JP2014127313A - 非水電解液二次電池および該電池の製造方法 - Google Patents

非水電解液二次電池および該電池の製造方法 Download PDF

Info

Publication number
JP2014127313A
JP2014127313A JP2012282333A JP2012282333A JP2014127313A JP 2014127313 A JP2014127313 A JP 2014127313A JP 2012282333 A JP2012282333 A JP 2012282333A JP 2012282333 A JP2012282333 A JP 2012282333A JP 2014127313 A JP2014127313 A JP 2014127313A
Authority
JP
Japan
Prior art keywords
negative electrode
graphite material
aqueous electrolyte
secondary battery
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012282333A
Other languages
English (en)
Other versions
JP5984014B2 (ja
Inventor
Toshihiko Mihashi
利彦 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012282333A priority Critical patent/JP5984014B2/ja
Publication of JP2014127313A publication Critical patent/JP2014127313A/ja
Application granted granted Critical
Publication of JP5984014B2 publication Critical patent/JP5984014B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】負極活物質(黒鉛材料)の表面に安定な被膜が形成され、より高い電池性能を発揮し得る非水電解液二次電池を提供すること。
【解決手段】本発明により、正極と負極とを含む電極体と、非水電解液とを備える非水電解液二次電池(例えばリチウムイオン二次電池)が提供される。上記負極は、黒鉛材料を主体とする負極活物質層を備えている。そして、上記黒鉛材料の酸性官能基の量は1μeq/m以上であり、且つ、該黒鉛材料の表面には硫黄(S)原子と電荷担体とを含む被膜が形成されている。好ましい一態様では、上記硫黄原子と電荷担体とを含む被膜は実質的に含硫黄被膜形成剤として上記非水電解液中に含ませたフッ素含有スルホン酸化合物(例えばFSOLi)に由来する。
【選択図】図1

Description

本発明は、非水電解液二次電池に関する。詳しくは、負極の表面に硫黄(S)原子と電荷担体とを含む被膜を備えた非水電解液二次電池、および該電池を製造する方法に関する。
リチウムイオン二次電池、ニッケル水素電池等の非水電解液二次電池は、近年、パソコンや携帯端末等のいわゆるポータブル電源や車両駆動用電源として用いられている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、電気自動車、ハイブリッド自動車等の車両の駆動用高出力電源として好ましく用いられている。
ところで、非水電解液二次電池では、初期充電の際に非水電解液の一部が分解され、負極活物質の表面に、その分解物からなる被膜が形成され得る。この被膜によって以後の充放電に伴う非水電解液の分解が抑制されるため、電池の耐久性を向上させることができる。例えば特許文献1には、負極活物質として黒鉛を用い、且つ非水電解液中にヘキサフルオロリン酸リチウム(LiPF)とモノフルオロスルホン酸リチウム(FSOLi)とを含んだ非水電解液二次電池が開示されている。
特開2012−109240号公報 特開2011−076897号公報
本発明者によれば、上記被膜の形成過程には、負極活物質の表面に存在する酸性官能基が関係している。すなわち、負極活物質の表面(例えば炭素材料のエッジ面)には、ヒドロキシル基(OH基)やカルボキシル基(COOH基)のような酸素原子を含む官能基(酸性官能基)が僅かに存在し得る。かかる酸性官能基は、電池の充電に伴って負極の電位が低下するといわゆる求核剤のように働き、非水電解液の構成成分と好適に反応し得る。例えば、上記FSOLiは、フッ化物イオンが脱離した形態(SOLiの形態)で負極活物質表面に結合し、安定性や耐久性に優れた被膜を形成し得る。
しかしながら、例えば特許文献1に記載されるような一般的な黒鉛は、他の炭素材料等に比べて酸性官能基の量が相対的に少ない。このため、かかる黒鉛を負極活物質として用いた場合、黒鉛表面の被膜形成が不十分となって電池の耐久性が低下したり、或いは被膜形成に伴って反応抵抗が増大したりすることがあり得る。
そこで、本発明者は、黒鉛材料表面の酸性官能基量を増大させることを考えた。そして、種々検討を重ねた結果、上記課題を解決し得る手段を見出し、本発明を完成させた。
本発明により、正極と負極とを含む電極体と、非水電解液とを備えた非水電解液二次電池(例えばリチウムイオン二次電池)が提供される。上記負極は、黒鉛材料を主体とする負極活物質層を備えている。ここで、上記黒鉛材料の酸性官能基(例えばヒドロキシル基)の量は1μeq/m以上であり、且つ、該黒鉛材料の表面には硫黄(S)原子と電荷担体とを含む被膜が形成されている。
上記酸性官能基の量を満たす黒鉛材料の表面には、従来に比べて多くの酸性官能基が存在している。このため、かかる酸性官能基との反応を起点として、該黒鉛材料の表面に緻密な被膜が形成され得る。これにより負極(黒鉛材料)と非水電解液との界面がより安定化され、電池の耐久性や信頼性が一層高まり得る。また、従来に比べて多くの電荷担体(例えば、リチウムイオン二次電池ではリチウムイオン、ナトリウムイオン二次電池ではナトリウムイオン)を被膜中に含むことで、被膜形成に伴う抵抗の増大を抑制することができる。加えて、硫黄原子を含む被膜は熱的安定性にも優れるため、例えば高温環境下においても高い耐久性(例えば、高温保存特性や高温充放電サイクル特性)を実現し得る。したがって、上記構成によれば、従来に比べて耐久性や信頼性に優れ、且つ抵抗が低減された非水電解液二次電池を実現し得る。
なお、特許文献2には、表面官能基量が9.9meq/kg(0.12μeq/m)の高官能基量黒鉛と、表面官能基量が0.6meq/kg(0.0075μeq/m)の低官能基量黒鉛とを混合した負極活物質を用いることが記載されている。このように、一般的な黒鉛では、多くとも0.1μeq/m程度の官能基しか有しておらず、すなわちここで開示されるような酸性官能基量の黒鉛材料を得るためには、一般的な黒鉛材料に何らかの特別な処理を施すことが必要である。
上記酸性官能基の定量は、従来公知の滴定法によって行うことができる。具体的には、予め110℃で真空乾燥させた測定試料(黒鉛材料)を10g秤量し、これを100mLのエルレンマイヤーフラスコに入れ、0.002mol/Lのアルカリ性水溶液(例えばナトリウムエトキシド水溶液)を50ml加える。そして、常温(25℃)で48時間振とうした後、測定試料を濾別し、濾液から20mLを採取して0.002mol/Lの酸性水溶液(例えば塩酸水溶液)で逆滴定することで、酸性官能基の量を求め得る。なお、ここで開示される非水電解液二次電池では、充電処理(典型的には初回充電処理)によって負極(黒鉛材料)の表面に硫黄原子と電荷担体とを含む被膜が形成される。したがって、本発明において黒鉛材料の酸性官能基の量とは、負極活物質層形成用材料としての黒鉛の酸性官能基量であり得、或いは電池構築時における黒鉛の酸性官能基量であり得、さらには充電処理後の電池における黒鉛の酸性官能基量であり得る。
また、本明細書において「非水電解液二次電池」とは、常温(例えば25℃)において液状を呈する非水電解液(典型的には、非水溶媒中に支持塩を含む電解液)を備えた電池をいう。
ここで開示される好適な一態様では、上記硫黄原子と電荷担体とを含む被膜は、実質的に含硫黄被膜形成剤として上記非水電解液中に含ませたフッ素含有スルホン酸化合物(典型的にはモノフルオロスルホン酸イオンを含むモノフルオロスルホン酸塩、例えばモノフルオロスルホン酸リチウム(FSOLi))に由来する化合物から形成されるものである。フルオロスルホン酸塩由来の被膜は、緻密で熱安定性にも優れる良質なものであり得る。このため、非水電解液との界面をより安定化し得、一層優れた電池性能を実現し得る。例えば、高温環境下であっても、長期に渡って優れた入出力特性を発揮し得る非水電解液二次電池を実現し得る。
なお、ここで「実質的に」とは、上記硫黄原子と電荷担体とを含む被膜の主たる構成について用いられている表現であり、典型的には上記硫黄原子を含む被膜の80mol%以上(好ましくは85mol%以上、より好ましくは90mol%以上)がフッ素含有スルホン酸化合物(典型的にはモノフルオロスルホン酸塩、例えばモノフルオロスルホン酸リチウム)由来であることを示す用語である。換言すれば、上記被膜には、フッ素含有スルホン酸化合物に由来する化合物以外に、例えば、非水電解液を構成する他の成分(例えば支持塩や非水溶媒)の分解生成物等が混入することを許容し得る。
ここで開示される好適な一態様では、上記黒鉛材料のレーザー回折・光散乱法に基づく平均粒径が1μm〜30μm(典型的には10μm〜25μm)であり、BET法に基づく比表面積が0.5m/g〜10m/g(典型的には1m/g〜5m/g)である。このような性状の黒鉛材料は、一般に酸性官能基の量が低減されたものであり得る。そのため、該黒鉛材料の表面には緻密な被膜が形成され難く、非水電解液(例えばカーボネート系の非水溶媒)を分解して電池の耐久性を低下させる虞がある。また、酸性官能基量が低減された黒鉛材料の表面に形成される被膜は、高抵抗なものとなりがちである。しかしながら、ここで開示される発明によれば、該黒鉛材料の表面に緻密で耐久性に優れ、且つ抵抗が抑制された被膜を形成し得る。したがって、本発明の効果をより顕著に発揮し得る。
また、本発明によると、正極と負極とを含む電極体と、非水電解液とを備える非水電解液二次電池を製造する方法が提供される。かかる製造方法は、以下の工程:
(1)黒鉛材料の表面に酸素官能基を付与すること;
(2)上記酸素官能基を付与した黒鉛材料を用いて負極を作製すること;
(3)上記負極を用いて電極体を作製し、電池ケース内に収容すること;
(4)上記電池ケース内に、含硫黄被膜形成剤としてのフッ素含有スルホン酸化合物を含む非水電解液を注入すること;
(5)上記電極体を充電処理して、上記黒鉛材料の表面に、上記フッ素含有スルホン酸化合物由来の硫黄(S)原子と電荷担体とを含む被膜を形成すること;
を包含する。
このような製造方法によれば、含硫黄被膜形成剤としてのフッ素含有スルホン酸化合物が分解され、黒鉛材料の表面に低抵抗且つ良質な(例えば熱安定性の高い)被膜が好適に形成され得る。したがって、耐久性と入出力特性とを高いレベルで両立可能な非水電解液二次電池を好適に製造することができる。
フッ素含有スルホン酸化合物としては、モノフルオロスルホン酸塩(典型的にはモノフルオロスルホン酸リチウム)を好適に用いることができる。また、非水電解液中のフッ素含有スルホン酸化合物の濃度は、典型的には0.1重量%〜0.5重量%であり、例えば0.125重量%〜0.5重量%とすることができる。かかる非水電解液によれば、負極活物質の表面に緻密且つ低抵抗な被膜を好適に形成し得る。このため、本願発明の効果をより一層高いレベルで発揮することができる。
黒鉛材料としては、例えばレーザー回折・光散乱法に基づく平均粒径が1μm〜30μm(典型的には10μm〜25μm)のものを好適に用いることができる。また、BET法に基づく比表面積が0.5m/g〜10m/g(典型的には1m/g〜5m/g)のものを好適に用いることができる。
上記酸素官能基の付与は、例えば上記黒鉛材料を酸性水溶液中に浸漬させて所定の温度で保持することにより好適に行い得る。上記酸性溶液の調製には、例えば硝酸を用いることができる。また、該水溶液中の硝酸の濃度は3mol/L〜5mol/Lに調製することが好ましい。また、上記酸性水溶液の温度は、50℃〜150℃に保持することが好ましい。かかる態様によれば、最適な量の酸性官能基を、より安定的に形成することができる。また、上記酸素官能基の付与を簡便且つ比較的短時間で行い得るため、作業性やコストの観点からも好ましい。
ここで開示される非水電解液二次電池(例えばリチウムイオン二次電池)は、反応抵抗が低く、且つ耐久性に優れたものであり得る。例えば、入出力特性に優れ、且つ高温環境下において充放電を繰り返しても容量低下の少ないものとなり得る。したがって、かかる特徴を活かして、例えばハイブリッド車両や電気車両の動力源(駆動電源)として好適に利用し得る。
一実施形態に係る黒鉛材料の表面状態を示す模式図であり、(A)は一般的な黒鉛材料の表面状態を、(B)は酸性官能基を付与した後の黒鉛材料の表面状態を、(C)は酸性官能基を付与した黒鉛材料を負極に備える電池を充電処理した後の該黒鉛材料の表面状態を、それぞれ示している。 一実施形態に係る非水電解液二次電池の外形を模式的に示す斜視図である。 図2のIII−III線断面図である。 図3の捲回電極体の構成を示す模式図である。 硝酸水溶液の濃度と、酸性官能基の量との関係を示すグラフである。 酸性官能基の量と、反応抵抗との関係を示すグラフである。 モノフルオロスルホン酸リチウムの添加割合と反応抵抗との関係を示すグラフである。
以下、適宜図面を参照しながら、本発明による実施の形態を説明する。以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。なお、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。なお、非水電解液二次電池の一形態として、リチウムイオン二次電池を例に説明する場合があるが、本発明の適用対象をかかる形態に限定する意図ではない。
ここで開示される非水電解液二次電池は、正極と負極とを含む電極体と、非水電解液とを備えている。上記負極は、少なくとも黒鉛材料を含む負極活物質層を備えており、該黒鉛材料の表面には、硫黄(S)原子と電荷担体(例えばLi)とを含む被膜(実質的にはフッ素含有スルホン酸化合物に由来する被膜、例えばモノフルオロスルホン酸塩に由来する被膜)が形成されている。
≪非水電解液二次電池の製造≫
上述のような負極を有する非水電解液二次電池は、例えば、以下の工程:
(S10;付与工程)黒鉛材料の表面に酸素官能基を付与すること;
(S20;負極の作製工程)上記酸素官能基を付与した黒鉛材料を用いて負極を作製すること;
(S30;収容工程)上記負極を用いて電極体を作製し、電池ケース内に収容すること;
(S40;注入工程)上記電池ケース内に、含硫黄被膜形成剤としてのフッ素含有スルホン酸化合物を含む非水電解液を注入すること;
(S50;充電処理工程)上記電極体を充電処理して、上記黒鉛材料の表面に、上記フッ素含有スルホン酸化合物由来の硫黄(S)原子と電荷担体とを含む被膜を形成すること; を包含する製造方法によって製造することができる。なお、(S10)は、負極活物質を作製する方法としても把握し得る。また、(S10)および(S20)は、負極を作製する方法としても把握し得る。以下、各工程について順に説明する。
≪S10;付与工程≫
ここでは先ず、黒鉛系の炭素材料(黒鉛材料)を準備する。
黒鉛材料としては、例えば天然黒鉛(石墨)、人造黒鉛、あるいは上記黒鉛に粉砕やプレス等の加工処理を施したもの等を用いることができる。より具体的には、鱗片状黒鉛や塊状黒鉛等の鱗状黒鉛、土状黒鉛、膨張黒鉛、熱分解黒鉛等が例示される。黒鉛材料は、還元電位(vs.Li/Li)が凡そ0.5V以下、より好ましくは0.2V以下(例えば0.1V以下)の低電位となり得るため、負極活物質として用いることで高いエネルギー密度の電池を実現し得る。
黒鉛材料の性状は特に限定されないが、通常、平均粒径が1μm〜30μm(典型的には10μm〜25μm、例えば17μm〜23μm)程度の粒子状であり得る。また、比表面積は、通常、0.1m/g〜20m/g程度(典型的には0.5m/g〜10m/g、例えば1m/g〜5m/g)のものを好ましく使用し得る。また、タップ密度は、通常、0.1g/cm〜1.5g/cm程度(典型的には0.5g/cm〜1.3g/cm、例えば0.7g/cm〜1.2g/cm)のものを好ましく使用し得る。上記性状の黒鉛材料を負極活物質として用いることで、緻密で導電性の高い負極活物質層を作製し得、高いエネルギー密度を実現し得る。また負極活物質層内に適度な空隙を保持することができるため、非水電解液が浸漬し易く、高い電池性能(例えばエネルギー密度や入出力密度)を実現し得る。さらに、ここで開示される技術によれば非水電解液との反応性を好適に抑制し得るため、高い耐久性をも実現し得る。
なお、本明細書中において「平均粒径」とは、一般的な粒度分布測定装置(例えば、株式会社堀場製作所製の型式「LA−920」)を用いて、レーザー回折・光散乱法により測定した体積基準の粒度分布において、微粒子側からの累積50%に相当する粒径(すなわち50%体積平均粒子径。メジアン径ともいう。)をいう。また、本明細書中において「比表面積」とは、一般的な比表面積測定装置(例えば日本ベル株式会社製の「BELSORP(商標)−18PLUS」)を用いて、窒素ガスを用いたBET法(例えば、BET1点法)により測定された表面積をいう。また、本明細書中において「タップ密度」とは、一般的なタッピング式の密度測定装置(例えば、筒井理化学器械社製の型式「TPM−3」)を用いて、JIS K1469に規定される方法により測定した密度をいう。
黒鉛材料は、炭素原子の六角網面構造がより発達していることが好ましい。かかる発達度合い(炭素六角網面構造の配向性)は、黒鉛化度として把握し得る。黒鉛化度は、例えばX線回折法によって測定される平均格子面間隔d(002)として表すことができる。ここで開示される技術では、通常、平均格子面間隔d(002)が0.335nm以上(好ましくは0.336nm以上)であって、0.355nm以下(好ましくは0.339nm以下)のものを好ましく使用し得る。上記を満たすには黒鉛材料は、配向性に優れ、高い電池容量を実現し得る。また、ここで開示される技術によれば非水電解液との反応性を好適に抑制し得るため、高い耐久性をも実現し得る。なお、酸性官能基の量を増やすために、例えば非晶質(アモルファス)な炭素材料を用いて黒鉛材料の表面をコート(被覆)した場合は、黒鉛化度が低下傾向となり得る。したがって、かかる分析によれば、非晶質材料で被覆された黒鉛材料と、本発明にかかる黒鉛材料とを好適に区別し得る。
上記X線回折法による測定は、CuKα線を用いたX線回折装置(XRD:X-ray
diffraction)を用いて行うことができる。XRD測定では、試料(ここでは、黒鉛粒子を試料ボードに詰めたもの)に対する入射角度をステップ的または連続的に変化させながらX線を照射し、試料によって回折されたX線を検査器で捉える。そして、X線の回折方向と入射方向の角度差(回折角2θ)と、回折X線強度を測定する。かかる測定は、種々の測定装置メーカーから市販されているX線回折測定装置を用いて行うことができる。例えば、株式会社リガク製のX線回折装置、型式「Ultima IV」を用いて下記条件にて行うことができる。
ターゲット:Cu(Kα線)黒鉛モノクロメーター
スリット:発散スリット=1°、受光スリット=0.1mm、散乱スリット=1°
上記黒鉛化度はまた、例えばレーザーラマン分光法によっても把握し得る。ここで開示される技術では、通常、レーザーラマン分光法に基づくR値(I/I)が0.2〜0.7程度(典型的には0.3〜0.6程度、例えば0.4〜0.6程度)のものを好ましく使用し得る。なお、本明細書中において「R値」とは、アルゴンレーザーを使用したラマン分光器(例えば、日本分光社製の型式「NRS−5000」)を用いて、一般的なレーザーラマン分光法によって得られたラマンスペクトルにおいて、1360cm−1付近のラマンバンド(Dピーク)の強度Iと1580cm−1付近のラマンバンド(Gピーク)強度Iとの比(I/I)をいう。
上述のような黒鉛化度の高い黒鉛粒子は、典型的には形状異方性を有しており、例えば鱗片状、平板状等の形状であり得る。或いは、鱗片状の黒鉛を球形化した形状であり得る。ここで開示される技術では、該粒子の最も長い辺の長さと最も短い辺の長さ(典型的には厚み)の比(いわゆるアスペクト比)が、2以上(好ましくは3以上)であって、100以下(典型的には、50以下、好ましくは10以下)のものを好適に使用し得る。なお、上記粒子の形状は、一般的な走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いて観察することができる。より具体的には、少なくとも30個以上(例えば30個〜100個)の黒鉛粒子について、例えば、株式会社日立ハイテクノロジーズ製の走査型電子顕微鏡(FE−SEM)、型式「HITACHI S−4500」を用いて、SEM観察を行い、得られた画像から該粒子の形状を判断し得る。
図1(A)に模式的に示すように、黒鉛材料の表面(典型的にはエッジ面)には、もとより僅かな酸性官能基が存在し得る。かかる酸性官能基の量は、例えば特許文献2に記載されるように、通常0.0075μeq/m〜0.0725μeq/m程度であり、多くても0.12μeq/m程度である。上述のように、このような黒鉛材料をそのまま負極活物質として用いて電池を構築した場合、黒鉛表面における被膜の形成が不十分となって耐久性が不足したり、或いは被膜形成に伴って反応抵抗(電荷担体の吸蔵および放出に伴う抵抗)が増大して電池性能(例えば入出力特性)が低下したりすることがあり得る。
そこで、本発明では、該黒鉛材料の表面に酸性官能基を付与する。これにより、黒鉛材料の表面に、緻密で耐久性に優れ且つ抵抗が抑制された被膜を形成し得る。かかる酸性官能基を付与する方法は特に限定されないが、例えば浸漬法(薬品浸漬法)によって行うことができる。より具体的には、上記黒鉛材料を酸性水溶液中に浸漬させて、所定の時間、所定の温度で保持することにより行い得る。これによって、図1(B)に模式的に示すように、黒鉛材料の表面に酸性官能基(典型的にはヒドロキシル基)を好適に付与し得る。
酸性水溶液は、水系溶媒に溶解して酸性を示し得る任意の化合物を、水系溶媒中に溶解させることで調製し得る。水系溶媒中で酸性を示す化合物としては、例えば、硝酸、硫酸、塩酸、過酸化水素等の無機酸;酢酸、カルボン酸等の有機酸;等を適宜用いることができ、なかでも硝酸や硫酸を好ましく用いることができる。水溶液中の酸の濃度は特に限定されないが、典型的には1mol/L〜7mol/Lであり得、なかでも3mol/L〜5mol/L程度に調製することが好ましい。また、水溶液のpHとしては、3以下(典型的には1.5以下、例えば1以下)の強酸性とすることが好ましい。かかる範囲とすることで、最適な量の酸性官能基を、比較的短時間で効率よく付与することができる。
なお、ここで用いられる水系溶媒としては、典型には水であるが、全体として水性を示すものであればよく、水以外の溶媒を含む水溶液(混合溶媒)であってもよい。該混合溶媒を構成する水以外の溶媒としては、水と均一に混合し得る有機溶剤(低級アルコール、低級ケトン等)の1種または2種以上を適宜選択して用いることができる。例えば、水系溶媒の凡そ80質量%以上(より好ましくは凡そ90質量%以上、さらに好ましくは凡そ95質量%以上)が水である溶媒の使用が好ましい。
黒鉛材料を浸漬させた酸性水溶液を保持する温度は、使用する水系溶媒の種類によっても異なるため特に限定されないが、溶媒(水)の揮発が十分に進行する温度で加熱することが好ましい。また、加熱温度の上限は、使用する溶媒の沸点を下回る温度であることが好ましい。かかる温度環境下で保持することにより、最適な量の酸性官能基を安定的且つ効率よく黒鉛材料の表面に付与することができる。例えば溶媒として水を用いる場合、加熱温度は通常50℃以上であり、例えば凡そ50℃〜150℃(好ましくは凡そ70℃〜100℃、特に好ましくは凡そ85℃〜95℃)とすることができる。
加熱保持時間は、上記酸性官能基の付与が十分に行われる時間であればよく、酸性水溶液の酸濃度や保持する温度等にも依るため、特に限定されない。しかしながら、水系溶媒の乾燥状態を確認し、該溶媒が全て揮発してしまわないよう適宜保持時間を調整することが好ましい。通常は0.5〜48時間程度であり、典型的には2〜24時間程度であり、作業効率の観点からは例えば2〜5時間程度とすることが好ましい。なお、保持雰囲気は使用する溶媒の種類等により、大気雰囲気中の他、必要に応じて窒素ガス等の不活性ガス雰囲気下、あるいは適当なガスを注入した密閉容器内に入れて保持することができる。また、かかる保持の際には、必要に応じて攪拌を行ってもよい。攪拌を行うことによって、酸性官能基の付与を比較的短時間で安定して行うことができる。なお、攪拌操作には、例えばマグネティックスターラーや超音波等の従来公知の種々の攪拌手段を用いて行うことができる。
酸性官能基を付与した黒鉛材料は、水性溶液から分離し、洗浄して乾燥させる。洗浄には、例えば上記水系溶媒(典型的には水)を用いることができる。また、分離方法としては、従来公知の方法(例えば遠心分離、濾過、デカンテーション等)を1種または2種以上組み合わせて用いることができる。また、乾燥方法としては、黒鉛材料の付与した酸性官能基を保持する観点から、加熱を伴わない乾燥手段(例えば真空乾燥装置、赤外線乾燥装置、電磁誘導乾燥装置、マイクロ波乾燥装置、ドライエアー等)や乾燥促進手段(例えば送風、減圧等)を単独または組み合わせて好適に用いることができる。
≪S20;負極の作製工程≫
次に、負極を作製する。負極は、典型的には負極集電体と該負極集電体上に形成された負極活物質層とを備え、該負極活物質層は、少なくとも上記酸素官能基を付与した黒鉛材料を含む。このような負極は、例えばシート状の負極集電体に、上記酸素官能基を付与した(酸性官能基の量が1μeq/m以上の)黒鉛材料が適当な溶媒に分散されてなるペースト状またはスラリー状の組成物(負極活物質スラリー)を付与し、乾燥させることにより作製し得る。上記溶媒としては、水性溶媒および有機溶媒のいずれも使用可能であり、例えば水を用いることができる。
負極活物質スラリーには、本発明の効果を損なわない限りにおいて、上記黒鉛材料に加えて、一般的な非水電解質二次電池において負極活物質層の構成成分として使用され得る1種または2種以上の材料を必要に応じて含有し得る。このような材料として、例えばバインダ、黒鉛材料以外の負極活物質、増粘剤、分散剤等が挙げられる。バインダとしては、使用する溶媒に溶解または分散可能なポリマーを用いることができる。例えば、水性溶媒を用いた負極活物質スラリーにおいては、カルボキシメチルセルロース(CMC;典型的にはナトリウム塩)等のセルロース系ポリマー;スチレンブタジエンゴム(SBR)等のゴム類;を好ましく用いることができる。また、非水溶媒を用いた負極活物質スラリーにおいては、ポリフッ化ビニリデン(PVdF)等のハロゲン化ビニル樹脂;ポリエチレンオキサイド(PEO)等のポリアルキレンオキサイド;等を好ましく用いることができる。
黒鉛材料以外の負極活物質としては、例えば、ハードカーボン(難黒鉛化炭素)、ソフトカーボン(易黒鉛化炭素)、カーボンナノチューブ等の炭素材料;酸化ケイ素、酸化チタン、酸化バナジウム、酸化鉄、酸化コバルト、酸化ニッケル、酸化ニオブ、酸化錫、リチウムケイ素複合酸化物、リチウムチタン複合酸化物(Lithium Titanium Composite Oxide:LTO、例えばLiTi12、LiTi、LiTi)、リチウムバナジウム複合酸化物、リチウムマンガン複合酸化物、リチウム錫複合酸化物等の金属酸化物材料;窒化リチウム、リチウムコバルト複合窒化物、リチウムニッケル複合窒化物等の金属窒化物材料;スズ、ケイ素、アルミニウム、亜鉛、リチウム等の金属もしくはこれらの金属元素を主体とする金属合金からなる金属材料;等を好ましく用いることができる。
負極集電体としては、導電性の良好な金属(例えば、銅、ニッケル等)からなる導電性材料が好ましく用いられる。集電体の形状は構築される電池の形状等に応じて異なり得るため特に限定されない。後述する捲回電極体を備えた電池では、主に箔状体が用いられる。箔状集電体の厚みは特に限定されないが、電池の容量密度と集電体の強度との兼ね合いから通常5μm〜50μm(典型的には8μm〜30μm)程度であり得る。
負極集電体の単位面積当たりに設けられる負極活物質層の目付量(負極集電体の両面に負極活物質層を有する構成では両面の合計目付量)は、例えば5mg/cm〜20mg/cm(典型的には5mg/cm〜10mg/cm)程度であり得る。負極集電体の両面に負極活物質層を有する構成において、負極集電体の各々の面に設けられる負極活物質層の目付量は、通常、概ね同程度とすることが好ましい。また、負極活物質層全体に占める黒鉛材料の割合は、凡そ50質量%以上とすることが適当であり、好ましくは90質量%〜99質量%(例えば95質量%〜99質量%)である。バインダを使用する場合には、負極活物質層全体に占めるバインダの割合を例えば凡そ1質量%〜10質量%とすることができ、通常は凡そ1質量%〜5質量%とすることが適当である。黒鉛以外の負極活物質を使用する場合には、負極活物質層全体に占めるバインダの割合を例えば凡そ1質量%〜10質量%とすることができ、通常は凡そ1質量%〜5質量%とすることが適当である。
≪S30;収容工程≫
次に、正極を準備する。正極は、電荷担体を吸蔵および放出可能な正極活物質を有するものであれば特に限定されないが、典型的には、正極集電体と該正極集電体上に形成された少なくとも正極活物質を含む正極活物質層とを備える。このような正極は、正極活物質が適当な溶媒に分散されてなるペースト状またはスラリー状の組成物(正極活物質スラリー)をシート状の正極集電体に付与し、乾燥させることにより好ましく作製し得る。上記溶媒としては、水系溶媒および有機溶媒のいずれも使用可能であり、例えばN−メチル−2−ピロリドン(NMP)を用いることができる。
正極活物質としては、非水電解液二次電池の正極活物質として使用し得ることが知られている各種の材料の1種または2種以上を、特に限定なく使用することができる。好適例として、リチウムニッケル系酸化物(典型的にはLiNiO)、リチウムコバルト系酸化物(典型的にはLiCoO)、リチウムマンガン系酸化物(典型的にはLiMn)、リチウム鉄系酸化物(典型的にはLiFeO)等のリチウム元素と少なくとも1種の遷移金属元素とを構成金属元素として含む層状構造またはスピネル構造の酸化物が挙げられる。なかでも、構成元素としてLi,Ni,CoおよびMnを含む、層状構造(典型的には、六方晶系に属する層状岩塩型構造)のリチウムニッケルコバルトマンガン複合酸化物(例えば、LiNi1/3Co1/3Mn1/3)は、熱安定性に優れ、且つ他の化合物に比べて理論エネルギー密度が高いため好ましく用いることができる。
正極活物質の性状は特に限定されないが、通常、平均粒径0.5μm〜20μm(典型的には1μm〜15μm、例えば2μm〜10μm)程度の粒子状であることが好ましい。また、正極活物質の比表面積は、通常、0.1m/g〜30m/g程度(典型的には0.2m/g〜10m/g程度、例えば0.5m/g〜3m/g程度)のものを好ましく使用し得る。正極活物質の性状が上記範囲にある場合、緻密で導電性の高い正極活物質層を作製し得る。また正極活物質層内に適度な空隙を保持することができるため、非水電解液が浸漬し易く、内部抵抗を低減することができる。
正極活物質スラリーには、本発明の効果を損なわない限りにおいて、上記正極活物質に加えて、一般的な非水電解質二次電池において正極活物質層の構成成分として使用され得る1種または2種以上の材料を必要に応じて含有し得る。このような材料として、例えばバインダや導電材等が挙げられる。バインダとしては、上記負極活物質層用として例示したポリマー材料から適当なものを選択することができる。具体的には、ポリフッ化ビニリデン(PVdF)、ポリ塩化ビニリデン(PVdC)、ポリエチレンオキサイド(PEO)等が例示される。また、導電材としては、例えば炭素材料を用いることができる。より具体的には、種々のカーボンブラック(例えば、アセチレンブラック、ケッチェンブラック)、コークス、活性炭、黒鉛、等の炭素材料を用いることができる。なかでも、平均粒径が比較的小さく、且つ比表面積が大きいカーボンブラック(典型的には、アセチレンブラック)を好適に用いることができる。その他、分散剤等の各種添加剤を適宜使用することもできる。
正極集電体としては、導電性の良好な金属(例えばアルミニウム、ニッケル、チタン、ステンレス鋼等)からなる導電性部材が好ましく用いられる。また正極集電体の形状は負極集電体と同様であり得る。
正極集電体の単位面積当たりに設けられる正極活物質層の目付量(正極集電体の両面に正極活物質層を有する構成では両面の合計目付量)は、例えば5mg/cm〜40mg/cm(典型的には10mg/cm〜20mg/cm)程度であり得る。正極集電体の両面に正極活物質層を有する構成において、正極集電体の各々の面に設けられる正極活物質層の目付量は、通常、概ね同程度とすることが好ましい。また、正極活物質層全体に占める正極活物質の割合は、凡そ60質量%以上(典型的には60質量%〜99質量%)とすることが適当であり、通常は凡そ70質量%〜95質量%であることが好ましい。バインダを使用する場合、正極活物質層全体に占めるバインダの割合は、例えば凡そ0.5質量%〜10質量%とすることができ、通常は凡そ1質量%〜5質量%とすることが好ましい。導電材を使用する場合、正極活物質層全体に占める導電材の割合は、例えば凡そ2質量%〜20質量%とすることができ、通常は凡そ3質量%〜10質量%とすることが好ましい。
次に、上記作製した負極と正極とを用いて電極体を作製する。ここで開示される非水電解液二次電池の典型的な構成では、上記正極と上記負極との間にセパレータが介在される。該セパレータとしては、従来から非水電解液二次電池に用いられるものと同様の各種多孔質シートを用いることができ、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂から成る多孔質樹脂シート(フィルム、不織布等)が挙げられる。かかる多孔質樹脂シートは、単層構造であってもよく、二層以上の複数構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。また、上記多孔質シート、不織布等の片面または両面(典型的には片面)に、無機フィラーを含む多孔質耐熱層を備える構成のものであってもよい。セパレータの厚みは、例えば、凡そ10μm〜40μmの範囲内で設定することが好ましい。
次に、上記作製した電極体を、所定の電池ケース内に収容する。電池ケースとしては、従来から非水電解液二次電池に用いられる材料や形状を用いることができる。該ケースの材質としては、例えば、アルミニウム、スチール等の金属材料;ポリフェニレンサルファイド樹脂、ポリイミド樹脂等の樹脂材料;が挙げられる。なかでも、放熱性向上やエネルギー密度を高める目的から、比較的軽量な金属(例えば、アルミニウムやアルミニウム合金)を好ましく採用し得る。また、該ケースの形状(容器の外形)は特に限定されず、例えば、円形(円筒形、コイン形、ボタン形)、六面体形(直方体形、立方体形)、袋体形、およびそれらを加工し変形させた形状等であり得る。また、該ケースには電流遮断機構(電池の過充電時に、内圧の上昇に応じて電流を遮断し得る機構)等の安全機構を設けることもできる。
≪S40;注入工程≫
次に、上記電池ケース内に含硫黄被膜形成剤としてのフッ素含有スルホン酸化合物を添加した非水電解液を注入し、電極体に染み込ませる。なお、ここでは一例としてフッ素含有スルホン酸化合物を非水電解液に対し添加する方法を示すが、これに限定されず、例えば電極体(典型的には、負極活物質層やセパレータ)に対して直接添加、含浸させる方法等を採用することもできる。
非水電解液としては、非水溶媒中に支持塩(例えば、リチウム塩、ナトリウム塩、マグネシウム塩等。リチウムイオン二次電池ではリチウム塩。)を溶解または分散させたものを好ましく採用し得る。支持塩としては、一般的な非水電解液二次電池と同様のものを適宜選択して採用し得、例えば、LiPF、LiBF、LiClO、LiAsF、Li(CFSON、LiCFSO等のリチウム塩を用いることができる。このような支持塩は、1種を単独で、または2種以上を組み合わせて用いることができる。特に好ましい支持塩としてLiPFが挙げられる。なお、非水電解液中にLi(CFSONやLiCFSO等を含む場合、後述の充電工程において該支持塩が分解され、負極活物質の表面に硫黄(S)原子を含む被膜が形成され得る。しかしながら、本発明者の検討によれば、これら支持塩由来の被膜量は相対的に非常に少なく、またイオン交換クロマトグラフィー等の分析手法によれば、支持塩に由来する被膜と、フッ素含有スルホン酸化合物に由来する被膜と、を区別して認識することができる。
支持塩の濃度は特に制限されないが、極端に低すぎると非水電解液に含まれる電荷担体(典型的にはリチウムイオン)の量が不足し、イオン伝導性が低下する傾向がある。またかかる濃度が極端に高すぎると、室温以下の温度域(例えば0℃〜30℃)において非水電解液の粘度が高くなり、イオン伝導性が低下する傾向がある。このため、非水電解液は上記支持塩の濃度が0.7mol/L〜1.3mol/Lの範囲内となるように調製することが好ましい。
上記非水溶媒としては、一般的な非水電解液二次電池の電解液に用いられる各種のカーボネート類、エーテル類、エステル類、ニトリル類、スルホン類、ラクトン類等の有機溶媒を、特に限定なく用いることができる。なお、上記カーボネート類とは、環状カーボネートおよび鎖状カーボネートを包含する意味であり、上記エーテル類とは、環状エーテルおよび鎖状エーテルを包含する意味である。具体例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ビニレンカーボネート(VC)、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキサン、1,3−ジオキソラン、ジエチレングリコールジメチルエーテル、エチレングリコールジメチルエーテル、アセトニトリル、プロピオニトリル、ニトロメタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、γ−ブチロラクトン等が例示される。このような非水溶媒は、1種を単独で、あるいは2種以上を適宜組み合わせて用いることができる。
好ましい一態様として、カーボネート類を主体とする非水溶媒が挙げられる。電解液としてかかる非水溶媒を用いた場合、後述する充電工程において、負極活物質の表面に良質な被膜が形成され得る。なかでも比誘電率の高いECや、酸化電位が高い(電位窓の広い)DMCやEMC等を好適に用いることができる。例えば、非水溶媒として1種または2種以上のカーボネート類を含み、それらカーボネート類の合計体積が非水溶媒全体の体積の60体積%以上(より好ましくは75体積%以上、さらに好ましくは90体積%以上であり、実質的に100体積%であってもよい。)を占める非水溶媒を好ましく用いることができる。
含硫黄被膜形成剤としては、例えば、フッ素および硫黄を構成元素として含む化合物、すなわちフッ素含有スルホン酸化合物を用いることができる。含硫黄被膜形成剤は、後述の充電工程(典型的には初回充電工程)において電気的に分解され、負極活物質の表面に硫黄(S)原子を含む被膜を形成し得る。このようなフッ素含有スルホン酸化合物は、公知の方法により作製することができ、あるいは市販品の購入等により入手することができる。好適例として、モノフルオロスルホン酸(FSO)アニオンを有する各種の塩(すなわち、モノフルオロスルホン酸塩)や、ジフルオロスルホン酸(FSO)アニオンを有する各種の塩(すなわち、ジフルオロスルホン酸塩)が挙げられる。該塩におけるカチオン(カウンターカチオン)は、電荷担体(上記支持塩のカチオン)と同種のものを含んでいれば、無機カチオンおよび有機カチオンのいずれでもよい。無機カチオンの具体例としては、Li,Na,K等のアルカリ金属のカチオン;Be,Mg,Ca等のアルカリ土類金属のカチオン;等が挙げられる。より具体的な化合物としては、FSOLi、CH2FSOLi、CHFSOLi、CFSOLi、CFCFSOLi、CFCFCFSOLi等が挙げられる。このような化合物は、1種を単独で、あるいは2種以上を適宜組み合わせて用いることができる。
特に限定するものではないが、上記非水電解液中の含硫黄被膜形成剤(典型的にはフッ素含有スルホン酸化合物、例えばモノフルオロスルホン酸リチウム)の濃度は、通常、0.01重量%以上から1重量%以下(典型的には0.1重量%以上0.5重量%以下、例えば0.125重量%以上0.5重量%以下、好ましくは0.15重量%以上0.45重量%以下)の範囲内となるように調製することが好ましい。フッ素含有スルホン酸化合物の含有量が0.01重量%よりも少ないと、負極(典型的には負極活物質)の表面に十分な量の硫黄原子含有被膜を形成することができないことがあり得る。また、フッ素含有スルホン酸化合物の含有量が1重量%よりも多いと、初回充電後も非水電解液中に過剰な添加剤が残存し、電池抵抗が増加することがあり得る。上記範囲とすることで、負極活物質の表面に緻密且つ低抵抗な被膜を好適に形成し得、本願発明の効果をより一層高いレベルで発揮することができる。
なお、電池の構築に用いられたフッ素含有スルホン酸化合物の量(換言すれば、電池ケース内に供給されたフッ素含有スルホン酸化合物の量)は、例えば、イオン交換クロマトグラフィーにより正負極活物質層に含まれるSOLiイオン、SOLiイオン、SOイオンの量を定量すること;電池ケース内に溜まった非水電解液をイオン交換クロマトグラフィーにより分析してフッ素含有スルホン酸化合物およびそれらの分解物に起因する化学種を定量すること;等の方法により把握し得る。
≪S50;充電処理工程≫
次に、上記電極体を充電処理する。これにより負極上(黒鉛材料表面)の酸性官能基(求核剤)と非水電解液中の含硫黄被膜形成剤とが反応し、図1(C)に模式的に示すように、負極(黒鉛材料)の表面に硫黄原子と電荷担体とを含む被膜が形成される。なお、上記被膜には、フッ素含有スルホン酸化合物に由来する成分のほか、非水電解液を構成する他の成分(例えば支持塩や非水溶媒)の分解生成物等が含まれ得る。
充電処理における正負極端子間の電圧(典型的には最高到達電圧)は、例えば使用する電極材料(活物質)の種類や非水電解液の構成成分等によっても異なるが、少なくとも負極の電位がフッ素含有スルホン酸化合物の分解され得る電位(還元分解電位(vs.Li/Li+))よりも低くなるよう設定する必要がある。また、正極の電位が高すぎると、非水電解液の酸化分解反応を促進する等、電池性能に悪影響及ぼす虞がある。したがって、充電処理における正負極端子間の電圧(典型的には最高到達電圧)は、典型的には該電池の上限電圧を大きく上回らない程度に設定することが好ましい。例えばSOC100%における端子間電圧を4.1Vとする電池では、充電電圧を2V以上4.5V以下(典型的には3.5V以上4.2V以下)とすることが好ましい。
電圧を調整する際は、充電開始から正負極端子間電圧が所定値に到達するまで定電流で充電する、定電流充電(CC充電)により行ってもよく、あるいは、充電開始から正負極端子間電圧が所定値に到達するまで定電流で充電し、さらに定電圧で所定時間充電する、定電流定電圧充電(CCCV充電)により行ってもよい。通常は、CCCV充電方式を好ましく採用し得る。これにより、フッ素含有スルホン酸化合物を好適に分解し得、負極活物質の表面に強固で緻密な被膜を安定的に形成することができる。CC充電時(CCCV充電方式におけるCC充電時であり得る。)の充電レートは特に限定されず、例えば1/50C〜5C(1Cは、1時間で満充放電可能な電流の値)程度とすることができる。通常は、上記充電レートを1/30C〜2C程度(例えば1/20C〜1C)程度とすることが適当である。充電レートが低すぎると、処理効率が低下しがちである。また、充電レートが高すぎると、正極活物質が劣化したり、形成される皮膜の均一性が低下したりすることがあり得る。上記充電処理は一回でもよく、例えば二回以上の充放電操作を繰り返し行うこともできる。さらに、電池性能に大きな悪影響を与えない範囲内で、その他の操作(例えば、拘束等による圧力の負荷や超音波の照射)を併用することもできる。
ここで開示される非水電解液二次電池は、黒鉛材料の表面に硫黄(S)原子と電荷担体とを含む被膜(実質的にはフッ素含有スルホン酸化合物に由来する被膜、典型的にはモノフルオロスルホン酸塩に由来する被膜、例えばモノフルオロスルホン酸リチウムに由来する被膜)を備える。かかる被膜は、例えば、SOLiイオン、SOLiイオン、SOイオン等を構成元素として含む化合物の形態であり得る。被膜中に含まれる硫黄原子の量は特に限定されないが、典型的には0.1μmol/cm〜0.5μmol/cmであり、例えば0.2μmol/cm〜0.3μmol/cmであり得る。
上記被膜中に含まれる硫黄原子の量M(μmol/cm)は、一般的なイオン交換クロマトグラフィーの手法によって測定することができる。より具体的には、先ず負極活物質層から測定試料を採取し、適切な溶媒を用いて測定対象となるイオンを抽出する。次に、かかる溶液をイオン交換クロマトグラフィーの測定に供し、得られた結果からSOLiイオン、SOLiイオン、SOイオンの量(μmol)をそれぞれ定量する。そして、かかる値を合計して、測定に供した負極活物質層の面積(cm)で除すことにより、硫黄原子の量M(μmol/cm)を求めることができる。かかる分析によると、例えば支持塩として硫黄(S)原子と電荷担体とを含むものを用いた場合であっても、該支持塩に由来する硫黄とは区別して、フッ素含有スルホン酸化合物(典型的にはモノフルオロスルホン酸塩、例えばFSOLi)に由来する硫黄の存在を認し得る。
なお、被膜中に含まれる硫黄原子の量Mの測定方法として、上記ではイオン交換クロマトグラフィーを例示したが、これに限定されず、例えば従来公知のICP発光分光法(Inductively Coupled Plasma Atomic Emission Spectroscopy:ICP―AES)、質量分析法(Mass Spectrometry:MS)、X線吸収微細構造解析法(X-ray Absorption Fine Structure:XAFS)、CHNS元素分析法等によっても被膜中に含まれる硫黄原子の量を把握し得る。
ここで開示される非水電解液二次電池では、添加したフッ素含有スルホン酸化合物の大部分が充電処理(典型的には初回充電処理)によって負極活物質の表面で分解され、該負極活物質の表面に硫黄原子を含む被膜を形成するために消費され得る。したがって、本発明においては電池の構築から時間の経った電池(例えば、充電処理後の電池)において、非水電解液中に必ずしもフッ素含有スルホン酸化合物そのものが残存していることを要しない。
特に限定することを意図したものではないが、本発明の一実施形態に係る非水電解液二次電池の概略構成として、扁平に捲回された電極体(捲回電極体)と、非水電解液と、を扁平な直方体形(角形)のケースに収容した形態の非水電解液二次電池(単電池)を例とし、図2〜4にその概略構成を示す。以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略または簡略化することがある。各図における寸法関係(長さ、幅、厚さ等)は、実際の寸法関係を反映するものではない。
ここで開示される技術の一実施形態に係る非水電解液二次電池は、例えば図2および図3に示すように、捲回電極体80が、図示しない非水電解液とともに、該電極体80の形状に対応した扁平な直方体形状(角形)の電池ケース50に収容された構成を有する。この電池ケース50は、上端が開放された扁平な直方体形状(角形)の電池ケース本体52と、その開口部を塞ぐ蓋体54とを備える。電池ケース50の上面(すなわち蓋体54)には、外部接続用の正極端子70および負極端子72が、それら端子の一部が蓋体54から電池の外方に突出するように設けられている。また、蓋体54には電池ケース内部で発生したガスをケースの外部に排出するための安全弁55が備えられている。かかる構成の非水電解液二次電池100は、例えば、ケース50の開口部から電極体80を内部に収容し、該ケース50の開口部に蓋体54を取り付けた後、蓋体54に設けられた図示しない電解液注入孔から非水電解液を注入し、次いでかかる注入孔を塞ぐことによって構築される。
図4は、捲回電極体80を組み立てる前段階における長尺状のシート構造(電極シート)を模式的に示す図である。捲回電極体80は、長尺状の正極集電体12の片面または両面(典型的には両面)に長手方向に沿って正極活物質層14が形成された正極シート10と、長尺状の負極集電体22の片面または両面(典型的には両面)に長手方向に沿って負極活物質層24が形成された負極シート20とを重ね合わせて捲回し、得られた捲回体を側面方向から押圧して拉げさせることによって扁平形状に成形されている。そして、正極活物質層14と負極活物質層24との間は、両者の直接接触を防ぐ絶縁層が配置されている。ここに示す例では、捲回電極体80を作製するに際して、上記絶縁層として長尺シート状のセパレータ40を使用している。この例では、負極活物質層24の幅は、正極活物質層14の幅よりも少し広い。さらに、セパレータ40の幅は負極活物質層24の幅よりも少し広い。
正極シート10は、その長手方向に沿う一方の端部において正極活物質層14が設けられておらず(あるいは除去されて)、正極集電体12が露出するよう形成されている。同様に、負極シート20は、その長手方向に沿う一方の端部において、負極活物質層24が設けられておらず(あるいは除去されて)、負極集電体22が露出するように形成されている。そして、正極集電体12の該露出端部に正極集電板が、負極集電体22の該露出端部には負極集電板がそれぞれ付設され、上記正極端子70(図2)および上記負極端子72(図2)とそれぞれ電気的に接続されている。
また、本発明によると、ここで開示される非水電解液二次電池(単電池)を複数組み合わせた組電池が提供される。単電池を複数個相互に(典型的には直列に)接続してなる組電池では、構成する単電池のなかで最も低い性能のものに全体の性能が左右され得る。ここで開示される非水電解液二次電池は、従来の電池に比べて信頼性が高く、耐久性や入出力特性に優れるため、組電池として一層高い電池性能を発揮し得る。
ここで開示される非水電解液二次電池(典型的にはリチウムイオン二次電池)は各種用途に利用可能であるが、フッ素含有スルホン酸化合物添加の効果が好適に発揮され、従来に比べ電池性能(例えば、耐久性や入出力特性)が優れていることを特徴とする。よって、このような性質を利用して、例えば車両に搭載される駆動用電源として好適に用いることができる。車両は、典型的には自動車であり、例えば、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)、電気自動車(EV)、燃料電池自動車、電動車いす、電動アシスト自転車等であり得る。
したがって、本発明の他の側面として、ここで開示されるいずれかの非水電解液二次電池を(好ましくは動力源として)備えた車両が提供される。車両は、複数個の非水電解液二次電池を、典型的にはそれらが並列接続された組電池の形態で備えるものであり得る。
以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。
≪I.酸性水溶液における硝酸濃度の検討≫
〔例1〜7〕
先ず、黒鉛材料にヒドロキシル基を導入した。具体的には、硝酸水溶液(それぞれ、下表1に示す硝酸濃度のものを用いた。)500mLを90℃に加熱し、そこに黒鉛材料(ここでは、平均粒径が20μm、比表面積:3m/gの天然黒鉛を用いた。)を300g混合した。この溶液を、一定温度に保持したまま3時間撹拌した。その後、濾別し、イオン交換水で水洗した後、真空乾燥(120℃、12時間)することにより酸性官能基を付与した黒鉛材料(例1〜例7)を得た。
得られた黒鉛材料(例1〜例7)について、上述の手法(アルカリ滴定法)で酸性官能基を定量した。結果を表1の「官能基量」の欄、および図5に示す。
表1および図5に示すように、硝酸の濃度が高くなるにしたがって、黒鉛材料の表面に付与される酸性官能基(典型的にはヒドロキシル基)の量は増加する傾向にあり、硝酸濃度が5mol/L以上になるとほぼ一定の値を示した。
Figure 2014127313
次に、上記酸性官能基を付与した黒鉛材料を用いて、負極(例1〜例7)を作製した。具体的には、負極活物質としての上記黒鉛材料と、バインダとしてのスチレンブタジエンゴム(SBR)と、増粘剤としてのカルボキシメチルセルロース(CMC)とを、これら材料の質量比が98:1:1となるよう秤量して混練機に投入し、固形分濃度が45質量%となるようにイオン交換水で粘度を調製しながら混練し、負極活物質層形成用のスラリー状組成物を調製した。このスラリーを、厚み10μmの長尺状銅箔(負極集電体)の片面に目付量が15mg/cm(固形分基準)となるように塗布し、乾燥後にロールプレス機を用いて圧延処理を施すことによって、負極集電体上に負極活物質層(電極密度:1.4g/cm)を有する負極(例1〜例7)を作製した。
そして、上記作製した負極を用いて、例1〜例7に係る非水電解液二次電池を構築した。具体的には、まず、正極活物質としてのLiNi1/3Co1/3Mn1/3と、導電材としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVdF)とを、これらの材料の質量比が90:8:2となるよう秤量して混練機に投入し、固形分濃度が50質量%となるようにN−メチルピロリドン(NMP)で粘度を調製しながら混練し、正極活物質層形成用のスラリー状組成物を調製した。このスラリーを、厚み15μmの長尺状アルミニウム箔(正極集電体)の片面に、目付量が25mg/cm(固形分基準)となるように塗布し、乾燥後にロールプレス機を用いて圧延処理を施すことによって、正極集電体上に正極活物質層(電極密度:2.8g/cm)を有する正極を作製した。
上記で作製した負極と正極とを、セパレータシート(ここでは、ポリエチレン(PE)の両面にポリプロピレン(PP)が積層された三層構造であって、厚み20μm、孔径0.09μm、気孔率48体積%のものを用いた。)を介して、活物質層同士が対向するよう配置し、電極体を作製した。作製した電極体を、電池ケース内に配置し、そこに非水電解液を注液した。非水電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とをEC:DMC:EMC=30:40:30の体積比で含む混合溶媒に、支持塩としてのLiPFを1mol/Lの濃度で溶解させ、さらにフッ素含有スルホン酸化合物としてのモノフルオロスルホン酸リチウム(FSOLi)を0.25重量%の割合で混合させた非水電解液を用いた。そして、電極体端部において露出した正極集電体および負極集電体に正極端子および負極端子を溶接したのち、電池ケースを封口し、例1〜例7に係るリチウムイオン二次電池を構築した。なお、例1〜例7に係るリチウムイオン二次電池は、表1に示す通り、負極活物質(黒鉛材料)の表面に導入された酸性官能基の量が異なっている。
<充放電処理>
上記非水電解液の注液から6時間後に、以下の手順に従って構築した例1〜例7に係る電池を充放電処理し、負極活物質(黒鉛材料)の表面にフッ素含有スルホン酸化合物由来の被膜を形成した。充放電処理は、25℃の温度環境下において、下記(1)〜(4)を1サイクルとして、5サイクル行った。
(1)1Cのレートで4.1Vまで定電流充電(CC充電)する。
(2)10分間休止する。
(3)1Cのレートで3.0Vまで定電流放電(CC放電)する。
(4)10分間休止する。
<反応抵抗の測定>
上記充放電処理後の例1〜例7に係る電池を、SOC60%の充電状態に調整した。この電池について、交流インピーダンス法を用いて反応抵抗を測定した。測定条件は、以下のとおりである。
測定温度:−30℃
測定装置:ソーラトロン社製「1287A型ポテンショ/ガルバノスタット」および「1255B型周波数応答アナライザ(FRA)」
入力電圧:500mV
測定周波数範囲:100kHz〜0.001Hz
そして、得られたCole−Coleプロットの円弧部分の直径を反応抵抗(Rct)として算出した。結果を表1の「反応抵抗」の欄および図6に示す。
表1および図6に示すように、黒鉛材料表面の酸性官能基量が増加するにしたがって反応抵抗は低下傾向にあった。なかでも、酸性官能基の量が1μeq/m以上の例3〜例7に係る電池では反応抵抗が30%以上低減されており、特に例4に係る電池では反応抵抗が最も低く、例1に比べ凡そ半分程度となった。これは、被膜中により多くの電荷担体(ここでは、Liイオン)を含むことで、被膜形成に伴う抵抗の増大を抑制し得たためと考えられる。かかる結果は、本発明の技術的意義を示すものである。
≪II.フッ素含有スルホン酸化合物の添加量の検討≫
〔例8〜14〕
次に、上記例4と同様にして得られた黒鉛材料(酸性官能基:1.4μeq/m)を複数準備した。そして、非水電解液に添加するモノフルオロスルホン酸リチウムの添加量を下表2のように調製したこと以外は上記例1〜7の場合と同様に、例8〜14に係るリチウムイオン二次電池を構築した。すなわち、例8〜例14に係るリチウムイオン二次電池は、表2に示すように、モノフルオロスルホン酸リチウムの添加量が異なっている。
上記例8〜例14に係る電池について、同様に充放電処理および反応抵抗の測定を行った。結果を、表2の「反応抵抗」の欄および図7に示す。
Figure 2014127313
表2および図7に示すように、モノフルオロスルホン酸リチウムを添加しなかった例8の電池では、最も反応抵抗が高かった。モノフルオロスルホン酸リチウムを添加するとそれに伴って反応抵抗が低下するが、所定の量を超えると反応抵抗がふたたび増加傾向となった。この原因としては、過剰なモノフルオロスルホン酸リチウムが電池内に存在することにより、活物質層内の電荷移動抵抗が増大したことが考えられる。このことから、非水電解液中のフッ素含有スルホン酸化合物の濃度を0.1重量%〜0.5重量%(例えば0.125重量%〜0.5重量%、特に0.15重量%〜0.45重量%)とすることで、より一層反応抵抗を抑制し得ることが示された。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
ここで開示される非水電解液二次電池では、負極活物質表面の被膜が適切に調整されており、従来に比べ高い電池性能(例えば、耐久性や入出力特性)を発揮し得ることを特徴とする。このため、高い耐久性や入出力特性が要求される用途で好適に用いることができる。かかる用途としては、例えば、プラグインハイブリッド自動車(PHV)、ハイブリッド自動車(HV)、電気自動車(EV)、電気トラック、原動機付自転車、電動アシスト自転車、電動車いす、電気鉄道等の車両に搭載されるモーター用の動力源(駆動用電源)を挙げることができる。したがって、本発明により、かかる電池(当該電池を複数個直列接続してなる組電池の形態であり得る。)を電源として備える車両(典型的には自動車)が提供される。
10 正極シート(正極)
12 正極集電体
14 正極活物質層
20 負極シート(負極)
22 負極集電体
24 負極活物質層
40 セパレータシート(セパレータ)
50 電池ケース
52 電池ケース本体
54 蓋体
55 安全弁
70 正極端子
72 負極端子
80 捲回電極体
100 非水電解液二次電池

Claims (12)

  1. 正極と負極とを含む電極体と、非水電解液とを備える非水電解液二次電池であって;
    前記負極は、黒鉛材料を主体とする負極活物質層を備え、
    ここで、前記黒鉛材料の酸性官能基の量は1μeq/m以上であり、且つ、該黒鉛材料の表面には硫黄(S)原子と電荷担体とを含む被膜が形成されていることを特徴とする、非水電解液二次電池。
  2. 前記硫黄原子と電荷担体とを含む被膜は、実質的に含硫黄被膜形成剤として前記非水電解液中に含ませたフッ素含有スルホン酸化合物に由来する、請求項1に記載の非水電解液二次電池。
  3. 前記フッ素含有スルホン酸化合物はFSOLiである、請求項2に記載の非水電解液二次電池。
  4. 前記黒鉛材料のレーザー回折・光散乱法に基づく平均粒径は1μm以上30μm以下であり、BET法に基づく比表面積は0.5m/g以上10m/g以下である、請求項1から3のいずれか一項に記載の非水電解液二次電池。
  5. 前記酸性官能基は、ヒドロキシル基を主体とする、請求項1から4のいずれか一項に記載の非水電解液二次電池。
  6. 正極と負極とを含む電極体と、非水電解液とを備える非水電解液二次電池を製造する方法であって:
    黒鉛材料の表面に酸素官能基を付与すること;
    前記酸素官能基を付与した黒鉛材料を用いて負極を作製すること、
    ここで、前記酸素官能基を付与した黒鉛材料として、酸性官能基の量が1μeq/m以上のものを用いる;
    前記負極を用いて電極体を作製し、電池ケース内に収容すること;
    前記電池ケース内に、含硫黄被膜形成剤としてのフッ素含有スルホン酸化合物を含む非水電解液を注入すること;
    前記電極体を充電処理して、前記黒鉛材料の表面に、前記フッ素含有スルホン酸化合物由来の硫黄(S)原子と電荷担体とを含む被膜を形成すること;
    を包含する、製造方法。
  7. 前記非水電解液中の前記フッ素含有スルホン酸化合物の濃度を、0.1重量%以上0.5重量%以下に調製する、請求項6に記載の製造方法。
  8. 前記フッ素含有スルホン酸化合物としてFSOLiを用いる、請求項6または7に記載の製造方法。
  9. 前記黒鉛粒子として、レーザー回折・光散乱法に基づく平均粒径は1μm以上30μm以下であり、BET法に基づく比表面積は0.5m/g以上10m/g以下の黒鉛粒子を用いる、請求項6から8のいずれか一項に記載の製造方法。
  10. 前記酸素官能基の付与は、前記黒鉛材料を酸性水溶液中に浸漬させて所定の温度で保持することにより行う、請求項6から9のいずれか一項に記載の製造方法。
  11. 前記酸性水溶液の調製には硝酸を用い、
    該水溶液中の前記硝酸の濃度を3mol/L以上5mol/L以下に調製する、請求項10に記載の製造方法。
  12. 前記酸性水溶液の温度を50℃以上150℃以下に保持する、請求項10または11に記載の製造方法。
JP2012282333A 2012-12-26 2012-12-26 非水電解液二次電池および該電池の製造方法 Active JP5984014B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012282333A JP5984014B2 (ja) 2012-12-26 2012-12-26 非水電解液二次電池および該電池の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012282333A JP5984014B2 (ja) 2012-12-26 2012-12-26 非水電解液二次電池および該電池の製造方法

Publications (2)

Publication Number Publication Date
JP2014127313A true JP2014127313A (ja) 2014-07-07
JP5984014B2 JP5984014B2 (ja) 2016-09-06

Family

ID=51406654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012282333A Active JP5984014B2 (ja) 2012-12-26 2012-12-26 非水電解液二次電池および該電池の製造方法

Country Status (1)

Country Link
JP (1) JP5984014B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015076389A (ja) * 2013-10-11 2015-04-20 オートモーティブエナジーサプライ株式会社 非水電解質二次電池
JP2019139953A (ja) * 2018-02-09 2019-08-22 トヨタ自動車株式会社 非水電解液二次電池および電池組立体
CN110556566A (zh) * 2018-06-01 2019-12-10 丰田自动车株式会社 非水电解液二次电池
JP2020077477A (ja) * 2018-11-06 2020-05-21 トヨタ自動車株式会社 非水電解液リチウムイオン二次電池
WO2020137816A1 (ja) * 2018-12-28 2020-07-02 三洋電機株式会社 非水電解質二次電池及びその製造方法
WO2020158223A1 (ja) * 2019-01-31 2020-08-06 パナソニックIpマネジメント株式会社 非水電解質二次電池およびこれに用いる電解液
WO2020246540A1 (ja) 2019-06-04 2020-12-10 三菱ケミカル株式会社 非水系電解液及び非水系電解液電池
JP2021061212A (ja) * 2019-10-09 2021-04-15 三菱マテリアル株式会社 負極材料、電池、負極材料の製造方法、及び電池の製造方法
JP2022090248A (ja) * 2020-12-07 2022-06-17 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4145556A4 (en) * 2020-04-28 2023-10-18 Panasonic Intellectual Property Management Co., Ltd. NEGATIVE ELECTRODE MATERIAL AND BATTERY

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005057715A1 (ja) * 2003-12-15 2005-06-23 Nec Corporation 二次電池
JP2008270086A (ja) * 2007-04-24 2008-11-06 Hitachi Maxell Ltd 非水電解質二次電池
JP2011076897A (ja) * 2009-09-30 2011-04-14 Kansai Coke & Chem Co Ltd リチウムイオン二次電池用負極材料
JP2012109240A (ja) * 2010-10-29 2012-06-07 Mitsubishi Chemicals Corp 非水系電解液二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005057715A1 (ja) * 2003-12-15 2005-06-23 Nec Corporation 二次電池
JP2008270086A (ja) * 2007-04-24 2008-11-06 Hitachi Maxell Ltd 非水電解質二次電池
JP2011076897A (ja) * 2009-09-30 2011-04-14 Kansai Coke & Chem Co Ltd リチウムイオン二次電池用負極材料
JP2012109240A (ja) * 2010-10-29 2012-06-07 Mitsubishi Chemicals Corp 非水系電解液二次電池

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015076389A (ja) * 2013-10-11 2015-04-20 オートモーティブエナジーサプライ株式会社 非水電解質二次電池
JP6994157B2 (ja) 2018-02-09 2022-01-14 トヨタ自動車株式会社 非水電解液二次電池および電池組立体
JP2019139953A (ja) * 2018-02-09 2019-08-22 トヨタ自動車株式会社 非水電解液二次電池および電池組立体
CN110556566A (zh) * 2018-06-01 2019-12-10 丰田自动车株式会社 非水电解液二次电池
JP2019212419A (ja) * 2018-06-01 2019-12-12 トヨタ自動車株式会社 非水電解液二次電池
CN110556566B (zh) * 2018-06-01 2022-11-01 丰田自动车株式会社 非水电解液二次电池
JP7071697B2 (ja) 2018-06-01 2022-05-19 トヨタ自動車株式会社 非水電解液二次電池
JP2020077477A (ja) * 2018-11-06 2020-05-21 トヨタ自動車株式会社 非水電解液リチウムイオン二次電池
JP6994163B2 (ja) 2018-11-06 2022-02-04 トヨタ自動車株式会社 非水電解液リチウムイオン二次電池
WO2020137816A1 (ja) * 2018-12-28 2020-07-02 三洋電機株式会社 非水電解質二次電池及びその製造方法
CN113228368A (zh) * 2018-12-28 2021-08-06 三洋电机株式会社 非水电解质二次电池和其制造方法
JP7403474B2 (ja) 2018-12-28 2023-12-22 三洋電機株式会社 非水電解質二次電池及びその製造方法
WO2020158223A1 (ja) * 2019-01-31 2020-08-06 パナソニックIpマネジメント株式会社 非水電解質二次電池およびこれに用いる電解液
CN113348569A (zh) * 2019-01-31 2021-09-03 松下知识产权经营株式会社 非水电解质二次电池及其中使用的电解液
JP7454796B2 (ja) 2019-01-31 2024-03-25 パナソニックIpマネジメント株式会社 非水電解質二次電池およびこれに用いる電解液
KR20220002636A (ko) 2019-06-04 2022-01-06 미쯔비시 케미컬 주식회사 비수계 전해액 및 비수계 전해액 전지
WO2020246540A1 (ja) 2019-06-04 2020-12-10 三菱ケミカル株式会社 非水系電解液及び非水系電解液電池
WO2021070830A1 (ja) * 2019-10-09 2021-04-15 三菱マテリアル株式会社 負極材料、電池、負極材料の製造方法、及び電池の製造方法
JP7088156B2 (ja) 2019-10-09 2022-06-21 三菱マテリアル株式会社 負極材料の製造方法、及び電池の製造方法
JP2022079612A (ja) * 2019-10-09 2022-05-26 三菱マテリアル株式会社 負極材料、電池、負極材料の製造方法、及び電池の製造方法
JP2021061212A (ja) * 2019-10-09 2021-04-15 三菱マテリアル株式会社 負極材料、電池、負極材料の製造方法、及び電池の製造方法
JP2022090248A (ja) * 2020-12-07 2022-06-17 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池
JP7167117B2 (ja) 2020-12-07 2022-11-08 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池

Also Published As

Publication number Publication date
JP5984014B2 (ja) 2016-09-06

Similar Documents

Publication Publication Date Title
JP5984014B2 (ja) 非水電解液二次電池および該電池の製造方法
JP5729613B2 (ja) 非水電解液二次電池および該電池の製造方法
KR101642887B1 (ko) 리튬 이온 2차 전지용 탄소 재료
JP6094221B2 (ja) リチウムイオン二次電池の製造方法
JP2018101628A (ja) 二次電池用負極活物質、二次電池、電池パック及び車
JP5321847B2 (ja) 活物質及びその製造方法、非水電解質電池及び電池パック
JP5928800B2 (ja) 非水電解質二次電池
JP6128393B2 (ja) 非水電解液二次電池および該電池の製造方法
JP5569645B2 (ja) リチウムイオン二次電池
JP2017054695A (ja) 電池用活物質、非水電解質電池及び電池パック
JPWO2016084200A1 (ja) 電池用活物質、非水電解質電池、組電池、電池パック及び自動車
JP2013187032A (ja) リチウム二次電池用正極材料及びリチウム二次電池
JP2018045904A (ja) リチウムイオン二次電池およびその製造方法
KR20180044285A (ko) 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법 및 비수계 전해질 이차 전지
JP5209004B2 (ja) 電池用活物質、非水電解質電池、電池パック、及び自動車
JP2014022328A (ja) 非水電解液二次電池の製造方法
CN108735988B (zh) 锂离子二次电池用负极活性物质粒子及其制造方法
JP2014029849A (ja) 非水電解質二次電池及びその製造方法
JP5594241B2 (ja) 電解液及びリチウムイオン二次電池
WO2011089697A1 (ja) 非水電解質電池、これに用いる正極活物質及びその製造方法
JP5617792B2 (ja) リチウムイオン二次電池
JP2007234358A (ja) 非水電解質電池用電極材料、非水電解質電池および電池パック
JP2012174340A (ja) 非水電解液及びリチウムイオン二次電池
JP6658608B2 (ja) 非水電解質蓄電素子用の正極、非水電解質蓄電素子及び正極合材ペーストの製造方法
JP6274055B2 (ja) リチウムイオン二次電池及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160720

R151 Written notification of patent or utility model registration

Ref document number: 5984014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250