
  • the total carbon number of the carboxylic acid ester is usually 3 to 7, and a carboxylic acid ester of 3 to 5 is preferably used from the viewpoint of improving the battery characteristics resulting from the improvement of the output characteristics.
  • carboxylic acid ester examples include saturated chain carboxylic acid esters such as methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl pivalate, and ethyl pivalate, methyl acrylate, ethyl acrylate, methyl methacrylate, and methacrylic acid.
  • saturated chain carboxylic acid esters such as methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl pivalate, and ethyl pivalate, methyl acrylate, ethyl acrylate, methyl methacrylate, and methacrylic acid.
  • unsaturated chain carboxylic acid esters such as ethyl.
  • methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl pivalate, and ethyl pivalate are preferable, and methyl acetate, ethyl acetate, methyl propionate, and ethyl propionate are more preferable from the viewpoint of improving output characteristics.
  • the carboxylic acid ester one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the content of the carboxylic acid ester is not particularly limited and is arbitrary as long as the effect of the present invention is not significantly impaired, but the lower limit is usually 3% by volume or more, preferably 5 by volume, based on the total amount of the solvent of the non-aqueous electrolyte solution. It is more than% by volume. By setting this range, the decrease in electrical conductivity due to the decrease in the dielectric constant of the non-aqueous electrolyte solution is avoided, and the large current discharge characteristics, stability with respect to the negative electrode, and cycle characteristics of the non-aqueous electrolyte battery are in a good range. It becomes easy to do.
  • the upper limit is usually 90% by volume or less, preferably 85% by volume or less, and more preferably 80% by volume or less.
  • the volume% in the present invention means the volume at 25 ° C. and 1 atm.
  • Fluorosulfates other than FSO 3 Li The counter cation of a fluorosulfonate (hereinafter, simply referred to as "fluorosulfonate”) other than FSO 3 Li is not particularly limited, but sodium, potassium, rubidium, cesium, magnesium, calcium, barium, and NR 13 Examples thereof include ammonium represented by R 14 R 15 R 16 (in the formula, R 13 to R 16 each independently represent a hydrogen atom or an organic group having 1 to 12 carbon atoms).
  • fluorosulfonates include Examples thereof include sodium fluorosulfonate, potassium fluorosulfonate, rubidium fluorosulfonate, and cesium fluorosulfonate.
  • the fluorosulfonate one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the total content of fluorosulfonate and FSO 3 Li with respect to the entire non-aqueous electrolyte solution of the present embodiment is usually 0.001% by mass or more, preferably 0.01% by mass, based on 100% by mass of the non-aqueous electrolyte solution.
  • it is particularly preferably 1% by mass or less.
  • the total amount of FSO 3 Li and fluorosulfonate may satisfy the above range. Within this range, swelling of the non-aqueous electrolyte battery due to charging / discharging can be suitably suppressed.
  • the non-aqueous electrolyte solution of the present embodiment may contain the following auxiliaries as long as the effects of the present invention are exhibited.
  • Unsaturated cyclic carbonates such as vinylene carbonate, vinylethylene carbonate or ethynylethylene carbonate; Carbonate compounds such as methoxyethyl-methyl carbonate; Spiro compounds such as methyl-2-propynyl oxalate; Sulfur-containing compounds such as ethylene sulfite;
  • Isocyanate compounds such as diisocyanates having a cycloalkylene group such as 1,3-bis (isocyanatomethyl) cyclohexane; Nitrogen-containing compounds such as 1-methyl-2-pyrrolidinone; Hydrocarbon compounds such as cycloheptane; Fluoro-containing aromatic compounds such as fluorobenzene; Silane compounds such as tris borate (trimethylsilyl); Ester compounds such as 2-propynyl 2- (methane
  • the content of the auxiliary agent is not particularly limited and is arbitrary as long as the effect of the present invention is not significantly impaired.
  • the content of the auxiliary agent is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and usually 5% by mass, based on the total amount of the non-aqueous electrolyte solution. It is mass% or less, preferably 3 mass% or less, and more preferably 1 mass% or less. Within this range, the effect of the auxiliary agent is likely to be sufficiently exhibited, and the high temperature storage stability tends to be improved. When two or more kinds of auxiliary agents are used in combination, the total amount of auxiliary agents may satisfy the above range.
  • Non-aqueous electrolyte battery is a non-aqueous electrolyte battery including a positive electrode and a negative electrode capable of occluding and releasing metal ions and a non-aqueous electrolyte, and is one of the above-mentioned inventions.
  • the non-aqueous electrolyte solution according to the embodiment is provided. More specifically, the non-aqueous electrolyte battery according to the embodiment of the present invention has a current collector and a positive electrode active material layer provided on the current collector, and has a positive electrode capable of storing and releasing metal ions.
  • a negative electrode having a current collector and a negative electrode active material layer provided on the current collector and capable of storing and releasing metal ions, and FSO 3 Li, nickel ions (a) and cobalt ions (b). ), Copper ion (c), manganese ion (d), and at least one metal ion selected from the group consisting of aluminum ion (e), and at least one of the following conditions (i) to (v). It is provided with a non-aqueous electrolyte solution to be filled.
  • the concentration of (a) is 1 mass ppm or more and 500 mass ppm or less (ii)
  • the concentration of (b) is 1 mass ppm or more and 500 mass ppm or less (iii)
  • the concentration of (c) is 1 mass ppm or more 500 mass ppm or less (iv)
  • Concentration of the above (d) is 1 mass ppm or more and 100 mass ppm or less (v)
  • Concentration of the above (e) is 1 mass ppm or more and 100 mass ppm or less
  • the aqueous electrolyte battery is provided on the current collector and the positive electrode having a positive electrode active material layer provided on the current collector and capable of storing and releasing metal ions, and on the current collector and the current collector.
  • the non-aqueous electrolyte battery according to the aspect B of the present invention has a current collector, a positive electrode having a positive electrode active material layer provided on the current collector, and a positive electrode capable of storing and releasing metal ions, and collecting current.
  • the non-aqueous electrolyte battery of the present embodiment has the same configuration as the conventionally known non-aqueous electrolyte battery except for the above-mentioned non-aqueous electrolyte battery.
  • the positive electrode and the negative electrode are laminated via a porous film (separator) impregnated with the non-aqueous electrolyte solution, and these are housed in a case (exterior body). Therefore, the shape of the non-aqueous electrolyte battery of the present embodiment is not particularly limited, and may be any of a cylindrical type, a square type, a laminated type, a coin type, a large size, and the like.
  • Non-aqueous electrolyte As the non-aqueous electrolyte solution, the non-aqueous electrolyte solution according to the above-described embodiment of the present invention is used. It is also possible to mix and use other non-aqueous electrolyte solutions with the above non-aqueous electrolyte solution as long as the gist of the present invention is not deviated.
  • the positive electrode has a current collector and a positive electrode active material layer provided on the current collector.
  • the positive electrode used in the non-aqueous electrolyte battery of the present embodiment will be described in detail below.
  • the positive electrode active material used for the positive electrode will be described below.
  • the positive electrode active material is a transition metal oxide containing lithium cobaltate or at least Ni and Co, and 50 mol% or more of the transition metal is Ni and Co, and is an electrochemically metal ion.
  • the positive electrode active material is a transition metal oxide containing lithium cobaltate or at least Ni and Co, and 50 mol% or more of the transition metal is Ni and Co, and is an electrochemically metal ion.
  • a transition metal oxide in which% or more is Ni and Co is preferable. This is because Ni and Co have a redox potential suitable for use as a positive electrode material for a secondary battery and are suitable for high-capacity applications.
  • the metal component of the lithium transition metal oxide contains at least Ni or Co as an essential transition metal element, but Mn, V, Ti, Cr, Fe, Cu, Al, Mg, Zr, Er as other metal elements. Etc., and Mn, Ti, Fe, Al, Mg, Zr and the like are preferable.
  • Specific examples of the lithium transition metal oxide include LiCoO 2 , LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiNi 0.80 Co 0.15 Al 0.05 O 2 , and LiNi 0.33.
  • Co 0.33 Mn 0.33 O 2 Li 1.05 Ni 0.33 Mn 0.33 Co 0.33 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , Li 1.05 Ni Examples thereof include 0.50 Mn 0.29 Co 0.21 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 .
  • the positive electrode active material is a transition metal oxide represented by the following composition formula (1).
  • M is Mn, Al, Mg, Zr. Represents at least one element selected from the group consisting of Fe, Ti and Er.
  • composition ratio of Ni and Co and the composition ratio of other metal species are within a specific range, it is difficult for the transition metal to elute from the positive electrode, and even if it elutes, Ni and Co can be contained in the non-aqueous secondary battery. This is because the adverse effect of
  • the positive electrode active material is a transition metal oxide represented by the following composition formula (2).
  • M is Mn, Al, Mg. , Zr, Fe, Ti and Er represents at least one element selected from the group.
  • the positive electrode active material is a transition metal oxide represented by the following composition formula (3).
  • Li a3 Ni b3 Co c3 M d3 O 2 ... (3) (In the formula (3), the numerical values of 0.90 ⁇ a3 ⁇ 1.10, 0.50 ⁇ b3 ⁇ 0.94, 0.05 ⁇ c3 ⁇ 0.2, and 0.01 ⁇ d3 ⁇ 0.3 are shown.
  • B3 + c3 + d3 1.
  • M represents at least one element selected from the group consisting of Mn, Al, Mg, Zr, Fe, Ti and Er.)
  • two or more of the above positive electrode active materials may be mixed and used. Similarly, at least one of the above positive electrode active materials may be mixed with another positive electrode active material.
  • positive electrode active materials include transition metal oxides, transition metal phosphoric acid compounds, transition metal silicic acid compounds, and transition metal boric acid compounds not listed above.
  • a lithium manganese composite oxide having a spinel-type structure and a lithium-containing transition metal phosphoric acid compound having an olivine-type structure are preferable.
  • Specific examples of the lithium manganese composite oxide having a spinel-type structure include LiMn 2 O 4 , LiMn 1.8 Al 0.2 O 4 , Limn 1.5 Ni 0.5 O 4, and the like.
  • the transition metal of the lithium-containing transition metal phosphoric acid compound is preferably V, Ti, Cr, Mn, Fe, Co, Ni, Cu or the like, and specific examples thereof include LiFePO 4 and Li 3 Fe 2 (PO 4). ) 3 , Iron phosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , manganese phosphates such as LiMnPO 4 , and some of the transition metal atoms that are the main constituents of these lithium transition metal phosphoric acid compounds are Al and Ti.
  • the lithium-containing transition metal phosphoric acid compounds the lithium iron phosphoric acid compound is preferable. This is because iron is an extremely inexpensive metal with abundant resources and is less harmful. That is, among the above specific examples, LiFePO 4 can be mentioned as a more preferable specific example.
  • the positive electrode is an NMC positive electrode
  • the nickel element content in the NMC positive electrode is preferably 30 mol% or more, and 40 mol% or more is a non-aqueous electrolyte battery. It is more preferable from the viewpoint of increasing the capacity.
  • a substance having a composition different from that of the substance constituting the main positive electrode active material may be used on the surface of the positive electrode active material.
  • surface adhering substances include oxides such as aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, and bismuth oxide; lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, etc. Sulfates such as calcium sulfate and aluminum sulfate; carbonates such as lithium carbonate, calcium carbonate and magnesium carbonate; carbon; and the like can be mentioned.
  • These surface-adhering substances are, for example, dissolved or suspended in a solvent, impregnated and added to the positive electrode active material, and then dried.
  • the surface-adhering substance precursor is dissolved or suspended in the solvent and impregnated and added to the positive electrode active material. After that, it can be adhered to the surface of the positive electrode active material by a method of reacting by heating or the like, a method of adding to the positive electrode active material precursor and firing at the same time, or the like.
  • a method of mechanically attaching carbonaceous material later in the form of activated carbon or the like can also be used.
  • the mass of the surface-adhering substance adhering to the surface of the positive electrode active material is preferably 0.1 ppm or more, more preferably 1 ppm or more, still more preferably 10 ppm or more, based on the mass of the positive electrode active material. Further, it is preferably 20% or less, more preferably 10% or less, still more preferably 5% or less.
  • the surface-adhering substance can suppress the oxidation reaction of the non-aqueous electrolyte solution on the surface of the positive electrode active material, and can improve the battery life. Further, when the amount of adhesion is within the above range, the effect can be sufficiently exhibited, and the resistance is less likely to increase without inhibiting the inflow and outflow of lithium ions.
  • the positive electrode active material may have a particle form.
  • As the shape of the positive electrode active material particles a lump, a polyhedron, a spherical shape, an elliptical spherical shape, a plate shape, a needle shape, a columnar shape, or the like, which are conventionally used, are used. Further, the primary particles may be aggregated to form secondary particles, and the shape of the secondary particles may be spherical or elliptical spherical.
  • the method for producing the positive electrode active material is not particularly limited as long as it does not exceed the gist of the present invention, but some methods are mentioned and are general as a method for producing an inorganic compound.
  • the method is used.
  • various methods can be considered for producing spherical or elliptical spherical active materials.
  • transition metal raw materials such as transition metal nitrate and sulfate, and raw materials of other elements as necessary.
  • a solvent such as water
  • the pH is adjusted while stirring to prepare and recover a spherical precursor, which is dried as necessary, and then LiOH, Li 2 CO 3 , Li NO.
  • Examples thereof include a method of adding a Li source such as 3 and firing at a high temperature to obtain an active material.
  • a transition metal raw material such as transition metal nitrate, sulfate, hydroxide, or oxide and, if necessary, a raw material of another element are dissolved or pulverized and dispersed in a solvent such as water. Then, it is dried and molded with a spray dryer or the like to obtain a spherical or elliptical spherical precursor, to which a Li source such as LiOH, Li 2 CO 3 or LiNO 3 is added and fired at a high temperature to obtain an active material.
  • a Li source such as LiOH, Li 2 CO 3 or LiNO 3
  • a transition metal raw material such as a transition metal nitrate, a sulfate, a hydroxide, an oxide, a Li source such as LiOH, Li 2 CO 3 , LiNO 3 , and other elements as required.
  • a method of dissolving or pulverizing and dispersing the raw material of the above in a solvent such as water, drying and molding it with a spray dryer or the like to obtain a spherical or elliptical spherical precursor, and firing this at a high temperature to obtain an active material. can be mentioned.
  • the positive electrode is produced by forming a positive electrode active material layer containing positive electrode active material particles and a binder on a current collector.
  • the positive electrode using the positive electrode active material may be produced by any known method. For example, a positive electrode active material and a binder, and if necessary, a conductive material and a thickener are mixed in a dry manner to form a sheet, which is then pressure-bonded to the positive electrode current collector, or these materials are applied to a liquid medium.
  • a positive electrode can be obtained by forming a positive electrode active material layer on the current collector by applying the slurry as a slurry to the positive electrode current collector and drying the slurry.
  • the content of the positive electrode active material in the positive electrode active material layer is preferably 60% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and preferably 99.9% by mass or less. Yes, 99% by mass or less is more preferable.
  • the content of the positive electrode active material is within the above range, the electric capacity of the non-aqueous electrolyte battery can be sufficiently secured. Further, the strength of the positive electrode is also sufficient.
  • one type of positive electrode active material powder (particles) may be used alone, or two or more types having different compositions or different powder physical properties may be used in combination in any combination and ratio.
  • the composite oxide containing lithium and manganese is an expensive metal with a small amount of resources, and is not preferable in terms of cost because the amount of active material used is large in a large battery that requires a high capacity such as for automobiles. Therefore, in a large battery, it is desirable to use manganese as a main component as a cheaper transition metal for the positive electrode active material.
  • a known conductive material can be arbitrarily used. Specific examples include metal materials such as copper and nickel; graphite (graphite) such as natural graphite and artificial graphite; carbon black such as acetylene black; and carbonaceous materials such as amorphous carbon such as needle coke. It should be noted that one of these may be used alone, or two or more thereof may be used in any combination and ratio.
  • the content of the conductive material in the positive electrode active material layer is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, further preferably 1% by mass or more, and preferably 50% by mass or less. It is more preferably 30% by mass or less, and further preferably 15% by mass or less. When the content is within the above range, sufficient conductivity can be ensured. Furthermore, it is easy to prevent a decrease in battery capacity.
  • the binder used in the production of the positive electrode active material layer is not particularly limited as long as it is a material stable to the non-aqueous electrolyte solution and the solvent used in the production of the electrode.
  • the material is not particularly limited as long as it is a material that is dissolved or dispersed in the liquid medium used at the time of electrode production, but specific examples thereof include polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, and cellulose.
  • Resin-based polymer such as nitrocellulose; rubber-like polymer such as SBR (styrene / butadiene rubber), NBR (acrylonitrile / butadiene rubber), fluororubber, isoprene rubber, butadiene rubber, ethylene / propylene rubber; styrene / butadiene / Styrene block copolymer or hydrogen additive thereof, EPDM (ethylene / propylene / diene ternary copolymer), styrene / ethylene / butadiene / ethylene copolymer, styrene / isoprene / styrene block copolymer or hydrogen additive thereof
  • Thermoplastic elastomeric polymers such as syndiotactic-1,2-polybutadiene, polyvinylacetate, ethylene / vinyl acetate copolymer, soft resinous polymer such as propylene / ⁇ -olefin
  • the content of the binder in the positive electrode active material layer is preferably 0.1% by mass or more, more preferably 1% by mass or more, further preferably 3% by mass or more, and preferably 80% by mass or less. Yes, 60% by mass or less is more preferable, 40% by mass or less is further preferable, and 10% by mass or less is particularly preferable.
  • the ratio of the binder is within the above range, the positive electrode active material can be sufficiently retained and the mechanical strength of the positive electrode can be ensured, so that the battery performance such as cycle characteristics is improved. Further, it also leads to avoiding a decrease in battery capacity and conductivity.
  • the liquid medium used for preparing the slurry for forming the positive electrode active material layer can be dissolved or dispersed.
  • the type thereof is not particularly limited, and either an aqueous solvent or an organic solvent may be used.
  • the aqueous solvent include water and a mixed solvent of alcohol and water.
  • organic solvents examples include aliphatic hydrocarbons such as hexane; aromatic hydrocarbons such as benzene, toluene, xylene and methylnaphthalene; heterocyclic compounds such as quinoline and pyridine; ketones such as acetone, methylethylketone and cyclohexanone.
  • esters such as methyl acetate and methyl acrylate
  • amines such as diethylenetriamine, N, N-dimethylaminopropylamine
  • ethers such as diethyl ether and tetrahydrofuran (THF); N-methylpyrrolidone (NMP), dimethylformamide
  • Amides such as dimethylacetamide
  • aprotic polar solvents such as hexamethylphosphalamide and dimethylsulfoxide can be mentioned. It should be noted that one of these may be used alone, or two or more thereof may be used in any combination and ratio.
  • ⁇ Thickener> When an aqueous solvent is used as the liquid medium for forming the slurry, it is preferable to use a thickener and a latex such as styrene-butadiene rubber (SBR) to form the slurry. Thickeners are commonly used to adjust the viscosity of the slurry.
  • the thickener is not limited as long as the effect of the present invention is not significantly limited, but specifically, carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein and salts thereof. And so on. These may be used alone or in any combination and ratio of two or more.
  • the ratio of the thickener to the positive electrode active material is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and further preferably 0.6% by mass or more. It is preferable, preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 2% by mass or less. Within the above range, the coatability is good, and the ratio of the active material to the positive electrode active material layer is sufficient, so that the problem of a decrease in battery capacity and an increase in resistance between the positive electrode active materials increase. It makes it easier to avoid problems.
  • the positive electrode active material layer obtained by applying the slurry to the current collector and drying is preferably consolidated by a hand press, a roller press, or the like in order to increase the packing density of the positive electrode active material.
  • the density of the positive electrode active material layer is preferably 1 g ⁇ cm -3 or more, more preferably 1.5 g ⁇ cm -3 or more, particularly preferably 2 g ⁇ cm -3 or more, and preferably 4 g ⁇ cm -3 or less. 3.5 g ⁇ cm -3 or less is more preferable, and 3 g ⁇ cm -3 or less is particularly preferable.
  • the density of the positive electrode active material layer is within the above range, the permeability of the non-aqueous electrolyte solution to the vicinity of the current collector / active material interface does not decrease, and the charge / discharge characteristics are particularly good at a high current density. Become. Further, the conductivity between the active materials is less likely to decrease, and the battery resistance is less likely to increase.
  • the material of the positive electrode current collector is not particularly limited, and any known material can be used. Specific examples include metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum; and carbonaceous materials such as carbon cloth and carbon paper. Of these, metal materials, especially aluminum, are preferable.
  • Examples of the shape of the current collector include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, foamed metal, etc. in the case of metal material, and carbon plate in the case of carbonaceous material. Examples include a carbon thin film and a carbon column. Of these, a metal thin film is preferable. The thin film may be formed in a mesh shape as appropriate.
  • the thickness of the current collector is arbitrary, but is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, further preferably 5 ⁇ m or more, and preferably 1 mm or less, more preferably 100 ⁇ m or less, further preferably 50 ⁇ m or less. preferable. When the thickness of the current collector is within the above range, sufficient strength required for the current collector can be secured. Further, the handleability is also good.
  • the ratio of the thickness of the current collector to the positive electrode active material layer is not particularly limited, but (thickness of the active material layer on one side immediately before injection of the non-aqueous electrolyte solution) / (thickness of the current collector) is preferable. It is 150 or less, more preferably 20 or less, particularly preferably 10 or less, and preferably 0.1 or more, more preferably 0.4 or more, and particularly preferably 1 or more.
  • the ratio of the thickness of the current collector to the positive electrode active material layer is within the above range, the current collector is less likely to generate heat due to Joule heat during high current density charging / discharging. Further, the volume ratio of the current collector to the positive electrode active material is unlikely to increase, and a decrease in battery capacity can be prevented.
  • the area of the positive electrode active material layer is preferably large with respect to the outer surface area of the battery outer case.
  • the total area of the electrode areas of the positive electrode with respect to the surface area of the exterior of the non-aqueous electrolyte battery is preferably 20 times or more, and more preferably 40 times or more in terms of area ratio.
  • the outer surface area of the outer case means the total area calculated from the vertical, horizontal, and thickness dimensions of the case part filled with the power generation element excluding the protruding part of the terminal in the case of the bottomed square shape. ..
  • the geometric surface area approximates the case portion filled with the power generation element excluding the protruding portion of the terminal as a cylinder.
  • the total electrode area of the positive electrode is the geometric surface area of the positive electrode mixture layer facing the mixture layer containing the negative electrode active material, and in a structure in which the positive electrode mixture layer is formed on both sides via a current collector foil. , Refers to the sum of the areas calculated separately for each surface.
  • the positive electrode plate has a fully charged discharge capacity, preferably 3 Ah (ampere hour) or more, more preferably 4 Ah or more, preferably 100 Ah or less, more preferably 70 Ah or less, and particularly preferably. Design to be 50 Ah or less.
  • the voltage drop due to the electrode reaction resistance does not become too large when a large current is taken out, and deterioration of power efficiency can be prevented. Furthermore, the temperature distribution due to internal heat generation of the battery during pulse charging / discharging does not become too large, the durability of repeated charging / discharging is inferior, and the heat dissipation efficiency is also poor against sudden heat generation at the time of abnormalities such as overcharging and internal short circuit. It is possible to avoid the phenomenon of becoming.
  • the thickness of the positive electrode plate is not particularly limited, but from the viewpoint of high capacity, high output, and high rate characteristics, the thickness of the positive electrode active material layer obtained by subtracting the thickness of the current collector is the thickness of the positive electrode active material layer with respect to one side of the current collector. 10 ⁇ m or more is preferable, 20 ⁇ m or more is more preferable, 200 ⁇ m or less is preferable, and 100 ⁇ m or less is more preferable.
  • the negative electrode has a current collector and a negative electrode active material layer provided on the current collector.
  • the negative electrode active material used for the negative electrode will be described below.
  • the negative electrode active material is not particularly limited as long as it can store and release metal ions electrochemically. Specific examples include those having carbon as a constituent element of carbonaceous materials, alloy-based materials, and the like. One of these may be used alone, or two or more thereof may be arbitrarily combined and used in combination.
  • Negative electrode active material examples include carbonaceous materials, alloy-based materials and the like as described above.
  • Examples of the carbonaceous material include (1) natural graphite, (2) artificial graphite, (3) amorphous carbon, (4) carbon-coated graphite, (5) graphite-coated graphite, and (6) resin-coated graphite. Be done.
  • Examples of natural graphite include scaly graphite, scaly graphite, soil graphite and / or graphite particles obtained by subjecting these graphites to a treatment such as spheroidization or densification.
  • a treatment such as spheroidization or densification.
  • spherical or ellipsoidal graphite that has been subjected to a spheroidizing treatment is particularly preferable from the viewpoint of particle packing property and charge / discharge rate characteristics.
  • the device used for the spheroidizing process for example, a device that repeatedly applies mechanical actions such as compression, friction, and shearing force including the interaction of particles mainly with impact force to the particles can be used.
  • a rotor with a large number of blades installed inside the casing, and by rotating the rotor at high speed, impact compression, friction, and shearing force are applied to the raw material of natural graphite (1) introduced inside.
  • a device that gives a mechanical action such as, etc. to perform the spheroidizing process is preferable.
  • an apparatus having a mechanism for repeatedly giving a mechanical action by circulating a raw material is preferable.
  • the peripheral speed of the rotating rotor is preferably set to 30 to 100 m / sec, more preferably 40 to 100 m / sec, and 50 to 100 m / sec. It is even more preferable to set it to seconds.
  • the spheroidizing treatment can be performed by simply passing the raw material through the device, but it is preferable to circulate or retain the inside of the device for 30 seconds or more, and to circulate or stay in the device for 1 minute or more. Is more preferable.
  • a silicon-containing compound, a boron-containing compound, or the like can also be used as a graphitization catalyst.
  • artificial graphite obtained by graphitizing mesocarbon microbeads separated in a pitch heat treatment process can be mentioned.
  • artificial graphite of granulated particles composed of primary particles can also be mentioned.
  • mesocarbon microbeads, graphitizable carbon material powder such as coke, graphitizable binder such as tar and pitch, and graphitization catalyst are mixed, graphitized, and pulverized if necessary. Examples thereof include graphite particles obtained by assembling or bonding a plurality of flat particles so that the orientation planes are non-parallel.
  • an amorphous carbon which uses an easily graphitizable carbon precursor such as tar or pitch as a raw material and is heat-treated at least once in a temperature range (range of 400 to 2200 ° C.) where graphitization does not occur.
  • Examples thereof include amorphous carbon particles that have been heat-treated using particles or a non-graphitizable carbon precursor such as a resin as a raw material.
  • Examples of carbon-coated graphite include those obtained as follows. Natural graphite and / or artificial graphite is mixed with a carbon precursor which is an organic compound such as tar, pitch or resin, and heat-treated at least once in the range of 400 to 2300 ° C. Natural graphite and / or artificial graphite after heat treatment is used as nuclear graphite, and this is coated with amorphous carbon to obtain a carbon graphite composite. This carbon-graphite composite is mentioned as carbon-coated graphite (4).
  • a carbon precursor which is an organic compound such as tar, pitch or resin
  • the composite form is a form in which a plurality of primary particles are composited using carbon derived from the carbon precursor as a binder even when the entire surface or a part of the surface of nuclear graphite is coated with amorphous carbon. You may. It is also possible to react natural graphite and / or artificial graphite with hydrocarbon gases such as benzene, toluene, methane, propane, and aromatic volatiles at high temperatures to deposit carbon on the graphite surface (CVD). The carbon graphite composite can be obtained.
  • hydrocarbon gases such as benzene, toluene, methane, propane, and aromatic volatiles
  • Natural graphite and / or artificial graphite is mixed with a carbon precursor of an easily graphitizable organic compound such as tar, pitch or resin, and heat-treated at least once in a temperature range of about 2400 to 3200 ° C. Natural graphite and / or artificial graphite after the heat treatment is used as nuclear graphite, and the entire surface or a part of the surface of the nuclear graphite is coated with graphite to obtain graphite-coated graphite (5).
  • the resin-coated graphite for example, natural graphite and / or artificial graphite obtained by mixing natural graphite and / or artificial graphite with a resin or the like and drying at a temperature of less than 400 ° C. is used as nuclear graphite, and the resin or the like is used. It is obtained by coating the nuclear graphite with.
  • carbonaceous materials of (1) to (6) described above one kind may be used alone, or two or more kinds may be used in any combination and ratio.
  • Examples of the organic compounds such as tar, pitch and resin used for the carbonaceous materials (2) to (5) above include coal-based heavy oil, DC-based heavy oil, cracked petroleum heavy oil, and aromatic hydrocarbons. , N-ring compounds, S-ring compounds, polyphenylenes, synthetic organic polymers, natural polymers, thermoplastic resins, thermosetting resins and the like, which are carbonizable organic compounds selected from the group. Further, the raw material organic compound may be used by being dissolved in a low molecular weight organic solvent in order to adjust the viscosity at the time of mixing.
  • natural graphite and / or artificial graphite which is a raw material of nuclear graphite
  • spheroidized natural graphite is preferable.
  • the alloy-based material used as the negative electrode active material is lithium alone, a single metal and alloy forming a lithium alloy, or oxides, carbides, nitrides thereof, if lithium ions can be occluded and released. It may be any of compounds such as silicides, sulfides and phosphors, and is not particularly limited.
  • the elemental metals and alloys forming the lithium alloy are preferably materials containing group 13 and group 14 metal / semi-metal elements (that is, excluding carbon), more preferably elemental metals of aluminum, silicon and tin, and these.
  • an alloy or compound containing an atom more preferably a simple substance metal of silicon and tin, and an alloy or compound containing these atoms, which has silicon or tin as a constituent element.
  • One of these may be used alone, or two or more thereof may be used in any combination and ratio.
  • Metal particles that can be alloyed with Li When a single metal and alloy forming a lithium alloy or a compound such as an oxide, carbide, nitride, silicide, sulfide or phosphide thereof is used as a negative electrode active material, the metal that can be alloyed with Li is It is a particle form. Techniques for confirming that the metal particles are metal particles that can be alloyed with Li include identification of the metal particle phase by X-ray diffraction, observation of the particle structure by an electron microscope, EDX elemental analysis, and fluorescent X-ray. Elemental analysis and the like can be mentioned.
  • the metal particles that can be alloyed with Li any conventionally known metal particles can be used, but from the viewpoint of the capacity and cycle life of the non-aqueous electrolyte battery, the metal particles are, for example, Fe, Co, Sb. , Bi, Pb, Ni, Ag, Si, Sn, Al, Zr, Cr, P, S, V, Mn, As, Nb, Mo, Cu, Zn, Ge, In, Ti and W. It is preferably a metal or a compound thereof. Further, the metal particles may be alloy particles formed by two or more kinds of metal elements. Among these, a metal selected from the group consisting of Si, Sn, As, Sb, Al, Zn and W or a metal compound thereof is preferable.
  • metal compound examples include metal oxides, metal nitrides, metal carbides and the like. Further, an alloy composed of two or more kinds of metals may be used.
  • the Si metal compound is preferably a Si metal oxide.
  • Si or Si metal compounds are collectively referred to as Si compounds.
  • the Si compound is preferably a Si metal oxide, and the Si metal oxide is SiO x in the general formula.
  • This general formula SiO x is obtained by using silicon dioxide (SiO 2 ) and metal Si (Si) as raw materials, and the value of x is usually 0 ⁇ x ⁇ 2.
  • SiO x has a larger theoretical capacity than graphite, and amorphous Si or nano-sized Si crystals allow alkaline ions such as lithium ions to enter and exit easily, making it possible to obtain a high-capacity battery. ..
  • the Si metal oxide is specifically represented as SiO x , where x is 0 ⁇ x ⁇ 2, more preferably 0.2 or more and 1.8 or less, still more preferably 0. It is 4 or more and 1.6 or less, particularly preferably 0.6 or more and 1.4 or less. Within this range, the battery has a high capacity, and at the same time, the irreversible capacity due to the combination of Li and oxygen can be reduced.
  • the oxygen content of the metal particles that can be alloyed with Li is not particularly limited, but is usually 0.01% by mass or more and 8% by mass or less, and preferably 0.05% by mass or more and 5% by mass or less.
  • the oxygen distribution state in the particle may be present near the surface, inside the particle, or uniformly present in the particle, but it is particularly preferable that the oxygen is present near the surface.
  • the amount of oxygen contained in the metal particles that can be alloyed with Li is within the above range, the strong bond between the metal particles and O (oxygen atom) suppresses the volume expansion due to the secondary charge / discharge of the non-aqueous electrolyte battery.
  • the negative electrode active material may contain metal particles that can be alloyed with Li and graphite particles.
  • the negative electrode active material may be a mixture in which Li and alloyable metal particles and graphite particles are mixed in the state of mutually independent particles, or Li and alloyable metal particles are mixed on the surface of the graphite particles and the graphite particles. / Or it may be a complex existing inside.
  • the composite of the metal particles that can be alloyed with Li and the graphite particles is particularly limited as long as the particles contain the metal particles that can be alloyed with Li and the graphite particles.
  • the metal particles and graphite particles that can be alloyed with Li are integrated by physical and / or chemical bonding.
  • metal particles and graphite particles that can be alloyed with Li are present in the particles in a dispersed manner so that at least the surface of the composite particles and the inside of the bulk are present. It is in the form in which graphite particles are present in order to unite them by physical and / or chemical bonding.
  • a more specific preferred form is a composite material composed of at least Li and alloyable metal particles and graphite particles, in which graphite particles, preferably natural graphite, have a curved structure and have a folded structure.
  • it is a composite material (negative electrode active material) characterized in that metal particles that can be alloyed with Li are present in the gaps in the structure.
  • the gap may be a void, and a substance such as amorphous carbon, a graphitic material, or a resin that buffers the expansion and contraction of metal particles that can be alloyed with Li exists in the gap. You may.
  • the content ratio of the metal particles that can be alloyed with Li to the total of the metal particles that can be alloyed with Li and the metal particles that can be alloyed with Li is usually 0.1% by mass or more, preferably 0.5% by mass or more, and more preferably 1. It is 0% by mass or more, more preferably 2.0% by mass or more. Further, it is usually 99% by mass or less, preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less, still more preferably 25% by mass or less, still more preferably 20% by mass or less, particularly. It is preferably 15% by mass or less, and most preferably 10% by mass or less.
  • the content ratio of the metal particles that can be alloyed with Li is within this range, it is possible to control the side reaction on the Si surface, and it is possible to obtain a sufficient capacity in the non-aqueous electrolyte battery. preferable.
  • the negative electrode active material may be coated with a carbonaceous material or a graphite material.
  • coating with an amorphous carbonaceous material is preferable from the viewpoint of lithium ion acceptability.
  • This coverage is usually 0.5% or more and 30% or less, preferably 1% or more and 25% or less, and more preferably 2% or more and 20% or less.
  • the upper limit of the coverage is from the viewpoint of reversible capacity when the battery is assembled, and the lower limit of the coverage is from the viewpoint that the core carbonaceous material is uniformly coated with amorphous carbon to achieve strong granulation. From the viewpoint of the particle size of the particles obtained when pulverized after firing, the above range is preferable.
  • the coating rate (content rate) of the carbide derived from the organic compound of the negative electrode active material finally obtained is the amount of the negative electrode active material, the amount of the organic compound, and the balance measured by the micro method based on JIS K2270. It can be calculated by the following formula from the coal ratio.
  • the internal pore space of the negative electrode active material is usually 1% or more, preferably 3% or more, more preferably 5% or more, still more preferably 7% or more. Further, it is usually less than 50%, preferably 40% or less, more preferably 30% or less, still more preferably 20% or less. If this internal pore space ratio is too small, the amount of liquid in the particles of the negative electrode active material tends to decrease in the non-aqueous electrolyte battery. On the other hand, if the internal pore space is too large, the interparticle gap tends to decrease when the electrode is used.
  • the lower limit of the internal pore space is preferably in the above range from the viewpoint of charge / discharge characteristics, and the upper limit is preferably set to the above range from the viewpoint of diffusion of the non-aqueous electrolyte solution.
  • the gap may be a void, and a substance such as amorphous carbon, a graphitic material, or a resin that buffers the expansion and contraction of metal particles that can be alloyed with Li is a gap. The presence or gap in it may be filled with these.
  • Negative electrode configuration and manufacturing method Any known method can be used for producing the negative electrode as long as the effects of the present invention are not significantly impaired. For example, it is formed by adding a binder, a solvent, and if necessary, a thickener, a conductive material, a filler, etc. to a negative electrode active material to form a slurry, which is applied to a current collector, dried, and then pressed. can do.
  • the alloy-based material negative electrode can be manufactured by any known method.
  • a method for manufacturing a negative electrode for example, a method in which a binder, a conductive material, or the like is added to the above-mentioned negative electrode active material is directly rolled to form a sheet electrode, or a pellet electrode is compression-molded.
  • the above-mentioned negative electrode is used by a coating method, a vapor deposition method, a sputtering method, a plating method, or the like on a current collector for a negative electrode (hereinafter, may be referred to as a “negative electrode current collector”).
  • a method of forming a thin film layer (negative electrode active material layer) containing an active material is used.
  • a binder, a thickener, a conductive material, a solvent, etc. are added to the above-mentioned negative electrode active material to form a slurry, which is applied to the negative electrode current collector, dried, and then pressed to increase the density.
  • a negative electrode active material layer is formed on the negative electrode current collector.
  • Examples of the material of the negative electrode current collector include steel, copper, copper alloy, nickel, nickel alloy, stainless steel and the like. Of these, copper is preferable, and copper foil is preferable, from the viewpoint of easy processing into a thin film and cost.
  • the thickness of the negative electrode current collector is usually 1 ⁇ m or more, preferably 5 ⁇ m or more, and usually 100 ⁇ m or less, preferably 50 ⁇ m or less. If the thickness of the negative electrode current collector is too thick, the capacity of the entire non-aqueous electrolyte battery may be reduced too much, and conversely, if it is too thin, handling may be difficult.
  • the surface of these negative electrode current collectors be roughened in advance in order to improve the binding effect with the negative electrode active material layer formed on the surface.
  • Surface roughening methods include blasting, rolling with a rough surface roll, polishing cloth with abrasive particles fixed, a grindstone, emeri buff, a wire brush equipped with a steel wire, etc. to polish the surface of the current collector. Specific polishing method, electrolytic polishing method, chemical polishing method and the like can be mentioned.
  • a perforated type negative electrode current collector such as expanded metal or punching metal can also be used.
  • the mass of this type of negative electrode current collector can be freely changed by changing the aperture ratio.
  • the negative electrode active material layers are formed on both sides of this type of negative electrode current collector, the negative electrode active material layer is less likely to be peeled off due to the rivet effect through the holes.
  • the aperture ratio becomes too high, the contact area between the negative electrode active material layer and the negative electrode current collector becomes small, so that the adhesive strength may be rather low.
  • the slurry for forming the negative electrode active material layer is usually prepared by adding a binder, a thickener, etc. to the negative electrode material.
  • the term "negative electrode material” as used herein refers to a material in which the negative electrode active material and the conductive material are combined.
  • the content of the negative electrode active material in the negative electrode material is usually 70% by mass or more, particularly 75% by mass or more, and usually 97% by mass or less, particularly preferably 95% by mass or less. If the content of the negative electrode active material is too small, the capacity of the secondary battery using the obtained negative electrode tends to be insufficient, and if it is too large, the content of the conductive material is relatively insufficient, resulting in electricity as the negative electrode. It tends to be difficult to secure conductivity. When two or more negative electrode active materials are used in combination, the total amount of the negative electrode active materials may satisfy the above range.
  • the conductive material used for the negative electrode examples include metal materials such as copper and nickel; carbon materials such as graphite and carbon black. One of these may be used alone, or two or more thereof may be used in any combination and ratio. In particular, it is preferable to use a carbon material as the conductive material because the carbon material also acts as an active material.
  • the content of the conductive material in the negative electrode material is usually 3% by mass or more, preferably 5% by mass or more, and usually 30% by mass or less, preferably 25% by mass or less. If the content of the conductive material is too small, the conductivity tends to be insufficient, and if it is too large, the content of the negative electrode active material or the like is relatively insufficient, so that the battery capacity and strength tend to decrease. When two or more conductive materials are used in combination, the total amount of the conductive materials may satisfy the above range.
  • any binder can be used as long as it is a material stable to the solvent and electrolytic solution used in electrode manufacturing.
  • examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, styrene-butadiene rubber, isoprene rubber, butadiene rubber, ethylene / acrylic acid copolymer, ethylene / methacrylic acid copolymer and the like. One of these may be used alone, or two or more thereof may be used in any combination and ratio.
  • the content of the binder is usually 0.5 parts by mass or more, preferably 1 part by mass or more, usually 10 parts by mass or less, and preferably 8 parts by mass or less with respect to 100 parts by mass of the negative electrode material. .. If the content of the binder is too small, the strength of the obtained negative electrode tends to be insufficient, and if it is too large, the content of the negative electrode active material or the like is relatively insufficient, so that the battery capacity and conductivity tend to be insufficient. It becomes. When two or more binders are used in combination, the total amount of the binders may satisfy the above range.
  • Examples of the thickener used for the negative electrode include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein and the like. One of these may be used alone, or two or more thereof may be used in any combination and ratio.
  • the thickener may be used as needed, but when used, the content of the thickener in the negative electrode active material layer is usually in the range of 0.5% by mass or more and 5% by mass or less. Is preferable.
  • the slurry for forming the negative electrode active material layer is prepared by mixing the negative electrode active material with a conductive material, a binder, and a thickener as necessary, and using an aqueous solvent or an organic solvent as a dispersion medium.
  • aqueous solvent usually used as the aqueous solvent, but alcohols such as ethanol and organic solvents such as cyclic amides such as N-methylpyrrolidone are used in combination with water in a range of 30% by mass or less. You can also.
  • organic solvent examples include cyclic amides such as N-methylpyrrolidone; linear amides such as N, N-dimethylformamide and N, N-dimethylacetamide; aromatic hydrocarbons such as anisole, toluene and xylene.
  • Alcohols such as butanol and cyclohexanol; among them, cyclic amides such as N-methylpyrrolidone; linear amides such as N, N-dimethylformamide and N, N-dimethylacetamide are preferable. Any one of these may be used alone, or two or more thereof may be used in any combination and ratio.
  • the obtained slurry is applied onto the above-mentioned negative electrode current collector, dried, and then pressed to form a negative electrode active material layer, and a negative electrode is obtained.
  • the method of application is not particularly limited, and a method known per se can be used.
  • the drying method is not particularly limited, and known methods such as natural drying, heat drying, and vacuum drying can be used.
  • the electrode structure when the negative electrode active material is converted into an electrode is not particularly limited, but the density of the negative electrode active material existing on the current collector is preferably 1 g ⁇ cm -3 or more, and 1.2 g ⁇ cm -3 or more. Is more preferable, 1.3 g ⁇ cm -3 or more is particularly preferable, 2.2 g ⁇ cm -3 or less is preferable, 2.1 g ⁇ cm -3 or less is more preferable, and 2.0 g ⁇ cm -3 or less is more preferable. More preferably, 1.9 g ⁇ cm -3 or less is particularly preferable.
  • the density of the negative electrode active material existing on the current collector exceeds the above range, the negative electrode active material particles are destroyed, the initial irreversible capacity of the non-aqueous electrolyte battery increases, and the current collector / negative electrode active material High current density charge / discharge characteristics may deteriorate due to a decrease in the permeability of the non-aqueous electrolyte solution near the interface. Further, when the density of the negative electrode active material is lower than the above range, the conductivity between the negative electrode active materials may decrease, the battery resistance may increase, and the capacity per unit volume may decrease.
  • a separator is usually interposed between the positive electrode and the negative electrode to prevent a short circuit.
  • the non-aqueous electrolyte solution of the present invention is usually used by impregnating this separator.
  • the material and shape of the separator are not particularly limited, and any known separator can be used as long as the effect of the present invention is not significantly impaired.
  • resins, glass fibers, inorganic substances and the like formed of a material stable to the non-aqueous electrolytic solution of the present invention are preferably used, and a porous sheet or a non-woven fabric-like material having excellent liquid retention is used. Is preferable.
  • polyolefins such as polyethylene and polypropylene, polytetrafluoroethylene, polyether sulfone, glass filter and the like can be used.
  • glass filters and polyolefins are preferable, and polyolefins are more preferable.
  • One of these materials may be used alone, or two or more of these materials may be used in any combination and ratio.
  • the thickness of the separator is arbitrary, but is usually 1 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and usually 50 ⁇ m or less, preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less. If the separator is too thin than the above range, the insulating property and mechanical strength may decrease. Further, if it is too thick than the above range, not only the battery performance such as rate characteristics may be deteriorated, but also the energy density of the non-aqueous electrolyte battery as a whole may be lowered.
  • the porosity of the separator is arbitrary, but is usually 20% or more, preferably 35% or more, more preferably 45% or more. Further, it is usually 90% or less, preferably 85% or less, and more preferably 75% or less. If the porosity is too small than the above range, the film resistance tends to increase and the rate characteristics tend to deteriorate. On the other hand, if it is larger than the above range, the mechanical strength of the separator tends to decrease and the insulating property tends to decrease.
  • the average pore size of the separator is also arbitrary, but is usually 0.5 ⁇ m or less, preferably 0.2 ⁇ m or less, and usually 0.05 ⁇ m or more. If the average pore diameter exceeds the above range, a short circuit is likely to occur. Further, if it falls below the above range, the film resistance may increase and the rate characteristics may deteriorate.
  • oxides such as alumina and silicon dioxide
  • nitrides such as aluminum nitride and silicon nitride
  • sulfates such as barium sulfate and calcium sulfate are used.
  • a thin film such as a non-woven fabric, a woven fabric, or a microporous film is used.
  • a thin film shape a thin film having a pore diameter of 0.01 to 1 ⁇ m and a thickness of 5 to 50 ⁇ m is preferably used.
  • a separator formed by forming a composite porous layer containing a particle-shaped or fiber-shaped inorganic substance using a resin binder on the surface layer of the positive electrode and / or the negative electrode can be used. ..
  • a porous layer containing alumina particles having a 90% particle size of less than 1 ⁇ m may be formed on both sides of the positive electrode using a fluororesin as a binder.
  • the electrode group has a laminated structure in which the above-mentioned positive electrode plate and the negative electrode plate are formed by the above-mentioned separator, and a structure in which the above-mentioned positive electrode plate and the negative electrode plate are spirally wound through the above-mentioned separator. Either may be used.
  • the ratio of the volume of the electrode group to the internal volume of the battery (hereinafter referred to as the electrode group occupancy rate) is usually 40% or more, preferably 50% or more, and usually 90% or less, 80% or less. preferable.
  • the lower limit of the electrode group occupancy rate is preferably in the above range from the viewpoint of battery capacity.
  • the upper limit of the electrode group occupancy rate is to secure a gap space from the viewpoint of various characteristics such as charge / discharge repetition performance as a battery and high temperature storage characteristics, and from the viewpoint of avoiding the operation of the gas discharge valve that releases the internal pressure to the outside. It is preferable to set the above range. If the gap space is too small, the temperature of the battery will increase, causing the members to expand and the vapor pressure of the liquid component of the electrolyte to increase, resulting in an increase in internal pressure, resulting in repeated charging / discharging performance and high-temperature storage characteristics of the battery. In some cases, the gas release valve that releases the internal pressure to the outside may operate.
  • the current collecting structure is not particularly limited, but in order to more effectively improve the discharge characteristics of the non-aqueous electrolyte solution, it is preferable to use a structure that reduces the resistance of the wiring portion and the joint portion. .. When the internal resistance is reduced in this way, the effect of using the above-mentioned non-aqueous electrolyte solution is particularly well exhibited.
  • the electrode group has the above-mentioned laminated structure
  • a structure formed by bundling the metal core portions of each electrode layer and welding them to the terminals is preferably used.
  • the area of one electrode becomes large, the internal resistance becomes large. Therefore, it is also preferably used to reduce the resistance by providing a plurality of terminals in the electrode.
  • the electrode group has the above-mentioned wound structure, the internal resistance can be reduced by providing a plurality of lead structures on the positive electrode and the negative electrode and bundling them in the terminals.
  • a protective element As a protective element, a PTC element (Positive Temperature Coafficient) element whose resistance increases when abnormal heat generation or excessive current flows, a thermal fuse, a thermistor, and a current flowing in a circuit due to a sudden rise in battery internal pressure or internal temperature during abnormal heat generation. (Current cutoff valve) and the like. It is preferable to select the protective element under conditions that do not operate under normal use of high current, and from the viewpoint of high output, it is more preferable to design the protective element so as not to cause abnormal heat generation or thermal runaway even without the protective element.
  • the non-aqueous electrolyte battery of the present embodiment is usually configured by storing the above-mentioned non-aqueous electrolyte, negative electrode, positive electrode, separator and the like in an exterior body (exterior case).
  • an exterior body exterior body
  • a known one can be arbitrarily adopted as long as the effect of the present invention is not significantly impaired.
  • the material of the outer case is not particularly limited as long as it is a substance stable to the non-aqueous electrolyte solution used. Specifically, a nickel-plated steel plate, stainless steel, aluminum or aluminum alloy, magnesium alloy, metals such as nickel and titanium, or a laminated film (laminated film) of resin and aluminum foil is preferably used.
  • the metals are welded together by laser welding, resistance welding, or ultrasonic welding to form a sealed and sealed structure, or the above metals are used to caulk the structure via a resin gasket.
  • the outer case using the above-mentioned laminated film include a case in which resin layers are heat-sealed to form a sealed and sealed structure.
  • a resin different from the resin used for the laminate film may be interposed between the resin layers.
  • a resin having a polar group or a modification in which a polar group is introduced as an intervening resin is introduced. Resin is preferably used.
  • the shape of the exterior body is also arbitrary, and may be any of, for example, a cylindrical type, a square type, a laminated type, a coin type, and a large size.
  • Li (Ni 1/3 Mn 1/3 Co 1/3 ) O 2 85 parts by mass as the positive electrode active material, 10 parts by mass of acetylene black as the conductive material, and 5 parts by mass of polyvinylidene fluoride (PVdF) as the binder.
  • PVdF polyvinylidene fluoride
  • Preparation of negative electrode 98 parts by mass of natural graphite, 1 part by mass of aqueous dispersion of sodium carboxymethyl cellulose (concentration of sodium carboxymethyl cellulose 1% by mass) and aqueous dispersion of styrene-butadiene rubber (styrene-butadiene rubber) as a thickener and binder 1 part by mass was added and mixed with a disperser to form a slurry. The obtained slurry was applied to one side of a copper foil having a thickness of 10 ⁇ m, dried, and then pressed to obtain a negative electrode.
  • aqueous dispersion of sodium carboxymethyl cellulose concentration of sodium carboxymethyl cellulose 1% by mass
  • styrene-butadiene rubber styrene-butadiene rubber
  • FSO 3 Li was added to the Ni (PF 6 ) 2- containing non-aqueous electrolyte solution or reference electrolyte solution A1 prepared above to prepare the non-aqueous electrolyte solution shown in Table 1 below.
  • Comparative Example A1-1 is the reference electrolyte A1 itself.
  • the content of FSO 3 Li indicates the amount of addition
  • the content of nickel element (nickel ion) is a value obtained based on the measurement results of inductively coupled high frequency plasma emission spectroscopy (ICP-AES) described later. ..
  • the “content (mass%)" and “content (mass ppm)" in the table are the contents when the reference electrolytic solution A1 is 100% by mass.
  • the non-aqueous electrolyte secondary battery after the charge storage test was again CC-CV charged at 1 / 6C to 4.2 V, and then stored at a high temperature at 60 ° C. for 336 hours.
  • the discharge capacity when the non-aqueous electrolyte secondary battery was discharged to 2.5 V at 1/6 C at 25 ° C. was determined, and this was defined as "residual capacity (2 weeks)".
  • Table 1 below shows the values of the remaining capacity when the remaining capacity (2 weeks) of Comparative Example A1-1 is set to 100.
  • Comparative Example A1-1 From the comparison between Comparative Example A1-1 and Comparative Example A1-2, it was shown that the residual capacity of the battery was increased by containing FSO 3 Li in the electrolytic solution. On the other hand, from Comparative Examples A1-1 to A1-3, it was shown that even if the electrolytic solution contains FSO 3 Li, the residual volume decreases when the nickel ion exceeds a predetermined amount. Further, from Comparative Examples A1-4 to A1-7, when the electrolytic solution contained about 50 mass ppm of nickel ions (Comparative Example A1-6), the residual capacity was improved, but the amount of nickel was less or more than that. In the case of containing ions, a decrease in residual capacity was shown.
  • Examples A2-1 to A2-3, Comparative Examples A2-1 to A2-3> [Preparation of positive electrode] A positive electrode was prepared in the same manner as in Example A1-1.
  • a negative electrode was prepared in the same manner as in Example A1-1.
  • a laminated non-aqueous electrolyte secondary battery was produced in the same manner as in Example A1-1 except that the above non-aqueous electrolyte was used.
  • Example A1-1 ⁇ Evaluation of non-aqueous electrolyte secondary battery>
  • Initial conditioning and charge storage tests were performed in the same manner as in Example A1-1.
  • the remaining capacity was determined by the same method as in Example A1-1.
  • Table 2 below shows the remaining capacity (1 week) of Examples A2-1 to A2-3 and Comparative Examples A2-1 to A2-3 when the remaining capacity (1 week) of Comparative Example A1-1 is set to 100. The value of is shown together with the results of Comparative Examples A1-1 and A1-5.
  • Example A2-1 showed a remarkable effect that the remaining capacity was improved as compared with Comparative Example A1-5 and Comparative Example A2-1, and further, the remaining capacity was improved as compared with Comparative Example A1-1. .. Further, from the comparison between Example A2-2 and Comparative Example A2-2 and the comparison between Example A2-3 and Comparative Example A2-3, the electrolytic solution contained FSO 3 Li and a predetermined amount of nickel ions. The inclusion has a remarkable effect of improving the remaining capacity of the non-aqueous electrolyte secondary battery, that is, improving the charge storage characteristics of the non-aqueous electrolyte secondary battery in a high temperature environment.
  • Examples A3-1 to A3-2, Comparative Examples A3-1 to A3-5> [Preparation of positive electrode] 90 parts by mass of Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 as a positive electrode active material, 7 parts by mass of acetylene black as a conductive material, and 3 parts by mass of polyvinylidene fluoride (PVdF) as a binder. was mixed with a disperser in an N-methylpyrrolidone solvent to form a slurry. This was uniformly applied to one side of an aluminum foil having a thickness of 15 ⁇ m, dried, and then pressed to obtain a positive electrode.
  • PVdF polyvinylidene fluoride
  • a negative electrode was prepared in the same manner as in Example A1-1 except that a slurry containing the negative electrode active material was applied to both surfaces of the copper foil.
  • a laminated non-aqueous electrolyte secondary battery was produced in the same manner as in Example A1-1 except that the above-mentioned positive electrode, negative electrode and non-aqueous electrolyte were used.
  • Example A1-1 ⁇ Evaluation of non-aqueous electrolyte secondary battery>
  • Initial conditioning and charge storage tests were performed in the same manner as in Example A1-1.
  • the remaining capacity (1 week) and the remaining capacity (2 weeks) were determined by the same method as in Example A1-1.
  • Table 3 below shows the values of the remaining capacity when the remaining capacity (1 week) of Comparative Example A3-1 is 100, and the remaining capacity when the remaining capacity (2 weeks) of Comparative Example A3-1 is 100. 2 weeks) is shown.
  • the electrolytic solution containing 5 mass ppm of nickel ions improves the remaining capacity of the non-aqueous electrolyte battery, while the amount of nickel ions is 515 mass by mass. It can be seen that when the amount is as large as ppm, the remaining capacity is reduced.
  • examples A3-1, when Examples A3-2 and Comparative Examples A3-2, the electrolytic solution comprising nickel ions of a predetermined amount, and including FSO 3 Li comprises FSO 3 Li alone It was shown that the remaining capacity increased more than in the case.
  • the storage period of the battery is usually about 200 days for a vehicle manufacturer, for example. Since the difference in the remaining capacity after storage for 1 week or 2 weeks increases with time, it can be said that the longer the storage period, the more remarkable the effect of the present invention becomes.
  • Examples B1-1 to B1-4, Comparative Examples B1-1 to B1-6> [Preparation of EC solution containing Co (PF 6 ) 2 ]
  • 0.30 g (2.3 mmol) of CoCl 2 was weighed in a 50 mL beaker and suspended in acetonitrile (AN). While stirring this, 1.168 g (4.6 mmol) of AgPF 6 was added slowly in small portions, and then stirred at room temperature for 3 hours. As the reaction proceeded, a white solid of AgCl was produced.
  • a positive electrode was prepared in the same manner as in Example A1-1.
  • a negative electrode was prepared in the same manner as in Example A1-1.
  • a non-aqueous electrolyte solution containing no Co (PF 6 ) 2 is referred to as a reference electrolyte solution B1.
  • FSO 3 Li was added to the Co (PF 6 ) 2- containing non-aqueous electrolyte solution or reference electrolyte solution B1 prepared above to prepare the non-aqueous electrolyte solution shown in Table 4 below.
  • Comparative Example B1-1 is the reference electrolyte B1 itself.
  • the content of FSO 3 Li indicates the amount added, and the content of cobalt element (cobalt ion) is a value obtained based on the measurement results of inductively coupled high frequency plasma emission spectroscopy (ICP-AES) described later. ..
  • the “content (mass%)" and “content (mass ppm)” in the table are the contents when the reference electrolytic solution B1 is 100% by mass.
  • a laminated non-aqueous electrolyte secondary battery was produced in the same manner as in Example A1-1 except that the above non-aqueous electrolyte was used.
  • Example A1-1 ⁇ Evaluation of non-aqueous electrolyte secondary battery>
  • Initial conditioning and charge storage tests were performed in the same manner as in Example A1-1.
  • the remaining capacity was determined by the same method as in Example A1-1.
  • Table 4 below shows the values of the remaining capacity when the remaining capacity (1 week) of Comparative Example B1-1 is 100.
  • Table 4 below shows the values of the remaining capacity when the remaining capacity (2 weeks) of Comparative Example B1-1 is set to 100.
  • Example B2-1 to B2-3, Comparative Examples B2-1 to B2-3> [Preparation of positive electrode] A positive electrode was prepared in the same manner as in Example B1-1.
  • a negative electrode was prepared in the same manner as in Example B1-1.
  • a laminated non-aqueous electrolyte secondary battery was produced in the same manner as in Example B1-1 except that the above non-aqueous electrolyte was used.
  • Example B1-1 ⁇ Evaluation of non-aqueous electrolyte secondary battery>
  • Initial conditioning and charge storage tests were performed in the same manner as in Example B1-1.
  • the remaining capacity was determined by the same method as in Example B1-1.
  • Table 5 below shows the remaining capacity (1 week) of Examples B2-1 to B2-3 and Comparative Examples B2-1 to B2-3 when the remaining capacity (1 week) of Comparative Example B1-1 is set to 100. The value of is shown together with the results of Comparative Examples B1-1 and B1-4.
  • the non-aqueous electrolyte solution containing 78 mass ppm of cobalt ions without containing FSO 3 Li is more non-aqueous electrolyte solution than the non-aqueous electrolyte solution containing cobalt ions. It has been shown to reduce the remaining capacity of the next battery. Further, from Comparative Examples B2-1 and B2-2, even when the non-aqueous electrolyte solution contains FSO 3 Li, if the content is too small, the remaining capacity of the non-aqueous electrolyte secondary battery is improved. Instead of doing, it was shown to decline.
  • Example B2-1 has a lower residual capacity than that of Comparative Example B1-4 and Comparative Example B2-1.
  • Example B2-1 showed a remarkable effect that the remaining capacity was improved as compared with Comparative Example B1-4 and Comparative Example B2-1, and further, the remaining capacity was improved as compared with Comparative Example B1-1. ..
  • the non-aqueous electrolyte solution was FSO 3 Li and a predetermined amount of cobalt. It was shown that the inclusion of ions has a remarkable effect of improving the remaining capacity of the non-aqueous electrolyte secondary battery, that is, improving the charge storage characteristics of the non-aqueous electrolyte secondary battery in a high temperature environment.
  • Examples B3-1 to B3-3, Comparative Examples B3-1 to B3-6> [Preparation of positive electrode] A positive electrode was prepared in the same manner as in Example A3-1.
  • a negative electrode was prepared in the same manner as in Example A3-1.
  • a laminated non-aqueous electrolyte secondary battery was produced in the same manner as in Example B1-1 except that the positive electrode, the negative electrode and the non-aqueous electrolyte were used.
  • Example B1-1 ⁇ Evaluation of non-aqueous electrolyte secondary battery>
  • the remaining capacity (1 week) and the remaining capacity (2 weeks) were determined by the same method as in Example B1-1.
  • Table 6 below shows the values of the remaining capacity (1 week) when the remaining capacity (1 week) of Comparative Example B3-1 is 100, and the remaining capacity (2 weeks) of Comparative Example B3-1 is 100. The value of the remaining capacity (2 weeks) of is shown.
  • the non-aqueous electrolyte solution containing 4 mass ppm of cobalt ions improves the remaining capacity of the non-aqueous electrolyte secondary battery, while the amount of cobalt ions.
  • the residual capacity after high temperature storage for 168 hours (1 week) is lowered, and it is shown that the residual capacity after high temperature storage for 336 hours (2 weeks) is equivalent to the case where cobalt ions are not contained.
  • the residual capacity of the non-aqueous electrolyte secondary battery after high temperature storage increases compared to the case where ions are contained alone, especially after 168 hours (1 week) high temperature storage and 336 hours (2 weeks) high temperature storage. From the comparison of the capacity ratios, it was shown that the deterioration of the non-aqueous electrolyte secondary battery due to aging is remarkably suppressed, and the charge storage characteristics of the non-aqueous electrolyte secondary battery in a high temperature environment are improved.
  • the storage period of the battery is usually about 200 days for a vehicle manufacturer, for example. Since the difference in the remaining capacity after storage for 1 week or 2 weeks increases with time, it can be said that the longer the storage period, the more remarkable the effect of the present invention becomes.
  • a positive electrode was prepared in the same manner as in Example A1-1.
  • a negative electrode was prepared in the same manner as in Example A1-1.
  • FSO 3 Li was added to the Cu (PF 6 ) 2- containing non-aqueous electrolyte solution or reference electrolyte C1 prepared above to prepare the non-aqueous electrolyte solution shown in Table 7 below.
  • Comparative Example C1-1 is the reference electrolyte C1 itself.
  • the content of FSO 3 Li indicates the amount of addition
  • the content of copper element (copper ion) is a value obtained based on the measurement result of inductively coupled high frequency plasma emission spectroscopy (ICP-AES) described later. ..
  • the "content (mass%)" and “content (mass ppm)" in the table are the contents when the reference electrolytic solution C1 is 100% by mass.
  • a laminated non-aqueous electrolyte secondary battery was produced in the same manner as in Example A1-1 except that the above non-aqueous electrolyte was used.
  • Example A1-1 ⁇ Evaluation of non-aqueous electrolyte secondary battery>
  • Initial conditioning and charge storage tests were performed in the same manner as in Example A1-1.
  • the remaining capacity was determined by the same method as in Example A1-1.
  • Table 7 below shows the values of the remaining capacity (1 week) when the remaining capacity of Comparative Example C1-1 is 100.
  • Table 7 below shows the values of the remaining capacity when the remaining capacity (2 weeks) of Comparative Example C1-1 is set to 100.
  • Comparative Example C1-1 From the comparison between Comparative Example C1-1 and Comparative Example C1-2, it was shown that the residual capacity of the battery was increased by containing FSO 3 Li in the electrolytic solution. On the other hand, from Comparative Examples C1-1 to C1-3, even if the electrolytic solution contains FSO 3 Li, the residual capacity does not change when the copper ion exceeds a predetermined amount, and the effect of containing FSO 3 Li does not change. It was shown that it does not exert. Further, from Comparative Examples C1-4 to C1-7, when the electrolytic solution contains 5 mass ppm of copper ions, the residual capacity is the same as when it does not contain copper ions, and when it contains about 60 mass ppm, the residual capacity is improved.
  • Example C1-2 of a non-aqueous electrolyte battery containing the same amount of copper ions and FSO 3 Li the ratio of residual capacity was improved after high temperature storage at 60 ° C. for 168 hours, and 60 ° C. for 336 hours. It was shown that the ratio of residual capacity was further improved after high temperature storage under the conditions of. That is, it was shown that when the non-aqueous electrolyte solution contains a predetermined amount of copper ions and contains FSO 3 Li, deterioration of the non-aqueous electrolyte battery due to aging is remarkably suppressed.
  • a negative electrode was prepared in the same manner as in Example C1-1.
  • a laminated non-aqueous electrolyte secondary battery was produced in the same manner as in Example C1-1 except that the above non-aqueous electrolyte was used.
  • Example C1-1 ⁇ Evaluation of non-aqueous electrolyte secondary battery>
  • Initial conditioning and charge storage tests were performed in the same manner as in Example C1-1.
  • the remaining capacity (1 week) was determined by the same method as in Example C1-1.
  • Table 8 below shows the remaining capacities (1 week) of Examples C2-1 to C2-3 and Comparative Examples C2-1 to C2-3 when the remaining capacity (1 week) of Comparative Example C1-1 is set to 100. The value of is shown together with the results of Comparative Examples C1-1 and C1-5.
  • the non-aqueous electrolyte battery of Example C2-1 is remarkably improved in residual capacity as compared with Comparative Example C1-5 and Comparative Example C2-1, and further improved as compared with Comparative Example C1-1.
  • the effect was shown.
  • the non-aqueous electrolyte battery of Example C2-2 has a remarkable remaining capacity higher than that of Comparative Example C1-5 and Comparative Example C2-2, and further improved as compared with Comparative Example C1-1.
  • the effect was shown.
  • the residual capacity of the non-aqueous electrolyte secondary battery is improved by containing FSO 3 Li and a predetermined amount of copper ions in the electrolytic solution, that is, non-aqueous electrolytic solution. The remarkable effect of improving the charge storage characteristics of the liquid secondary battery in a high temperature environment was shown.
  • Examples C3-1 to C3-2, Comparative Examples C3-1 to C3-5> [Preparation of positive electrode] A positive electrode was prepared in the same manner as in Example A3-1.
  • a negative electrode was prepared in the same manner as in Example A3-1.
  • a laminated non-aqueous electrolyte secondary battery was produced in the same manner as in Example C1-1 except that the positive electrode, the negative electrode and the non-aqueous electrolyte were used.
  • Example C1-1 ⁇ Evaluation of non-aqueous electrolyte secondary battery>
  • the remaining capacity (1 week) and the remaining capacity (2 weeks) were determined by the same method as in Example C1-1.
  • Table 9 below shows the values of the remaining capacity (1 week) when the remaining capacity (1 week) of Comparative Example C3-1 is 100, and the remaining capacity (2 weeks) of Comparative Example C3-1 is 100. The value of the remaining capacity (2 weeks) of is shown.
  • the non-aqueous electrolyte solution contains a predetermined amount of copper ions and contains FSO 3 Li, whereby FSO 3 Li or The residual capacity after high temperature storage for 168 hours (1 week) is higher than that when copper ions are contained alone, and the residual capacity after 168 hours (1 week) high temperature storage and 336 hours (2 weeks) high temperature storage. It was shown that the deterioration of the non-aqueous electrolyte secondary battery due to aging is remarkably suppressed. That is, it was shown that when the non-aqueous electrolyte solution contains FSO 3 Li and a predetermined amount of copper ions, the charge storage characteristics of the non-aqueous electrolyte secondary battery in a high temperature environment are improved.
  • the storage period of the battery is usually about 200 days for a vehicle manufacturer, for example. Since the difference in the remaining capacity after storage for 1 week or 2 weeks increases with time, it can be said that the longer the storage period, the more remarkable the effect of the present invention becomes.
  • a positive electrode was prepared in the same manner as in Example A1-1.
  • a negative electrode was prepared in the same manner as in Example A1-1.
  • a non-aqueous electrolytic solution containing no Mn (PF 6 ) 2 is referred to as a reference electrolytic solution D1.
  • FSO 3 Li was added to the Mn (PF 6 ) 2- containing non-aqueous electrolyte solution or reference electrolyte D1 prepared above to prepare the non-aqueous electrolyte solution shown in Table 10 below.
  • Comparative Example D1-1 is the reference electrolyte D1 itself.
  • the content of FSO 3 Li indicates the amount of addition
  • the content of manganese element (manganese ion) is a value obtained based on the measurement results of inductively coupled high frequency plasma emission spectroscopy (ICP-AES) described later. ..
  • the “content (mass%)" and “content (mass ppm)” in the table are the contents when the reference electrolytic solution D1 is 100% by mass.
  • a laminated non-aqueous electrolyte secondary battery was produced in the same manner as in Example A1-1 except that the above non-aqueous electrolyte was used.
  • Example A1-1 ⁇ Evaluation of non-aqueous electrolyte secondary battery> [Initial conditioning] Initial conditioning and charge storage tests were performed in the same manner as in Example A1-1. The remaining capacity was determined by the same method as in Example A1-1. Table 10 below shows the values of the remaining capacity (1 week) when the remaining capacity (1 week) of Comparative Example D1-1 is 100. Table 10 below shows the values of the remaining capacity when the remaining capacity (2 weeks) of Comparative Example D1-1 is 100.
  • the non-aqueous electrolyte solution contains FSO 3 Li and a predetermined amount of manganese ions, the deterioration of the non-aqueous electrolyte secondary battery due to aging is remarkably suppressed, and the high temperature environment of the non-aqueous electrolyte secondary battery. It was shown that the charge storage characteristics underneath were improved.
  • Example D2-1 to D2-3, Comparative Examples D2-1 to D2-3> [Preparation of positive electrode] A positive electrode was prepared in the same manner as in Example D1-1.
  • a negative electrode was prepared in the same manner as in Example D1-1.
  • a laminated non-aqueous electrolyte secondary battery was produced in the same manner as in Example D1-1 except that the above non-aqueous electrolyte was used.
  • Example D1-1 ⁇ Evaluation of non-aqueous electrolyte secondary battery>
  • Initial conditioning and charge storage tests were performed in the same manner as in Example D1-1.
  • the remaining capacity was determined by the same method as in Example D1-1.
  • Table 11 shows the remaining capacities (1 week) of Examples D2-1 to D2-3 and Comparative Examples D2-1 to D2-3 when the remaining capacity (1 week) of Comparative Example D1-1 is set to 100. The value of is shown together with the results of Comparative Examples D1-1 and D1-4.
  • Example D2-1 has a lower residual capacity than that of Comparative Example D1-4 and Comparative Example D2-1.
  • Example D2-1 showed a remarkable effect that the remaining capacity was improved as compared with Comparative Example D1-4 and Comparative Example D2-1, and further, the remaining capacity was improved as compared with Comparative Example D1-1. ..
  • the non-aqueous electrolyte solution was FSO 3 Li and a predetermined amount of manganese.
  • the inclusion of ions has a remarkable effect of improving the residual capacity of the non-aqueous electrolyte secondary battery after high temperature storage, that is, improving the charge storage characteristics of the non-aqueous electrolyte secondary battery in a high temperature environment. Shown.
  • Examples D3-1 to D3-3, Comparative Examples D3-1 to D3-6> [Preparation of positive electrode] A positive electrode was prepared in the same manner as in Example A3-1.
  • a negative electrode was prepared in the same manner as in Example A3-1.
  • a laminated non-aqueous electrolyte secondary battery was produced in the same manner as in Example D1-1 except that the above-mentioned positive electrode, negative electrode and non-aqueous electrolyte were used.
  • Example D1-1 ⁇ Evaluation of non-aqueous electrolyte secondary battery>
  • the remaining capacity (1 week) and the remaining capacity (2 weeks) were determined by the same method as in Example D1-1.
  • Table 12 below shows the values of the remaining capacity when the remaining capacity of Comparative Example D3-1 is 100, and the remaining capacity (2 weeks) when the remaining capacity of Comparative Example D3-1 is 100. Indicates the value.
  • the non-aqueous electrolyte solution containing 10% by mass or more of manganese ions was used as a non-aqueous electrolyte secondary battery after high temperature storage for 168 hours (1 week). It can be seen that while reducing the residual capacity, the residual capacity after high temperature storage for 336 hours (2 weeks) is improved as compared with the case where manganese ions are not contained. Further, from Examples D3-1 to D3-3, since the non-aqueous electrolyte solution contains a predetermined amount of manganese ions and contains FSO 3 Li, it takes 168 hours as compared with the case where FSO 3 Li or manganese ions are contained alone.
  • the storage period of the battery is usually about 200 days for a vehicle manufacturer, for example. Since the difference in the remaining capacity after storage for 1 week or 2 weeks increases with time, it can be said that the longer the storage period, the more remarkable the effect of the present invention becomes.
  • Examples E1-1 to E1-7, Comparative Examples E1-1 to E1-10> [Preparation of positive electrode] A positive electrode was prepared in the same manner as in Example A3-1.
  • a negative electrode was prepared in the same manner as in Example A3-1.
  • Table 13 shows the aluminum ion concentrations of tris (2,4-pentanedionato) aluminum (Al (acac) 3 ) or aluminum fluorosulfonate (Al (FSO 3 ) 3 ) in a mixed solvent under a dry argon atmosphere. And so that the solvent composition is ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) in a volume ratio of 3: 4: 3, dissolved in EC, EMC, and DMC.
  • the fully dried LiPF 6 was dissolved at 1 mol / L (12.3% by mass, as a concentration in the non-aqueous electrolyte solution).
  • a non-aqueous electrolyte solution containing neither Al (acac) 3 nor Al (FSO 3 ) 3 is called a reference electrolyte solution E1.
  • FSO 3 Li was added to the non-aqueous electrolyte solution or reference electrolyte solution E1 prepared above, and the non-aqueous electrolyte solutions of Examples E1-1 to E1-7 shown in Table 13 below, Comparative Example E1 -The non-aqueous electrolyte solution of Comparative Example E1-3 was prepared.
  • Comparative Example E1-1 is the reference electrolyte E1 itself. Further, those to which FSO 3 Li was not added were used as non-aqueous electrolyte solutions of Comparative Examples E1-4 to E1-10.
  • the content of FSO 3 Li indicates the amount added, and the content of the aluminum element (aluminum ion) is a value obtained based on the measurement results of inductively coupled high frequency plasma emission spectroscopy (ICP-AES) described later. ..
  • the “content (mass%)” and “content (mass ppm)” in the table are the contents when the reference electrolytic solution E1 is 100% by mass.
  • Al (FSO 3 ) 3 was synthesized according to the method described in Polyhedron, 1983, Volume 2, Issue 11, Pages 1209-1210.
  • a laminated non-aqueous electrolyte secondary battery was produced in the same manner as in Example A1-1 except that the above non-aqueous electrolyte was used.
  • Example A1-1 ⁇ Evaluation of non-aqueous electrolyte secondary battery>
  • Initial conditioning and charge storage tests were performed in the same manner as in Example A1-1.
  • the remaining capacity was determined by the same method as in Example A1-1.
  • Table 13 below shows the residual capacity of Examples E1-1 to E1-7 and Comparative Examples E1-1 to E1-10 when the remaining capacity (1 week) of Comparative Example E1-1 is set to 100. The value of (1 week) is shown.
  • Table 13 below shows the residual capacity of Examples E1-1 to E1-7 and Comparative Examples E1-1 to E1-10 when the remaining capacity (2 weeks) of Comparative Example E1-1 is set to 100. The value of (2 weeks) is shown.
  • the electrolytic solution contains a specific amount of aluminum ions and FSO 3 Li, deterioration of the non-aqueous electrolyte battery due to aging is suppressed, that is, non-aque. It was shown that the charge storage characteristics of the water-based electrolyte secondary battery in a high temperature environment are improved. From Examples E1-1 to E1-7, the non-aqueous electrolyte solution contains FSO 3 Li and a specific amount of aluminum ions regardless of the type of counter anion of the aluminum ion, so that the non-aqueous electrolyte solution secondary It was shown that the charge storage characteristics of the battery in a high temperature environment are improved.
  • the storage period of a battery is usually about 200 days for a vehicle manufacturer, for example. Since the difference in the remaining capacity after storage for 1 week or 2 weeks increases with time, it can be said that the longer the storage period, the more remarkable the effect of the present invention becomes.
  • Example E2-1 to Example E2-3, Comparative Example E2-1 to Comparative Example E2-3> [Preparation of positive electrode] A positive electrode was prepared in the same manner as in Example E1-1.
  • a negative electrode was prepared in the same manner as in Example E1-1.
  • a laminated non-aqueous electrolyte secondary battery was produced in the same manner as in Example E1-4 except that the above non-aqueous electrolyte was used.
  • Example E1-4 ⁇ Evaluation of non-aqueous electrolyte secondary battery>
  • the remaining capacity (1 week) was determined by the same method as in Example E1-4.
  • Table 14 below shows the remaining capacities of Examples E2-1 to E2-3 and Comparative Examples E2-1 to E2-3 when the remaining capacity (1 week) of Comparative Example E1-1 is set to 100.
  • the value of (remaining capacity) is shown together with the results of Comparative Example E1-1 and Comparative Example E1-7.
  • Comparative Example E1-7 the electrolytic solution not containing FSO 3 Li and containing a specific amount of aluminum ions (Comparative Example E1-7) is an electrolytic solution not containing aluminum ions (comparative). From Example E1-1), it was shown that the remaining capacity of the non-aqueous electrolyte battery was reduced. Further, from Comparative Example E2-1 and Comparative Example E2-2, even when the electrolytic solution contains FSO 3 Li, if the content is too small, the remaining capacity of the battery is reduced rather than improved. It has been shown. From these results, it is expected that the battery of Example E2-1 has a lower remaining capacity than that of Comparative Example E1-7 and Comparative Example E2-1.
  • Example E2-1 showed a remarkable effect that the remaining capacity was improved as compared with Comparative Example E1-7 and Comparative Example E2-1, and further, the remaining capacity was improved as compared with Comparative Example E1-1. .. Further, from the comparison between Example E2-2 and Comparative Example E2-2, and the comparison between Example E2-3 and Comparative Example E2-3, the non-aqueous electrolyte solution was FSO 3 Li and a specific amount of aluminum. It was shown that the inclusion of ions has a remarkable effect of improving the remaining capacity of the non-aqueous electrolyte secondary battery, that is, improving the charge storage characteristics of the non-aqueous electrolyte secondary battery in a high temperature environment.
  • Examples F1-1 to F1-17, Comparative Examples F1-1 to F1-19> [Preparation of positive electrode] A positive electrode was prepared in the same manner as in Example A3-1.
  • a negative electrode was prepared in the same manner as in Example A3-1.
  • the metal ion-containing non-aqueous electrolyte solutions of Examples F1-1 to F1-17 were used in the same manner as in Example A3 except that the contents of FSO 3 Li and metal ions were changed as shown in Table 15 below.
  • the reference electrolyte F1 is an electrolyte prepared by dissolving 1 mol / L (as a concentration in a non-aqueous electrolyte) of LiPF 6 in a mixture having a volume ratio of EC: EMC: DMC of 3: 4: 3. Is.
  • FSO 3 Li was added to the reference electrolyte F1 as shown in the table below to prepare a non-aqueous electrolyte of Comparative Example F1-2. Further, those in which specific metal ions were added and FSO 3 Li was not added were used as non-aqueous electrolyte solutions of Comparative Examples F1-3 to F1-19.
  • a laminated non-aqueous electrolyte secondary battery was produced in the same manner as in Example A3-1 except that the above non-aqueous electrolyte was used.
  • Example A3-1 ⁇ Evaluation of non-aqueous electrolyte secondary battery>
  • the remaining capacity (1 week) was determined by the same method as in Example A3-1.
  • the value of capacity is shown.
  • the remaining capacity of Example F1-1 to Example F1-17 and Comparative Example F1-1 to Comparative Example F1-19 when the remaining capacity (2 weeks) of Comparative Example F1-1 is set to 100 ( 2 weeks) is shown.
  • Comparative Examples F1-3 to F1-19 used an electrolytic solution containing specific metal ions and not containing FSO 3 Li.
  • Comparative Example F1-3 Comparative Example F1-5, Comparative Example F1-7, Comparative Example F1-8, Comparative Example F1-12, Comparative Example F1-14, and Comparative Example F1-16, specific metal ions are also FSO. It showed a tendency that the remaining capacity of the battery was lower than that of Comparative Example F1-1 which did not contain 3 Li.
  • Comparative Example F1-4, Comparative Example F1-9, Comparative Example F1-10, and Comparative Example F1-15 had the same residual capacity after 1 week as Comparative Example F1-1, but remained after 2 weeks. The capacity has decreased.
  • Comparative Example F1-6, Comparative Example F1-11, Comparative Example F1-13, Comparative Example F1-17, Comparative Example F1-18, and Comparative Example F1-19 have residual volumes after one week as compared with Comparative Example F1-1. However, the remaining capacity after 2 weeks was inferior to that of Comparative Example F1-1. From these results, it can be seen that even if a non-aqueous electrolyte solution containing a plurality of specific metal ions is used, the remaining capacity of the battery is not always improved, and it is often deteriorated due to aging. On the other hand, from Examples F1-1 to F1-17, when the electrolytic solution contains both specific metal ions and FSO 3 Li, the same amount of metal ions as in Comparative Examples F1-3 to F1-19.
  • the present invention it is possible to realize a non-aqueous electrolyte battery having excellent charge storage characteristics in a high temperature environment, which is useful. Further, the non-aqueous electrolyte solution and the non-aqueous electrolyte battery of the present invention can be used in various known applications in which the non-aqueous electrolyte solution or the non-aqueous electrolyte battery is used. Specific examples include, for example, laptop computers, pen input computers, mobile computers, electronic book players, mobile phones, mobile fax machines, mobile copies, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, and mini discs.
  • Transceivers electronic organizers, calculators, memory cards, portable tape recorders, radios, backup power supplies, motors, bikes, motorized bicycles, bicycles, lighting fixtures, toys, game consoles, watches, power tools, strobes, cameras, household backups
  • Examples include a power source, a backup power source for business establishments, a power source for load leveling, a natural energy storage power source, and a lithium ion capacitor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

FSOLiを含有する非水系電解液でありながら、非水系電解液電池の高温環境下での充電保存特性を向上させることができる非水系電解液及び高温環境下で優れた充電保存特性を有する非水系電解液電池を提供する。FSOLiを含み、特定の金属元素のイオンを特定量含む、非水系電解液。

Description

非水系電解液及び非水系電解液電池
 本発明は、非水系電解液、及び非水系電解液電池に関し、詳しくは特定の化合物、及び特定の金属元素のイオンを特定量含有する非水系電解液、並びにこの非水系電解液を用いた非水系電解液電池に関する。
 近年、電気自動車用等の駆動用車載電源の用途において、リチウム二次電池等の非水系電解液電池が実用化されている。
 非水系電解液電池の電池特性を改善する手段として、正極や負極の活物質、非水系電解液の添加剤分野において数多くの検討がなされている。
 例えば、特許文献1には、非水系電解液二次電池の初期充電容量、及び入出力特性の改善を目的として、M(FSOで表されるフルオロスルホン酸塩を少なくとも1種含有する非水系電解液に、さらにLiPFに加え、かつ上記フルオロスルホン酸塩とLiPFとの割合を特定範囲とする非水系電解液及び非水系電解液二次電池が開示されている。
 特許文献2には、広い温度範囲での電気化学特性を向上できる非水電解液、及びそれを用いた蓄電デバイスの提供を目的とし、非水溶媒に電解質塩が溶解されている非水電解液において、特定の非環状リチウム塩を、非水電解液中に0.001~5質量%含有することを特徴とする非水電解液、及びそれを用いた蓄電デバイスが開示されている。
 特許文献3には、負極活物質(黒鉛材料)の表面に安定な被膜が形成され、より高い電池性能を発揮し得る非水電解液二次電池を提供することを目的とし、正極と負極とを含む電極体と、非水電解液とを備える非水電解液二次電池であって;前記負極は、黒鉛材料を主体とする負極活物質層を備え、前記黒鉛材料の酸性官能基の量は1μeq/m以上であり、且つ、該黒鉛材料の表面には硫黄(S)原子と電荷担体とを含む被膜が形成されていることを特徴とする、非水電解液二次電池が開示されている。
 特許文献4には、耐久性に優れたリチウムイオン二次電池を提供することを目的とし、正極活物質を含む正極と、負極活物質を含む負極と、非水電解質とを備え、前記正極活物質の表面にタングステンが存在し、前記非水電解質にフルオロスルホン酸リチウムが添加されている、リチウムイオン二次電池が開示されている。当該文献には、上記構成により、電池を長期に使用しても、正極の表面に付着させた金属元素が非水電解質中に溶出してしまうことがなく、長期に亘って低い反応抵抗を維持することができる、耐久性に優れたリチウムイオン電池を提供できると記載されている。
国際公開第2011/099585号 国際公開第2013/168821号 特開2014-127313号公報 特開2015-037012号公報
 フルオロスルホン酸リチウム(FSOLi)を非水系電解液に添加することにより、非水系電解液電池の耐久性は向上する傾向にある。一方で、本発明者の検討によると、FSOLiを含有する非水系電解液を含む電池では、高温環境下での充電保存特性が不充分であることが判明した。したがって、本発明は、FSOLiを含有する非水系電解液でありながら、非水系電解液電池の高温環境下での充電保存特性を向上させることができる非水系電解液及び高温環境下で優れた充電保存特性を有する非水系電解液電池を提供する。
 本発明者は、上記課題を解決すべく鋭意検討した結果、FSOLiを含有する非水系電解液について、さらにニッケルイオン(a)、コバルトイオン(b)、銅イオン(c)、マンガンイオン(d)及びアルミニウムイオン(e)からなる群より選ばれる少なくとも1種の金属イオンを含有し、且つ、該(a)~(e)のいずれかの金属イオンの含有量を特定の範囲内とすることにより、非水系電解液電池の高温環境下での充電保存特性を向上できることを見出し、本発明に到達した。
 すなわち、本発明は、以下[1]~[9]に示す具体的態様等を提供する。
[1] (1a)FSOLiを含み、
(1b)ニッケルイオン(a)、コバルトイオン(b)、銅イオン(c)、マンガンイオン(d)及びアルミニウムイオン(e)からなる群より選ばれる少なくとも1種の金属イオンを含み、かつ
(1c)以下の条件(i)~(v)の少なくとも一つを満たす非水系電解液。
  (i)   前記(a)の濃度が1質量ppm以上500質量ppm以下
  (ii)  前記(b)の濃度が1質量ppm以上500質量ppm以下
  (iii) 前記(c)の濃度が1質量ppm以上500質量ppm以下
  (iv)  前記(d)の濃度が1質量ppm以上100質量ppm以下
  (v)   前記(e)の濃度が1質量ppm以上100質量ppm以下
[2] 少なくともニッケルイオン(a)を含む、[1]に記載の非水系電解液。
[3] 金属イオン(a)~(e)の全量に対してニッケルイオンを40質量%以上含む、[2]に記載の非水系電解液。
[4] 前記(a)~(e)の合計の濃度が1質量ppm以上120質量ppm以下である、[3]に記載の非水系電解液。
[5] FSOLiの含有量が0.001質量%以上10.0質量%以下である、[2]~[4]のいずれかに記載の非水系電解液。
[6] 金属イオンを吸蔵及び放出可能な正極並びに負極と、非水系電解液とを備える非水系電解液電池であって、該非水系電解液が
(1a)FSOLiを含み、
(1b)ニッケルイオン(a)、コバルトイオン(b)、銅イオン(c)、マンガンイオン(d)及びアルミニウムイオン(e)からなる群より選ばれる少なくとも1種の金属イオンを含み、かつ
(1c)以下の条件(i)~(v)の少なくとも一つを満たす非水系電解液である、非水系電解液電池。
  (i)   前記(a)の濃度が1質量ppm以上500質量ppm以下
  (ii)  前記(b)の濃度が1質量ppm以上500質量ppm以下
  (iii) 前記(c)の濃度が1質量ppm以上500質量ppm以下
  (iv)  前記(d)の濃度が1質量ppm以上100質量ppm以下
  (v)   前記(e)の濃度が1質量ppm以上100質量ppm以下
[7] 前記正極は集電体及び該集電体上に設けられた正極活物質層を有し、該正極活物質が、下記組成式(1)で表される金属酸化物である、[6]に記載の非水系電解液電池。
 Lia1Nib1Coc1d1・・・(1)
(上記式(1)中、a1、b1、c1及びd1は、0.90≦a1≦1.10、0<b1<0.4、b1+c1+d1=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
[8] 前記正極は集電体及び該集電体上に設けられた正極活物質層を有し、該正極活物質が、下記組成式(2)で表される金属酸化物である、[7]に記載の非水系電解液電池。
 Lia2Nib2Coc2d2・・・(2)
(上記式(2)中、a2、b2、c2及びd2は、0.90≦a2≦1.10、0.4≦b2<1.0、b2+c2+d2=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
[9] 前記正極がNMC正極であり、該NMC正極中、ニッケル元素の含有量が40モル%以上である、[6]~[8]のいずれかに記載の非水系電解液電池。
 本発明者は、上記課題を解決すべく鋭意検討した結果、FSOLiを含有する電解液について、さらにニッケルイオンを含有し、且つ、ニッケルイオンの含有量が特定の範囲内である非水系電解液を用いることにより、非水系電解液電池の高温環境下での充電保存特性を向上できることを見出し、本発明の態様Aに到達した。
 すなわち、本発明の態様Aは、以下[A1]~[A8]に示す具体的態様等を提供する。
[A1] FSOLiを含み、ニッケルイオンを1質量ppm以上500質量ppm以下含む、非水系電解液。
[A2] FSOLiの含有量が0.001質量%以上10.0質量%以下である、[A1]に記載の非水系電解液。
[A3] 金属イオンを吸蔵及び放出可能な正極及び負極と、非水系電解液とを備える非水系電解液電池であって、該非水系電解液がFSOLiを含み、ニッケルイオンを1質量ppm以上500質量ppm以下含む非水系電解液である、非水系電解液電池。
[A4] 前記正極は集電体及び該集電体上に設けられた正極活物質層を有し、該正極活物質が、下記組成式(1)で表される金属酸化物である、[A3]に記載の非水系電解液電池。
 Lia1Nib1Coc1d1・・・(1)
(上記式(1)中、a1、b1、c1及びd1は、0.90≦a1≦1.10、0<b1<0.4、b1+c1+d1=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
[A5] 前記正極は集電体及び該集電体上に設けられた正極活物質層を有し、該正極活物質が、下記組成式(2)で表される金属酸化物である、[A3]に記載の非水系電解液電池。
 Lia2Nib2Coc2d2・・・(2)
(上記式(2)中、a2、b2、c2及びd2は、0.90≦a2≦1.10、0.4≦b2<1.0、b2+c2+d2=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
[A6] 前記正極がNMC正極であり、該NMC正極中、ニッケル元素の含有量が30モル%以上である、[A3]~[A5]のいずれかに記載の非水系電解液電池。
[A7] 前記正極がNMC正極であり、該NMC正極中、ニッケル元素の含有量が40モル%以上である、[A3]、[A5]又は[A6]に記載の非水系電解液電池。
[A8] 該非水系電解液中のFSOLiの含有量が、0.001質量%以上10.0質量%以下である、[A3]~[A7]のいずれかに記載の非水系電解液電池。
 本発明者は、上記課題を解決すべく鋭意検討した結果、FSOLiを含有する非水系電解液について、さらにコバルトイオンを含有し、且つ、コバルトイオンの含有量が特定の範囲内である非水系電解液を用いることにより、非水系電解液電池の高温環境下での充電保存特性を向上できることを見出し、本発明の態様Bに到達した。
 すなわち、本発明の態様Bは、以下[B1]~[B8]に示す具体的態様等を提供する。
[B1] FSOLiを含み、コバルトイオンを1質量ppm以上500質量ppm以下含む、非水系電解液。
[B2] FSOLiの含有量が0.001質量%以上10.0質量%以下である、[B1]に記載の非水系電解液。
[B3] 金属イオンを吸蔵及び放出可能な正極及び負極と、非水系電解液とを備える非水系電解液電池であって、該非水系電解液がFSOLiを含み、コバルトイオンを1質量ppm以上500質量ppm以下含む非水系電解液である、非水系電解液電池。
[B4] 前記正極は集電体及び該集電体上に設けられた正極活物質層を有し、該正極活物質が、下記組成式(1)で表される金属酸化物である、[B3]に記載の非水系電解液電池。
 Lia1Nib1Coc1d1・・・(1)
(上記式(1)中、a1、b1、c1及びd1は、0.90≦a1≦1.10、0<b1<0.4、b1+c1+d1=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
[B5] 前記正極は集電体及び該集電体上に設けられた正極活物質層を有し、該正極活物質が、下記組成式(2)で表される金属酸化物である、[B3]に記載の非水系電解液電池。
 Lia2Nib2Coc2d2・・・(2)
(上記式(2)中、a2、b2、c2及びd2は、0.90≦a2≦1.10、0.4≦b2<1.0、b2+c2+d2=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
[B6] 前記正極がNMC正極であり、該NMC正極中、ニッケル元素の含有量が30モル%以上である、[B3]~[B5]のいずれかに記載の非水系電解液電池。
[B7] 前記正極がNMC正極であり、該NMC正極中、ニッケル元素の含有量が40モル%以上である、[B3]、[B5]又は[B6]に記載の非水系電解液電池。
[B8] 該非水系電解液中のFSOLiの含有量が、0.001質量%以上10.0質量%以下である、[B3]~[B7]のいずれかに記載の非水系電解液電池。
 本発明者は、上記課題を解決すべく鋭意検討した結果、FSOLiを含有する非水系電解液について、さらに銅イオンを含有し、且つ、銅イオンの含有量が特定の範囲内である非水系電解液を用いることにより、非水系電解液電池の高温環境下での充電保存特性を向上できることを見出し、本発明の態様Cに到達した。
 すなわち、本発明の態様Cは、以下[C1]~[C8]に示す具体的態様等を提供する。
[C1] FSOLiを含み、銅イオンを1質量ppm以上500質量ppm以下含む、非水系電解液。
[C2] FSOLiの含有量が0.001質量%以上10.0質量%以下である、[C1]に記載の非水系電解液。
[C3] 金属イオンを吸蔵及び放出可能な正極及び負極と、非水系電解液とを備える非水系電解液電池であって、該非水系電解液がFSOLiを含み、銅イオンを1質量ppm以上500質量ppm以下含む非水系電解液である、非水系電解液電池。
[C4] 前記正極は集電体及び該集電体上に設けられた正極活物質層を有し、該正極活物質が、下記組成式(1)で表される金属酸化物である、[C3]に記載の非水系電解液電池。
 Lia1Nib1Coc1d1・・・(1)
(上記式(1)中、a1、b1、c1及びd1は、0.90≦a1≦1.10、0<b1<0.4、b1+c1+d1=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
[C5] 前記正極は集電体及び該集電体上に設けられた正極活物質層を有し、該正極活物質が、下記組成式(2)で表される金属酸化物である、[C3]に記載の非水系電解液電池。
 Lia2Nib2Coc2d2・・・(2)
(上記式(2)中、a2、b2、c2及びd2は、0.90≦a2≦1.10、0.4≦b2<1.0、b2+c2+d2=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
[C6] 前記正極がNMC正極であり、該NMC正極中、ニッケル元素の含有量が30モル%以上である、[C3]~[C5]のいずれかに記載の非水系電解液電池。
[C7] 前記正極がNMC正極であり、該NMC正極中、ニッケル元素の含有量が40モル%以上である、[C3]、[C5]又は[C6]に記載の非水系電解液電池。
[C8] 該非水系電解液中のFSOLiの含有量が、0.001質量%以上10.0質量%以下である、[C3]~[C7]のいずれかに記載の非水系電解液電池。
 本発明者は、上記課題を解決すべく鋭意検討した結果、FSOLiを含有する非水系電解液について、さらにマンガンイオンを含有し、且つ、マンガンイオンの含有量が特定の範囲内である非水系電解液を用いることにより、非水系電解液電池の高温環境下での充電保存特性を向上できることを見出し、本発明の態様Dに到達した。
 すなわち、本発明の態様Dは、以下[D1]~[D8]に示す具体的態様等を提供する。
[D1] FSOLiを含み、マンガンイオンを1質量ppm以上100質量ppm以下含む、非水系電解液。
[D2] FSOLiの含有量が0.001質量%以上10.0質量%以下である、[D1]に記載の非水系電解液。
[D3] 金属イオンを吸蔵及び放出可能な正極及び負極と、非水系電解液とを備える非水系電解液電池であって、該非水系電解液がFSOLiを含み、マンガンイオンを1質量ppm以上100質量ppm以下含む非水系電解液である、非水系電解液電池。
[D4] 前記正極は集電体及び該集電体上に設けられた正極活物質層を有し、該正極活物質が、下記組成式(1)で表される金属酸化物である、[D3]に記載の非水系電解液電池。
 Lia1Nib1Coc1d1・・・(1)
(上記式(1)中、a1、b1、c1及びd1は、0.90≦a1≦1.10、0<b1<0.4、b1+c1+d1=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
[D5] 前記正極は集電体及び該集電体上に設けられた正極活物質層を有し、該正極活物質が、下記組成式(2)で表される金属酸化物である、[D3]に記載の非水系電解液電池。
 Lia2Nib2Coc2d2・・・(2)
(上記式(2)中、a2、b2、c2及びd2は、0.90≦a2≦1.10、0.4≦b2<1.0、b2+c2+d2=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
[D6] 前記正極がNMC正極であり、該NMC正極中、ニッケル元素の含有量が30モル%以上である、[D3]~[D5]のいずれかに記載の非水系電解液電池。
[D7] 前記正極がNMC正極であり、該NMC正極中、ニッケル元素の含有量が40モル%以上である、[D3]、[D5]又は[D6]に記載の非水系電解液電池。
[D8] 該非水系電解液中のFSOLiの含有量が、0.001質量%以上10.0質量%以下である、[D3]~[D7]のいずれかに記載の非水系電解液電池。
 本発明者は、上記課題を解決すべく鋭意検討した結果、FSOLiを含有する非水系電解液について、さらにアルミニウムイオンを含有し、且つ、アルミニウムイオンの含有量を特定の範囲内とすることにより、非水系電解液電池の高温環境下での充電保存特性を向上できることを見出し、本発明の態様Eに到達した。
 すなわち、本発明の態様Eは、以下[E1]~[E8]に示す具体的態様等を提供する。
[E1] FSOLiを含み、アルミニウムイオンを1質量ppm以上100質量ppm以下含む、非水系電解液。
[E2] FSOLiの含有量が0.001質量%以上10.0質量%以下である、[E1]に記載の非水系電解液。
[E3] 金属イオンを吸蔵及び放出可能な正極並びに負極と、非水系電解液とを備える非水系電解液電池であって、該非水系電解液がFSOLiを含み、アルミニウムイオンを1質量ppm以上100質量ppm以下含む非水系電解液である、非水系電解液電池。
[E4] 前記正極は集電体及び該集電体上に設けられた正極活物質層を有し、該正極活物質が、下記組成式(1)で表される金属酸化物である、[E3]に記載の非水系電解液電池。
 Lia1Nib1Coc1d1・・・(1)
(上記式(1)中、a1、b1、c1及びd1は、0.90≦a1≦1.10、0<b1<0.4、b1+c1+d1=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
[E5] 前記正極は集電体及び該集電体上に設けられた正極活物質層を有し、該正極活物質が、下記組成式(2)で表される金属酸化物である、[E3]に記載の非水系電解液電池。
 Lia2Nib2Coc2d2・・・(2)
(上記式(2)中、a2、b2、c2及びd2は、0.90≦a2≦1.10、0.4≦b2<1.0、b2+c2+d2=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
[E6] 前記正極がNMC正極であり、該NMC正極中、ニッケル元素の含有量が30モル%以上である、[E3]~[E5]のいずれかに記載の非水系電解液電池。
[E7] 前記正極がNMC正極であり、該NMC正極中、ニッケル元素の含有量が40モル%以上である、[E3]、[E5]又は[E6]に記載の非水系電解液電池。
[E8] 該非水系電解液中のFSOLiの含有量が、0.001質量%以上10.0質量%以下である、[E3]~[E7]のいずれかに記載の非水系電解液電池。
 本発明の非水系電解液を用いることで、高温環境下での充電保存特性が向上した非水系電解液電池を得ることが可能となる。
 以下、本発明の実施の形態について詳細に説明する。以下の実施の形態は、本発明の一例(代表例)であり、本発明はこれらに限定されるものではない。また、本発明は、その要旨を逸脱しない範囲内で任意に変更して実施することができる。
<1.非水系電解液>
 本発明の一実施形態に係る非水系電解液は、FSOLiを含み、特定の金属元素のイオンを特定の範囲の量で含む。
 以下、本発明の一実施形態に係る非水系電解液について詳細に説明する。本明細書の各項目の説明は、特定の金属元素のイオンに関する説明以外は、全ての態様に適用できる。
<1-1.FSOLi>
 本実施形態の非水系電解液はFSOLiを含む。
 FSOLiの含有量は、非水系電解液中、好ましくは0.001質量%以上、より好ましくは0.005質量%以上、さらに好ましくは0.010質量%以上、特に好ましくは0.10質量%以上であり、一方、上限として特段の制限はないが、好ましくは10.0質量%以下であり、より好ましくは7.0質量%以下、さらに好ましくは5.0質量%以下、殊更に好ましくは、4.0質量%以下、特に好ましくは3.0質量%以下である。
 FSOLiの含有量が非水系電解液中にて10.0質量%以下の場合には、非水系電解液電池の内部抵抗が上昇するほど負極還元反応が増大することがない点で好ましく、0.001質量%以上の場合には、FSOLiを含有することの本願効果が生じる点で好ましい。ゆえに、上記の範囲内であれば、高温環境下での負極還元反応が抑制される等により、高温環境下での充電保存特性を向上することができる。
 FSOLiは公知の方法で合成して使用してもよいし、市販品を入手して使用してもよい。非水系電解液電池中の電解液内のFSOLiの量を測定する場合には、非水系電解液電池から非水系電解液を含有する部材を取り出し、非水系電解液を抽出して測定すればよい。例えば、遠心分離機により抽出することもできるし、又は有機溶媒を用いて非水系電解液を抽出することができる。抽出した非水系電解液に氷冷した純水を加え、素早く混合して直ちにアニオンイオンクロマトグラフィー(例えば、Thermo Fisher Scientific、ICS-2000、カラム:AS23、溶離液:5.0mM NaCO/0.9mM NaHCO、検出法:サプレッサー付電気伝導率検出方式(12.5mM HSO))にて分離したSO 2-イオンを検出し、FSO イオンをSO 2-イオンの検量線から、モル感度比[k(SO 2-)/k(FSO )]=2.0として換算してFSO イオンを定量することができる。通常、非水系電解液中、FSO イオンの量をFSOLiの量とみなすことができる。一方、後述するように、特定の金属イオン源として、FSO イオンを含む化合物を用いることができる。例えば、アルミニウムイオン源としてAl(FSOを用いてもよい。この場合、非水系電解液中のFSO イオンの総量から、Al(FSO由来のFSO イオンの量を減じて、FSOLiの量を求めればよい。また、アルミニウムイオン源としてAl(FSOを用いたか否かが不明な場合は、非水系電解液中のFSO イオンの量をFSOLiの量とみなしてもよい。
<1-2.金属イオン>
 本発明の一実施形態に係る非水系電解液は、ニッケルイオン(a)、コバルトイオン(b)、銅イオン(c)、マンガンイオン(d)、及びアルミニウムイオン(e)からなる群より選ばれる少なくとも1種の金属イオンを含み、以下の条件(i)~(v)の少なくとも1つを満たす。
  (i)   (a)の濃度が1質量ppm以上500質量ppm以下
  (ii)  (b)の濃度が1質量ppm以上500質量ppm以下
  (iii) (c)の濃度が1質量ppm以上500質量ppm以下
  (iv)  (d)の濃度が1質量ppm以上100質量ppm以下
  (v)   (e)の濃度が1質量ppm以上100質量ppm以下
 本明細書において、非水系電解液中の特定イオン(a)~(e)の含有量とは、特定の金属元素のイオンの非水系電解液(100質量%)中の濃度である。特定の金属元素のイオンの価数は何価であってもよく、異なる価数の金属イオンの組み合わせであってもよい。また、複数種の金属イオンを含んでいてもよい。
 非水系電解液電池の電解液に含まれる金属イオンの量を測定する場合には、非水系電解液電池から非水系電解液を含有する部材を取り出し、非水系電解液を抽出して測定すればよい。例えば、非水系電解液は遠心分離機により抽出することもできるし、又は有機溶媒を用いて非水系電解液を抽出することができる。抽出した非水系電解液を用いて誘導結合高周波プラズマ発光分光分析(ICP―AES、たとえばThermo Fischer Scientific、iCAP 7600duo)によりLi及び酸濃度マッチング検量線法で金属元素、すなわち金属イオンを定量する。
 以下、各イオンについて説明する。
<1-2-1.ニッケルイオン>
 本発明の一実施形態に係る非水系電解液は、ニッケルイオンを1質量ppm以上500質量ppm以下含む。本明細書において、非水系電解液中のニッケルイオンの含有量とは、非水系電解液中のニッケル元素のイオンの濃度である。非水系電解液に含まれるニッケルイオンの価数は特に限定されず、2価であってもよいし、3価であってもよい。また、本発明の一実施形態に係る非水系電解液は、2価のニッケルイオン(Ni2+)と3価のニッケルイオン(Ni3+)の両方を任意の比率で含んでいてもよい。
 ニッケルイオンの含有量は、非水系電解液中、通常1質量ppm以上、好ましくは2質量ppm以上、より好ましくは3質量ppm以上であり、更に好ましくは5質量ppm以上、殊更に好ましくは10質量ppm以上、特に好ましくは25質量ppm以上であり、一方、上限として、通常500質量ppm以下、好ましくは400質量ppm以下、より好ましくは350質量ppm以下、更に好ましくは300質量ppm以下、殊更に好ましくは220質量ppm以下、特に好ましくは150質量ppm以下である。
 ニッケルイオンの含有量が500質量ppmより高い場合には、負極還元反応が増大するために非水系電解液電池の内部抵抗が上昇し、一方、1質量ppmより低い場合には、ニッケルイオンを含有しない場合との差異が小さくなるため助剤としての効果が低くなる。
 ニッケルイオン源となる化合物は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。ニッケルイオン源となる化合物としては、Ni(EC)(PF(EC=エチレンカーボネート配位子、n=0~6)などのNi錯体が挙げられる。配位子としては、電池を構成する要素が好ましく挙げられ、例えば、非水溶媒として用いられる、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネート等の環状カーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状カーボネート、酢酸メチル等のカルボン酸エステル、エーテル系化合物、及びスルホン系化合物等の有機溶媒が挙げられる。また、Ni(CHCOO)、Ni(OH)、NiO、NiCO、NiSO、塩化ニッケル等のニッケルハロゲン化物等が挙げられる。また、ニッケルイオンは、ニッケル元素を含みうる、正極活物質、負極活物質、正極集電体、負極集電体又は外装体等、電池の構成要素から溶出したものであってもよい。
 ニッケルイオンは非水系電解液中、通常カウンターアニオンと塩を形成している。本実施形態においては、FSO イオン以外のカウンターアニオンがニッケルイオンと配位し錯体を形成していてもよく、1種以上のカウンターアニオンと塩を形成していてもよい。カウンターアニオンとしては、電池を構成する要素が好ましく挙げられ、例えば、LiPF由来のPF イオン、LiPO由来のPO イオン等のフルオロリン酸イオン、FSOLi由来のFSO イオン、フッ化物イオン、炭酸イオン、カルボン酸イオン、スルホン酸イオン、スルホニルイミドイオン、(オキサラート)ホウ酸イオン等が挙げられ、より好ましくは、PF イオン、FSO イオン又はフッ化物イオンが挙げられる。中でも、FSO イオンはPF イオンより、ニッケルイオンへの配位力が高く、特に好ましい。
 本実施形態においては、特定量のニッケルイオンとFSOLiとを非水系電解液中に含有することにより、FSO イオンがニッケルイオンに配位又は相互作用することで、ニッケルイオンの耐還元性が上がり、高温環境下での負極還元反応が抑制される等により、高温環境下での充電保存特性を向上することができると推定される。
<1-2-2.コバルトイオン>
 本発明の一実施形態に係る非水系電解液は、コバルトイオンを1質量ppm以上500質量ppm以下含む。本明細書において、非水系電解液中のコバルトイオンの含有量とは、非水系電解液中のコバルト元素のイオンの濃度である。非水系電解液に含まれるコバルトイオンの価数は特に限定されず、2価であってもよいし3価であってもよい。また、本発明の一実施形態に係る非水系電解液は、2価のコバルトイオン(Co2+)と3価のコバルトイオン(Co3+)の両方を任意の比率で含んでいてもよい。
 コバルトイオンの含有量は、非水系電解液中、通常1質量ppm以上、好ましくは2質量ppm以上、より好ましくは3質量ppm以上であり、更に好ましくは5質量ppm以上、殊更に好ましくは10質量ppm以上、特に好ましくは25質量ppm以上であり、一方、上限として、通常500質量ppm以下、好ましくは400質量ppm以下、より好ましくは350質量ppm以下、更に好ましくは300質量ppm以下、殊更に好ましくは220質量ppm以下、特に好ましくは150質量ppm以下である。
 コバルトイオンの含有量が500質量ppmより高い場合には、負極還元反応が増大するために非水系電解液電池の内部抵抗が上昇し、一方、1質量ppmより低い場合には、コバルトイオンを含有しない場合との差異が小さくなるため助剤としての効果が低くなる。
 コバルトイオン源となる化合物は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。コバルトイオン源となる化合物としては、Co(EC)(PF(EC=エチレンカーボネート配位子、n=0~6)、Co(EC)(PF(n=0~6)などのCo錯体が挙げられる。配位子としては、電池を構成する要素が好ましく挙げられ、例えば、非水溶媒として用いられる、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネート等の環状カーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状カーボネート、酢酸メチル等のカルボン酸エステル、エーテル系化合物、及びスルホン系化合物等の有機溶媒が挙げられる。また、Co(CHCOO);Co(HCOO);Co(OH);CoO、Co等のコバルト酸化物;CoLiO;CoCO;CoSO;Co(NO;弗化コバルト(II)、弗化コバルト(III)、臭化コバルト(II)、塩化コバルト(II)等のコバルトハロゲン化物等が挙げられる。また、コバルトイオンは、コバルト元素を含みうる、正極活物質、負極活物質、正極集電体、負極集電体又は外装体等、電池の構成要素から溶出したものであってもよい。
 コバルトイオンは非水系電解液中、通常カウンターアニオンと塩を形成している。本実施形態においては、FSO イオン以外のカウンターアニオンがコバルトイオンと配位し錯体を形成していてもよく、1種以上のカウンターアニオンと塩を形成していてもよい。カウンターアニオンとしては、電池を構成する要素が好ましく挙げられ、例えば、LiPF由来のPF イオン、LiPO由来のPO イオン等のフルオロリン酸イオン、FSOLi由来のFSO イオン、フッ化物イオン、炭酸イオン、カルボン酸イオン、スルホン酸イオン、スルホニルイミドイオン、(オキサラート)ホウ酸イオン等が挙げられ、より好ましくは、PF イオン、FSO イオン又はフッ化物イオンが挙げられる。中でも、FSO イオンはPF イオンより、コバルトイオンへの配位力が高く、特に好ましい。
 本実施形態においては、特定量のコバルトイオンとFSOLiとを非水系電解液中に含有することにより、FSO イオンがコバルトイオンに配位又は相互作用することで、コバルトイオンの耐還元性が上がり、高温環境下での負極還元反応が抑制される等により、高温環境下での充電保存特性を向上することができると推定される。
<1-2-3.銅イオン>
 本発明の一実施形態に係る非水系電解液は、銅イオンを1質量ppm以上500質量ppm以下含む。本明細書において、非水系電解液中の銅イオンの含有量とは、非水系電解液中の銅元素のイオンの濃度である。非水系電解液に含まれる銅イオンの価数は特に限定されず、1価であってもよいし2価であってもよい。また、本発明の一実施形態に係る非水系電解液は、1価の銅イオン(Cu)と2価の銅イオン(Cu2+)の両方を任意の比率で含んでいてもよい。
 銅イオンの含有量は、非水系電解液中、通常1質量ppm以上、好ましくは2質量ppm以上、より好ましくは3質量ppm以上であり、更に好ましくは5質量ppm以上、殊更に好ましくは10質量ppm以上、特に好ましくは25質量ppm以上であり、一方、上限として、通常500質量ppm以下、好ましくは400質量ppm以下、より好ましくは350質量ppm以下、更に好ましくは300質量ppm以下、殊更に好ましくは220質量ppm以下、特に好ましくは150質量ppm以下である。
 銅イオンの含有量が500質量ppmより高い場合には、負極還元反応が増大するために非水系電解液電池の内部抵抗が上昇し、一方、1質量ppmより低い場合には、銅イオンを含有しない場合との差異が小さくなるため助剤としての効果が低くなる。
 銅イオン源となる化合物は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。銅イオン源となる化合物としては、Cu(EC)(PF(EC=エチレンカーボネート配位子、n=0~6)などのCu錯体が挙げられる。配位子としては、電池を構成する要素が好ましく挙げられ、例えば、非水溶媒として用いられる、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネート等の環状カーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状カーボネート、酢酸メチル等のカルボン酸エステル、エーテル系化合物、及びスルホン系化合物等の有機溶媒が挙げられる。また、Cu(CHCOO);Cu(HCOO);Cu(OH);CuO、CuO等の銅酸化物;CuCO;CuSO、Cu(NO;塩化銅(I)、塩化銅(II)等の銅ハロゲン化物等が挙げられる。また、銅イオンは、銅元素を含みうる、正極活物質、負極活物質、正極集電体、負極集電体又は外装体等、電池の構成要素から溶出したものであってもよい。
 銅イオンは非水系電解液中、通常カウンターアニオンと塩を形成している。本実施形態においては、FSO イオン以外のカウンターアニオンが銅イオンと配位し錯体を形成していてもよく、1種以上のカウンターアニオンと塩を形成していてもよい。カウンターアニオンとしては、電池を構成する要素が好ましく挙げられ、例えば、LiPF由来のPF イオン、LiPO由来のPO イオン等のフルオロリン酸イオン、FSOLi由来のFSO イオン、フッ化物イオン、炭酸イオン、カルボン酸イオン、スルホン酸イオン、スルホニルイミドイオン、(オキサラート)ホウ酸イオン等が挙げられ、より好ましくは、PF イオン、FSO イオン又はフッ化物イオンが挙げられる。中でも、FSO イオンはPF イオンより、銅イオンへの配位力が高く、特に好ましい。
 本実施形態においては、特定量の銅イオンとFSOLiとを非水系電解液中に含有することにより、FSO イオン(フルオロスルホン酸イオン)が銅イオンに配位又は相互作用することで、銅イオンの耐還元性が上がり、高温環境下での負極還元反応が抑制される等により、高温環境下での充電保存特性を向上することができると推定される。
<1-2-4.マンガンイオン>
 本発明の一実施形態に係る非水系電解液は、マンガンイオンを1質量ppm以上100質量ppm以下含む。本明細書において、非水系電解液中のマンガンイオンの含有量とは、非水系電解液中のマンガン元素のイオンの濃度である。非水系電解液に含まれるマンガンイオンの価数は特に限定されず、2価であってもよいし、3価であってもよい。また、本発明の一実施形態に係る非水系電解液は、2価のマンガンイオン(Mn2+)と3価のマンガンイオン(Mn3+)の両方を任意の比率で含んでいてもよい。
 マンガンイオンの含有量は、非水系電解液中、通常1質量ppm以上、好ましくは2質量ppm以上、より好ましくは3質量ppm以上であり、更に好ましくは5質量ppm以上、殊更に好ましくは10質量ppm以上、特に好ましくは25質量ppm以上であり、一方、上限として、通常100質量ppm以下、好ましくは95質量ppm以下、より好ましくは90質量ppm以下、更に好ましくは85質量ppm以下、殊更に好ましくは80質量ppm以下、特に好ましくは75質量ppm以下である。
 マンガンイオンの含有量が100質量ppmより高い場合には、負極還元反応が増大するために非水系電解液電池の内部抵抗が上昇し、一方、1質量ppmより低い場合には、マンガンイオンを含有しない場合との差異が小さくなるため助剤としての効果が低くなる。
 マンガンイオン源となる化合物は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。マンガンイオン源となる化合物としては、Mn(EC)(PF(EC=エチレンカーボネート配位子、n=0~6)などのMn錯体が挙げられる。配位子としては、電池を構成する要素が好ましく挙げられ、例えば、非水溶媒として用いられる、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネート等の環状カーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状カーボネート、酢酸メチル等のカルボン酸エステル、エーテル系化合物、及びスルホン系化合物等の有機溶媒が挙げられる。また、Mn(CHCOO)・2HO、Mn(CHCOO)・4HO、Mn(CHCOO)・2HO等の酢酸マンガン水和物;Mn(OH);MnO、Mn等の酸化マンガン;MnCO、MnSO、KMnO、MnB・8HO、塩化マンガン(II)等のマンガンハロゲン化物等が挙げられる。また、マンガンイオンは、マンガン元素を含みうる、正極活物質、負極活物質、正極集電体、負極集電体又は外装体等、電池の構成要素から溶出したものであってもよい。
 マンガンイオンは非水系電解液中、通常カウンターアニオンと塩を形成している。本実施形態においては、FSO イオン以外のカウンターアニオンがマンガンイオンと配位し錯体を形成していてもよく、1種以上のカウンターアニオンと塩を形成していてもよい。カウンターアニオンとしては、電池を構成する要素が好ましく挙げられ、例えば、LiPF由来のPF イオン、LiPO由来のPO イオン等のフルオロリン酸イオン、FSOLi由来のFSO イオン、フッ化物イオン、炭酸イオン、カルボン酸イオン、スルホン酸イオン、スルホニルイミドイオン、(オキサラート)ホウ酸イオン等が挙げられ、より好ましくは、PF イオン、FSO イオン又はフッ化物イオンが挙げられる。中でも、FSO イオンはPF イオンより、マンガンイオンへの配位力が高く、特に好ましい。
 本実施形態においては、特定量のマンガンイオンとFSOLiとを非水系電解液中に含有することにより、FSO イオンがマンガンイオンに配位又は相互作用することで、マンガンイオンの耐還元性が上がり、高温環境下での負極還元反応が抑制される等により、高温環境下での充電保存特性を向上することができると推定される。
<1-2-5.アルミニウムイオン>
 本発明の一実施形態に係る非水系電解液は、アルミニウムイオンを1質量ppm以上100質量ppm以下含む。本明細書において、非水系電解液中のアルミニウムイオンの含有量とは非水系電解液中のアルミニウム元素のイオンの濃度である。
 アルミニウムイオンの含有量は、非水系電解液中、通常1質量ppm以上、好ましくは2質量ppm以上、より好ましくは3質量ppm以上であり、更に好ましくは5質量ppm以上、殊更に好ましくは10質量ppm以上、特に好ましくは25質量ppm以上であり、一方、上限として、通常100質量ppm以下、好ましくは90質量ppm以下、より好ましくは80質量ppm以下、更に好ましくは70質量ppm以下、特に好ましくは60質量ppm以下である。
 アルミニウムイオンの含有量が100質量ppmより高い場合には、負極還元反応が増大するために非水系電解液電池の内部抵抗が上昇し、一方、1質量ppmより低い場合には、アルミニウムイオンを含有しない場合との差異が小さくなるため効果が低くなる。
 アルミニウムイオン源となる化合物は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。アルミニウムイオン源となる化合物としては、Al(EC)(PF(EC=エチレンカーボネート配位子、n=0~6)などのAl錯体が挙げられる。配位子としては、電池を構成する要素が好ましく挙げられ、例えば、非水溶媒として用いられる、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネート等の環状カーボネート;ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状カーボネート;酢酸メチル等のカルボン酸エステル;エーテル系化合物;及びスルホン系化合物;等の有機溶媒が挙げられる。また、アルミニウムイオン源となる化合物としてはAl(FSO;Al(CHCOO);Al(CFCOO);Al(CFSO;トリス(2,4-ペンタンジオナト)アルミニウム、アルミニウムエトキシド、アルミニウムイソプロポキシド、アルミニウム-n-ブトキシド等のアルミニウムアルコキシド;トリメチルアルミニウム等のアルキルアルミニウム;塩化アルミニウム等のAlハロゲン化物;等のアルミニウム塩も挙げられる。また、アルミニウムイオンは、アルミニウム元素を含みうる、正極活物質、負極活物質、正極集電体、負極集電体又は外装体等、電池の構成要素から溶出したものであってもよい。
 アルミニウムイオンは非水系電解液中、通常カウンターアニオンと塩を形成している。本実施形態においては、FSO イオン以外のカウンターアニオンがアルミニウムイオンに配位して錯体を形成していてもよく、アルミニウムイオンと1種以上のカウンターアニオンとが塩を形成していてもよい。カウンターアニオンとしては、電池を構成する要素も好ましく挙げられ、例えば、LiPF由来のPF イオン、LiPO由来のPO イオン等のフルオロリン酸イオン、FSOLi由来であってもよいFSO イオン、フッ化物イオン、炭酸イオン、カルボン酸イオン、スルホン酸イオン、スルホニルイミドイオン、(オキサラート)ホウ酸イオン等が挙げられ、より好ましくは、PF イオン、FSO イオン又はフッ化物イオンが挙げられる。中でも、FSO イオンはPF イオンより、アルミニウムイオンへの配位力が高く、特に好ましい。
 本実施形態においては、特定量のアルミニウムイオンとFSOLiとを非水系電解液中に含有することにより、FSO イオンがアルミニウムイオンに配位又は相互作用することで、アルミニウムイオンの耐還元性が上がり、高温環境下での負極還元反応が抑制される等により、高温環境下での充電保存特性を向上することができると推定される。非水系電解液電池中の電解液内のアルミニウムイオンの量を測定する場合には、非水系電解液電池から非水系電解液を含有する部材を取り出し、非水系電解液を抽出して測定すればよい。例えば、遠心分離機により非水系電解液を抽出することもできるし、又は有機溶媒を用いて非水系電解液を抽出することができる。抽出した非水系電解液を用いて誘導結合高周波プラズマ発光分光分析(ICP-AES、たとえばThermo Fischer Scientific、iCAP 7600duo)によりLi及び酸濃度マッチング検量線法でアルミニウム元素、すなわちアルミニウムイオンを定量する。
 本発明の一実施形態に係る非水系電解液は、ニッケルイオン、コバルトイオン、銅イオン、マンガンイオン、及びアルミニウムイオンからなる群より選ばれる少なくとも1種の金属イオンを含む場合、該金属イオンの総含有量は、非水系電解液中、通常1質量ppm以上、好ましくは2質量ppm以上、より好ましくは3質量ppm以上であり、更に好ましくは5質量ppm以上、殊更に好ましくは10質量ppm以上、特に好ましくは25質量ppm以上であり、一方、上限として、通常500質量ppm以下、好ましくは400質量ppm以下、より好ましくは300質量ppm以下、更に好ましくは200質量ppm以下、特に好ましくは120質量ppm以下である。
 また、本発明の一実施形態に係る非水系電解液においては少なくともニッケルイオンを含み、上記5種の金属イオン全量に対してニッケルイオンを好ましくは30質量%以上含み、より好ましくは40質量%以上含む。
 また、本発明の一実施形態に係る非水系電解液において、ニッケルイオン、コバルトイオン、銅イオン、マンガンイオン、及びアルミニウムイオンからなる群より選ばれる金属イオンのうち複数種含む場合においては、少なくとも下記に示す金属イオンの組み合わせを含むことが好ましい。
 ニッケルイオン及びコバルトイオン;ニッケルイオン及び銅イオン;ニッケルイオン及びマンガンイオン;コバルトイオン及び銅イオン;コバルトイオン及びマンガンイオン;銅イオン及びマンガンイオン;ニッケルイオン、コバルトイオン及び銅イオン;ニッケルイオン、コバルトイオン及びマンガンイオン;ニッケルイオン、銅イオン及びマンガンイオン;コバルトイオン、銅イオン及びマンガンイオン;ニッケルイオン、コバルトイオン、銅イオン及びマンガンイオンの組み合わせであり、特に好ましくはニッケルイオン及びコバルトイオン;ニッケルイオン及び銅イオン;ニッケルイオン及びマンガンイオン;ニッケルイオン、コバルトイオン及びマンガンイオン;ニッケルイオン、銅イオン及びマンガンイオン;ニッケルイオン、コバルトイオン、銅イオン及びマンガンイオンの組み合わせである。
 上記特に好ましい組み合わせにおける各金属イオンの好ましい含有量は以下の通りである。
 ニッケルイオン及びコバルトイオン;ニッケルイオンは通常1質量ppm以上、好ましくは10質量ppm以上、より好ましくは20質量ppm以上、さらに好ましくは25質量ppm以上であり、通常300質量ppm以下、好ましくは220質量ppm以下、より好ましくは150質量ppm以下であり、コバルトイオンは通常1質量ppm以上、好ましくは5質量ppm以上、より好ましくは10質量ppm以上であり、通常300質量ppm以下、好ましくは220質量ppm以下、より好ましくは150質量ppm以下である。
 ニッケルイオン及び銅イオン;ニッケルイオンは通常1質量ppm以上、好ましくは10質量ppm以上、より好ましくは20質量ppm以上であり、通常300質量ppm以下、好ましくは220質量ppm以下、より好ましくは150質量ppm以下であり、銅イオンは通常1質量ppm以上、好ましくは10質量ppm以上、より好ましくは25質量ppm以上であり、通常300質量ppm以下、好ましくは220質量ppm以下、より好ましくは150質量ppm以下である。
 ニッケルイオン及びマンガンイオン;ニッケルイオンは通常1質量ppm以上、好ましくは10質量ppm以上、好ましくは25質量ppm以上であり、通常300質量ppm以下、好ましくは220質量ppm以下、より好ましくは150質量ppm以下であり、マンガンイオンは通常1質量ppm以上、好ましくは2質量ppm以上であり、通常100質量ppm以下、好ましくは80質量ppm以下、より好ましくは75質量ppm以下である。
 ニッケルイオン、コバルトイオン及びマンガンイオン;ニッケルイオンは通常1質量ppm以上、好ましくは10質量ppm以上、より好ましくは25質量ppm以上であり、通常300質量ppm以下、好ましくは220質量ppm以下、より好ましくは150質量ppm以下であり、コバルトイオンは通常1質量ppm以上、好ましくは5質量ppm以上、より好ましくは10質量ppm以上であり、通常300質量ppm以下、好ましくは220質量ppm以下、より好ましくは150質量ppm以下であり、マンガンイオンは好ましくは1質量ppm以上であり、通常100質量ppm以下、好ましくは80質量ppm以下、より好ましくは75質量ppm以下である。
 ニッケルイオン、銅イオン及びマンガンイオン;ニッケルイオンは通常1質量ppm以上、好ましくは5質量ppm以上、より好ましくは10質量ppm以上であり、通常300質量ppm以下、好ましくは220質量ppm以下、より好ましくは150質量ppm以下であり、銅イオンは通常1質量ppm以上、好ましくは10質量ppm以上であり、通常300質量ppm以下、好ましくは220質量ppm以下、好ましくは150質量ppm以下であり、マンガンイオンは好ましくは1質量ppm以上であり、通常100質量ppm以下、好ましくは80質量ppm以下、より好ましくは75質量ppm以下である。
 ニッケルイオン、コバルトイオン、銅イオン及びマンガンイオン;ニッケルイオンは通常1質量ppm以上、好ましくは5質量ppm以上、好ましくは10質量ppm以上であり、通常300質量ppm以下、好ましくは220質量ppm以下、さらに好ましくは150質量ppm以下であり、コバルトイオンは通常1質量ppm以上、好ましくは2質量ppm以上であり、通常300質量ppm以下、好ましくは220質量ppm以下、好ましくは150質量ppm以下であり、銅イオンは通常1質量ppm以上、好ましくは5質量ppm以上、より好ましくは10質量ppm以上であり、通常300質量ppm以下、好ましくは220質量ppm以下、好ましくは150質量ppm以下であり、マンガンイオンは好ましくは1質量ppm以上、通常100質量ppm以下、好ましくは80質量ppm以下、より好ましくは75質量ppm以下である。
<1-3.電解質>
 本実施形態の非水系電解液は、一般的な非水系電解液と同様、通常はその成分として、電解質を含有する。本実施形態の非水系電解液に用いられる電解質について特に制限は無く、公知の電解質を用いることができる。以下、電解質の具体例について詳述する。
<1-3-1.リチウム塩>
 本実施形態の非水系電解液における電解質としては、通常、リチウム塩が用いられる。リチウム塩としては、この用途に用いることが知られているものであれば特に制限がなく、任意のものを1種以上用いることができ、具体的には以下のものが挙げられる。
 例えば、LiBF等のフルオロホウ酸リチウム塩類;
 LiPF、LiPO等のフルオロリン酸リチウム塩類;
 LiWOF等のタングステン酸リチウム塩類;
 CFCOLi等のカルボン酸リチウム塩類;
 CHSOLi等のスルホン酸リチウム塩類;
 LiN(FSO、LiN(CFSO等のリチウムイミド塩類;
 LiC(FSO等のリチウムメチド塩類;
 リチウムジフルオロオキサラトボレート等のリチウムオキサラート塩類;
 その他、LiPF(CF等の含フッ素有機リチウム塩類;
等が挙げられる。
 本発明で得られる高温環境下での充電保存特性向上の効果に加え、充放電レート特性、インピーダンス特性の向上効果を更に高める点から、フルオロホウ酸リチウム塩類、フルオロリン酸リチウム塩類、スルホン酸リチウム塩類、リチウムイミド塩類、リチウムオキサラート塩類、の中から選ばれるものが好ましく、フルオロホウ酸リチウム塩類、フルオロリン酸リチウム塩類、リチウムイミド塩類、及びリチウムオキサラート塩類の中から選ばれるものが好ましい。
 非水系電解液中のこれらの電解質の総濃度は、特に制限はないが、非水系電解液の全量に対して、通常8質量%以上、好ましくは8.5質量%以上、より好ましくは9質量%以上である。また、その上限は、通常18質量%以下、好ましくは17質量%以下、より好ましくは16質量%以下である。電解質の総濃度が上記範囲内であると、電気伝導率が電池動作に適正となるため、十分な出力特性が得られる傾向にある。
<1-4.非水溶媒>
 本実施形態の非水系電解液は、一般的な非水系電解液と同様、通常はその主成分として、上述した電解質を溶解する非水溶媒を含有する。ここで用いる非水溶媒について特に制限はなく、公知の有機溶媒を用いることができる。有機溶媒としては、飽和環状カーボネート、鎖状カーボネート、カルボン酸エステル、エーテル系化合物又はスルホン系化合物等が挙げられる。これらに特に限定されないが、好ましくは飽和環状カーボネート、鎖状カーボネート又はカルボン酸エステルであり、より好ましくは飽和環状カーボネート又は鎖状カーボネートである。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。2種以上の非水溶媒の組み合わせとして、飽和環状カーボネート、鎖状カーボネート、及びカルボン酸エステルからなる群より選択される2種以上の組み合わせが好ましく、飽和環状カーボネート又は鎖状カーボネートの組み合わせがより好ましい。
<1-4-1.飽和環状カーボネート>
 飽和環状カーボネートとしては、通常炭素数2~4のアルキレン基を有するものが挙げられ、リチウムイオン解離度の向上に由来する電池特性向上の点から炭素数2~3の飽和環状カーボネートが好ましく用いられる。また、飽和環状カーボネートはモノフルオロエチレンカーボネートのようにフッ素原子を有する環状カーボネートであってもよい。
 飽和環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。中でも、エチレンカーボネートとプロピレンカーボネートが好ましく、酸化・還元されにくいエチレンカーボネートがより好ましい。飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 飽和環状カーボネートの含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、下限は、非水系電解液の溶媒全量に対して、通常3体積%以上、好ましくは5体積%以上である。この範囲とすることで、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液電池の大電流放電特性、負極に対する安定性、サイクル特性を良好な範囲としやすくなる。また上限は、通常90体積%以下、好ましくは85体積%以下、より好ましくは80体積%以下である。この範囲とすることで、非水系電解液の酸化・還元耐性が向上し、高温保存時の安定性が向上する傾向にある。
 尚、本発明における体積%とは25℃、1気圧における体積を意味する。
<1-4-2.鎖状カーボネート>
 鎖状カーボネートとしては、通常炭素数3~7のものが用いられ、電解液の粘度を適切な範囲に調整するために、炭素数3~5の鎖状カーボネートが好ましく用いられる。
 具体的には、鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジ-n-プロピルカーボネート、ジイソプロピルカーボネート、n-プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル-n-プロピルカーボネート、n-ブチルメチルカーボネート、イソブチルメチルカーボネート、t-ブチルメチルカーボネート、エチル-n-プロピルカーボネート、n-ブチルエチルカーボネート、イソブチルエチルカーボネート、t-ブチルエチルカーボネート等が挙げられる。
 中でも、ジメチルカーボネート、ジエチルカーボネート、ジ-n-プロピルカーボネート、ジイソプロピルカーボネート、n-プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル-n-プロピルカーボネートが好ましく、特に好ましくはジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートである。
 また、フッ素原子を有する鎖状カーボネート類(以下、「フッ素化鎖状カーボネート」と略記する場合がある。)も好適に用いることができる。フッ素化鎖状カーボネートが有するフッ素原子の数は、1以上であれば特に制限されないが、通常6以下であり、好ましくは4以下である。フッ素化鎖状カーボネートが複数のフッ素原子を有する場合、それらは互いに同一の炭素に結合していてもよく、異なる炭素に結合していてもよい。フッ素化鎖状カーボネートとしては、フッ素化ジメチルカーボネート誘導体、フッ素化エチルメチルカーボネート誘導体、フッ素化ジエチルカーボネート誘導体等が挙げられる。
 フッ素化ジメチルカーボネート誘導体としては、フルオロメチルメチルカーボネート、ジフルオロメチルメチルカーボネート、トリフルオロメチルメチルカーボネート、ビス(フルオロメチル)カーボネート、ビス(ジフルオロ)メチルカーボネート、ビス(トリフルオロメチル)カーボネート等が挙げられる。
 フッ素化エチルメチルカーボネート誘導体としては、2-フルオロエチルメチルカーボネート、エチルフルオロメチルカーボネート、2,2-ジフルオロエチルメチルカーボネート、2-フルオロエチルフルオロメチルカーボネート、エチルジフルオロメチルカーボネート、2,2,2-トリフルオロエチルメチルカーボネート、2,2-ジフルオロエチルフルオロメチルカーボネート、2-フルオロエチルジフルオロメチルカーボネート、エチルトリフルオロメチルカーボネート等が挙げられる。
 フッ素化ジエチルカーボネート誘導体としては、エチル-(2-フルオロエチル)カーボネート、エチル-(2,2-ジフルオロエチル)カーボネート、ビス(2-フルオロエチル)カーボネート、エチル-(2,2,2-トリフルオロエチル)カーボネート、2,2-ジフルオロエチル-2’-フルオロエチルカーボネート、ビス(2,2-ジフルオロエチル)カーボネート、2,2,2-トリフルオロエチル-2’-フルオロエチルカーボネート、2,2,2-トリフルオロエチル-2’,2’-ジフルオロエチルカーボネート、ビス(2,2,2-トリフルオロエチル)カーボネート等が挙げられる。
 鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 鎖状カーボネートの含有量は特に限定されないが、非水系電解液の溶媒全量に対して、通常15体積%以上であり、好ましくは20体積%以上、より好ましくは25体積%以上である。また、通常90体積%以下、好ましくは85体積%以下、より好ましくは80体積%以下である。鎖状カーボネートの含有量を上記範囲とすることによって、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液電池の出力特性を良好な範囲としやすくなる。鎖状カーボネートを2種以上併用する場合には、鎖状カーボネートの合計量が上記範囲を満たすようにすればよい。
 さらに、特定の鎖状カーボネートに対して、エチレンカーボネートを特定の含有量で組み合わせることにより、電池性能を著しく向上させることができる。
 例えば、特定の鎖状カーボネートとしてジメチルカーボネートとエチルメチルカーボネートを選択した場合、エチレンカーボネートの含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、非水系電解液の溶媒全量に対して、通常15体積%以上、好ましくは20体積%、また通常45体積%以下、好ましくは40体積%以下であり、ジメチルカーボネートの含有量は、非水系電解液の溶媒全量に対して、通常20体積%以上、好ましくは30体積%以上、また通常50体積%以下、好ましくは45体積%以下であり、エチルメチルカーボネートの含有量は通常20体積%以上、好ましくは30体積%以上、また通常50体積%以下、好ましくは45体積%以下である。エチレンカーボネート、ジメチルカーボネート及びエチルメチルカーボネートの含有量を上記範囲内とすることで、高温安定性に優れ、ガス発生が抑制される傾向がある。
<1-4-3.エーテル系化合物>
 エーテル系化合物としては、炭素数3~10の鎖状エーテル、及び炭素数3~6の環状エーテルが好ましい。
 エーテル系化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 エーテル系化合物の含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、非水溶媒100体積%中、通常1体積%以上、好ましくは2体積%以上、より好ましくは3体積%以上、また、通常30体積%以下、好ましくは25体積%以下、より好ましくは20体積%以下である。エーテル系化合物を2種以上併用する場合には、エーテル系化合物の合計量が上記範囲を満たすようにすればよい。エーテル系化合物の含有量が前記好ましい範囲内であれば、鎖状エーテルのリチウムイオン解離度の向上と粘度低下に由来するイオン伝導度の向上効果を確保しやすい。また、負極活物質が炭素質材料の場合、鎖状エーテルがリチウムイオンと共に共挿入される現象を抑制できることから、入出力特性や充放電レート特性を適正な範囲とすることができる。
<1-4-4.スルホン系化合物>
 スルホン系化合物としては、環状スルホン、鎖状スルホンであっても特に制限されないが、環状スルホンの場合、通常炭素数が3~6、好ましくは炭素数が3~5であり、鎖状スルホンの場合、通常炭素数が2~6、好ましくは炭素数が2~5である化合物が好ましい。また、スルホン系化合物1分子中のスルホニル基の数は、特に制限されないが、通常1又は2である。
 環状スルホンとしては、モノスルホン化合物であるトリメチレンスルホン類、テトラメチレンスルホン類、ヘキサメチレンスルホン類;ジスルホン化合物であるトリメチレンジスルホン類、テトラメチレンジスルホン類、ヘキサメチレンジスルホン類等が挙げられる。中でも誘電率と粘性の観点から、テトラメチレンスルホン類、テトラメチレンジスルホン類、ヘキサメチレンスルホン類、ヘキサメチレンジスルホン類がより好ましく、テトラメチレンスルホン類(スルホラン類)が特に好ましい。
 スルホラン類としては、スルホラン又はスルホラン誘導体(以下、スルホランも含めて「スルホラン類」と略記する場合がある。)が好ましい。スルホラン誘導体としては、スルホラン環を構成する炭素原子上に結合した水素原子の1以上がフッ素原子やアルキル基で置換されたものが好ましい。
 スルホン系化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 スルホン系化合物の含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、非水系電解液の溶媒全量に対して、通常0.3体積%以上、好ましくは0.5体積%以上、より好ましくは1体積%以上であり、また、通常40体積%以下、好ましくは35体積%以下、より好ましくは30体積%以下である。スルホン系化合物を2種以上併用する場合には、スルホン系化合物の合計量が上記範囲を満たすようにすればよい。スルホン系化合物の含有量が前記範囲内であれば、高温保存安定性に優れた電解液が得られる傾向にある。
<1-4-5.カルボン酸エステル>
 カルボン酸エステルとしては、好ましくは鎖状カルボン酸エステルであり、より好ましくは飽和鎖状カルボン酸エステルである。また、カルボン酸エステルの総炭素数は、通常3~7であり、出力特性向上に由来する電池特性改善の点から3~5のカルボン酸エステルが好ましく用いられる。
 カルボン酸エステルとしては、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、ピバル酸メチル、ピバル酸エチル等の飽和鎖状カルボン酸エステル、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル等の不飽和鎖状カルボン酸エステル等が挙げられる。中でも、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、ピバル酸メチル、ピバル酸エチルが好ましく、出力特性向上の点から、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチルがより好ましい。カルボン酸エステルは、一種を単独で用いてもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。
 カルボン酸エステルの含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、下限は、非水系電解液の溶媒全量に対して、通常3体積%以上、好ましくは5体積%以上である。この範囲とすることで、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液電池の大電流放電特性、負極に対する安定性、サイクル特性を良好な範囲としやすくなる。また上限は、通常90体積%以下、好ましくは85体積%以下、より好ましくは80体積%以下である。この範囲とすることで、非水系電解液の酸化・還元耐性が向上し、高温保存時の安定性が向上する傾向にある。
 尚、本発明における体積%とは25℃、1気圧における体積を意味する。
<1-5.FSOLi以外のフルオロスルホン酸塩>
 FSOLi以外のフルオロスルホン酸塩(以下、単に「フルオロスルホン酸塩」という)のカウンターカチオンとしては特に限定はないが、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、バリウム、及び、NR13141516(式中、R13~R16は、各々独立に、水素原子又は炭素数1~12の有機基を表わす。)で表されるアンモニウム等がその例として挙げられる。
 フルオロスルホン酸塩の具体例としては、
 フルオロスルホン酸ナトリウム、フルオロスルホン酸カリウム、フルオロスルホン酸ルビジウム、フルオロスルホン酸セシウム等が挙げられる。
 フルオロスルホン酸塩は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。また、本実施形態の非水系電解液全体に対するフルオロスルホン酸塩とFSOLiの合計含有量は、非水系電解液100質量%中、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、また、通常15質量%以下、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは3質量%以下、殊更に好ましくは2質量%以下、特に好ましくは1質量%以下である。フルオロスルホン酸塩を2種以上併用する場合には、FSOLiとフルオロスルホン酸塩の合計量が上記範囲を満たすようにすればよい。
 この範囲内であれば、充放電に伴う非水系電解液電池の膨れを好適に抑制できる。 
<1-6.助剤>
 本実施形態の非水系電解液において、本発明の効果を奏する範囲で以下の助剤を含有してもよい。
 ビニレンカーボネート、ビニルエチレンカーボネート又はエチニルエチレンカーボネート等の不飽和環状カーボネート;
 メトキシエチル-メチルカーボネート等のカーボネート化合物;
 メチル-2-プロピニルオギザレート等のスピロ化合物;
 エチレンサルファイト等の含硫黄化合物;
 1,3-ビス(イソシアナトメチル)シクロヘキサン等のシクロアルキレン基を有するジイソシアネート等のイソシアネート化合物;
 1-メチル-2-ピロリジノン等の含窒素化合物;
 シクロヘプタン等の炭化水素化合物;
 フルオロベンゼン等の含フッ素芳香族化合物;
 ホウ酸トリス(トリメチルシリル)等のシラン化合物;
 2-(メタンスルホニルオキシ)プロピオン酸2-プロピニル、等のエステル化合物;
 リチウムエチルメチルオキシカルボニルホスホネート等のリチウム塩;
 トリアリルイソシアヌレート等のイソシアン酸エステル;
等が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。これらの助剤を添加することにより、高温保存後の容量維持特性やサイクル特性を向上させることができる。
 助剤の含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。助剤の含有量は、非水系電解液の全量に対して、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.2質量%以上であり、また、通常5質量%以下、好ましくは3質量%以下、より好ましくは1質量%以下である。この範囲であれば、助剤の効果が十分に発現させやすく、高温保存安定性が向上する傾向にある。助剤を2種以上併用する場合には、助剤の合計量が上記範囲を満たすようにすればよい。
<2.非水系電解液電池>
 本発明の一実施形態に係る非水系電解液電池は、金属イオンを吸蔵及び放出可能な正極並びに負極と、非水系電解液とを備える非水系電解液電池であって、上述した本発明の一実施形態に係る非水系電解液とを備える。
 より詳細には、本発明の一実施形態に係る非水系電解液電池は、集電体及び該集電体上に設けられた正極活物質層を有しかつ金属イオンを吸蔵及び放出し得る正極と、集電体及び該集電体上に設けられた負極活物質層を有しかつ金属イオンを吸蔵及び放出し得る負極と、FSOLiを含み、ニッケルイオン(a)、コバルトイオン(b)、銅イオン(c)、マンガンイオン(d)及びアルミニウムイオン(e)からなる群より選ばれる少なくとも1種の金属イオンを含み、かつ以下の条件(i)~(v)の少なくとも一つを満たす非水系電解液とを備える。
  (i)   前記(a)の濃度が1質量ppm以上500質量ppm以下
  (ii)  前記(b)の濃度が1質量ppm以上500質量ppm以下
  (iii) 前記(c)の濃度が1質量ppm以上500質量ppm以下
  (iv)  前記(d)の濃度が1質量ppm以上100質量ppm以下
  (v)   前記(e)の濃度が1質量ppm以上100質量ppm以下
 特に、本発明の態様Aに係る非水系電解液電池は、集電体及び該集電体上に設けられた正極活物質層を有しかつ金属イオンを吸蔵及び放出し得る正極と、集電体及び該集電体上に設けられた負極活物質層を有しかつ金属イオンを吸蔵及び放出し得る負極と、FSOLiを含み、ニッケルイオンを1質量ppm以上500質量ppm以下含む非水系電解液とを備える。
 また、本発明の態様Bに係る非水系電解液電池は、集電体及び該集電体上に設けられた正極活物質層を有しかつ金属イオンを吸蔵及び放出し得る正極と、集電体及び該集電体上に設けられた負極活物質層を有しかつ金属イオンを吸蔵及び放出し得る負極と、FSOLiを含み、コバルトイオンを1質量ppm以上500質量ppm以下含む非水系電解液とを備える。
 また、本発明の態様Cに係る非水系電解液電池は、集電体及び該集電体上に設けられた正極活物質層を有しかつ金属イオンを吸蔵及び放出し得る正極と、集電体及び該集電体上に設けられた負極活物質層を有しかつ金属イオンを吸蔵及び放出し得る負極と、FSOLiを含み、銅イオンを1質量ppm以上500質量ppm以下含む非水系電解液とを備える。
 また、本発明の態様Dに係る非水系電解液電池は、集電体及び該集電体上に設けられた正極活物質層を有しかつ金属イオンを吸蔵及び放出し得る正極と、集電体及び該集電体上に設けられた負極活物質層を有しかつ金属イオンを吸蔵及び放出し得る負極と、FSOLiを含み、マンガンイオンを1質量ppm以上100質量ppm以下含む非水系電解液とを備える。
 また、本発明の態様Eに係る非水系電解液電池は、集電体及び該集電体上に設けられた正極活物質層を有しかつ金属イオンを吸蔵及び放出し得る正極と、集電体及び該集電体上に設けられた負極活物質層を有しかつ金属イオンを吸蔵及び放出し得る負極と、FSOLiを含み、アルミニウムイオンを1質量ppm以上100質量ppm以下含む非水系電解液とを備える。
<2-1.電池構成>
 本実施形態の非水系電解液電池は、上記の非水系電解液以外の構成については、従来公知の非水系電解液電池と同様である。通常は上記の非水系電解液が含浸されている多孔膜(セパレータ)を介して正極と負極とが積層され、これらがケース(外装体)に収納された形態を有する。従って、本実施形態の非水系電解液電池の形状は特に制限されるものではなく、円筒型、角形、ラミネート型、コイン型、大型等の何れであってもよい。
<2-2.非水系電解液>
 非水系電解液としては、上述の本発明の一実施形態に係る非水系電解液を用いる。なお、本発明の趣旨を逸脱しない範囲において、上記非水系電解液に対し、その他の非水系電解液を配合して用いることも可能である。
<2-3.正極>
 本発明の一実施形態においては、正極は集電体及び該集電体上に設けられた正極活物質層を有する。
 以下に本実施形態の非水系電解液電池に使用される正極について詳細に説明する。
<2-3-1.正極活物質>
 以下に正極に使用される正極活物質について説明する。
(1)組成
 正極活物質としては、コバルト酸リチウムや、少なくともNiとCoを含有し、遷移金属のうち50モル%以上がNiとCoである遷移金属酸化物であり、電気化学的に金属イオンを吸蔵・放出可能なものであれば特に制限はないが、例えば、電気化学的にリチウムイオンを吸蔵・放出可能なものが好ましく、リチウムと少なくともNiとCoを含有し、遷移金属のうち60モル%以上がNiとCoである遷移金属酸化物が好ましい。Ni及びCoは、酸化還元の電位が二次電池の正極材として用いるのに好適であり、高容量用途に適しているためである。
 リチウム遷移金属酸化物の金属成分としては、必須遷移金属元素として、少なくともNi又はCoが含まれるが、その他の金属元素としてMn、V、Ti、Cr、Fe、Cu、Al、Mg、Zr、Er等が挙げられ、Mn、Ti、Fe、Al、Mg、Zr等が好ましい。リチウム遷移金属酸化物の具体例としては、例えば、LiCoO、LiNi0.85Co0.10Al0.05、LiNi0.80Co0.15Al0.05、LiNi0.33Co0.33Mn0.33、Li1.05Ni0.33Mn0.33Co0.33、LiNi0.5Co0.2Mn0.3、Li1.05Ni0.50Mn0.29Co0.21、LiNi0.6Co0.2Mn0.2、LiNi0.8Co0.1Mn0.1等が挙げられる。
 とりわけ、正極活物質が下記組成式(1)で示される遷移金属酸化物である態様が好ましい。
Lia1Nib1Coc1d1・・・(1)
(上記式(1)中、a1、b1、c1及びd1は、0.90≦a1≦1.10、0<b1<0.4、b1+c1+d1=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
 組成式(1)中、0.1≦d1<0.5の数値を示すことが好ましい。
 NiやCoの組成比およびその他の金属種の組成比が特定の範囲であることで、正極から遷移金属が溶出しにくく、かつ、たとえ溶出したとしてもNiやCoは非水系二次電池内での悪影響が小さいためである。
 とりわけ、正極活物質が下記組成式(2)で示される遷移金属酸化物である態様が好ましい。
Lia2Nib2Coc2d2・・・(2)
(上記式(2)中、a2、b2、c2及びd2は、0.90≦a2≦1.10、0.4≦b2<1.0、b2+c2+d2=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
 組成式(2)中、0.10≦d2<0.40の数値を示すことが好ましい。また、0.50≦b2≦0.96の数値を示すことが好ましい。
 NiおよびCoが主成分であり、かつNiの組成比がCoの組成比より大きいことで、非水系電解液電池の正極として用いた際に、安定であり、かつ高容量を取り出すことが可能となるからである。
 とりわけ、正極活物質が下記組成式(3)で示される遷移金属酸化物である態様が好ましい。
Lia3Nib3Coc3d3・・・(3)
(式(3)中、0.90≦a3≦1.10、0.50≦b3≦0.94、0.05≦c3≦0.2、0.01≦d3≦0.3の数値を示し、b3+c3+d3=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
 組成式(3)中、0.10≦d3≦0.3の数値を示すことが好ましい。
 正極活物質が上記の組成であることで、非水系二次電池正極として用いた際に、特に高容量を取り出すことが可能となるからである。
 また、上記の正極活物質のうち2種類以上を混合して使用してもよい。同様に、上記の正極活物質のうち少なくとも1種と他の正極活物質を混合して使用してもよい。他の正極活物質の例としては、上記に挙げられていない遷移金属酸化物、遷移金属燐酸化合物、遷移金属ケイ酸化合物、遷移金属ホウ酸化合物が挙げられる。
 中でも、スピネル型構造を有するリチウムマンガン複合酸化物やオリビン型構造を有するリチウム含有遷移金属燐酸化合物が好ましい。具体的にはスピネル型構造を有するリチウムマンガン複合酸化物として、LiMn、LiMn1.8Al0.2、LiMn1.5Ni0.5等が挙げられる。これらのリチウムマンガン複合酸化物は最も安定した構造を有し、非水系電解液電池の異常時にも酸素放出しにくく、安全性に優れるためである。
 また、リチウム含有遷移金属燐酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、例えば、LiFePO、LiFe(PO、LiFeP等の燐酸鉄類、LiCoPO等の燐酸コバルト類、LiMnPO等の燐酸マンガン類、これらのリチウム遷移金属燐酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si、Nb、Mo、Sn、W等の他の金属で置換したもの等が挙げられる。
 リチウム含有遷移金属燐酸化合物の中でも、リチウム鉄燐酸化合物が好ましい。鉄は資源量も豊富で極めて安価な金属であり、かつ有害性も少ないためである。すなわち、上記の具体例のうち、LiFePOをより好ましい具体例として挙げることができる。
 本発明の一実施形態においては、正極がNMC正極であり、該NMC正極中、ニッケル元素の含有量が30モル%以上である態様が好ましく、40モル%以上である態様が非水系電解液電池の高容量化の観点からより好ましい。
 ここで、本明細書において、NMC正極とは、正極活物質がニッケル・マンガン・コバルト(NMC)を含み下記式(I)で表される材料である、正極を意味する。
LiNiCoMn・・・(I)
(上記式(I)中、a、b、c及びdは、0.90≦a≦1.10、b+c+d=1を満たす。)
(2)表面被覆
 上記の正極活物質の表面に、主体となる正極活物質を構成する物質とは異なる組成の物質(以後、適宜「表面付着物質」という)が付着したものを用いることもできる。表面付着物質の例としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物;硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩;炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩;炭素;等が挙げられる。
 これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて正極活物質に含浸添加させた後に乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて正極活物質に含浸添加させた後に加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により、正極活物質表面に付着させることができる。なお、炭素を付着させる場合には、炭素質を、例えば、活性炭等の形で後から機械的に付着させる方法も用いることができる。
 正極活物質の表面に付着している表面付着物質の質量は、正極活物質の質量に対して、好ましくは0.1ppm以上であり、1ppm以上がより好ましく、10ppm以上が更に好ましい。また、好ましくは20%以下であり、10%以下がより好ましく、5%以下が更に好ましい。
 表面付着物質により、正極活物質表面での非水系電解液の酸化反応を抑制することができ、電池寿命を向上させることができる。また、付着量が上記範囲内にあると、その効果を十分に発現することができ、リチウムイオンの出入りを阻害することなく抵抗も増加し難くなる。
(3)形状
 正極活物質は、粒子形態を有していてもよい。正極活物質粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が用いられる。また、一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状又は楕円球状であってもよい。
(4)正極活物質の製造法
 正極活物質の製造法としては、本発明の要旨を超えない範囲で特には制限されないが、いくつかの方法が挙げられ、無機化合物の製造法として一般的な方法が用いられる。
 特に球状ないし楕円球状の活物質を作製するには種々の方法が考えられるが、例えばその1例として、遷移金属硝酸塩、硫酸塩等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作製回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
 また、別の方法の例として、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これにLiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
 更に別の方法の例として、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、LiOH、LiCO、LiNO等のLi源と、必要に応じ他の元素の原料物質とを水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これを高温で焼成して活物質を得る方法が挙げられる。
<2-3-2.正極構造と作製法>
 以下に、本発明に使用される正極の構成及びその作製法について説明する。
(正極の作製法)
 正極は、正極活物質粒子と結着剤とを含有する正極活物質層を、集電体上に形成して作製される。正極活物質を用いる正極の製造は、公知のいずれの方法で行ってもよい。例えば、正極活物質と結着剤、並びに必要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を液体媒体に溶解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成させることにより正極を得ることができる。
 正極活物質層中の正極活物質の含有量は、好ましくは60質量%以上であり、70質量%以上がより好ましく、80質量%以上が更に好ましく、また、好ましくは99.9質量%以下であり、99質量%以下がより好ましい。正極活物質の含有量が、上記範囲内であると、非水系電解液電池の電気容量を十分確保できる。さらに、正極の強度も十分なものとなる。なお、本実施形態において正極活物質粉体(粒子)は、1種を単独で用いてもよく、異なる組成又は異なる粉体物性の2種以上を任意の組み合わせ及び比率で併用してもよい。2種以上の活物質を組み合わせて用いる際は、前記リチウムとマンガンを含有する複合酸化物を粉体の成分として用いることが好ましい。コバルト又はニッケルは、資源量も少なく高価な金属であり、自動車用途等の高容量が必要とされる大型電池では活物質の使用量が大きくなることから、コストの点で好ましくない。そのため、大型電池では、正極活物質には、より安価な遷移金属としてマンガンを主成分に用いることが望ましいためである。
<導電材>
 導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素質材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 正極活物質層中の導電材の含有量は、好ましくは0.01質量%以上であり、0.1質量%以上がより好ましく、1質量%以上が更に好ましく、また、好ましくは50質量%以下であり、30質量%以下がより好ましく、15質量%以下が更に好ましい。含有量が上記範囲内であると、導電性を十分確保できる。さらに、電池容量の低下も防ぎやすい。
<結着剤>
 正極活物質層の製造に用いる結着剤は、非水系電解液や電極製造時用いる溶媒に対して安定な材料であれば、特に限定されない。
 塗布法の場合は、電極製造時に用いる液体媒体に対して溶解又は分散される材料であれば特に限定されないが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、NBR(アクリロニトリル・ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、テトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 正極活物質層中の結着剤の含有量は、好ましくは0.1質量%以上であり、1質量%以上がより好ましく、3質量%以上が更に好ましく、また、好ましくは80質量%以下であり、60質量%以下がより好ましく、40質量%以下が更に好ましく、10質量%以下が特に好ましい。結着剤の割合が、上記範囲内であると、正極活物質を十分保持でき、正極の機械的強度を確保できるため、サイクル特性等の電池性能が良好となる。さらに、電池容量や導電性の低下を回避することにもつながる。
<液体媒体>
 正極活物質層を形成するためのスラリーの調製に用いる液体媒体としては、正極活物質、導電材、結着剤、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
 水系溶媒の例としては、例えば、水、アルコールと水との混合溶媒が挙げられる。有機系溶媒の例としては、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N,N-ジメチルアミノプロピルアミン等のアミン類;ジエチルエーテル、テトラヒドロフラン(THF)等のエーテル類;N-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルフォキシド等の非プロトン性極性溶媒等を挙げることができる。なお、これらは、1種を単独で用いてもよく、また2種以上を任意の組み合わせ及び比率で併用してもよい。
<増粘剤>
 スラリーを形成するための液体媒体として水系溶媒を用いる場合、増粘剤と、スチレンブタジエンゴム(SBR)等のラテックスを用いてスラリー化するのが好ましい。増粘剤は、通常、スラリーの粘度を調製するために使用される。
 増粘剤としては、本発明の効果を著しく制限しない限り制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、燐酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
 増粘剤を使用する場合には、正極活物質に対する増粘剤の割合は、好ましくは0.1質量%以上であり、0.5質量%以上がより好ましく、0.6質量%以上が更に好ましく、また、好ましくは5質量%以下であり、3質量%以下がより好ましく、2質量%以下が更に好ましい。上記範囲内であると、塗布性が良好となり、さらに、正極活物質層に占める活物質の割合が十分なものとなるため、電池の容量が低下する問題や正極活物質間の抵抗が増大する問題を回避し易くなる。
<圧密化>
 集電体への上記スラリーの塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ハンドプレス、ローラープレス等により圧密化することが好ましい。正極活物質層の密度は、1g・cm-3以上が好ましく、1.5g・cm-3以上が更に好ましく、2g・cm-3以上が特に好ましく、また、4g・cm-3以下が好ましく、3.5g・cm-3以下が更に好ましく、3g・cm-3以下が特に好ましい。
 正極活物質層の密度が、上記範囲内であると、集電体/活物質界面付近への非水系電解液の浸透性が低下することなく、特に高電流密度での充放電特性が良好となる。さらに、活物質間の導電性が低下し難くなり、電池抵抗が増大し難くなる。
<集電体>
 正極集電体の材質としては特に制限は無く、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素質材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。
 集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素質材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。
 集電体の厚さは任意であるが、好ましくは1μm以上であり、3μm以上がより好ましく、5μm以上が更に好ましく、また、好ましくは1mm以下であり、100μm以下がより好ましく、50μm以下が更に好ましい。集電体の厚さが、上記範囲内であると、集電体として必要な強度を十分確保することができる。さらに、取り扱い性も良好となる。
 集電体と正極活物質層の厚さの比は特には限定されないが、(非水系電解液注液直前の片面の活物質層厚さ)/(集電体の厚さ)が、好ましくは150以下であり、20以下がより好ましく、10以下が特に好ましく、また、好ましくは0.1以上であり、0.4以上がより好ましく、1以上が特に好ましい。
 集電体と正極活物質層の厚さの比が、上記範囲内であると、高電流密度充放電時に集電体がジュール熱による発熱を生じ難くなる。さらに、正極活物質に対する集電体の体積比が増加し難くなり、電池容量の低下を防ぐことができる。
<電極面積>
 高出力かつ高温時の安定性を高める観点から、正極活物質層の面積は、電池外装ケースの外表面積に対して大きくすることが好ましい。具体的には、非水系電解液電池の外装の表面積に対する前記正極の電極面積の総和を、面積比で20倍以上とすることが好ましく、更に40倍以上とすることがより好ましい。外装ケースの外表面積とは、有底角型形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分の縦と横と厚さの寸法から計算で求める総面積をいう。有底円筒形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分を円筒として近似する幾何表面積である。正極の電極面積の総和とは、負極活物質を含む合材層に対向する正極合材層の幾何表面積であり、集電体箔を介して両面に正極合材層を形成してなる構造では、それぞれの面を別々に算出する面積の総和をいう。
<放電容量>
 上記の非水系電解液を用いる場合、非水系電解液電池の1個の電池外装に収納される電池要素のもつ電気容量(電池を満充電状態から放電状態まで放電したときの電気容量)が、1アンペアーアワー(Ah)以上であると、低温放電特性の向上効果が大きくなるため好ましい。そのため、正極板は、放電容量が満充電で、好ましくは3Ah(アンペアアワー)以上であり、より好ましくは4Ah以上、また、好ましくは100Ah以下であり、より好ましくは70Ah以下であり、特に好ましくは50Ah以下になるように設計する。
 上記範囲内であると、大電流の取り出し時に電極反応抵抗による電圧低下が大きくなり過ぎず、電力効率の悪化を防ぐことができる。さらに、パルス充放電時の電池内部発熱による温度分布が大きくなり過ぎず、充放電繰り返しの耐久性が劣り、また、過充電や内部短絡等の異常時の急激な発熱に対して放熱効率も悪くなるといった現象を回避することができる。
<正極板の厚さ>
 正極板の厚さは、特に限定されないが、高容量かつ高出力、高レート特性の観点から、集電体の厚さを差し引いた正極活物質層の厚さは、集電体の片面に対して、10μm以上が好ましく、20μm以上がより好ましく、また、200μm以下が好ましく、100μm以下がより好ましい。
<2-4.負極>
 本発明の一実施形態においては、負極は集電体及び該集電体上に設けられた負極活物質層を有する。
 以下に負極に使用される負極活物質について述べる。負極活物質としては、電気化学的に金属イオンを吸蔵・放出可能なものであれば、特に制限はない。具体例としては、炭素質材料などの構成元素として炭素を有するもの、合金系材料等が挙げられる。これらは1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。
<2-4-1.負極活物質>
 負極活物質としては、前記の通り炭素質材料、合金系材料等が挙げられる。
 前記炭素質材料としては、(1)天然黒鉛、(2)人造黒鉛、(3)非晶質炭素、(4)炭素被覆黒鉛、(5)黒鉛被覆黒鉛、(6)樹脂被覆黒鉛等が挙げられる。
 (1)天然黒鉛としては、鱗状黒鉛、鱗片状黒鉛、土壌黒鉛及び/又はこれらの黒鉛を原料に球形化や緻密化等の処理を施して得られた黒鉛粒子等が挙げられる。これらの中でも、粒子の充填性や充放電レート特性の観点から、球形化処理を施した球状もしくは楕円体状の黒鉛が特に好ましい。
 前記球形化処理に用いる装置としては、例えば、衝撃力を主体に粒子の相互作用も含めた圧縮、摩擦、せん断力等の機械的作用を繰り返し粒子に与える装置を用いることができる。
 具体的には、ケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された天然黒鉛(1)の原料に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、球形化処理を行なう装置が好ましい。また、原料を循環させることによって機械的作用を繰り返して与える機構を有する装置が好ましい。
 例えば前述の装置を用いて球形化処理する場合は、回転するローターの周速度を30~100m/秒に設定するのが好ましく、40~100m/秒に設定するのがより好ましく、50~100m/秒に設定するのが更に好ましい。また、球形化処理は、単に原料を通過させるだけでも可能であるが、30秒以上装置内を循環又は滞留させて処理するのが好ましく、1分以上装置内を循環又は滞留させて処理するのがより好ましい。
 (2)人造黒鉛としては、コールタールピッチ、石炭系重質油、常圧残油、石油系重質油、芳香族炭化水素、窒素含有環状化合物、硫黄含有環状化合物、ポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリアクリロニトリル、ポリビニルブチラール、天然高分子、ポリフェニレンサイルファイド、ポリフェニレンオキシド、フルフリルアルコール樹脂、フェノール-ホルムアルデヒド樹脂、イミド樹脂等の有機化合物を、通常2500℃以上、通常3200℃以下の範囲の温度で黒鉛化し、必要に応じて粉砕及び/又は分級して製造されたものが挙げられる。
 この際、ケイ素含有化合物やホウ素含有化合物等を黒鉛化触媒として用いることもできる。また、ピッチの熱処理過程で分離したメソカーボンマイクロビーズを黒鉛化して得た人造黒鉛が挙げられる。更に一次粒子からなる造粒粒子の人造黒鉛も挙げられる。例えば、メソカーボンマイクロビーズや、コークス等の黒鉛化可能な炭素質材料粉体とタール、ピッチ等の黒鉛化可能な結着剤と黒鉛化触媒を混合し、黒鉛化し、必要に応じて粉砕することで得られる、扁平状の粒子を複数、配向面が非平行となるように集合又は結合した黒鉛粒子が挙げられる。
 (3)非晶質炭素としては、タール、ピッチ等の易黒鉛化性炭素前駆体を原料に用い、黒鉛化しない温度領域(400~2200℃の範囲)で1回以上熱処理した非晶質炭素粒子や、樹脂等の難黒鉛化性炭素前駆体を原料に用いて熱処理した非晶質炭素粒子が挙げられる。
 (4)炭素被覆黒鉛としては、以下のようにして得られるものが挙げられる。天然黒鉛及び/又は人造黒鉛と、タール、ピッチや樹脂等の有機化合物である炭素前駆体とを混合し、400~2300℃の範囲で1回以上熱処理する。熱処理後の天然黒鉛及び/又は人造黒鉛を核黒鉛とし、これを非晶質炭素により被覆して炭素黒鉛複合体を得る。この炭素黒鉛複合体が炭素被覆黒鉛(4)として挙げられる。
 また、前記複合の形態は、核黒鉛の表面全体又は一部を非晶質炭素が被覆した形態でも、複数の一次粒子を前記炭素前駆体起源の炭素を結着剤として複合させた形態であってもよい。また、天然黒鉛及び/又は人造黒鉛にベンゼン、トルエン、メタン、プロパン、芳香族系の揮発分等の炭化水素系ガス等を高温で反応させ、黒鉛表面に炭素を堆積(CVD)させることでも、前記炭素黒鉛複合体を得ることができる。
 (5)黒鉛被覆黒鉛としては、以下のようにして得られるものが挙げられる。天然黒鉛及び/又は人造黒鉛と、タール、ピッチや樹脂等の易黒鉛化性の有機化合物の炭素前駆体とを混合し、2400~3200℃程度の温度範囲で1回以上熱処理する。熱処理後の天然黒鉛及び/又は人造黒鉛を核黒鉛とし、黒鉛化物でその核黒鉛の表面全体又は一部を被覆して黒鉛被覆黒鉛(5)が得られる。
 (6)樹脂被覆黒鉛は、例えば、天然黒鉛及び/又は人造黒鉛と、樹脂等を混合し、400℃未満の温度で乾燥して得られる天然黒鉛及び/又は人造黒鉛を核黒鉛とし、樹脂等でその核黒鉛を被覆することで得られる。
 また、以上説明した(1)~(6)の炭素質材料は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 上記(2)~(5)の炭素質材料に用いられるタール、ピッチや樹脂等の有機化合物としては、石炭系重質油、直流系重質油、分解系石油重質油、芳香族炭化水素、N環化合物、S環化合物、ポリフェニレン、有機合成高分子、天然高分子、熱可塑性樹脂及び熱硬化性樹脂からなる群より選ばれた炭化可能な有機化合物等が挙げられる。また、原料有機化合物は混合時の粘度を調整するため、低分子有機溶媒に溶解させて用いてもよい。
 また、核黒鉛の原料となる天然黒鉛及び/又は人造黒鉛としては、球形化処理を施した天然黒鉛が好ましい。
 次に、負極活物質として用いられる上記合金系材料は、リチウムイオンを吸蔵及び放出可能であれば、リチウム単体、リチウム合金を形成する単体金属及び合金、又はそれらの酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の化合物のいずれであってもよく、特に制限されない。リチウム合金を形成する単体金属及び合金は、13族及び14族の金属・半金属元素(即ち炭素を除く)を含む材料であることが好ましく、より好ましくはアルミニウム、ケイ素及びスズの単体金属及びこれら原子を含む合金又は化合物であり、更に好ましくはケイ素及びスズの単体金属及びこれら原子を含む合金又は化合物などの、ケイ素又はスズを構成元素として有るものである。
 これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
<Liと合金化可能な金属粒子>
 リチウム合金を形成する単体金属及び合金、又はそれらの酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の化合物を負極活物質として使用する場合、Liと合金化可能な金属は、粒子形態である。金属粒子が、Liと合金化可能な金属粒子であることを確認するための手法としては、X線回折による金属粒子相の同定、電子顕微鏡による粒子構造の観察及びEDX元素分析、蛍光X線による元素分析等が挙げられる。
 Liと合金化可能な金属粒子としては、従来公知のいずれのものも使用可能であるが、非水系電解液電池の容量とサイクル寿命の点から、前記金属粒子は、例えば、Fe、Co、Sb、Bi、Pb、Ni、Ag、Si、Sn、Al、Zr、Cr、P、S、V、Mn、As、Nb、Mo、Cu、Zn、Ge、In、Ti及びWからなる群から選ばれる金属又はその化合物であることが好ましい。また、前記金属粒子が、2種以上の金属元素により形成された合金粒子であってもよい。これらの中でも、Si、Sn、As、Sb、Al、Zn及びWからなる群から選ばれる金属又はその金属化合物が好ましい。
 前記金属化合物としては、金属酸化物、金属窒化物、金属炭化物等が挙げられる。また、2種以上の金属からなる合金を使用してもよい。
 Liと合金化可能な金属粒子の中でも、電池の高容量化の点で、Si又はSi金属化合物が好ましい。Si金属化合物は、Si金属酸化物であることが好ましい。本明細書では、Si又はSi金属化合物を総称してSi化合物と呼ぶ。Si化合物としては、具体的には、SiO,SiN,SiC、SiZ(Z=C、N)等が挙げられる。Si化合物は、好ましくは、Si金属酸化物であり、Si金属酸化物は、一般式で表すとSiOである。この一般式SiOは、二酸化Si(SiO)と金属Si(Si)とを原料として得られるが、そのxの値は通常0<x<2である。SiOは、黒鉛と比較して理論容量が大きく、更に非晶質SiあるいはナノサイズのSi結晶は、リチウムイオン等のアルカリイオンの出入りがしやすく、高容量の電池を得ることが可能となる。
 Si金属酸化物は、具体的には、SiOと表されるものであり、xは0≦x<2であり、より好ましくは、0.2以上1.8以下、更に好ましくは、0.4以上1.6以下、特に好ましくは、0.6以上1.4以下である。この範囲であれば、電池が高容量であると同時に、Liと酸素との結合による不可逆容量を低減させることが可能となる。
<Liと合金化可能な金属粒子の含有酸素量>
 Liと合金化可能な金属粒子の含有酸素量は、特に制限はないが、通常0.01質量%以上8質量%以下であり、0.05質量%以上5質量%以下であることが好ましい。粒子内の酸素分布状態は、表面近傍に存在、粒子内部に存在、粒子内一様に存在のいずれでもかまわないが、特に表面近傍に存在していることが好ましい。Liと合金化可能な金属粒子の含有酸素量が前記範囲内であると、金属粒子とO(酸素原子)との強い結合により、非水系電解液電池の二次充放電に伴う体積膨張が抑制され、また、サイクル特性に優れる非水系電解液電池とすることが出来るので好ましい。
<Liと合金化可能な金属粒子と黒鉛粒子とを含有する負極活物質>
 負極活物質は、Liと合金化可能な金属粒子と黒鉛粒子とを含有するものであってもよい。その負極活物質とは、Liと合金化可能な金属粒子と黒鉛粒子とが互いに独立した粒子の状態で混合されている混合物でもよいし、Liと合金化可能な金属粒子が黒鉛粒子の表面及び/又は内部に存在している複合体でもよい。
 上記Liと合金化可能な金属粒子と黒鉛粒子との複合体(複合粒子ともいう)とは、特に、Liと合金化可能な金属粒子及び黒鉛粒子が含まれている粒子であれば特に制限はないが、好ましくは、Liと合金化可能な金属粒子及び黒鉛粒子が物理的及び/又は化学的な結合によって一体化した粒子である。より好ましい形態としては、Liと合金化可能な金属粒子及び黒鉛粒子が、少なくとも複合粒子表面及びバルク内部の何れにも存在する程度に各々の固体成分が粒子内で分散して存在している状態にあり、それらを物理的及び/又は化学的な結合によって一体化させるために、黒鉛粒子が存在しているような形態である。更に具体的な好ましい形態は、Liと合金化可能な金属粒子と黒鉛粒子から少なくとも構成される複合材であって、黒鉛粒子、好ましくは、天然黒鉛が曲面を有する折り畳まれた構造を持つ粒子内に、該構造内の間隙にLiと合金化可能な金属粒子が存在していることを特徴とする複合材(負極活物質)である。また、間隙は空隙であってもよいし、非晶質炭素や黒鉛質物、樹脂等、Liと合金化可能な金属粒子の膨張、収縮を緩衝するような物質が、前記間隙中に存在していてもよい。
<Liと合金化可能な金属粒子の含有割合>
 Liと合金化可能な金属粒子と黒鉛粒子の合計に対するLiと合金化可能な金属粒子の含有割合は、通常0.1質量%以上、好ましくは0.5質量%以上、より好ましくは、1.0質量%以上、更に好ましくは2.0質量%以上である。また、通常99質量%以下、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下、より更に好ましくは25質量%以下、より更に好ましくは20質量%以下、特に好ましくは15質量%以下、最も好ましくは10質量%以下である。Liと合金化可能な金属粒子の含有割合がこの範囲内であると、Si表面での副反応の制御が可能であり、非水系電解液電池において十分な容量を得ることが可能となる点で好ましい。
<被覆率>
 本実施形態において、負極活物質は、炭素質物又は黒鉛質物で被覆されていてもよい。この中でも非晶質炭素質物で被覆されていることが、リチウムイオンの受入性の点から好ましい。この被覆率は、通常0.5%以上30%以下、好ましくは1%以上25%以下、より好ましくは、2%以上20%以下である。被覆率の上限は、電池を組んだ際の可逆容量の観点から、被覆率の下限は、核となる炭素質材料が非晶質炭素によって均一にコートされ強固な造粒がされるという観点、焼成後に粉砕した際、得られる粒子の粒径の観点から、上記範囲とすることが好ましい。
 なお、最終的に得られる負極活物質の有機化合物由来の炭化物の被覆率(含有率)は、負極活物質の量と、有機化合物の量及びJIS K 2270に準拠したミクロ法により測定される残炭率により、下記式で算出することができる。
 式:有機化合物由来の炭化物の被覆率(%)=(有機化合物の質量×残炭率×100)/{負極活物質の質量+(有機化合物の質量×残炭率)}
<内部間隙率>
 負極活物質の内部間隙率は通常1%以上、好ましくは3%以上、より好ましく5%以上、更に好ましくは7%以上である。また通常50%未満、好ましくは40%以下、より好ましくは30%以下、更に好ましくは20%以下である。この内部間隙率が小さすぎると、非水系電解液電池において負極活物質の粒子内の液量が少なくなる傾向がある。一方、内部間隙率が大きすぎると、電極にした場合に粒子間間隙が少なくなる傾向にある。内部間隙率の下限は充放電特性の観点から、上限は非水系電解液の拡散の観点から上記範囲とすることが好ましい。また、上述したように、この間隙は空隙であってもよいし、非晶質炭素や黒鉛質物、樹脂等、Liと合金化可能な金属粒子の膨張、収縮を緩衝するような物質が、間隙中に存在又は間隙がこれらにより満たされていてもよい。
<2-4-2.負極の構成と作製法>
 負極の製造は、本発明の効果を著しく損なわない限り、公知のいずれの方法をも用いることができる。例えば、負極活物質に、結着剤、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。
 また、合金系材料負極は、公知のいずれの方法を用いても製造することが可能である。具体的に、負極の製造方法としては、例えば、上述の負極活物質に結着剤や導電材等を加えたものをそのままロール成型してシート電極とする方法や、圧縮成形してペレット電極とする方法も挙げられるが、通常は負極用の集電体(以下「負極集電体」という場合がある。)上に塗布法、蒸着法、スパッタ法、メッキ法等の手法により、上述の負極活物質を含有する薄膜層(負極活物質層)を形成する方法が用いられる。この場合、上述の負極活物質に結着剤、増粘剤、導電材、溶媒等を加えてスラリー状とし、これを負極集電体に塗布、乾燥した後にプレスして高密度化することにより、負極集電体上に負極活物質層を形成する。
 負極集電体の材質としては、鋼、銅、銅合金、ニッケル、ニッケル合金、ステンレス等が挙げられる。これらのうち、薄膜に加工し易いという点及びコストの点から、銅が好ましく、銅箔を用いることよりが好ましい。
 負極集電体の厚さは、通常1μm以上、好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下である。負極集電体の厚さが厚過ぎると、非水系電解液電池全体の容量が低下し過ぎることがあり、逆に薄過ぎると取り扱いが困難になることがある。
 なお、表面に形成される負極活物質層との結着効果を向上させるため、これら負極集電体の表面は、予め粗面化処理しておくことが好ましい。表面の粗面化方法としては、ブラスト処理、粗面ロールによる圧延、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線等を備えたワイヤーブラシ等で集電体表面を研磨する機械的研磨法、電解研磨法、化学研磨法等が挙げられる。
 また、負極集電体の質量を低減させて電池の質量当たりのエネルギー密度を向上させるために、エキスパンドメタルやパンチングメタルのような穴あきタイプの負極集電体を使用することもできる。このタイプの負極集電体は、その開口率を変更することで、質量も自在に変更可能である。また、このタイプの負極集電体の両面に負極活物質層を形成させた場合、この穴を通してのリベット効果により、負極活物質層の剥離が更に起こり難くなる。しかし、開口率があまりに高くなった場合には、負極活物質層と負極集電体との接触面積が小さくなるため、かえって接着強度は低くなることがある。
 負極活物質層を形成するためのスラリーは、通常は負極材に対して結着剤、増粘剤等を加えて作製される。なお、本明細書における「負極材」とは、負極活物質と導電材とを合わせた材料を指すものとする。
 負極材中における負極活物質の含有量は、通常70質量%以上、特に75質量%以上、また、通常97質量%以下、特に95質量%以下であることが好ましい。負極活物質の含有量が少な過ぎると、得られる負極を用いた二次電池の容量が不足する傾向があり、多過ぎると相対的に導電材の含有量が不足することにより、負極としての電気伝導性を確保しづらい傾向にある。なお、二以上の負極活物質を併用する場合には、負極活物質の合計量が上記範囲を満たすようにすればよい。
 負極に用いられる導電材としては、銅やニッケル等の金属材料;黒鉛、カーボンブラック等の炭素材料等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。特に、導電材として炭素材料を用いると、炭素材料が活物質としても作用するため好ましい。負極材中における導電材の含有量は、通常3質量%以上、好ましくは5質量%以上、また、通常30質量%以下であり、25質量%以下であることが好ましい。導電材の含有量が少な過ぎると導電性が不足する傾向があり、多過ぎると相対的に負極活物質等の含有量が不足することにより、電池容量や強度が低下する傾向となる。なお、二以上の導電材を併用する場合には、導電材の合計量が上記範囲を満たすようにすればよい。
 負極に用いられる結着剤としては、電極製造時に使用する溶媒や電解液に対して安定な材料であれば、任意のものを使用することができる。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン・アクリル酸共重合体、エチレン・メタクリル酸共重合体等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。結着剤の含有量は、負極材100質量部に対して通常0.5質量部以上、好ましくは1質量部以上、また、通常10質量部以下であり、8質量部以下であることが好ましい。結着剤の含有量が少な過ぎると得られる負極の強度が不足する傾向があり、多過ぎると相対的に負極活物質等の含有量が不足することにより、電池容量や導電性が不足する傾向となる。なお、二以上の結着剤を併用する場合には、結着剤の合計量が上記範囲を満たすようにすればよい。
 負極に用いられる増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。増粘剤は必要に応じて使用すればよいが、使用する場合には、負極活物質層中における増粘剤の含有量が通常0.5質量%以上、5質量%以下の範囲で用いることが好ましい。
 負極活物質層を形成するためのスラリーは、上記負極活物質に、必要に応じて導電材や結着剤、増粘剤を混合して、水系溶媒又は有機溶媒を分散媒として用いて調製される。水系溶媒としては、通常、水が用いられるが、これにエタノール等のアルコール類、N-メチルピロリドン等の環状アミド類等の有機溶媒を、水に対して30質量%以下の範囲で併用することもできる。また、有機溶媒としては、N-メチルピロリドン等の環状アミド類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の直鎖状アミド類;アニソール、トルエン、キシレン等の芳香族炭化水素類;ブタノール、シクロヘキサノール等のアルコール類;が挙げられ、中でも、N-メチルピロリドン等の環状アミド類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の直鎖状アミド類が好ましい。なお、これらは何れか1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 得られたスラリーを上述の負極集電体上に塗布し、乾燥した後、プレスすることにより、負極活物質層が形成され、負極が得られる。塗布の手法は特に制限されず、それ自体既知の方法を用いることができる。乾燥の手法も特に制限されず、自然乾燥、加熱乾燥、減圧乾燥等の公知の手法を用いることができる。
<電極密度>
 負極活物質を電極化した際の電極構造は特に制限されないが、集電体上に存在している負極活物質の密度は、1g・cm-3以上が好ましく、1.2g・cm-3以上がさらに好ましく、1.3g・cm-3以上が特に好ましく、また、2.2g・cm-3以下が好ましく、2.1g・cm-3以下がより好ましく、2.0g・cm-3以下がさらに好ましく、1.9g・cm-3以下が特に好ましい。集電体上に存在している負極活物質の密度が、上記範囲を上回ると、負極活物質粒子が破壊され、非水系電解液電池の初期不可逆容量の増加や、集電体/負極活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、負極活物質の密度が上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
<2-5.セパレータ>
 正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。この場合、本発明の非水系電解液は、通常はこのセパレータに含浸させて用いる。
 セパレータの材料や形状については特に制限は無く、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。中でも、本発明の非水系電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が好ましく用いられ、保液性に優れた多孔性シート又は不織布状の形態の物を用いるのが好ましい。
 樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。中でも好ましくはガラスフィルター、ポリオレフィンであり、さらに好ましくはポリオレフィンである。これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 上記セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、10μm以上がより好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下がより好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、非水系電解液電池全体としてのエネルギー密度が低下する場合がある。
 さらに、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上がより好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下がより好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。
 また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
 一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物類、窒化アルミや窒化ケイ素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類が用いられる。
 形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01~1μm、厚さが5~50μmのものが好適に用いられる。前記の独立した薄膜形状以外に、樹脂製の結着剤を用いた粒子形状若しくは繊維形状の無機物を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に、フッ素樹脂を結着剤として90%粒径が1μm未満のアルミナ粒子を含む多孔層を形成させることが挙げられる。
<2-6.電池設計>
[電極群]
 電極群は、前述の正極板と負極板とを前述のセパレータを介してなる積層構造のもの、及び前述の正極板と負極板とを前述のセパレータを介して渦巻き状に捲回した構造のものの何れでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する。)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。電極群占有率の下限は、電池容量の観点から、上記範囲とすることが好ましい。また、電極群占有率の上限は、電池としての充放電繰り返し性能や高温保存特性等の諸特性の観点、内部圧力を外に逃がすガス放出弁の作動回避の観点から、間隙スペースを確保するために上記範囲とすることが好ましい。間隙スペースが少な過ぎると、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存特性等の諸特性を低下させたり、さらには、内部圧力を外に逃がすガス放出弁が作動する場合がある。
[集電構造]
 集電構造は特に限定されるものではないが、上記の非水系電解液による放電特性の向上をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にすることが好ましい。この様に内部抵抗を低減させた場合、上記の非水系電解液を使用した効果は特に良好に発揮される。
 電極群が前述の積層構造のものでは、各電極層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。1枚の電極面積が大きくなる場合には、内部抵抗が大きくなるので、電極内に複数の端子を設けて抵抗を低減することも好適に用いられる。電極群が前述の捲回構造のものでは、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。
[保護素子]
 保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC素子(Positive Temperature Coefficient)素子、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等が挙げられる。前記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、高出力の観点から、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
[外装体]
 本実施形態の非水系電解液電池は、通常、上記の非水系電解液、負極、正極、セパレータ等を外装体(外装ケース)内に収納して構成される。この外装体に制限は無く、本発明の効果を著しく損なわない限り公知のものを任意に採用することができる。
 外装ケースの材質は用いられる非水系電解液に対して安定な物質であれば特に限定されるものではない。具体的に、ニッケルメッキ鋼板、ステンレス、アルミニウム若しくはアルミニウム合金、マグネシウム合金、ニッケル、チタン等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が好適に用いられる。
 上記金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、又は、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。上記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
 また、外装体の形状も任意であり、例えば円筒型、角形、ラミネート型、コイン型、大型等の何れであってもよい。
[実験A]
 以下、実施例及び参考例を挙げて本発明の1態様を更に具体的に説明するが、本発明は、その要旨を超えない限り、これらの実施例に限定されるものではない。
<実施例A1-1~A1-4、比較例A1-1~A1-7>
[Ni(PFを含むEC溶液の調製]
 アルゴングローブボックス中、50mLビーカーにNiCl 0.5g(3.9mmol)を秤量し、アセトニトリル(AN)に懸濁させた。これを撹拌しながら、AgPF 1.95g(7.7mmol)を細かく分けてゆっくりと加え、その後室温にて3時間撹拌した。反応進行とともにAgClの白色固体が生成した。そのまま一晩放置した後、AgClをろ別し、得られたろ液をロータリーエバポレータ―で減圧濃縮することで、[Ni(AN)](PF(n=0~6)の青色固体を得た。ここに、45℃で融解させたエチレンカーボネート(EC)5.0g(56.8mmol)を加えて固体を溶解させ、35℃で6時間真空引きすることで、配位溶媒であったANを除去し、Ni(PFを含むEC溶液を得た。
[正極の作製]
 正極活物質としてLi(Ni1/3Mn1/3Co1/3)O85質量部と、導電材としてアセチレンブラック10質量部と、結着剤としてポリフッ化ビニリデン(PVdF)5質量部とを、N-メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。これを厚さ15μmのアルミニウム箔の片面に均一に塗布、乾燥した後、プレスして正極とした。
[負極の作製]
 天然黒鉛98質量部に、増粘剤及び結着剤として、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)1質量部及びスチレン-ブタジエンゴムの水性ディスパージョン(スチレン-ブタジエンゴムの濃度50質量%)1質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ10μmの銅箔の片面に塗布して乾燥した後、プレスして負極とした。
[非水系電解液の調製]
 乾燥アルゴン雰囲気下、Ni(PFを含むEC溶液を基に、混合溶媒中のニッケルイオン濃度が表1となるように、及び溶媒組成がエチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)の混合物の体積比が3:4:3となるように、EC、EMC、DMCで希釈し、十分に乾燥させたLiPFを1モル/L(非水系電解液中の濃度として)溶解させた。なお、Ni(PFを含まない非水系電解液を基準電解液A1と呼ぶ。上記で作成したNi(PF含有非水系電解液又は基準電解液A1に対して、FSOLiを加えて、下記表1に記載の非水系電解液を調製した。ただし、比較例A1-1は基準電解液A1そのものである。表中、FSOLiの含有量は添加量を示し、ニッケル元素(ニッケルイオン)の含有量は、後述する誘導結合高周波プラズマ発光分光分析(ICP-AES)の測定結果に基づき求めた値である。なお、表中の「含有量(質量%)」及び「含有量(質量ppm)」は、基準電解液A1を100質量%とした時の含有量である。
<非水系電解液中におけるニッケル元素の含有量の測定>
 非水系電解液100μL(約130mg)を分取した。分取した非水系電解液をPTFEビーカーに秤り取り、適切な量の濃硝酸を加えてホットプレート上で湿式分解した後に50mL定容し、誘導結合高周波プラズマ発光分光分析(ICP-AES、Thermo Fischer Scientific、iCAP 7600duo)を用いてLi及び酸濃度マッチング検量線法でニッケル元素の含有量を測定した。
[非水系電解液二次電池の製造]
 上記の正極、負極、及びポリエチレン製のセパレータを、負極、セパレータ、正極の順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極と負極の端子を突設させながら挿入した後、上記調製後の非水系電解液を袋内に注入し、真空封止を行い、ラミネート型の非水系電解液二次電池を作製した。
 <非水系電解液二次電池の評価>
[初期コンディショニング]
 25℃の恒温槽中、非水系電解液二次電池を1/6C(1Cとは、充電または放電に1時間かかる電流値のことを示す。以下同様。)に相当する電流で4.2Vまで定電流-定電圧充電(以下、CC-CV充電と記載)した後、1/6Cで2.5Vまで放電した。1/6Cで4.1VまでCC-CV充電を行った。その後、60℃、12時間の条件でエージングを実施した。その後、1/6Cで2.5Vまで放電し、非水系電解液二次電池を安定させた。さらに、1/6Cで4.2VまでCC-CV充電を行った後、1/6Cで2.5Vまで放電し、初期コンディショニングを行った。
[充電保存試験]
 初期コンディショニング後の非水系電解液二次電池を再度、1/6Cで4.2VまでCC-CV充電を行った後、60℃、168時間の条件で高温保存を行った。高温保存後、電池を冷却させた後、非水系電解液二次電池を25℃において1/6Cで2.5Vまで放電させた時の放電容量を求め、これを「残存容量(1週間)」とした。下記表1に、比較例A1-1の残存容量(1週間)を100とした際の残存容量(1週間)の値を示す。
 充電保存試験後の非水系電解液二次電池を再度、1/6Cで4.2VまでCC-CV充電を行った後、60℃、336時間の条件で高温保存を行った。非水系電解液二次電池を25℃において1/6Cで2.5Vまで放電させた時の放電容量を求め、これを「残存容量(2週間)」とした。下記表1に、比較例A1-1の残存容量(2週間)を100とした際の残存容量の値を示す。
Figure JPOXMLDOC01-appb-T000001
 比較例A1-1と比較例A1-2との比較から、電解液がFSOLiを含むことにより、電池の残存容量が増加することが示された。一方、比較例A1-1~比較例A1-3から、電解液がFSOLiを含んでいても、所定の量を超えるニッケルイオンを含むと、残存容量が低下することが示された。また、比較例A1-4~A1-7から、電解液がニッケルイオンを50質量ppm程度含有する場合(比較例A1-6)は残存容量の向上が示されたが、それより少ない又は多いニッケルイオンを含む場合には、残存容量の低下が示された。一方、実施例A1-2~A1-4から、電解液がFSOLiを含む場合、比較例A1-4、A1-5及びA1-7と同様の量のニッケルイオンを含む場合であっても、FSOLiを単独で含む場合よりも残存容量が向上する効果が示された。すなわち、非水系電解液がFSOLi及び所定の量のニッケルイオンを含むことで、非水系電解液二次電池の高温環境下での充電保存特性が向上することが示された。
<実施例A2-1~A2-3、比較例A2-1~A2-3>
[正極の作製]
 実施例A1-1と同様の方法で正極を作製した。
[負極の作製]
 実施例A1-1と同様の方法で負極を作製した。
[非水系電解液の調製]
 実施例A1-1等と同様に、Ni(PF含有非水系電解液又は基準電解液A1に対して、FSOLiを加えて、下記表2に記載の非水系電解液を調製した。
[非水系電解液二次電池の製造]
 上記の非水系電解液を用いたこと以外は、実施例A1-1と同様にラミネート型の非水系電解液二次電池を作製した。
<非水系電解液二次電池の評価>
 実施例A1-1と同様の方法で、初期コンディショニング及び充電保存試験を行った。実施例A1-1と同様の方法で残存容量を求めた。下記表2に、比較例A1-1の残存容量(1週間)を100とした際の、実施例A2-1~A2-3及び比較例A2-1~A2-3の残存容量(1週間)の値を、比較例A1-1及びA1-5の結果と併せて示す。
Figure JPOXMLDOC01-appb-T000002
 比較例A1-1と比較例A1-5との比較から、ニッケルイオンを103質量ppm含む電解液はニッケルイオンを含まない電解液より電池の残存容量を低下させることが示された。また、比較例A2-1及びA2-2からは、電解液がFSOLiを含む場合であっても、その含有量が少なすぎると、電池の残存容量が向上するどころか、低下することが示された。これらの結果から、実施例A2-1の電池は、比較例A1-5及び比較例A2-1より残存容量の低下が予想される。しかしながら、実施例A2-1は、比較例A1-5及び比較例A2-1より残存容量が向上し、さらには、比較例A1-1よりも残存容量が向上するという顕著な効果が示された。また、実施例A2-2と比較例A2-2との比較、並びに、実施例A2-3と比較例A2-3との比較からも、電解液がFSOLiと所定の量のニッケルイオンを含むことにより、非水系電解液二次電池の残存容量が向上する、すなわち、非水系電解液二次電池の高温環境下での充電保存特性が向上するという顕著な効果が示された。
<実施例A3-1~A3-2、比較例A3-1~A3-5>
[正極の作製]
 正極活物質としてLi(Ni0.5Mn0.3Co0.2)O90質量部と、導電材としてアセチレンブラック7質量部と、結着剤としてポリフッ化ビニリデン(PVdF)3質量部とを、N-メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。これを厚さ15μmのアルミニウム箔の片面に均一に塗布、乾燥した後、プレスして正極とした。
[負極の作製]
 負極活物質を含むスラリーを銅箔の両面に塗布した以外は実施例A1-1と同様の方法で、負極を作製した。
[非水系電解液の調液]
 実施例A1-1等と同様に、Ni(PF含有非水系電解液又は基準電解液A1に対して、FSOLiを加えて、下記表3に記載の非水系電解液を調製した。ただし、比較例A3-1は基準電解液A1そのものである。なお、表中の「含有量(質量%)」及び「含有量(質量ppm)」は、基準電解液A1を100質量%とした時の含有量である。
[非水系電解液二次電池の製造]
 上記の正極、負極及び非水系電解液を用いたこと以外は、実施例A1-1と同様にラミネート型の非水系電解液二次電池を作製した。
<非水系電解液二次電池の評価>
 実施例A1-1と同様の方法で、初期コンディショニング及び充電保存試験を行った。実施例A1-1と同様の方法で残存容量(1週間)および残存容量(2週間)を求めた。下記表3に、比較例A3-1の残存容量(1週間)を100とした際の残存容量の値、及び比較例A3-1の残存容量(2週間)を100とした際の残存容量(2週間)の値を示す。
Figure JPOXMLDOC01-appb-T000003
 比較例A3-1、比較例A3-4及び比較例A3-5から、ニッケルイオンが5質量ppm含まれる電解液は非水系電解液電池の残存容量を向上させる一方、ニッケルイオンの量が515質量ppmと多くなると、残存容量を低下させることがわかる。一方、実施例A3-1、実施例A3-2及び比較例A3-2から、電解液が所定の量のニッケルイオンを含み、かつFSOLiを含む場合には、FSOLiを単独で含む場合よりも残存容量が増加することが示された。さらに、2週間保存後の残存容量からも、電解液が所定の量のニッケルイオンを含みかつFSOLiを含むことにより、継時変化による非水系電解液電池の劣化が抑制される、すなわち、非水系電解液二次電池の高温環境下での充電保存特性が向上することが示された。また、比較例A3-3と比較例A3-2との比較から、電解液が含むニッケルイオンの量が所定の範囲外であると、FSOLiの添加効果が損なわれ、非水系電解液電池の残存容量が低下することがわかる。
 電池の保存期間は、例えば車両メーカーであれば、通常200日程度である。1週間、2週間保存後の残存容量の差は、経時的に大きくなるため、保存期間が長期化すればするほど、本発明の効果が一層顕著になるといえる。
[実験B]
 以下、実施例及び参考例を挙げて本発明の1態様を更に具体的に説明するが、本発明は、その要旨を超えない限り、これらの実施例に限定されるものではない。
<実施例B1-1~B1-4、比較例B1-1~B1-6>
[Co(PFを含むEC溶液の調製]
 アルゴングローブボックス中、50mLビーカーにCoCl 0.30g(2.3mmol)を秤量し、アセトニトリル(AN)に懸濁させた。これを撹拌しながら、AgPF1.168g(4.6mmol)を細かく分けてゆっくりと加え、その後室温にて3時間撹拌した。反応進行とともにAgClの白色固体が生成した。そのまま一晩放置した後、AgClをろ別し、得られたろ液をロータリーエバポレータ―で減圧濃縮することで、[Co(AN)](PF(n=0~6)の橙色固体を得た。得られた橙色固体のうち0.5gを、45℃で融解させたエチレンカーボネート(EC)2.0g(22.7mmol)に溶解させ、35℃で6時間真空引きすることで、配位溶媒であったANを除去し、Co(PFを含むEC溶液を得た。
[正極の作製]
 実施例A1-1と同様の方法で正極を作製した。
[負極の作製]
 実施例A1-1と同様の方法で負極を作製した。
[非水系電解液の調製]
 乾燥アルゴン雰囲気下、Co(PFを含むEC溶液を基に、混合溶媒中のコバルトイオン濃度が表4となるように、及び溶媒組成がエチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)の混合物の体積比が3:4:3となるように、EC、EMC、DMCで希釈し、十分に乾燥させたLiPFを1モル/L(非水系電解液中の濃度として)溶解させた。なお、Co(PFを含まない非水系電解液を基準電解液B1と呼ぶ。上記で作成したCo(PF含有非水系電解液又は基準電解液B1に対して、FSOLiを加えて、下記表4に記載の非水系電解液を調製した。ただし、比較例B1-1は基準電解液B1そのものである。表中、FSOLiの含有量は添加量を示し、コバルト元素(コバルトイオン)の含有量は、後述する誘導結合高周波プラズマ発光分光分析(ICP-AES)の測定結果に基づき求めた値である。なお、表中の「含有量(質量%)」及び「含有量(質量ppm)」は、基準電解液B1を100質量%とした時の含有量である。
<非水系電解液中におけるコバルト元素の含有量の測定>
 非水系電解液100μL(約130mg)を分取した。分取した非水系電解液をPTFEビーカーに秤り取り、適切な量の濃硝酸を加えてホットプレート上で湿式分解した後に50mL定容し、誘導結合高周波プラズマ発光分光分析(ICP-AES、Thermo Fischer Scientific、iCAP 7600duo)を用いてLi及び酸濃度マッチング検量線法でコバルト元素の含有量を測定した。
[非水系電解液二次電池の製造]
 上記の非水系電解液を用いたこと以外は、実施例A1-1と同様にラミネート型の非水系電解液二次電池を作製した。
 <非水系電解液二次電池の評価>
実施例A1-1と同様の方法で、初期コンディショニング及び充電保存試験を行った。実施例A1-1と同様の方法で残存容量を求めた。下記表4に、比較例B1-1の残存容量(1週間)を100とした際の残存容量の値を示す。下記表4に、比較例B1-1の残存容量(2週間)を100とした際の残存容量の値を示す。
Figure JPOXMLDOC01-appb-T000004
 比較例B1-1と比較例B1-2との比較から、非水系電解液がFSOLiを含むことにより、非水系電解液二次電池の残存容量が増加することが示された。また、比較例B1-3~B1-5から、非水系電解液がFSOLiを含まずにコバルトイオンのみを4~190質量ppm含有する場合は非水系電解液二次の残存容量の低下が示された。一方、実施例B1-1~B1-3から、電解液がFSOLiを含む場合、比較例B1-3~B1-5と同様の量のコバルトイオンを含む場合であっても、予測に反して、FSOLiを単独で含む場合よりも残存容量が向上する効果が示された。また、比較例B1-2と実施例B1-2との比較から、コバルトイオン含有の有無により、168時間(1週間)高温保存後の残存容量と336時間(2週間)高温保存後の残存容量の差がより一層大きくなっていることがわかる。すなわち、非水系電解液がFSOLi及び所定の量のコバルトイオンを含むことで、高温保存時の経時変化を顕著に抑制され、非水系電解液二次電池の高温環境下での充電保存特性が向上することが示された。
<実施例B2-1~B2-3、比較例B2-1~B2-3>
[正極の作製]
 実施例B1-1と同様の方法で正極を作製した。
[負極の作製]
 実施例B1-1と同様の方法で負極を作製した。
[非水系電解液の調製]
 実施例B1-1等と同様に、Co(PF含有非水系電解液又は基準電解液B1に対して、FSOLiを加えて、下記表5に記載の非水系電解液を調製した。
[非水系電解液二次電池の製造]
 上記の非水系電解液を用いたこと以外は、実施例B1-1と同様にラミネート型の非水系電解液二次電池を作製した。
<非水系電解液二次電池の評価>
 実施例B1-1と同様の方法で、初期コンディショニング及び充電保存試験を行った。実施例B1-1と同様の方法で残存容量を求めた。下記表5に、比較例B1-1の残存容量(1週間)を100とした際の、実施例B2-1~B2-3及び比較例B2-1~B2-3の残存容量(1週間)の値を、比較例B1-1及びB1-4の結果と併せて示す。
Figure JPOXMLDOC01-appb-T000005
 比較例B1-1と比較例B1-4との比較から、FSOLiを含まずにコバルトイオンを78質量ppm含む非水系電解液はコバルトイオンを含まない非水系電解液より非水系電解液二次電池の残存容量を低下させることが示された。また、比較例B2-1及びB2-2からは、非水系電解液がFSOLiを含む場合であっても、その含有量が少なすぎると、非水系電解液二次電池の残存容量が向上するどころか、低下することが示された。これらの結果から、実施例B2-1の非水系電解液二次電池は、比較例B1-4及び比較例B2-1より残存容量の低下が予測される。しかしながら、実施例B2-1は、比較例B1-4及び比較例B2-1より残存容量が向上し、さらには、比較例B1-1よりも残存容量が向上するという顕著な効果が示された。また、実施例B2-2と比較例B2-2との比較、並びに、実施例B2-3と比較例B2-3との比較からも、非水系電解液がFSOLiと所定の量のコバルトイオンを含むことにより、非水系電解液二次電池の残存容量が向上する、すなわち、非水系電解液二次電池の高温環境下での充電保存特性が向上するという顕著な効果が示された。
<実施例B3-1~B3-3、比較例B3-1~B3-6>
[正極の作製]
 実施例A3-1と同様の方法で正極を作製した。
[負極の作製]
 実施例A3-1と同様の方法で負極を作製した。
[非水系電解液の調液]
 実施例B1-1等と同様に、Co(PF含有非水系電解液又は基準電解液B1に対して、FSOLiを加えて、下記表6に記載の非水系電解液を調製した。ただし、比較例B3-1は基準電解液B1そのものである。なお、表中の「含有量(質量%)」及び「含有量(質量ppm)」は、基準電解液B1を100質量%とした時の含有量である。
[非水系電解液二次電池の製造]
 上記の正極、負極及び非水系電解液を用いたこと以外は、実施例B1-1と同様にラミネート型の非水系電解液二次電池を作製した。
<非水系電解液二次電池の評価>
 実施例B1-1と同様の方法で、初期コンディショニング及び充電保存試験を行った。実施例B1-1と同様の方法で残存容量(1週間)および残存容量(2週間)を求めた。下記表6に、比較例B3-1の残存容量(1週間)を100とした際の残存容量(1週間)の値、及び比較例B3-1の残存容量(2週間)を100とした際の残存容量(2週間)の値を示す。
Figure JPOXMLDOC01-appb-T000006
 比較例B3-1、比較例B3-4及び比較例B3-6から、コバルトイオンを4質量ppm含む非水系電解液は非水系電解液二次電池の残存容量を向上させる一方、コバルトイオンの量が476質量ppmと多くなると、168時間(1週間)高温保存後の残存容量を低下させ、336時間(2週間)高温保存後の残存容量はコバルトイオンを含まない場合と同等であることが示された。また、比較例B3-3と比較例B3-2との比較から、非水系電解液がFSOLiを含んでいても、760質量ppmのコバルトイオンを含む場合、FSOLiの添加効果が損なわれ、168時間(1週間)高温保存後の非水系電解液二次電池の残存容量を低下させることが示された。さらに、実施例B3-1~B3-3並びに比較例B3-1~B3-6から、非水系電解液が所定の量のコバルトイオンを含みかつFSOLiを含むことにより、FSOLi又はコバルトイオンを単独で含む場合よりも高温保存後の非水系電解液二次電池の残存容量が増加すること、特に、168時間(1週間)高温保存後と336時間(2週間)高温保存後の残存容量の比の比較から、経時変化による非水系電解液二次電池の劣化が顕著に抑制され、非水系電解液二次電池の高温環境下での充電保存特性が向上することが示された。
 電池の保存期間は、例えば車両メーカーであれば、通常200日程度である。1週間、2週間保存後の残存容量の差は、経時的に大きくなるため、保存期間が長期化すればするほど、本発明の効果が一層顕著になるといえる。
[実験C]
 以下、実施例及び参考例を挙げて本発明の1態様を更に具体的に説明するが、本発明は、その要旨を超えない限り、これらの実施例に限定されるものではない。
<実施例C1-1~C1-4、比較例C1-1~C1-7>
[Cu(PFを含むEC溶液の調製]
 アルゴングローブボックス中、50mLビーカーにCuCl 0.50g(3.7mmol)を秤量し、アセトニトリル(AN)に懸濁させた。これを撹拌しながら、AgPF 1.88g(7.4mmol)を細かく分けてゆっくりと加え、その後室温にて3時間撹拌した。反応進行とともにAgClの白色固体が生成した。そのまま一晩放置した後、AgClをろ別し、得られたろ液をロータリーエバポレータ―で減圧濃縮することで、[Cu(AN)](PF(n=0~6)の青色固体を得た。ここに、45℃で融解させたエチレンカーボネート(EC)5.0g(56.8mmol)を加えて固体を溶解させ、35℃で6時間真空引きすることで、配位溶媒であったANを除去し、Cu(PFを含むEC溶液を得た。
[正極の作製]
 実施例A1-1と同様の方法で正極を作製した。
[負極の作製]
 実施例A1-1と同様の方法で負極を作製した。
[非水系電解液の調製]
 乾燥アルゴン雰囲気下、Cu(PFを含むEC溶液を基に、混合溶媒中の銅イオン濃度が表7となるように、及び溶媒組成がエチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)の混合物の体積比が3:4:3となるように、EC、EMC、DMCで希釈し、十分に乾燥させたLiPFを1モル/L(非水系電解液中の濃度として)溶解させた。なお、Cu(PFを含まない非水系電解液を基準電解液C1と呼ぶ。上記で作成したCu(PF含有非水系電解液又は基準電解液C1に対して、FSOLiを加えて、下記表7に記載の非水系電解液を調製した。ただし、比較例C1-1は基準電解液C1そのものである。表中、FSOLiの含有量は添加量を示し、銅元素(銅イオン)の含有量は、後述する誘導結合高周波プラズマ発光分光分析(ICP-AES)の測定結果に基づき求めた値である。なお、表中の「含有量(質量%)」及び「含有量(質量ppm)」は、基準電解液C1を100質量%とした時の含有量である。
<非水系電解液中における銅元素の含有量の測定>
 非水系電解液100μL(約130mg)を分取した。分取した非水系電解液をPTFEビーカーに秤り取り、適切な量の濃硝酸を加えてホットプレート上で湿式分解した後に50mL定容し、誘導結合高周波プラズマ発光分光分析(ICP-AES、Thermo Fischer Scientific、iCAP 7600duo)を用いてLi及び酸濃度マッチング検量線法で銅元素の含有量を測定した。
[非水系電解液二次電池の製造]
 上記の非水系電解液を用いたこと以外は、実施例A1-1と同様に、ラミネート型の非水系電解液二次電池を作製した。
 <非水系電解液二次電池の評価>
実施例A1-1と同様の方法で、初期コンディショニング及び充電保存試験を行った。実施例A1-1と同様の方法で残存容量を求めた。下記表7に、比較例C1-1の残存容量を100とした際の残存容量(1週間)の値を示す。下記表7に、比較例C1-1の残存容量(2週間)を100とした際の残存容量の値を示す。
Figure JPOXMLDOC01-appb-T000007
 比較例C1-1と比較例C1-2との比較から、電解液がFSOLiを含むことにより、電池の残存容量が増加することが示された。一方、比較例C1-1~比較例C1-3から、電解液がFSOLiを含んでいても、所定の量を超える銅イオンを含むと、残存容量は変わらず、FSOLi含有の効果を発揮しないことが示された。また、比較例C1-4~C1-7から、電解液が銅イオンを5質量ppm含む場合には残存容量は銅イオンを含まない場合と変わらず、60質量ppm程度含む場合は残存容量の向上が示されたが、それより多い銅イオンを含む場合には、残存容量の低下が示された(比較例C1-4、C1-5)。一方、実施例C1-1~C1-4から、電解液がFSOLiを含む場合、比較例C1-5~C1-7と同様の量の銅イオンを含む場合であっても、FSOLiを単独で含む場合よりも残存容量が向上する効果が示された。すなわち、非水系電解液がFSOLi及び所定の量の銅イオンを含むことで、非水系電解液二次電池の高温環境下での充電保存特性が向上することが示された。また、比較例C1-5では、60℃、168時間の条件で高温保存後、残存容量が低下し、60℃、336時間の条件で高温保存後、残存容量の値がさらに低下したのに対し、同じ量の銅イオンかつFSOLiを含む非水系電解液電池の実施例C1-2では、60℃、168時間の条件で高温保存後、残存容量の比が向上し、60℃、336時間の条件で高温保存後、残存容量の比がさらに向上することが示された。すなわち、非水系電解液が所定の量の銅イオンを含みかつFSOLiを含むことにより、経時変化による非水系電解液電池の劣化が顕著に抑制されることが示された。
<実施例C2-1~C2-3、比較例C2-1~C2-3>
[正極の作製]
 実施例C1-1と同様の方法で正極を作製した。
[負極の作製]
 実施例C1-1と同様の方法で負極を作製した。
[非水系電解液の調製]
 実施例C1-1等と同様に、Cu(PF含有非水系電解液又は基準電解液C1に対して、FSOLiを加えて、下記表8に記載の非水系電解液を調製した。
[非水系電解液二次電池の製造]
 上記の非水系電解液を用いたこと以外は、実施例C1-1と同様にラミネート型の非水系電解液二次電池を作製した。
<非水系電解液二次電池の評価>
 実施例C1-1と同様の方法で、初期コンディショニング及び充電保存試験を行った。実施例C1-1と同様の方法で残存容量(1週間)を求めた。下記表8に、比較例C1-1の残存容量(1週間)を100とした際の、実施例C2-1~C2-3及び比較例C2-1~C2-3の残存容量(1週間)の値を、比較例C1-1及びC1-5の結果と併せて示す。
Figure JPOXMLDOC01-appb-T000008
 比較例C1-1と比較例C1-5との比較から、FSOLiを含まず、かつ銅イオンを123質量ppm含む非水系電解液は、銅イオンを含まない非水系電解液より電池の残存容量を低下させることが示された。また、比較例C2-1~C2-3からは、非水系電解液がFSOLiを含む場合であっても、その含有量が少なすぎると、電池の残存容量が向上するどころか、低下することが示された。これらの結果から、実施例C2-1、C2-2の非水系電解液電池は、比較例C1-5及び比較例C2-1又は比較例C2-2より残存容量の低下が予想される。しかしながら、実施例C2-1の非水系電解液電池は、比較例C1-5及び比較例C2-1より残存容量が向上し、さらには、比較例C1-1よりも残存容量が向上するという顕著な効果が示された。また、実施例C2-2の非水系電解液電池は、比較例C1-5及び比較例C2-2より残存容量が向上し、さらには、比較例C1-1よりも残存容量が向上するという顕著な効果が示された。また、実施例C2-1~C2-3から、電解液がFSOLiと所定の量の銅イオンを含むことにより、非水系電解液二次電池の残存容量が向上する、すなわち、非水系電解液二次電池の高温環境下での充電保存特性が向上するという顕著な効果が示された。
<実施例C3-1~C3-2、比較例C3-1~C3-5>
[正極の作製]
 実施例A3-1と同様の方法で正極を作製した。
[負極の作製]
 実施例A3-1と同様の方法で負極を作製した。
[非水系電解液の調液]
 実施例C1-1等と同様に、Cu(PF含有非水系電解液又は基準電解液D1に対して、FSOLiを加えて、下記表9に記載の非水系電解液を調製した。ただし、比較例C3-1は基準電解液C1そのものである。なお、表中の「含有量(質量%)」及び「含有量(質量ppm)」は、基準電解液C1を100質量%とした時の含有量である。
[非水系電解液二次電池の製造]
 上記の正極、負極及び非水系電解液を用いたこと以外は、実施例C1-1と同様にラミネート型の非水系電解液二次電池を作製した。
<非水系電解液二次電池の評価>
 実施例C1-1と同様の方法で、初期コンディショニング及び充電保存試験を行った。実施例C1-1と同様の方法で残存容量(1週間)および残存容量(2週間)を求めた。下記表9に、比較例C3-1の残存容量(1週間)を100とした際の残存容量(1週間)の値、及び比較例C3-1の残存容量(2週間)を100とした際の残存容量(2週間)の値を示す。
Figure JPOXMLDOC01-appb-T000009
 比較例C3-1、比較例C3-4から、FSOLiを含まず、かつ銅イオンを308質量ppm含む非水系電解液は非水系電解液二次電池の残存容量を低下させることがわかる。また、比較例C3-5から、FSOLiを含まず、かつ銅イオンの量が5質量ppmと少ない場合、60℃、168時間の条件で高温保存後、残存容量の比が低下したが、60℃、336時間の条件で高温保存後、残存容量の比が向上したことがわかる。また、比較例C3-3と比較例C3-2との比較から、非水系電解液が含む銅イオンの量が所定の範囲外であると、FSOLiの添加効果が損なわれ、非水系電解液電池の残存容量が低下することがわかる。さらに、実施例C3-1、C3-2及び比較例C3-1~C3-5から、非水系電解液が所定の量の銅イオンを含み、かつFSOLiを含むことにより、FSOLi又は銅イオンを単独で含む場合よりも168時間(1週間)高温保存後の残存容量が増加すること、さらに、168時間(1週間)高温保存後と336時間(2週間)高温保存後の残存容量の比較から、経時変化による非水系電解液二次電池の劣化が顕著に抑制されることが示された。すなわち、非水系電解液がFSOLiと所定の量の銅イオンを含むことにより、非水系電解液二次電池の高温環境下での充電保存特性が向上することが示された。
 電池の保存期間は、例えば車両メーカーであれば、通常200日程度である。1週間、2週間保存後の残存容量の差は、経時的に大きくなるため、保存期間が長期化すればするほど、本発明の効果が一層顕著になるといえる。
[実験D]
 以下、実施例及び参考例を挙げて本発明の1態様を更に具体的に説明するが、本発明は、その要旨を超えない限り、これらの実施例に限定されるものではない。
<実施例D1-1~D1-2、比較例D1-1~D1-5>
[Mn(PFを含むEC溶液の調製]
 アルゴングローブボックス中、50mLビーカーにMnCl 0.10g(0.8mmol)を秤量し、アセトニトリル(AN)に懸濁させた。これを撹拌しながら、AgPF 0.402g(1.6mmol)を細かく分けてゆっくりと加え、その後室温にて3時間撹拌した。反応進行とともにAgClの白色固体が生成した。そのまま一晩放置した後、AgClをろ別し、得られたろ液をロータリーエバポレータ―で減圧濃縮することで、[Mn(AN)](PF(n=0~6)の白色固体を得た。ここに、45℃で融解させたエチレンカーボネート(EC)5.0g(56.8mmol)を加えて固体を溶解させ、35℃で6時間真空引きすることで、配位溶媒であったANを除去し、Mn(PFを含むEC溶液を得た。
[正極の作製]
 実施例A1-1と同様の方法で正極を作製した。
[負極の作製]
 実施例A1-1と同様の方法で負極を作製した。
[非水系電解液の調製]
 乾燥アルゴン雰囲気下、Mn(PFを含むEC溶液を基に、混合溶媒中のマンガンイオン濃度が表10となるように、及び溶媒組成がエチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)の混合物の体積比が3:4:3となるように、EC、EMC、DMCで希釈し、十分に乾燥させたLiPFを1モル/L(非水系電解液中の濃度として)溶解させた。なお、Mn(PFを含まない非水系電解液を基準電解液D1と呼ぶ。上記で作成したMn(PF含有非水系電解液又は基準電解液D1に対して、FSOLiを加えて、下記表10に記載の非水系電解液を調製した。ただし、比較例D1-1は基準電解液D1そのものである。表中、FSOLiの含有量は添加量を示し、マンガン元素(マンガンイオン)の含有量は、後述する誘導結合高周波プラズマ発光分光分析(ICP-AES)の測定結果に基づき求めた値である。なお、表中の「含有量(質量%)」及び「含有量(質量ppm)」は、基準電解液D1を100質量%とした時の含有量である。
<非水系電解液中におけるマンガン元素の含有量の測定>
 非水系電解液100μL(約130mg)を分取した。分取した非水系電解液をPTFEビーカーに秤り取り、適切な量の濃硝酸を加えてホットプレート上で湿式分解した後に50mL定容し、誘導結合高周波プラズマ発光分光分析(ICP-AES、Thermo Fischer Scientific、iCAP 7600duo)を用いてLi及び酸濃度マッチング検量線法でマンガン元素の含有量を測定した。
[非水系電解液二次電池の製造]
 上記の非水系電解液を用いたこと以外は、実施例A1-1と同様に、ラミネート型の非水系電解液二次電池を作製した。
 <非水系電解液二次電池の評価>
[初期コンディショニング]
実施例A1-1と同様の方法で、初期コンディショニング及び充電保存試験を行った。実施例A1-1と同様の方法で残存容量を求めた。下記表10に、比較例D1-1の残存容量(1週間)を100とした際の残存容量(1週間)の値を示す。
下記表10に、比較例D1-1の残存容量(2週間)を100とした際の残存容量の値を示す。
Figure JPOXMLDOC01-appb-T000010
 比較例D1-1と比較例D1-2との比較から、非水系電解液がFSOLiを含むことにより、高温保存後の非水系電解液二次電池の残存容量が増加することが示された。一方、比較例D1-1~比較例D1-3から、非水系電解液がFSOLiを含んでいても、所定の量を超えるマンガンイオンを含むと、高温保存後の残存容量が低下することが示された。また、比較例D1-4から、非水系電解液がFSOLiを含まずにマンガンイオンを26質量ppm含む場合、60℃、168時間(1週間)高温保存後の残存容量はマンガンイオンを含まない場合と同じであったが、336時間(2週間)高温保存後の残存容量の比が低下していることから、マンガンイオンを含む非水系電解液二次電池の充電保存特性は経時変化により劣化する傾向がわかる。また、比較例D1-1と比較例D1-5との比較から、非水系電解液がFSOLiを含まずにマンガンイオンを7質量ppm含む場合は、60℃、168時間(1週間)高温保存後の残存容量は向上したが、336時間(2週間)の高温保存後には、マンガンイオンを含まない場合よりも残存容量が著しく低下することが示された。一方、実施例D1-1、D1-2から、非水系電解液がFSOLiを含む場合、比較例D1-4、D1-5と同様の量のマンガンイオンを含む場合であっても、FSOLiを単独で含む場合よりも高温保存後の残存容量が向上する効果が示された。すなわち、非水系電解液がFSOLi及び所定の量のマンガンイオンを含むことで、経時変化による非水系電解液二次電池の劣化が顕著に抑制され、非水系電解液二次電池の高温環境下での充電保存特性が向上することが示された。
<実施例D2-1~D2-3、比較例D2-1~D2-3>
[正極の作製]
 実施例D1-1と同様の方法で正極を作製した。
[負極の作製]
 実施例D1-1と同様の方法で負極を作製した。
[非水系電解液の調製]
 実施例D1-1等と同様に、Mn(PF含有非水系電解液又は基準電解液D1に対して、FSOLiを加えて、下記表11に記載の非水系電解液を調製した。
[非水系電解液二次電池の製造]
 上記の非水系電解液を用いたこと以外は、実施例D1-1と同様にラミネート型の非水系電解液二次電池を作製した。
<非水系電解液二次電池の評価>
 実施例D1-1と同様の方法で、初期コンディショニング及び充電保存試験を行った。実施例D1-1と同様の方法で残存容量を求めた。下記表11に、比較例D1-1の残存容量(1週間)を100とした際の、実施例D2-1~D2-3及び比較例D2-1~D2-3の残存容量(1週間)の値を、比較例D1-1及びD1-4の結果と併せて示す。
Figure JPOXMLDOC01-appb-T000011
 比較例D1-1と比較例D1-4との比較から、FSOLiを含まず、かつマンガンイオンを26質量ppm含む非水系電解液は60℃、168時間(1週間)高温保存後の残存容量はマンガンイオンを含まない非水系電解液と同等であることが示された。また、比較例D2-1から、非水系電解液がFSOLiを含む場合であっても、その含有量が少なすぎると、非水系電解液二次電池の残存容量が向上するどころか、低下することが示された。これらの結果から、実施例D2-1の非水系電解液二次電池は、比較例D1-4及び比較例D2-1より残存容量の低下が予測される。しかしながら、実施例D2-1は、比較例D1-4及び比較例D2-1より残存容量が向上し、さらには、比較例D1-1よりも残存容量が向上するという顕著な効果が示された。また、実施例D2-2と比較例D2-2との比較、並びに、実施例D2-3と比較例D2-3との比較からも、非水系電解液がFSOLiと所定の量のマンガンイオンを含むことにより、非水系電解液二次電池の高温保存後の残存容量が向上する、すなわち、非水系電解液二次電池の高温環境下での充電保存特性が向上するという顕著な効果が示された。
<実施例D3-1~D3-3、比較例D3-1~D3-6>
[正極の作製]
実施例A3-1と同様の方法で正極を作製した。
[負極の作製]
実施例A3-1と同様の方法で負極を作製した。
[非水系電解液の調液]
 実施例D1-1等と同様に、Mn(PF含有非水系電解液又は基準電解液D1に対して、FSOLiを加えて、下記表12に記載の非水系電解液を調製した。ただし、比較例D3-1は基準電解液D1そのものである。なお、表中の「含有量(質量%)」及び「含有量(質量ppm)」は、基準電解液D1を100質量%とした時の含有量である。
[非水系電解液二次電池の製造]
 上記の正極、負極及び非水系電解液を用いたこと以外は、実施例D1-1と同様にラミネート型の非水系電解液二次電池を作製した。
<非水系電解液二次電池の評価>
 実施例D1-1と同様の方法で、初期コンディショニング及び充電保存試験を行った。実施例D1-1と同様の方法で残存容量(1週間)および残存容量(2週間)を求めた。下記表12に、比較例D3-1の残存容量を100とした際の残存容量の値、及び比較例D3-1の残存容量(2週間)を100とした際の残存容量(2週間)の値を示す。
Figure JPOXMLDOC01-appb-T000012
 比較例D3-1と比較例D3-2との比較から、非水系電解液がFSOLiを含むことにより、高温保存後の非水系電解液二次電池の充電保存特性が向上することが示された。一方、比較例D3-1~D3-3、実施例D3-1~D3-3から、非水系電解液がFSOLiを含んでいても、所定の量を超えるマンガンイオンを含むと、高温保存後の非水系電解液二次電池残存容量が低下することが示された。また、比較例D3-1、比較例D3-4及びD3-5から、マンガンイオンを10質量ppm以上含む非水系電解液は168時間(1週間)高温保存後の非水系電解液二次電池の残存容量を低下させる一方、マンガンイオンを含まない場合よりも336時間(2週間)高温保存後の残存容量を向上させることがわかる。さらに、実施例D3-1~D3-3から、非水系電解液が所定の量のマンガンイオンを含みかつFSOLiを含むことにより、FSOLi又はマンガンイオンを単独で含む場合よりも168時間(1週間)高温保存後の残存容量が増加すること、さらに、168時間(1週間)高温保存後と336時間(2週間)高温保存後の残存容量の比の比較から、経時変化による非水系電解液二次電池の劣化が顕著に抑制され、非水系電解液二次電池の高温環境下での充電保存特性が向上することが示された。
 電池の保存期間は、例えば車両メーカーであれば、通常200日程度である。1週間、2週間保存後の残存容量の差は、経時的に大きくなるため、保存期間が長期化すればするほど、本発明の効果が一層顕著になるといえる。
[実験E]
 以下、実施例及び参考例を挙げて本発明の1態様を更に具体的に説明するが、本態様は、その要旨を超えない限り、これらの実施例に限定されるものではない。
<実施例E1-1~E1-7、比較例E1-1~E1-10>
[正極の作製]
実施例A3-1と同様の方法で正極を作製した。
[負極の作製]
 実施例A3-1と同様の方法で負極を作製した。
[非水系電解液の調製]
 乾燥アルゴン雰囲気下、トリス(2,4-ペンタンジオナト)アルミニウム(Al(acac))またはフルオロスルホン酸アルミニウム(Al(FSO)を、混合溶媒中のアルミニウムイオン濃度が表13となるように、並びに溶媒組成がエチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、及びジメチルカーボネート(DMC)の体積比が3:4:3となるように、EC、EMC、及びDMCに溶解し、十分に乾燥させたLiPFを1モル/L(12.3質量%、非水系電解液中の濃度として)溶解させた。Al(acac)およびAl(FSOのいずれも含まない非水系電解液を基準電解液E1と呼ぶ。上記で作製した非水系電解液又は基準電解液E1に対して、FSOLiを加えて、下記表13に記載の実施例E1-1~実施例E1-7の非水系電解液、比較例E1-2~比較例E1-3の非水系電解液を調製した。比較例E1-1は基準電解液E1そのものである。また、FSOLiを加えなかったものを、比較例E1-4~比較例E1-10の非水系電解液とした。表中、FSOLiの含有量は添加量を示し、アルミニウム元素(アルミニウムイオン)の含有量は、後述する誘導結合高周波プラズマ発光分光分析(ICP-AES)の測定結果に基づき求めた値である。なお、表中の「含有量(質量%)」及び「含有量(質量ppm)」は、基準電解液E1を100質量%とした時の含有量である。Al(FSOはPolyhedron、1983、Volume2、Issue11、Pages1209-1210に記載の方法に従って合成した。
<非水系電解液中におけるアルミニウム元素の含有量の測定>
 非水系電解液100μL(約130mg)を分取した。分取した非水系電解液をPTFEビーカーに秤り取り、適切な量の濃硝酸を加えてホットプレート上で湿式分解した後に50mL定容し、誘導結合高周波プラズマ発光分光分析(ICP-AES、Thermo Fischer Scientific、iCAP 7600duo)を用いてLi及び酸濃度マッチング検量線法でアルミニウム元素(アルミニウムイオン)の含有量を測定した。
[非水系電解液二次電池の製造]
 上記の非水系電解液を用いたこと以外は、実施例A1-1と同様に、ラミネート型の非水系電解液二次電池を作製した。
<非水系電解液二次電池の評価>
 実施例A1-1と同様の方法で、初期コンディショニング及び充電保存試験を行った。実施例A1-1と同様の方法で残存容量を求めた。下記表13に、比較例E1-1の残存容量(1週間)を100とした際の、実施例E1-1~実施例E1-7、比較例E1-1~比較例E1-10の残存容量(1週間)の値を示す。下記表13に、比較例E1-1の残存容量(2週間)を100とした際の、実施例E1-1~実施例E1-7、比較例E1-1~比較例E1-10の残存容量(2週間)の値を示す。
Figure JPOXMLDOC01-appb-T000013
 比較例E1-1と比較例E1-2との比較から、電解液がFSOLiを含むことにより、電池の残存容量が増加することが示された。一方、比較例E1-1~比較例E1-3から、電解液がFSOLiを含んでいても、特定の量を超えるアルミニウムイオンを含むと、残存容量が低下することが示された。実施例E1-1~実施例E1-7から、電解液がFSOLiを含む場合、比較例E1-4~比較例E1-10と同様の量のアルミニウムイオンを含む場合であっても、FSOLiを単独で含む場合(比較例E1-2)よりも残存容量が向上する効果が示された。さらに、2週間保存後の残存容量からも、電解液が特定の量のアルミニウムイオンを含みかつFSOLiを含むことにより、経時変化による非水系電解液電池の劣化が抑制される、すなわち、非水系電解液二次電池の高温環境下での充電保存特性が向上することが示された。実施例E1-1~実施例E1-7から、アルミニウムイオンのカウンターアニオンの種類に関わらず、非水系電解液がFSOLi及び特定の量のアルミニウムイオンを含むことで、非水系電解液二次電池の高温環境下での充電保存特性が向上することが示された。電池の保存期間は、例えば車両メーカーであれば、通常200日程度である。1週間、2週間保存後の残存容量の差は、経時的に大きくなるため、保存期間が長期化すればするほど、本発明の効果が一層顕著になるといえる。
<実施例E2-1~実施例E2-3、比較例E2-1~比較例E2-3>
[正極の作製]
 実施例E1-1と同様の方法で正極を作製した。
[負極の作製]
 実施例E1-1と同様の方法で負極を作製した。
[非水系電解液の調製]
 FSOLiの含有量を下記表14に記載の通りに変更した以外は、実施例E1-4と同様にして、実施例E2-1~実施例E2-3のAl(FSO含有非水系電解液を調製した。又、基準電解液E1に対して、下記表14に記載の通りFSOLiを加えて、比較例E2-1~比較例E2-3非水系電解液を調製した。
[非水系電解液二次電池の製造]
 上記の非水系電解液を用いたこと以外は、実施例E1-4と同様にラミネート型の非水系電解液二次電池を作製した。
<非水系電解液二次電池の評価>
 実施例E1-4と同様の方法で、初期コンディショニング及び充電保存試験を行った。実施例E1-4と同様の方法で残存容量(1週間)を求めた。下記表14に、比較例E1-1の残存容量(1週間)を100とした際の実施例E2-1~実施例E2-3及び比較例E2-1~比較例E2-3の残存容量(残存容量)の値を、比較例E1-1及び比較例E1-7の結果と併せて示す。
Figure JPOXMLDOC01-appb-T000014
 比較例E1-1と比較例E1-7との比較から、FSOLiを含まず、特定の量のアルミニウムイオンを含む電解液(比較例E1-7)はアルミニウムイオンを含まない電解液(比較例E1-1)より非水系電解液電池の残存容量を低下させることが示された。また、比較例E2-1及び比較例E2-2からは、電解液がFSOLiを含む場合であっても、その含有量が少なすぎると、電池の残存容量が向上するどころか、低下することが示された。これらの結果から、実施例E2-1の電池は、比較例E1-7及び比較例E2-1より残存容量の低下が予想される。しかしながら、実施例E2-1は、比較例E1-7及び比較例E2-1より残存容量が向上し、さらには、比較例E1-1よりも残存容量が向上するという顕著な効果が示された。また、実施例E2-2と比較例E2-2との比較、並びに、実施例E2-3と比較例E2-3との比較からも、非水系電解液がFSOLiと特定の量のアルミニウムイオンを含むことにより、非水系電解液二次電池の残存容量が向上する、すなわち、非水系電解液二次電池の高温環境下での充電保存特性が向上するという顕著な効果が示された。
[実験F]
 以下、実施例及び参考例を挙げて本発明の1態様を更に具体的に説明するが、本発明は、その要旨を超えない限り、これらの実施例に限定されるものではない。
<実施例F1-1~F1-17、比較例F1-1~F1-19>
[正極の作製]
 実施例A3-1と同様の方法で正極を作製した。
[負極の作製]
 実施例A3-1と同様の方法で負極を作製した。
[非水系電解液の調製]
 FSOLi及び金属イオンの含有量を下記表15に記載の通りに変更した以外は、実施例A3と同様にして実施例F1-1~実施例F1-17の金属イオン含有非水系電解液を調製した。基準電解液F1は基準電解液A1同様、EC:EMC:DMCの体積比が3:4:3の混合物にLiPFを1モル/L(非水系電解液中の濃度として)溶解させた電解液である。又、基準電解液F1に対して、下記表に記載の通りFSOLiを加えて、比較例F1-2の非水系電解液を調製した。また、特定の金属イオンは加え、FSOLiを加えなかったものを、比較例F1-3~比較例F1-19の非水系電解液とした。
[非水系電解液二次電池の製造]
 上記の非水系電解液を用いたこと以外は、実施例A3-1と同様にラミネート型の非水系電解液二次電池を作製した。
<非水系電解液二次電池の評価>
 実施例A3-1と同様の方法で、初期コンディショニング及び充電保存試験を行った。実施例A3-1と同様の方法で残存容量(1週間)を求めた。下記表に、比較例F1-1の残存容量(1週間)を100とした際の実施例F1-1~実施例F1-17及び比較例F1-1~比較例F1-19の残存容量(残存容量)の値を示す。
下記表に、比較例F1-1の残存容量(2週間)を100とした際の、実施例F1-1~実施例F1-17、比較例F1-1~比較例F1-19の残存容量(2週間)の値を示す。
Figure JPOXMLDOC01-appb-T000015
 比較例F1-3~比較例F1-19は特定の金属イオンを含み、FSOLiは含まない電解液を用いた。比較例F1-3、比較例F1-5、比較例F1-7、比較例F1-8、比較例F1-12、比較例F1-14、及び比較例F1-16は、特定の金属イオンもFSOLiも含まない比較例F1-1よりも電池の残存容量が低下する傾向を示した。また、比較例F1-4、比較例F1-9、比較例F1-10、比較例F1-15は1週間後の残存容量は比較例F1-1と同等であったが、2週間後の残存容量は低下した。比較例F1-6、比較例F1-11、比較例F1-13、比較例F1-17、比較例F1-18、及び比較例F1-19は比較例F1-1に比べ1週間後の残存容量は増加していたが、2週間後の残存容量は比較例F1-1より劣るものもあった。これらの結果から、特定の金属イオンを複数種含む非水系電解液を用いても、電池の残存容量が改善されるとは限らず、経時変化により劣化する場合のほうが多いことがわかる。
 一方、実施例F1-1~実施例F1-17から、電解液が特定の金属イオン及びFSOLiの両方を含む場合、比較例F1-3~比較例F1-19と同様の量の金属イオンを含む場合であっても、FSOLiを単独で含む場合(比較例F1-2)よりも残存容量が向上する効果が示された。さらに、2週間保存後の残存容量からも、電解液が特定の量の金属イオンを含みかつFSOLiを含むことにより、経時変化による非水系電解液電池の劣化が抑制される、すなわち、非水系電解液二次電池の高温環境下での充電保存特性が向上することが示された。電池の保存期間は、例えば車両メーカーであれば、通常200日程度である。1週間、2週間保存後の残存容量の差は、経時的に大きくなるため、保存期間が長期化すればするほど、本発明の効果が一層顕著になるといえる。
 本出願は、2019年6月4日出願の日本特許出願(特願2019-104306)、2019年6月26日出願の日本特許出願(特願2019-118148)、2019年6月26日出願の日本特許出願(特願2019-118074)、2019年6月26日出願の日本特許出願(特願2019-118145)及び2020年4月15日出願の日本特許出願(特願2020-073075)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によれば、高温環境下で優れた充電保存特性を有する非水系電解液電池を実現でき、有用である。
 また、本発明の非水系電解液及び非水系電解液電池は、非水系電解液又は非水系電解液電池を用いる公知の各種用途に用いることが可能である。具体例としては、例えば、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、バイク、原動機付自転車、自転車、照明器具、玩具、ゲーム機器、時計、電動工具、ストロボ、カメラ、家庭用バックアップ電源、事業所用バックアップ電源、負荷平準化用電源、自然エネルギー貯蔵電源、リチウムイオンキャパシタ等が挙げられる。
 

Claims (9)

  1. (1a)FSOLiを含み、
    (1b)ニッケルイオン(a)、コバルトイオン(b)、銅イオン(c)、マンガンイオン(d)及びアルミニウムイオン(e)からなる群より選ばれる少なくとも1種の金属イオンを含み、かつ
    (1c)以下の条件(i)~(v)の少なくとも一つを満たす非水系電解液。
      (i)   前記(a)の濃度が1質量ppm以上500質量ppm以下
      (ii)  前記(b)の濃度が1質量ppm以上500質量ppm以下
      (iii) 前記(c)の濃度が1質量ppm以上500質量ppm以下
      (iv)  前記(d)の濃度が1質量ppm以上100質量ppm以下
      (v)   前記(e)の濃度が1質量ppm以上100質量ppm以下
  2. 少なくともニッケルイオン(a)を含む、請求項1に記載の非水系電解液。
  3. 金属イオン(a)~(e)の全量に対してニッケルイオンを40質量%以上含む、請求項2に記載の非水系電解液。
  4. 前記(a)~(e)の合計の濃度が1質量ppm以上120質量ppm以下である、請求項3に記載の非水系電解液。
  5. FSOLiの含有量が0.001質量%以上10.0質量%以下である、請求項1~4のいずれか1項に記載の非水系電解液。
  6. 金属イオンを吸蔵及び放出可能な正極並びに負極と、非水系電解液とを備える非水系電解液電池であって、該非水系電解液が
    (1a)FSOLiを含み、
    (1b)ニッケルイオン(a)、コバルトイオン(b)、銅イオン(c)、マンガンイオン(d)及びアルミニウムイオン(e)からなる群より選ばれる少なくとも1種の金属イオンを含み、かつ
    (1c)以下の条件(i)~(v)の少なくとも一つを満たす非水系電解液である、非水系電解液電池。
      (i)   前記(a)の濃度が1質量ppm以上500質量ppm以下
      (ii)  前記(b)の濃度が1質量ppm以上500質量ppm以下
      (iii) 前記(c)の濃度が1質量ppm以上500質量ppm以下
      (iv)  前記(d)の濃度が1質量ppm以上100質量ppm以下
      (v)   前記(e)の濃度が1質量ppm以上100質量ppm以下
  7. 前記正極は集電体及び該集電体上に設けられた正極活物質層を有し、該正極活物質が、下記組成式(1)で表される金属酸化物である、請求項6に記載の非水系電解液電池。
     Lia1Nib1Coc1d1・・・(1)
    (上記式(1)中、a1、b1、c1及びd1は、0.90≦a1≦1.10、0<b1<0.4、b1+c1+d1=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
  8. 前記正極は集電体及び該集電体上に設けられた正極活物質層を有し、該正極活物質が、下記組成式(2)で表される金属酸化物である、請求項7に記載の非水系電解液電池。
     Lia2Nib2Coc2d2・・・(2)
    (上記式(2)中、a2、b2、c2及びd2は、0.90≦a2≦1.10、0.4≦b2<1.0、b2+c2+d2=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
  9. 前記正極がNMC正極であり、該NMC正極中、ニッケル元素の含有量が40モル%以上である、請求項6~8のいずれか1項に記載の非水系電解液電池。
PCT/JP2020/022088 2019-06-04 2020-06-04 非水系電解液及び非水系電解液電池 WO2020246540A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080041062.0A CN113906604B (zh) 2019-06-04 2020-06-04 非水电解液及非水电解质电池
KR1020217039322A KR20220002636A (ko) 2019-06-04 2020-06-04 비수계 전해액 및 비수계 전해액 전지
EP20818861.5A EP3982445A4 (en) 2019-06-04 2020-06-04 NON-AQUEOUS ELECTROLYTE AND NON-AQUEOUS ELECTROLYTE BATTERY
JP2021524899A JPWO2020246540A1 (ja) 2019-06-04 2020-06-04
US17/457,102 US20220093973A1 (en) 2019-06-04 2021-12-01 Non-aqueous electrolyte and non-aqueous electrolyte battery

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2019104306 2019-06-04
JP2019-104306 2019-06-04
JP2019118148 2019-06-26
JP2019-118145 2019-06-26
JP2019-118074 2019-06-26
JP2019-118148 2019-06-26
JP2019118145 2019-06-26
JP2019118074 2019-06-26
JP2020073075 2020-04-15
JP2020-073075 2020-04-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/457,102 Continuation US20220093973A1 (en) 2019-06-04 2021-12-01 Non-aqueous electrolyte and non-aqueous electrolyte battery

Publications (1)

Publication Number Publication Date
WO2020246540A1 true WO2020246540A1 (ja) 2020-12-10

Family

ID=73653266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022088 WO2020246540A1 (ja) 2019-06-04 2020-06-04 非水系電解液及び非水系電解液電池

Country Status (6)

Country Link
US (1) US20220093973A1 (ja)
EP (1) EP3982445A4 (ja)
JP (1) JPWO2020246540A1 (ja)
KR (1) KR20220002636A (ja)
CN (1) CN113906604B (ja)
WO (1) WO2020246540A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023123413A1 (zh) * 2021-12-31 2023-07-06 宁德时代新能源科技股份有限公司 电解液、二次电池和用电装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023236029A1 (zh) * 2022-06-07 2023-12-14 宁德时代新能源科技股份有限公司 非水电解液、其制备方法、以及包含其的二次电池及用电装置
WO2023236031A1 (zh) * 2022-06-07 2023-12-14 宁德时代新能源科技股份有限公司 非水电解液、其制备方法、以及包含其的二次电池及用电装置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346900A (ja) * 2002-05-30 2003-12-05 Japan Storage Battery Co Ltd 電 池
JP2008269978A (ja) * 2007-04-20 2008-11-06 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
WO2011099585A1 (ja) 2010-02-12 2011-08-18 三菱化学株式会社 非水系電解液及び非水系電解液二次電池
WO2013168821A1 (ja) 2012-05-11 2013-11-14 宇部興産株式会社 非水電解液、及びそれを用いた蓄電デバイス
JP2013239426A (ja) * 2011-11-11 2013-11-28 Mitsubishi Chemicals Corp 非水系電解液二次電池、および非水系電解液
JP2014127313A (ja) 2012-12-26 2014-07-07 Toyota Motor Corp 非水電解液二次電池および該電池の製造方法
JP2015037012A (ja) 2013-08-12 2015-02-23 トヨタ自動車株式会社 リチウムイオン二次電池
WO2019031508A1 (ja) * 2017-08-10 2019-02-14 三菱ケミカル株式会社 非水系電解液二次電池
JP2019040721A (ja) * 2017-08-24 2019-03-14 トヨタ自動車株式会社 リチウムイオン二次電池
WO2019093159A1 (ja) * 2017-11-09 2019-05-16 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP2019104306A (ja) 2017-12-11 2019-06-27 株式会社日立システムズ 交通運用情報統合管理システム、交通運用情報統合管理方法
JP2019118074A (ja) 2017-12-27 2019-07-18 株式会社東芝 無線通信装置とその運用切替方法
JP2019118148A (ja) 2019-04-11 2019-07-18 Kddi株式会社 情報提供装置、及び情報提供方法
JP2019118145A (ja) 2013-11-22 2019-07-18 クゥアルコム・インコーポレイテッドQualcomm Incorporated セル特性に基づいたプロビジョニング構成情報のための技法
JP2020073075A (ja) 2020-02-05 2020-05-14 株式会社三洋物産 遊技機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5987431B2 (ja) * 2011-04-13 2016-09-07 三菱化学株式会社 フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池
JP6031856B2 (ja) * 2011-07-12 2016-11-24 三菱化学株式会社 非水系電解液二次電池
JP2017045722A (ja) * 2015-08-28 2017-03-02 三井化学株式会社 電池用非水電解液及びリチウム二次電池

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346900A (ja) * 2002-05-30 2003-12-05 Japan Storage Battery Co Ltd 電 池
JP2008269978A (ja) * 2007-04-20 2008-11-06 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
WO2011099585A1 (ja) 2010-02-12 2011-08-18 三菱化学株式会社 非水系電解液及び非水系電解液二次電池
JP2013239426A (ja) * 2011-11-11 2013-11-28 Mitsubishi Chemicals Corp 非水系電解液二次電池、および非水系電解液
WO2013168821A1 (ja) 2012-05-11 2013-11-14 宇部興産株式会社 非水電解液、及びそれを用いた蓄電デバイス
JP2014127313A (ja) 2012-12-26 2014-07-07 Toyota Motor Corp 非水電解液二次電池および該電池の製造方法
JP2015037012A (ja) 2013-08-12 2015-02-23 トヨタ自動車株式会社 リチウムイオン二次電池
JP2019118145A (ja) 2013-11-22 2019-07-18 クゥアルコム・インコーポレイテッドQualcomm Incorporated セル特性に基づいたプロビジョニング構成情報のための技法
WO2019031508A1 (ja) * 2017-08-10 2019-02-14 三菱ケミカル株式会社 非水系電解液二次電池
JP2019040721A (ja) * 2017-08-24 2019-03-14 トヨタ自動車株式会社 リチウムイオン二次電池
WO2019093159A1 (ja) * 2017-11-09 2019-05-16 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP2019104306A (ja) 2017-12-11 2019-06-27 株式会社日立システムズ 交通運用情報統合管理システム、交通運用情報統合管理方法
JP2019118074A (ja) 2017-12-27 2019-07-18 株式会社東芝 無線通信装置とその運用切替方法
JP2019118148A (ja) 2019-04-11 2019-07-18 Kddi株式会社 情報提供装置、及び情報提供方法
JP2020073075A (ja) 2020-02-05 2020-05-14 株式会社三洋物産 遊技機

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
POLYHEDRON, vol. 2, 1983, pages 209 - 210
See also references of EP3982445A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023123413A1 (zh) * 2021-12-31 2023-07-06 宁德时代新能源科技股份有限公司 电解液、二次电池和用电装置

Also Published As

Publication number Publication date
EP3982445A1 (en) 2022-04-13
CN113906604A (zh) 2022-01-07
CN113906604B (zh) 2024-02-23
US20220093973A1 (en) 2022-03-24
JPWO2020246540A1 (ja) 2020-12-10
KR20220002636A (ko) 2022-01-06
EP3982445A4 (en) 2022-07-20

Similar Documents

Publication Publication Date Title
Andre et al. Future high-energy density anode materials from an automotive application perspective
JP2020181834A (ja) フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池
CN117790904A (zh) 非水系电解液、非水系电解液二次电池及能源装置
JP5992345B2 (ja) 非水二次電池および非水二次電池用電解液
KR102334080B1 (ko) 이차 전지용 정극 활물질, 이차 전지용 정극, 이차 전지, 전지 팩, 전동 차량, 전력 저장 시스템, 전동 공구 및 전자 기기
KR102522751B1 (ko) 비수계 전해액 및 비수계 전해액 전지
WO2020246540A1 (ja) 非水系電解液及び非水系電解液電池
JP6071600B2 (ja) 非水二次電池用電解液および非水二次電池、電解液用添加剤
JP6971740B2 (ja) 非水系電解液及びそれを用いた蓄電デバイス
JP7078482B2 (ja) 非水系電解液及び非水系電解液二次電池
JP6588965B2 (ja) 電解液および非水二次電池
JP5633400B2 (ja) 非水系電解液、それを用いた電池
JP7342028B2 (ja) 非水系電解液及び非水系電解液電池
KR20220090461A (ko) 리튬 이차전지용 양극의 제조 방법 및 이에 의하여 제조된 리튬 이차전지용 양극
JP2024501001A (ja) リチウム二次電池用電解液およびこれを含むリチウム二次電池
JP7398326B2 (ja) 非水系電解液及び非水系電解液電池
JP2019096629A (ja) 非水系電解液及びそれを用いた非水系電解液電池
WO2021153733A1 (ja) 非水系電解液二次電池及びその製造方法
JP2021122006A (ja) 非水系電解液及び非水系電解液電池
JP2021119560A (ja) 非水系電解液及び非水系電解液二次電池
KR20230007357A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217039322

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021524899

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020818861

Country of ref document: EP

Effective date: 20220104