WO2013159412A1 - 一种银杏内酯的提取分离方法 - Google Patents

一种银杏内酯的提取分离方法 Download PDF

Info

Publication number
WO2013159412A1
WO2013159412A1 PCT/CN2012/075633 CN2012075633W WO2013159412A1 WO 2013159412 A1 WO2013159412 A1 WO 2013159412A1 CN 2012075633 W CN2012075633 W CN 2012075633W WO 2013159412 A1 WO2013159412 A1 WO 2013159412A1
Authority
WO
WIPO (PCT)
Prior art keywords
extraction
ethanol
ginkgolides
concentration
time
Prior art date
Application number
PCT/CN2012/075633
Other languages
English (en)
French (fr)
Inventor
孙毅
朱永红
童正兵
王婕
Original Assignee
成都百裕科技制药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都百裕科技制药有限公司 filed Critical 成都百裕科技制药有限公司
Priority to EP12875595.6A priority Critical patent/EP2842957B1/en
Priority to JP2015507330A priority patent/JP5940212B2/ja
Priority to KR1020147030215A priority patent/KR101653899B1/ko
Priority to CA2871146A priority patent/CA2871146C/en
Publication of WO2013159412A1 publication Critical patent/WO2013159412A1/zh
Priority to US14/522,116 priority patent/US9084755B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/16Ginkgophyta, e.g. Ginkgoaceae (Ginkgo family)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/12Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains three hetero rings
    • C07D493/20Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/22Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains four or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/30Extraction of the material

Definitions

  • the invention relates to the field of plant extraction, in particular to a method for extracting and separating ginkgolides.
  • Ginkgo biloba leaves Since the 1960s, many countries have used modern separation techniques to study the chemical constituents of Ginkgo biloba leaves. Through pharmacological experiments and clinical verification, it has been found that the multi-faceted biological activities of Ginkgo biloba leaves are related to the specific chemical components contained therein. Germany's Dr. Willar Schwabe first registered a simple extract of Ginkgo biloba, and in 1972 applied for a special treatment (W Schwabe DE 176708 and DE 2117429), named EGb761, for the treatment of cardiovascular and cerebrovascular diseases and the nervous system. Disease, with significant efficacy, and no toxic side effects, ginkgolids have strong platelet activating factor (PAF) antagonism. Ginkgo biloba is listed as a therapeutic drug in Germany, France, and China. In other countries, it is used as a health food or over-the-counter. Ginkgo health food developed in the United States has been approved by the FDA.
  • PAF platelet activating factor
  • Ginkgolides are terpenoids, called terpene lactones, composed of sesquiterpene lactones and diterpene lactones, and are an important active ingredient in ginkgo leaves.
  • the bilobalide is a sesquiterpene lactone, isolated by RTMajor in 1967 and K. Weinges in 1969.
  • the only sesquiterpene lactone compound currently found in Ginkgo biloba leaves, ginkgolides A , B, C, M, J are diterpene lactone compounds, which were first separated from Ginkgo biloba leaves by S. Furukawa in 1932, only by K. Nakanish in 1967. M. Mamyama and K. Okabe et al.
  • the ginkgolide molecular skeleton consists of 15 carbon atoms and has four five-membered rings fused together, one of which has five five-membered carbon rings and three five-membered lactone carbon rings. There is a rare tert-butyl group in the natural ring.
  • Ginkgolide has a strong biological activity and promotes nerve growth. It prevents functional changes caused by mitochondrial oxidative stress in brain cells, improves memory function in the elderly, prevents the occurrence of senile dementia, and prevents demyelination of brain and spinal cord nerves. Its role in neurotrophic and neuroprotective effects is stronger than that of ginkgolides.
  • Ginkgolide B has anti-inflammatory, anti-shock, protects cardiovascular and cerebrovascular, and treats acute pancreatitis.
  • the molecular skeleton of the ginkgolide compound consists of 20 carbon atoms and has six five-membered rings, of which two five-membered carbon rings, three five-membered lactone rings, one tetrahydrofuran ring, and two five-membered carbons. The rings are connected together in the form of a spiro ring, and the remaining rings are joined in a fused manner to form a special three-dimensional chemical structure with a rigid braid.
  • Both ginkgolide molecules have a tert-butyl group which is rare in natural products.
  • Ginkgolides include diterpenoids and sesquiterpene lactones, diterpene lactones mainly include ginkgolides A, B, C, J, M, etc. Semiquinone lactones have bilobalide.
  • ginkgolide is a potent platelet-activating factor antagonist, protective against the immune system, central nervous system, and ischemic injury, and It has anti-shock, anti-allergy and anti-inflammatory effects.
  • the structure of ginkgolides VIII, B, C, M, J differs in the number of hydroxyl groups contained and the positions at which the hydroxy groups are attached.
  • Ginkgolide is a strong platelet activating factor antagonist and a key component of special physiological activity in Ginkgo biloba leaves.
  • Ginkgolide C structural ginkgolide structural formula: C 2Q H 24 O u Molecular weight: 440.4 Molecular formula: C 15 H 18 0 8 molecule 326.3
  • PAF platelet activating factor
  • Ginkgolide has a strong specific inhibitory effect on platelet activating factor PAF receptor, of which ginkgo Lactone has the highest anti-PAF activity.
  • PAF platelet activating factor
  • It is the most effective inducer of platelet aggregation discovered so far, and it is closely related to the occurrence and development of many diseases.
  • Ginkgolide is currently considered to be the most promising natural PAF receptor antagonist, and its antagonistic activity is closely related to chemical structure.
  • R3 is a hydroxyl group or the number of hydroxyl groups is increased in the lactone structure, the antagonistic activity against PAF is weakened, and when R2 is a hydroxyl group and R3 is H, the activity is remarkably enhanced, and the antagonism of ginkgolides B on PAF is most. Strong.
  • ginkgolides The determination of ginkgolides is currently carried out by HPLC-UV method, HPLC-MS and HPLC-ELSD methods. These methods can only measure the content of various components of ginkgolides, due to the lack of strict reaction materials in their products. Control does not truly reflect the quality characteristics of the drug, and does not form a complete drug quality control system. Although the invention patent for ginkgolide is very large, because the control method is too simple, The composition ratio of ginkgolide is not fixed, and it can not be made into traditional Chinese medicine injection, which can not guarantee the clinical efficacy and application safety.
  • the technical problem to be solved by the present invention is to provide a method for extracting and separating ginkgolide, which can obtain a component-fixed ginkgolactone.
  • the method steps are as follows:
  • the extraction organic solvent is ethanol, acetone or ethyl acetate, the concentration is 50-80% Wv, the dosage is 5 ⁇ 12 times, and the optimal dosage is 6-10 times;
  • the extraction method is: reflux extraction or decoction extraction.
  • the extraction conditions are: 3 extractions, 1.5 hours each time; ethanol concentration should be 65% Wv ; acetone concentration should be 50% v/v; ethyl acetate concentration should be 60% v/v.
  • Acetone extraction temperature 50 ⁇ 60°C, extraction times 2 ⁇ 3 times, time 1 ⁇ 2 hours each time;
  • Ginkgolide is easily decomposed after the extract is heated during the concentration process, and a protective agent and a pH adjuster are added.
  • the protective agent is added to prevent the thermal oxidative decomposition of ginkgolides.
  • the available antioxidant protective agents mainly include neutral amino acids, including: at least one of serine, methionine, asparagine and threonine, preferably methionine.
  • the pH adjuster is mainly an organic weak acid, and includes: at least one of tannic acid, malic acid, and sorbic acid.
  • tannic acid is used to adjust the pH value
  • the weak acidity is used as a stabilizer to prevent the ginkgolide from being alkaline. Open the ring under conditions.
  • the reason is ginkgo
  • the lactone structure is a 5-membered ring, which is stable under weakly acidic conditions, and the citric acid is a weak acid, which prevents the ginkgolides from opening under alkaline conditions.
  • Step A The purpose of refrigeration is to separate the oil and water to remove fat-soluble impurities from the water.
  • the concentrate is first extracted with n-hexane or petroleum ether for 2 to 3 times (preferably with an equal volume of n-hexane or petroleum ether), and the aqueous phase is extracted with a fat-soluble solvent for 4 to 5 times (preferably an equal volume of acetic acid).
  • Ethyl ester extraction and then extracted with water and saturated sec-butanol (n-butanol)-ethyl acetate mixed solvent for 4 to 5 times (preferably equal volume of water-saturated sec-butanol-ethyl acetate mixed solvent extraction), combined with organic phase extract , concentrated under reduced pressure.
  • extraction with n-hexane or petroleum ether is first to remove impurities such as chlorophyll and ginkgolic acid.
  • the ginkgolides are extracted with a fat-soluble solvent, and at least one of ethyl acetate, ethyl formate, acetone, and methyl ketone may be used.
  • Ginkgo biloba lactone is easily soluble in ethyl acetate.
  • Ginkgo flavonoids have relatively low solubility in ethyl acetate, and solubility in hot water and aqueous alcohol is high. Therefore, ginkgolides can be extracted with ethyl acetate. The ginkgo flavonoids are separated, and the isolated ginkgolides can be further subjected to adsorption chromatography on activated carbon, silica gel or resin column to further remove impurities, and then crystallized in an aqueous alcohol to obtain relatively pure ginkgolides.
  • the column the extract is passed through a polyamide (30 ⁇ 60 mesh) resin column, which is sequentially eluted with 1 ⁇ 5BV water, 3-5BV 20 ⁇ 40 v/v ethanol, 2-3BV 60 ⁇ 90 v/v ethanol. Control the flow rate of the eluent to 2 ⁇ 3BV/h; combine the eluents, concentrate under reduced pressure, and dry;
  • Crystallization Add the dried product after the column to boiling water, stir to dissolve, cool, and extract the supernatant with an equal volume of ethyl acetate, ethyl formate or acetone for 4 to 5 times, combine the extracts, and concentrate under reduced pressure. Evaporate dry, add 5 ⁇ 8 times 30% ⁇ 50% Wv ethanol, stir and dissolve, filter, refrigerate, crystallize out, filter, filtrate I spare, crystal wash with 30% ⁇ 50% Wv ethanol, dry under reduced pressure, Crystal I was obtained.
  • Filtrate I was concentrated to an alcohol content of 10% to 30% v/v, refrigerated, crystals were precipitated, filtered, and filtrate II was used; washed with 30% to 50% Wv ethanol, and dried under reduced pressure to give crystals.
  • the filtrate IV was concentrated, refrigerated, crystals were precipitated, filtered, and the crystals were washed with 30% v/v ethanol and dried under reduced pressure to give crystals. According to the results of HPLC detection of residual ginkgolides in the mother liquor, it is considered whether or not the filtrate IV is crystallized.
  • E. Mixed crystal The crystals I, II, III, IV, and V are uniformly mixed and pulverized to obtain an off-white crystal composition, and the effective part of the crystal composition (ginkactone, ginkgolides, ginkgolides 8, ginkgo biloba)
  • the HPLC content of the sum of esters C) is greater than 95%.
  • the parameters of the ginkgolide obtained by the separation method of the present invention are as follows:
  • Tannins, resins, oxalates, potassium ions shall not be detected.
  • Residual solvent both ethanol and ethyl acetate are less than 0.5%, n-hexane is less than 0.029%, and caprolactam is less than 0.0015%.
  • Total ginkgolic acid The total ginkgolic acid content was determined by HPLC to be less than 5 ppm.
  • Macromolecules and polymers Determination of residual macromolecules and polymers by gel chromatography. The macromolecular substance and polymer having a molecular weight of more than 1,000 were determined by the LC-MS method.
  • m) Content determined by HPLC, calculated as dried product, containing bilobalide (C 15 H 18 0 8 ) 25.0 ⁇ 50.0 ginkgolides A (C 20 H 24 O 9 ) 20.0 ⁇ 45.0 ginkgolides B (C 20 H 24 O 10 ) 10.0 ⁇ 30.0 Ginkgolide C (C 20 H 24 Oii ) 5.0 ⁇ 15.0 , and the total amount of ginkgolide, ginkgolides, ginkgolides 8, ginkgolides C is greater than 95%.
  • Peaks 2 Ginkgolide C
  • Peak 3 Ginkgolide
  • Peak 4 Ginkgolide A
  • Peak 5 Ginkgolide ⁇
  • the following is a key condition screening test in the preparation method of ginkgolides of the present invention.
  • Method 1 The concentrate is first extracted with an equal volume of n-hexane 2 to 3 times, and the aqueous phase is extracted with 8 times of butanone-acetone (4:6) under warming for 5 times, and the combined extracts are decompressed. concentrate.
  • Method 2 The concentrate is first extracted with an equal volume of n-hexane 2 to 3 times, and the aqueous phase is extracted with an equal volume of ethyl acetate for 4 to 5 times, and sec-butanol-ethyl acetate saturated with an equal amount of water (7) : 3) Extract 4 ⁇ 5 times, combine the extracts, concentrate under reduced pressure, and dry.
  • the above two extraction separation and purification methods were screened, and the total amount of ginkgolides in the two tests was determined by HPLC-ELSD method. The test results are shown in Table 1.
  • the total lactone content of the second method is higher, and ethyl acetate and sec-butanol are the safest solvents. Therefore, the second method is used as the extraction and purification process.
  • the flavonoids and ginkgolides must be effectively separated.
  • the commonly used separation methods include polyamide resin column separation and oxidation.
  • Method 1 Pass the extract through the polyamide resin column, first elute with 2 ⁇ 3 times of 30% ethanol, elute with 70% ethanol, elute at 2BV/h, concentrate the eluent, and evaporate. .
  • Method 2 The extract is passed through an acid alumina column, the extract is mixed with an equal amount of alumina, dried, and dried on a column, eluted with 4-6 times of ethyl acetate, and the elution rate is 2 BV/h. Concentrate the eluent and evaporate to dryness.
  • Method 3 The extract is passed through a silica gel column, and the extract is mixed with an equal amount of column chromatography silica gel, dried, and dried.
  • the column is first used with 4-6 times of petroleum ether-ethyl acetate (2:1). The elution was carried out at a rate of 2 BV/h, and eluted with n-hexane-ethyl acetate (5:1) at an elution rate of 2 BV/h. The eluate was concentrated and evaporated to dryness.
  • the total amount of ginkgolides in the three tests was determined by HPLC-ELSD method. The test results are shown in Table 2.
  • Polyamide resin has a good adsorption effect on flavonoids. Therefore, ginkgolides and ginkgo flavonoids can be effectively separated, and the elution process parameters of the column are investigated.
  • the distilled water washing resin column can play a good role in removing impurities.
  • the resin column is washed with 5BV water, the flow rate is l ⁇ 2BV/h, the color of the outflow changes from deep to light, and the water washing liquid is collected 5BV.
  • the liquid is clear, and the test results show that when the water volume reaches 3BV, the water-soluble impurities in the column are almost clean, and the ginkgolide is not detected, so the water washing volume of 3BV is selected.
  • the effect of elution volume on the elution rate is shown in Figure 1.
  • Ginkgolide is easily soluble in a solvent such as ethanol or ethyl acetate, but is insoluble in a solvent such as water or n-hexane. Therefore, only a solvent having a suitable polarity is used as a crystallization solvent.
  • the crystallized amount of n-hexane-ethyl acetate mixed solvent is less than 30% ethanol solvent precipitation crystal amount.
  • Solvent addition amount times 4 6 8 10 Heating dissolution, no dissolution, dissolution, complete dissolution, complete dissolution, complete crystal amount (g) 2.3 3.5 3.3 2.2 The amount of crystals precipitated in 10% ethyl acetate solvent was less than 30% ethanol solvent.
  • the crystallization solvent is selected from 5 to 8 times the amount of 30% ethanol.
  • the following is an example of the preparation of ginkgolides by the method of the present invention.
  • Ginkgo biloba leaf powder 50kg, add 65% ethanol and reflux for 3 times (10, 8, 6 times), 1.5 hours each time, combine the extract, filter, concentrate under reduced pressure, add 0.05% methionine, stir and dissolve, use
  • the pH of the citric acid solution was adjusted to 4 to 5, and the concentration was continued, and the mixture was placed at a low temperature and filtered.
  • extract with equal amount of n-hexane, extract with equal amount of ethyl acetate, and finally extract with water and saturated sec-butanol-ethyl acetate mixed solvent pass through polyamide (30 ⁇ 60 mesh) resin column, elute with water first, continue Elution with 30% ethanol followed by 70% ethanol.
  • Ginkgo biloba leaf powder 200kg, add 6 times 80% ethanol and reflux for 3 times, each time for 1.5 hours, combine the extract, filter, the filtrate is reduced under reduced pressure to ethanol to alcohol-free, add 0.05% methionine to dissolve and dissolve, use ⁇
  • the pH of the citric acid solution was adjusted to 4 to 5, and the concentration was continued, and the mixture was placed at a low temperature and filtered. It is first extracted with n-hexane, extracted with ethyl acetate, and finally extracted with a saturated sec-butanol-ethyl acetate mixed solvent, and passed through a polyamide (30-60 mesh) resin column, first eluted with 30% ethanol, followed by 70.
  • the ethanol was eluted, and the eluent was combined and concentrated under reduced pressure.
  • the filtrate is further concentrated, ethanol is added, crystals are allowed to stand still, filtered, and dried to obtain crystal II (mainly ginkgolides A, B, C); the filtrate is added to medicinal charcoal, stirred and adsorbed , Filtration, concentration, adding ethanol, allowing to cool, crystallizing, filtering, drying, to obtain crystal III (mainly ginkgolides A and B); concentrate the filtrate, pass the medicinal carbon-silica gel (1:1)
  • the column was first eluted with 2 times 30% ethanol, and then eluted with 4 times 70% ethanol.
  • the crystals were uniformly mixed to obtain 362.8 g of ginkgolides, and the HPLC content was 96.8%, wherein the ginkgolide (C 15 H 18 0 8 ) was 31.2%, and the ginkgolide A (C 20 H 24 O 9 ) It was 28.8%, ginkgolides B (C 2 oH 24 Oio) was 28.2%, and ginkgolides C (C 20 H 24 O u ) was 8.6%.
  • Ginkgo biloba leaf powder 200kg, add 8 times 75% ethanol and reflux for 3 times, each time for 1.5 hours, combine the extract, filter, the filtrate is reduced under reduced pressure to ethanol to alcohol-free, add 0.05% methionine to dissolve and dissolve, use ⁇ The pH of the citric acid solution was adjusted to 4 to 5, and the concentration was continued, and the mixture was placed at a low temperature and filtered. First, extract with n-hexane, extract with ethyl acetate, and finally extract with water and saturated sec-butanol-ethyl acetate mixed solvent.
  • the pH of the citric acid solution was adjusted to 4 to 5, and the concentration was continued, and the mixture was placed at a low temperature and filtered. It is first extracted with petroleum ether, and the aqueous phase is extracted with ethyl acetate. Finally, it is extracted with a saturated sec-butanol-ethyl acetate mixed solvent, and passed through a polyamide (30-60 mesh) resin column, and eluted with 30% ethanol.
  • the crystals were uniformly mixed to obtain 350.6 g of ginkgolides, and the HPLC content was 97.4%.
  • bilobalide (CisHigOg) was 40.0%
  • ginkgolides A (C 20 H 24 O 9 ) was 22.5%
  • ginkgolides B (C 20 H 24 O 10 ) was 27.2%
  • ginkgolides C (C 2 ) oH 24 Oii ) is 10.3%.
  • Ginkgo biloba leaf powder 200kg, add 8 times the amount of 50% acetone and reflux for 3 times, each time for 1.5 hours, combine the extract, filter, the filtrate is reduced to recover acetone, add 0.05% methionine, stir and dissolve, adjust with citric acid solution
  • the pH is adjusted to 4 ⁇ 5, the concentration is continued, the temperature is lowered, and the solution is filtered. It is extracted with petroleum ether, and the aqueous phase is extracted with ethyl acetate. Finally, it is extracted with water and saturated sec-butanol-ethyl acetate mixed solvent.
  • Ginkgo biloba leaf powder 200kg, add 8 times 70% ethanol to the micro boiling boiling extract 3 times, each time 1.5 hours, combine the extract, filter, the filtrate is reduced to recover acetone, add 0.05% methionine, stir and dissolve, use ⁇
  • the pH of the citric acid solution was adjusted to 4 to 5, and the concentration was continued, and the mixture was placed at a low temperature and filtered. It is extracted with petroleum ether, and the aqueous phase is extracted with ethyl acetate. Finally, it is extracted with water and saturated sec-butanol-ethyl acetate mixed solvent.
  • the polyamide resin (30 ⁇ 60 mesh) resin column is eluted with 30% ethanol. The extract was eluted with 70% ethanol, and the mixture was evaporated.
  • the extraction and separation and purification method used in the present invention can obtain a relatively high purity component with relatively fixed ginkgolides, wherein citrus lactone (CisHigOg) 25.0 ⁇ 50.0 ginkgolides A (C 20 H 24 O 9 20.0 ⁇ 45.0 Ginkgolide B (C 20 H 24 Oio) 10.0 ⁇ 30.0 Ginkgolide C ( C 20 H 24 Oii ) 5.0 ⁇ 15.0 , and bilobalide, ginkgolides, ginkgolides 8, ginkgolides The total amount of C is greater than 95%.
  • the sub-test method and test results of the ginkgolide of the invention are as follows:
  • ginkgolide of the present invention was dissolved in 2 ml of ethanol, and then diluted with water to 50 ml to prepare a test solution.
  • the corresponding reagent is blank, and the absorbance at 595 nm is less than 0.05.
  • the detection methods that can be used are:
  • Tannin Take the protein test item for the test solution lml, add 1 drop of dilute acetic acid, add 5 drops of gelatin sodium chloride test solution, shake well, leave for 10 minutes, no turbidity or precipitation.
  • Resin Take a protein test item for 5 ml of the test solution, add 1 drop of hydrochloric acid, and let stand for 30 minutes. No resinous substance is precipitated.
  • Oxalate Take the protein test item for 2ml of the test solution, adjust the pH value to 1 ⁇ 2 with dilute hydrochloric acid, filter it, adjust the pH value of the filtrate with ammonia water to 5 ⁇ 6, add 3 drops of 3% calcium chloride solution, place After 10 minutes, no turbidity or precipitation occurred.
  • Ethanol, ethyl acetate and n-hexane both ethanol and ethyl acetate are less than 0.5%, and n-hexane is less than 0.029%.
  • Residual resin less than 0.0015% of caprolactam.
  • Total ginkgolic acid Contains less than 5ppm total ginkgolic acid.
  • Macromolecules and polymers Determination of residual macromolecules and polymers by gel chromatography. As a result of the LC-MS method, no macromolecules and polymers having a molecular weight of more than 1,000 were obtained. test methods:
  • test solution About 25 mg of ginkgolides of the present invention was taken, dissolved in 2 ml of ethanol, and then sodium chloride injection was added to prepare a solution containing 0.2 mg per ml.
  • Fingerprint Determined by HPLC and recorded for 60 minutes. According to the similarity evaluation system of traditional Chinese medicine chromatographic fingerprint, the four common peak similarities are greater than 0.95.
  • m) content determined by HPLC method, calculated as dry product, containing clarinol (C 15 H 18 0 8 ) should be 25.0% ⁇ 50.0%, ginkgolides A (C 20 H 24 O 9 ) should be 20.0% ⁇ 45.0%, Ginkgolide B (C 20 H 24 O 10 ) should be 10.0 ⁇ 30.0 Ginkgolide C (C 20 H 24 Oii ) should be 5.0% ⁇ 15.0%, and ginkgolide, ginkgolides, ginkgo The total amount of ester ginkgolide C is greater than 95%.
  • the determination method is the same as the following conditions:
  • the octadecylsilane-bonded silica gel is used as a filler; methanol-tetrahydrofuran-water (25:10:65) is used as the mobile phase;
  • the separation of the ginkgolide peak from the ginkgolides C peak should be greater than 1.5.
  • test solution 20 mg of ginkgolides of the present invention was accurately weighed, dissolved in 2 ml of ethanol, and added to 100 ml of 0.9% sodium chloride injection.
  • Examination method Take 3 rabbits, and within 15 minutes after measuring their normal body temperature, inject 5 ml of the rabbit's body weight into the ear vein slowly into the test solution, measure the body temperature once every 30 minutes, and measure 6 times.
  • the increase in body temperature should be less than 0.6 V, and the sum of the body temperature of the three rabbits is less than 1.3 °C.
  • the inventors conducted research and explanation of macromolecules and polymers on the above-mentioned contents to demonstrate the technical effects of the present invention.
  • the following tests are intended to further illustrate and explain the present invention, but do not limit the invention.
  • Ultrapure water is produced using the Millipore-Q ultrapure water system.
  • a 0.71% (containing 0.02% sodium azide) sodium sulfate solution was selected as the mobile phase.
  • a universal detector refractive index detector is used, which has a good response to substances with different refractive index differences.
  • test solution Preparation of the test solution: Weigh accurately 10 mg of the ginkgolide of the present invention into a 10 ml volumetric flask, add an appropriate amount of 1% acetic acid to dissolve, add the mobile phase to the mark, and shake well to obtain a test solution.
  • ginkgolides A molecular weight 408.5
  • ginkgolides B molecular weight 424.4
  • ginkgolides C molecular weight 440.4
  • the composition is completely consistent. Since the molecular weight range of the test is between 400 and 3000, the test is not carried out on the ginkgolide. No substance with a molecular weight greater than 700 is detected in the ginkgolide of the present invention, and other substances of different molecular weight may be the presence of other impurities.
  • the molecular weight of different components in ginkgolides by LC-MS indicates that the product does not contain macromolecules or polymers.
  • the LC-MS spectrum of ginkgolides is shown in Figures 3 ⁇ 4.
  • Preparation of reference solution Take appropriate amount of ginkgo biloba reference substance, accurately weighed, add methanol to make 5 g of solution per lml as reference solution; take appropriate amount of total ginkgolic acid reference substance, accurately weigh, add methanol A solution containing 100 per 1 ml was used as a control solution for positioning.
  • Preparation of the test solution Take 5 g of the ginkgolide of the present invention, accurately weighed, placed in a flask, add 50 ml of n-hexane, and heat to reflux for 2 hours, take out, let cool, filter, and then wash the residue with a small amount of n-hexane. The filtrate and the washing liquid were combined, and evaporated to dryness on a water bath. The residue was dissolved in methanol and diluted to 2 ml, and shaken to obtain a test solution.
  • Determination method Precision extraction of the test solution, the reference solution and the positioning control solution for each 20 ⁇ 1, into the liquid chromatograph, calculate the total peak area of the corresponding chromatographic peak of the test solution and the total ginkgolic acid reference substance, to the new ginkgo The total ginkgolic acid content was calculated by the acid standard external standard method, and the total ginkgolic acid was less than 5 ppm.
  • Preparation of blank sample solution Take 50ml of petroleum ether (60 ⁇ 90°C), place in a conical flask, reflux for 2 hours, evaporate on a water bath, dissolve the residue with methanol and dilute to 2ml, shake well, as a blank solution ( 1 ).
  • test solution Take 5 g of the ginkgolide of the present invention, accurately weigh it, place it in a flask, precisely add 50 ml of n-hexane, reflux for 2 hours, take it out, let it cool, filter it, and then wash the residue with a small amount of n-hexane. 1 time, combine the filtrate and the washing solution, set It was evaporated to dryness on a water bath, and the residue was dissolved in methanol and diluted to 2 ml, and shaken to obtain a test solution (2).
  • the test results show that: Sample 1 (petroleum ether) is used to prepare the sample, and the chromatographic peak is detected in the blank solution.
  • the peak area is basically the same as the chromatographic peak area detected by the test solution, indicating that the blank test has interference;
  • the sample was prepared, and the chromatographic peak was not detected in the blank solution and the test solution. Therefore, the inventors intend to use the second method to do the sample recovery test to verify the feasibility of the second method.
  • Preparation of the test solution Take 5 g of the ginkgolide of the present invention, accurately weigh it, place it in a flask, precisely add 0.2 ml of the total ginkgolic acid reference solution with a concentration of 1.032 mg/ml, and then precisely add 50 ml of n-hexane, reflux. After 2 hours, it was allowed to cool, filtered, and the residue was washed with a small amount of n-hexane. The filtrate and the washing liquid were combined, and evaporated to dryness. The residue was dissolved in methanol and diluted to 2 ml, and shaken to obtain a test solution.
  • Preparation of the reference solution 0.2 ml of the total ginkgolic acid reference solution with a concentration of 1.032 mg/ml was accurately weighed, placed in a 2 ml volumetric flask, diluted with methanol to the mark, and shaken to prepare a reference solution.
  • Assay Accurately draw 20 ⁇ 1 of the test solution and the reference solution, inject into the liquid chromatograph, and record the chromatogram.
  • RESULTS The total ginkgolic acid peak was detected at the corresponding position of the chromatogram corresponding to the total ginkgolic acid reference. From the peak area, the peak area of the test solution was the same as that of the reference solution, indicating better recovery. .
  • Table 8 The test results are shown in Table 8.
  • Preparation of reference solution Take appropriate amount of ginkgo biloba reference substance, accurately weighed, add methanol to make a solution containing 5 ⁇ ⁇ per lml as a reference solution. Take the appropriate amount of total ginkgolic acid reference substance, accurately weighed, add methanol to make a solution containing 100 ⁇ ⁇ per 1ml, as a positioning control solution.
  • test solution Take 5g of ginkgolides of the invention, accurately weighed, weighed 6 parts, placed in separate flasks, added 50ml of n-hexane, refluxed for 2 hours, allowed to cool, filtered, and the residue was used in small amounts. The alkane was washed, and the filtrate and the washing liquid were combined, and evaporated to dryness on a water bath. The residue was dissolved in methanol and diluted to 2 ml, and shaken to obtain a test solution.
  • test results show that there is no ginkgolic acid in the ginkgolides of the present invention.
  • test solution Take 5 g of ginkgolides of the present invention, accurately weighed, and weigh 3 parts, respectively, and place them in separate flasks, and add 1.6 ml, 2.0 ml, 2.4 of concentration of 3.04 g/ml ginkgo acid reference solution respectively. Ml, add 50ml of n-hexane separately, reflux for 2 hours, let cool, filter, the residue is washed with a small amount of n-hexane, the filtrate and washing solution are combined, evaporated on a water bath, dissolved in methanol and diluted to 2ml, shake Evenly, as a test solution.
  • Preparation of reference solution Accurately weigh the lycopene reference substance, ginkgolides A reference substance, ginkgolides B reference substance, ginkgolides C reference substance, and add methanol to make 0.15mg, 0.12 per 1ml respectively. A mixed solution of mg, 0.1 mg, and 0.1 mg was shaken as a reference solution.
  • test solution Take 6 mg of the ginkgolide of the present invention, accurately weigh it, add 10 ml of methanol to a 10 ml volumetric flask, dilute to the mark with a mobile phase, shake well, and use as a test solution.
  • Assay Separately draw 20 ⁇ l of each of the reference solution and the test solution, and inject into the liquid chromatograph to record the chromatogram for 60 minutes.
  • the similarity between the fingerprint of the test sample and the control fingerprint is greater than 0.95.
  • the peak 2 is ginkgolides (:, peak 3 is bilobalide, peak 4 is ginkgolides ⁇ , peak 5 is ginkgolides ⁇ , 4 characteristic peaks of effective parts in this product)
  • peak 3 is bilobalide
  • peak 4 is ginkgolides ⁇
  • peak 5 is ginkgolides ⁇
  • the similarity of the fingerprints of 10 batches of ginkgolides was greater than 0.95.
  • Preparation of the test solution Take about 0.1 g of the ginkgolide of the present invention, accurately weigh it, place it in an empty bottle, and precisely add 5 ml of N, N-dimethylformamide to dissolve and seal it as a test solution.
  • Preparation of the reference solution Take the appropriate amount of ethanol, ethyl acetate and n-hexane, accurately weighed, and quantitatively dilute with N, N-dimethylformamide to make a solution containing about 30 per lml, and accurately measure 5 ml. Place the top empty bottle and seal it as a reference solution.
  • Determination method 6% cyanopropyl phenyl-94% dimethylpolysiloxane (or similar polarity) as a fixing solution, the initial temperature is 50 ° C, maintained for 3 minutes, at 40 ° C per minute The temperature was raised to 160 ° C for 3 minutes; the inlet temperature was 20 CTC; the detector temperature was 250 ° C; the headspace bottle equilibrium temperature was 80 ° C, and the equilibration time was 30 minutes. Take the reference solution into the headspace For example, the separation between the peaks of each component should meet the requirements; then the sample solution and the reference solution are separately injected into the headspace, and the chromatogram is recorded, and the peak area is calculated according to the external standard method.
  • Both ethanol and ethyl acetate are less than 0.5%, and n-hexane is less than 0.029%.
  • Preparation of reference solution Take N, N-dimethylacetamide in an appropriate amount, accurately weighed, make a solution containing about 0.1 mg per 1 ml of water, shake well, as an internal standard solution; accurately weigh the amount of caprolactam, add The internal standard solution was made into a solution containing about 37.5 ⁇ g of caprolactam per 1 ml as a reference solution.
  • test solution Take about 2.5g of ginkgolides of the invention, accurately weighed, placed in a conical flask, add 25ml of n-hexane, reflux for 2 hours, take out, let cool, filter, wash with a small amount of n-hexane The filtrate and the washing liquid were combined, evaporated to dryness in a water bath at 60 ° C, and the residue was dissolved in 1 ml of the internal standard solution to prepare a test solution.
  • Determination method Polyethylene glycol (PEG-20M) (or similar polarity) as a fixing solution; starting temperature is 100 ° C, maintained for 2 minutes, heated to 160 ° C at a rate of 40 ° C per minute, maintained After 3 minutes, the temperature was raised to 220 ° C at a rate of 40 ° C for 7 minutes; the inlet temperature was 24 CTC; and the detector temperature was 260 ° C. Precisely measure the solution of the reference solution and the solution of the test solution by 1 ⁇ l each, and inject into the gas chromatograph to record the chromatogram. According to the internal standard method, the ratio of the area of the caprolactam peak to the peak area of the internal standard in the test solution is smaller than the ratio of the caprolactam peak area to the internal standard peak area in the reference solution.
  • Preparation of the reference solution accurately weigh the ginsin reference substance, ginkgolides A reference substance, ginkgolides B reference substance, ginkgolides C reference substance, and add methanol to make 0.15mg, 0.12 per lml respectively.
  • a mixed solution of mg, O.lmg, and O.lmg was shaken and used as a reference solution.
  • test solution Take 6mg of ginkgolides of the invention, accurately weighed, add 1ml of methanol to dissolve in 10ml volumetric flask, add mobile phase to dilute to the mark, shake well, as the test solution.
  • Determination method Precisely measure the reference solution 10 ⁇ 1 , 20 ⁇ ⁇ and the test solution 10 ⁇ 20 ⁇ 1, into the high performance liquid chromatograph, record the chromatogram, and calculate the logarithmic equation by the external standard two-point method.
  • the ginkgolide (C 15 H 18 0 8 ) was 42.5%, the ginkgolides A (C 20 H 24 O 9 ) was 25.4%, and the ginkgolides B (C 20 H 24 Oio) was 18.7%.
  • Ginkgolide C (C 20 H 24 Oii ) was 10.6%, and the total amount of ginkgolide, ginkgolides A, ginkgolides 8, and ginkgolides C was 97.2%.
  • test solution The ginkgolide of the present invention was added, and sodium chloride injection was added to prepare a solution containing 0.2 mg per 1 ml.
  • mice weighing 17 ⁇ 20g were injected into the tail vein of the mice for 0.5ml, and there was no death within 48 hours.
  • test solution 10 mg of ginkgolides of the present invention was added to 50 ml of 0.9% sodium chloride injection, and shaken.
  • Examination method Take 3 rabbits, and within 15 minutes after measuring their normal body temperature, inject 5 ml of the rabbit's body weight into the ear vein slowly into the test solution, measure the body temperature once every 30 minutes, and measure 6 times. 5 ⁇ The body temperature rise is less than 0. 6 ° C, and the total increase in body temperature of the three rabbits is less than 1. 3 ° C.
  • Ginkgolide based on terpene lactone l-10mg/ml
  • the preparation method is:
  • Protein Take 2 ml of ginkgolides injection and add 50 ml of water to prepare a test solution. Weigh about 50mg of Coomassie Brilliant Blue G-250, dissolve it in 25ml of ethanol, add 85% (w/v) of phosphoric acid 50ml, dilute with water to 500ml, shake well, filter, accurately measure 5ml of filtrate into test tube, then Add 1 ml of the test solution, shake it, and place it for 3 min. The same method is used as a blank, and the absorbance is measured at a wavelength of 595 nm, and the absorbance of the test solution is less than 0.05.
  • Tannin Take the protein test item for the test solution lml to add 1 drop of dilute acetic acid, add 5 drops of gelatin sodium chloride test solution, shake well, place for 10 minutes, no turbidity or precipitation.
  • test solution 6 ml of ginkgolides injection (prepared as in Example 14) was added, and shaken into 100 ml of a 0.9% sodium chloride injection solution.
  • Preparation of reference solution Accurately weigh the lycopene reference substance, ginkgolides A reference substance, ginkgolides B reference substance, ginkgolides C reference substance, and add methanol to make 0.15mg, 0.12 per 1ml respectively. A mixed solution of mg, 0.1 mg, and 0.1 mg was shaken as a reference solution.
  • Assay Separately draw the reference solution and the test solution for 20 ⁇ M each, inject into the liquid chromatograph, and record the chromatogram for 60 minutes.
  • the similarity between the fingerprint of the test sample and the control fingerprint is greater than 0.95
  • Preparation of reference solution Accurately weigh the lycopene reference substance, ginkgolides A reference substance, ginkgolides B reference substance, ginkgolides C reference substance, and add methanol to make 0.15mg, 0.12 per 1ml respectively. A mixed solution of mg, 0.1 mg, and O.lmg was shaken to prepare a reference solution.
  • test solution Precisely take ginkgolide injection (prepared according to Example 14) lml, add phosphate buffer solution (pH6.5) 14ml, shake well, onto Extrelut-20 column, adsorb for 15 minutes, use Ethyl acetate was eluted with 100 ml. The eluent was collected and evaporated to dryness on a water bath. The residue was dissolved in a mobile phase and transferred to a 10 ml volumetric flask. The mobile phase was diluted to the mark, shaken, and filtered through a 0.45 ⁇ microporous membrane. , as a test solution.
  • Determination method respectively, accurately draw the reference solution 10 ⁇ 1, 20 ⁇ 1, the test solution 15 ⁇ 1, inject high-performance liquid chromatograph, record the chromatogram, calculate the ginkgolide, ginkgolides, ginkgo by the logarithmic equation of the external standard two-point method The content of lactone oxime and ginkgolides C.
  • Ginkgolide injection contains 5.15 mg of ginkgo lactone per 1 ml.
  • Ginkgolide injection per 1ml of ginkgo lactone with ginkgolide (C 15 H 18 0 8 ), ginkgolides A (C 20 H 24 O 9 ), ginkgolides B (C 2 oH 24 Oio
  • the total amount of ginkgolides C (C 20 H 24 O u ) is from 1 to 10 mg, preferably from 4.25 to 5.75 mg.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Botany (AREA)
  • Biotechnology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Medical Informatics (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Cardiology (AREA)
  • Immunology (AREA)
  • Diabetes (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

一种银杏内酯的提取分离方法,银杏叶经提取、萃取、过柱、析晶、混晶步骤所得银杏内酯,其中含白果内酯(C15H18O8)25.0%~50.0%、银杏内酯A(C20H24O9)20.0%~45.0%、银杏内酯B(C20H24O10)10.0%~30.0%、银杏内酯C(C20H24O11)5.0%~15.0%,且白果内酯、银杏内酯A、银杏内酯B、银杏内酯C总量大于95%。

Description

一种银杏内酯的提取分离方法 技术领域
本发明涉及植物提取领域, 具体涉及一种银杏内酯的提取分离方法。
背景技术
自上世纪 60年代开始, 许多国家采用现代分离技术对银杏叶的化学成分进行研究, 经 药理实验和临床验证, 发现银杏叶的多方面生物活性与其所含特定化学成分有关。 德国 Dr. Willar Schwabe首次注册了银杏叶的一种简单提取物,于 1972年申请了专禾 l」(W Schwabe DE 176708和 DE 2117429), 定名为 EGb761, 用于治疗心脑血管疾病和神经系统疾病, 具有显 著疗效, 且无毒副作用, 银杏内酯类化合物 (ginkgolids) 具有强血小板活化因子 (PAF) 拮抗作用。 银杏制剂被列为治疗药物的国家有德国、 法国和中国, 其他国家均用为保健食 品或非处方用药, 美国开发出的银杏保健食品已经获得 FDA批准。
银杏内酯属于萜类化合物, 称为萜类内酯, 由倍半萜内酯和二萜内酯组成, 是银杏叶 中一类重要的活性成分。 白果内酯 (bilobalide) 属倍半萜内酯, 由 R.T.Major于 1967年和 K.Weinges于 1969年分离得到, 目前从银杏叶中发现的唯一的一个倍半萜内酯化合物, 银 杏内酯 A、 B、 C、 M、 J (ginkgolid A、 B、 C、 M、 J) 为二萜内酯化合物, 于 1932年由 S.Furukawa首次从银杏叶中分离出来, 1967年才由 K.Nakanish、 M.Mamyama禾卩 K.Okabe 等人进一步分离和确定其化学结构。从结构上看, 白果内酯类分子骨架由 15个碳原子组成, 具有互相稠合在一起的 4个五元环, 其中有 1个五元碳环, 3个五元内酯碳环, 五元环上连 有 1个天然产物中罕见的叔丁基。 白果内酯有很强的生物活性, 具有促进神经生长的作用, 可防止脑细胞线粒体氧化应激引起的功能改变, 改善老年记忆功能, 防止老年痴呆的发生, 以及防止脑、脊髓神经脱髓鞘作用, 其神经营养、神经保护作用比银杏内酯强。银杏内酯 B 有抗炎、 抗休克、 保护心脑血管、 治疗急性胰腺炎等作用。 而银杏内酯类化合物的分子骨 架由 20个碳原子组成, 具有 6个五元环, 其中有 2个五元碳环, 3个五元内酯环, 1个四 氢呋喃环, 两个五元碳环以螺环的形式连接在一起, 其余的环以稠合的方式连接, 形成一 个刚性茏状的特殊立体化学结构。 银杏内酯分子中均具有天然产物中罕见的叔丁基。 银杏 内酯包括二萜类和倍半萜类内酯, 二萜类内酯主要有银杏内酯 A 、 B 、 C 、 J、 M等, 半 萜类内酯有白果内酯。
自 20世纪 70年代初发现了 PAF后, 药理学家对银杏内酯进行了研究, 明确银杏萜内 酯是强血小板活化因子拮抗剂, 免疫系统、 中枢神经系统、 缺血损伤有保护作用, 并有抗 休克、 抗过敏及抗炎作用。 银杏内酯八、 B、 C、 M、 J结构差别在于含有的羟基数目和羟基 连接的位置不同。 银杏内酯均为强血小板活化因子拮抗剂, 是银杏叶中特殊生理活性的关 键成分。
Figure imgf000004_0001
银杏内酯 A结构式 银杏内酯 B结构式 分子式: C2QH2409 分子量: 408.4 分子式: C2QH2401Q分子量
Figure imgf000004_0002
银杏内酯 C结构式 白果内酯结构式 分子式: C2QH24Ou 分子量: 440.4 分子式: C15H1808分子 326.3 银杏内酯对血小板活化因子 PAF受体有强大的特异性抑制作用,其中银杏内酯的 抗 PAF活性最高。 PAF是血小板和多种炎症组织分泌产生的一种内源性磷脂, 是迄今 发现的最有效的血小板聚集诱导剂, 它与许多疾病的产生、 发展密切相关。 而银杏内 酯目前被认为是最有临床应用前景的天然 PAF受体拮抗剂,其拮抗作用活性与化学结 构密切相关。 当内酯结构中 R3为羟基或羟基数目增多时, 对 PAF的拮抗活性减弱, 而当 R2为羟基且 R3为 H时, 则活性显著增强, 其中以银杏内酯 B对 PAF产生的拮 抗作用最强。
银杏内酯的提取及纯化方法较多, 主要有: 溶剂萃取法、 柱提取法、 溶剂萃取- 柱提取法、 超临界提取法及色谱或柱层析纯化法等。 这些方法都不能有效地分离出高 含量的银杏内酯, 且银杏内酯各组成比例不确定, 因此, 在临床使用上药效各不相同, 由于其含量不高, 也存在一定的安全风险, 无完整的药理毒理及临床试验数据, 因此, 上述方法均处于试验阶段, 未实施于药品生产过程, 在中国虽有银杏内酯注射液相关 专利, 但其组成均与本发明不同, 经 ICH成员国多家官方网站检索, 迄今尚无其它银 杏内酯注射剂产品上市。银杏内酯类成分的测定目前多采用 HPLC-UV法、 HPLC -MS 和 HPLC-ELSD法, 这些方法仅能对银杏内酯各成分的含量进行测定, 由于缺乏对其 产品中不良反应物质的严格控制, 并不能真实的反映出药品的质量特性, 不形成一个 完善的药品质量控制体系, 尽管银杏内酯的发明专利很多, 由于控制方法过于简单, 银杏内酯组成比例不定,都无法制成中药注射剂,不能保证临床疗效和应用的安全性。 尽管在中国、 德国等国家有诸多关于银杏内酯的专利和报道, 但本发明的工艺过 程、 质量控制技术和临床适应症与其它发明专利有截然不同之处, 尤其是不同的分离 纯化工艺得到的萜类内酯的成分各不相同, 迄今为止, 尚无 4种组分(银杏内酯 A、 B、 C和白果内酯) 比例固定的提取银杏内酯有效部位组合物的工艺报道, 也没有对银杏 内酯中 4种组分指纹图谱控制技术及可能残留的大分子、 蛋白质检查方法的报道。 本 发明制备的银杏内酯注射液已获得国家食品药品监督管理局批准文号, 国药准字: Z20110035 , 是目前国际上第一个银杏有效部位注射剂, 产品结构清晰、 明确。
发明内容
本发明所解决的技术问题是提供一种银杏内酯的提取分离方法, 该提取分离方法可得 到组分固定的银杏内酯。 该方法步骤如下:
A、 提取: 粉碎银杏叶, 加有机溶剂提取, 浓縮提取液中加抗氧化保护剂, 用 pH调节 剂调 pH值至 4〜5, 浓縮、 冷藏。
其中, 提取有机溶剂为乙醇、丙酮或乙酸乙酯, 浓度为 50~80%Wv, 用量为 5~12倍量, 最佳用量 6~10倍;
提取方法为: 回流提取或煎煮提取。
1 ) 回流提取:
50~80 v/v 乙醇: 提取温度 75~85°C, 提取次数 2~3次, 时间每次 1~2小时;
50~80%Wv丙酮: 提取温度 45~55°C, 提取次数 2~3次, 时间每次 1~2小时;
50~80%Wv乙酸乙酯: 提取温度 55~65°C, 提取次数 2~3次, 时间每次 1~2小时; 真空度: -0.02~0.08MPa
优选提取条件为: 提取 3次, 每次 1.5小时; 乙醇浓度宜选择 65%Wv; 丙酮浓度宜选 择 50% v/v; 乙酸乙酯浓度宜选择 60% v/v。
2) 煎煮提取:
50~80%v/v乙醇: 提取温度 80~90°C, 提取次数 2~3次, 时间每次 1~2小时;
50~80%v/v 丙酮: 提取温度 50~60°C, 提取次数 2~3次, 时间每次 1~2小时;
50~80%Wv乙酸乙酯: 提取温度 60~65°C, 提取次数 2~3次, 时间每次 1~2小时; 优选提取条件为: 提取 3次, 每次 1.5小时; 乙醇浓度宜选择 65%Wv; 丙酮浓度宜选 择 50% v/v; 乙酸乙酯浓度宜选择 60% v/v。
提取液在浓縮过程中受热后银杏内酯易分解, 需加入保护剂和 pH调节剂。加入保护剂 是为了防止银杏内酯受热氧化分解, 可用的抗氧化保护剂主要有中性氨基酸, 包括: 丝氨 酸、 蛋氨酸、 天冬酰胺、 苏氨酸中至少一种, 优选蛋氨酸。
pH调节剂主要是有机弱酸, 包括: 枸橼酸、 苹果酸、 山梨酸中至少一种, 优选枸橼酸 用于调 pH值, 是利用其弱酸性作为稳定剂, 防止银杏内酯在碱性条件下开环。 原因是银杏 内酯结构为 5元环, 在弱酸性条件下稳定, 枸橼酸为弱酸, 可以防止银杏内酯在碱性条件 下开环。
步骤 A冷藏的目的是为了使油水分离, 以除去水中脂溶性杂质。
B、 萃取: 将浓縮液先用正己烷或石油醚萃取 2~3次(优选等体积的正己烷或石油醚萃 取), 水相用脂溶性溶剂萃取 4~5次(优选等体积的乙酸乙酯萃取), 再用水饱和仲丁醇(正 丁醇) -乙酸乙酯混合溶剂萃取 4~5次(优选等体积水饱和仲丁醇-乙酸乙酯混合溶剂萃取), 合并有机相萃取液, 减压浓縮。
其中, 先用正己烷或石油醚萃取是为了除去叶绿素、 银杏酚酸等杂质。
再用脂溶性溶剂萃取银杏内酯, 可用的脂溶性溶剂有乙酸乙酯、 甲酸乙酯、 丙酮、 丁 酮中的至少一种。
银杏萜类内酯易溶于乙酸乙酯, 银杏黄酮在乙酸乙酯中溶解性相对较低, 在热水中和 含水醇中溶解度较大, 故可用乙酸乙酯萃取银杏内酯, 将其与银杏黄酮类化合物分离, 分 离得的银杏内酯粗品可进一步用活性炭、 硅胶或树脂柱吸附层析, 进一步除去杂质, 然后 在含水醇中结晶即可得到比较纯的银杏内酯。
C、过柱:萃取液过聚酰胺(30〜60目)树脂柱,依次用 1~5BV水、 3-5BV 20 ~40 v/v 乙醇、 2-3BV 60 ~90 v/v乙醇洗脱,控制洗脱液流速为 2~3BV/h;合并洗脱液,减压浓縮, 干燥;
D、析晶: 将过柱后的干燥物加入沸水中, 搅拌溶解, 冷却, 上清液用等体积乙酸乙酯、 甲酸乙酯或丙酮萃取 4~5次, 合并萃取液, 减压浓縮, 蒸干, 加 5~8倍量 30%~50% Wv乙 醇加热搅拌溶解, 过滤, 冷藏, 析出晶体, 滤过, 滤液 I备用, 晶体用 30%~50% Wv乙醇 洗涤, 减压干燥, 得到晶体 I。
滤液 I浓縮至含醇量为 10%~30% v/v,冷藏,析出晶体,滤过,滤液 II备用;用 30%~50% Wv乙醇洗涤, 减压干燥, 得晶体 II。
浓縮滤液 II, 加 0.1~0.5% (g/L)活性炭吸附, 过滤, 滤液浓縮至含醇量为 10~30%v/v, 冷藏, 析出晶体, 滤过, 滤液 III备用; 晶体用 30%~50% Wv乙醇洗涤, 减压干燥, 得晶体 III。
滤液 III浓縮, 过活性炭 -硅胶 (体积比 1:1~1:3) 柱, 先用 30%~50% v/v乙醇洗脱, 再 用 70%~90% v/v乙醇洗脱, 收集洗脱液浓縮至含醇量为 10%~30% v/v, 冷藏析晶, 滤出晶 体, 滤液 IV备用; 晶体用 30%乙醇洗涤, 减压干燥, 得晶体 IV。
浓縮滤液 IV, 冷藏, 析出晶体, 滤过, 晶体用 30% v/v乙醇洗涤, 减压干燥, 得晶体 V。 根据 HPLC对母液中残余银杏内酯的检测结果, 考虑是否对滤液 IV进行结晶。
E、 混晶: 将晶体 I、 II、 III、 IV、 V混合均匀, 粉碎, 得到类白色晶体组合物, 该晶 体组合物有效部位 (白果内酯、 银杏内酯 、 银杏内酯8、 银杏内酯 C之和) 的 HPLC含 量大于 95%。 采用本发明取分离方法得到的银杏内酯的参数如下:
a) 性状: 类白色或微黄色结晶性粉末。 在乙酸乙酯中易溶, 在甲醇、 乙醇中溶解, 在 水中几乎不溶。
b) 水分: 小于 5.0%。
c) 蛋白质: 在 595nm波长处吸光度小于 0.05。
d) 鞣质、 树脂、 草酸盐、 钾离子: 不得检出。
e)残留溶剂:乙醇和乙酸乙酯均小于 0.5%,正己烷小于 0.029%,己内酰胺小于 0.0015%。 0 总银杏酸: HPLC法测定总银杏酸含量小于 5ppm。
g) 大分子和聚合物: 凝胶色谱法测定无残留大分子和聚合物。 LC-MS法测定无分子 量大于 1000的大分子物质和聚合物。
h) 重金属: 小于 10ppm。
i) 砷盐: 小于 2ppm。
k) 异常毒性: 制成每 lml中含 0.2mg的溶液, 符合静脉注射法给药。
1) 指纹图谱: HPLC法测定, 以白果内酯对照品、 银杏内酯 A对照品、 银杏内酯 B对 照品、 银杏内酯 C对照品为参照物, 按中药色谱指纹图谱相似度评价系统, 四个共有峰相 似度大于 0.95。
m) 含量: HPLC 法测定, 按干燥品计算, 含白果内酯 (C15H1808) 25.0 ~50.0 银 杏内酯 A (C20H24O9) 20.0 ~45.0 银杏内酯 B (C20H24O10) 10.0 ~30.0 银杏内酯 C (C20H24Oii ) 5.0 ~15.0 , 且白果内酯、 银杏内酯 、 银杏内酯8、 银杏内酯 C总量大于 95%。
附图说明
图 1 洗脱体积对洗脱率的影响。
图 2 乙醇流速对洗脱率的影响。
图 3 银杏内酯 LC-MS图谱 (分子』齔 400 1000)。
图 4 银杏内酯 LC-MS图谱 (分子』齔 400 3000)。
图 5 银杏内酯对照指纹图谱;
共有峰中峰 2: 银杏内酯 C, 峰 3: 白果内酯, 峰 4: 银杏内酯 A, 峰 5: 银杏内酯^ 具体实施方式
以下为本发明银杏内酯制备方法中的关键条件筛选试验。
一、 萃取方案筛选试验
方法一: 将浓縮液先用等体积的正己烷萃取 2~3次, 水相用 8倍量的丁酮 -丙酮(4: 6) 在温热下提取 5次, 合并萃取液, 减压浓縮。
方法二:将浓縮液先用等体积的正己烷萃取 2~3次,水相再用等体积乙酸乙酯萃取 4~5 次, 用等量水饱和的仲丁醇-乙酸乙酯(7: 3)萃取 4~5次, 合并萃取液, 减压浓縮, 干燥。 以上两种萃取分离纯化方法筛选试验, 用 HPLC-ELSD法分别测定两种试验中银杏内 酯的总量, 试验结果见表 1。
表 1 萃取方案筛选试验结果
Figure imgf000008_0001
方法二所得总内酯含量均较高, 乙酸乙酯和仲丁醇为安全性极高的溶剂, 因此, 选用 方法二作为萃取离纯化工艺。
二、 层析条件筛选试验
由于萃取液中尚含有大量银杏黄酮类物质及其它杂质, 要得到纯度极高银杏内酯, 必 须将黄酮与银杏内酯有效的分离, 目前普遍采用的分离方法包括聚酰胺树脂柱分离法、 氧 化铝柱层析法和硅胶柱层析法, 发明人对比研究过程及结果如下:
方法一: 将萃取液过聚酰胺树脂柱, 先用 2~3倍量的 30%乙醇洗脱, 继用 70%乙醇洗 脱, 洗脱速度为 2BV/h, 浓縮洗脱液, 蒸干。
方法二: 将萃取液过酸性氧化铝柱, 将萃取液与等量氧化铝混合, 烘干, 干法上柱, 用 4~6倍量的乙酸乙酯洗脱, 洗脱速度为 2BV/h, 浓縮洗脱液, 蒸干。
方法三: 将萃取液过硅胶柱, 将萃取液与等量柱层析硅胶混合, 烘干, 干法上柱, 先 用用 4~6倍量的石油醚-乙酸乙酯 (2:1 ) 洗脱, 洗脱速度为 2BV/h, 再用正己烷-乙酸乙酯 (5: 1 ) 洗脱, 洗脱速度为 2BV/h, 浓縮洗脱液, 蒸干。
用 HPLC-ELSD法分别对三种试验中银杏内酯的总量进行测定, 试验结果见表 2。
柱层析试验结果
Figure imgf000008_0002
由上可见, 采用聚酰胺树脂柱得到的银杏内酯含量较高, 分离效果较好。
聚酰胺树脂对黄酮有较好的吸附作用, 因此, 可以有效地将银杏内酯和银杏黄酮进行 有效地分离, 对过柱洗脱工艺参数考察。
1、 水洗体积的选择: 蒸馏水洗涤树脂柱能起到很好的除杂作用, 用 5BV 的水洗涤树 脂柱, 流速 l~2BV/h, 流出的颜色由深变浅, 收集水洗液 5BV, 流出液清亮, 检测结果显 示, 水体积达到 3BV时, 柱中的水溶性杂质已经基本干净, 检测不出银杏内酯, 所以选用 3BV的水洗体积。 洗脱体积对洗脱率的影响见图 1。
2、 乙醇洗脱浓度对洗脱效果的影响: 将萃取物分别上不同聚酰胺柱, 吸附 30min, 先 用 3BV水洗, 再分别使用 10%、 30% 40% 50% 70% 90%乙醇洗脱, 流速 lBV/h, 分 别收集乙醇洗脱液, 测定各浓度洗脱液中银杏内酯的量, 随着乙醇浓度的升高, 洗脱量和 洗脱率都随之上升, 但是至 40%的乙醇时洗脱量提升缓慢, 至 90%的乙醇时洗脱量差别不 大, 30%的乙醇洗脱基本上达到最佳洗脱率, 因此, 采用 30%乙醇作为最佳洗脱浓度。
3、 乙醇解析流速的洗脱效果影响: 将萃取物分别上不同聚酰胺柱, 吸附 30min, 先用 3BV水洗, 再用 40%乙醇洗脱, 流速 lBV/h。 为选取较优的乙醇解析流速, 分别以 1、 2、 3、 4、 5BV/h的流速过柱, 洗脱并收集 3BV洗脱液, 测定银杏内酯量。 洗脱流速与解析率 有很大的关联性, 随着流速提高, 解析率增加, 但到 3BV/h时反而下降, 这是速度加快导 致乙醇洗脱液不能很好的与吸附的银杏内酯交换, 因而不能达到很好的洗脱效果。 最佳流 速 2~3BV/h。 乙醇流速对洗脱率的影响见图 2。
三、 析晶条件筛选试验:
虽然过柱、 萃取后提取物中银杏内酯的含量有所增加, 黄酮类物质也得到有效分离, 但银杏内酯的含量尚不能达到注射剂要求, 需进一步结晶纯化。 银杏内酯在乙醇、 乙酸乙 酯等溶剂中易溶, 而在水、 正己烷等溶剂中不溶, 因此只有选用极性合适混合溶剂作为结 晶溶剂。
( 1 ) 30% Wv乙醇溶剂: 取待析晶提取物 10g, 分别加 4、 6、 8、 10倍量 30%乙醇, 加热溶解, 低温 (0~6°C ) 静置, 滤过, 减压干燥, 分别测定晶体重量, 试验结果见表 3。
30%乙醇结晶试验结果
Figure imgf000009_0001
析晶时加 5~8倍量 30%乙醇比较合适, 析出的晶体相对较多。
(2) 正己烷-乙酸乙酯 (8:1 )溶剂: 取待析晶提取物 10g, 分别加 4、 6、 8、 10倍量正 己烷-乙酸乙酯 (8:1 ) 混合溶剂, 加热溶解, 低温 (0~6°C ) 静置, 滤过, 减压干燥, 分别 测定晶体重量, 试验结果见表 4。
表 4 正己浣 -乙酸乙酯混合溶剂结晶试验结果
Figure imgf000009_0002
正己浣-乙酸乙酯混合溶剂析晶量少于 30%乙醇溶剂析出晶体量。
(3) 10% Wv乙酸乙酯溶剂: 取待析晶提取物 10g, 分别加 4、 6、 8、 10倍量 10%乙 酸乙酯加热溶解, 低温 (0~6°C ) 静置, 滤过, 减压干燥, 分别测定晶体重量, 试验结果见 表 5。
表 5 10%乙酸乙酯结晶试验结果
溶剂加入量 (倍) 4 6 8 10 加热溶解情况 未溶完 溶解完全 溶解完全 溶解完全 晶体量 (g) 2.3 3.5 3.3 2.2 10%乙酸乙酯溶剂析晶量少于 30%乙醇溶剂析出晶体量。
根据实验结果, 结晶溶剂选用 5~8倍量 30%乙醇比较合适 以下为采用本发明方法制备银杏内酯的实例。
实施例 1
银杏叶粗粉 50kg, 加 65%乙醇加热回流提取 3次(10、 8、 6倍量), 每次 1.5小时, 合 并提取液, 滤过, 减压浓縮, 加 0.05%蛋氨酸搅拌溶解, 用枸橼酸溶液调节 pH值至 4〜5, 继续浓縮, 低温放置, 过滤。 先用等量正己烷萃取, 再用等量乙酸乙酯萃取, 最后用水饱 和仲丁醇 -乙酸乙酯混合溶剂萃取, 过聚酰胺 (30〜60目)树脂柱, 先用水洗脱, 继用 30% 乙醇洗脱, 再用 70%乙醇洗脱, 合并洗脱液, 减压浓縮。 加入 2~3倍量沸水中, 搅拌溶解, 静置, 放冷, 用乙酸乙酯萃取, 减压浓縮, 加乙醇加热搅拌溶解, 过滤, 放冷, 析出晶体, 滤过, 干燥, 得晶体 I (主要为白果内酯和银杏内酯 B ) ; 滤液继续浓縮, 加乙醇至 30%, 静置, 析出晶体, 滤过, 干燥, 得晶体 II (主要为银杏内酯 A、 B、 C) ; 滤液加入药用炭, 搅拌吸附, 过滤, 浓縮, 放冷, 析出晶体, 滤过, 干燥, 得晶体 III (主要为银杏内酯 A和 B ) ; 将滤液浓縮, 过药用炭 -硅胶 (1 : 1 )柱, 先用 2倍量 30%乙醇洗脱, 再用 4倍量 70% 乙醇洗脱, 收集洗脱液, 浓縮, 加乙醇至 30%, 放冷, 静置, 析出晶体, 滤过, 干燥, 得 晶体 IV; 滤液浓縮, 加乙醇至 30%, 放冷, 静置, 析出晶体, 滤过, 干燥, 得晶体 V。 将 晶体混合均匀, 得银杏内酯 91.6g, HPLC含量 97.2%, 其中白果内酯(C15H1808 )为 42.5%、 银杏内酯 A ( C2()H2409 )为 25.4%、银杏内酯 B ( C2()H2401())为 18.7%、银杏内酯 C
Figure imgf000010_0001
) 为 10.6%。
实施例 2
银杏叶粗粉 200kg,加 6倍量 80%乙醇加热回流提取 3次,每次 1.5小时,合并提取液, 滤过, 滤液减压回收乙醇至无醇味, 加 0.05%蛋氨酸搅拌溶解, 用枸橼酸溶液调节 pH值至 4〜5, 继续浓縮, 低温放置, 过滤。 先用正己烷萃取, 再用乙酸乙酯萃取, 最后用水饱和 仲丁醇 -乙酸乙酯混合溶剂萃取, 过聚酰胺 (30〜60目)树脂柱, 先用 30%乙醇洗脱, 继用 70%乙醇洗脱, 合并洗脱液, 减压浓縮。 加入沸水中, 搅拌溶解, 静置放冷, 用乙酸乙酯萃 取, 减压浓縮, 加乙醇加热搅拌溶解, 过滤, 放冷, 析出晶体, 滤过, 干燥, 得晶体 I (主 要为白果内酯和银杏内酯 B ) ; 滤液继续浓縮, 加乙醇, 静置析出晶体, 滤过, 干燥, 得晶 体 II (主要为银杏内酯 A、 B、 C ) ; 滤液加入药用炭, 搅拌吸附, 过滤, 浓縮, 加乙醇, 放 冷, 析出晶体, 滤过, 干燥, 得晶体 III (主要为银杏内酯 A和 B ) ; 将滤液浓縮, 过药用炭 -硅胶 (1 : 1 ) 柱, 先用 2倍量 30%乙醇洗脱, 再用 4倍量 70%乙醇洗脱, 收集洗脱液, 浓 縮, 加乙醇至 30%, 放冷, 静置, 析出晶体, 滤过, 干燥, 得晶体 IV; 滤液浓縮, 加乙醇 至 30%, 放冷, 静置, 析出晶体, 滤过, 干燥, 得晶体 V。 将晶体混合均匀, 得银杏内酯 362.8g, HPLC含量 96.8%, 其中白果内酯 (C15H1808) 为 31.2%、 银杏内酯 A ( C20H24O9) 为 28.8%、 银杏内酯 B (C2oH24Oio) 为 28.2%、 银杏内酯 C (C20H24Ou ) 为 8.6%。
实施例 3
银杏叶粗粉 200kg,加 8倍量 75%乙醇加热回流提取 3次,每次 1.5小时,合并提取液, 滤过, 滤液减压回收乙醇至无醇味, 加 0.05%蛋氨酸搅拌溶解, 用枸橼酸溶液调节 pH值至 4〜5, 继续浓縮, 低温放置, 过滤。 先用正己烷萃取, 再用乙酸乙酯萃取, 最后用水饱和 仲丁醇 -乙酸乙酯混合溶剂萃取, 过聚酰胺 (30〜60目)树脂柱, 先用 30%乙醇洗脱, 继用 75%乙醇洗脱, 合并洗脱液, 减压浓縮。 加入沸水中, 搅拌溶解, 静置放冷, 用乙酸乙酯萃 取, 减压浓縮, 加乙醇加热搅拌溶解, 过滤, 放冷, 析出晶体, 滤过, 干燥, 得晶体 I (主 要为白果内酯和银杏内酯 B); 滤液继续浓縮, 加乙醇, 静置析出晶体, 滤过, 干燥, 得晶 体 II (主要为银杏内酯 A、 B、 C); 滤液加入药用炭, 搅拌吸附, 过滤, 浓縮, 加乙醇, 放 冷, 析出晶体, 滤过, 干燥, 得晶体 III (主要为银杏内酯 A和 B ); 滤液浓縮, 上药用炭- 硅胶 (1 : 1 ) 柱, 用 60%乙醇洗脱, 收集洗脱液, 浓縮, 放冷, 析出晶体, 滤过, 干燥, 得晶体 IV;将晶体混合均匀,得银杏内酯 375.5g,HPLC含量 97.1%,其中白果内酯 (C15H1808) 为 35.8%、 银杏内酯 A (C20H24O9) 为 28.5%、 银杏内酯 B (C20H24O10) 为 26.2%、 银杏内 酯 C (C20H24Oii ) 为 6.6%
实施例 4
取银杏叶粗粉 200kg, 加 10倍量 75%乙醇加热回流提取 3次, 每次 1.5小时, 合并提 取液, 滤过, 滤液减压回收乙醇至无醇味, 加 0.05%蛋氨酸搅拌溶解, 用枸橼酸溶液调节 pH值至 4〜5, 继续浓縮, 低温放置, 过滤。 先用正己烷萃取, 再用乙酸乙酯萃取, 最后用 水饱和仲丁醇 -乙酸乙酯混合溶剂萃取, 过聚酰胺(30〜60目)树脂柱,先用 25%乙醇洗脱, 继用 65%乙醇洗脱, 合并洗脱液, 减压浓縮。 加入沸水中, 搅拌溶解, 静置放冷, 用乙酸 乙酯萃取, 减压浓縮, 加 50%乙醇加热搅拌溶解, 过滤, 放冷, 析出晶体, 滤过, 干燥, 得晶体 I (主要为白果内酯和银杏内酯 B); 滤液继续浓縮, 加乙醇, 静置析出晶体, 滤过, 干燥, 得晶体 II (主要为银杏内酯 A、 B、 C); 滤液加入药用炭, 搅拌吸附, 过滤, 浓縮, 放冷, 析出晶体, 滤过, 干燥, 得晶体 III (主要为银杏内酯 A和 B); 滤液浓縮, 上药用炭 -硅胶 (1 : 1 ) 柱, 用 60%乙醇洗脱, 收集洗脱液, 浓縮, 放冷, 析出晶体, 滤过, 干燥, 得晶体 IV; 滤液浓縮, 放冷, 析出晶体, 滤过, 干燥, 得晶体 V; 将晶体混合均匀, 得银 杏内酯 362.2g,HPLC含量 96.5%,其中白果内酯(C15H1808)为 35.5%、银杏内酯 A(C2()H2409) 为 26.0%、 银杏内酯 B (C2oH24Oio) 为 26.2%、 银杏内酯 C (C20H24Ou ) 为 8.8%。
实施例 5
银杏叶粗粉 200kg, 力 B 8倍量 60%乙酸乙酯加热回流提取 3次, 每次 1.5小时, 合并提 取液, 滤过, 滤液减压回收乙酸乙酯, 加 0.05%蛋氨酸搅拌溶解, 用枸橼酸溶液调节 pH值 至 4〜5, 继续浓縮, 低温放置, 过滤。 先用石油醚萃取, 水相再用乙酸乙酯萃取, 最后用 水饱和仲丁醇 -乙酸乙酯混合溶剂萃取, 过聚酰胺(30〜60目)树脂柱,先用 30%乙醇洗脱, 继用 75%乙醇洗脱, 合并洗脱液, 减压浓縮。 加入沸水中, 搅拌溶解, 静置放冷, 用丙酮 萃取, 减压浓縮至干, 加 50%乙醇加热搅拌溶解, 过滤, 放冷, 析出晶体, 滤过, 干燥, 得晶体 I (主要为白果内酯和银杏内酯 B); 滤液继续浓縮, 加乙醇, 静置析出晶体, 滤过, 干燥, 得晶体 II (主要为银杏内酯 A、 B、 C); 滤液加入药用炭, 搅拌吸附, 过滤, 浓縮, 加乙醇, 放冷, 析出晶体, 滤过, 干燥, 得晶体 III (主要为银杏内酯 A和 B); 滤液浓縮, 上药用炭 -硅胶(1 : 1 )柱, 用 60%乙醇洗脱, 收集洗脱液, 浓縮, 放冷, 析出晶体, 滤过, 干燥, 得晶体 IV; 将晶体混合均匀, 得银杏内酯 350.6g, HPLC含量 97.4%, 其中白果内酯 (CisHigOg)为 40.0%、银杏内酯 A (C20H24O9)为 22.5%、银杏内酯 B (C20H24O10)为 27.2%、 银杏内酯 C (C2oH24Oii ) 为 10.3%。
实施例 6
银杏叶粗粉 200kg,加 8倍量 50%丙酮加热回流提取 3次,每次 1.5小时,合并提取液, 滤过, 滤液减压回收丙酮, 加 0.05%蛋氨酸搅拌溶解, 用枸橼酸溶液调节 pH值至 4〜5, 继 续浓縮, 低温放置, 过滤。 先用石油醚萃取, 水相再用乙酸乙酯萃取, 最后用水饱和仲丁 醇 -乙酸乙酯混合溶剂萃取, 过聚酰胺(30〜60目)树脂柱, 先用 30%乙醇洗脱, 继用 70% 乙醇洗脱, 合并洗脱液, 减压浓縮。 加入沸水中, 搅拌溶解, 静置放冷, 用乙酸乙酯萃取, 减压浓縮至干, 加 30%乙醇加热搅拌溶解, 过滤, 放冷, 析出晶体, 滤过, 干燥, 得晶体 I (主要为白果内酯和银杏内酯 B); 滤液继续浓縮, 加乙醇, 静置析出晶体, 滤过, 干燥, 得晶体 II (主要为银杏内酯 A、 B、 C); 滤液加入药用炭, 搅拌吸附, 过滤, 浓縮, 加乙醇, 放冷, 析出晶体, 滤过, 干燥, 得晶体 III (主要为银杏内酯 A和 B); 滤液浓縮, 上药用炭 -硅胶 (1 : 1 ) 柱, 用 60%乙醇洗脱, 收集洗脱液, 浓縮, 放冷, 析出晶体, 滤过, 干燥, 得晶体 IV; 滤液浓縮, 放冷, 析出晶体, 滤过, 干燥, 得晶体 V; 将晶体混合均匀, 得银 杏内酯 343.5g,HPLC含量 96.2%,其中白果内酯(C15H1808)为 38.2%、银杏内酯 A(C20H24O9) 为 28.3%、 银杏内酯 B (C20H24Oio) 为 24.2%、 银杏内酯 C (C20H24Ou ) 为 9.3%。
实施例 7
银杏叶粗粉 200kg, 加 8倍量 70%乙醇加热至微沸煎煮提取 3次, 每次 1.5小时, 合并 提取液, 滤过, 滤液减压回收丙酮, 加 0.05%蛋氨酸搅拌溶解, 用枸橼酸溶液调节 pH值至 4〜5, 继续浓縮, 低温放置, 过滤。 先用石油醚萃取, 水相再用乙酸乙酯萃取, 最后用水 饱和仲丁醇 -乙酸乙酯混合溶剂萃取, 过聚酰胺 (30〜60目) 树脂柱, 先用 30%乙醇洗脱, 继用 70%乙醇洗脱, 合并洗脱液, 减压浓縮。 加入沸水中, 搅拌溶解, 静置放冷, 用乙酸 乙酯萃取, 减压浓縮至干, 加 30%乙醇加热搅拌溶解, 过滤, 放冷, 析出晶体, 滤过, 干 燥, 得晶体 I (主要为白果内酯和银杏内酯 B); 滤液继续浓縮, 加乙醇, 静置析出晶体, 滤过, 干燥, 得晶体 II (主要为白果内酯和银杏内酯 、 B ); 滤液加入药用炭, 搅拌吸附, 过滤, 浓縮, 加乙醇, 放冷, 析出晶体, 滤过, 干燥, 得晶体 III (主要为银杏内酯 A和 C); 滤液浓縮, 上药用炭 -硅胶 (1 : 1 ) 柱, 用 60%乙醇洗脱, 收集洗脱液, 浓縮, 放冷, 析出 晶体, 滤过, 干燥, 得晶体 IV; 滤液浓縮, 放冷, 析出晶体, 滤过, 干燥, 得晶体 V; 将 晶体混合均匀,得银杏内酯 362.6g, HPLC含量 97.4%,其中白果内酯(C15H1808 )为 36.5%、 银杏内酯 A ( C20H24O9 )为 25.3%、银杏内酯 B ( C20H24Oio)为 28.2%、银杏内酯 C ( C20H24Oii ) 为 7A%。
综上, 采用本发明所使用的提取分离纯化方法可得到纯度较高组分相对固定的银杏内 酯, 其中, 含白果内酯 ( CisHigOg ) 25.0 ~50.0 银杏内酯 A ( C20H24O9 ) 20.0 ~45.0 银杏内酯 B ( C20H24Oio) 10.0 ~30.0 银杏内酯 C ( C20H24Oii ) 5.0 ~15.0 , 且白果内 酯、 银杏内酯 、 银杏内酯8、 银杏内酯 C总量大于 95%。
本发明银杏内酯的分项检测方法及检测结果如下:
a) 性状: 类白色或微黄色结晶性粉末。
在乙酸乙酯中易溶, 在甲醇、 乙醇中溶解, 在水中几乎不溶。
b ) 水分: 60°C减压干燥减失重量小于 5.0%。
c) 蛋白质: 在 595nm波长处吸光度小于 0.05。
取本发明银杏内酯约 24mg, 加乙醇 2ml溶解后, 加水稀释至 50ml, 作为供试品溶液。 照考马斯亮蓝法 (Bradford法) 测定, 以相应的试剂为空白, 在 595nm波长处吸光度小于 0.05
d) 鞣质、 树脂、 草酸盐、 钾离子
可采用的检测方法有:
鞣质: 取蛋白质检查项供试品溶液 lml, 加入稀醋酸 1滴, 再加明胶氯化钠试液 5滴, 摇匀, 放置 10分钟, 未出现浑浊或沉淀。
树脂: 取蛋白质检查项供试品溶液 5ml, 加盐酸 1滴, 放置 30分钟, 无树脂状物质析 出。
草酸盐: 取蛋白质检查项供试品溶液 2ml, 用稀盐酸调节 pH值至 1〜2, 滤过, 滤液用 氨水调节 pH值为 5〜6, 加 3%氯化钙溶液 3滴, 放置 10分钟, 未出现浑浊或沉淀。
钾离子: 取蛋白质检查项供试品溶液 2ml, 置 10ml 纳氏比色管中, 加碱性甲醛溶液
0.6ml、 3%EDTA溶液 2滴、 3%四苯硼钠溶液 0.5ml, 加水稀释至 10ml, 另取标准氯化钾溶 液 0.8ml, 同法试验, 供试品溶液的浊度不高于对照溶液。
结果: 未检出鞣质、 树脂、 草酸盐、 钾离子。
e) 残留溶剂
( 1 ) 乙醇、 乙酸乙酯和正己烷: 含乙醇和乙酸乙酯均小于 0.5%, 正己烷小于 0.029%。
( 2) 树脂残留量: 含己内酰胺小于 0.0015%。
0 总银杏酸: 含总银杏酸小于 5ppm。
g )大分子和聚合物: 凝胶色谱法测定无残留大分子和聚合物。 LC-MS法测定, 结果无 分子量大于 1000的大分子和聚合物。 测定方法:
( 1 )凝胶色谱法色谱柱: Phenomenex BioSep-SEC-S2000, 300x7.8mm, 5um, 流动相: 0.71% (内含 0.02%的叠氮化钠)硫酸钠溶液,柱温: 35°C,检测器温度: 35 °C,流速: 0.5ml/min。 结果: 无残留大分子和聚合物。
(2) HPLC-MS联用法流动相: 甲醇-水(90:10)、色谱柱: Agilent RX-C18 (2.1x50mm) 柱温: 25°C, 流速: 0.3ml/min。 结果: 结果无分子量大于 1000的大分子和聚合物。
h) 重金属: 小于 10ppm。
i) 砷盐: 小于 2ppm。
k) 异常毒性: 制成每 lml中含 0.2mg的溶液, 符合静脉注射法给药。
供试品溶液的制备: 取本发明银杏内酯约 25mg, 用乙醇 2ml溶解后加氯化钠注射液制 成每 lml中含 0.2mg的溶液。
检查法: 取体重 17~20g小鼠 5只, 注入小鼠尾静脉供试品溶液 0.5ml, 48小时无死亡。
1)指纹图谱: HPLC法测定, 记录 60分钟的色谱图。 按中药色谱指纹图谱相似度评价 系统, 四个共有峰相似度大于 0.95。
m)含量: HPLC法测定, 按干燥品计算, 含白果内酯(C15H1808)应为 25.0%~50.0%、 银杏内酯 A (C20H24O9) 应为 20.0%~45.0%、 银杏内酯 B (C20H24O10) 应为 10.0 ~30.0 银杏内酯 C (C20H24Oii ) 应为 5.0%~15.0%, 且白果内酯、 银杏内酯 、 银杏内酯 银杏 内酯 C总量大于 95%。
1) 指纹图谱和 m) 含量测定采用的检测方法相同, 条件如下: 以十八烷基硅烷键合硅 胶为填充剂; 以甲醇-四氢呋喃-水 (25:10:65 ) 为流动相; 用蒸发光散射检测器, 漂移管温 度: 105°C ; 载气流速: 3.00L/min; 柱温: 40°C ; 理论板数按白果内酯峰计算应不低于 2500。 白果内酯峰与银杏内酯 C峰的分离度应大于 1.5。
n) 热原检查: 体温升高低于 0.6°C。
供试品溶液的制备:精密称取本发明银杏内酯 20mg,加入 2ml乙醇使溶解,再加入 0.9% 氯化钠注射液 100ml中。
检查法: 取家兔 3只, 测定其正常体温后 15分钟内, 按家兔体重每 1kg注射 5ml自耳 静脉缓缓注入供试品溶液, 每隔 30分钟测定体温 1次, 共测 6次, 体温升高均应低于 0.6 V, 并且 3只家兔体温升高总和低于 1.3°C。
发明人对上述发明内容进行了大分子及聚合物测定研究与说明, 用于证明本发明的技 术效果。 下述试验用于进一步说明与解释本发明, 但不限制本发明。
( 1 ) 试验仪器及试剂
Agilent 1200型高效液相色谱仪, 紫外检测器, 示差折光检测器。
Phenomenex BioSep-SEC-S2000凝胶色谱柱。
右旋糖酐对照品 D2000 (蓝色葡聚糖 2000), 中检所, 批号 140646-2000-01 葡萄糖对照品 (DO ), 含量: 99.5% , 批号 086K0166, SIGMA
超纯水用 Millipore-Q超纯水系统制得。
其余试剂为分析纯。
(2) 流动相的选择
选取 0.71% (内含 0.02%的叠氮化钠) 硫酸钠溶液作为流动相。
( 3 ) 检测器的选择
选用通用型检测器示差折光检测器, 该检测器对于存在折光系数差异的物质均有良好 的响应。
(4) 拟确定的色谱条件
色谱柱: Phenomenex BioSep-SEC-S2000, 300x7.8mm, 5μιη
流动相: 0.71% (内含 0.02%的叠氮化钠) 硫酸钠溶液
柱温: 35°C, 检测器温度: 35°C, 流速: 0.5ml/min
( 5 ) 银杏内酯各成分的分子量
Figure imgf000015_0001
( 6) 方法学研究
①将右旋糖酐和葡萄糖对照品分别加流动相制成 10mg/ml的溶液, 分别精密吸取对照 品溶液各 20μ1, 注入色谱仪, 记录色谱图, 结果右旋糖酐在保留时间 9.816'出峰, 葡萄糖在 保留时间 18.712'出峰, 表明采用凝胶色谱法, 分子量大的物质先出峰, 分子量小的物质后 出峰。
②取本发明银杏内酯约 10mg, 加乙醇 2ml溶解, 加入右旋糖酐对照品溶液(10mg/ml) lml, 混匀, 精密吸取 10μ1, 注入色谱仪, 记录色谱图, 结果在保留时间 9.698'检出右旋糖 酐,银杏内酯注射液成分峰均在 18min以后出峰,表明分子量在 180~450出峰时间在 18min 左右, 分子量 5000~2000000出峰时间在 9min左右, 采用凝胶色谱法来检测大分子物质是 可行的。
为了再一次验证本品中不含大分子及聚合物, 故又进行了 LC-MS试验。
色谱条件: 甲醇-水 (90:10) 为流动相、 Agilent RX-C18 (2.1x50mm)色谱柱, 柱温 25
°C 流速 0.3ml/min 。
供试品溶液的制备: 精密称取本发明银杏内酯 10mg置 10ml量瓶中, 加适量 1%乙酸 使溶解, 加流动相稀释至刻度, 摇匀, 作为供试品溶液。
LC-MS联用测试: 根据确定的试验方法, 分别取供试品溶液各 10μ1, 在 400~1000和 400-3000分子量范围内分别测试, 记录色谱图。 试验结果见表 6。 表 6 LC-MS联用分子量测定结果
Figure imgf000016_0001
从 LC-MS联用分子量测定结果来看, 分别检出银杏内酯 A (分子量 408.5)、 银杏内酯 B (分子量 424.4)、 银杏内酯 C (分子量 440.4), 与本发明银杏内酯的有效成份完全一致, 由于测试分子量范围在 400-3000之间, 未对白果内酯进行测试, 本发明银杏内酯中未检出 分子量大于 700以上的物质, 其它不同分子量的物质可能是其它杂质的存在, 经 LC-MS对 银杏内酯中不同成份的分子量测试, 说明本品中不含大分子或聚合物。 银杏内酯 LC-MS图 谱见图 3~4。
实施例 8
银杏内酯质量控制一总银杏酸检查
色谱条件与系统适用性试验: 以十八烷基硅烷键合硅胶为填充剂; 以甲醇一 1 %冰醋酸
(90: 10) 为流动相; 流速 l.Oml/min; 检测波长为 310nm。 理论板数按白果新酸峰计应不 低于 4000。
对照品溶液的制备: 取白果新酸对照品适量, 精密称定, 加甲醇制成每 lml含 5 g的 溶液作为对照品溶液; 另取总银杏酸对照品适量, 精密称定, 加甲醇制成每 lml含 100 的溶液, 作为定位用对照溶液。
供试品溶液的制备: 取本发明银杏内酯 5g, 精密称定, 置烧瓶中, 加正已烷 50ml, 加 热回流 2小时, 取出, 放冷, 滤过, 残渣再用少量正已烷洗涤, 合并滤液与洗涤液, 置水 浴上蒸干, 残渣加甲醇溶解并稀释至 2ml, 摇匀, 作为供试品溶液。
测定法 : 精密吸取供试品溶液、 对照品溶液及定位用对照溶液各 20μ1, 注入液相色谱 仪, 计算供试品溶液中与总银杏酸对照品相应色谱峰的总峰面积, 以白果新酸对照品外标 法计算总银杏酸含量, 总银杏酸小于 5ppm。
发明人对上述发明内容进行了研究与说明, 用于证明本发明的技术效果。 下述试验用 于进一步说明与解释本发明, 但不限制本发明。
a、 方法一
供试品溶液的制备:取本发明银杏内酯 5g,精密称定,置烧瓶中,精密加入石油醚 (60~90
°C ) 50ml, 回流 2小时, 取出, 放冷, 滤过, 残渣再用少量石油醚洗涤 1次, 合并滤液与 洗涤液, 置水浴上蒸干, 残渣加甲醇溶解并稀释至 2ml, 摇匀, 作为供试品溶液 (1 )。
空白样品溶液的制备: 取石油醚 (60~90°C ) 50ml, 置锥形瓶中, 回流 2小时, 置水浴 上蒸干, 残渣加甲醇溶解并稀释至 2ml, 摇匀, 作为空白溶液 (1 )。
b、 方法二 (正已烷替换石油醚)
供试品溶液的制备:取本发明银杏内酯 5g,精密称定,置烧瓶中,精密加入正已烷 50ml, 回流 2小时, 取出, 放冷, 滤过, 残渣再用少量正已烷洗涤 1次, 合并滤液与洗涤液, 置 水浴上蒸干, 残渣加甲醇溶解并稀释至 2ml, 摇匀, 作为供试品溶液 (2)。
空白样品溶液的制备: 取正已烷 50ml, 置烧瓶中, 回流 2小时, 置水浴上蒸干, 残渣 加甲醇溶解并稀释至 2ml, 摇匀, 作为空白溶液 (2)。
测定法 : 精密吸取供试品溶液和空白溶液各 20μ1, 注入液相色谱仪, 记录色谱图。 试 验结果见表 7。
Figure imgf000017_0001
试验结果表明: 采用方法一 (石油醚) 制备样品, 空白溶液中检出色谱峰, 其峰面积 与供试品溶液检出的色谱峰面积基本一致, 说明空白试验有干扰; 而采用方法二 (正已烷) 制备样品, 空白溶液与供试品溶液均未检出色谱峰, 故发明人拟采用方法二来做加样回收 试验, 以此来验证方法二的可行性。
c、 总银杏酚酸的加样回收试验
供试品溶液的制备: 取本发明银杏内酯 5g, 精密称定, 置烧瓶中, 精密加入浓度为 1.032mg/ml的总银杏酸对照品溶液 0.2ml, 再精密加入正已烷 50ml, 回流 2小时, 放冷, 滤过, 残渣再用少量正已烷洗涤, 合并滤液与洗涤液, 置水浴蒸干, 残渣加甲醇溶解并稀 释至 2ml, 摇匀, 作为供试品溶液。
对照品溶液的制备: 精密量取浓度为 1.032mg/ml的总银杏酸对照品溶液 0.2ml, 置 2ml 量瓶中, 加甲醇稀释至刻度, 摇匀, 作为对照品溶液。
测定法 : 精密吸取供试品溶液和对照品溶液各 20μ1, 注入液相色谱仪, 记录色谱图。 结果: 供试品溶液在与总银杏酸对照品色谱相应的位置上能检出总银杏酸色谱峰, 从 峰面积来看, 供试品溶液与对照品溶液峰面积一致, 说明回收率较好。 试验结果见表 8。
加样回收率试验结果
Figure imgf000017_0002
d、 重现性试验 对照品溶液的制备: 取白果新酸对照品适量, 精密称定, 加甲醇制成每 lml含 5μ§的 溶液作为对照品溶液。 另取总银杏酸对照品适量, 精密称定, 加甲醇制成每 1ml含 100μ§ 的溶液, 作为定位用对照溶液。
供试品溶液制备: 取本发明银杏内酯 5g, 精密称定, 共称取 6份, 分别置烧瓶中, 加 正已烷 50ml, 回流 2小时, 放冷, 滤过, 残渣用少量正已烷洗涤, 合并滤液与洗涤液, 置 水浴上蒸干, 残渣加甲醇溶解并稀释至 2ml, 摇匀, 作为供试品溶液。
测定法: 精密吸取供试品溶液、 对照品溶液及定位用对照溶液各 20μ1, 注入液相色谱 仪, 记录色谱图。 试验结果见表 9。
表 9 重现性试验结果
Figure imgf000018_0001
试验结果表明, 本发明银杏内酯中无银杏酚酸。
e、 回收率试验
供试品溶液制备: 取本发明银杏内酯 5g, 精密称定, 共称取 3份, 分别置烧瓶中, 分 别加入浓度为 3.04 g/ml白果新酸对照品溶液 1.6ml、 2.0ml、 2.4ml, 再分别加正已烷 50ml, 回流 2小时, 放冷, 滤过, 残渣用少量正已烷洗涤, 合并滤液与洗涤液, 置水浴上蒸干, 残渣加甲醇溶解并稀释至 2ml, 摇匀, 作为供试品溶液。
对照品溶液的制备: 同重现性试验项。
测定法: 精密吸取供试品溶液、 对照品溶液各 20μ1, 注入液相色谱仪, 记录色谱图。 每个浓度测定三次, 共 9次。 计算回收率、 RSD值。 试验结果见表 10。
表 10 回收率试验结果表
Figure imgf000018_0002
试验结果表明, 回收率较好。
实施例 9
银杏内酯质量控制一指纹图谱检查
色谱条件与系统适用性试验: 以十八烷基硅烷键合硅胶为填充剂; 以甲醇-四氢呋喃-水 (25:10:65 ) 为流动相; 用蒸发光散射检测器, 漂移管温度: 105°C ; 载气流速: 3.00L/min; 柱温: 40°C ; 理论板数按白果内酯峰计算应不低于 2500。 白果内酯峰与银杏内酯 C峰的分 离度应大于 1.5。 参照物溶液的制备: 分别精密称取白果内酯对照品、 银杏内酯 A对照品、 银杏内酯 B 对照品、银杏内酯 C对照品适量,加甲醇制成每 1ml分别含 0.15mg、 0.12mg、 0.1mg、 O. lmg 的混合溶液, 摇匀, 作为参照物溶液。
试品溶液的制备:取本发明银杏内酯 6mg,精密称定,置 10ml量瓶中加甲醇 lml溶解, 加流动相稀释至刻度, 摇匀, 作为供试品溶液。
测定法: 分别精密吸取参照物溶液和供试品溶液各 20μ1, 注入液相色谱仪, 记录 60分 钟的色谱图。
按中药色谱指纹图谱相似度评价系统, 供试品指纹图谱与对照指纹图谱相似度大于 0.95
发明人对上述发明内容进行了研究与说明, 用于证明本发明的技术效果。 下述试验用 于进一步说明与解释本发明, 但不限制本发明。
在银杏内酯指纹图谱中,其中峰 2为银杏内酯 (:、峰 3为白果内酯、峰 4为银杏内酯 Α、 峰 5为银杏内酯 Β, 本品中有效部位 4个特征峰在指纹图谱中均能一一对应。银杏内酯对照 指纹图谱见图 5。
首先采用国家药典委员会 2004年指纹图谱指定软件——中药色谱指纹图谱相似度评价 系统 Α版分别对 10批银杏内酯生成对照指纹图谱,将不同批次的供试品指纹图谱与对照指 纹图谱用相似度软件进行计算相似度。 试验结果见表 11。
10批银杏内酯相似度结果
Figure imgf000019_0001
10批银杏内酯指纹图谱的相似度均大于 0.95。
实施例 10
银杏内酯质量控制——残留溶剂测定
( 1 ) 乙醇、 乙酸乙酯和正己烷
供试品溶液的制备: 取本发明银杏内酯约 0.1g, 精密称定, 置顶空瓶中, 精密加入 N, N-二甲基甲酰胺 5ml使溶解, 密封, 作为供试品溶液。
对照品溶液的制备: 取乙醇、 乙酸乙酯和正己烷适量, 精密称定, 用 N, N-二甲基甲 酰胺定量稀释制成每 lml中各约含 30 的溶液, 精密量取 5ml, 置顶空瓶中, 密封, 作为 对照品溶液。
测定法: 以 6%氰丙基苯基 -94%二甲基聚硅氧烷(或极性相近)为固定液, 起始温度为 50°C, 维持 3分钟, 以每分钟 40°C的速率升温至 160°C, 维持 3分钟; 进样口温度 20CTC ; 检测器温度为 250°C ; 顶空瓶平衡温度为 80°C, 平衡时间为 30分钟。 取对照品溶液顶空进 样, 各成分峰之间的分离度应符合要求; 再取供试品溶液与对照品溶液分别顶空进样, 记 录色谱图, 按外标法以峰面积计算。
含乙醇和乙酸乙酯均小于 0.5%, 正己烷小于 0.029%。
(2) 树脂残留量
对照品溶液的制备:取 N, N-二甲基乙酰胺适量,精密称定,用水制成每 1ml约含 O.lmg 的溶液, 摇匀, 作为内标溶液; 精密称取己内酰胺适量, 加内标溶液制成每 lml约含己内 酰胺 37.5 μ g的溶液, 作为对照品溶液。
供试品溶液的制备:取本发明银杏内酯约 2.5g,精密称定,置锥形瓶中,加正己烷 25ml, 回流 2小时, 取出, 放冷, 滤过, 用少量正已烷洗涤, 合并滤液与洗涤液, 于 60°C水浴蒸 干, 残渣加内标溶液 lml使溶解, 作为供试品溶液。
测定法: 以聚乙二醇 (PEG-20M) (或极性相近) 为固定液; 起始温度为 100°C, 维持 2分钟, 以每分钟 40 °C的速率升温至 160 °C, 维持 3分钟, 再以 40°C的速率升温至 220°C, 维持 7分钟; 进样口温度为 24CTC ; 检测器温度为 260°C。 精密量取对照品溶液与供试品溶 液各 1 μ 1, 注入气相色谱仪, 记录色谱图。 按内标法以峰面积计算, 供试品溶液中己内酰 胺峰面积与内标峰面积的比值小于对照品溶液中己内酰胺峰面积与内标峰面积的比值。
己内酰胺未检出。
实施例 11
银杏内酯质量控制一含量测定
色谱条件与系统适用性试验: 以十八烷基硅烷键合硅胶为填充剂; 以甲醇-四氢呋喃- 水(25:10:65 )为流动相; 用蒸发光散射检测器,漂移管温度: 105°C ; 载气流速: 3.00L/min; 柱温: 40°C ; 理论板数按白果内酯峰计算应不低于 2500。 白果内酯峰与银杏内酯 C峰的分 离度应大于 1.5。
对照品溶液的制备: 分别精密称取白果内酯对照品、 银杏内酯 A对照品、 银杏内酯 B 对照品、银杏内酯 C对照品适量,加甲醇制成每 lml分别含 0.15mg、 0.12mg、 O.lmg, O.lmg 的混合溶液, 摇匀, 作为对照品溶液。
供试品溶液的制备: 取本发明银杏内酯 6mg, 精密称定, 置 10ml量瓶中加甲醇 lml溶 解, 加流动相稀释至刻度, 摇匀, 作为供试品溶液。
测定法: 分别精密量取对照品溶液 10 μ 1、 20 μ ΐ和供试品溶液 10~20 μ 1, 注入高效液 相色谱仪, 记录色谱图, 用外标两点法对数方程分别计算白果内酯、 银杏内酯 Α、 银杏内 酯 Β和银杏内酯 C的含量。
按干燥品计算, 白果内酯 (C15H1808) 为 42.5%、 银杏内酯 A (C20H24O9) 为 25.4%、 银杏内酯 B (C20H24Oio) 为 18.7%、 银杏内酯 C (C20H24Oii ) 为 10.6%, 且白果内酯、 银 杏内酯 A、 银杏内酯8、 银杏内酯 C总量 97.2%。 实施例 12
银杏内酯质量控制——异常毒性检查
供试品溶液的制备: 取本发明银杏内酯, 加氯化钠注射液制成每 lml中含 0.2mg的溶 液。
检查法: 取体重 17~20g小鼠 5只, 分别注入小鼠尾静脉供试品溶液 0.5ml, 48小时内 无死亡。
实施例 13
银杏内酯质量控制——热原检查
供试品溶液的制备: 取本发明银杏内酯 10mg, 加入到 0.9%氯化钠注射液 50ml中, 摇 匀。
检查法: 取家兔 3只, 测定其正常体温后 15分钟内, 按家兔体重每 1kg注射 5ml自耳 静脉缓缓注入供试品溶液, 每隔 30分钟测定体温 1次, 共测 6次, 体温升高均低于 0. 6°C, 并且 3只家兔体温升高总和低于 1. 3°C。
实施例 14
银杏内酯注射液质量控制——有关物质检查
注射液处方:
银杏内酯: 以萜类内酯计 l-10mg/ml
甘 油 0.2-0.5ml/ml
乙 醇 0.4-0.7ml/ml
注射用水 0-0.5ml/ml。
制备方法为:
a)配制:混合乙醇和甘油,加入银杏内酯、溶解,补加乙醇或注射用水至全量,用 5~10% 枸橼酸溶液或 1~10%盐酸溶液调节 pH值至 3.2〜3.8;
b) 过滤除菌;
c) 灌封;
d) 灭菌。
( 1 ) 蛋白质: 取银杏内酯注射液 2ml, 加水制成 50ml, 作为供试品溶液。 称取考马斯 亮蓝 G-250约 50mg,溶于 25ml乙醇中,再加入 85% (w/v)的磷酸 50ml,加水稀释至 500ml, 摇匀, 过滤, 精密量取滤液 5ml置试管中, 再加入 lml供试品溶液, 摇匀, 放置 3min。 同 法做空白, 于 595nm波长下, 测定吸光度, 供试品溶液吸光度小于 0.05。
(2) 鞣质: 取蛋白质检查项供试品溶液 lml加入稀醋酸 1滴, 再加明胶氯化钠试液 5 滴, 摇匀, 放置 10分钟, 未出现浑浊或沉淀。
( 3 )树脂: 取蛋白质检查项供试品溶液 5ml, 加盐酸 1滴, 放置 30分钟, 无树脂状物 质析出。 (4) 草酸盐: 取蛋白质检查项供试品溶液 2ml, 用稀盐酸调节 pH值至 1〜2, 滤过, 滤液用氨水调节 pH值为 5〜6, 加 3%氯化钙溶液 3滴, 放置 10分钟, 未出现浑浊或沉淀。
( 5 )钾离子: 取蛋白质检查项供试品溶液 2ml, 置 10ml纳氏比色管中, 加碱性甲醛溶 液 0.6ml、 3%EDTA溶液 2滴、 3%四苯硼钠溶液 0.5ml, 加水稀释至 10ml, 另取标准氯化 钾溶液 0.8ml, 同法试验, 浊度低于对照溶液。
实施例 15
银杏内酯注射液质量控制——溶血与凝聚检查
供试品溶液的制备: 取银杏内酯注射液 (按实施例 14制备) 6ml, 加入到 0.9%氯化钠注 射液 100ml中摇匀。
检查法: 取洁净玻璃试管 5只, 编号, 1、 2号管为供试品管, 3 号管为阴性对照管, 4 号管为阳性对照管, 5号管供试品对照管。 按表 12所示依次加入 2%红细胞悬液、 0.9%氯化 钠溶液、 蒸馏水, 混匀后立即置 37°C ± 0. 5°C的恒温箱中进行温育。
表 12 溶血和凝聚试验加入量
Figure imgf000022_0001
如试管中的溶液呈澄明红色, 底部无细胞残留或有少量红细胞残留, 表明有溶血发生; 如红细胞全部下沉, 上清液无色澄明, 或上清液虽有色澄明, 但 1,2号管和 5号管肉眼观察 无明显差异, 则表明无溶血发生。 3小时后观察未产生溶血和凝聚反应。
实施例 16
银杏内酯注射液质量控制——指纹图谱检查
色谱条件与系统适用性试验: 以十八烷基硅烷键合硅胶为填充剂; 以甲醇-四氢呋喃- 水(25:10:65 )为流动相; 用蒸发光散射检测器,漂移管温度: 105°C ; 载气流速: 3.00L/min; 柱温: 40°C ; 理论板数按白果内酯峰计算应不低于 2500。 白果内酯峰与银杏内酯 C峰的分 离度应大于 1.5。
参照物溶液的制备: 分别精密称取白果内酯对照品、 银杏内酯 A对照品、 银杏内酯 B 对照品、银杏内酯 C对照品适量,加甲醇制成每 1ml分别含 0.15mg、 0.12mg、 0.1mg、 O.lmg 的混合溶液, 摇匀, 作为参照物溶液。
供试品溶液的制备 : 取 [含量测定]项下的供试品溶液。
测定法: 分别精密吸取参照物溶液和供试品溶液各 20 μ ΐ, 注入液相色谱仪, 记录 60 分钟的色谱图。
按中药色谱指纹图谱相似度评价系统, 供试品指纹图谱与对照指纹图谱经相似度大于 0.95
实施例 17
银杏内酯注射液质量控制——含量测定
色谱条件与系统适用性试验: 以十八烷基硅烷键合硅胶为填充剂; 以甲醇-四氢呋喃- 水(25:10:65 )为流动相; 用蒸发光散射检测器,漂移管温度: 105°C ; 载气流速: 3.00L/min; 柱温: 40°C ; 理论板数按白果内酯峰计算应不低于 2500。 白果内酯峰与银杏内酯 C峰的分 离度应大于 1.5。
对照品溶液的制备: 分别精密称取白果内酯对照品、 银杏内酯 A对照品、 银杏内酯 B 对照品、银杏内酯 C对照品适量,加甲醇制成每 1ml分别含 0.15mg、 0.12mg、 0.1mg、 O.lmg 的混合溶液, 摇匀, 作为对照品溶液。
供试品溶液的制备: 精密量取银杏内酯注射液 (按实施例 14制备) lml, 加磷酸盐缓 冲溶液 (pH6.5 ) 14ml, 摇匀, 上 Extrelut-20柱, 吸附 15分钟, 用乙酸乙酯 100ml洗脱, 收集洗脱液, 于水浴上蒸干, 残渣用流动相溶解并转移至 10ml量瓶中, 加流动相稀释至刻 度, 摇匀, 用 0.45μηι微孔滤膜滤过, 作为供试品溶液。
测定法: 分别精密吸取对照品溶液 10μ1、 20μ1, 供试品溶液 15μ1, 注入高效液相色谱 仪, 记录色谱图, 用外标两点法对数方程分别计算白果内酯、 银杏内酯 、 银杏内酯 Β和 银杏内酯 C的含量。
银杏内酯注射液中每 1ml含银杏萜类内酯 5.15mg。
银杏内酯注射液中每 1ml 含银杏萜类内酯以白果内酯 (C15H1808 )、 银杏内酯 A (C20H24O9)、 银杏内酯 B (C2oH24Oio)和银杏内酯 C (C20H24Ou ) 的总量计为 l-10mg, 优 选 4.25~5.75mg。

Claims

权利要求书
1、 银杏内酯的提取分离方法, 其特征在于: 步骤如下:
A、 提取: 粉碎银杏叶, 加有机溶剂提取, 浓縮提取液中加抗氧化保护剂, 用 pH调节 剂调 pH值至 4〜5, 浓縮、 冷藏;
其中, 步骤 A所述提取有机溶剂为乙醇、 丙酮或乙酸乙酯, 浓度为 50~80%Wv, 用量 为 5~12倍量;
B、 萃取: 将冷藏后的浓縮液先用正己烷或石油醚萃取 2~3次; 水相用脂溶性溶剂萃取 4-5次, 再用水饱和仲丁醇 -乙酸乙酯混合溶剂或水饱和正丁醇-乙酸乙酯混合溶剂萃取 4~5 次, 合并有机相萃取液, 减压浓縮;
C、 过柱: 将萃取浓縮液过聚酰胺树脂柱, 依次用 1 5BV水、 3~5BV 20 ~40 v/v乙 醇、 2~3BV 60%~90%v/v乙醇洗脱, 控制洗脱液流速为 2~3BV/h; 合并洗脱液; 减压浓縮, 干燥;
D、析晶: 将过柱后的干燥物加入沸水中, 搅拌溶解, 冷却, 上清液用等体积乙酸乙酯、 甲酸乙酯或丙酮萃取 4~5次, 合并萃取液, 减压浓縮, 蒸干, 加 5~8倍量 30%~50% Wv乙 醇加热搅拌溶解, 过滤, 冷藏, 析出晶体, 滤过, 滤液 I备用, 晶体用 30%~50% Wv乙醇 洗涤, 减压干燥, 得到晶体 I;
滤液 I浓縮至含醇量为 10%~30% v/v,冷藏,析出晶体,滤过,滤液 II备用;用 30%~50% Wv乙醇洗涤, 减压干燥, 得晶体 II;
浓縮滤液 II, 加 0.1%~0.5%活性炭吸附, 过滤, 滤液浓縮至含醇量为 10%~30%v/v, 冷 藏, 析出晶体, 滤过, 滤液 III备用; 晶体用 30%~50% Wv乙醇洗涤, 减压干燥, 得晶体 III; 滤液 III浓縮, 过活性炭-硅胶柱, 先用 30%~50% v/v乙醇洗脱, 再用 70%~90% v/v乙醇 洗脱, 收集洗脱液浓縮至含醇量为 10%~30% v/v, 冷藏, 析出晶体, 滤过, 滤液 IV备用; 晶体用 30%Wv乙醇洗涤, 减压干燥, 得晶体 IV;
滤液 IV浓縮, 冷藏, 析出晶体, 滤过, 晶体用 30% v/v乙醇洗涤, 减压干燥, 得晶体 V; E、 混晶: 将晶体 I、 II、 III、 IV、 V混合均匀, 粉碎, 即得银杏内酯。
2、根据权利要求 1所述的银杏内酯的提取分离方法, 其特征在于: 步骤 A所述提取的 方式为回流提取或煎煮提取。
3、 根据权利要求 2所述的银杏内酯的提取分离方法, 其特征在于: 所述回流提取采用 乙醇、 丙酮或乙酸乙酯提取, 其中, 不同提取溶剂的浓度及提取条件如下:
乙醇: 浓度为 50%~80%Wv, 提取温度 75~85°C, 提取次数 2~3次, 时间每次 1~2小时; 丙酮: 浓度为 50%~80%Wv, 提取温度 45~55°C, 提取次数 2~3次, 时间每次 1~2小时; 乙酸乙酯: 浓度为 50%~80%Wv, 提取温度 55~65°C, 提取次数 2~3次, 时间每次 1~2 小时。
4、 根据权利要求 3所述的银杏内酯的提取分离方法, 其特征在于: 所述回流提取采用 乙醇、 丙酮或乙酸乙酯提取, 其中, 不同提取溶剂的浓度及提取条件如下:
乙醇: 浓度为 65%Wv, 提取温度 75~85°C, 提取次数 3次, 时间每次 1.5小时; 丙酮: 浓度 50% Wv, 提取温度 75~85°C, 提取次数 3次, 时间每次 1.5小时; 乙酸乙酯浓度 60% Wv, 提取温度 75~85°C, 提取次数 3次, 时间每次 1.5小时。
5、 根据权利要求 2所述的银杏内酯的提取分离方法, 其特征在于: 所述煎煮提取采用 乙醇、 丙酮或乙酸乙酯提取, 其中, 不同提取溶剂的浓度及提取条件如下:
乙醇: 浓度为 50%~80%v/v, 提取温度 80~90°C, 提取次数 2~3次, 时间每次 1~2小时; 丙酮: 浓度为 50%~80%Wv, 提取温度 50~60°C, 提取次数 2~3次, 时间每次 1~2小时; 乙酸乙酯: 浓度为 50%~80%Wv, 提取温度 60~65°C, 提取次数 2~3次, 时间每次 1~2 小时。
6、 根据权利要求 5所述的银杏内酯的提取分离方法, 其特征在于: 所述煎煮提取采用 乙醇、 丙酮或乙酸乙酯提取, 其中, 不同提取溶剂的浓度及提取条件如下:
乙醇: 浓度为 65%Wv, 提取温度 80~90°C, 提取次数 3次, 时间每次 1.5小时; 丙酮: 浓度为 50% Wv, 提取温度 50~60°C, 提取次数 3次, 时间每次 1.5小时; 乙酸乙酯: 浓度为 60% Wv, 提取温度 60~65°C, 提取次数 3次, 时间每次 1.5小时。
7、根据权利要求 1所述的银杏内酯的提取分离方法, 其特征在于: 步骤 A所述抗氧化 保护剂为中性氨基酸。
8、根据权利要求 1所述的银杏内酯的提取分离方法, 其特征在于: 步骤 A所述抗氧化 保护剂为丝氨酸、 蛋氨酸、 天冬酰胺或苏氨酸中的至少一种。
9、根据权利要求 1所述的银杏内酯的提取分离方法, 其特征在于: 步骤 A所述抗氧化 保护剂为蛋氨酸。
10、 根据权利要求 1所述的银杏内酯的提取分离方法, 其特征在于: 步骤 A所述 pH 调节剂为有机弱酸。
11、 根据权利要求 1所述的银杏内酯的提取分离方法, 其特征在于: 步骤 A所述 pH 调节剂为枸橼酸、 苹果酸或山梨酸中的至少一种。
12、 根据权利要求 1所述的银杏内酯的提取分离方法, 其特征在于: 步骤 A所述 pH 调节剂为枸橼酸。
13、 根据权利要求 1所述的银杏内酯的提取分离方法, 其特征在于: 步骤 B所述脂溶 性溶剂为乙酸乙酯、 甲酸乙酯、 丙酮、 丁酮中的至少一种,
14、 根据权利要求 1所述的银杏内酯的提取分离方法 其特征在于: 步骤 C过柱所述 聚酰胺树脂柱中聚酰胺树脂的粒度为 30〜60目。
15、 根据权利要求 1所述的银杏内酯的提取分离方法 其特征在于: 步骤 D析晶中所 述活性炭 -硅胶柱中活性炭与硅胶的体积为体积比 1:1~1:3。
PCT/CN2012/075633 2012-04-23 2012-05-17 一种银杏内酯的提取分离方法 WO2013159412A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12875595.6A EP2842957B1 (en) 2012-04-23 2012-05-17 Method for extracting and separating ginkgolides
JP2015507330A JP5940212B2 (ja) 2012-04-23 2012-05-17 ギンコライドの抽出分離方法
KR1020147030215A KR101653899B1 (ko) 2012-04-23 2012-05-17 징코라이드의 추출 분리 방법
CA2871146A CA2871146C (en) 2012-04-23 2012-05-17 Method for extracting and separating ginkgolides
US14/522,116 US9084755B2 (en) 2012-04-23 2014-10-23 Method for extracting and separating ginkgolides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210121252.0 2012-04-23
CN201210121252.0A CN102659808B (zh) 2012-04-23 2012-04-23 一种银杏内酯的提取分离方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/522,116 Continuation US9084755B2 (en) 2012-04-23 2014-10-23 Method for extracting and separating ginkgolides

Publications (1)

Publication Number Publication Date
WO2013159412A1 true WO2013159412A1 (zh) 2013-10-31

Family

ID=46769416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075633 WO2013159412A1 (zh) 2012-04-23 2012-05-17 一种银杏内酯的提取分离方法

Country Status (7)

Country Link
US (1) US9084755B2 (zh)
EP (1) EP2842957B1 (zh)
JP (1) JP5940212B2 (zh)
KR (1) KR101653899B1 (zh)
CN (1) CN102659808B (zh)
CA (1) CA2871146C (zh)
WO (1) WO2013159412A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020073844A1 (zh) 2018-10-08 2020-04-16 成都百裕制药股份有限公司 一种有效成分包含银杏萜内酯的滴丸及其制备方法
CN114751913A (zh) * 2022-03-28 2022-07-15 云南中烟工业有限责任公司 一种色酮类化合物及其制备方法和应用

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102887909B (zh) * 2012-11-07 2014-12-03 黑龙江天宏药业股份有限公司 一种从银杏叶中提取分离银杏内酯b的方法
CN102911184B (zh) * 2012-11-14 2015-03-18 成都百裕科技制药有限公司 白果内酯的分离纯化制备方法
CN103159780B (zh) * 2013-03-27 2015-10-21 徐州工业职业技术学院 从银杏根皮中提取银杏内酯的方法
CN103393671B (zh) * 2013-08-21 2015-12-02 上海信谊百路达药业有限公司 银杏内酯的提取和精制方法
CN103610708B (zh) * 2013-11-19 2016-08-17 浙江康恩贝制药股份有限公司 一种银杏根皮中低酸高纯度萜内酯提取物的制备工艺
CN104688784B (zh) * 2013-12-10 2019-05-28 成都百裕制药股份有限公司 银杏内酯在制备降血压的药物中的用途
WO2016014722A1 (en) * 2014-07-22 2016-01-28 Signum Nutralogix, Inc. Natural extracts for modulating pp2a methylation, and providing antioxidant and anti infalammatory activity
CN104825501A (zh) * 2015-01-26 2015-08-12 临沂大学 一种银杏叶片提取物溶剂成比例提取方法
CN105341618A (zh) * 2015-10-01 2016-02-24 常州市奥普泰科光电有限公司 一种植物蛋白食品抗氧化剂的制备方法
CN106176839A (zh) * 2016-08-26 2016-12-07 汉中天然谷生物科技股份有限公司 一种从银杏叶中获得银杏黄酮、银杏内酯的方法
CN107129505B (zh) * 2017-06-01 2019-03-29 陕西理工大学 一种银杏叶提纯物中内酯类成分单体的工业制备方法
CN109985074A (zh) * 2017-12-29 2019-07-09 成都百裕制药股份有限公司 一种银杏总内酯的提取分离方法
DE102018000650A1 (de) * 2018-01-27 2019-08-01 Friedrich-Schiller-Universität Jena Verfahren zur Bestimmung von Verunreinigungen in Polyalkylenethern oder Polyalkylenaminen und dessen Verwendung
CN109020993A (zh) * 2018-09-04 2018-12-18 湖北工程学院 一种从银杏叶中提取银杏内酯的方法
CN112823790B (zh) * 2019-11-21 2022-07-05 成都百裕制药股份有限公司 一种银杏萜内酯滴丸及其制备方法
CN111289648B (zh) * 2020-03-09 2021-12-17 四川省中医药科学院 一种中药复方制剂指纹图谱的建立方法及其指纹图谱
CN111912801B (zh) * 2020-08-21 2023-02-24 平顶山神马工程塑料有限责任公司 一种聚酰胺切片中铜离子含量的测定方法
CN114288705B (zh) * 2021-11-19 2023-11-17 广东青云山药业有限公司 一种从银杏叶提取物中去除银杏酸的方法
CN114685524B (zh) * 2022-04-12 2023-07-14 云南中烟工业有限责任公司 一种色酮类化合物及其制备方法和应用
CN114671755B (zh) * 2022-04-24 2023-07-28 陕西嘉禾生物科技股份有限公司 一种高含量玛咖烯的制备方法
CN114794153A (zh) * 2022-05-20 2022-07-29 贵州北极兴药业有限公司 从银杏叶提取物生产废渣中回收银杏酚酸的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1767098B1 (de) 1968-03-29 1972-05-31 Schwabe Willmar Gmbh & Co Verfahren zur Gewinnung eines vasoaktiven Arzneimittels aus den Blaettern von Ginkgo biloba
DE2117429A1 (de) 1971-04-08 1972-10-12 Schwabe, Willmar, Dr., 7500 Karlsruhe-Durlach Verfahren zur Gewinnung eines vasoaktiven Arzneimittels aus den Blättern von Ginkgo biloba und Arzneipräparate
EP0402925A2 (en) * 1989-06-16 1990-12-19 Sunkyong Industries Ltd. A method of isolating ginkgolides from the leaves of the ginkgo tree and purifying them
CN1686317A (zh) * 2005-03-30 2005-10-26 沈阳药科大学 具有神经保护作用的银杏总内酯组合物
CN101054384A (zh) * 2007-05-30 2007-10-17 桂林莱茵生物科技股份有限公司 一种从银杏叶或银杏叶提取物中提取银杏内酯b的制备方法
CN101773528A (zh) * 2010-02-23 2010-07-14 广州汉方现代中药研究开发有限公司 一种低酚酸银杏总内酯的制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE176708C (zh)
DE4030758A1 (de) * 1990-09-28 1992-04-02 Schwabe Willmar Gmbh & Co Extrakt aus blaettern von ginkgo biloba, insbesondere zur intravenoesen injektion oder infusion, verfahren zu seiner herstellung und den extrakt enthaltende ampullenpraeparate
EP1033994A4 (en) * 1997-11-25 2002-04-03 Pharmanex Inc METHOD FOR PRODUCING BIOGINKGO
DE19829516B4 (de) * 1998-07-02 2004-08-26 Dr. Willmar Schwabe Gmbh & Co. Kg Wasserlöslicher nativer Trockenextrakt aus Gingko biloba mit hohem Gehalt an Terpenoiden und Flavonglykosiden
JP2000128792A (ja) * 1998-10-21 2000-05-09 Asahi Chem Ind Co Ltd イチョウ葉エキスの製造法
JP4733801B2 (ja) * 1999-08-23 2011-07-27 丸善製薬株式会社 エストロゲン様作用剤および皮膚化粧料
CN100525759C (zh) * 2003-08-06 2009-08-12 吴梅春 一种用于治疗缺血性脑血管疾病的中成药
CN1249067C (zh) 2003-08-30 2006-04-05 曹明成 银杏内酯a、b、c提取工艺及其制剂
KR100579710B1 (ko) * 2003-09-16 2006-05-15 학교법인조선대학교 은행잎에서 분리한 비듬치료 및 탈모방지용 샴푸 조성물
CN1263763C (zh) 2004-06-30 2006-07-12 江苏吴中苏药医药开发有限责任公司 银杏内酯提取工艺
CN1290850C (zh) * 2004-12-07 2006-12-20 王敬勉 银杏叶中银杏内酯b和白果内酯的提取方法
CN1317283C (zh) 2005-07-29 2007-05-23 四川恩威中医药研究开发有限公司 银杏内酯提取和纯化工艺
US7983354B2 (en) 2005-11-25 2011-07-19 Samsung Electronics Co., Ltd. Digital broadcast transmitter/receiver having an improved receiving performance and signal processing method thereof
CN101134758B (zh) * 2007-10-15 2010-04-14 桂林市振达生物科技有限责任公司 从银杏叶中提取分离银杏内酯a、b、c、j及白果内酯单体的方法
CN101468997B (zh) * 2007-10-15 2010-09-22 桂林市振达生物科技有限责任公司 从银杏叶中提取分离白果内酯的方法
CN101392000B (zh) * 2008-09-25 2010-12-22 成都普思生物科技有限公司 银杏内酯a、b、c、j和白果内酯单体的高效分离纯化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1767098B1 (de) 1968-03-29 1972-05-31 Schwabe Willmar Gmbh & Co Verfahren zur Gewinnung eines vasoaktiven Arzneimittels aus den Blaettern von Ginkgo biloba
DE2117429A1 (de) 1971-04-08 1972-10-12 Schwabe, Willmar, Dr., 7500 Karlsruhe-Durlach Verfahren zur Gewinnung eines vasoaktiven Arzneimittels aus den Blättern von Ginkgo biloba und Arzneipräparate
EP0402925A2 (en) * 1989-06-16 1990-12-19 Sunkyong Industries Ltd. A method of isolating ginkgolides from the leaves of the ginkgo tree and purifying them
CN1686317A (zh) * 2005-03-30 2005-10-26 沈阳药科大学 具有神经保护作用的银杏总内酯组合物
CN101054384A (zh) * 2007-05-30 2007-10-17 桂林莱茵生物科技股份有限公司 一种从银杏叶或银杏叶提取物中提取银杏内酯b的制备方法
CN101773528A (zh) * 2010-02-23 2010-07-14 广州汉方现代中药研究开发有限公司 一种低酚酸银杏总内酯的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU, DAWEI ET AL.: "YINXINGYE ZHONG YINXINGNEIZHI DE TIQU, FENLI HE CEDING FANGFA YANJIU", SCIENCE AND TECHNOLOGY INNOVATION HERALD 1674-098X, 2011, pages 9, XP055174412 *
See also references of EP2842957A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020073844A1 (zh) 2018-10-08 2020-04-16 成都百裕制药股份有限公司 一种有效成分包含银杏萜内酯的滴丸及其制备方法
CN114751913A (zh) * 2022-03-28 2022-07-15 云南中烟工业有限责任公司 一种色酮类化合物及其制备方法和应用
CN114751913B (zh) * 2022-03-28 2023-08-29 云南中烟工业有限责任公司 一种色酮类化合物及其制备方法和应用

Also Published As

Publication number Publication date
CA2871146A1 (en) 2013-10-31
JP5940212B2 (ja) 2016-06-29
EP2842957A1 (en) 2015-03-04
CN102659808B (zh) 2014-10-29
KR101653899B1 (ko) 2016-09-02
CN102659808A (zh) 2012-09-12
EP2842957B1 (en) 2017-03-15
KR20150001777A (ko) 2015-01-06
US20150044311A1 (en) 2015-02-12
CA2871146C (en) 2016-11-01
JP2015514785A (ja) 2015-05-21
US9084755B2 (en) 2015-07-21
EP2842957A4 (en) 2015-12-16

Similar Documents

Publication Publication Date Title
WO2013159412A1 (zh) 一种银杏内酯的提取分离方法
CN106278828A (zh) 一种从工业大麻花叶中提取大麻二酚的方法
CN101721567B (zh) 一种石菖蒲提取物及其制备方法和应用
JP2007518812A (ja) フェノール化合物に富む組成物及びその製造方法
CN101797307B (zh) 一种含苯乙醇苷的枇杷叶紫珠提取物及其制备方法
CN104147054A (zh) 一种银杏叶提取物及其制备方法和应用
KR100876233B1 (ko) 유효 성분이 풍부한 은행나무 잎 추출물의 제조 방법
CN103239487B (zh) 银杏内酯注射液及含量测定方法
CN103091412B (zh) 一种银杏内酯有效部位检测方法
CN102670670B (zh) 一种高银杏萜类内酯含量的银杏达莫注射液的制备方法
CN103145729B (zh) 银杏内酯b化合物及其制备方法
CN103130817B (zh) 一种新的银杏内酯b化合物及其制备方法
CN103163252B (zh) 银杏内酯组合物中总银杏酸的测定方法
CN103202839B (zh) 治疗心脑血管疾病的银杏内酯组合物
CN103239486B (zh) 治疗心脑血管疾病的银杏内酯组合物中残留物的测定方法
WO2013159411A1 (zh) 银杏内酯注射液及其制备方法
CN107915742B (zh) 一种银杏二萜内酯的提取分离方法
CN106420850B (zh) 银杏叶组合物及其在制备舒血宁注射液中的应用
CN101612184A (zh) 多舌飞蓬提取物、含该提取物的组合物及制备方法和用途
CN106138076B (zh) 黄酮苷二聚体及其制备方法和用途
Duy Establishment of a chromatographic profile and analytical method for determination of key flavonoids in extract of Ginkgo biloba's leaf
CN106620082A (zh) 一种石菖蒲提取物及其制备方法和应用
CN114588187A (zh) 一种治疗白内障的中药总黄酮提取物及其组合物、制备方法和医药用途
CN116115656A (zh) 同时提取银杏黄铜和银杏内酯的方法、提取物质和银杏提取物制剂
RU2564906C2 (ru) Способ получения средства, обладающего иммуностимулирующим действием

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875595

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2871146

Country of ref document: CA

Ref document number: 2015507330

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147030215

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012875595

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012875595

Country of ref document: EP