WO2013146367A1 - コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ - Google Patents
コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ Download PDFInfo
- Publication number
- WO2013146367A1 WO2013146367A1 PCT/JP2013/057465 JP2013057465W WO2013146367A1 WO 2013146367 A1 WO2013146367 A1 WO 2013146367A1 JP 2013057465 W JP2013057465 W JP 2013057465W WO 2013146367 A1 WO2013146367 A1 WO 2013146367A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- biaxially stretched
- capacitor
- stretched polypropylene
- temperature
- Prior art date
Links
- 239000010408 film Substances 0.000 title claims abstract description 329
- -1 polypropylene Polymers 0.000 title claims abstract description 104
- 239000004743 Polypropylene Substances 0.000 title claims abstract description 101
- 229920001155 polypropylene Polymers 0.000 title claims abstract description 99
- 239000003990 capacitor Substances 0.000 title claims abstract description 92
- 239000011104 metalized film Substances 0.000 title claims abstract description 16
- 229910052751 metal Inorganic materials 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 25
- 238000000034 method Methods 0.000 description 80
- 238000005259 measurement Methods 0.000 description 34
- 239000013078 crystal Substances 0.000 description 33
- 238000001816 cooling Methods 0.000 description 31
- 230000015572 biosynthetic process Effects 0.000 description 21
- 230000005855 radiation Effects 0.000 description 18
- 239000011347 resin Substances 0.000 description 18
- 229920005989 resin Polymers 0.000 description 18
- 238000004804 winding Methods 0.000 description 18
- 230000015556 catabolic process Effects 0.000 description 17
- 230000008569 process Effects 0.000 description 16
- 238000007740 vapor deposition Methods 0.000 description 16
- 239000010410 layer Substances 0.000 description 12
- 239000000155 melt Substances 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 12
- 230000002093 peripheral effect Effects 0.000 description 11
- 230000003746 surface roughness Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 8
- 239000003963 antioxidant agent Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 239000003484 crystal nucleating agent Substances 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 6
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 6
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 6
- 150000001336 alkenes Chemical class 0.000 description 6
- 238000002425 crystallisation Methods 0.000 description 6
- 230000008025 crystallization Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 239000008096 xylene Substances 0.000 description 6
- 230000003078 antioxidant effect Effects 0.000 description 5
- 229920006378 biaxially oriented polypropylene Polymers 0.000 description 5
- 239000011127 biaxially oriented polypropylene Substances 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 208000028659 discharge Diseases 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000007788 roughening Methods 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- 229910052774 Proactinium Inorganic materials 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000003851 corona treatment Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 229910052745 lead Inorganic materials 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 230000037303 wrinkles Effects 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000010297 mechanical methods and process Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000002667 nucleating agent Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920005606 polypropylene copolymer Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 2
- 238000005019 vapor deposition process Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- SDRZFSPCVYEJTP-UHFFFAOYSA-N 1-ethenylcyclohexene Chemical compound C=CC1=CCCCC1 SDRZFSPCVYEJTP-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- ROHFBIREHKPELA-UHFFFAOYSA-N 2-[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]prop-2-enoic acid;methane Chemical compound C.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O ROHFBIREHKPELA-UHFFFAOYSA-N 0.000 description 1
- KIHBGTRZFAVZRV-UHFFFAOYSA-N 2-hydroxyoctadecanoic acid Chemical compound CCCCCCCCCCCCCCCCC(O)C(O)=O KIHBGTRZFAVZRV-UHFFFAOYSA-N 0.000 description 1
- MBSRTKPGZKQXQR-UHFFFAOYSA-N 2-n,6-n-dicyclohexylnaphthalene-2,6-dicarboxamide Chemical compound C=1C=C2C=C(C(=O)NC3CCCCC3)C=CC2=CC=1C(=O)NC1CCCCC1 MBSRTKPGZKQXQR-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- LDTAOIUHUHHCMU-UHFFFAOYSA-N 3-methylpent-1-ene Chemical compound CCC(C)C=C LDTAOIUHUHHCMU-UHFFFAOYSA-N 0.000 description 1
- NMLSKYOPDGYLLU-UHFFFAOYSA-N 4-[[2,3-bis[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]phenyl]methyl]-2,6-ditert-butylphenol Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CC=2C(=C(CC=3C=C(C(O)=C(C=3)C(C)(C)C)C(C)(C)C)C=CC=2)CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 NMLSKYOPDGYLLU-UHFFFAOYSA-N 0.000 description 1
- PCBPVYHMZBWMAZ-UHFFFAOYSA-N 5-methylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C)CC1C=C2 PCBPVYHMZBWMAZ-UHFFFAOYSA-N 0.000 description 1
- WNEYWVBECXCQRT-UHFFFAOYSA-N 5-methylhept-1-ene Chemical compound CCC(C)CCC=C WNEYWVBECXCQRT-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical class N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000009998 heat setting Methods 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- PJJZFXPJNUVBMR-UHFFFAOYSA-L magnesium benzoate Chemical compound [Mg+2].[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1 PJJZFXPJNUVBMR-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 238000001225 nuclear magnetic resonance method Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 150000002989 phenols Chemical group 0.000 description 1
- 229930015698 phenylpropene Natural products 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000012748 slip agent Substances 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/14—Organic dielectrics
- H01G4/18—Organic dielectrics of synthetic material, e.g. derivatives of cellulose
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
- B29C55/14—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
- B29C55/143—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/005—Electrodes
- H01G4/015—Special provisions for self-healing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/10—Polymers of propylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0003—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
- B29K2995/0006—Dielectric
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24355—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
Definitions
- the present invention relates to a biaxially stretched polypropylene film suitable for packaging, industrial use, and the like, more specifically, a biaxially stretched polypropylene film excellent in high voltage resistance and suitable element workability as a dielectric for capacitors, And a metallized film and a film capacitor using the biaxially oriented polypropylene film.
- Biaxially stretched polypropylene films are excellent in transparency, mechanical properties, electrical properties, etc., and are therefore used in various applications such as packaging, tapes, cable wrapping and electrical applications including capacitors.
- the biaxially stretched polypropylene film is particularly preferably used for a high voltage capacitor because of its excellent withstand voltage characteristics and low loss characteristics.
- Such a biaxially stretched polypropylene film needs to be appropriately roughened from the viewpoint of voltage endurance, safety, and device processability, and this is particularly an improvement in the slipperiness and oil impregnation of the film or a vapor deposition capacitor. Is particularly important for providing security.
- security refers to a metal-deposited capacitor that uses a metal-deposited film formed on the dielectric film as an electrode. In the event of abnormal discharge, the deposited metal scatters due to discharge energy, thereby recovering insulation and preventing short circuits. Thus, the function of the capacitor can be maintained or the destruction of the capacitor can be prevented, which is also a very useful function from the viewpoint of safety.
- Such roughening methods include mechanical methods such as embossing and sandblasting, chemical methods such as chemical etching with solvents, methods of stretching sheets mixed with different types of polymers such as polyethylene, and generating ⁇ crystals.
- a method of stretching a sheet (see, for example, Patent Documents 1 and 2) has been proposed.
- the mechanical method and the chemical method reduce the roughness density, and the method of stretching the sheet that has formed ⁇ crystals tends to generate coarse protrusions. Therefore, the roughness density, the coarse protrusions, and the number of protrusions are not necessarily required. In some cases, it was not enough.
- the film roughened by these methods has insufficient oil impregnation between the film layers at the time of capacitor formation, and partly unimpregnated portions tend to be generated, and the capacitor life may be reduced. Further, in the method of stretching a sheet containing a different polymer such as polyethylene, there is little remaining of bubbles during capacitor formation, but when the film is recycled, the different polymer may adversely affect the recyclability. was there.
- the biaxially stretched polypropylene film produced by either method has insufficient voltage resistance and safety under the extremely severe use conditions of a capacitor having a potential gradient of 400 V / ⁇ m or more, and is in terms of reliability and life.
- the potential gradient is obtained by dividing the voltage applied to the dielectric film by the film thickness, and is the applied voltage per unit film thickness.
- Patent Documents 3, 4, and 5 films to which high melt tension polypropylene is added (see, for example, Patent Documents 3, 4, and 5) have been proposed.
- Patent Documents 3 and 4 although an effect is seen with respect to the roughness density and the uniformity of the protrusions, the height of the protrusions on the front and back of the film has not been strictly controlled, and particularly required for automotive applications. The high voltage resistance, safety, and device processability were not fully satisfied.
- Patent Document 5 discloses a biaxially stretched polypropylene film in which the degree of roughening of the film front and back surfaces is controlled and a method for producing the same.
- the technique of Patent Document 5 is intended for a relatively thick film, and is difficult to apply in thinning the film, which is the object of the present invention, and has a high withstand voltage as the object of the present invention. Was not enough.
- this method is insufficient and difficult to finely roughen both sides of the film and control the height of the projections on the front and back of the film.
- Patent Documents 6 and 7 that define the roughness on the film surface of at least one side, as a method of forming a fine rough surface, the ⁇ crystal fraction of the cast raw sheet is within a predetermined range, It is said that the element winding property and the pressure resistance can be balanced.
- the manufacturing method is not capable of sufficiently controlling the degree of roughening on both sides of the film, and the high roughness and safety required for automotive applications, especially in the case of a fine rough surface of the obtained film, element It did not satisfy all processability.
- the present inventors have arrived at the present invention as a result of intensive studies to solve the above-mentioned problems.
- the present invention provides a biaxially stretched polypropylene film, a metallized film, and a film capacitor that exhibit excellent voltage resistance, safety, and reliability, particularly in high voltage capacitor applications, and that ensure stable device processability. It is something to be done.
- the present invention for solving the above problems has the following features.
- Pa means the number of protrusions existing on the A surface per 0.1 mm 2
- Pb means the number of protrusions existing on the B surface per 0.1 mm 2.
- SRzA means the 10-point average roughness of the A surface
- SRzB means the 10-point average roughness of the B surface.
- the present invention has excellent surface characteristics, so that it is excellent in processability even for a thin film, and has a high withstand voltage even under a wide range of atmospheric temperature conditions from low temperature ( ⁇ 40 ° C.) to high temperature (115 ° C.). Since the biaxially stretched polypropylene film for capacitors that exhibits the properties can be provided, it is particularly suitable for capacitor applications, preferably for automobiles.
- the biaxially stretched polypropylene film of this embodiment has protrusions on both sides, and the thickness t1 is 1 ⁇ m to 3 ⁇ m. In addition, this thickness is the thickness by a micrometer method so that it may mention later. Further, when one film surface is an A surface and the other surface is a B surface, all of the following formulas (1) to (4) are satisfied.
- Pa means the number of protrusions existing on the A surface per 0.1 mm 2
- Pb means the number of protrusions existing on the B surface per 0.1 mm 2.
- SRzA means the 10-point average roughness of the A surface
- SRzB means the 10-point average roughness of the B surface.
- the biaxially stretched polypropylene film for capacitors of this embodiment preferably has a film thickness (t1) of 1 to 3 ⁇ m by a micrometer method from the viewpoint of capacitor element size and film formation stability.
- the film thickness by the micrometer method is more preferably 1.2 to 2.5 ⁇ m, particularly preferably 1.5 to 2.3 ⁇ m.
- the thickness of the film is less than 1 ⁇ m, the mechanical strength, dielectric breakdown strength, and voltage resistance may be inferior.
- the thickness of the film exceeds 3 ⁇ m, when used as a dielectric for a capacitor, the capacity per volume becomes small, which may be disadvantageous in reducing the size and weight of the capacitor.
- the film of this embodiment satisfies the following formulas (1) and (2).
- Pa means the number of protrusions existing on the A surface per 0.1 mm 2
- Pb means the number of protrusions existing on the B surface per 0.1 mm 2.
- SRzA means 10-point average roughness of the A plane.
- the film of this embodiment has a 10-point average roughness (SRzA) of the A-plane of 500 nm or more and 1,200 nm or less, as shown by the above formula (3). If this 10-point average roughness (SRzA) is less than 500 nm, the film cannot be wound well due to poor air escape, and in the vapor deposition process, the slit process and the capacitor element winding process, it is easy to be damaged during transportation. It tends to be. In particular, in the capacitor element winding process, wrinkles are likely to occur, the interlayer gap is narrow, local interlayer adhesion occurs, and the breakdown voltage tends to decrease due to electric field concentration. On the other hand, when the thickness exceeds 1,200 nm, the dielectric breakdown is likely to be reduced due to the coarse protrusions, and the minimum thickness of the film becomes small, which may be inferior in voltage resistance.
- SRzA 10-point average roughness
- SRaA is 25 nm or more and 45 nm or less
- the self-healing property may be improved.
- SRaB is 10 nm or more and 25 nm or less
- the voltage resistance may be improved.
- the minimum film thickness is increased and the withstand voltage is increased, but the gap between the films is narrowed, and the adhesion between the deposited metal and the film is increased, thereby ensuring security. Self-healing tends to get worse.
- the 10-point average roughness (SRzA) of the A surface is 500 nm or more and 1,200 nm or less
- the 10-point average roughness of the B surface is 50 nm or more and less than 500 nm, and satisfies all of the following formulas (1) and (2), so that the required high withstand voltage is required even though the film thickness is a very thin film of 1 to 3 ⁇ m. It has become possible to achieve both safety, security and self-healing.
- the biaxially stretched polypropylene film of this embodiment preferably has an A-plane centerline average roughness (SRaA) of 25 nm or more and 45 nm or less. If SRa is less than 25 nm, the film cannot be wound well due to poor air escape, etc., and the roll shape may be disturbed, and the slit process and capacitor element formation may not be performed properly. Moreover, the interlayer gap at the time of film lamination becomes narrow and the self-healing property may be lowered. On the other hand, when SRaA exceeds 45 nm, the dielectric breakdown voltage may be lowered, and SRaA is preferably 25 nm to 45 nm. SRaA is more preferably from 26 nm to 40 nm, and particularly preferably from 28 nm to 35 nm. This makes it possible to obtain a film having good security and self-healing properties and excellent workability.
- SRaA A-plane centerline average roughness
- the biaxially stretched polypropylene film of this embodiment preferably has a center line average roughness (SRaB) of the B surface of 10 nm or more and 25 nm or less. If the center line average roughness (SRaB) is greater than 25 nm, air may easily enter between the layers when the films are laminated, leading to deterioration of the capacitor element. Conversely, if the SRaB is less than 10 nm, the slip of the film is lowered, the handling property is inferior, or when the capacitor element is impregnated with the insulating oil, the insulating oil does not uniformly penetrate between the film layers, and the capacity changes during continuous use. May grow. SRaB is more preferably 15 nm to 23 nm, and particularly preferably 17 nm to 22 nm, whereby a film excellent in high voltage resistance and workability can be obtained.
- SRaB center line average roughness
- the center line average roughness (SRaA, SRaB) on one side of the film is in the above-described range, so that the winding property in the capacitor element process and the capacitance change when used as a capacitor are small and high withstand voltage. Is ensured, and an excellent film with improved safety can be obtained.
- the biaxially stretched polypropylene film of this embodiment which defines the surface protrusion height, protrusion density, and number of protrusions, is excellent in the uniformity of the surface protrusion height, and has different protrusion numbers on the front and back of the film. is doing. And if a capacitor is manufactured using such a biaxially stretched polypropylene film, even if dielectric breakdown occurs in a high voltage band, the minimum gap between the film layers required for the vapor deposition metal to be scattered is maintained uniformly. Therefore, the self-healing property is good, the capacitor has a function of excellent safety that can maintain the capacitor life for a long time without causing a short circuit breakdown, and can stably exhibit the safety.
- the values of the above-mentioned protrusion height, the number of protrusions, SRz, SRa and the like are based on JIS B-0601 (1982), “Non-contact three-dimensional fine shape measuring instrument (ET-30HK)” manufactured by Kosaka Laboratory Ltd. It can be measured using a “three-dimensional roughness analyzer (MODEL SPA-11)”. Details of measurement conditions and the like will be described later.
- biaxially stretched polypropylene film for capacitors of the present embodiment (hereinafter sometimes referred to as a biaxially stretched polypropylene film) will be described.
- a typical method is to obtain the desired protrusions and surface roughness by using crystal transformation from the viewpoint that electrical characteristics such as dielectric breakdown voltage are not deteriorated without adding electrical impurities. Can be adopted.
- the surface formation method by crystal transformation is, for example, a surface using two crystal systems possessed by polypropylene as described in M. Fujiyama, Journal of Applied Polymer Science 36, P.985-1948 (1988).
- ⁇ crystal monoclinic crystal system, crystal density 0.936 g / cm 2
- ⁇ crystal hexagonal system, crystal density 0.922 g / cm 2
- It is formed in an unstretched sheet, and irregularities are formed on the film surface by transforming thermally unstable ⁇ crystals into ⁇ crystals in the stretching step.
- the shape may exhibit a crater shape formed in an elliptical shape or an arc shape by the projection group.
- the surface shape obtained by the crystal transformation may be formed by the existence of many crater shapes, and may have a crater shape by connecting individual protrusions in an elliptical shape or an arc shape.
- the unevenness is not formed and it is relatively flat.
- the group of protrusions having the crater shape described above changes corresponding to the ratio of the longitudinal and lateral stretch ratios when biaxially stretching, and the aspect ratio is 1, that is, becomes substantially circular when isotropic, and becomes flat as the aspect ratio increases.
- the shape obtained by the sequential biaxial stretching method is an elliptical shape having a major axis in the transverse direction of the film (the width direction of the film roll).
- a plurality of craters having different shapes may be overlapped, and the arc may be arcuate or semi-arc shaped without being circularly closed.
- a method of adding a material having a nucleating agent effect to increase the nucleation ability can be adopted as one of the methods for generating the surface shape related to Pa and Pb defined above.
- the number of nuclei is increased so that a large number of small fine protrusions are present, the number of relatively flat portions (portions where no protrusions are present) is reduced, and a surface form in which protrusions are uniformly formed as a whole can be obtained. . Since such protrusions are densely formed on the surface, it is easy to satisfy the surface shape defined in this embodiment.
- Examples of the raw material having a nucleating agent effect include branched polypropylene. Since the above crater shape can be controlled by controlling the amount of branched polypropylene added and the film forming conditions, as a result, the characteristic surface shape of the biaxially stretched polypropylene film of this embodiment described above is generated. It is possible to dampen.
- the biaxially stretched polypropylene film of this embodiment preferably contains 0.05 to 10% by mass of branched polypropylene.
- the branched polypropylene referred to here is a polypropylene having 5 or less internal 3-substituted olefins per 10,000 carbon atoms constituting the branched polypropylene. The presence of the internal trisubstituted olefin can be confirmed by the proton ratio in the 1 H-NMR spectrum.
- branched polypropylene In order to obtain the above-mentioned branched polypropylene, a method of blending an oligomer or polymer having a branched structure, or a method of introducing a long-chain branched structure into a polypropylene molecule as described in JP-A-62-1121704 Alternatively, a method described in Japanese Patent No. 2869606 is preferably used. In addition, short chain branching as described in JP-A-2009-542872 may be introduced. Specific examples of available branched polypropylene include “Profax PF-814” manufactured by Basell, and “Daploy HMS-PP” manufactured by Borealis.
- the melt tension of the branched polypropylene is preferably in the range of 1 cN to 30 cN, more preferably in the range of 2 cN to 20 cN.
- the uniformity of the protrusion height tends to be improved, and a dense surface formation (a larger number of protrusions per unit area) tends to occur.
- the melt tension is less than 1 cN, the uniformity of the protrusion height is inferior, while when it exceeds 30 cN, the preferable protrusion height may not be maintained.
- the size of the spherulite generated in the cooling process of the melt-extruded resin sheet can be easily controlled to be small, and the generation of insulation defects generated in the stretching process can be reduced.
- a polypropylene film that can be suppressed and has excellent voltage resistance can be obtained.
- the branched polypropylene can act as an ⁇ crystal nucleating agent, and can form a rough surface by crystal transformation as long as the addition amount is within a certain range.
- a biaxially oriented polypropylene film having a typical surface roughness can be provided.
- the content of branched polypropylene is more preferably 0.05 to 3% by mass.
- the content of the branched polypropylene is in the above range, a film excellent in element workability and capacitor characteristics can be obtained with improved winding properties and voltage resistance.
- the melt crystallization temperature of ordinary polypropylene is about 110 ° C., whereas it can be increased to 115 ° C. or higher. That is, in the capacitor self-healing (self-recovery process), the melt crystallization temperature is high, so that the safety is easily recovered, and the dielectric strength does not break down and the withstand voltage is improved. In other words, the vapor deposition metal around the discharge part is scattered by the discharge energy generated when the dielectric film causes dielectric breakdown for some reason, and the film itself partially melts due to partial high temperature at that time. High crystallization temperature makes it easy to recrystallize immediately and to recover the insulating property.
- Linear polypropylene is usually used for packaging materials and capacitors, but preferably has a cold xylene soluble part (hereinafter CXS) of 4% by mass or less.
- CXS cold xylene soluble part
- the cold xylene soluble part (CXS) is a polypropylene component dissolved in xylene after the sample is completely dissolved in heated xylene and then cooled to room temperature, and the undissolved portion deposited by cooling is separated by filtration. Yes, it is considered that it corresponds to a component that is difficult to crystallize due to low stereoregularity or low molecular weight. When many such components are contained in the resin, problems such as inferior thermal dimensional stability of the film and a decrease in dielectric breakdown voltage at high temperatures may occur.
- CXS is preferably 4% by mass or less, more preferably 3% by mass or less, and particularly preferably 2% by mass or less.
- the above range is preferably satisfied for the linear polypropylene to be used, but it is also preferable that the entire film containing the polymer as a constituent component is satisfied.
- a substantial lower limit is about 1 mass%.
- the mesopentad fraction of the linear polypropylene is preferably 0.95 or more, more preferably 0.97 or more.
- the mesopentad fraction is an index indicating the stereoregularity of the crystal phase of polypropylene measured by a nuclear magnetic resonance method (NMR method). The higher the numerical value, the higher the crystallinity, the higher the melting point, and the higher the temperature.
- the upper limit of the mesopentad fraction is not particularly specified. In order to obtain a polymer with such high stereoregularity, a method of washing the resin powder obtained by polymerization with a solvent such as n-heptane is exemplified. The higher the mesopentad fraction, the better, but the substantial upper limit is about 0.995.
- the linear polypropylene that can be used in this embodiment is more preferably a melt flow index (melt flow rate: MFR) of 1 g / 10 min to 10 g / 10 min (230 ° C., 21.18 N load), particularly preferably A range of 2 g / 10 min to 5 g / 10 min (230 ° C., 21.18 N load) is preferable from the viewpoint of film forming property.
- MFR melt flow index
- a method of controlling the average molecular weight or the molecular weight distribution is employed.
- the linear polypropylene may be a polypropylene copolymer containing other unsaturated hydrocarbons as a copolymer component in addition to a propylene homopolymer, as long as the object of the present invention is not impaired.
- a polypropylene copolymer containing an unsaturated hydrocarbon as a copolymer component may be blended with a homopolymer of propylene.
- Examples of such a copolymer component and a monomer component constituting the blend include ethylene, propylene (in the case of a copolymer blend), 1-butene, 1-pentene, 3-methyl-1-pentene, 3- Methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 5-ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, vinylcyclohexene, styrene, allylbenzene, cyclopentene, norbornene, Examples include 5-methyl-2-norbornene.
- the blending amount of the copolymer component or the blend amount of the copolymer is less than 1 mol% in the blending amount of the copolymer component and less than 10% by weight in the blend amount of the copolymer from the viewpoint of dielectric breakdown resistance and dimensional stability. Is preferable.
- the linear polypropylene has various additives such as a crystal nucleating agent, an antioxidant, a heat stabilizer, a slip agent, an antistatic agent, an antiblocking agent, and a filler as long as the object of the present invention is not impaired. , A viscosity modifier, a coloring inhibitor, and the like can also be contained.
- the selection of the type and content of the antioxidant may be important for long-term heat resistance.
- Such an antioxidant is a phenolic compound having steric hindrance, and at least one of them is preferably a high molecular weight type having a molecular weight of 500 or more.
- Specific examples thereof include various compounds such as 2,6-di-t-butyl-p-cresol (BHT: molecular weight 220.4) and 1,3,5-trimethyl-2,4,6.
- Tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene eg Irganox® 1330: molecular weight 775.2 from Ciba Geigy
- tetrakis [methylene-3- (3,5-di- t-butyl-4-hydroxyphenyl) propionate] methane for example, Irganox 1010 manufactured by Ciba Geigy, Inc., molecular weight 1,177.7
- the total content of these antioxidants is preferably in the range of 0.03 to 1% by mass relative to the total amount of polypropylene. When antioxidant is less than 0.03 mass%, it may be inferior to long-term heat resistance. When the amount of the antioxidant exceeds 1% by mass, the capacitor element may be adversely affected due to blocking at a high temperature due to bleeding out of these antioxidants.
- a more preferable content is 0.1 to 0.9% by mass, particularly preferably 0.2 to 0.8% by mass.
- a crystal nucleating agent can be added as long as it does not contradict the purpose of the present invention.
- branched polypropylene already has an ⁇ -crystal or ⁇ -crystal nucleating agent effect itself, but another ⁇ -crystal nucleating agent (dibenzylidene sorbitols, sodium benzoate, etc.), It is also preferable to add ⁇ crystal nucleating agents (amide compounds such as potassium 1,2-hydroxystearate, magnesium benzoate, N, N′-dicyclohexyl-2,6-naphthalene dicarboxamide, quinacridone compounds, etc.) and the like. .
- the glossiness of the biaxially stretched polypropylene film surface of the present embodiment is in the range of 110 to 135% because the film thickness is a very thin film thickness of 1 to 3 ⁇ m and high voltage resistance is required. Preferably, it is 120 to 130%. That is, lowering the gloss level means increasing the light scattering density on the film surface, that is, increasing the unevenness of the film surface, increasing the number of protrusions per unit area and increasing the roughness density. .
- the glossiness when the glossiness is lowered to less than 110%, the liquid impregnation property is improved, but the amount of air accumulation between the protrusions increases due to the increase in the protrusion height and the number of protrusions due to the formation of dense protrusions, and the film layer It may be slippery and the element winding property may deteriorate, making it difficult to wind the film into a roll, and the voltage resistance may be reduced.
- the glossiness exceeds 135%, it becomes difficult to form a flat capacitor element that is difficult to slip between the film layers, or a sufficient gap between the film layers cannot be maintained and the scattering property of the deposited metal deteriorates.
- a glossiness of 120 to 130% is more preferable because the balance between element winding property, voltage resistance, and security is improved. More preferably, it is 123 to 127%.
- the ash content of the biaxially stretched polypropylene film of this embodiment is preferably 50 ppm or less (mass basis, the same shall apply hereinafter), more preferably It is 30 ppm or less, and particularly preferably 20 ppm or less. If the ash content is too much, the dielectric breakdown resistance of the film is lowered, and the dielectric breakdown strength may be lowered when a capacitor is used.
- the ash content In order to make the ash content within this range, it is important to use a raw material with little catalyst residue, but a method of reducing contamination from the extrusion system as much as possible, for example, taking a bleed time of 1 hour or more, A method of sufficiently washing the path with a polymer before actually starting film formation can be employed.
- the practical lower limit is about 10 ppm.
- the biaxially stretched polypropylene film of this embodiment is preferably used as a dielectric film for a capacitor, but is not limited to the type of capacitor.
- a foil wound capacitor or a metal vapor deposition film capacitor may be used, and it is also preferably used for an oil immersion type capacitor impregnated with insulating oil or a dry type capacitor not using insulating oil at all. It is done.
- it may be a winding type or a laminated type.
- it is preferably used as a metal-deposited film capacitor because of the characteristics of the film of this embodiment.
- the biaxially stretched polypropylene film of this embodiment is preferably subjected to surface treatment in advance for the purpose of improving the metal adhesion.
- Specific examples of the surface treatment include corona discharge treatment, plasma treatment, glow treatment, and flame treatment.
- the surface wetting tension of a polypropylene film is about 30 mN / m, but by these surface treatments, the wetting tension is 37 to 50 mN / m, preferably 39 to 48 mN. / M is preferable because the adhesion to the metal film is excellent and the safety is improved.
- the biaxially stretched polypropylene film of the present embodiment is obtained by biaxially stretching under a predetermined condition using a raw material that can give the above-described characteristics.
- the biaxial stretching method can be obtained by any of the inflation simultaneous biaxial stretching method, the stenter simultaneous biaxial stretching method, and the stenter sequential biaxial stretching method. Among them, the film forming stability, the thickness uniformity, In terms of controlling the surface shape, it is preferable to employ a stenter sequential biaxial stretching method.
- branched polypropylene is blended with linear polypropylene resin at a predetermined ratio, melt-extruded, passed through a filtration filter, extruded from a slit die at a temperature of 220 to 280 ° C., solidified on a cooling drum, and unstretched Get a film.
- Any method of electrostatic contact, contact using water surface tension, air knife method, press roll method, underwater cast method, etc. may be used as the method of close contact with the cooling drum,
- the air knife method is preferable because it is good and the surface roughness can be controlled.
- an unstretched sheet is brought into close contact with the cooling drum at a predetermined temperature with an air knife, and ⁇ 1
- ⁇ 2> controlling the temperature holding time on the drum surface side and the non-drum surface side, and controlling the amount and size of ⁇ crystals formed on the front and back of the film
- 3> It is important to control the preheating temperature until stretching, the peripheral speed of the preheating roll, the nip pressure of the preheating roll, and the nip temperature, and ⁇ 4> control of the nip pressure and nip temperature of the stretching section.
- the temperature holding time refers to the time for the unstretched film to contact the cooling drum.
- the amount of ⁇ crystals generated on the film surface and the height of the protrusions can be controlled.
- the surface that is in contact with the cooling drum is held at a temperature at which ⁇ crystals are likely to be generated, so that the amount of ⁇ crystals generated is large and the dimensions are small.
- the surface that is not in contact with the cooling drum is kept at a temperature at which the heat of the cooling drum is transferred through the film and is likely to generate ⁇ crystals.
- the holding time is shortened, the amount of ⁇ crystals generated is small, and the protrusion height and fibril dimensions are increased.
- Patent Document 5 As a method of changing the amount of heat applied to the front and back of the film, there is a method of controlling the contact time with the roll that contacts the front and back surfaces during preheating before stretching.
- the contact time to the cooling roll and the contact time to each roll during preheating are controlled. It was not sufficient to control the number of protrusions alone.
- the film temperature immediately before stretching on one surface is controlled.
- the surface roughness, protrusion height, and number can be controlled well. Thereby, since the surface roughness of a film front and back can be controlled independently, surface formation suitable for the purpose is attained. In addition, the control accuracy can be increased more easily by changing the nip pressure and nip temperature of the stretched portion.
- the temperature of the cooling drum is preferably 70 to 135 ° C., more preferably 80 to 120 ° C., and particularly preferably 85 to 110 ° C.
- the temperature holding time is preferably 1.5 seconds or more, particularly preferably 2.0 seconds or more.
- this unstretched film is biaxially stretched to be biaxially oriented.
- an unstretched film is passed between preheating rolls to preheat the film.
- the temperature of the preheating portion is preferably 120 to 140 ° C.
- the temperature of the preheating roll contacting the A side of the film is preferably 130 to 140 ° C.
- the nip pressure of the preheating portion in contact with the A surface is preferably 0.25 to 0.55 MPa, more preferably 0.35 to 0.45 MPa.
- the nip temperature of the preheated portion in contact with the A surface side is preferably 100 to 140 ° C. More preferably, the temperature is 110 to 130 ° C.
- the protrusions on the A side of the film can be controlled.
- the peripheral speed is preferably a speed difference of 0.1 to 3.0% between the front and rear rolls.
- the difference in peripheral speed is more preferably 1.0 to 2.5%, and further preferably 1.5 to 2.0%, so that the film temperature can be easily controlled.
- the roll temperature of the stretched portion in the longitudinal direction is preferably a temperature of 130 ° C. to 160 ° C. at which ⁇ crystals in the unstretched film melt and protrusions are formed on the film surface. More preferably, it is 135 ° C to 155 ° C, particularly preferably 140 ° C to 150 ° C. If the roll temperature of the stretched part exceeds 160 ° C., the film may be fused to the roll and film breakage may occur. Conversely, if the roll temperature is lower than 130 ° C., stretching unevenness may occur, or the ⁇ crystal may not melt and projections on the film surface may not be formed.
- the biaxially stretched polypropylene film of the present embodiment has a predetermined amount of heat applied to the film by a conventional roll, non-contact heat amount application, and uniform heat addition to one side at the stretching nip. Protrusion distribution formation on the front and back of the film was made possible.
- the output of the radiation heater is preferably 1.5 kW to 13.0 kW at which the ⁇ crystal is melted and projections are formed on the film surface in the same manner as the heat application with the roll. More preferably, it is 2.0 kW to 11.0 kW, and particularly preferably 2.5 kW to 10.5 kW.
- the output of the radiation heater exceeds 13.0 kW, the film melts and film breakage is likely to occur.
- the output of the radiation heater is less than 1.5 kW, the film breaks or the surface protrusion on the side to which the amount of heat is applied by the radiation heater becomes small, and the desired protrusion distribution on the film surface cannot be formed. There is.
- the stretch ratio in the longitudinal direction is preferably 4.0 to 5.5 in order to assist the melting of ⁇ crystals. More preferably, it is 4.3 times to 5.2 times. Since the projection on the film surface is stretched by stretching, the size of the projection can be controlled by controlling the stretching ratio. When the longitudinal draw ratio is higher than 5.5 times, the film is easily broken and film formation becomes difficult. On the other hand, when the draw ratio is low, the projection size on the film surface becomes small and the tensile strength may be lowered. If the draw ratio is lower than 4.0 times, it may be difficult to obtain a desired projection size, and the voltage resistance and safety may be impaired.
- the film is rapidly cooled immediately after stretching in the longitudinal direction of the film. That is, it is preferable to rapidly cool to 30 to 50 ° C. immediately after stretching in the longitudinal direction.
- it is preferable to rapidly cool to 30 to 50 ° C. melting of ⁇ crystals can be stopped, and the height and number of protrusions on the film surface formed during stretching can be maintained.
- the cooling temperature is higher than 50 ° C., the melting of ⁇ crystals does not stop, so that the projection distribution on the film surface formed by stretching cannot be maintained, and the projection height and number of projections on the film surface of this embodiment can be obtained. It may be difficult to get it.
- the cooling temperature is lower than 30 ° C.
- the solidification of the film proceeds rapidly, so that the dimensional change of the film increases and the film formation may become unstable.
- a rapid cooling method there are a cooling roll and a method using air.
- the stretched film After stretching in the longitudinal direction, the stretched film is guided to a stenter, stretched 5 to 15 times in the width direction at a temperature of 150 to 170 ° C., and then given a relaxation of 2 to 20% in the width direction. Heat set at a temperature of 170 ° C. After heat setting, in order to improve the adhesion of the deposited metal, the surface on which the stretched film is to be deposited is subjected to corona discharge treatment in air, nitrogen, carbon dioxide gas or a mixed gas thereof. A biaxially stretched polypropylene film can be obtained.
- the method for providing a metal film on the surface of the above-described biaxially stretched polypropylene film is not particularly limited.
- at least one surface of the biaxially stretched polypropylene film of the present embodiment is also necessary.
- a method of providing a metal film such as an aluminum vapor deposition film on both surfaces by vapor-depositing aluminum and serving as an internal electrode of the film capacitor is preferably used.
- other metal components such as nickel, copper, gold, silver, chromium, and zinc can be deposited simultaneously or sequentially with aluminum.
- a protective layer can be provided on the deposited film with oil or the like.
- the thickness of the metal film is preferably in the range of 20 to 100 nm from the viewpoint of electrical characteristics and self-heeling properties of the film capacitor.
- the surface electric resistance value of the metal film is preferably in the range of 1 to 20 ⁇ / ⁇ .
- the surface electrical resistance value can be controlled by the type of metal used and the film thickness. A method for measuring the surface electrical resistance will be described later.
- the metallized film can be subjected to aging treatment or heat treatment at a specific temperature after forming a metal film, if necessary. Also, a coating such as polyphenylene oxide can be applied to at least one side of the metallized film for insulation or other purposes.
- the metallized film thus obtained can be laminated or wound by various methods to obtain a film capacitor.
- An example of a preferred method for producing a wound film capacitor is as follows.
- Aluminum is vacuum-deposited on one side of the biaxially stretched polypropylene film of this embodiment (deposition step). In that case, it vapor-deposits in the stripe form which has the margin part which runs in a film longitudinal direction.
- a blade is inserted into the center of each vapor deposition section on the surface and the center of each margin section to perform slitting (slit process), thereby creating a tape-shaped take-up reel having a margin on one of the surfaces.
- slit process slit process
- Film capacitors are used for various purposes such as for vehicles, home appliances (TVs, refrigerators, etc.), general noise prevention, automobiles (hybrid cars, power windows, wipers, etc.) and power supplies. Film capacitors can also be suitably used for these applications.
- the measurement method of the characteristic value of the biaxially stretched polypropylene film in this embodiment and the evaluation method of the effect are as follows.
- the measurement was performed 5 times, and the average value was taken as the mesopentad fraction.
- Measurement conditions Apparatus: ECX400P type nuclear magnetic resonance apparatus manufactured by JEOL Measurement nucleus: 1 H nucleus (resonance frequency: 500 MHz) Measurement concentration: 2 wt% Solvent: Heavy orthodichlorobenzene Measurement temperature: 120 ° C Pulse width: 45 ° Pulse repetition time: 7 seconds Conversion count: 512 times Measurement mode: non decoupling
- CXS Cold xylene soluble part
- the total number of protrusions indicates the sum of all the values obtained by converting the number of protrusions detected at the sampling interval in the width direction and the length direction shown in the measurement condition item to the number per 0.1 mm 2 .
- Measurement conditions Measurement surface treatment: Aluminum was vacuum-deposited on the measurement surface to obtain a non-contact method.
- Measurement direction Film width direction Width direction feed rate: 0.1 mm / second Measurement range (width direction ⁇ length direction): 1.0 mm ⁇ 0.249 mm Reference plane of height dimension: LOWER (lower side) Width direction sampling interval: 2 ⁇ m Sampling interval in the length direction: 10 ⁇ m Number of samplings in the length direction: 25 Cutoff: 0.25 mm / second Magnification in the width direction: 200 times Magnification in the length direction: 20,000 times Waviness, roughness Cut: None
- Measuring method Use a special sample holder for film measurement.
- the sample holder is a detachable metal plate with a circular hole in the center.
- the sample is sandwiched between the sample holders, and the film is fixed to the four sides of the sample holder.
- the film was measured for roughness.
- each parameter can be read as follows.
- element winding yield an index of property
- the capacitor element was wound up with an element winding machine (KAW-4NHB) manufactured by Minato Manufacturing Co., Ltd. Installed and finished capacitor element.
- the capacitance of the capacitor element at this time was 5 ⁇ F.
- a voltage of 500 VDC is applied to the capacitor element at room temperature, and the applied voltage is gradually increased in steps of 50 VDC / 1 minute after 10 minutes at that voltage.
- a so-called step-up test was performed.
- the capacitance change at this time was measured and plotted on a graph, and the voltage at which the capacitance reached 70% of the initial value was divided by the micrometer film thickness (described above) as an evaluation index of withstand voltage. , 300 V / ⁇ m or more is the usable level.
- the withstand voltage evaluation index is preferably 470 V / ⁇ m or more.
- the capacitor element was disassembled, the state of destruction was examined, and the safety was evaluated as follows.
- ⁇ can be used without problems, but ⁇ can be used depending on conditions. ⁇ and ⁇ cause practical problems.
- Example 1 Linear polypropylene resin ("Borclean (registered trademark)” manufactured by Borealis) with a mesopentad fraction of 0.985 and a melt flow rate (MFR) of 2.6 g / 10 min. 0.5% by mass of a branched polypropylene resin (“Daploy HMS-PP” manufactured by Borealis Co., Ltd.), which is 3 per 10,000 atoms, is supplied to an extruder at a temperature of 250 ° C., and the resin temperature is 250 ° C. And melt-extruded into a sheet form from a T-shaped slit die, and the melted sheet was cooled and solidified on a cooling drum having a diameter of 1 m held at 90 ° C.
- Boclean registered trademark
- MFR melt flow rate
- both the roll in contact with the unstretched film A surface and the roll in contact with the unstretched film B surface were preheated at 140 ° C.
- the surface temperature of the nip roll was set to 130 ° C. by passing pressurized steam through the nip roll in contact with the A side of the film.
- the nip pressure was 0.50 MPa.
- the film was passed between rolls maintained at a temperature of 145 ° C. and provided with a peripheral speed difference, and stretched in the longitudinal direction at a stretch ratio of 4.5 times. In the stretching section, a radiation heater was used at an output of 10.0 kW, and the amount of heat was compensated for stretching. Immediately thereafter, the film was passed between rolls maintained at 35 ° C. to quench.
- the film was guided to a tenter, stretched 10 times in the width direction at a temperature of 158 ° C., then heat-treated at 155 ° C. while giving 6% relaxation in the width direction, and then cooled to obtain a film having a thickness of 2.5 ⁇ m.
- An axially stretched polypropylene film was obtained. Further, the surface of the film was subjected to corona discharge treatment in the air at a treatment strength of 25 W ⁇ min / m 2 .
- Tables 2, 3, and 4 show the characteristics of the biaxially stretched polypropylene film thus obtained, and the withstand voltage (dielectric breakdown voltage) and element workability (element winding yield) when the film was used as a capacitor. As shown in Tables 2, 3, and 4, the capacitor prepared from the biaxially stretched polypropylene film according to Example 1 was excellent in withstand voltage and safety.
- Example 2 In the pre-heating step of the unstretched film, film formation was performed in the same manner as in Example 1 except that the roll in contact with the film B surface was 120 ° C. and the roll in contact with the film A surface was 140 ° C. A film of 5 ⁇ m was obtained. The properties of the obtained film are shown in Tables 2, 3, and 4.
- Example 3 Except that the output of the radiation heater was 7.0 kW, film formation was performed in the same manner as in Example 1 to obtain a 2.5 ⁇ m film. The properties of the obtained film are shown in Tables 2, 3, and 4.
- Example 4 Except that the molten sheet melt-extruded at a resin temperature of 250 ° C. was cooled and solidified on a cooling drum having a diameter of 1 m held at 85 ° C., a film was formed in the same manner as in Example 1, and a 2.5 ⁇ m film was formed. Obtained. The properties of the obtained film are shown in Tables 2, 3, and 4.
- Example 5 The molten sheet melt-extruded at a resin temperature of 250 ° C. was cooled and solidified on a cooling drum having a diameter of 1 m held at 100 ° C., and the roll temperature in contact with the film B surface in the pre-heating step of the unstretched film The film was formed in the same manner as in Example 1 except that the roll in contact with the film A surface was set to 135 ° C., and a 2.5 ⁇ m film was obtained. The properties of the obtained film are shown in Tables 2, 3, and 4.
- Example 6 In the preheating process of the unstretched film, film formation was performed in the same manner as in Example 1 except that the roll in contact with the film B surface was 120 ° C. and the roll in contact with the film A surface was 130 ° C. A film of 5 ⁇ m was obtained. The properties of the obtained film are shown in Tables 2, 3, and 4.
- Example 7 Except that the output of the radiation heater was 13.0 kW, a film was formed in the same manner as in Example 1 to obtain a 2.5 ⁇ m film. The properties of the obtained film are shown in Tables 2, 3, and 4.
- Example 8 In the preheating process of the unstretched film, film formation was performed in the same manner as in Example 1 except that the surface temperature of the nip roll contacting the film A side was set to 140 ° C., and a 2.5 ⁇ m film was obtained. The properties of the obtained film are shown in Tables 2, 3, and 4.
- Example 9 When the unstretched film was stretched in the longitudinal direction, film formation was carried out in the same manner as in Example 1 except that the roll temperature provided with a peripheral speed difference was maintained at 150 ° C. to obtain a 2.5 ⁇ m film.
- the properties of the obtained film are shown in Tables 2, 3, and 4.
- Example 10 When the unstretched film was stretched in the longitudinal direction, film formation was carried out in the same manner as in Example 1 except that the roll temperature provided with a peripheral speed difference was maintained at 140 ° C. to obtain a 2.5 ⁇ m film.
- the properties of the obtained film are shown in Tables 2, 3, and 4.
- Example 11 The molten sheet melt-extruded at a resin temperature of 250 ° C. was cooled and solidified on a cooling drum having a diameter of 1 m held at 88 ° C., the output of the radiation heater was 10.5 kW, and the transverse stretching temperature was 160 ° C. Except that, a film was formed in the same manner as in Example 1 to obtain a 3.0 ⁇ m film. The properties of the obtained film are shown in Tables 2, 3, and 4.
- Example 12 The molten sheet melt-extruded at a resin temperature of 250 ° C. was cooled and solidified on a cooling drum having a diameter of 1 m held at 89 ° C., the output of the radiation heater was 10.5 kW, and the stretching temperature in the transverse direction was 159 ° C. Except that, a film was formed in the same manner as in Example 1 to obtain a 2.8 ⁇ m film. The properties of the obtained film are shown in Tables 2, 3, and 4.
- Example 13 Example 1 except that the molten sheet melt-extruded at a resin temperature of 250 ° C. was cooled and solidified on a cooling drum having a diameter of 1 m and maintained at 92 ° C., and the output of the radiation heater was set to 9.5 kW. A film having a thickness of 2.0 ⁇ m was obtained. The properties of the obtained film are shown in Tables 2, 3, and 4.
- Example 14 The molten sheet melt-extruded at a resin temperature of 250 ° C. was cooled and solidified on a cooling drum having a diameter of 1 m held at 93 ° C., the output of the radiation heater was 9.0 kW, and the transverse stretching temperature was 157 ° C. Except that, a film was formed in the same manner as in Example 1 to obtain a 1.5 ⁇ m film. The properties of the obtained film are shown in Tables 2, 3, and 4.
- Example 15 The molten sheet melt-extruded at a resin temperature of 250 ° C. was cooled and solidified on a cooling drum having a diameter of 1 m held at 94 ° C., the output of the radiation heater was 8.0 kW, and the transverse stretching temperature was 157 ° C. Except for the above, a film was formed in the same manner as in Example 1 to obtain a 1.2 ⁇ m film. The properties of the obtained film are shown in Tables 2, 3, and 4.
- Example 1 A 2.5 ⁇ m film was obtained in the same manner as in Example 1 except that the nip roll was a nip roll without a temperature control mechanism. The properties of the obtained film are shown in Tables 2, 3, and 4.
- Example 3 After extruding in the same manner as in Example 1 using the resin of Example 1, the molten sheet was cooled and solidified on a 1 m diameter cooling drum held at 60 ° C. to obtain an unstretched film. The holding time on the cooling roll was 2.0 seconds. Next, the unstretched film was gradually preheated with a preheated roll at 130 ° C., the film was passed between rolls having a difference in peripheral speed, and stretched in the longitudinal direction at a stretch ratio of 4.6 times. At this time, a nip roll without a temperature control mechanism was used as the nip roll, and the nip pressure was 0.50 MPa. In the stretching section, a radiation heater was used at an output of 3.5 kW, and the heat was compensated for stretching. About the process after longitudinal stretch, it implemented similarly to Example 1 and obtained the film of thickness 2.5 micrometers.
- Example 4 After extruding in the same manner as in Example 1 using the resin of Example 1, the molten sheet was cooled and solidified on a cooling drum having a diameter of 1 m held at 70 ° C. to obtain an unstretched film. The holding time on the cooling roll was 3.0 seconds. Subsequently, the roll which contacts the A surface side of the unstretched film is preheated to 140 ° C., the temperature of the roll which contacts the B surface side is 130 ° C., is maintained at a temperature of 148 ° C., and has a peripheral speed difference. The film was passed through and stretched in the longitudinal direction at a stretch ratio of 4.6 times.
- nip roll without a temperature control mechanism was used as the nip roll, and the nip pressure was 0.50 MPa.
- a radiation heater was used at an output of 10.5 kW, and the heat was compensated for stretching.
- the process after longitudinal stretch it implemented similarly to Example 1 and obtained the film of thickness 2.5 micrometers.
- Example 6 (Comparative Example 6) Except not using a radiation heater, it formed into a film like Example 1 and obtained the film of 2.5 micrometers. The properties of the obtained film are shown in Tables 2, 3, and 4.
- the biaxially stretched polypropylene film and metallized film according to the present invention can be used for manufacturing a capacitor, and can be suitably used particularly for manufacturing a film capacitor as an automobile part.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Laminated Bodies (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
0.350≦Pa/SRzA≦0.700 ・・・(2)
500nm≦SRzA≦1,200nm ・・・(3)
50nm≦SRzB<500nm ・・・(4)
0.350≦Pa/SRzA≦0.700 ・・・(2)
500nm≦SRzA≦1,200nm ・・・(3)
50nm≦SRzB<500nm ・・・(4)
0.350≦Pa/SRzA≦0.700 ・・・(2)
0.350≦Pa/SRzA≦0.700 ・・・(2)
JIS C-2330(2001)の7.4.1.1に従い、マイクロメータ法厚みを測定した。
JIS K-7105(1981)に準じて、スガ試験機株式会社製 デジタル変角光沢計UGV-5Dを用いて入射角60°受光角60°の条件で測定した5点のデータの平均値を光沢度とした。
JIS-K7210(1999)に準じて、測定温度230℃、荷重21.18Nで測定した。
JIS-K7210(1999)に示されるMFR測定用の装置に準じて測定した。東洋精機製メルトテンションテスターを用いて、測定対象のポリプロピレンを230℃に加熱し、溶融ポリプロピレンを押出速度15mm/分で吐出しストランドとし、このストランドを6.5m/分の速度で引き取る際の張力を測定し、溶融張力とした。
セイコー社製RDC220示差走査熱量計を用いて、下記以下の条件で測定を行った。
検体5mgを測定用のアルミパンに封入する。尚、フィルムに金属蒸着等が施されている場合は適宜除去する。
以下の(a)→(b)のステップでフィルムを溶融・再結晶させる。3回測定し、そのTmcで観測されるピークの平均値を溶融結晶化温度とした。
(b)Tmc 280℃で5分保持後に20℃/分で 30℃まで冷却
試料を溶媒に溶解し、13C-NMRを用いて、以下の条件にてメソペンタッド分率(mmmm)を求めた(参考文献:新版 高分子分析ハンドブック 社団法人日本分析化学会・高分子分析研究懇談会 編 1995年 P609~611)。
装置:Bruker社製、DRX-500
測定核:13C核(共鳴周波数:125.8MHz)
測定濃度:10wt%
溶媒:ベンゼン/重オルトジクロロベンゼン=質量比1:3混合溶液
測定温度:130℃
スピン回転数:12Hz
NMR試料管:5mm管
パルス幅:45°(4.5μs)
パルス繰り返し時間:10秒
データポイント:64K
換算回数:10,000回
測定モード:complete decoupling
LB(ラインブロードニングファクター)を1.0としてフーリエ変換を行い、mmmmピークを21.86ppmとした。WINFITソフト(Bruker社製)を用いて、ピーク分割を行う。その際に、高磁場側のピークから以下のようにピーク分割を行い、更に付属ソフトの自動フィッテイングを行い、ピーク分割の最適化を行った上で、mmmmとss(mmmmのスピニングサイドバンドピーク)のピーク分率の合計をメソペンタッド分率(mmmm)とした。
(a)mrrm
(b)(c)rrrm(2つのピークとして分割)
(d)rrrr
(e)mrmm+rmrr
(f)mmrr
(g)mmmr
(h)ss(mmmmのスピニングサイドバンドピーク)
(i)mmmm
(j)rmmr
試料を溶媒に溶解し、1H-NMRを用いて、以下の条件にて内部3置換オレフィンの個数を求める。
装置:日本電子製ECX400P型核磁気共鳴装置
測定核:1H核(共鳴周波数:500MHz)
測定濃度:2wt%
溶媒:重オルトジクロロベンゼン
測定温度:120℃
パルス幅:45°
パルス繰り返し時間:7秒
換算回数:512回
測定モード:non decoupling
オルトジクロロベンゼンの化学シフト7.10ppmを基準とし、5.0~5.2ppm領域のシグナルを内部3置換オレフィンのプロトンと帰属、0.5~2.0ppmのブロードなシグナルとの積分比から内部3置換オレフィンのプロトン比を求める。
ポリプロピレンフィルム試料0.5gを沸騰キシレン100mlに溶解して放冷後、20℃の恒温水槽で1時間再結晶化させた後にろ過液に溶解しているポリプロピレン系成分を液体クロマトグラフ法にて定量する(X(g))。試料0.5gの精量値(X0(g))を用いて以下の式で求める。
JIS B-0601(1982)により、株式会社小坂研究所製「非接触三次元微細形状測定器(ET-30HK)」及び「三次元粗さ分析装置(MODELSPA-11)」を用いて測定した。測定は長手方向に10回繰り返し、その平均値として中心線平均粗さ(SRa)、十点平均粗さ(SRz)、総突起個数を求めた。
総突起個数は測定条件の項目に示す幅方向、長さ方向サンプリング間隔で検出された突起個数を0.1mm2あたりの個数に換算した値を全て合計したものを示す。
測定面処理:測定面にアルミニウムを真空蒸着し、非接触法とした。
測定方向:フィルムの幅方向
幅方向送り速度:0.1mm/秒
測定範囲(幅方向×長さ方向):1.0mm×0.249mm
高さ方向寸法の基準面:LOWER(下側)
幅方向サンプリング間隔:2μm
長さ方向サンプリング間隔:10μm
長さ方向サンプリング本数:25本
カットオフ:0.25mm/秒
幅方向拡大倍率:200倍
長さ方向拡大倍率:20,000倍
うねり、粗さカット:なし
フィルム測定には専用のサンプルホルダーを使用する。サンプルホルダーは中心に円形の穴が空いた脱着可能な2枚の金属板であり、その間にサンプルを挟んでサンプルホルダーの四方までフィルムを張って装着することでフィルムを固定し、中央円形部のフィルムを粗さ測定した。
上記方法によって得られた測定結果の例を表1に示す。
SRzA 863nm
Pa 424個/0.1mm2(小数点以下を四捨五入した。)
(B面)SRaB 18.4nm
SRzB 415nm
Pb 116個/0.1mm2(小数点以下を四捨五入した。)
|Pa-Pb| 308個/0.1mm2
金属化フィルムを長手方向に10mm幅方向に全幅(50mm)の長方形にカットして試料とし、4端子法により、幅方向30mm間の金属膜の抵抗を測定し、得られた測定値に測定幅(10mm)を乗じて電極間距離(30mm)を除して、膜抵抗(表面電気抵抗)を算出した。(単位:Ω/□)
JIS C2330(2001)7.4.11.2 B法(平板電極法)に準じて、平均値を求め、測定したサンプルのマイクロメータ法フィルム厚み(μm)(上述)で除し、V/μmで表記した。
後述する各実施例および比較例で得られた二軸延伸ポリプロピレンフィルムの片面に、ULVAC製真空蒸着機でアルミニウムを膜抵抗が8Ω/sqとなるようにアルミニウムを真空蒸着した。その際、長手方向に走るマージン部を有するストライプ状に蒸着した(蒸着部の幅39.0mm、マージン部の幅1.0mmの繰り返し)。次に各蒸着部の中央と各マージン部の中央に刃を入れてスリットし、左もしくは右に0.5mmのマージンを有する全幅20mmのテープ状に巻取リールにした。得られたリールの左マージンおよび右マージンのもの各1本ずつを、幅方向に蒸着部分がマージン部より0.5mmはみ出すように2枚重ね合わせて巻回し、静電容量約10μFの巻回体を得た。素子巻回には皆藤製作所製KAW-4NHBを用いた。
後述する各実施例および比較例で得られた二軸延伸ポリプロピレンフィルムに、ULVAC製真空蒸着機でアルミニウムを膜抵抗が8Ω/sqで長手方向に垂直な方向にマージン部を設けた所謂T型マージンパターンを有する蒸着パターンを施し、幅50mmの蒸着リールを得た。
○:素子形状の変化は無くフィルム10層以内の貫通状破壊が観察される。
△:素子形状に変化が認められる若しくは10層を超える貫通状破壊が観察される。
×:素子形状が破壊する。
メソペンタッド分率が0.985で、メルトフローレイト(MFR)が2.6g/10分である直鎖状ポリプロピレン樹脂(Borealis社製“Borclean(登録商標)”)に、内部3置換オレフィン個数がカーボン原子10,000個中に対し3個である分岐鎖状ポリプロピレン樹脂(Borealis社製“Daploy HMS-PP”)を0.5質量%ブレンドし温度250℃の押出機に供給し、樹脂温度250℃でT型スリットダイよりシート状に溶融押出し、該溶融シートを90℃に保持された直径1mの冷却ドラム上で冷却固化して未延伸フィルムを得た。冷却ロール上での保持時間は2.5秒であった。次いで、該未延伸フィルムA面に接触しているロールと該未延伸フィルムB面に接触しているロールの両方とも140℃で予熱した。さらに、フィルムのA面側に接触しているニップロール内に、加圧蒸気を通すことによって、ニップロールの表面温度を130℃とした。また、ニップ圧力は0.50MPaとした。引き続き145℃の温度に保ち周速差を設けたロール間にフィルムを通し、延伸倍率4.5倍で長手方向に延伸した。また、延伸区間においてラジエーションヒーターを出力10.0kWで用い熱量を補い延伸した。その直後、35℃に保持されたロール間にフィルムを通し急冷した。
未延伸フィルムの予熱工程で、フィルムB面に接触しているロールは120℃とし、フィルムA面に接触しているロールは140℃とした以外は実施例1と同様に製膜を行い、2.5μmのフィルムを得た。得られたフィルムの特性を表2、3、4に示す。
ラジエーションヒーター出力を7.0kWとした以外は実施例1と同様に製膜を行い、2.5μmのフィルムを得た。得られたフィルムの特性を表2、3、4に示す。
樹脂温度250℃で溶融押出した該溶融シートを、85℃に保持された直径1mの冷却ドラム上で冷却固化させたこと以外は実施例1と同様に製膜を行い、2.5μmのフィルムを得た。得られたフィルムの特性を表2、3、4に示す。
樹脂温度250℃で溶融押出した該溶融シートを、100℃に保持された直径1mの冷却ドラム上で冷却固化させたことおよび、未延伸フィルムの予熱工程でフィルムB面に接触しているロール温度を125℃、フィルムA面に接触しているロールを135℃とした以外は実施例1と同様に製膜を行い、2.5μmのフィルムを得た。得られたフィルムの特性を表2、3、4に示す。
未延伸フィルムの予熱工程で、フィルムB面に接触しているロールは120℃とし、フィルムA面に接触しているロールは130℃とした以外は実施例1と同様に製膜を行い、2.5μmのフィルムを得た。得られたフィルムの特性を表2、3、4に示す。
ラジエーションヒーターの出力を13.0kWとしたこと以外は実施例1と同様に製膜を行い、2.5μmのフィルムを得た。得られたフィルムの特性を表2、3、4に示す。
未延伸フィルムの予熱工程で、フィルムA面側に接触するニップロール表面温度を140℃とした以外は実施例1と同様に製膜を行い、2.5μmのフィルムを得た。得られたフィルムの特性を表2、3、4に示す。
未延伸フィルムを長手方向に延伸する際、周速差を設けたロール温度を150℃に保ったこと以外は実施例1と同様に製膜を行い、2.5μmのフィルムを得た。得られたフィルムの特性を表2、3、4に示す。
未延伸フィルムを長手方向に延伸する際、周速差を設けたロール温度を140℃に保ったこと以外は実施例1と同様に製膜を行い、2.5μmのフィルムを得た。得られたフィルムの特性を表2、3、4に示す。
樹脂温度250℃で溶融押出した該溶融シートを88℃に保持された直径1mの冷却ドラム上で冷却固化させたことおよび、ラジエーションヒーターの出力を10.5kW、横方向の延伸温度を160℃としたこと以外は実施例1と同様に製膜を行い、3.0μmのフィルムを得た。得られたフィルムの特性を表2、3、4に示す。
樹脂温度250℃で溶融押出した該溶融シートを89℃に保持された直径1mの冷却ドラム上で冷却固化させたことおよび、ラジエーションヒーターの出力を10.5kW、横方向の延伸温度を159℃としたこと以外は実施例1と同様に製膜を行い、2.8μmのフィルムを得た。得られたフィルムの特性を表2、3、4に示す。
樹脂温度250℃で溶融押出した該溶融シートを92℃に保持された直径1mの冷却ドラム上で冷却固化させたことおよび、 ラジエーションヒーターの出力を9.5kWとしたこと以外は実施例1と同様に製膜を行い、2.0μmのフィルムを得た。得られたフィルムの特性を表2、3、4に示す。
樹脂温度250℃で溶融押出した該溶融シートを93℃に保持された直径1mの冷却ドラム上で冷却固化させたことおよび、ラジエーションヒーターの出力を9.0kW、横方向の延伸温度を157℃としたこと以外は実施例1と同様に製膜を行い、1.5μmのフィルムを得た。得られたフィルムの特性を表2、3、4に示す。
樹脂温度250℃で溶融押出した該溶融シートを94℃に保持された直径1mの冷却ドラム上で冷却固化させたことおよび、ラジエーションヒーターの出力を8.0kW、横方向の延伸温度を157℃としたこと以外は実施例1と同様に製膜を行い、1.2μmのフィルムを得た。得られたフィルムの特性を表2、3、4に示す。
ニップロールを温度制御機構のないニップロールとした以外は実施例1と同様にして、2.5μmのフィルムを得た。得られたフィルムの特性を表2、3、4に示す。
分岐鎖状ポリプロピレンを添加しない以外は実施例1と同様に製膜を行い、2.5μmのフィルムを得た。得られたフィルムの特性を表2、3、4に示す。
実施例1の樹脂を用いて、実施例1と同様に押出した後、該溶融シートを60℃に保持された直径1mの冷却ドラム上で冷却固化して未延伸フィルムを得た。冷却ロール上での保持時間は2.0秒であった。次いで、該未延伸フィルムを130℃の予熱ロールにて徐々に予熱し、周速差を設けたロール間にフィルムを通し、延伸倍率4.6倍で長手方向に延伸した。この際に、ニップロールを温度制御機構のないニップロールを使用し、ニップ圧力は0.50MPaとした。延伸区間においてラジエーションヒーターを出力3.5kWで用い熱量を補い延伸した。縦延伸以降の工程については実施例1と同様に実施し、厚さ2.5μmのフィルムを得た。
実施例1の樹脂を用いて、実施例1と同様に押出した後、該溶融シートを70℃に保持された直径1mの冷却ドラム上で冷却固化して未延伸フィルムを得た。冷却ロール上での保持時間は3.0秒であった。次いで、該未延伸フィルムのA面側に接触するロールの温度を140℃、B面側に接触するロールの温度を130℃として予熱し、148℃の温度に保ち、周速差を設けたロール間にフィルムを通し、延伸倍率4.6倍で長手方向に延伸した。この際に、ニップロールは温度制御機構のないニップロールを使用し、ニップ圧力は0.50MPaとした。延伸区間においてラジエーションヒーターを出力10.5kWで用い熱量を補い延伸した。縦延伸以降の工程については実施例1と同様に実施し、厚さ2.5μmのフィルムを得た。
未延伸フィルムの予熱工程で、フィルムA面に接触しているロールとB面に接触しているロールの両方とも150℃とした以外は実施例1と同様に製膜を行い、2.5μmのフィルムを得た。得られたフィルムの特性を表2、3、4に示す。
ラジエーションヒーターを使用しないこと以外は実施例1と同様に製膜を行い、2.5μmのフィルムを得た。得られたフィルムの特性を表2、3、4に示す。
Claims (6)
- 両面に突起を有するコンデンサ用二軸延伸ポリプロピレンフィルムであって、厚みt1(μm)が1~3μmであり、一方のフィルム表面をA面、他方の面をB面としたとき、下記式(1)~(4)を全て満足しているコンデンサ用二軸延伸ポリプロピレンフィルム。
|Pa-Pb|≧200 ・・・(1)
0.350≦Pa/SRzA≦0.700 ・・・(2)
500nm≦SRzA≦1,200nm ・・・(3)
50nm≦SRzB<500nm ・・・(4)
但し、PaはA面に存在する突起の0.1mm2あたりの個数、PbはB面に存在する突起の0.1mm2あたりの個数、SRzAはA面の10点平均粗さ、SRzBはB面の10点平均粗さをそれぞれ意味する。 - A面の中心線平均粗さ(SRaA)が、25nm以上かつ45nm以下である、請求項1に記載のコンデンサ用二軸延伸ポリプロピレンフィルム。
- B面の中心線平均粗さ(SRaB)が10nm以上かつ25nm以下である、請求項1または2に記載のコンデンサ用二軸延伸ポリプロピレンフィルム。
- 請求項1~3のいずれかに記載のコンデンサ用二軸延伸ポリプロピレンフィルムの少なくとも片面に金属膜が設けられてなる金属化フィルム。
- 金属膜の表面電気抵抗が1~20Ω/□である、請求項4に記載の金属化フィルム。
- 請求項4または5に記載の金属化フィルムを用いてなるフィルムコンデンサ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380016476.8A CN104204043B (zh) | 2012-03-28 | 2013-03-15 | 电容器用双轴拉伸聚丙烯膜、金属化膜以及膜电容器 |
EP13769435.2A EP2832776B1 (en) | 2012-03-28 | 2013-03-15 | Biaxially stretched polypropylene film for capacitors, metallized film, and film capacitor |
US14/387,119 US9805868B2 (en) | 2012-03-28 | 2013-03-15 | Biaxially stretched polypropylene film for capacitors, metallized film, and film capacitor |
KR1020147028733A KR102044577B1 (ko) | 2012-03-28 | 2013-03-15 | 콘덴서용 2축 연신 폴리프로필렌 필름, 금속화 필름 및 필름 콘덴서 |
JP2014507705A JP6120180B2 (ja) | 2012-03-28 | 2013-03-15 | コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-073341 | 2012-03-28 | ||
JP2012073341 | 2012-03-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013146367A1 true WO2013146367A1 (ja) | 2013-10-03 |
Family
ID=49259628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/057465 WO2013146367A1 (ja) | 2012-03-28 | 2013-03-15 | コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ |
Country Status (6)
Country | Link |
---|---|
US (1) | US9805868B2 (ja) |
EP (1) | EP2832776B1 (ja) |
JP (1) | JP6120180B2 (ja) |
KR (1) | KR102044577B1 (ja) |
CN (1) | CN104204043B (ja) |
WO (1) | WO2013146367A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015129851A1 (ja) * | 2014-02-28 | 2015-09-03 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム |
JP6115687B1 (ja) * | 2015-11-05 | 2017-04-19 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
WO2018139264A1 (ja) | 2017-01-25 | 2018-08-02 | 株式会社クレハ | フッ化ビニリデン系樹脂フィルム |
WO2018139262A1 (ja) | 2017-01-25 | 2018-08-02 | 株式会社クレハ | フッ化ビニリデン系樹脂フィルム |
JP2018137221A (ja) * | 2017-02-22 | 2018-08-30 | 三洋化成工業株式会社 | 樹脂集電体、及び、リチウムイオン電池 |
WO2018181271A1 (ja) * | 2017-03-30 | 2018-10-04 | 東レ株式会社 | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法 |
US20180298172A1 (en) * | 2015-10-16 | 2018-10-18 | Borealis Ag | Biaxially oriented films made of propylene polymer compositions |
WO2019131815A1 (ja) | 2017-12-26 | 2019-07-04 | 王子ホールディングス株式会社 | ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、フィルムロール |
JP2019172973A (ja) * | 2018-03-29 | 2019-10-10 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
KR20200098502A (ko) | 2017-12-26 | 2020-08-20 | 오지 홀딩스 가부시키가이샤 | 폴리프로필렌 필름, 금속층 일체형 폴리프로필렌 필름, 필름 콘덴서 및 필름 롤 |
JP2022513838A (ja) * | 2018-12-20 | 2022-02-09 | ボレアリス エージー | 表面特性が向上した二軸配向ポリプロピレンフィルム |
KR20230142730A (ko) | 2021-02-02 | 2023-10-11 | 오지 홀딩스 가부시키가이샤 | 폴리프로필렌 필름, 금속층 일체형 폴리프로필렌 필름,및 콘덴서 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3124205B1 (en) * | 2014-03-28 | 2021-04-21 | Toray Industries, Inc. | Biaxially oriented polypropylene film |
EP3332961B1 (en) * | 2015-08-03 | 2020-02-19 | Toray Industries, Inc. | Olefin multilayer film and film capacitor |
JP6356936B2 (ja) * | 2016-07-26 | 2018-07-11 | 京セラ株式会社 | フィルムコンデンサ、連結型コンデンサ、インバータおよび電動車輌 |
CN113226702B (zh) * | 2018-12-28 | 2023-03-07 | 东洋纺株式会社 | 双轴取向聚丙烯薄膜 |
JPWO2021112100A1 (ja) * | 2019-12-02 | 2021-06-10 | ||
KR102361461B1 (ko) * | 2019-12-10 | 2022-02-09 | 에스케이씨 주식회사 | 폴리에스테르 필름 및 폴리에스테르 필름의 제조방법 |
CN114334453B (zh) * | 2021-12-22 | 2024-06-11 | 佛山佛塑科技集团股份有限公司 | 一种可用于生产低噪音电容器的薄膜的制备方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5163500A (ja) | 1974-11-29 | 1976-06-01 | Mitsubishi Rayon Co | |
JPS62121704A (ja) | 1985-01-31 | 1987-06-03 | モンテル ノース アメリカ インコーポレイテッド | 自由端長鎖枝分れを有するポリプロピレンおよびその製造法 |
JP2869606B2 (ja) | 1992-11-26 | 1999-03-10 | チッソ株式会社 | 高溶融張力ポリプロピレンおよびその製造方法と成形品 |
JP2001324607A (ja) | 2000-05-16 | 2001-11-22 | Kimoto & Co Ltd | 光拡散性シート |
JP2007308604A (ja) | 2006-05-18 | 2007-11-29 | Oji Paper Co Ltd | 微細粗面化ポリプロピレンフィルム |
JP2008133446A (ja) | 2006-11-01 | 2008-06-12 | Oji Paper Co Ltd | 二軸延伸ポリプロピレンフィルム |
JP2009542872A (ja) | 2006-07-10 | 2009-12-03 | ボレアリス テクノロジー オサケ ユキチュア | 短鎖分岐ポリプロピレン |
JP2011122142A (ja) | 2009-11-10 | 2011-06-23 | Toray Ind Inc | コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
JP2011122143A (ja) | 2009-11-10 | 2011-06-23 | Toray Ind Inc | コンデンサ用二軸延伸ポリプロピレンフィルムおよび金属化フィルム、フィルムコンデンサ |
WO2012002123A1 (ja) | 2010-06-29 | 2012-01-05 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52124158A (en) | 1976-04-12 | 1977-10-18 | Mitsubishi Plastics Ind | Capacitor film and method of manufacturing it |
JPS6040383B2 (ja) * | 1978-07-05 | 1985-09-10 | 東レ株式会社 | ポリプロピレン複合二軸延伸フイルム |
JP2896160B2 (ja) * | 1989-05-23 | 1999-05-31 | 三井化学株式会社 | ポリプロピレンの延伸フイルム |
US6094337A (en) * | 1996-08-09 | 2000-07-25 | Toray Industries Inc. | Polypropylene film and capacitor made by using it as a dielectric |
JP3412580B2 (ja) * | 1999-10-25 | 2003-06-03 | トヨタ自動車株式会社 | 車両の電動パワーステアリング装置 |
JP2002154187A (ja) * | 2000-09-05 | 2002-05-28 | Toray Ind Inc | ポリプロピレンフィルムおよびフィルムコンデンサー |
JP2003257777A (ja) * | 2002-03-06 | 2003-09-12 | Toray Ind Inc | コンデンサ用ポリプロピレンフィルム及びコンデンサ |
US7405920B2 (en) * | 2003-03-19 | 2008-07-29 | Toray Industries, Inc. | Flat type capacitor-use polypropylene film and flat type capacitor using it |
JP2006093688A (ja) * | 2004-08-26 | 2006-04-06 | Toray Ind Inc | コンデンサー用ポリプロピレンフィルムおよびそれを用いてなるコンデンサー |
JP5224568B2 (ja) * | 2005-01-20 | 2013-07-03 | 東レ株式会社 | コンデンサ用ポリプロピレンフイルム |
CN101374891B (zh) * | 2006-02-17 | 2011-11-30 | 东丽株式会社 | 双轴取向聚丙烯薄膜 |
JP4962082B2 (ja) * | 2006-03-28 | 2012-06-27 | 東レ株式会社 | 金属化二軸配向ポリプロピレンフィルム及びこれからなるコンデンサ |
US9123471B2 (en) * | 2011-03-10 | 2015-09-01 | Toray Industries, Inc. | Biaxially stretched polypropylene film, metallized film and film capacitor |
CN103503094B (zh) | 2011-04-19 | 2016-05-25 | 东丽株式会社 | 电容器用双轴拉伸聚丙烯膜、金属化膜和膜电容器 |
-
2013
- 2013-03-15 EP EP13769435.2A patent/EP2832776B1/en active Active
- 2013-03-15 WO PCT/JP2013/057465 patent/WO2013146367A1/ja active Application Filing
- 2013-03-15 JP JP2014507705A patent/JP6120180B2/ja active Active
- 2013-03-15 US US14/387,119 patent/US9805868B2/en active Active
- 2013-03-15 CN CN201380016476.8A patent/CN104204043B/zh active Active
- 2013-03-15 KR KR1020147028733A patent/KR102044577B1/ko active IP Right Grant
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5163500A (ja) | 1974-11-29 | 1976-06-01 | Mitsubishi Rayon Co | |
JPS62121704A (ja) | 1985-01-31 | 1987-06-03 | モンテル ノース アメリカ インコーポレイテッド | 自由端長鎖枝分れを有するポリプロピレンおよびその製造法 |
JP2869606B2 (ja) | 1992-11-26 | 1999-03-10 | チッソ株式会社 | 高溶融張力ポリプロピレンおよびその製造方法と成形品 |
JP2001324607A (ja) | 2000-05-16 | 2001-11-22 | Kimoto & Co Ltd | 光拡散性シート |
JP2007308604A (ja) | 2006-05-18 | 2007-11-29 | Oji Paper Co Ltd | 微細粗面化ポリプロピレンフィルム |
JP2009542872A (ja) | 2006-07-10 | 2009-12-03 | ボレアリス テクノロジー オサケ ユキチュア | 短鎖分岐ポリプロピレン |
JP2008133446A (ja) | 2006-11-01 | 2008-06-12 | Oji Paper Co Ltd | 二軸延伸ポリプロピレンフィルム |
JP2011122142A (ja) | 2009-11-10 | 2011-06-23 | Toray Ind Inc | コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
JP2011122143A (ja) | 2009-11-10 | 2011-06-23 | Toray Ind Inc | コンデンサ用二軸延伸ポリプロピレンフィルムおよび金属化フィルム、フィルムコンデンサ |
WO2012002123A1 (ja) | 2010-06-29 | 2012-01-05 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
Non-Patent Citations (2)
Title |
---|
"New edition of Polymer Analysis Handbook", 1995, pages: 609 - 611 |
M. FUJIYAMA, JOURNAL OF APPLIED POLYMER SCIENCE, vol. 36, 1988, pages 985 - 1048 |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015129851A1 (ja) * | 2014-02-28 | 2015-09-03 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム |
CN106029754A (zh) * | 2014-02-28 | 2016-10-12 | 东丽株式会社 | 双轴取向聚丙烯膜 |
KR20160128314A (ko) * | 2014-02-28 | 2016-11-07 | 도레이 카부시키가이샤 | 2축 배향 폴리프로필렌 필름 |
JPWO2015129851A1 (ja) * | 2014-02-28 | 2017-03-30 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム |
KR102388113B1 (ko) * | 2014-02-28 | 2022-04-19 | 도레이 카부시키가이샤 | 2축 배향 폴리프로필렌 필름 |
JP2019147953A (ja) * | 2014-02-28 | 2019-09-05 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム |
CN106029754B (zh) * | 2014-02-28 | 2019-09-03 | 东丽株式会社 | 双轴取向聚丙烯膜 |
US11021597B2 (en) * | 2015-10-16 | 2021-06-01 | Borealis Ag | Biaxially oriented films made of propylene polymer compositions |
US20180298172A1 (en) * | 2015-10-16 | 2018-10-18 | Borealis Ag | Biaxially oriented films made of propylene polymer compositions |
JP6115687B1 (ja) * | 2015-11-05 | 2017-04-19 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
WO2017077752A1 (ja) * | 2015-11-05 | 2017-05-11 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
KR20190076012A (ko) | 2017-01-25 | 2019-07-01 | 가부시끼가이샤 구레하 | 불화 비닐리덴계 수지 필름 |
US10988586B2 (en) | 2017-01-25 | 2021-04-27 | Kureha Corporation | Vinylidene fluoride resin film |
KR20190065361A (ko) | 2017-01-25 | 2019-06-11 | 가부시끼가이샤 구레하 | 불화 비닐리덴계 수지 필름 |
WO2018139262A1 (ja) | 2017-01-25 | 2018-08-02 | 株式会社クレハ | フッ化ビニリデン系樹脂フィルム |
US11136440B2 (en) | 2017-01-25 | 2021-10-05 | Kureha Corporation | Vinylidene fluoride resin film |
WO2018139264A1 (ja) | 2017-01-25 | 2018-08-02 | 株式会社クレハ | フッ化ビニリデン系樹脂フィルム |
JP7089374B2 (ja) | 2017-02-22 | 2022-06-22 | 三洋化成工業株式会社 | 樹脂集電体、及び、リチウムイオン電池 |
JP2018137221A (ja) * | 2017-02-22 | 2018-08-30 | 三洋化成工業株式会社 | 樹脂集電体、及び、リチウムイオン電池 |
JP7088019B2 (ja) | 2017-03-30 | 2022-06-21 | 東レ株式会社 | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法 |
JPWO2018181271A1 (ja) * | 2017-03-30 | 2020-03-05 | 東レ株式会社 | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法 |
WO2018181271A1 (ja) * | 2017-03-30 | 2018-10-04 | 東レ株式会社 | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法 |
US11661507B2 (en) | 2017-12-26 | 2023-05-30 | Oji Holdings Corporation | Polypropylene film, metal layer-integrated polypropylene film, film capacitor and film roll |
US11926730B2 (en) | 2017-12-26 | 2024-03-12 | Oji Holdings Corporation | Polypropylene film, metal layer-integrated polypropylene film, film capacitor and film roll |
KR20200098502A (ko) | 2017-12-26 | 2020-08-20 | 오지 홀딩스 가부시키가이샤 | 폴리프로필렌 필름, 금속층 일체형 폴리프로필렌 필름, 필름 콘덴서 및 필름 롤 |
WO2019131815A1 (ja) | 2017-12-26 | 2019-07-04 | 王子ホールディングス株式会社 | ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、フィルムロール |
US11492475B2 (en) | 2017-12-26 | 2022-11-08 | Oji Holdings Corporation | Polypropylene film, metal layer-integrated polypropylene film, film capacitor and film roll |
KR20230119251A (ko) | 2017-12-26 | 2023-08-16 | 오지 홀딩스 가부시키가이샤 | 폴리프로필렌 필름, 금속층 일체형 폴리프로필렌 필름,필름 콘덴서 및 필름 롤 |
JP2019172973A (ja) * | 2018-03-29 | 2019-10-10 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
JP7234698B2 (ja) | 2018-03-29 | 2023-03-08 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
JP7311604B2 (ja) | 2018-12-20 | 2023-07-19 | ボレアリス エージー | 表面特性が向上した二軸配向ポリプロピレンフィルム |
JP2022513838A (ja) * | 2018-12-20 | 2022-02-09 | ボレアリス エージー | 表面特性が向上した二軸配向ポリプロピレンフィルム |
KR20230142730A (ko) | 2021-02-02 | 2023-10-11 | 오지 홀딩스 가부시키가이샤 | 폴리프로필렌 필름, 금속층 일체형 폴리프로필렌 필름,및 콘덴서 |
Also Published As
Publication number | Publication date |
---|---|
EP2832776B1 (en) | 2018-10-31 |
EP2832776A4 (en) | 2015-10-21 |
CN104204043A (zh) | 2014-12-10 |
US9805868B2 (en) | 2017-10-31 |
US20150050456A1 (en) | 2015-02-19 |
JP6120180B2 (ja) | 2017-04-26 |
KR102044577B1 (ko) | 2019-11-13 |
EP2832776A1 (en) | 2015-02-04 |
KR20140143185A (ko) | 2014-12-15 |
JPWO2013146367A1 (ja) | 2015-12-10 |
CN104204043B (zh) | 2017-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6120180B2 (ja) | コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ | |
JP5472461B2 (ja) | 二軸延伸ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ | |
JP5825103B2 (ja) | 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ | |
JP5664137B2 (ja) | コンデンサ用二軸延伸ポリプロピレンフィルムおよび金属化フィルム、フィルムコンデンサ | |
EP2977398B1 (en) | Biaxially oriented polypropylene film, metallized film and film capacitor | |
JP5664136B2 (ja) | コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ | |
JP6319293B2 (ja) | コンデンサ用二軸配向ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ | |
CN103503094B (zh) | 电容器用双轴拉伸聚丙烯膜、金属化膜和膜电容器 | |
JP6032386B1 (ja) | コンデンサ用二軸配向ポリプロピレンフィルム、金属積層フィルムおよびフィルムコンデンサ | |
JP2016188360A (ja) | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
JP6682937B2 (ja) | コンデンサ用二軸配向ポリプロピレンフィルム、金属膜積層フィルム、およびフィルムコンデンサ | |
JP2018028075A (ja) | ポリプロピレンフィルムロール | |
KR102451416B1 (ko) | 2축 배향 폴리프로필렌 필름, 금속막 적층 필름 및 필름 콘덴서 | |
JP7234698B2 (ja) | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
JP7524669B2 (ja) | 二軸配向ポリプロピレンフィルム、金属膜積層フィルム、およびフィルムコンデンサ | |
JP2018028074A (ja) | ポリプロピレンフィルムロール | |
JP2022142713A (ja) | 二軸配向ポリプロピレンフィルム、金属膜積層フィルム、およびフィルムコンデンサ | |
JP2024035063A (ja) | 二軸配向ポリプロピレンフィルム | |
JP2023082646A (ja) | 二軸配向ポリプロピレンフィルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13769435 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014507705 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013769435 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14387119 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20147028733 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |