JP2020077477A - 非水電解液リチウムイオン二次電池 - Google Patents

非水電解液リチウムイオン二次電池 Download PDF

Info

Publication number
JP2020077477A
JP2020077477A JP2018208671A JP2018208671A JP2020077477A JP 2020077477 A JP2020077477 A JP 2020077477A JP 2018208671 A JP2018208671 A JP 2018208671A JP 2018208671 A JP2018208671 A JP 2018208671A JP 2020077477 A JP2020077477 A JP 2020077477A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
ion secondary
secondary battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018208671A
Other languages
English (en)
Other versions
JP6994163B2 (ja
Inventor
弘枝 石田
Hiroe Ishida
弘枝 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018208671A priority Critical patent/JP6994163B2/ja
Publication of JP2020077477A publication Critical patent/JP2020077477A/ja
Application granted granted Critical
Publication of JP6994163B2 publication Critical patent/JP6994163B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】非水電解液にフルオロスルホン酸リチウムが添加されたリチウムイオン二次電池であって、低温出力特性に優れるリチウムイオン二次電池の提供。【解決手段】正極50と、負極60と、非水電解液とを含む。正極50は、正極集電体52と、正極集電体52上に設けられた正極活物質層54とを備える非水電解液リチウムイオン二次電池100。正極活物質層54は、正極活物質を含有する。非水電解液は、フルオロスルホン酸リチウムを含有する。正極活物質の粒度分布の半値幅は、5.7μm以上6.6μm以下である。フルオロスルホン酸リチウムの非水電解液中の含有量は、0.3質量%以上0.9質量%以下である。【選択図】図1

Description

本発明は、非水電解液リチウムイオン二次電池に関する。
近年、非水電解液リチウムイオン二次電池は、パソコン、携帯端末等のポータブル電源や、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両駆動用電源などに好適に用いられている。
非水電解液リチウムイオン二次電池はその普及に伴い、さらなる高性能化が望まれている。非水電解液リチウムイオン二次電池の性能を向上させるために、非水電解液にフルオロスルホン酸リチウムを添加する技術が知られている(例えば、特許文献1参照)。特許文献1には、非水電解液にフルオロスルホン酸リチウムを添加することにより、初期充電容量、入出力特性、電池内部インピーダンス特性等が向上することが記載されている。
特許第5353923号公報
しかしながら、本発明者が鋭意検討した結果、非水電解液にフルオロスルホン酸リチウムが添加されたリチウムイオン二次電池において、低温出力特性に改善の余地あることを見出した。
そこで本発明は、非水電解液にフルオロスルホン酸リチウムが添加されたリチウムイオン二次電池であって、低温出力特性に優れるリチウムイオン二次電池を提供することを目的とする。
本発明者は、非水電解液にフルオロスルホン酸リチウムが添加されたリチウムイオン二次電池において、正極活物質の粒度分布の半値幅と、フルオロスルホン酸リチウムの非水電解液中の含有量とを合わせて適切に管理することで、低温出力を向上させることができることを見出した。
すなわち、ここに開示される非水電解液リチウムイオン二次電池は、正極と、負極と、非水電解液と、を含む。前記正極は、正極集電体と、前記正極集電体上に設けられた正極活物質層とを備える。前記正極活物質層は、正極活物質を含有する。前記非水電解液は、フルオロスルホン酸リチウムを含有する。前記正極活物質の粒度分布の半値幅は、5.7μm以上6.6μm以下である。フルオロスルホン酸リチウムの前記非水電解液中の含有量は、0.3質量%以上0.9質量%以下である。
このような構成によれば、非水電解液にフルオロスルホン酸リチウムが添加されたリチウムイオン二次電池であって、低温出力特性に優れるリチウムイオン二次電池を提供することができる。
本発明の一実施形態に係るリチウムイオン二次電池の内部構造を模式的に示す断面図である。 本発明の一実施形態に係るリチウムイオン二次電池の捲回電極体の構成を示す模式図である。
以下、図面を参照しながら、本発明による実施の形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、本発明を特徴付けない非水電解液リチウムイオン二次電池の一般的な構成および製造プロセス)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。
なお、本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、いわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する用語である。
また、本明細書において「リチウムイオン二次電池」とは、電荷担体としてリチウムイオンを利用し、正負極間におけるリチウムイオンに伴う電荷の移動により充放電が実現される二次電池をいう。
以下、扁平形状の捲回電極体と扁平形状の電池ケースとを有する扁平角型の非水電解液リチウムイオン二次電池を例にして、本発明について詳細に説明するが、本発明をかかる実施形態に記載されたものに限定することを意図したものではない。
図1に示すリチウムイオン二次電池100は、扁平形状の捲回電極体20と非水電解液(図示せず)とが扁平な角形の電池ケース(即ち外装容器)30に収容されることにより構築される密閉型電池である。電池ケース30には外部接続用の正極端子42および負極端子44と、電池ケース30の内圧が所定レベル以上に上昇した場合に該内圧を開放するように設定された薄肉の安全弁36が設けられている。また、電池ケース30には、非水電解液を注入するための注入口(図示せず)が設けられている。正極端子42は、正極集電板42aと電気的に接続されている。負極端子44は、負極集電板44aと電気的に接続されている。電池ケース30の材質としては、例えば、アルミニウム等の軽量で熱伝導性の良い金属材料が用いられる。
捲回電極体20は、図1および図2に示すように、長尺状の正極集電体52の片面または両面(ここでは両面)に長手方向に沿って正極活物質層54が形成された正極シート50と、長尺状の負極集電体62の片面または両面(ここでは両面)に長手方向に沿って負極活物質層64が形成された負極シート60とが、2枚の長尺状のセパレータシート70を介して重ね合わされて長手方向に捲回された形態を有する。なお、捲回電極体20の捲回軸方向(即ち、上記長手方向に直交するシート幅方向)の両端から外方にはみ出すように形成された正極活物質層非形成部分52a(即ち、正極活物質層54が形成されずに正極集電体52が露出した部分)と負極活物質層非形成部分62a(即ち、負極活物質層64が形成されずに負極集電体62が露出した部分)には、それぞれ正極集電板42aおよび負極集電板44aが接合されている。
正極シート50を構成する正極集電体52としては、例えばアルミニウム箔等が挙げられる。
正極活物質層54は、正極活物質を含有する。正極活物質層54に含まれる正極活物質としては、例えばリチウム遷移金属酸化物(例、LiNi1/3Co1/3Mn1/3、LiNiO、LiCoO、LiFeO、LiMn、LiNi0.5Mn1.5等)、リチウム遷移金属リン酸化合物(例、LiFePO等)等が挙げられる。正極活物質の含有量は、正極活物質層54中(すなわち、正極活物質層54の全質量に対し)70質量%以上が好ましく、75質量%以上がより好ましく、80質量%以上がさらに好ましい。
正極活物質は、粒度分布を有するため、粒子状である。正極活物質粒子の形状には特に制限はなく、球状であっても、非球状であってもよい。また、正極活物質は、複数の一次粒子が凝集した二次粒子の形態にあってもよい。
本実施形態において、正極活物質の粒度分布の半値幅が、5.7μm以上6.6μm以下である。リチウムイオン二次電池100においては、フルオロスルホン酸リチウム由来の被膜が正極活物質の表面に形成される。正極活物質の粒度分布の半値幅がこの範囲内にあることにより、正極活物質粒子の表面に均一に被膜が形成され、低温での出力特性が高くなる。
なお、正極活物質の粒度分布の半値幅は、レーザー回折・散乱法による粒度分布測定装置を用いて粒度分布を測定し、粒度分布の頻度がピーク値の半分の値であるときの粒度分布の幅を求めることにより測定することができる。なお、粒度分布に複数のピークがある場合には、最大ピークの半値幅を求める。正極活物質は粒度分布のピークが1つであることが好ましい。
正極活物質の平均粒径は、通常20μm以下(典型的には1μm以上20μm以下、例えば3μm以上15μm以下)である。なお、本明細書において「平均粒径」とは、レーザー回折・散乱法による粒度分布測定装置を用いて測定される粒度分布において、累積頻度50体積%に相当する粒径(メジアン径D50)のことをいう。
正極活物質層54は、活物質以外の成分、例えば導電材やバインダ等を含み得る。
導電材としては、例えばアセチレンブラック(AB)等のカーボンブラックやその他(例、グラファイト等)の炭素材料を好適に使用し得る。正極活物質層54中の導電材の含有量は、1質量%以上15質量%以下が好ましく、3質量%以上12質量%以下がより好ましい。
バインダとしては、例えばポリフッ化ビニリデン(PVdF)等を使用し得る。正極活物質層54中のバインダの含有量は、1質量%以上15質量%以下が好ましく、2質量%以上12質量%以下がより好ましい。
負極シート60を構成する負極集電体62としては、例えば銅箔等が挙げられる。負極活物質層64に含まれる負極活物質としては、例えば黒鉛、ハードカーボン、ソフトカーボン等の炭素材料を使用し得る。黒鉛は、天然黒鉛であっても人造黒鉛であってもよく、黒鉛が非晶質な炭素材料で被覆された形態の非晶質炭素被覆黒鉛であってもよい。
負極活物質層64は、活物質以外の成分、例えばバインダや増粘剤等を含み得る。バインダとしては、例えばスチレンブタジエンラバー(SBR)等を使用し得る。増粘剤としては、例えばカルボキシメチルセルロース(CMC)等を使用し得る。
負極活物質層中の負極活物質の含有量は、90質量%以上が好ましく、95質量%以上99質量%以下がより好ましい。負極活物質層中のバインダの含有量は、0.1質量%以上8質量%以下が好ましく、0.5質量%以上3質量%以下がより好ましい。負極活物質層中の増粘剤の含有量は、0.3質量%以上3質量%以下が好ましく、0.5質量%以上2質量%以下がより好ましい。
セパレータ70としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂から成る多孔性シート(フィルム)が挙げられる。かかる多孔性シートは、単層構造であってもよく、二層以上の積層構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。セパレータ70の表面には、耐熱層(HRL)が設けられていてもよい。
非水電解液は、フルオロスルホン酸リチウムを含有する。フルオロスルホン酸リチウムは、正極活物質表面での被膜形成に関与する成分である。フルオロスルホン酸リチウムは、充放電を繰り返した際に、わずかに分解し、正極活物質層表面に被膜を形成し、抵抗成分(Li拡散抵抗)になると考えられる。
本実施形態においては、フルオロスルホン酸リチウムの非水電解液中の含有量は、0.3質量%以上0.9質量%以下である。フルオロスルホン酸リチウムの含有量が0.3質量%未満だと、被膜量が不足してLiイオン伝導性が低下して正極活物質の抵抗が増加し、その結果、低温での出力特性が低くなる。フルオロスルホン酸リチウムの含有量が0.9質量%を超えると、被膜量が多くなりすぎて電子伝導性が低下し、その結果、低温での出力特性が低くなる。
非水電解液は、典型的には、非水溶媒と支持塩とを含有する。
非水溶媒としては、一般的なリチウムイオン二次電池の電解液に用いられる各種のカーボネート類、エーテル類、エステル類、ニトリル類、スルホン類、ラクトン類等の有機溶媒を、特に限定なく用いることができる。具体例として、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、モノフルオロエチレンカーボネート(MFEC)、ジフルオロエチレンカーボネート(DFEC)、モノフルオロメチルジフルオロメチルカーボネート(F−DMC)、トリフルオロジメチルカーボネート(TFDMC)等が挙げられる。このような非水溶媒は、1種を単独で、あるいは2種以上を適宜組み合わせて用いることができる。
支持塩としては、例えば、LiPF、LiBF、LiClO等のリチウム塩(好ましくはLiPF)を用いることができる。支持塩の濃度は、0.7mol/L以上1.3mol/L以下が好ましい。
非水電解液は、好ましくはヘキサフルオロリン酸リチウムをさらに含有する。このとき、フルオロスルホン酸リチウムに含まれるS原子およびLi原子、ならびにヘキサフルオロリン酸リチウムに含まれるP原子およびLi原子が被膜中に取り込まれ、被膜のLiイオン伝導性を向上させることができる。ヘキサフルオロリン酸リチウムの非水電解液中の含有量は、1mol/L以上が好ましい。
非水電解液は、好ましくはリチウムビスオキサラトボレートをさらに含有する。このとき、リチウムビスオキサラトボレートが非水電解液の分解反応を促進し、より均一な被膜を得ることができる。リチウムビスオキサラトボレートの非水電解液中の含有量は、好ましくは0.1質量%以上である。
非水電解液は、好ましくはジフルオロリン酸リチウムをさらに含有する。このとき、被膜のLiイオン伝導性を向上させることができる。ジフルオロリン酸リチウムの非水電解液中の含有量は、好ましくは0.1質量%以上である。
なお、非水電解液は、本発明の効果を著しく損なわない限りにおいて、上述した成分以外の成分、例えば、ビフェニル(BP)、シクロヘキシルベンゼン(CHB)等のガス発生剤;増粘剤;等の各種添加剤をさらに含有していてもよい。
以上のようにして構成されるリチウムイオン二次電池100は、低温出力特性に優れる。特に、低温で大電流を流した場合の出力特性に優れる。
また、リチウムイオン二次電池100は、充放電を繰り返した際の容量劣化耐性に優れる。これは、正極活物質の粒度分布の半値幅が適切な範囲にあることにより、充放電を繰り返した際の粒子割れによる容量劣化が起こり難くなっているためと考えられる。
リチウムイオン二次電池100は、各種用途に利用可能である。好適な用途としては、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両に搭載される駆動用電源が挙げられる。リチウムイオン二次電池100は、典型的には複数個を直列および/または並列に接続してなる組電池の形態でも使用され得る。
なお、一例として扁平形状の捲回電極体20を備える角形のリチウムイオン二次電池100について説明した。しかしながら、ここに開示される非水電解液リチウムイオン二次電池は、積層型電極体を備えるリチウムイオン二次電池として構成することもできる。また、ここに開示される非水電解液リチウムイオン二次電池は、円筒形リチウムイオン二次電池、ラミネート型リチウムイオン二次電池として構成することもできる。
以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。
<評価用リチウムイオン二次電池の作製>
正極活物質としてのLiNi1/3Co1/3Mn1/3(LNCM)と、導電材としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVdF)とを、LNCM:AB:PVdF=87:10:3の質量比でN−メチルピロリドン(NMP)と混合し、正極活物質層形成用ペーストを調製した。このペーストを、アルミニウム箔の両面に、アルミ箔の一端が露出するように塗布して乾燥した後、プレスすることにより、正極シートを作製した。なお、正極活物質には、表1に示す粒度分布の半値幅(μm)を有するものを用いた。
また、負極活物質としての天然黒鉛(C)と、バインダとしてのスチレンブタジエンゴム(SBR)と、増粘剤としてのカルボキシメチルセルロース(CMC)とを、C:SBR:CMC=98:1:1の質量比でイオン交換水と混合して、負極活物質層形成用ペーストを調製した。このペーストを、銅箔の両面に、銅箔の一端が露出するように塗布して乾燥した後、プレスすることにより、負極シートを作製した。
また、PP/PE/PPの三層構造を有するポリオレフィン多孔質基材の片面上に、無機フィラーによる耐熱層(HRL)が形成されたセパレータを用意した。
上記の正極シート、負極シート、およびセパレータを積層した後捲回して電極体を作製し、この電極体を非水電解液と共に電池ケース内に収容し、電池ケースを封止した。非水電解液には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とを1:1:1の体積比で含む混合溶媒を準備し、これに支持塩としてのLiPFを1.0mol/Lの濃度で溶解させ、フルオロスルホン酸リチウムを表1に示す含有量で添加し、リチウムビスオキサラトボレートを0.1質量%の含有量となるように添加し、ジフルオロリン酸リチウムを0.1質量%の含有量となるように添加したものを用いた。
以上のようにして、各実施例および各比較例のリチウムイオン二次電池を作製した。
<低温出力特性評価>
各実施例および各比較例のリチウムイオン二次電池をSOC27%に調製し、−35℃の環境下に6時間静置した。複数の定電力出力を行い、所定時間で所定電圧に至る出力値を算出した。基準値を100とした場合の、各実施例および各比較例の出力値の比を求めた。結果を表1に示す。
<充放電サイクル容量劣化評価>
各実施例および各比較例のリチウムイオン二次電池を25℃の環境下において、電圧が4.1Vとなるまで1/3CのレートでCC充電した後、電流値が0.02CとなるまでCV充電した。その後、電圧が3Vとなるまで1/3Cのレートで定電流放電し、このときの放電容量を初期容量とした。
次に、このリチウムイオン二次電池を60℃の環境下に置いた。SOC30%〜SOC80%の間での2Cのレートでの定電流充電および定電流放電を1000サイクル繰り返した。その後、上記と同様にして放電容量を測定した。充放電1000サイクル後のこの放電容量を上記初期容量で除して100を掛けることにより、容量維持率(%)を求めた。そして、ルート則から容量劣化傾き(%/√(Ah))を算出した。基準値を100とした場合の、各実施例および各比較例の容量劣化傾きの比を求めた。結果を表1に示す。
Figure 2020077477
以上の結果より、非水電解液にフルオロスルホン酸リチウムが添加されたリチウムイオン二次電池において、正極活物質の粒度分布の半値幅が5.7μm以上6.6μm以下であり、フルオロスルホン酸リチウムの非水電解液中の含有量が0.3質量%以上0.9質量%以下である場合に、低温出力が高いことがわかる。また、充放電を繰り返した際の容量劣化耐性も高いことがわかる。
したがって、ここに開示される非水電解液リチウムイオン二次電池は、低温での出力特性が高いことがわかる。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
20 捲回電極体
30 電池ケース
36 安全弁
42 正極端子
42a 正極集電板
44 負極端子
44a 負極集電板
50 正極シート(正極)
52 正極集電体
52a 正極活物質層非形成部分
54 正極活物質層
60 負極シート(負極)
62 負極集電体
62a 負極活物質層非形成部分
64 負極活物質層
70 セパレータシート(セパレータ)
100 リチウムイオン二次電池

Claims (1)

  1. 正極と、負極と、非水電解液と、を含む非水電解液リチウムイオン二次電池であって、
    前記正極は、正極集電体と、前記正極集電体上に設けられた正極活物質層とを備え、
    前記正極活物質層は、正極活物質を含有し、
    前記非水電解液は、フルオロスルホン酸リチウムを含有し、
    前記正極活物質の粒度分布の半値幅が、5.7μm以上6.6μm以下であり、
    フルオロスルホン酸リチウムの前記非水電解液中の含有量が、0.3質量%以上0.9質量%以下である、
    非水電解液リチウムイオン二次電池。
JP2018208671A 2018-11-06 2018-11-06 非水電解液リチウムイオン二次電池 Active JP6994163B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018208671A JP6994163B2 (ja) 2018-11-06 2018-11-06 非水電解液リチウムイオン二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018208671A JP6994163B2 (ja) 2018-11-06 2018-11-06 非水電解液リチウムイオン二次電池

Publications (2)

Publication Number Publication Date
JP2020077477A true JP2020077477A (ja) 2020-05-21
JP6994163B2 JP6994163B2 (ja) 2022-02-04

Family

ID=70724371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018208671A Active JP6994163B2 (ja) 2018-11-06 2018-11-06 非水電解液リチウムイオン二次電池

Country Status (1)

Country Link
JP (1) JP6994163B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211096A (ja) * 2012-02-28 2013-10-10 Mitsubishi Chemicals Corp リチウム二次電池用正極およびそれを用いたリチウム二次電池
JP2014127313A (ja) * 2012-12-26 2014-07-07 Toyota Motor Corp 非水電解液二次電池および該電池の製造方法
JP2016143448A (ja) * 2015-01-29 2016-08-08 三菱化学株式会社 非水系二次電池用炭素材、非水系二次電池用負極、非水系二次電池、及び非水系二次電池用炭素材の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211096A (ja) * 2012-02-28 2013-10-10 Mitsubishi Chemicals Corp リチウム二次電池用正極およびそれを用いたリチウム二次電池
JP2014127313A (ja) * 2012-12-26 2014-07-07 Toyota Motor Corp 非水電解液二次電池および該電池の製造方法
JP2016143448A (ja) * 2015-01-29 2016-08-08 三菱化学株式会社 非水系二次電池用炭素材、非水系二次電池用負極、非水系二次電池、及び非水系二次電池用炭素材の製造方法

Also Published As

Publication number Publication date
JP6994163B2 (ja) 2022-02-04

Similar Documents

Publication Publication Date Title
JP2019050154A (ja) 非水電解液二次電池
JP2014053193A (ja) 非水電解液二次電池の製造方法
KR102133417B1 (ko) 비수전해액 이차 전지
JP2018106903A (ja) リチウムイオン二次電池
JP6836727B2 (ja) 非水電解液リチウムイオン二次電池
JP6902206B2 (ja) リチウムイオン二次電池
JP2020027756A (ja) 二次電池用電極および二次電池
JP7228113B2 (ja) 非水電解液二次電池
JP2017103163A (ja) 非水電解液二次電池
KR102520420B1 (ko) 부극
JP7148872B2 (ja) リチウム二次電池用非水電解液
JP7054440B2 (ja) 二次電池
JP6994163B2 (ja) 非水電解液リチウムイオン二次電池
JP2017123236A (ja) 非水電解液二次電池
JP2021089805A (ja) 非水電解液二次電池の製造方法
JP2020113378A (ja) リチウム二次電池用非水電解液
JP7249988B2 (ja) リチウムイオン二次電池
JP7307888B2 (ja) 負極
JP2020047481A (ja) リチウムイオン二次電池用非水電解液
JP2020031020A (ja) 非水電解液二次電池
JP7214705B2 (ja) 負極およびその製造方法
JP2019067699A (ja) 非水電解液リチウムイオン電池
JP6944644B2 (ja) リチウム二次電池用電解液
JP6731155B2 (ja) 非水電解質二次電池
JP2017098155A (ja) 非水電解液二次電池の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211124

R151 Written notification of patent or utility model registration

Ref document number: 6994163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151