JP2023082646A - 二軸配向ポリプロピレンフィルム - Google Patents
二軸配向ポリプロピレンフィルム Download PDFInfo
- Publication number
- JP2023082646A JP2023082646A JP2022084985A JP2022084985A JP2023082646A JP 2023082646 A JP2023082646 A JP 2023082646A JP 2022084985 A JP2022084985 A JP 2022084985A JP 2022084985 A JP2022084985 A JP 2022084985A JP 2023082646 A JP2023082646 A JP 2023082646A
- Authority
- JP
- Japan
- Prior art keywords
- film
- polypropylene resin
- less
- biaxially oriented
- oriented polypropylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
【課題】 本発明の課題は、高温下でも優れた耐電圧性を有し、かつ、主に大容量フィルムコンデンサにおいて適正な加工性と保安性を得るため、フィルムコンデンサのフィルム層間のエアー量および間隙距離を均一に制御することが可能な表面性状を有する二軸配向ポリプロピレンフィルムを提供することにある。【解決手段】 少なくとも片面において、界面の展開表面積比Sdrが0.0004%以上0.0200%以下であることを特徴とする、二軸配向ポリプロピレンフィルム。【選択図】なし
Description
本発明は、フィルムコンデンサの誘電体として用いた際に、高温・高電圧環境下において高い耐電圧性を有する二軸配向ポリプロピレンフィルムに関する。
二軸配向ポリプロピレンフィルムは、透明性、機械特性、電気特性などに優れるため、包装用途、テープ用途、ケーブルラッピングやコンデンサをはじめとする電気用途などの様々な用途に用いられている。
中でもコンデンサ用途においては、その優れた高耐電圧特性、低損失特性から、コンデンサの誘電体として特に好ましく用いられている。最近では、各種電気設備がインバーター化されつつあり、それに伴いコンデンサの小型化、大容量化の要求が一層強まってきている。さらに、特に自動車用途(ハイブリッドカーや電気自動車含む)や太陽光発電、風力発電用途では使用環境の高温化(85℃以上125℃以下を示す。)が進んでおり、コンデンサに対する耐熱化要求が高まっている。
そのため、誘電体である二軸配向ポリプロピレンフィルムの薄膜化、耐熱化、厚み当たりの耐電圧の向上が求められるととともに、コンデンサの保安性の向上も求められている。ここで、コンデンサの保安性とは誘電体フィルム上に形成した金属蒸着膜を電極とする金属蒸着コンデンサにおいて、異常放電時の放電エネルギーによって蒸着金属を飛散させることで絶縁性を維持する性質であり、コンデンサのショートや破壊を防止する上で重要な性質である。厚み当たりの耐電圧とコンデンサの保安性を両立させる手段として、ポリプロピレンフィルムの表面性状を制御することが有効であると考えられており、これまで様々な検討がされている。
ポリプロピレンフィルムの表面性状を制御する方法として、ポリプロピレンのβ晶からα晶への結晶転移を利用する方法(以下β晶法と記載)が知られている。この結晶転移を利用する方法は、耐電圧の悪化が懸念される添加剤等の不純物を混入させる必要がないため、コンデンサ用二軸配向ポリプロピレンフィルムの粗面化方法として好ましく用いられている(例えば、特許文献1、2参照)。
表面粗さの密度や突起の均一性に着目した技術として、分岐鎖状ポリプロピレンを添加する方法(例えば、特許文献3、4参照)や分子量や分子量分布の異なるポリプロピレンを混合する方法(例えば、特許文献5参照)が提案されている。これらの方法では球晶サイズを小さく制御できるため、高さの均一な凸部を高密度で形成することができる。
また、表面粗さの凸部と凹部に着目した技術として、縦延伸シートに高温加圧処理する方法(例えば、特許文献6参照)が提案されている。本方法では凸部と凹部の高さを均一に制御することができる。
しかしながら、一般的な直鎖状ポリプロピレンからなるフィルムを使用して特許文献1や2に記載のβ晶法を適用した場合、クレーター状に急峻な凸部と凹部が低い密度で形成されるため、特に凹部で絶縁破壊が発生しやすく、高温状況下での耐電圧特性に課題があった。また、高さの均一な凸部を高密度で形成する特許文献3、4、5に記載の方法を適用した場合や、表面粗さの凸部と凹部の高さを均一に制御する特許文献6に記載の方法を適用した場合、局所的な粗大突起や凹部形状を抑制することができず、フィルムコンデンサ作製時の加工性や近年の高温・高電圧環境における耐電圧性や保安性に係るフィルム層間のエアー量の制御が十分であるとはいえなかった。
そこで本発明の課題は、高い加工性、耐電圧性を有し、かつ、主に大容量コンデンサにおいて適正な保安性を得るため、フィルム表面の局所的な粗大突起や凹部の形成を抑制し、フィルムコンデンサのフィルム層間のエアー量および間隙距離を均一に制御することが可能な表面性状を有する、二軸配向ポリプロピレンフィルムを提供することにある。
上記した課題は、以下により達成できる。すなわち、本発明の二軸配向ポリプロピレンフィルムは、少なくとも片面において、界面の展開表面積比Sdrが0.0004%以上0.0200%以下であることを特徴とする、二軸配向ポリプロピレンフィルムである。
なお、本発明の二軸配向ポリプロピレンフィルムは、上記課題を解決するために以下の構成とすることもできる。
(1) 少なくとも片面において、界面の展開表面積比Sdrが0.0004%以上0.0200%以下であることを特徴とする、二軸配向ポリプロピレンフィルム。
(2) 少なくとも片面において、五点谷領域深さS5vが70nm以上1400nm以下である、(1)に記載の二軸配向ポリプロピレンフィルム。
(3) 少なくとも片面において、五点山領域高さS5pが80nm以上1000nm以下である、(1)または(2)に記載の二軸配向ポリプロピレンフィルム。
(4) フィルム厚み(t)が1.0~4.0μmである、(1)~(3)のいずれかに記載の二軸配向ポリプロピレンフィルム。
(1) 少なくとも片面において、界面の展開表面積比Sdrが0.0004%以上0.0200%以下であることを特徴とする、二軸配向ポリプロピレンフィルム。
(2) 少なくとも片面において、五点谷領域深さS5vが70nm以上1400nm以下である、(1)に記載の二軸配向ポリプロピレンフィルム。
(3) 少なくとも片面において、五点山領域高さS5pが80nm以上1000nm以下である、(1)または(2)に記載の二軸配向ポリプロピレンフィルム。
(4) フィルム厚み(t)が1.0~4.0μmである、(1)~(3)のいずれかに記載の二軸配向ポリプロピレンフィルム。
本発明により、高い加工性、耐電圧性を有する二軸配向ポリプロピレンフィルムを提供することができる。本発明の二軸配向ポリプロピレンフィルムをコンデンサの誘電体として用いることにより、コンデンサ加工時にフィルム層間のエアー量および層間距離を均一に制御することができる。そのため、コンデンサとしたときに高温・高電圧環境下においても高い保安性が発揮され、その寿命も改善する。
以下、さらに詳しく本発明の二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサについて説明する。なお、以下「~」を用いて表す数値範囲においては、その上限値及び下限値が当該範囲に含まれるものとし、上限値と下限値の単位は同じであるものとする。
本発明の二軸配向ポリプロピレンフィルムは、キャストシートを直交する2方向に延伸した二軸延伸ポリプロピレンフィルムである。つまりここでいう二軸配向とは、直交する2方向(主に長手方向と幅方向)に延伸したという意味である。また、長手方向とは、フィルムの製造工程においてフィルムが走行する方向(フィルムロールの状態ではフィルムの巻き方向)をいい、幅方向とは、フィルム面に平行かつ長手方向と垂直な方向をいう。
次に本発明の二軸配向ポリプロピレンフィルムに用いられるポリプロピレン樹脂原料について説明する。本発明の二軸配向ポリプロピレンフィルムは、直鎖状ポリプロピレン樹脂(A)、高MFRポリプロピレン樹脂(B)、分岐鎖状ポリプロピレン樹脂(H)、(I)を含有することが好ましい。
直鎖状ポリプロピレン樹脂(A)とは、アイソタクチックポリプロピレン樹脂を意味する。このアイソタクチックポリプロピレン樹脂は、コンデンサ用途で一般的に使用されるポリプロピレン樹脂としても知られている。直鎖状ポリプロピレン樹脂(A)は、直鎖状ポリプロピレン樹脂であり、冷キシレン可溶部(CXS)が0.5質量%以上4.0質量%以下、メソペンタッド分率(mmmm)が0.960以上0.995以下、溶融流動指数(MFR)が0.5g/10分以上5.0g/10分以下であることが好ましい。直鎖状ポリプロピレン樹脂(A)として好適に用いることができるものとして具体的には、ボレアリス社製“Borclean”(商標)(HC300BF、HC318BFなど)等が例示される。
直鎖状ポリプロピレン樹脂(A)のCXSは、0.5質量%以上4.0質量%以下であることが好ましく、0.5質量%以上3.0質量%以下であるとより好ましく、0.5質量%以上2.0質量%以下であると特に好ましい。CXSは、フィルムを135℃のキシレンで完全溶解させた後、20℃で析出させたときに、キシレン中に溶解しているポリプロピレン成分のことである。すなわち、CXSは、立体規則性や分子量が低いなどの理由により結晶化し難い成分に相当すると考えられる。直鎖状ポリプロピレン樹脂(A)のCXSが4.0質量%以下であると、フィルムの耐熱性や高温での耐電圧性を高めることができる。そのため、コンデンサに使用した場合において、高温環境下での緩和が抑えられて熱寸法安定性が向上し、漏れ電流を抑えることができる。また、直鎖状ポリプロピレン樹脂(A)のCXSが0.5質量%以上であると、製膜時の延伸性悪化を防ぐことができる。
CXSは以下の手順により定量することができる。まず、ポリプロピレン樹脂0.5gを135℃の沸騰キシレン100mlに溶解して放冷後、20℃の恒温水槽で1時間再結晶化させてろ過する。次いで、ろ過液に溶解しているポリプロピレン系成分を液体クロマトグラフ法で定量し、沸騰キシレン溶解前のポリプロピレン樹脂の質量をX0(g)、ろ過液に溶解しているポリプロピレン成分の質量をX(g)としてCXSを下記式(1)から求める。
式(1): CXS(質量%)=(X/X0)×100 。
式(1): CXS(質量%)=(X/X0)×100 。
直鎖状ポリプロピレン樹脂(A)のメソペンタッド分率(mmmm)は0.960以上0.995以下であることが好ましく、0.965以上0.995以下であるとより好ましく、0.970以上0.995以下であると特に好ましい。メソペンタッド分率(mmmm)は核磁気共鳴法(NMR法)で測定されるポリプロピレンの結晶相の立体規則性を示す指標であり、数値が高いものほど結晶化度や融点が高く、高温下での耐電圧特性に優れる。直鎖状ポリプロピレン樹脂(A)のメソペンタッド分率が0.960以上であると、高温耐電圧特性や寸法安定性を保ちやすい。一方、直鎖状ポリプロピレン樹脂(A)のメソペンタッド分率が0.995以下であると、製膜性を保ち、安定して二軸配向ポリプロピレンフィルムが得られやすい。なお、メソペンタッド分率は、ポリプロピレン樹脂試料を溶媒に溶解させて、13C-NMRを用いて測定することができ、その詳細な条件等は実施例に示す。
直鎖状ポリプロピレン樹脂(A)のMFRは、JIS K 7210-1(2014)に準拠して230℃、2.16kgの条件で測定した場合において、0.5g/10分以上5.0g/10分以下であることが好ましく、1.0g/10分以上4.5g/10分以下であるとより好ましく、1.5g/10分以上4.0g/10分以下であると特に好ましい。直鎖状ポリプロピレン樹脂(A)のMFRを0.5g/10分以上とすると、製膜性を保ち安定して二軸配向ポリプロピレンフィルムが得られやすい。一方、直鎖状ポリプロピレン樹脂(A)のMFRを5.0g/10分以下とすると、寸法安定性や高温耐電圧特性を保ちやすい。
また、直鎖状ポリプロピレン樹脂(A)の溶融張力(MS)は、1.5cN以下であることが好ましく、1.0cN以下であることがより好ましい。直鎖状ポリプロピレン樹脂(A)のMSが1.5cN以下であると、樹脂を溶融した際に流動特性が向上し、フィルムの厚みムラや製膜破れの発生を抑制することができる。なお、MSとは、ポリプロピレン樹脂を230℃に加熱して溶融させ、溶融ポリプロピレンを押出速度15mm/分で吐出ストランドし、このストランドを6.5m/分の速度で引き取る際の張力をいう。
次に、高MFRポリプロピレン樹脂(B)について説明する。高MFRポリプロピレン樹脂(B)のMFRが1800g/10分以上2600g/10分以下であるポリプロピレン樹脂である。具体例としては、出光興産株式会社製“L-MODU”(登録商標)S400が例示される。
高MFRポリプロピレン樹脂(B)のMFRが1800g/10分以上であると、製膜性を保ち、安定して二軸配向ポリプロピレンフィルムを得やすい。MFRが2600g/10分以下であると、寸法安定性や高温下での耐電圧特性を保ちやすい。すなわち、このような高MFRポリプロピレン樹脂(B)を含むことで、製膜性を保ちつつ、得られる二軸配向ポリプロピレンフィルムの寸法安定性と高温下での耐電圧特性を両立できる。
本発明の二軸配向ポリプロピレンフィルムにおいて、高MFRポリプロピレン樹脂(B)の含有量は1.0質量%以上10.0質量%以下であることが好ましく、2.0質量%以上8.0質量%以下であるとより好ましく、3.0質量%以上7.0質量%以下であるとさらに好ましく、4.0質量%以上6.0質量%以下であると特に好ましい。高MFRポリプロピレン樹脂(B)の含有量を1.0質量%以上とすると、製膜時の延伸性が向上する。一方、高MFRポリプロピレン樹脂(B)の含有量が10.0質量%以下であると、高温下での耐電圧特性や寸法安定性を保ちやすい。また、高MFRポリプロピレン樹脂(B)の含有量を上記範囲内とすることで、溶融押出した樹脂シートの冷却工程で生成するポリプロピレンの球晶サイズを小さく制御でき、フィルム表面の五点谷領域深さ(S5v)を70nm以上1400nm以下に制御しやすい。なお、高MFRポリプロピレン樹脂(B)に該当する成分がフィルム中に複数含まれる場合には、その含有量は該当するすべての成分を合算して求めるものとし、この点は後述する分岐鎖状ポリプロピレン樹脂(H)、(I)についても同様である。
次に分岐鎖状ポリプロピレン樹脂(H)について説明する。本発明でいう分岐鎖状ポリプロピレン樹脂(H)とは、230℃におけるMFR(単位:g/10分)とMS(単位:cN)が下記式(2)を満たす分岐鎖状ポリプロピレン樹脂である。
式(2): 0<log(MS)≦-0.56×log(MFR)+0.74 。
式(2): 0<log(MS)≦-0.56×log(MFR)+0.74 。
なお、二軸配向ポリプロピレンフィルムが分岐鎖状ポリプロピレン樹脂(H)を含むか否かの判断は、フィルム中のポリプロピレン樹脂を測定することで確認することも可能であるが、フィルムが複数のポリプロピレン樹脂を含む場合には分離が容易ではないため、二軸配向ポリプロピレンフィルムを製造する際の原料のポリプロピレン樹脂について、MSとMFRを測定することで確認してもよい。後述する分岐鎖状ポリプロピレン樹脂(I)についての判断も同様である。
さらに分岐鎖状ポリプロピレン樹脂(H)のMSは1.0cN以上6.0cN以下であることが好ましい。上記範囲とすることで、溶融状態での流動特性に優れるため、フィルムの厚みムラや製膜破れを抑制することができる。分岐鎖状ポリプロピレン樹脂(H)のMFRは、4.0g/10分以上10.0g/10分以下であることが好ましい。分岐鎖状ポリプロピレン樹脂(H)のMFRを4.0g/10分以上とすると、製膜性を保ち安定して二軸配向ポリプロピレンフィルムが得られやすい。一方、分岐鎖状ポリプロピレン樹脂(H)のMFRを10.0g/10分以下とすると、寸法安定性や高温耐電圧特性を保ちやすい。
本発明の二軸配向ポリプロピレンフィルムは、フィルムを構成する全成分100質量%中に分岐鎖状ポリプロピレン樹脂(H)を5.0質量%以上30.0質量%以下含有することが好ましく、7.0質量%以上25.0質量%以下であるとより好ましく、10.0質量%以上22.0質量%以下であるとさらに好ましい。
フィルムを構成する全成分100質量%中に占める分岐鎖状ポリプロピレン樹脂(H)の含有量を5.0質量%以上とすることで、薄膜フィルムを二軸延伸する際により安定して製膜をすることが可能になる。また、分岐鎖状ポリプロピレン樹脂(H)の含有量を30.0質量%以下とすることで、溶融ポリマーをシート状に形成する際に球晶サイズが小さくなり過ぎず、二軸配向ポリプロピレンフィルムとしての立体規則性の低下が軽減されるため、高温下での耐電圧を保ちやすい。
次に分岐鎖状ポリプロピレン樹脂(I)について説明する。本発明でいう分岐鎖状ポリプロピレン樹脂(I)とは、230℃におけるMFR(単位:g/10分)とMS(単位:cN)が下記式(3)を満たす分岐鎖状ポリプロピレン樹脂である。
式(3): log(MS)>-0.56×log(MFR)+0.74 。
式(3): log(MS)>-0.56×log(MFR)+0.74 。
分岐鎖状ポリプロピレン樹脂(I)のMSは6.0cNを超え20cN以下であることが好ましく、6.0cNを超え15cN以下であることがより好ましく、6.0cNを超え13cN以下であることがさらに好ましい。上記範囲とすることで、溶融状態での流動特性に優れるため、フィルムの厚みムラや製膜破れを抑制することができる。
また、分岐鎖状ポリプロピレン樹脂(I)のMFRは、1.0g/10分以上4.0g/10分未満であることが好ましい。分岐鎖状ポリプロピレン樹脂(I)のMFRを1.0g/10分以上とすると、製膜性を保ち、安定して二軸配向ポリプロピレンフィルムが得られやすい。一方、直鎖状ポリプロピレン樹脂(I)のMFRを4.0g/10分以下とすると、寸法安定性や高温下での耐電圧特性を保ちやすい。
本発明の二軸配向ポリプロピレンフィルムは、フィルムを構成する全成分100質量%中に分岐鎖状ポリプロピレン樹脂(I)を1.0質量%以上10.0質量%以下含有することが好ましく、2.0質量%以上8.0質量%以下であるとより好ましく、2.0質量%以上6.0質量%以下であるとさらに好ましい。
フィルムを構成する全成分100質量%中に占める分岐鎖状ポリプロピレン樹脂(I)の含有量を1.0質量%以上とすることで、薄膜フィルムを二軸延伸する際により安定して製膜をすることが可能になる上、溶融ポリマーをシート状に成形する際に球晶サイズが大きくなり過ぎず、好適な表面形状へと制御しやすい。また、分岐鎖状ポリプロピレン樹脂(I)の含有量を10.0質量%以下とすることで、溶融ポリマーをシート状に形成する際に球晶サイズが小さくなり過ぎず、二軸配向ポリプロピレンフィルムとしての立体規則性の低下が軽減されるため、高温下での耐電圧を保ちやすい。
分岐鎖状ポリプロピレン樹脂(H)、(I)を得るには、ポリプロピレン樹脂に高エネルギーイオン化放射線を用いる方法(例えば、特開昭62-121704号公報)、ポリプロピレン樹脂に特定の有機過酸化物を反応させる方法(例えば、特許第2869606号公報)、ポリプロピレン樹脂に熱分解性ラジカル形成剤とエチレン系多官能不飽和モノマーを反応させる方法(例えば、特開平10-330436号公報)、ポリプロピレン樹脂の重合時に特定の触媒を用いる方法(例えば、特開2009-057542号公報)などが好ましく用いられる。
より具体的には、分岐鎖状ポリプロピレン樹脂(H)としては、日本ポリプロ社製“WAYMAX”(登録商標)(MFX3)等を用いることができる。また、分岐鎖状ポリプロピレン樹脂(I)としては、Lyondell Basell社製“Pro-fax”(登録商標)(PF-814など)、Borealis社製“Daploy”(商標)(WB130HMS、WB135HMSなど)、日本ポリプロ社製“WAYMAX”(登録商標)(MFX6、MFX8、EX6000、EX8000など)等を用いることができる。
本発明の二軸配向ポリプロピレンフィルムに含有させる分岐鎖状ポリプロピレン樹脂(H)、(I)は、分子鎖中に分岐構造を有していることが好ましい。なお、分子鎖中に分岐構造を有するポリプロピレン樹脂とは、カーボン原子10,000個中に対し5箇所以下の内部3置換オレフィンを有するポリプロピレン樹脂であり、この内部3置換オレフィンの存在は、1H-NMRスペクトルのプロトン比により確認することができる。分岐鎖状ポリプロピレン樹脂(H)、(I)は、α晶核剤としての作用を有しながら、一定範囲の添加量であれば結晶形態による粗面形成も可能とする。すなわち、分岐鎖状ポリプロピレン樹脂(H)、(I)を含むことで、溶融押出した樹脂シートの冷却工程で生成するポリプロピレンの球晶サイズを小さく制御でき、高温下での耐電圧特性に優れた二軸配向ポリプロピレンフィルムを得ることができる。
本発明の二軸配向ポリプロピレンフィルムを構成する分岐鎖状ポリプロピレン樹脂(H)と分岐鎖状ポリプロピレン樹脂(I)において、分岐鎖状ポリプロピレン樹脂(I)のMSから分岐鎖状ポリプロピレン樹脂(H)のMSを引いた差は1.0以上15.0以下であることが好ましく、3.0以上12.0以下であるとより好ましく、4.0以上10.0以下であるとさらに好ましい。分岐鎖状ポリプロピレン樹脂(I)のMSからの分岐鎖状ポリプロピレン樹脂(H)MSを引いた差を上記範囲内とすることで、製膜性、高温耐電圧特性に優れた二軸配向ポリプロピレンフィルムを得られやすい。
また、本発明の二軸配向ポリプロピレンフィルムを構成する高MFRポリプロピレン樹脂(B)と分岐鎖状ポリプロピレン樹脂(H)、分岐鎖状ポリプロピレン樹脂(I)において、分岐鎖状ポリプロピレン樹脂(I)と分岐鎖状ポリプロピレン樹脂(H)の質量%を足した数値から、高MFRポリプロピレン樹脂(B)を引いた差は、5.0質量%以上30.0質量%以下であることが好ましく、10.0質量%以上25.0質量%以下がより好ましく、12.0質量%以上22.0質量%以下がさらに好ましく、12.0質量%以上18.0質量%以下が特に好ましい。分岐鎖状ポリプロピレン樹脂(I)と分岐鎖状ポリプロピレン樹脂(H)の質量%を足した数値から、高MFRポリプロピレン樹脂(B)を引いた差を5.0質量%以上とすることで、製膜性に優れたポリプロピレンフィルムを得られやすい。30.0質量%以下とすることで、高温耐電圧特性や寸法安定性を保ちやすい。また、分岐鎖状ポリプロピレン樹脂(I)と分岐鎖状ポリプロピレン樹脂(H)の質量%を足した数値から、高MFRポリプロピレン樹脂(B)を引いた差を上記範囲とすることで、溶融ポリマーをシート状に形成する際に球晶サイズや数が大きくなり過ぎず、本発明の五点山領域高さ(S5p)が80nm以上1000nm以下であるフィルム表面形状が得られやすい。
なお、二軸配向ポリプロピレンフィルムは、コンデンサの誘電体として用いるにあたり表面に金属蒸着を施すが、通常、二軸配向ポリプロピレンフィルムは表面エネルギーが低く、蒸着した金属の密着性が課題となることがある。そのため、二軸配向ポリプロピレンフィルムには、二軸延伸後に表面処理を施すことが好ましい。具体的な表面処理方法としては、例えばコロナ放電処理、プラズマ処理、グロー処理、火炎処理などを採用することができる。
本発明の二軸配向ポリプロピレンフィルムは、加工性と耐電圧特性を両立する観点から、少なくとも片面において、界面の展開表面積比Sdrが0.0004%以上0.0200%以下であることが重要である。上記観点から、少なくとも片面において、界面の展開表面積比Sdrが0.0006%以上0.0100%以下であることがより好ましく、0.0008%以上0.0050%以下であることがさらに好ましく、0.0010%以上0.0050%以下であることが特に好ましい。
界面の展開表面積比Sdrは、ISO25178-2(2012)で定義される三次元表面性状(表面粗さ)を評価するための複合パラメータであって、定義領域の展開面積(表面積)が、定義領域の面積に対してどれだけ増大しているかを示す。定義領域の展開面積の表面凹凸が全くない場合、定義領域の面積と同じになるため、Sdr=0%となる。界面の展開表面積比Sdrの測定装置は、上記の測定が可能なものであれば特に限定されないが、例えば、株式会社菱化システム社製非接触表面・層断面形状測定システム“VertScan”(登録商標)2.0を用いることができる。
少なくとも片面において、界面の展開表面積比Sdrを0.0004%以上とすることにより、フィルムの滑り性が保たれる。そのため、二軸配向ポリプロピレンフィルムの加工時の搬送工程において、シワの発生や、フィルムロールの巻姿の悪化を防ぐことができ、加工性が向上する。また、コンデンサ素子形成時にフィルムの層間間隙が狭くなることを防止し、コンデンサを使用した際にショート破壊をしにくくすることができる。一方、界面の展開表面積比Sdrが0.0200%以下であることは、該当表面に過剰に凹凸が存在しないことを意味し、このような態様とすることで易滑性が適度に抑えられる。そのため、二軸配向ポリプロピレンフィルムの加工時の搬送工程において、巻きズレや蛇行の発生を軽減することができる。また、コンデンサ素子形成時にフィルムの層間間隙が過度に広くならないため保安性が過剰とならず、その凹凸起因で起こる耐電圧特性の低下が軽減され、結果的にコンデンサの寿命を長くすることができる。少なくとも片面において上記範囲内の界面の展開表面積比Sdrとすれば、適切な凹凸を保持することができ、加工性、耐電圧性能を向上させることができるが、界面の展開表面積比Sdrが両面ともに0.0004%以上0.0200%以下又は上記の好ましい範囲を満たす場合、さらに加工性、耐電圧性能に優れる結果となり、より好ましい。
少なくとも片面において、界面の展開表面積比Sdrを0.0004%以上0.0200%以下または上記の好ましい範囲とするには、上述したポリプロピレン樹脂を使用し、後述する通りフィルム製膜時の縦延伸の予熱工程を特定の条件とする方法が挙げられる。より具体的には、上述したポリプロピレン樹脂を構成成分とするキャストシートに、ラジエーションヒーター等で局所的に熱量を与えることで、キャストシート内のβ晶を瞬時的にα晶へ転移させ、その表面構造を制御することが効果的である。このときラジエーションヒーターの処理時間を長くすることで、Sdrを大きくすることができる。
本発明の二軸配向ポリプロピレンフィルムは、少なくとも片面において、五点谷領域深さS5vが70nm以上1400nm以下であることが好ましく、80nm以上1200nm以下であることがさらに好ましく、90nm以上1000nm以下であることがさらに好ましく、110nm以上600nm以下であることが特に好ましい。
五点谷領域深さS5vは、ISO25178-2(2012)で定義される三次元表面性状(表面粗さ)を評価するための形体パラメータであって、定義領域中で最深の谷地点から深い順に5番目までの谷領域高さの平均を示す。五点谷領域深さS5vの測定装置は、上記の測定が可能なものであれば特に限定されないが、例えば、株式会社菱化システム社製非接触表面・層断面形状測定システム“VertScan”(登録商標)2.0を用いることができる。
少なくとも片面において、五点谷領域深さS5vを70nm以上とすることにより、製膜およびコンデンサ素子加工時のフィルム搬送工程においてブロッキングや搬送シワの発生が抑えられるため、フィルムロールの巻姿の悪化やコンデンサ素子の外観や内部の形状不良を軽減することができる。また、コンデンサ素子形成時にフィルムの層間間隙が狭くなることを防止し、コンデンサを使用した際にショート破壊の発生を抑えることができる。また、五点谷領域深さS5vを1400nm以下とすることは、当該表面に存在する凹部の深さが浅いことを意味し、このような態様とすることで、その凹部起因で起こる耐電圧特性の低下が軽減されるため、コンデンサの寿命を長くすることができる。少なくとも片面において上記範囲内の五点谷領域深さS5vとすれば、適切な凹部を保持することができ、加工性、耐電圧性能が優れる。特に五点谷領域深さS5vが両面ともに70nm以上1400nm以下又は上記範囲を満たす場合、さらに加工性、耐電圧性能に優れる結果となり、より好ましい。
少なくとも片面において、五点谷領域深さS5vを70nm以上1400nm以下または上記の好ましい範囲とするには、上述したポリプロピレン樹脂を使用して、後述する通り、フィルム製膜時の縦延伸予熱工程を特定の条件とする方法が挙げられる。より具体的には、上述した高MFRポリプロピレン樹脂(B)の含有量を調整することで、その表面構造を制御することが効果的である。このとき、高MFRポリプロピレン樹脂(B)の含有量が多いほど、溶融押出した樹脂シートの冷却工程で生成するポリプロピレンの球晶サイズを小さく制御できるため、S5vを小さくすることができる。
本発明の二軸配向ポリプロピレンフィルムは、少なくとも片面において、五点山領域高さS5pが80nm以上1000nm以下であることが好ましく、90nm以上700nm以下であることがさらに好ましく、100nm以上600nm以下であることがさらに好ましく、100nm以上550nm以下であることが特に好ましい。
五点山領域高さS5pは、ISO25178-2(2012)で定義される三次元表面性状(表面粗さ)を評価するための形体パラメータであって、定義領域中で最高の山頂点から高い順に5番目までの山領域高さの平均を表す。五点山領域高さS5pの測定装置は、上記の測定が可能なものであれば特に限定されないが、例えば、株式会社菱化システム社製非接触表面・層断面形状測定システム“VertScan”(登録商標)2.0を用いることができる。
少なくとも片面において、五点山領域高さS5pを80nm以上とすることにより、製膜およびコンデンサ素子加工時のフィルム搬送工程においてブロッキングや搬送シワの発生が抑えられるため、フィルムロールの巻姿の悪化やコンデンサ素子の外観や内部の形状不良を軽減することができる。また、五点山領域高さS5pを1000nm以下とすることにより易滑性が適度に抑えられ、二軸配向ポリプロピレンフィルムの加工時の搬送工程において巻きズレや蛇行を軽減することができる。さらにコンデンサ素子形成時にフィルムの層間間隙が過度に広くならないため保安性が過剰とならず、結果的にコンデンサの寿命を長くすることができる。少なくとも片面において上記範囲内の五点山領域高さS5pとすれば、適切な凸部を保持することができ、加工性、耐電圧性能が優れる。特に五点山領域高さS5pが両面ともに上記範囲を満たす場合、さらに加工性、耐電圧性能に優れる結果となり、より好ましい。
少なくとも片面において、五点山領域高さS5pが80nm以上1000nm以下または上記の好ましい範囲とするには、上述したポリプロピレン樹脂を使用して、後述する通り、フィルム製膜時の縦延伸予熱工程を特定の条件とする方法が挙げられる。より具体的には、上述した分岐鎖状ポリプロピレン樹脂(I)と分岐鎖状ポリプロピレン樹脂(H)の質量%を足した数値から、高MFRポリプロピレン樹脂(B)を引いた差を調整することで、その表面構造を制御することが効果的である。このとき分岐鎖状ポリプロピレン樹脂(I)と分岐鎖状ポリプロピレン樹脂(H)の質量%を足した数値から、高MFRポリプロピレン樹脂(B)を引いた差が小さいほど、溶融ポリマーをシート状に形成する際に球晶サイズや数が大きくなり過ぎず、S5pを小さくすることができる。また、ラジエーションヒーター等で局所的に熱量を与えることによっても、S5p値を大きくすることができる。
本発明の二軸配向ポリプロピレンフィルムは、上記した直鎖状ポリプロピレン樹脂(A)と高MFRポリプロピレン樹脂(B)、分岐鎖状ポリプロピレン樹脂(H)、(I)からなるポリプロピレン樹脂組成物をシート状に成型し、二軸延伸することによって得ることが好ましい。二軸延伸の方法としては、インフレーション同時二軸延伸法、テンター同時二軸延伸法、テンター逐次二軸延伸法のいずれによっても得られるが、製膜安定性、厚み均一性の観点でテンター逐次二軸延伸法を採用することが好ましい。特に長手方向に延伸後、幅方向に延伸することが好ましい。
本発明の二軸配向ポリプロピレンフィルムは、製膜性や機械強度、高温耐電圧特性、コンデンサ誘電体として用いた際の体積当たりの容量の観点から、厚みが1.0μm以上4.0μm以下であることが好ましい。上記観点から、厚みは1.2μm以上3.8μm以下であるとより好ましく、1.4μm以上3.0μm以下であるとさらに好ましい。厚みを1.0μm以上とすることで、二軸配向ポリプロピレンフィルムを機械強度や高温耐電圧特性に優れたものとすることができ、また、その製膜および加工時における破断を軽減することができる。一方、厚みを4.0μm以下とすることにより、コンデンサ誘電体として用いた際に体積当たりの容量をより大きくすることができる。なお、厚みはJIS C 2330(2014)に準じ、マイクロメーター法により測定するものとする。
二軸配向ポリプロピレンフィルムの厚みは、例えば、Tダイのスリット幅、Tダイからの吐出量、キャストドラムの回転速度、延伸倍率の積等を調整することにより調節することができる。より具体的には、Tダイのスリット幅を小さく、Tダイからの吐出量を少なく、キャストドラムの回転速度を大きく、延伸倍率の積を大きくすることで、二軸配向ポリプロピレンフィルムの厚みを小さくすることができる。なお、これらの方法は適宜組み合わせて用いてもよい。
次に本発明の二軸配向ポリプロピレンフィルムの製造方法を以下に説明するが、必ずしもこれに限定されるものではない。
まず、上記した直鎖状ポリプロピレン樹脂(A)と高MFRポリプロピレン樹脂(B)、分岐鎖状ポリプロピレン樹脂(H)、(I)をドライブレンドして単軸の溶融押出機に供給し、200~260℃にて溶融押出を行う。次に、ポリマー管の途中に設置したフィルターにて、異物や変性ポリマーなどを除去する。そしてシート状に成形した溶融ポリマーをTダイよりキャストドラム上に吐出して冷却固化することによりキャストシートを形成し、これを冷却ロールで冷却させる。
キャストドラムの温度は、β晶および球晶を適切に生成させる観点から80℃以上120℃以下であることが好ましく、85℃以上115℃以下であるとさらに好ましく、85℃以上110℃以下であればさらに好ましい。キャストドラム温度を80℃以上とすることで、キャストシート中に形成されるβ晶が少なくなり過ぎず、二軸延伸後に得られるフィルムの滑り性が保たれるため、製膜および加工時のフィルム搬送工程におけるシワの発生やフィルムロールの巻姿の悪化を防ぐことができる。一方、キャストドラム温度を120℃以下とすることで、キャストシート中にβ晶が過剰に形成されるのを防ぐことができ、製膜および加工時のフィルムの搬送工程における蛇行の発生やフィルムロールの巻姿の悪化が軽減される。
Tダイから吐出された溶融シートがキャストドラムに着地し、ドラムに密着している時間は0.8秒以上3.0秒以下であることが好ましく、1.0秒以上3.0秒以下であることがより好ましい。密着している時間を0.8秒以上とすると、溶融シートを固化しやすく、その後の延伸工程での破断を軽減できる。一方、密着している時間を3.0秒以下とすると、キャストシート中にβ晶が過剰に形成されるのを防ぐことができ、製膜および加工時のフィルムの搬送工程における蛇行の発生やフィルムロールの巻姿の悪化が軽減される。
溶融シートをキャストドラムへ密着させる方法としては、静電印加法、エアーナイフ法、ニップロール法、水中キャスト法などの手法を採用することができるが、厚みむら抑制、高速製膜化、フィルムの表面性状制御の観点からエアーナイフ法が好ましい。エアーナイフのエアー温度は60℃以上100℃以下であることが好ましい。エアーナイフ温度を60℃以上とすることで、キャストシート中に形成されるβ晶が少なくなり過ぎず、二軸延伸後に得られるフィルムの滑り性が保たれるため、製膜および加工時のフィルム搬送工程においてシワの発生やフィルムロールの巻姿の悪化が軽減される。一方、エアーナイフ温度を100℃以下とすることで、キャストシート中にβ晶が過剰に形成されず、製膜および加工時のフィルムの搬送工程における蛇行の発生やフィルムロールの巻姿の悪化が軽減される。
キャストドラムにより固化したキャストシートをさらに冷却する冷却ロールの温度は、10℃以上60℃以下であることが好ましい。冷却ロールの温度を10℃以上とすると、その後の高温熱処理工程でフィルムを所望の温度まで上昇させるのが容易となる。一方、冷却温度を60℃以下とすると、キャストシート中の結晶形成が軽減され、二軸延伸後に得られる二軸配向ポリプロピレンフィルムの表面凹凸の長手方向へのばらつきを容易に低減することができる。
次に、得られたキャストシートを二軸延伸する。具体的な延伸条件としては、まず、キャストシートを長手方向に延伸する温度を制御する。温度制御の方法は、温度制御された回転ロールを用いる方法、熱風オーブンを使用する方法などがある。
縦延伸の予熱工程で、キャストシートを100~125℃、好ましくは100~120℃に保たれたロールを通して予熱し、さらに140~150℃に保たれたロールに通して予熱する。さらに、135~150℃、好ましくは140~150℃に保たれたロール上にラジエーションヒーターを設置し、局所的に熱量を与えることで、キャストシート表面構造を制御する。
得られる二軸配向ポリプロピレンフィルムの界面の展開表面積比Sdrを適切な範囲に制御する観点から、ラジエーションヒーターにより局所的に熱量を与えることが好ましい。このとき、ラジエーションヒーターによる処理時間は、0.5秒以上2.0秒以下が好ましく、0.7秒以上1.8秒以下であるとさらに好ましく、0.8秒以上1.5秒以下であると特に好ましい。ラジエーションヒーターによる処理時間を0.5秒以上にすることで、表面制御に必要とされる熱量に達し、得られる二軸配向ポリプロピレンフィルムの界面の展開表面積比Sdrを適切な水準に高めることができる。一方、ラジエーションヒーターによる処理時間を2.0秒以下とすることで、熱量過多によるフィルム破れの誘発や、得られる二軸配向ポリプロピレンフィルムの界面の展開表面積比Sdrの過剰な上昇を防ぐことができる。なお、ラジエーションヒーターとキャストシートの距離は1.0~10mmが好ましく、ラジエーションヒーターの出力は1.0~10kWが好ましい。
次に、縦延伸工程にてキャストシートを長手方向に延伸する。縦延伸の予熱工程を通したキャストシートを温度120℃以上140℃以下に制御したロールに通し、ロール間の周速差によって所定の延伸速度、延伸倍率で長手方向に延伸(縦延伸)する。長手方向の延伸倍率は4.0倍以上7.0倍以下であることが好ましく、5.0倍以上7.0倍以下であるとさらに好ましい。延伸倍率を4.0倍以上とすることで、得られる二軸配向ポリプロピレンフィルムの表面性状はより均一となり、高温下での耐電圧特性も向上する。縦延伸倍率を7.0倍以下とすると、縦延伸工程や次の横延伸工程でのフィルムの破断が軽減される。
次に、縦延伸により得られた一軸配向フィルムの幅方向両端部をクリップで把持し、温度140℃以上170℃以下に制御したテンター式延伸機にて延伸倍率5倍以上15倍以下で幅方向に延伸する。さらに、幅方向に5~15%弛緩しつつ、温度150~170℃で熱固定する。
次に、二軸延伸されたフィルムに空気中、窒素中、炭酸ガス中、あるいはこれらの混合気体中でコロナ放電処理を行い、クリップで把持したフィルムの耳部をカットして除去し、端部を除去したフィルムを巻取機でマスターロールとして巻取る。最後に、スリッターにて、マスターロールから巻き出したフィルムを特定の幅でスリットし、フィルムロールとしてコアに巻回し、本発明の二軸配向ポリプロピレンフィルムを得る。
本発明の二軸配向ポリプロピレンフィルムは、フィルムコンデンサ用誘電体として好ましく用いられるが、フィルムコンデンサのタイプに限定されるものではない。具体的には、電極構成の観点では箔巻フィルムコンデンサ、金属蒸着膜フィルムコンデンサのいずれであってもよいし、絶縁油を含有させた油浸タイプのフィルムコンデンサや絶縁油を全く使用しない乾式フィルムコンデンサにも好ましく用いられる。また、形状の観点では、巻回式であっても積層式であっても構わない。本発明の二軸配向ポリプロピレンフィルムの特性から特に金属蒸着膜フィルムコンデンサとして好ましく用いられる。
次に、本発明の二軸配向ポリプロピレンフィルムを用いた金属膜積層フィルムについて説明する。金属膜を形成する方法として、二軸配向ポリプロピレンフィルムの少なくとも片面にアルミニウム等の金属を蒸着して、フィルムコンデンサの内部電極となる金属膜を設ける方法が好ましく用いられる。このとき、アルミニウムと同時あるいは逐次に、例えば、ニッケル、銅、金、銀、クロム、および亜鉛などの他の金属成分を蒸着することもできる。また、金属膜上にオイルなどで保護層を設けることもできる。金属膜の厚さは、コンデンサの電気特性と保安性の観点から20nm以上100nm以下であることが好ましい。また、同様の理由により、金属膜の表面抵抗値が1Ω/sq以上20Ω/sq以下であることが好ましい。表面抵抗値は、使用する金属種と膜厚で制御可能である。
次に、本発明の二軸配向ポリプロピレンフィルムを用いたフィルムコンデンサについて説明する。フィルムコンデンサは、金属膜積層フィルムを積層させた構成、もしくは、巻回した構成を有する。以下、巻回型フィルムコンデンサの製造方法の一例を説明する。まず、二軸配向ポリプロピレンフィルムの片面にアルミニウムを真空蒸着する。その際、フィルムの長手方向に走るマージン部を有するストライプ状にアルミニウムを蒸着する。次に、表面の各蒸着部の中央と各マージン部の中央に刃を入れてスリットし、表面が一方にマージンを有したテープ状の巻取リールを作製する。左もしくは右にマージンを有するテープ状の巻取リールを左マージン、および右マージンのもの各1本ずつを、幅方向に蒸着部分がマージン部よりはみ出すように2枚重ね合わせて巻回し巻回体を得る。巻回体を熱処理後、幅方向の両端面にメタリコンを溶射して外部電極とし、メタリコンにリード線を溶接して巻回型フィルムコンデンサを得ることができる。フィルムコンデンサの用途は、車輌、家電(テレビや冷蔵庫など)、一般雑防、自動車(ハイブリッドカー、パワーウインドウ、ワイパーなど)、および電源など多岐に亘っており、本発明の二軸配向ポリプロピレンフィルムを用いたフィルムコンデンサもこれら用途に好適に用いることができる
以下、実施例により本発明を詳細に説明するが、本発明はこれに限定されない。なお、特性は以下の方法により測定、評価を行い、原料としては以下のものを使用した。
[測定、評価方法]
(1)メソペンタッド分率(mmmm)
ポリプロピレン樹脂試料を溶媒に溶解し、13C-NMRを用いて、以下の条件にてメソペンタッド分率(mmmm)を求めた(参考文献:新版 高分子分析ハンドブック 社団法人日本分析化学会・高分子分析研究懇談会 編 1995年 P609~611)。
(1)メソペンタッド分率(mmmm)
ポリプロピレン樹脂試料を溶媒に溶解し、13C-NMRを用いて、以下の条件にてメソペンタッド分率(mmmm)を求めた(参考文献:新版 高分子分析ハンドブック 社団法人日本分析化学会・高分子分析研究懇談会 編 1995年 P609~611)。
A.測定条件
装置:Bruker社製 DRX-500
測定核:13C核(共鳴周波数:125.8MHz)
測定濃度:10質量%
溶媒:ベンゼン/重オルトジクロロベンゼン=質量比1:3混合溶液
測定温度:130℃
スピン回転数:12Hz
NMR試料管:5mm管
パルス幅:45°(4.5μs)
パルス繰り返し時間:10秒
データポイント:64K
換算回数:10,000回
測定モード:complete decoupling。
装置:Bruker社製 DRX-500
測定核:13C核(共鳴周波数:125.8MHz)
測定濃度:10質量%
溶媒:ベンゼン/重オルトジクロロベンゼン=質量比1:3混合溶液
測定温度:130℃
スピン回転数:12Hz
NMR試料管:5mm管
パルス幅:45°(4.5μs)
パルス繰り返し時間:10秒
データポイント:64K
換算回数:10,000回
測定モード:complete decoupling。
B.解析条件
LB(ラインブロードニングファクター)を1.0としてフーリエ変換を行い、mmmmピークを21.86ppmとし、WINFITソフト(Bruker社製)を用いて、ピーク分割を行った。その際に、高磁場側のピークから以下のようにピーク分割を行い、さらに付属ソフトの自動フィッティングを行った。ピーク分割の最適化を行った上で、mmmmのピーク分率の合計を求めた。なお、上記測定を5回行い、その平均値を本試料のメソペンタッド分率(mmmm)とした。
(ピーク分割)
(a)mrrm
(b)(c)rrrm(2つのピークとして分割)
(d)rrrr
(e)mrmr
(f)mrmm+rmrr
(g)mmrr
(h)rmmr
(i)mmmr
(j)mmmm。
LB(ラインブロードニングファクター)を1.0としてフーリエ変換を行い、mmmmピークを21.86ppmとし、WINFITソフト(Bruker社製)を用いて、ピーク分割を行った。その際に、高磁場側のピークから以下のようにピーク分割を行い、さらに付属ソフトの自動フィッティングを行った。ピーク分割の最適化を行った上で、mmmmのピーク分率の合計を求めた。なお、上記測定を5回行い、その平均値を本試料のメソペンタッド分率(mmmm)とした。
(ピーク分割)
(a)mrrm
(b)(c)rrrm(2つのピークとして分割)
(d)rrrr
(e)mrmr
(f)mrmm+rmrr
(g)mmrr
(h)rmmr
(i)mmmr
(j)mmmm。
(2)溶融流動指数(MFR)(単位:g/10min)
JIS K 7210-1(2014)に準拠して230℃、2.16kgの条件で測定した。
JIS K 7210-1(2014)に準拠して230℃、2.16kgの条件で測定した。
(3)溶融張力(MS)(単位:cN)
株式会社東洋精機製作所メルトテンションテスター(キャピラリー直径2.1mm、シリンダー径9.55mm)を用いて、以下の手順で測定した。まず、ポリプロピレン樹脂を230℃に加熱して溶融した。次いで、溶融ポリプロピレン樹脂を押出速度15mm/分で吐出ストランドし、このストランドを6.5m/分の速度で引き取る際の張力を測定し、得られた値をMSとした。
株式会社東洋精機製作所メルトテンションテスター(キャピラリー直径2.1mm、シリンダー径9.55mm)を用いて、以下の手順で測定した。まず、ポリプロピレン樹脂を230℃に加熱して溶融した。次いで、溶融ポリプロピレン樹脂を押出速度15mm/分で吐出ストランドし、このストランドを6.5m/分の速度で引き取る際の張力を測定し、得られた値をMSとした。
(4)冷キシレン可溶部(CXS 単位:質量%)
ポリプロピレン樹脂0.5gを135℃の沸騰キシレン100mlに溶解して放冷後、20℃の恒温水槽で1時間再結晶化させた。その後、ろ過により結晶等の固形物を除去し、ろ過液に溶解しているポリプロピレン系成分を液体クロマトグラフ法で定量した。沸騰キシレン溶解前のポリプロピレン樹脂の質量をX0(g)、ろ過液に溶解しているポリプロピレン成分の質量をX(g)として、CXSを下記式(1)から求めた。
式(1): CXS(質量%)=(X/X0)×100 。
ポリプロピレン樹脂0.5gを135℃の沸騰キシレン100mlに溶解して放冷後、20℃の恒温水槽で1時間再結晶化させた。その後、ろ過により結晶等の固形物を除去し、ろ過液に溶解しているポリプロピレン系成分を液体クロマトグラフ法で定量した。沸騰キシレン溶解前のポリプロピレン樹脂の質量をX0(g)、ろ過液に溶解しているポリプロピレン成分の質量をX(g)として、CXSを下記式(1)から求めた。
式(1): CXS(質量%)=(X/X0)×100 。
(5)界面の展開表面積比Sdr(単位:%)、五点谷領域深さS5v(単位:nm)、五点山領域高さS5p(単位:nm)
株式会社菱化システム社製非接触表面・層断面形状測定システム“VertScan”(登録商標)2.0(型式:R3300GL-Lite-AC)を用いて測定した。マスターロールの幅方向の中心位置に相当するフィルムロールにおいて、フィルムロールの中心位置から長手方向に無作為に採取した10箇所を測定箇所とし、その10箇所の界面の展開表面積比(Sdr)、五点谷領域深さ(S5v)、五点山領域高さ(S5p)を測定し、各パラメータについて得られた測定値の平均を算出し、それぞれ測定対象としたフィルムのSdr、S5v、S5pとした。1回の測定の詳細条件については下記の通りとした。なお、1回の測定に対して1視野(視野面積:縦939μm×横1,252μm=1,175,628μm2)の測定を行った。
株式会社菱化システム社製非接触表面・層断面形状測定システム“VertScan”(登録商標)2.0(型式:R3300GL-Lite-AC)を用いて測定した。マスターロールの幅方向の中心位置に相当するフィルムロールにおいて、フィルムロールの中心位置から長手方向に無作為に採取した10箇所を測定箇所とし、その10箇所の界面の展開表面積比(Sdr)、五点谷領域深さ(S5v)、五点山領域高さ(S5p)を測定し、各パラメータについて得られた測定値の平均を算出し、それぞれ測定対象としたフィルムのSdr、S5v、S5pとした。1回の測定の詳細条件については下記の通りとした。なお、1回の測定に対して1視野(視野面積:縦939μm×横1,252μm=1,175,628μm2)の測定を行った。
A.測定条件
CCDカメラ:SONY HR-57 1/2
対物レンズ:10X
鏡筒:0.5X BODY
波長フィルター:530 white
測定モード:Wave
視野サイズ:640×480
スキャンレンジ:(スタート)5μm、(ストップ)-5μm。
CCDカメラ:SONY HR-57 1/2
対物レンズ:10X
鏡筒:0.5X BODY
波長フィルター:530 white
測定モード:Wave
視野サイズ:640×480
スキャンレンジ:(スタート)5μm、(ストップ)-5μm。
B.測定方法
測定時のフィルムの固定には専用のサンプルホルダーを使用した。サンプルホルダーは中心に円形の穴が空いた脱着可能な2枚の金属板であり、その間にシワがない状態でフィルムを挟んで固定し、中央円形部のフィルムについて測定した。なお、フィルムロールの長手方向と測定視野の縦方向が一致するようにフィルムおよびサンプルホルダーを設置した。
測定時のフィルムの固定には専用のサンプルホルダーを使用した。サンプルホルダーは中心に円形の穴が空いた脱着可能な2枚の金属板であり、その間にシワがない状態でフィルムを挟んで固定し、中央円形部のフィルムについて測定した。なお、フィルムロールの長手方向と測定視野の縦方向が一致するようにフィルムおよびサンプルホルダーを設置した。
C.解析方法
上記測定により得られたデータを“VertScan”(登録商標)2.0の画像解析ソフトVS-Viewerで解析した。まず、メディアンフィルター(5×5)によりノイズを除去し、カットオフ値250μmのガウシアンフィルターによりうねり成分を除去した。次いで、「ISOPara」機能により、ISO25178-2(2012)で定義される表面性状の界面の展開表面積比Sdr、S5v、S5pを算出した。なお、「ISOPara」機能において、S-Filterを6.0μmに設定した。
上記測定により得られたデータを“VertScan”(登録商標)2.0の画像解析ソフトVS-Viewerで解析した。まず、メディアンフィルター(5×5)によりノイズを除去し、カットオフ値250μmのガウシアンフィルターによりうねり成分を除去した。次いで、「ISOPara」機能により、ISO25178-2(2012)で定義される表面性状の界面の展開表面積比Sdr、S5v、S5pを算出した。なお、「ISOPara」機能において、S-Filterを6.0μmに設定した。
(6)厚み(単位;:μm)
JIS C 2330(2014)に準じ、マイクロメーター法により厚みを測定した。
JIS C 2330(2014)に準じ、マイクロメーター法により厚みを測定した。
(7)製膜性評価
フィルムの製膜性について、下記判断基準により評価した。なお、フィルム破れが発生したことにより製膜を中止してから製膜を再開するまでの時間は観察時間より除外した。
◎:48時間を超えてフィルム破れの発生がなかった。
〇:48時間で1回~3回のフィルム破れが発生した。
△:48時間で4回~6回のフィルム破れが発生した。
×:48時間で7回以上のフィルム破れが発生した。
フィルムの製膜性について、下記判断基準により評価した。なお、フィルム破れが発生したことにより製膜を中止してから製膜を再開するまでの時間は観察時間より除外した。
◎:48時間を超えてフィルム破れの発生がなかった。
〇:48時間で1回~3回のフィルム破れが発生した。
△:48時間で4回~6回のフィルム破れが発生した。
×:48時間で7回以上のフィルム破れが発生した。
(8)フィルムコンデンサ製造における素子加工性評価
二軸配向ポリプロピレンフィルムのコロナ処理を施した側の面に、株式会社ULVAC社製真空蒸着機で表面抵抗値が15Ω/sqとなるようにアルミニウムを真空蒸着した。その際、長手方向に走るマージン部を有するストライプ状にアルミニウムを蒸着した(蒸着部の幅79.0mm、マージン部の幅1.0mmの繰り返し。)。次いで、各蒸着部の中央と各マージン部の中央に刃を入れてスリットし、左右いずれかの端部に0.5mmのマージン部を有する全幅40mmのテープ状の巻取リールを作製した。得られたリールの左マージン、および右マージンのもの各1本ずつを幅方向に蒸着部分がマージン部より0.5mmはみ出すように2枚を重ね合わせて巻回し、静電容量120μFの巻回体を得た。なお、巻回には株式会社皆藤製作所社製KAW-4NHBを使用した。最後に140℃の減圧雰囲気中で巻回体を10時間熱処理した。この巻回体を目視にて観察し、外観や内部にシワや形状のゆがみのあるものを不良品とした。巻回体を同様に200個作製して同様の評価を繰り返し、下記判断基準により巻回体の加工性を評価した。
◎:不良品なし
〇:不良品1個以下
△:不良品2個以上3個未満
×:不良品4個以上。
二軸配向ポリプロピレンフィルムのコロナ処理を施した側の面に、株式会社ULVAC社製真空蒸着機で表面抵抗値が15Ω/sqとなるようにアルミニウムを真空蒸着した。その際、長手方向に走るマージン部を有するストライプ状にアルミニウムを蒸着した(蒸着部の幅79.0mm、マージン部の幅1.0mmの繰り返し。)。次いで、各蒸着部の中央と各マージン部の中央に刃を入れてスリットし、左右いずれかの端部に0.5mmのマージン部を有する全幅40mmのテープ状の巻取リールを作製した。得られたリールの左マージン、および右マージンのもの各1本ずつを幅方向に蒸着部分がマージン部より0.5mmはみ出すように2枚を重ね合わせて巻回し、静電容量120μFの巻回体を得た。なお、巻回には株式会社皆藤製作所社製KAW-4NHBを使用した。最後に140℃の減圧雰囲気中で巻回体を10時間熱処理した。この巻回体を目視にて観察し、外観や内部にシワや形状のゆがみのあるものを不良品とした。巻回体を同様に200個作製して同様の評価を繰り返し、下記判断基準により巻回体の加工性を評価した。
◎:不良品なし
〇:不良品1個以下
△:不良品2個以上3個未満
×:不良品4個以上。
(9)フィルムコンデンサにおける寿命評価
(8)に記載の方法により静電容量120μFの巻回体を得た。その後、140℃の減圧雰囲気中で巻回体を10時間熱処理し、幅方向の両端面にメタリコンを溶射して外部電極とし、メタリコンにリード線を溶接してフィルムコンデンサを得た。次にフィルムコンデンサ15個について、以下の手順で寿命評価を実施した。まず、室温にて静電容量(C0)を測定した。次いで、120℃の高温下でフィルムコンデンサに325VDC/μm(厚みが2.0μmのとき、印加電圧は650V)の電圧を1000時間印加した。その後、室温にて静電容量(C)を測定し、電圧印加前後の静電容量の変化率(ΔC)を下記式(4)から算出した。なお、静電容量は日置電機株式会社製のLCRハイテスター3522-50により測定した。
式(4): ΔC=((C0-C)/C0)×100
フィルムコンデンサ15個の電圧印加前後の静電容量の変化率(ΔC)の平均値をそのサンプルの電圧印加前後の静電容量の変化率とし、下記判断基準により評価した。電圧印加前後の静電容量の変化率(ΔC)が小さいほど、高温下での静電容量の減少が抑制されていることを示しており、フィルムコンデンサの寿命評価は良好といえる。
◎:ΔCが2%未満
〇:ΔCが2%以上3%未満
△:ΔCが3%以上5%未満
×:ΔCが5%以上。
(8)に記載の方法により静電容量120μFの巻回体を得た。その後、140℃の減圧雰囲気中で巻回体を10時間熱処理し、幅方向の両端面にメタリコンを溶射して外部電極とし、メタリコンにリード線を溶接してフィルムコンデンサを得た。次にフィルムコンデンサ15個について、以下の手順で寿命評価を実施した。まず、室温にて静電容量(C0)を測定した。次いで、120℃の高温下でフィルムコンデンサに325VDC/μm(厚みが2.0μmのとき、印加電圧は650V)の電圧を1000時間印加した。その後、室温にて静電容量(C)を測定し、電圧印加前後の静電容量の変化率(ΔC)を下記式(4)から算出した。なお、静電容量は日置電機株式会社製のLCRハイテスター3522-50により測定した。
式(4): ΔC=((C0-C)/C0)×100
フィルムコンデンサ15個の電圧印加前後の静電容量の変化率(ΔC)の平均値をそのサンプルの電圧印加前後の静電容量の変化率とし、下記判断基準により評価した。電圧印加前後の静電容量の変化率(ΔC)が小さいほど、高温下での静電容量の減少が抑制されていることを示しており、フィルムコンデンサの寿命評価は良好といえる。
◎:ΔCが2%未満
〇:ΔCが2%以上3%未満
△:ΔCが3%以上5%未満
×:ΔCが5%以上。
[原料]
(1)樹脂
直鎖状ポリプロピレン樹脂(A):
ボレアリス社製“Borclean”(商標)HC300BF メソペンタッド分率が0.980、CXSが1.2質量%、MFRが3.3g/10分、MSが1.0cNである直鎖状ポリプロピレン樹脂。
高MFRポリプロピレン樹脂(B):
出光興産株式会社製“L-MODU”(登録商標)S400 MFRが2000g/10分である高MFRポリプロピレン樹脂。
分岐鎖状ポリプロピレン樹脂(H):
日本ポリプロ社製“WAYMAX”(登録商標)(MFX3) MFRが9.0g/10分、MSが5.0cNである分岐鎖状ポリプロピレン樹脂。
分岐鎖状ポリプロピレン樹脂(I):
日本ポリプロ社製“WAYMAX”(登録商標)(EX6000) MFRが2.9g/10分、MSが9.0cNである分岐鎖状ポリプロピレン樹脂。
(1)樹脂
直鎖状ポリプロピレン樹脂(A):
ボレアリス社製“Borclean”(商標)HC300BF メソペンタッド分率が0.980、CXSが1.2質量%、MFRが3.3g/10分、MSが1.0cNである直鎖状ポリプロピレン樹脂。
高MFRポリプロピレン樹脂(B):
出光興産株式会社製“L-MODU”(登録商標)S400 MFRが2000g/10分である高MFRポリプロピレン樹脂。
分岐鎖状ポリプロピレン樹脂(H):
日本ポリプロ社製“WAYMAX”(登録商標)(MFX3) MFRが9.0g/10分、MSが5.0cNである分岐鎖状ポリプロピレン樹脂。
分岐鎖状ポリプロピレン樹脂(I):
日本ポリプロ社製“WAYMAX”(登録商標)(EX6000) MFRが2.9g/10分、MSが9.0cNである分岐鎖状ポリプロピレン樹脂。
(2)酸化防止剤
酸化防止剤1:BASFジャパン社製“Irganox”(登録商標)1010
酸化防止剤2:2,6-ジ-t-ブチル-p-クレゾール(BHT)。
酸化防止剤1:BASFジャパン社製“Irganox”(登録商標)1010
酸化防止剤2:2,6-ジ-t-ブチル-p-クレゾール(BHT)。
(実施例1)
直鎖状ポリプロピレン樹脂(A)、高MFRポリプロピレン樹脂(B)、分岐鎖状ポリプロピレン樹脂(H)、分岐鎖状ポリプロピレン樹脂(I)を75.0:5.0:15.0:5.0(質量比)で混合したポリプロピレン樹脂混合物、酸化防止剤1、および酸化防止剤2を、99.5:0.4:0.1(質量比)でドライブレンドして単軸の溶融押出機に供給し、250℃で溶融押し出しを行った。その後、押し出された溶融ポリプロピレン樹脂組成物より25μmカットの焼結フィルターで異物を除去し、さらにT型スリットダイよりシート状に吐出した。さらに、シート状の溶融ポリプロピレン樹脂組成物を、エアー温度80℃のエアーナイフにより、温度92℃に保持されたキャストドラム上に密着させて固化させた後、温度30℃に保持した冷却ロール上で冷却してキャストシートを得た。このとき、キャストドラムと冷却ロールにシート状の溶融ポリプロピレン樹脂組成物が密着していた時間はそれぞれ1.0秒であった(なお、以下キャストドラムに接地した側の面をドラム面(D面)、接地しない側の面を非ドラム面(非D面)という。)。
直鎖状ポリプロピレン樹脂(A)、高MFRポリプロピレン樹脂(B)、分岐鎖状ポリプロピレン樹脂(H)、分岐鎖状ポリプロピレン樹脂(I)を75.0:5.0:15.0:5.0(質量比)で混合したポリプロピレン樹脂混合物、酸化防止剤1、および酸化防止剤2を、99.5:0.4:0.1(質量比)でドライブレンドして単軸の溶融押出機に供給し、250℃で溶融押し出しを行った。その後、押し出された溶融ポリプロピレン樹脂組成物より25μmカットの焼結フィルターで異物を除去し、さらにT型スリットダイよりシート状に吐出した。さらに、シート状の溶融ポリプロピレン樹脂組成物を、エアー温度80℃のエアーナイフにより、温度92℃に保持されたキャストドラム上に密着させて固化させた後、温度30℃に保持した冷却ロール上で冷却してキャストシートを得た。このとき、キャストドラムと冷却ロールにシート状の溶融ポリプロピレン樹脂組成物が密着していた時間はそれぞれ1.0秒であった(なお、以下キャストドラムに接地した側の面をドラム面(D面)、接地しない側の面を非ドラム面(非D面)という。)。
続いて、縦延伸前の予熱工程で、キャストフィルムを120℃に保たれたロールを通して予熱し、さらに145℃に保たれたロールに通して予熱した。また、145℃に保たれたロール上で、ラジエーションヒーターでキャストシートを1.0秒加熱した。このとき、キャストシートとラジエーションヒーターの距離は5.0mm、ラジエーションヒーターの出力は5.0kWとした。その後、縦延伸前の予熱工程を通したキャストシートを温度140℃の縦延伸ロールで長手方向に延伸倍率5.6倍で延伸して一軸配向フィルムとした。
さらに、幅方向端部をクリップで把持して一軸配向フィルムをテンターに導き、温度159℃、延伸倍率11倍の条件で幅方向に延伸した。次いで、温度158℃で幅方向に12%の弛緩処理を行い、室温まで除冷して、D面側に25W・min/m2の処理強度でコロナ放電処理を施した。得られた二軸配向ポリプロピレンフィルムのクリップで把持した幅方向端部を切除し、巻取機で巻き取った。次いで、スリッターにてフィルム幅0.82mとなるようにスリットして、長手方向に30,000mをコアに巻回し、厚み2.0μmの二軸配向ポリプロピレンフィルムロールを得た。得られた二軸配向ポリプロピレンフィルムの物性、各評価結果を表1に示す。
(実施例2~7、比較例1~4)
ポリプロピレン樹脂の組成および縦延伸前の予熱工程を表1に示す通りとした以外は実施例1と同様にして、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの物性、各評価結果を表1に示す。
ポリプロピレン樹脂の組成および縦延伸前の予熱工程を表1に示す通りとした以外は実施例1と同様にして、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの物性、各評価結果を表1に示す。
本発明により、高い加工性、耐電圧性を有する二軸配向ポリプロピレンフィルムを提供することができる。本発明の二軸配向ポリプロピレンフィルムをコンデンサの誘電体として用いることにより、コンデンサ加工時にフィルム層間のエアー量および層間距離を均一に制御することができる。そのため、コンデンサとしたときに高温・高電圧環境下においても高い保安性が発揮され、その寿命も改善する。
Claims (4)
- 少なくとも片面において、界面の展開表面積比Sdrが0.0004%以上0.0200%以下であることを特徴とする、二軸配向ポリプロピレンフィルム。
- 少なくとも片面において、五点谷領域深さS5vが70nm以上1400nm以下である、請求項1に記載の二軸配向ポリプロピレンフィルム。
- 少なくとも片面において、五点山領域高さS5pが80nm以上1000nm以下である、請求項1または2に記載の二軸配向ポリプロピレンフィルム。
- フィルム厚み(t)が1.0~4.0μmである、請求項1または2に記載の二軸配向ポリプロピレンフィルム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021196021 | 2021-12-02 | ||
JP2021196021 | 2021-12-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023082646A true JP2023082646A (ja) | 2023-06-14 |
Family
ID=86728377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022084985A Pending JP2023082646A (ja) | 2021-12-02 | 2022-05-25 | 二軸配向ポリプロピレンフィルム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2023082646A (ja) |
-
2022
- 2022-05-25 JP JP2022084985A patent/JP2023082646A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102500999B1 (ko) | 폴리프로필렌 필름, 금속막 적층 필름 및 필름 콘덴서 그리고 이들의 제조 방법 | |
JP6120180B2 (ja) | コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ | |
KR102526922B1 (ko) | 2축 배향 폴리프로필렌 필름, 금속막 적층 필름 및 필름 콘덴서 | |
KR101901470B1 (ko) | 2축 연신 폴리프로필렌 필름, 금속화 필름 및 필름 콘덴서 | |
JP6724457B2 (ja) | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
US20160024641A1 (en) | Biaxially oriented polypropylene film, metallized film and film capacitor | |
JP5664137B2 (ja) | コンデンサ用二軸延伸ポリプロピレンフィルムおよび金属化フィルム、フィルムコンデンサ | |
JP6319293B2 (ja) | コンデンサ用二軸配向ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ | |
KR101728585B1 (ko) | 콘덴서용 2축 연신 폴리프로필렌 필름, 금속화 필름 및 필름 콘덴서 | |
US11795282B2 (en) | Polypropylene film, metal film laminated film using same, and film capacitor | |
JP6988244B2 (ja) | ポリプロピレンフィルムロール | |
KR20170131396A (ko) | 콘덴서용 2축 배향 폴리프로필렌 필름, 금속 적층 필름 및 필름 콘덴서 | |
JP7218618B2 (ja) | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
KR102451416B1 (ko) | 2축 배향 폴리프로필렌 필름, 금속막 적층 필름 및 필름 콘덴서 | |
CN113382839A (zh) | 聚丙烯膜和使用它的金属膜层叠膜、膜电容器 | |
JP6885484B2 (ja) | ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ | |
JP7375599B2 (ja) | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
JP7234698B2 (ja) | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
JP2019044171A (ja) | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
JP2023082646A (ja) | 二軸配向ポリプロピレンフィルム | |
JP6988243B2 (ja) | ポリプロピレンフィルムロール | |
JP7524669B2 (ja) | 二軸配向ポリプロピレンフィルム、金属膜積層フィルム、およびフィルムコンデンサ | |
JP2024035063A (ja) | 二軸配向ポリプロピレンフィルム | |
JP2022142713A (ja) | 二軸配向ポリプロピレンフィルム、金属膜積層フィルム、およびフィルムコンデンサ | |
JP2022140278A (ja) | 二軸配向ポリプロピレンフィルム |