WO2013133093A1 - 変性ミクロフィブリル化植物繊維を含む樹脂組成物の製造方法、及びその樹脂組成物 - Google Patents

変性ミクロフィブリル化植物繊維を含む樹脂組成物の製造方法、及びその樹脂組成物 Download PDF

Info

Publication number
WO2013133093A1
WO2013133093A1 PCT/JP2013/055022 JP2013055022W WO2013133093A1 WO 2013133093 A1 WO2013133093 A1 WO 2013133093A1 JP 2013055022 W JP2013055022 W JP 2013055022W WO 2013133093 A1 WO2013133093 A1 WO 2013133093A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant fiber
modified
resin
microfibrillated plant
resin composition
Prior art date
Application number
PCT/JP2013/055022
Other languages
English (en)
French (fr)
Inventor
矢野 浩之
佐藤 明弘
知章 吉村
優子 五十嵐
大輔 蕪崎
文明 中坪
博昭 奥村
健 仙波
和男 北川
弘匡 片岡
和弘 新谷
Original Assignee
国立大学法人京都大学
京都市
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 京都市 filed Critical 国立大学法人京都大学
Priority to US14/383,230 priority Critical patent/US9512304B2/en
Priority to JP2013554140A priority patent/JP5496435B2/ja
Priority to CN201380024251.7A priority patent/CN104334615B/zh
Publication of WO2013133093A1 publication Critical patent/WO2013133093A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/12Preparation of cellulose esters of organic acids of polybasic organic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/16Preparation of mixed organic cellulose esters, e.g. cellulose aceto-formate or cellulose aceto-propionate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0083Nucleating agents promoting the crystallisation of the polymer matrix
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • C08K5/5333Esters of phosphonic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • C08L59/02Polyacetals containing polyoxymethylene sequences only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/005Lignin
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/184Carboxylic acids; Anhydrides, halides or salts thereof
    • D06M13/192Polycarboxylic acids; Anhydrides, halides or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic

Definitions

  • the present invention relates to a method for producing a resin composition containing a modified microfibrillated plant fiber modified with alkyl or alkenyl succinic anhydride, and the resin composition.
  • Microfibrillated plant fibers are widely known as reinforcing materials such as resins because they have excellent properties such as light weight, high strength, high elastic modulus, and low linear thermal expansion.
  • microfibrillated plant fibers are very hydrophilic, they have poor affinity with highly hydrophobic resins such as polypropylene and polyethylene. It cannot be mixed, and the mechanical properties of the resulting composite material are not good.
  • Patent Documents 1 to 3 many attempts have been made to improve the dispersibility in the resin by hydrophobically modifying the microfibrillated plant fiber.
  • hydrophobically modified microfibrillated plant fibers are prepared by bead milling a hydrophobically modified pulp obtained by esterifying a pulp with an acid halide in an aqueous medium. Further, a composite material composed of the hydrophobically modified microfibrillated plant fiber and the resin is obtained by kneading the obtained water-containing hydrophobically modified microfibrillated plant fiber and the resin.
  • Patent Document 2 cellulosic fibers are modified with water. Since the microfibrillated plant fiber has extremely high cohesiveness, it has a relatively high affinity, and it is difficult to completely disperse the microfibrillated plant fiber even in water. For this reason, when hydrophobized in an aqueous system, only the very surface of the cellulose fiber or microfibrillated plant fiber is hydrophobically modified.
  • Patent Document 3 the modification of the microfibrillated plant fiber is performed in toluene having poor cellulose swellability, and is not performed in a cellulose swellable solvent as in the present invention. It is difficult to perform surface modification uniformly. For this reason, it cannot be said that the dispersion state of the microfibrillated plant fiber in the resin is sufficient as in Patent Document 2, and as a result, a composite material having excellent mechanical properties cannot be obtained.
  • thermoplastic resin such as polyethylene or polypropylene
  • the dispersibility of the microfibrillated plant fibers is poor, and further machinery It was very difficult to obtain the desired strength.
  • the present invention is capable of uniformly dispersing microfibrillated plant fibers in a highly hydrophobic resin by a simple process, and improving the mechanical strength of a molding material formed by molding the resulting resin composition.
  • the main object is to provide a method for producing a resin composition.
  • the present inventors have obtained a modified plant obtained by esterifying a plant fiber or microfibrillated plant fiber with an alkyl or alkenyl succinic anhydride in a swellable liquid.
  • the dispersibility of the modified microfibrillated plant fiber is improved by mixing the fiber or the modified microfibrillated plant fiber with a thermoplastic resin or a thermosetting resin in the presence of an organic liquid, and then kneading. It has been found that the mechanical strength of the resulting molding material can be improved.
  • the present invention is an invention that has been completed based on such findings and further earnest studies. That is, this invention provides the manufacturing method of the resin composition shown to the following term, and a resin composition.
  • Item 1 Modification with thermoplastic or thermosetting resin (A) and alkyl or alkenyl succinic anhydride in a liquid capable of swelling microfibrillated plant fiber (B ′) or plant fiber (b ′)
  • a method for producing a resin composition comprising a step of mixing the modified microfibrillated plant fiber (B) or the modified plant fiber (b) obtained in the presence of an organic liquid (C).
  • the step (1) is a modification obtained by modifying the microfibrillated plant fiber (B ′) with alkyl or alkenyl succinic anhydride in a liquid capable of swelling the microfibrillated plant fiber (B ′). It is possible to mix the microfibrillated plant fiber (B) and the thermoplastic resin or thermosetting resin (A) in the presence of the organic liquid (C), and to swell the plant fiber (b ′). In the liquid, the modified plant fiber (b) obtained by modifying the plant fiber (b ′) with alkyl or alkenyl succinic anhydride and the thermoplastic resin or thermosetting resin (A) are mixed with the organic liquid (C). Including mixing in the presence.
  • the modified microfibrillated plant fiber (B) or the modified plant fiber (b) in the step (1) is a modified plant fiber (b),
  • the modified plant fiber (b) is defibrated in the thermoplastic resin or the thermosetting resin (A) during the kneading in the step (2), Item 3.
  • Modified vegetable fiber (b) obtained by modification with alkyl or alkenyl succinic anhydride in a liquid capable of swelling thermoplastic resin or thermosetting resin (A) and plant fiber (b ′)
  • a process for mixing a resin composition in the presence of water (C ′) and (2) a method for producing a resin composition comprising a step of further kneading the mixture obtained in step (1),
  • the modified plant fiber (b) is defibrated in the thermoplastic resin or the thermosetting resin (A) during the kneading in the step (2),
  • a method for producing a resin composition wherein the modified microfibrillated plant fiber (B) is dispersed in a thermoplastic resin or a thermosetting resin (A).
  • the liquid capable of swelling the microfibrillated plant fiber (B ′) or the plant fiber (b ′) contains at least one selected from the group consisting of an amide solvent and a sulfoxide solvent.
  • Item 5 The method for producing a resin composition according to any one of Items 1 to 4.
  • Item 6. The resin composition according to any one of Items 1 to 3, and 5, wherein the organic liquid (C) is at least one selected from the group consisting of lower alcohols, esters, hydrocarbons, ketones, and ethers. Production method.
  • Item 8 The method for producing a resin composition according to Item 7, wherein the carboxylate is an alkaline earth metal salt.
  • Item 9 The amount of the modified microfibrillated plant fiber (B) or the modified plant fiber (b) is 0.1 to 1,000 parts by mass with respect to 100 parts by mass of the thermoplastic resin or the thermosetting resin (A).
  • Item 9 The method for producing a resin composition according to any one of Items 1 to 8.
  • Item 10 The resin composition according to any one of claims 2 to 9, wherein the step (2) is a step of further kneading the mixture obtained in the step (1) in the presence of an antioxidant. Manufacturing method.
  • the modified microfibrillated plant fiber (B) or modified plant fiber (b) in the step (1) is modified with a microfibrillated plant fiber (B ′) or a plant fiber (b ′) by alkyl or alkenyl succinic anhydride.
  • Item 12 A resin composition produced by the method for producing a resin composition according to any one of claims 1 to 11.
  • a resin molding material comprising the resin composition according to claim 12.
  • Item 14 The resin molding formed by shape
  • a resin composition comprising a thermoplastic resin and a modified microfibrillated plant fiber (B),
  • the modified microfibrillated plant fiber (B) is obtained by modifying the microfibrillated plant fiber (B ′) with alkyl or alkenyl succinic anhydride,
  • a resin composition comprising a thermoplastic resin and a modified microfibrillated plant fiber (B),
  • the modified microfibrillated plant fiber (B) is obtained by modifying the microfibrillated plant fiber (B ′) with alkyl or alkenyl succinic anhydride,
  • the thermoplastic resin forms a lamellar layer, and the lamellar layer is laminated in a direction different from the fiber length direction of the modified microfibrillated plant fiber (B), In the same direction as the fiber length direction of the modified microfibrillated plant fiber (B), it has a uniaxially oriented resin fibrous core,
  • a resin composition obtained by laminating a resin lamellar layer in a direction different from the fiber length direction of the modified microfibrillated plant fiber (B) between the modified microfibrillated plant fiber (B) and the fibrous core.
  • the modified microfibrillated plant fiber (B) is obtained by modifying the microfibrillated plant fiber (B ') with an alkyl or alkenyl succinic anhydride, and an acylation treatment. 18.
  • a resin composition comprising a thermoplastic resin and modified microfibrillated plant fibers (B) and / or modified plant fibers (b),
  • the modified microfibrillated plant fiber (B) and the modified plant fiber (b) are obtained by modifying the microfibrillated plant fiber (B ′) and / or the plant fiber (b ′) with an alkyl or alkenyl succinic anhydride, and
  • thermoplastic resin according to any one of claims 16 to 19, wherein the thermoplastic resin is at least one resin selected from the group consisting of a polyolefin resin, a polyamide resin, a polyester resin, and a polyacetal resin. Resin composition.
  • Item 21 The resin composition according to claim 20, wherein the polyolefin resin is polyethylene.
  • Item 22 The resin composition according to any one of claims 16 to 21, further comprising an antioxidant.
  • Item 23 A resin molding material comprising the resin composition according to any one of claims 16 to 22.
  • Item 24 A resin molded body obtained by molding the resin molding material according to claim 23.
  • thermoplastic resin or a thermosetting resin (A) and a microfibrillated plant fiber (B ′) or a plant fiber (b ′) can be swollen.
  • the modified microfibrillated plant fiber (B) or modified plant fiber (b) obtained by modification with alkyl or alkenyl succinic anhydride in the presence of an organic liquid (C) (or under certain conditions, water (C ′ In the presence of).
  • thermoplastic resin examples include olefin resins, polyamide resins, polyacetal resins, polyamide resins, polycarbonate resins, polyester resins, polysulfone resins, cellulose resins such as triacetylated cellulose and diacetylated cellulose.
  • olefin resin various polyethylene resins (for example, high density polyethylene (HDPE), low density polyethylene (LDPE), biopolyethylene), polypropylene resin, vinyl chloride resin, styrene resin, (meth) acrylic resin, vinyl ether resin. Etc.
  • Polyamide resins include polyamide 6 (PA6, ring-opening polymer of ⁇ -caprolactam), polyamide 66 (PA66, polyhexamethylene adipamide), polyamide 11 (PA11, polyamide obtained by ring-opening polycondensation of undecane lactam), polyamide 12 (PA12, polyamide obtained by ring-opening polycondensation of lauryl lactam) and the like.
  • PA6 ring-opening polymer of ⁇ -caprolactam
  • PA66 polyhexamethylene adipamide
  • PA11 polyamide obtained by ring-opening polycondensation of undecane lactam
  • PA12 polyamide obtained by ring-opening polycondensation of lauryl lactam
  • polyester resin examples include polylactic acid, polycaprolactone, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate.
  • thermosetting resin for example, a thermosetting resin such as phenol resin, urea resin, melamine resin, unsaturated polyester resin, epoxy resin, diallyl phthalate resin, polyurethane resin, silicon resin, polyimide resin or the like can be used. These resins may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a compatibilizing agent a resin in which a polar group is introduced by adding maleic anhydride or epoxy to the above thermoplastic resin or thermosetting resin, for example, maleic anhydride-modified polyethylene resin, maleic anhydride-modified polypropylene resin, commercially available Various compatibilizers may be used in combination. These resins may be used alone or as a mixed resin of two or more. Moreover, when using as 2 or more types of mixed resin, you may use combining maleic anhydride modified resin and other polyolefin resin.
  • the content ratio of the maleic anhydride-modified resin is about 1 to 40% by mass in the thermoplastic resin or thermosetting resin (A). It is preferably about 1 to 20% by mass.
  • Specific examples of the mixed resin include maleic anhydride-modified polypropylene resin and polyethylene resin, or polypropylene resin, maleic anhydride-modified polyethylene resin and polyethylene resin, or polypropylene resin.
  • the modified microfibrillated plant fiber (B) or the modified plant fiber (b) is an alkyl or alkenyl succinic anhydride in a liquid capable of swelling the microfibrillated plant fiber (B ′) or the plant fiber (b ′). It can be obtained by denaturing.
  • the modified microfibrillated plant fiber (B) is modified with an alkyl or alkenyl succinic anhydride in a liquid capable of swelling the microfibrillated plant fiber (B ′). Can be obtained.
  • the modified plant fiber (b) is obtained by modifying the plant fiber (b ') with an alkyl or alkenyl succinic anhydride in a liquid capable of swelling the plant fiber (b').
  • Examples of materials containing plant fibers used as raw materials for microfibrillated plant fibers (B ′) or plant fibers (b ′) (plant fiber-containing materials) include wood, bamboo, hemp, jute, kenaf, cotton, beet, Examples include agricultural residue, pulp obtained from natural plant fiber materials such as cloth, and regenerated cellulose fibers such as rayon and cellophane. In particular, pulp is a preferable raw material.
  • the pulp includes chemical pulp (kraft pulp (KP), sulfite pulp (SP)), semi-chemical pulp (SCP) obtained by pulping plant raw materials chemically or mechanically, or a combination of both. ), Chemi-Grand Pulp (CGP), Chemi-Mechanical Pulp (CMP), Crushed Wood Pulp (GP), Refiner Mechanical Pulp (RMP), Thermomechanical Pulp (TMP), Chemi-thermomechanical Pulp (CTMP), and these plant fibers Preferred examples include deinked waste paper pulp, corrugated waste paper pulp, and magazine waste paper pulp as the main component. These raw materials can be delignified or bleached as necessary to adjust the amount of lignin in the plant fiber.
  • NUKP coniferous unbleached kraft pulps
  • NOKPs softwood oxygen-bleached unbleached kraft pulps
  • NBKP Softwood bleached kraft pulp
  • the plant fiber used as a raw material is mainly composed of cellulose, hemicellulose, and lignin.
  • the lignin content in the plant fiber-containing material is usually about 0 to 40% by mass, preferably about 0 to 10% by mass.
  • the lignin content can be measured by the Klason method.
  • the plant fiber (b ′) mentioned above is esterified with alkyl or alkenyl succinic anhydride to prepare the modified plant fiber (b), and then modified.
  • a known method can be adopted.
  • an aqueous suspension or slurry of the plant fiber-containing material is used as a refiner, high-pressure homogenizer.
  • a method of mechanically grinding or defibrating by a grinder, a uniaxial or multiaxial kneader, a bead mill or the like can be used. You may process combining the said defibrating method as needed.
  • twin-screw kneader is preferable from the viewpoint of easy availability.
  • the lower limit of the peripheral speed of the screw is usually about 45 m / min.
  • the lower limit of the peripheral speed of the screw is preferably about 60 m / min, particularly preferably about 90 m / min.
  • the upper limit value of the peripheral speed of the screw is usually about 200 m / min.
  • the upper limit of the peripheral speed of the screw is preferably about 150 m / min, and particularly preferably about 100 m / min.
  • L / D (ratio of screw diameter D to kneading part length L) of the kneader used in the present invention is usually about 15 to 60, preferably about 30 to 60.
  • the defibration time with a uniaxial or multiaxial kneader varies depending on the type of plant fiber-containing material, the L / D of the kneader, etc., but usually within 30-60 minutes within the L / D range. It is preferably about 30 to 45 minutes.
  • the number of times of defibration using the kneader varies depending on the fiber diameter and fiber length of the target microfibrillated plant fiber, and also the L / D of the kneader, but usually 1 to 8 times. About, preferably about 1 to 4 times. If the number of passes is too large, the defibration of the plant fibers will progress further, but at the same time, heat will also be generated, so that the cellulose will be colored and heat damage (decrease in sheet strength) will result.
  • the kneading part in the kneader's screw may be kneaded at one location (segment), or may be present at two or more locations.
  • the peripheral speed of the screw is 45 m / min or more, which is considerably higher than the peripheral speed of the conventional screw. Therefore, in order to reduce the load on the kneader, it is more preferable not to have a damming structure. .
  • Rotation direction of the two screws constituting the biaxial kneader may be different or the same direction as long as the modified plant fiber (b) or the unmodified plant fiber (b ′) can be defibrated.
  • the meshing of the two screws constituting the twin-screw kneader includes a complete meshing type, an incomplete meshing type, and a non-meshing type, but as the one used for defibration of the present invention, the complete meshing type is preferable.
  • the ratio of screw length to screw diameter may be about 20 to 150.
  • Specific twin-screw kneaders include “KZW”, “WDR”, “MFU” manufactured by Technobel Co., Ltd., “TEX” manufactured by Nippon Steel Works, “TEM” manufactured by Toshiba Machine Co., Ltd., and “ZSK” manufactured by Coperion Co., Ltd. Kobe Steel Co., Ltd. “LCM” can be used.
  • the defibrating treatment using a uniaxial or multiaxial kneader is performed by making a suspension using plant fiber (b ') or modified plant fiber (b) and a dispersion medium, and kneading the suspension.
  • the solid content concentration of the plant fiber (b ′) or the modified plant fiber (b) in the suspension obtained by mixing the plant fiber and the dispersion medium in the defibrating treatment with a uniaxial or multiaxial kneader is usually 10 to 70. It is about mass%, preferably about 20-50 mass%.
  • the plant fiber (b ′) or the modified plant fiber (b) can be defibrated uniformly.
  • the plant fiber (b ′) or the modified plant fiber (b) When the solid content concentration of the plant fiber (b ′) or the modified plant fiber (b) is 70% by mass or more, the plant fiber (b ′) or the modified plant fiber (b) is clogged in the kneader during biaxial defibration, Since the excessive torque is applied to the biaxial and the operation of the biaxial kneader becomes unstable, the productivity and the properties of the obtained microfibrillated plant fiber (B ′) or modified microfibrillated plant fiber (B) It is not preferable from both sides.
  • the temperature at the time of defibration with a single-screw or multi-screw kneader is not particularly limited, but it can usually be performed at 0 to 100 ° C, and a particularly preferable temperature is 0 to 50 ° C.
  • the grinder when the plant fiber (b ′) or the modified plant fiber (b) is defibrated by a grinder, the grinder usually places the plant fiber (b ′) or the modified plant fiber (b) between two upper and lower grindstones. Defibration progresses by shearing force, impact force, and centrifugal force generated when the contained slurry passes, but if the concentration of the plant fiber (b ′) or the modified plant fiber (b) is too high, it may become clogged or thin. If the amount is too high, the fiber passes through without being sheared.
  • the plant fiber (b ′) or the modified plant fiber (b) is usually added in a dispersion medium of 0.1 to 5.0% by mass, preferably 0.1 to
  • the fiber is diluted to about 2%, more preferably about 0.5 to 1.5%, and the slurry is put into a grinder and defibrated. The slurry temperature rises due to the load during defibration.
  • the microfibrillated plant fiber having the desired defibration degree cannot be obtained in one pass, the microfibrillated plant fiber (B ′) or modified microfibrillated plant fiber (B ) Can be obtained.
  • commercially available devices such as “Super Mass Collider” manufactured by Masuko Sangyo Co., Ltd. and “Pure Fine Mill” manufactured by Kurita Machinery Co., Ltd. can be used.
  • a suspension is obtained using the plant fiber (b ′) or the modified plant fiber (b) and a dispersion medium, and the suspension
  • the method of defibrating a liquid is mentioned.
  • the dispersion medium to be used the same dispersion medium as used in the defibrating treatment by the uniaxial or multiaxial kneader is used.
  • the solid content concentration of the plant fiber (b ′) or the modified plant fiber (b) contained in the suspension used in the defibrating treatment by the bead mill is preferably about 0.3 to 2% by mass, preferably 0.5 to About 1.8% by mass is more preferable, and about 0.7 to 1.5% by mass is more preferable.
  • the liquid is not particularly limited as long as it is a liquid that can disperse the plant fiber.
  • ether solvents such as polyethylene glycol, ethylene glycol methyl ether, and tetrahydrofuran
  • amide solvents such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. These may be used alone or in combination of two or more solvents. I can do it.
  • a cellulose microfibril bundle having a width of several tens of nanometers in which a plurality of cellulose microfibrils (single cellulose nanofibers) having a width of about 4 nm are present as a minimum unit.
  • This is the basic skeletal material (basic element) of plants.
  • the cellulose microfibril bundles gather to form a plant skeleton.
  • “microfibrillated plant fiber” is a material obtained by unraveling fibers of a material (for example, wood pulp or the like) containing plant fibers to a nanosize level.
  • microfibrillated plant fiber (B ′) or the plant fiber (b ′) is modified with alkyl or alkenyl succinic anhydride
  • the microfibrillated plant fiber (B ′) or the plant fiber (b ′) may be swollen. Denature in possible liquids.
  • liquids that can be swollen include amide solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone (NMP), and hexamethylphosphate triamide, dimethyl sulfoxide (DMSO), and the like. These liquids may be used alone or in combination of two or more. Of these, NMP, dimethylformamide, dimethylacetamide and DMSO are more preferred.
  • an organic solvent that does not react with alkyl or alkenyl succinic anhydride may be used in combination as long as the effect of the solvent is not hindered.
  • halogen solvents such as methylene chloride, chloroform and carbon tetrachloride, ketone solvents such as acetone and methyl ethyl ketone (MEK); cyclic ether solvents such as tetrahydrofuran (THF) and dioxane, ethylene glycol, propylene glycol, Examples thereof include ether solvents such as dimethyl alcohol and diethylated alcohol such as polyethylene glycol, nonpolar solvents such as hexane, heptane, benzene and toluene, or a mixed solvent thereof. Moreover, you may use 2 or more types of mixed solvents chosen from these.
  • alkyl or alkenyl succinic anhydride examples include compounds prepared from a compound having a skeleton derived from an olefin having 4 to 30 carbon atoms and a maleic anhydride skeleton.
  • examples of the alkyl succinic anhydride include octyl succinic anhydride, dodecyl succinic anhydride, hexadecyl succinic anhydride, octadecyl succinic anhydride, and the like.
  • examples of the alkenyl succinic anhydride include pentenyl succinic anhydride and hexenyl succinic anhydride.
  • Examples include acids, octenyl succinic anhydride, decenyl succinic anhydride, undecenyl succinic anhydride, dodecenyl succinic anhydride, tridecenyl succinic anhydride, hexadecenyl succinic anhydride, octadecenyl succinic anhydride, and the like. These may be used alone or in combination of two or more from the viewpoint that properties such as hydrophobicity and water resistance can be controlled.
  • a thermally decomposed product of polyolefin having an unsaturated bond at the terminal or an olefin polymer can be exemplified.
  • a thermal decomposition product of a polyolefin having 4 to 30 carbon atoms having an unsaturated bond at the terminal can be obtained.
  • the thermal decomposition product of polyolefin having an unsaturated bond at the terminal is preferably a thermal decomposition product of polypropylene.
  • the pyrolyzate of polypropylene preferably has 9 to 21 carbon atoms, more preferably 12 to 18 carbon atoms.
  • the alkenyl succinic anhydride is a thermal decomposition product of polyolefin-succinic anhydride.
  • the olefin polymer having an unsaturated bond at the terminal is preferably a propylene oligomer.
  • the propylene oligomer preferably has 9 to 21 carbon atoms, and more preferably 12 to 18 carbon atoms.
  • the alkenyl succinic anhydride is propylene oligomer-succinic anhydride.
  • examples of the alkyl succinic anhydride include hydrogenated products obtained by adding hydrogen to the unsaturated bond of the alkenyl succinic anhydride.
  • alkyl or alkenyl succinic anhydride modified microfibrillated plant fiber (B) or the alkyl or alkenyl succinic anhydride modified plant fiber (b) is further methylated within a range that does not interfere with the effect of the alkyl or alkenyl succinic anhydride modification. , Etherification such as ethylation, and / or acylation modification.
  • microfibrillated plant fiber (B ′) or plant fiber (b ′) may be modified with an alkyl or alkenyl succinic anhydride after etherification such as methylation or ethylation and / or acylation modification.
  • microfibrillated plant fibers (B ′) or plant fibers (b ′) Is subjected to etherification such as methylation, ethylation and / or acylation modification to prepare modified microfibrillated plant fibers or modified plant fibers, and then alkyl or alkenyl succinic anhydride modified microfibrillated plant fibers (B ) Or alkyl or alkenyl succinic anhydride modified plant fiber (b).
  • acylation modification acetyl group, benzoyl group, methacryloyl group, propanoyl group, butanoyl group, pentanoyl group, hexanoyl group, heptanoyl group, octanoyl group, nonanoyl group, decanoyl group, undecanoyl group, dodecanoyl group, myristoyl group, palmitoyl group And stearoyl group, pivaloyl group, 2-methacryloyloxyethylisocyanoyl group and the like.
  • the functional group to be introduced may be one type or two or more types.
  • the amount of alkyl or alkenyl succinic anhydride added is determined as microfibrillated plant fiber (B ') Or about 0.1 to 200 moles per 1 mole of glucose units of cellulose constituting the plant fiber (b').
  • the reaction was stopped after reacting to a predetermined degree of substitution (DS). It is also possible to carry out the reaction up to a predetermined DS by adding a minimum amount of alkyl or alkenyl succinic anhydride and adjusting the reaction time, temperature, amount of catalyst and the like.
  • alkyl or alkenyl succinic anhydride may be left unreacted partially without being esterified with the microfibrillated plant fiber (B ′) or the plant fiber (b ′).
  • the reaction temperature when the microfibrillated plant fiber (B ′) or the plant fiber (b ′) is esterified with alkyl or alkenyl succinic anhydride is preferably about 20 to 160 ° C., more preferably about 40 to 120 ° C. 60 to 100 ° C. is more preferable.
  • the reaction between the microfibrillated plant fiber (B ′) or the plant fiber (b ′) and the alkyl or alkenyl succinic anhydride can be advanced to some extent by heating if sufficient dehydration is performed without using a catalyst. However, it is more preferable to use a catalyst in terms of allowing the esterification reaction to proceed under milder conditions and with high efficiency.
  • Examples of the catalyst used in the esterification reaction include acid catalysts such as hydrochloric acid, sulfuric acid, and acetic acid, alkali catalysts, and amine catalysts.
  • Specific examples of the amine catalyst include pyridine compounds such as pyridine and dimethylaminopyridine (DMAP), and tertiary amine compounds such as triethylamine, trimethylamine and diazabicyclooctane. Among these, pyridine and triethylamine , Dimethylaminopyridine (DMAP), and diazabicyclooctane are preferable from the viewpoint of excellent catalytic activity.
  • Specific examples of the alkali catalyst include alkali or alkaline earth metal salts such as potassium carbonate, sodium carbonate, potassium acetate, and sodium acetate. An alkali catalyst and an amine compound may be used in combination.
  • the amount of the above catalyst may be basically a catalyst amount, but in the case of a liquid amine compound such as pyridine, a larger amount may be used as a catalyst and solvent.
  • the amount used is, for example, usually 0.001 to 10 moles per mole of glucose units of cellulose constituting the microfibrillated plant fiber (B ′) or the plant fiber (b ′).
  • the reaction can be stopped after reacting to a predetermined DS, and the minimum necessary catalyst
  • the reaction time, temperature, etc. can be adjusted and reaction can be carried out up to a predetermined DS.
  • a hydroxyl group in cellulose reacts with succinic anhydride in alkyl or alkenyl succinic anhydride to form an ester bond.
  • a carboxyl group is formed. That is, since alkyl or alkenyl succinic anhydride becomes a half ester of alkyl or alkenyl succinic acid by reaction with a hydroxyl group, a carboxyl group is also introduced into the modified microfibrillated plant fiber (B) or modified plant fiber (b). .
  • the carboxyl group present in the modified microfibrillated plant fiber (B) or the modified plant fiber (b) may be unmodified, that is, a carboxylic acid, and may be modified to a carboxylate salt, an alkoxycarbonyl group, or a carboxyamide group. It may be.
  • the carboxylate include alkali metal salts such as potassium salt and sodium salt, alkaline earth metal salts such as magnesium salt and calcium salt, and amine salts, but the tensile strength of the molded body formed from the resin composition. From the viewpoint that the heat resistance can be improved while maintaining the elastic modulus, an alkaline earth metal salt is preferable, and a calcium salt is more preferable.
  • the modified microfibrillated plant fiber (B) or the modified plant fiber (b) As a method for modifying the carboxyl group present in the modified microfibrillated plant fiber (B) or the modified plant fiber (b) to a carboxylate, the modified microfibrillated plant fiber (B) or the modified plant fiber (b) is used. Examples thereof include a method of dispersing in a liquid such as water and adding a metal salt dispersion to a stirred place.
  • alkoxycarbonyl group is preferably an alkoxycarbonyl group having about 1 to 20 carbon atoms, preferably about 1 to 15 carbon atoms.
  • the modified microfibrillated plant fiber (B) or the modified plant fiber (b) As a method for modifying a carboxyl group present in the modified microfibrillated plant fiber (B) or the modified plant fiber (b) to an alkoxycarbonyl group, the modified microfibrillated plant fiber (B) or the modified plant fiber (b) is used. Examples thereof include a method in which an alkyl halide is added to a place where it is dispersed in a liquid such as water and stirred.
  • the amount of the modifier (benzoyl chloride, acetic anhydride, myristic anhydride, etc.) added is microscopic. About 0.1 to 200 mol is preferable with respect to 1 mol of glucose units of cellulose constituting the fibrillated plant fiber (B ′) or the plant fiber (b ′).
  • a modifier denaturant excessively with respect to microfibrillated plant fiber (B ') or plant fiber (b'
  • DS substitution degree
  • reaction can also be stopped.
  • the modifying agent that is etherified and / or acylated may be left unreacted without being completely modified with the microfibrillated plant fiber (B ′) or the plant fiber (b ′).
  • the reaction temperature when the microfibrillated plant fiber (B ′) or plant fiber (b ′) is etherified and / or acylated with a modifying agent is preferably about 20 to 160 ° C., and preferably about 40 to 120 ° C. More preferably, about 60 to 100 ° C. is even more preferable.
  • a higher temperature is preferable because the reaction efficiency between the microfibrillated plant fiber (B ′) or the plant fiber (b ′) and the modifying agent is increased, but if the temperature is too high, the plant fiber is partially deteriorated. It is preferable that the temperature range be as follows.
  • the reaction between the microfibrillated plant fiber (B ′) or the plant fiber (b ′) and the modifying agent that is etherified and / or acylated is heated to some extent by heating if sufficient dehydration is performed without using a catalyst. Although it is possible to proceed, it is more preferable to use a catalyst in that the etherification and / or acylation reaction can proceed under milder conditions and with high efficiency.
  • the type and amount of the catalyst used may be the same conditions as exemplified in the esterification reaction.
  • the blending amount of the modified microfibrillated plant fiber (B) or the modified plant fiber (b) in the resin composition varies depending on the purpose.
  • the resin 100 mass The amount is preferably about 0.5 to 80 parts by weight, more preferably about 1 to 70 parts by weight, and still more preferably about 2 to 50 parts by weight.
  • the amount of the modified microfibrillated plant fiber (B) or the modified plant fiber (b) is increased, the strength and elastic modulus of the obtained molded product are improved, but on the other hand, the fluidity at the time of molding of the resin is lowered. Therefore, it becomes difficult to form a complicated shape.
  • the modified microfibrillated plant fiber (B) or modified plant fiber (b) obtained after esterification of the microfibrillated plant fiber (B ′) or plant fiber (b ′) with alkyl or alkenyl succinic anhydride is Washing is performed to remove residual alkyl or alkenyl succinic anhydride, catalyst, and the like.
  • the washing liquid for washing the modified microfibrillated plant fiber (B) or the modified plant fiber (b) may be the same as or different from the organic liquid (C), but the process is simplified. It is preferable that it is the same from a viewpoint.
  • a modifying agent such as benzoyl chloride, acetic anhydride, myristic anhydride, etc.
  • cleaning is performed to remove the remaining modifier, catalyst, and the like.
  • the cleaning liquid used for cleaning may be the same liquid as the cleaning liquid used for removing the remaining alkyl or alkenyl succinic anhydride, catalyst, and the like.
  • neutralization may be performed with a neutralizing agent.
  • the neutralizing agent include inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid, organic acids such as acetic acid, and aqueous solutions thereof, and an aqueous acetic acid solution is preferable.
  • the degree of ester substitution (DS) of modified microfibrillated plant fiber (B) or modified plant fiber (b) modified with alkyl or alkenyl succinic anhydride (DS by ASA modification) is a highly hydrophilic plant fiber. From the viewpoint of being uniformly dispersed in the resin or thermosetting resin (A) and improving the water resistance of the plant fiber, about 0.05 to 2.0 is preferable, and about 0.1 to 2.0 is more preferable. About 0.1 to 0.8 is more preferable.
  • the degree of ester substitution (DS) of modified microfibrillated plant fibers or modified plant fibers modified by etherification and acylation such as methylation and ethylation is thermoplastic to highly hydrophilic plant fibers. From the viewpoint of being uniformly dispersed in the resin or thermosetting resin (A) and improving the water resistance of the plant fiber, about 0.01 to 2.0 is preferable, and about 0.05 to 1.0 is more preferable. About 0.1 to 0.8 is more preferable.
  • the type of other modification treatment is not particularly limited, and is modification treatment for introducing the above functional group.
  • the total ester substitution degree (total DS) combining DS by ASA modification and DS by other modification is to uniformly disperse highly hydrophilic plant fibers in the thermoplastic resin or thermosetting resin (A), From the viewpoint of improving the water resistance of the plant fiber, it is preferably about 0.05 to 2.0, more preferably about 0.1 to 2.0, and still more preferably about 0.1 to 1.0.
  • the type of other modification treatment is not particularly limited, and is modification treatment for introducing the above functional group.
  • DS removes by-products such as alkyl or alkenyl succinic anhydride used as a raw material by washing and a hydrolyzate thereof, and then increases in weight, elemental analysis, neutralization titration method, FT-IR, It can be determined by various analysis methods such as 1H-NMR.
  • thermoplastic resin or Dispersibility with the thermosetting resin deteriorates, and the elastic modulus and the tensile strength decrease. Further, when the modified microfibrillated plant fiber (B) or the modified plant fiber (b) is completely dried, aggregation occurs between the modified microfibrillated plant fiber (B) or the modified plant fiber (b), and heat In the step of mixing with the plastic resin or the thermosetting resin (A), it is not uniformly dispersed, and the elastic modulus and the tensile strength are lowered.
  • Examples of the organic liquid (C) include lower alcohols, esters, hydrocarbons, ketones, ethers and the like.
  • Specific examples of the lower alcohol include lower alcohols having 1 to 4 carbon atoms such as methanol, ethanol, n-propanol, isopropyl alcohol, and butanol.
  • Specific examples of the ester include ethyl acetate, methyl acetate, ethyl propionate, methyl propionate, ethyl butyrate, and methyl butyrate.
  • Specific examples of the hydrocarbon include hydrocarbons having about 5 to 10 carbon atoms, and specific examples include pentane, hexane, heptane, octane, nonane, decane, and the like.
  • ketone examples include acetone and methyl ethyl ketone
  • ether examples include diethyl ether, dimethyl ether, tetrahydrofuran (THF), dioxane and the like.
  • THF tetrahydrofuran
  • solvents may be used alone or in combination of two or more depending on the purpose.
  • microfibrillated plant fiber (B ′) has a very large specific surface area and extremely high cohesiveness compared to the unfibrillated plant fiber, so that the modified microfibrillated plant fiber (B) and the thermoplastic resin are used.
  • thermosetting resin (A) it is essential to perform in the presence of the organic liquid (C).
  • unfibrillated plant fibers are more than microfibrillated plant fibers. Since cohesion is not strong, it is possible to mix and disperse the modified plant fiber (b) and the thermoplastic resin or thermosetting resin (A) in the presence of water (C ′).
  • the organic liquid (C) is preferably about 0.1 to 1,000,000 parts by mass with respect to 100 parts by mass of the modified microfibrillated plant fiber (B) or the modified plant fiber (b), and 1 to 100,000 parts by mass. More preferred is about 10 to 10,000 parts by mass.
  • the agglomeration of the modified microfibrillated plant fiber (B) is performed.
  • Water may be mixed in the organic liquid (C) or may be intentionally mixed within a range that does not cause odor.
  • the amount of water allowed is less than 20% by weight of the organic liquid (C), more preferably less than 10% by weight.
  • the fiber mixed with the thermoplastic resin or the thermosetting resin (A) is the modified plant fiber (b), it may contain water (C ′) and the presence of water (C ′). It is possible to mix and disperse under.
  • thermoplastic resin or thermosetting resin (A), modified microfibrillated plant fiber (B) or modified plant fiber (b) is mixed in the presence of an organic liquid (C) (or water (C ′)).
  • organic liquid (C) or water (C ′)
  • the esterified modified microfibrillated plant fiber (B) or the modified plant fiber (b) interacts with the inorganic particles, and the strength, elastic modulus, etc. of the resin composition are improved. The effect of doing is obtained.
  • Examples of the inorganic salt (D) include salts composed of Group 1 or Group 2 metals, specifically, acetates, carbonates, sulfates composed of Group 1 or Group 2 metals, Examples thereof include nitrates.
  • Examples of the Group 1 metal include sodium and potassium.
  • Examples of the Group 2 metal include magnesium, calcium, strontium, barium, and the like. More specifically, magnesium sulfate, barium sulfate, barium carbonate, carbonic acid. Examples include potassium and calcium carbonate.
  • the particle diameter of the inorganic salt can be arbitrarily selected according to the purpose, but in general, a smaller one is preferable.
  • carbonates are preferable in that they have an excellent effect of improving the elastic modulus, and powders having a relatively large surface area of particle diameter / crystal diameter can be easily obtained, modified microfibrillated plant fibers (B) or modified plants.
  • Calcium carbonate and barium carbonate are more preferable from the viewpoint of easy interaction with the fiber (b) and less coloration of the obtained molded product.
  • the content of the inorganic salt (D) is 0.1 to 20 parts by weight, preferably about 0.5 to 20 parts by weight, more preferably about 1 to 10 parts by weight with respect to 100 parts by weight of the resin composition. About 1 to 10 parts by mass is more preferable.
  • the content of the inorganic salt (D) to 20 parts by mass or less, the relative amount of the resin and the modified microfibrillated plant fiber (B) or the modified plant fiber (b) is not reduced, the strength, It is possible to prevent deterioration of mechanical properties such as elastic modulus and deterioration of moldability.
  • thermoplastic resin or thermosetting resin (A) modified microfibrillated plant fiber (B) or modified plant fiber (b), and organic liquid (C) (or water (C ′)
  • any additives may be further blended.
  • compatibilizers for example, compatibilizers; surfactants; polysaccharides such as starches and alginic acids; natural proteins such as gelatin, glue, casein; inorganic compounds such as tannins, zeolites, ceramics, metal powders; antioxidants; colorants; plastics
  • Additives such as agents, fragrances, pigments, flow control agents, leveling agents, conductive agents, antistatic agents, ultraviolet absorbers, ultraviolet dispersants, deodorants, and crystal nucleating agents may be blended.
  • the resin composition of the present invention preferably further contains an antioxidant.
  • the antioxidant can be used without any particular limitation.
  • As the antioxidant it is preferable to use amine antioxidants such as phenolic antioxidants, phosphorus antioxidants, diphenylamine derivatives, sulfur antioxidants, calcium carbonate antioxidants, and the like.
  • Antioxidants can be used alone or in combination of two or more.
  • Phenol antioxidants include 2,6-di-tert-butyl-4-methylphenol, 1,3,5-tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, tetrakis ⁇ 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxymethyl ⁇ methane and the like.
  • hindered phenol compounds are preferable, and for example, “Irganox 1010”, “Irganox 1045ML” manufactured by BASA, and “Sumizer GA-80” and “Sumizer WX-R” manufactured by Sumitomo Chemical are available.
  • Examples of phosphorus antioxidants include alkyl phosphites, alkyl aryl phosphites, alkyl phosphonites, aryl phosphonites, and the like. Specifically, distearyl pentaerythritol diphosphite, tris (2,4 -Di-t-butylphenyl) phosphite, tetrakis (2,4-di-t-butylphenyl) -4,4'-biphenylenephosphanite, bis (2,4-di-t-butylphenyl) pentaerythritol -Diphosphite, bis (2,4-di-t-butyl-4-methylphenyl) pentaerythritol-diphosphite, 1,1,3-tris (2-methyl-4-ditridecylphosphite-5-t-butylphenyl) ) Butane and the like can be exemp
  • sulfur-based antioxidants examples include dilauryl 3,3′-thiodipropionate, dimyristoyl 3,3′-thiodipropionate, distearyl 3,3′-thiodipropionate, and the like.
  • Commercially available products can be used as -R (Sumitomo Chemical).
  • the content ratio of the optional additive may be appropriately contained within a range where the effects of the present invention are not impaired.
  • the content is preferably about 0.01 to 10% by mass in the resin composition, and 0.01 to 5%. About mass% is more preferable.
  • the content ratio of the antioxidant should be adjusted appropriately from the viewpoint that when a molded body is produced using a molding material, oxidation deterioration of the molding material can be further prevented, and coloring and strength reduction of the molded body can be further prevented. Can do.
  • the content is preferably about 0.001 to 10% by mass, more preferably about 0.01 to 5% by mass in the resin composition.
  • an antioxidant may not be used as long as the molding conditions can prevent the molding material from being oxidized and can prevent coloring and strength reduction of the molded body.
  • oxidation deterioration of the molding material can be further prevented, and coloring and strength reduction of the molded body can be further prevented. It is preferable to add an agent.
  • step (1) the thermoplastic resin or thermosetting resin (A), the modified microfibrillated plant fiber (B) or the modified plant fiber (b), and other optional additives are added to the organic liquid (C) (or water).
  • the method of mixing in the presence of (C ′)) is not particularly limited.
  • the method using the apparatus which can mix or stir this roll etc. is mentioned.
  • the modified microfibrillated plant fiber (B) in the thermoplastic resin or thermosetting resin (A) or Aggregation at the time of drying of the modified plant fiber (b) can be suppressed, and a uniform dispersion can be obtained.
  • the resulting mixture may contain an organic liquid (C) (or water (C ′)), or may be a powder or pellet that is substantially free.
  • step (2) After mixing in the above step (1), the resulting mixture is kneaded by step (2).
  • the method of kneading the above mixture include a method of kneading (melt kneading) with an apparatus capable of heating and stirring such as a twin-screw kneader, a kneader, and a solid-phase shear extruder.
  • Step (2) is preferably a step of further kneading the mixture obtained in the above step (1) in the presence of an antioxidant.
  • the mixing ratio of the antioxidant is as described above.
  • the organic liquid (C) (or water (C ′)) may be removed during the kneading in the step (2), but preferably, the treatment in the step (2) is performed at the stage of the step (1). It is preferable to remove until the content of the organic liquid (C) (or water (C ′)) is 10% by mass or less with respect to the total amount of the resin and fiber mixture.
  • the kneading temperature in the kneading is appropriately set according to the type of the thermoplastic resin or thermosetting resin (A) used, and is preferably 0 to 300 ° C., more preferably 50 to 250 ° C., for example.
  • the temperature is preferably 160 to 200 ° C
  • the temperature is preferably about 160 to 220 ° C, more preferably about 170 to 210 ° C.
  • the temperature is preferably 160 to 220 ° C, more preferably 170 to 210 ° C.
  • the thermoplastic resin or thermosetting resin in the step (1) in the presence of the organic liquid (C) (or water (C ′)) ( By mixing together with A), aggregation of the modified plant fiber (b) can be suppressed in the thermoplastic resin or thermosetting resin (A), and a uniformly dispersed mixture can be obtained.
  • the modified plant fiber (b) is defibrated in the thermoplastic resin or thermosetting resin (A) during the kneading, and the thermoplastic resin or thermosetting resin (A ), A resin composition in which the modified microfibrillated plant fiber (B) is dispersed can be produced.
  • thermoplastic resin or thermosetting resin A
  • modified microfibrillated plant fiber B
  • modified plant fiber b
  • organic liquid C
  • C ′ water
  • FIG. 1 shows that a plant fiber (b ′) is modified with alkyl or alkenyl succinic anhydride in a thermoplastic resin or a thermosetting resin (A) and a liquid capable of swelling the plant fiber (b ′). It is the figure explaining in detail the manufacturing method of this invention including the process (1) including mixing the modified plant fiber (b) obtained by mixing in presence of an organic liquid (C).
  • the plant fiber (b ′) is swollen in a liquid capable of swelling, and the swollen plant fiber (b ′) is succinic anhydride (hereinafter also referred to as ASA).
  • ASA succinic anhydride
  • the step of preparing the fiber the step of mixing the resulting organic liquid-containing ASA-modified plant fiber and the thermoplastic resin or thermosetting resin (A), and kneading the mixture, the thermoplastic resin or the thermosetting resin (A) A step of defibrating the modified plant fiber (b).
  • Examples of the method for esterifying the plant fiber (b ′) with ASA include the above-described methods.
  • the carboxylic acid group present in the ASA-modified plant fiber (b) may be further modified.
  • the method for modifying the carboxylic acid group the methods mentioned above can be used.
  • FIG. 2 shows that the plant fiber (b ′) is alkyl or alkenyl succinic anhydride in a liquid capable of swelling the thermoplastic resin or thermosetting resin (A) of the present invention and the plant fiber (b ′).
  • a book comprising the step (1) comprising defibrating the modified plant fiber (b) obtained by modification in step 1 and mixing the resulting modified microfibrillated plant fiber (B) in the presence of the organic liquid (C). It is a figure explaining the manufacturing method of invention in detail.
  • the plant fiber (b ′) is swollen in a liquid capable of swelling, the swollen plant fiber (b ′) is esterified with ASA, and the resulting ASA-modified plant fiber is obtained.
  • Examples of the method for esterifying the plant fiber (b ′) with ASA include the above-described methods.
  • the carboxylic acid group present in the ASA-modified microfibrillated plant fiber (B) may be further modified.
  • the method for modifying the carboxylic acid group the methods mentioned above can be used.
  • FIG. 3 shows that the microfibrillated plant fiber (B ′) is alkyl or alkenyl in a liquid capable of swelling the thermoplastic resin or thermosetting resin (A) and the microfibrillated plant fiber (B ′). It is the figure explaining in detail the manufacturing method of this invention including the process (1) which mixes the modified
  • the microfibrillated plant fiber (B ′) is swollen in a liquid capable of swelling, and the swollen microfibrillated plant fiber (B ′) is esterified with ASA,
  • An organic liquid (C) is blended with the resulting ASA-modified microfibrillated plant fiber (B) to prepare an organic liquid-containing ASA-modified microfibrillated plant fiber, and the resulting organic liquid-containing ASA-modified microfibrillated plant fiber and It includes a step of mixing the thermoplastic resin or the thermosetting resin (A), and a step of kneading the resulting mixture as necessary.
  • Examples of the method for preparing the microfibrillated plant fiber and the method for esterifying the microfibrillated plant fiber (B ′) with ASA include the above-described methods.
  • the carboxylic acid group present in the ASA-modified microfibrillated plant fiber (B) may be further modified.
  • the method for modifying the carboxylic acid group the methods mentioned above can be used.
  • the production method (I) shown in FIG. 1 is such that the modified plant fiber (b) is defibrated in the resin (A) during kneading, and the thermoplastic resin or the thermosetting resin (A).
  • the ASA-modified microfibrillated plant fiber (B) is dispersed. Therefore, it is not necessary to provide a step of defibrating the modified plant fiber (b '), which is preferable from the viewpoint of improving productivity.
  • the resin composition of the present invention is a resin composition containing a thermoplastic resin and a modified microfibrillated plant fiber (B), wherein the thermoplastic resin forms a lamellar layer in the resin composition, and the lamellar layer Is preferably laminated in a direction different from the fiber length direction of the modified microfibrillated plant fiber (B).
  • the modified microfibrillated plant fiber (B) has a fibrous core of a thermoplastic resin uniaxially oriented in the same direction as the fiber length direction of the modified microfibrillated plant fiber (B), and the modified microfibrillated plant fiber (B) and the fibrous core Between them, it is preferable that the lamellar layer of the thermoplastic resin has a structure formed by laminating in a direction different from the fiber length direction of the modified microfibrillated plant fiber (B).
  • the modified microfibrillated plant fiber (B) is preferably obtained by modifying the microfibrillated plant fiber (B ′) with alkyl or alkenyl succinic anhydride.
  • the modified microfibrillated plant fiber (B) is obtained by modifying the microfibrillated plant fiber (B ′) with an alkyl or alkenyl succinic anhydride and at least one acylation modification treatment. preferable.
  • the resin composition of the present invention is a resin composition comprising a thermoplastic resin and modified microfibrillated plant fibers (B) and / or modified plant fibers (b), the modified microfibrillated plant fibers (B). And the modified plant fiber (b) is obtained by modifying the microfibrillated plant fiber (B ′) and / or the plant fiber (b ′) with an alkyl or alkenyl succinic anhydride and at least one acylation modification treatment. It is preferable that
  • Modified microfibrillated plant fiber (B), modified plant fiber (b), microfibrillated plant fiber (B ′) and plant fiber (b ′) are as described above.
  • the modification treatment with alkyl or alkenyl succinic anhydride and at least one acylation modification treatment are as described above.
  • thermoplastic resin those mentioned above can be used, and polyolefin resin, polyamide resin, polyester resin, and polyacetal resin are preferable.
  • the polyolefin resin is preferably polyethylene or polypropylene.
  • the average fiber diameter of the modified microfibrillated plant fiber (B) in the resin composition is usually about 4 to 800 nm, preferably about 20 to 500 nm, and particularly preferably about 10 to 400 nm.
  • the average value of the fiber diameter of the modified microfibrillated plant fiber (B) is an average value when measuring at least 50 or more of the modified microfibrillated plant fibers (B) in the field of view of the electron microscope.
  • the resin composition of the present invention and the resin composition obtained by the above production method can be molded into a desired shape and used as a resin molding material.
  • the shape of the resin molding material include sheets, pellets, and powders.
  • the molding material having these shapes can be obtained by using, for example, mold molding, injection molding, extrusion molding, hollow molding, foam molding and the like.
  • the molding material can produce a resin molded body under desired molding conditions.
  • a resin molding in addition to the field
  • interior materials, exterior materials, structural materials, etc. of transportation equipment such as automobiles, trains, ships, airplanes, etc .; housings, structural materials, internal parts, etc. of electrical appliances such as personal computers, televisions, telephones, watches, etc .; mobile phones, etc. Housing, structural materials, internal parts, etc. for mobile communication equipment; portable music playback equipment, video playback equipment, printing equipment, copying equipment, housing for sports equipment, etc .; construction materials, office equipment such as stationery It can be used effectively as a container, a container, etc.
  • microfibrillated plant fibers can be uniformly dispersed in a highly hydrophobic resin by a simple process. Therefore, the molding material formed by molding the obtained resin composition has an effect that a high-strength material is obtained and the mechanical strength is excellent.
  • a thermoplastic resin forms a lamellar layer in the resin composition, and the lamellar layer is laminated in a direction different from the fiber length direction of the modified microfibrillated plant fiber (B). It has a regular structure. Therefore, the molded object shape
  • the scheme of one embodiment of the production method of the present invention is shown.
  • the scheme of one embodiment of the production method of the present invention is shown.
  • the scheme of one embodiment of the production method of the present invention is shown.
  • 2 is an analysis image of the molded body manufactured in Example 1 using an X-ray CT scanner. It is an analysis image by the X-ray CT scanner of the molded object manufactured by the comparative example 3. It is an analysis image by the X-ray CT scanner of the molded object manufactured in Example 3.
  • 4 is a TEM photograph of a molded body produced in Example 3.
  • 10 is a TEM photograph of a molded body produced in Example 9. It is an analysis image by the X-ray CT scanner of the molded object manufactured in the comparative example 4.
  • 4 is a TEM photograph of a molded body manufactured in Comparative Example 2.
  • 18 is an analysis image of a molded body manufactured in Example 15 using an X-ray CT scanner.
  • 10 is an analysis image of a molded body manufactured in Comparative Example 9 using an X-ray CT scanner.
  • Example 1 ⁇ Preparation of refiner-treated plant fiber> A slurry of softwood bleached kraft pulp (NBKP) (slurry concentration: 2% by mass) is passed through a single disc refiner (manufactured by Kumagai Riki Kogyo Co., Ltd.) and repeatedly refined until the Canadian Standard Freeness (CSF) is 100 ml or less. Went. Next, the obtained slurry was concentrated to 20% by mass using a centrifuge (manufactured by Kokusan Co., Ltd.) to prepare NBKP (refiner treatment).
  • NNKP softwood bleached kraft pulp
  • ASA Alkenyl Succinic Anhydride
  • NMP N-methylpyrrolidone
  • T-NS135 (ASA having 16 carbon atoms other than succinic anhydride, manufactured by Seiko PMC) and 170 g of potassium carbonate were added and reacted at 65 ° C. for 1.5 hours.
  • the mixture was successively washed with acetone, ethanol, acetic acid water and water, and further solvent substitution with ethanol was performed to obtain an ASA-modified plant fiber (ASA-modified NBKP) containing ethanol (EtOH). It was 0.37 as a result of calculating the substitution degree of the obtained ASA modified plant fiber with the following method.
  • the water content rate was 1.4% and the ethanol content rate was 73.6%.
  • ⁇ Calculation of substitution degree (DS) of ASA modified plant fiber The ester bond between ASA and cellulose in the ASA-modified plant fiber was hydrolyzed by heating and stirring in a sodium hydroxide solution at 70 ° C. Thereafter, back-titration with a 0.1N hydrochloric acid aqueous solution was performed, and the amount of ASA produced by hydrolysis was determined to calculate the substitution degree (DS) of ASA modification. In addition, phenolphthalein was used as an indicator for back titration.
  • ASA-modified plant fiber was precisely weighed in a 100 ml beaker, added with 15 ml of ethanol and 5 ml of distilled water, and stirred at room temperature for 30 minutes. Thereafter, 10 ml of 0.5N sodium hydroxide solution was added and stirred at 70 ° C. for 15 minutes, then cooled to room temperature and further stirred overnight. A few drops of an 85% phenolphthalein ethanol solution were added to the resulting mixture, followed by back titration with a 0.1N aqueous hydrochloric acid solution, and the amount of ASA produced by hydrolysis was measured. The degree of substitution was calculated from the amount of ASA-modified plant fiber used and the amount of ASA measured by titration.
  • the volatile content in the organic liquid-containing ASA-modified plant fiber was measured using an infrared moisture meter (manufactured by Kett Scientific Laboratory: “FD-720”).
  • the content of the organic liquid was calculated from the following equation based on the volatile content and water content obtained above.
  • Organic liquid content [%] (Volatile content measured with infrared moisture meter [%])-(Water content measured with Karl Fischer moisture meter [%])
  • the solid content after blending is as follows.
  • ASA-modified NBKP 52.1% by mass (NBKP-derived part (30% by mass) + ASA-derived part (22.1% by mass)) Resin: 43.9 mass% (MAPP: (12.9 mass%) + HDPE (31 mass%)) Calcium carbonate: 4% by weight.
  • the water content and the ethanol content in the obtained master batch were measured by the above measuring method, the water content was 0.5% and the ethanol content was 2.0%.
  • ASA-modified NBKP 17.4% by mass (NBKP-derived part (10% by mass) + ASA-derived part (7.4% by mass)) Resin: 81.3 mass% (MAPP: (4.3 mass%) + HDPE (77.0 mass%)) Calcium carbonate: 1.3% by weight.
  • FIG. 4 shows an analysis image by the X-ray CT scanner.
  • Example 2 In ⁇ Preparation of ASA-modified plant fiber> in Example 1, NBKP and ASA were reacted, and then washed successively with acetone, ethanol, acetic acid water, and water to obtain hydrous ASA-modified NBKP. The substitution degree of the obtained ASA-modified NBKP was 0.34.
  • This hydrous ASA-modified NBKP solid content concentration: 20% by mass
  • MAPP manufactured by Toyobo Co., Ltd .: trade name “Toyotack PMA H1000P”
  • HDPE high-density polyethylene resin
  • the solid content after blending is as follows.
  • ASA-modified microfibrillated plant fiber 50.3% by mass (derived from microfibrillated plant fiber (30% by mass) + ASA derived part (20.3% by mass)) Resin: 45.7 mass% (MAPP: (12.9 mass%) + HDPE (32.8 mass%)) Calcium carbonate: 4% by weight.
  • the obtained resin composition was dried under reduced pressure using Trimix TX-5 (manufactured by Inoue Seisakusho Co., Ltd.). Next, the above mixture was allowed to pass at 140 ° C. for 1 pass, and the resulting melt-kneaded product was pelletized using a pelletizer (manufactured by Technobel), and then an injection molding machine (NPX7-1F, manufactured by Nissei Resin Co., Ltd.). ) To obtain a dumbbell-shaped test piece (thickness 1 mm). Molding was performed under the conditions of a heating cylinder (cylinder) temperature of 160 ° C. and a mold temperature of 40 ° C.
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured by the same method as in Example 1. The measurement results are shown in Table 1.
  • Example 1 In Example 1, without using ASA-modified NBKP, molding was carried out in the same manner as in Example 1 using only HDPE powder (manufactured by Sumitomo Seika Co., Ltd .: trade name “Flow Beads HE3040”). A specimen was obtained.
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured in the same manner as in Example 1. The measurement results are shown in Table 1. Further, the deflection temperature under load (HDT) and the average linear expansion coefficient were measured by the method described later. The results are shown in Tables 3 and 5.
  • Example 2 In Example 1, without using ASA-modified NBKP, only HDPE pellets (trade name “Suntech-HD J320” manufactured by Asahi Kasei Chemicals Co., Ltd.) were used and molded by the same method as in Example 1. The test piece was obtained.
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured by the same method as in Example 1. The measurement results are shown in Table 1. Further, the deflection temperature under load (HDT), the average linear expansion coefficient and the thermal conductivity were measured by the method described later. The results are shown in Tables 3-5.
  • Example 3 In Example 1, except that unmodified ethanol-containing NBKP was used, compounding and molding were performed in the same manner as in Example 1 to obtain a dumbbell-shaped test piece.
  • FIG. 5 shows an analysis image by the X-ray CT scanner.
  • ASA-modified NBKP When ASA-modified NBKP is used, since the interfacial adhesion between the ASA-modified NBKP and the resin is excellent, the ASA-modified NBKP is nano-fibrillated in the resin due to shear stress during kneading, resulting in the ASA-modified microfibrillated plant fiber and While it is possible to obtain a composite material made of resin, it is presumed that when unmodified NBKP is used, a sufficiently microfibrillated composite material cannot be obtained because the affinity between the resin and NBKP is poor. .
  • Example 1 containing an organic liquid and Example 2 using a hydrous ASA modified plant fiber are resin alone or not. It can be seen that both the elastic modulus and the tensile strength are improved as compared with Comparative Example 3 using the modified plant fiber.
  • the ASA-modified NBKP and the resin were mixed in an organic liquid (C) and then kneaded, so that Comparative Example 3 using an unmodified pulp and Example 2 using a hydrous ASA-modified pulp were used.
  • C organic liquid
  • Comparative Example 3 using an unmodified pulp and Example 2 using a hydrous ASA-modified pulp were used.
  • it is considered that a composite material having excellent mechanical properties can be obtained because nano-defibration is further promoted.
  • NNKP plant fiber
  • Example 3 ⁇ Preparation of microfibrillated plant fiber> A slurry of softwood bleached kraft pulp (NBKP) (slurry concentration: 2% by mass) is passed through a single disc refiner (manufactured by Kumagai Riki Kogyo Co., Ltd.) and repeatedly refined until the Canadian Standard Freeness (CSF) is 100 ml or less. Went. Next, the obtained slurry was concentrated to 20% by mass using a centrifuge (manufactured by Kokusan Co., Ltd.) to prepare NBKP (refiner treatment).
  • NNKP softwood bleached kraft pulp
  • Beads Zirconia beads (diameter: 1mm)
  • Vessel capacity 2 liters
  • Bead filling 1216 ml (4612 g)
  • Rotation speed 2,000rpm
  • Vessel temperature 20 ° C
  • Discharge rate 600 ml / min.
  • microfibrillated plant fiber slurry was subjected to suction filtration to obtain water-containing microfibrillated plant fibers having a solid content concentration of 12.5% by mass.
  • ASA-modified microfibrillated plant fiber 247 g of NMP was added to 494 g of the above-mentioned water-containing microfibrillated plant fiber (solid content: 62 g), and the mixture was added to Trimix TX-5 (manufactured by Inoue Seisakusho Co., Ltd.). Dehydrated. Next, 61.6 g of T-NS135 (ASA having 16 carbon atoms other than succinic anhydride, manufactured by Seiko PMC Co., Ltd.), 21.1 g of potassium carbonate, and 50 g of NMP were added and reacted at 62 ° C. for 1.5 hours. I let you.
  • Ethanol was added to the obtained ethanol-containing ASA-modified microfibrillated plant fiber to adjust the solid content concentration to 3.0% by mass.
  • MAPP manufactured by Toyobo Co., Ltd .: trade name “Toyotac PMA H1000P”
  • CaCO 3 Surfactured by Toyobo Co., Ltd .: trade name “Toyotac PMA H1000P”
  • CaCO 3 Surduct name: “brilliant 15” 4 g
  • HDPE high density polyethylene
  • the dispersion prepared to 10.0% by mass was mixed in a beaker with propeller stirring.
  • the obtained resin mixture dispersion was subjected to suction filtration, and then dried under reduced pressure while stirring with a trimix to prepare a mixture (master batch) of ASA-modified microfibrillated plant fibers and resin.
  • the solid content after blending is as follows.
  • ASA-modified microfibrillated plant fiber 53.3% by mass (from microfibrillated plant fiber (30% by mass) + ASA-derived part (23.3% by mass)) Resin: 42.7 mass% (MAPP: (12.9 mass%) + HDPE (29.8 mass%))
  • melt-kneaded product is a pelletizer (manufactured by Technobel Co., Ltd.) And then put into an injection molding machine (NPX7-1F, manufactured by Nissei Resin Co., Ltd.) to obtain a dumbbell-shaped test piece (thickness 1 mm). Molding was performed under the conditions of a heating cylinder (cylinder) temperature of 160 ° C. and a mold temperature of 40 ° C.
  • the content ratio of the solid content of the finally obtained resin composition is as follows.
  • ASA-modified microfibrillated plant fiber 17.8% by mass (derived from microfibrillated plant fiber (10% by mass) + ASA-derived part (7.8% by mass)) Resin: 80.9 mass% (MAPP: (4.3 mass%) + HDPE (76.3 mass%)) Calcium carbonate: 1.3% by weight.
  • the tensile strength and elastic modulus were measured by the same method as in Example 1 using the obtained dumbbell-shaped test piece having a thickness of 1 mm. The measurement results are shown in Table 2. Furthermore, the average linear expansion coefficient, thermal conductivity, and deflection temperature under load (HDT) were measured by the method described later. The results are shown in Tables 3-5.
  • FIG. 6 shows an analysis image obtained by the X-ray CT scanner.
  • Example 4 In ⁇ Preparation of ASA-modified microfibrillated plant fiber> in Example 3, after the reaction of the microfibrillated plant fiber with ASA, it was washed successively with acetone, ethanol, acetic acid water, water, and further solvent substitution with isopropanol (IPA). The IPA-containing ASA-modified microfibrillated plant fiber was obtained.
  • Example 3 Except for using the obtained IPA-containing ASA-modified microfibrillated plant fiber, it was combined with a resin and molded by the same method as in Example 3 to obtain a dumbbell-shaped test piece.
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured by the same method as in Example 1. The measurement results are shown in Table 2.
  • Example 5 In ⁇ Preparation of ASA-modified microfibrillated plant fiber> in Example 3, after the reaction of microfibrillated plant fiber and ASA, the mixture was washed successively with acetone, ethanol, acetic acid water, water, and further solvent substitution with acetone. Containing ASA-modified microfibrillated plant fiber was obtained.
  • Example 3 Except for using the obtained acetone-containing ASA-modified microfibrillated plant fiber, it was combined with a resin and molded by the same method as in Example 3 to obtain a dumbbell-shaped test piece.
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured by the same method as in Example 1. The measurement results are shown in Table 2.
  • Example 6 In ⁇ Preparation of ASA-modified microfibrillated plant fiber> in Example 3, after the reaction of the microfibrillated plant fiber and ASA, the mixture was washed successively with acetone, ethanol, acetic acid water and water, and further solvent substitution was sequentially performed with acetone and dioxane. The dioxane-containing ASA-modified microfibrillated plant fiber was obtained.
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured by the same method as in Example 1. The measurement results are shown in Table 2.
  • Example 7 In ⁇ Preparation of ASA-modified microfibrillated plant fiber> in Example 3, after the reaction of the microfibrillated plant fiber and ASA, it was washed sequentially with acetone, ethanol, acetic acid water, and water, and further solvent substitution was sequentially performed with acetone and ethyl acetate. To obtain an ethyl acetate-containing ASA-modified microfibrillated plant fiber.
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured by the same method as in Example 1. The measurement results are shown in Table 2.
  • Example 8 In ⁇ Preparation of ASA-modified microfibrillated plant fiber> in Example 3, after the reaction of the microfibrillated plant fiber and ASA, the mixture was washed successively with acetone, ethanol, acetic acid water, and water, and further solvent substitution was sequentially performed with acetone and hexane. The hexane-containing ASA-modified microfibrillated plant fiber was obtained.
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured by the same method as in Example 1. The measurement results are shown in Table 2.
  • Example 9 In ⁇ Preparation of ASA-modified microfibrillated plant fiber> in Example 3, after the reaction of microfibrillated plant fiber and ASA, it was washed successively with acetone and ethanol, and the ethanol-containing ASA-modified microfiber in which the carboxyl group was modified to a potassium salt. A fibrillated plant fiber was obtained. The degree of substitution of the obtained ASA-modified microfibrillated plant fiber was 0.42. Further, except that the ethanol-containing ASA-modified microfibrillated plant fiber obtained was used, the ASA-modified microfibrillated plant fiber and HDPE were combined and molded in the same manner as in Example 3, and a dumbbell type test was performed. I got a piece.
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured by the same method as in Example 1. The measurement results are shown in Table 2.
  • Example 10 In ⁇ Preparation of ASA-modified microfibrillated plant fiber> in Example 3, after reaction of microfibrillated plant fiber and ASA, water-containing ASA in which the carboxyl group was modified with potassium salt was washed successively with acetone, ethanol and water. Modified microfibrillated plant fibers were obtained. This is dispersed in water to give a 3% by mass dispersion, and a 16% by mass calcium chloride aqueous solution is added to the stirring place and stirred for 1 hour, whereby water in which the carboxyl group is modified with a calcium salt is added. Containing ASA-modified microfibrillated plant fiber was obtained.
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured by the same method as in Example 1. The measurement results are shown in Table 2.
  • Example 11 In ⁇ Preparation of ASA-modified microfibrillated plant fiber> in Example 3, after the reaction of microfibrillated plant fiber and ASA, it was washed successively with acetone and ethanol, and the ethanol-containing ASA-modified microfiber in which the carboxyl group was modified to a potassium salt. 664 g of fibrillated plant fiber (solid content: 104 g) was obtained. The degree of substitution of the obtained ASA-modified microfibrillated plant fiber was 0.37. This was put into Trimix TX-5 (manufactured by Inoue Seisakusho Co., Ltd.), 400 g of NMP was added, and ethanol was removed by distillation under reduced pressure while stirring.
  • Trimix TX-5 manufactured by Inoue Seisakusho Co., Ltd.
  • iodomethane was added and reacted at 50 ° C. for 2 hours. After the reaction, it was washed successively with acetone, ethanol, acetic acid water and water, and further subjected to solvent substitution with ethanol to obtain an ethanol-containing ASA-modified microfibrillated plant fiber in which the carboxyl group was esterified with a methyl group. Further, except that the obtained ASA-modified microfibrillated plant fiber was used, the ASA-modified microfibrillated plant fiber and the resin were combined and molded in the same manner as in Example 3 to obtain a dumbbell-shaped test piece. It was.
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured by the same method as in Example 1. The measurement results are shown in Table 2.
  • Example 12 In ⁇ Preparation of ASA-modified microfibrillated plant fiber> in Example 3, after the reaction of microfibrillated plant fiber and ASA, it was washed successively with acetone and ethanol, and the ethanol-containing ASA-modified microfiber in which the carboxyl group was modified to a potassium salt. 664 g of fibrillated plant fiber (solid content: 104 g) was obtained. The degree of substitution of the obtained ASA-modified microfibrillated plant fiber was 0.37.
  • the degree of substitution of the obtained ASA-modified microfibrillated plant fiber was 0.37. Further, except that the obtained ASA-modified microfibrillated plant fiber was used, the ASA-modified microfibrillated plant fiber and the resin were combined and molded in the same manner as in Example 3 to obtain a dumbbell-shaped test piece. It was.
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured by the same method as in Example 1. The measurement results are shown in Table 2.
  • Example 4 In ⁇ Preparation of ASA-modified microfibrillated plant fiber> in Example 3, the reaction between ASA and microfibrillated plant fiber was followed by sequential washing with acetone, ethanol, acetic acid water, water, and hydrous ASA-modified microfibrillated plant fiber. Got.
  • This hydrous ASA-modified microfibrillated plant fiber solid content concentration: 20% by mass
  • MAPP manufactured by Toyobo Co., Ltd .: trade name “Toyotack PMA H1000P”
  • HDPE high-density polyethylene resin
  • the solid content after blending is as follows.
  • ASA-modified microfibrillated plant fiber 54% by mass (derived from microfibrillated plant fiber (30% by mass) + ASA derived part (24% by mass)) Resin: 42% by mass (MAPP: (12.9% by mass) + HDPE (29.1% by mass)) Calcium carbonate: 4% by weight.
  • the obtained resin composition was put into a biaxial kneader (KZW, screw diameter: 15 mm, L / D: 45, screw rotation speed: 200 rpm, damming structure: 0, treatment speed 200 g / hour) manufactured by Technobel Co., Ltd.
  • KZW screw diameter: 15 mm, L / D: 45, screw rotation speed: 200 rpm, damming structure: 0, treatment speed 200 g / hour
  • the mixture was depassed and mixed at 98 ° C for 2 passes.
  • the above mixture was allowed to pass at 140 ° C. for 1 pass, and the resulting melt-kneaded product was pelletized using a pelletizer (manufactured by Technobel), and then an injection molding machine (NPX7-1F, manufactured by Nissei Resin Co., Ltd.).
  • NPX7-1F injection molding machine
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured by the same method as in Example 1. The measurement results are shown in Table 2. Moreover, the average linear expansion coefficient was measured by the method mentioned later. The results are shown in Table 3.
  • FIG. 9 shows an analysis image by the X-ray CT scanner.
  • the density of the obtained measurement sample was measured by the Archimedes method, and the specific heat and thermal diffusivity were measured using a laser flash method thermophysical property measuring apparatus (“LFA-502” manufactured by Kyoto Electronics Industry Co., Ltd.).
  • the thermal conductivity was calculated as the product of density, specific heat and thermal diffusivity. The results are shown in Table 4.
  • Example 3 when using a method of preparing a masterbatch after defibration of NBKP in advance, both the elastic modulus and tensile strength are improved as compared with Comparative Example 4 containing water. Recognize.
  • Example 3 the molded body obtained in Example 3 is more than Comparative Example 4 containing water by mixing and kneading ASA-modified CNF and resin in the organic liquid (C). It became possible to disperse the microfibrillated plant fiber uniformly in the resin.
  • the molded bodies obtained in Example 3 and Example 9 are formed with HDPE lamellar layers, and the lamellar layers are in the direction of the fiber length of the microfibrillated plant fibers. It was confirmed that they were regularly stacked in different directions. Further, as shown in FIG. 7 and FIG. 8, the molded product obtained in Example 3 is formed with a uniaxially oriented HDPE fibrous core in the same direction as the fiber length direction of the microfibrillated plant fiber. It was also confirmed that between the fibrillated plant fiber and the fibrous core, the HDPE lamellar layer was laminated in a different direction with respect to the direction of the fiber length of the microfibrillated plant fiber. Further, as shown in FIG. 10, it was confirmed that in Comparative Example 2, a lamellar layer peculiar to HDPE was present irregularly, unlike FIGS. 7 and 8.
  • Example 3 and Comparative Example 2 when the thermal conductivity of the test pieces obtained in Example 3 and Comparative Example 2 were measured, they were 1.33 W / m ⁇ K and 0.55 W / m ⁇ K, respectively, and ASA-modified CNF and HDPE It has been shown that the thermal conductivity of HDPE is improved by compounding.
  • the composite material containing ASA-modified CNF obtained higher HDT, that is, heat resistance than the HDPE resin alone. Moreover, it turned out that heat resistance improves further by changing the carboxyl group of ASA from carboxylic acid to calcium carboxylate.
  • the composite material of Example 1 has a deflection temperature under load of about 30 ° C. higher than that of the resins of Comparative Examples 1 and 2, and the composite material composed of ASA-modified microfibrillated plant fiber and resin has heat resistance. You can see that it is improving.
  • Example 3 Comparative Example 4 and Comparative Example 1
  • the ASA-modified CNF and the resin are mixed and kneaded in the organic liquid (C), so that the resin alone or in the water-containing condition is as in Example 1.
  • the ASA-modified NBKP is mixed with the resin in the organic liquid (C) and then kneaded, the ASA-modified CNF can be more uniformly dispersed in the resin, resulting in a composite having a very low average linear expansion coefficient. It became possible to obtain materials.
  • Example 13 ⁇ Preparation of ASA modified plant fiber> 8,000 g of NMP was added to 10,000 g (refiner treatment) 10,000 g of water-containing NBKP (refiner treatment) prepared in Example 1 and charged into Trimix TX-50 (manufactured by Inoue Seisakusho Co., Ltd.), followed by stirring. And dehydrated under reduced pressure at 40-50 ° C. Next, 1,988 g of T-NS135 (ASA having 16 carbon atoms other than succinic anhydride, manufactured by Seiko PMC) and 170 g of potassium carbonate were added and reacted at 62 ° C. for 1.5 hours.
  • T-NS135 ASA having 16 carbon atoms other than succinic anhydride, manufactured by Seiko PMC
  • Ethanol was added to the obtained ethanol-containing ASA-modified NBKP to adjust the solid content concentration to 3.0% by mass.
  • ASA-modified NBKP solid content 52.1 g
  • PVA polylactic acid
  • crystal nucleating agent manufactured by Nissan Chemical Industries, Ltd.
  • 6 g of the antioxidant manufactured by Nisshinbo Co., Ltd .: product name “Carbodilite”
  • the solid content after blending is as follows.
  • ASA-modified NBKP 52.1% by mass (NBKP-derived (30% by mass) + ASA-derived part (22.1% by mass)) PLA: 35.9% by mass Crystal nucleating agent: 6% by weight Antioxidant: 6% by weight.
  • ASA-modified NBKP 17.4% by mass (NBKP-derived (10% by mass) + ASA-derived part (7.4% by mass)) PLA: 78.6% by mass Crystal nucleating agent: 2% by mass Antioxidant: 2% by mass.
  • the tensile strength and elastic modulus of the obtained dumbbell-shaped test piece were measured in the same manner as in Example 1. Table 6 shows the measurement results.
  • Example 13 without using ASA-modified NBKP, only PLA powder (manufactured by Toyota Co., Ltd., “Uz S-12”) was molded by the same method as in Example 13, and a dumbbell-shaped test piece was formed. Obtained.
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured by the same method as in Example 1. Table 6 shows the measurement results.
  • Example 13 In Example 13, except that unmodified ethanol-containing NBKP was used, compounding and molding were performed in the same manner as in Example 13 to obtain a dumbbell-shaped test piece.
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured by the same method as in Example 1. Table 6 shows the measurement results.
  • Example 13 containing an organic liquid is similar to the case of combining HDPE and ASA-modified NBKP in comparison with Comparative Example 6 using unmodified pulp. It has been clarified that both the elastic modulus and the tensile strength are improved due to the further progress of nano-defibration and uniform dispersion.
  • Example 14 ⁇ Composite with biopolyethylene>
  • biomass HDPE manufactured by Braschem: trade name “SHA7260”
  • HDPE manufactured by Asahi Kasei Chemicals Corporation: trade name “Suntech-HD J320”.
  • a resin composition was obtained in the same manner as in Example 3 except that it was used.
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured by the same method as in Example 1. Table 7 shows the measurement results.
  • Comparative Example 7 Comparative Example 2 is the same as Comparative Example 2 except that biomass HDPE (manufactured by Braskem: trade name “SHA7260”) is used instead of HDPE powder (Sumitomo Seika Co., Ltd .: trade name “Flow Beads HE3040”). In the same manner, a dumbbell-shaped test piece was obtained.
  • biomass HDPE manufactured by Braskem: trade name “SHA7260”
  • HDPE powder Suditomo Seika Co., Ltd .: trade name “Flow Beads HE3040”.
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured by the same method as in Example 1. Table 7 shows the measurement results.
  • Example 14 where ASA modified microfibrillated plant fiber and bio-PE were mixed had both improved elastic modulus and tensile strength as compared with Comparative Example 7 using only bio-PE resin.
  • Example 15 ⁇ Composite with polyamide> Ethanol was added to ASA-modified NBKP obtained by the same method as in Example 13 to adjust the solid content concentration to 3.0% by mass.
  • ASA-modified microfibrillated plant fiber solid content 52.1 g
  • PA12 polyamide 12
  • a dispersion prepared by dispersing 47.9 g in ethanol to a solid content concentration of 10.0% by mass was mixed in a beaker with propeller stirring.
  • the obtained resin mixture dispersion was subjected to suction filtration, and then dried under reduced pressure while stirring with a trimix to prepare a mixture (master batch) of ASA-modified microfibrillated plant fibers and resin.
  • the solid content after blending is as follows.
  • ASA-modified microfibrillated plant fiber 52.1% by mass (from microfibrillated plant fiber (30% by mass) + ASA-derived part (22.1% by mass)) PA12: 47.9 mass%.
  • the content ratio of the solid content of the finally obtained resin composition is as follows.
  • ASA-modified microfibrillated plant fiber 17.4% by mass (derived from microfibrillated plant fiber (10% by mass) + ASA-derived part (7.4% by mass)) PA12: 82.6 mass%.
  • FIG. 11 shows an analysis image obtained by the X-ray CT scanner.
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured by the same method as in Example 1. Table 8 shows the measurement results.
  • Example 15 molding was performed in the same manner as in Example 15 using only PA12 powder without using ASA-modified NBKP to obtain a dumbbell-shaped test piece.
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured by the same method as in Example 1. Table 8 shows the measurement results.
  • Example 9 In Example 15, except that unmodified ethanol-containing NBKP was used, compounding and molding were performed in the same manner as in Example 15 to obtain a dumbbell-shaped test piece.
  • FIG. 12 shows an analysis image by the X-ray CT scanner.
  • Example 15 containing the organic liquid (C) was compared with Comparative Example 9 using unmodified pulp, as in the case where HDPE and ASA-modified NBKP were combined.
  • both the elastic modulus and the tensile strength are improved because the nano-defibration and uniform dispersion of NBKP are more advanced.
  • the molded object obtained in Example 15 is based on the comparative example 9 containing water by mixing and kneading ASA modified CNF and resin in the organic liquid (C).
  • the microfibrillated plant fibers can be uniformly dispersed in the resin.
  • Example 15 Comparative Example 9
  • Example 16 ⁇ Composite with polyacetal resin>
  • water-containing ASA in which the carboxyl group was modified with potassium salt was washed successively with acetone, ethanol and water.
  • Modified microfibrillated plant fibers were obtained. This is dispersed in water to give a 3% by mass dispersion, and a 16% by mass calcium chloride aqueous solution is added to the stirring place and stirred for 1 hour, whereby water in which the carboxyl group is modified with a calcium salt is added. Containing ASA-modified microfibrillated plant fiber was obtained.
  • the solid content after blending is as follows.
  • ASA-modified microfibrillated plant fiber 50.3% by mass (derived from microfibrillated plant fiber (30% by mass) + ASA derived part (20.3% by mass))
  • POM 49.7% by mass
  • a mixture of 100 g of the obtained master batch and 200 g of POM manufactured by Mitsubishi Engineering Plastics Co., Ltd., trade name “F30-01” average particle size 12 ⁇ m
  • KZW twin-screw kneader manufactured by Technobel Co., Ltd.
  • Screw diameter 15 mm
  • L / D 45
  • screw rotation speed 200 rpm
  • damming structure 0, treatment speed 200 g / hour
  • the content ratio of the solid content of the finally obtained resin composition is as follows.
  • ASA-modified microfibrillated plant fiber 16.8% by mass (derived from microfibrillated plant fiber (10% by mass) + ASA-derived part (6.8% by mass)) POM: 83.2% by mass.
  • the bending strength and bending elastic modulus of the obtained dumbbell-shaped test piece were measured by the following method. Table 10 shows the measurement results.
  • Example 10 In Example 16, without using ASA-modified microfibrillated plant fiber, only POM powder (trade name “F30-01”, average particle size 12 ⁇ m, manufactured by Mitsubishi Engineering Plastics Co., Ltd.) was used. Molding was performed in the same manner to obtain a dumbbell-shaped test piece.
  • POM powder trade name “F30-01”, average particle size 12 ⁇ m, manufactured by Mitsubishi Engineering Plastics Co., Ltd.
  • the bending elastic modulus and bending strength of the obtained dumbbell-shaped test piece were measured in the same manner as in Example 16. Table 10 shows the measurement results.
  • Example 11 In Example 16, except that unmodified ethanol-containing microfibrillated plant fibers were used, compounding and molding were performed in the same manner as in Example 16 to obtain dumbbell-shaped test pieces.
  • the bending elastic modulus and bending strength of the obtained dumbbell-shaped test piece were measured in the same manner as in Example 16. Table 10 shows the measurement results.
  • Example 16 containing the organic liquid (C) was compared with Comparative Example 10 using unmodified pulp, as in the case of combining HDPE and ASA-modified NBKP.
  • both the bending elastic modulus and the bending strength are improved because the nano-defibration and uniform dispersion of NBKP are more advanced.
  • Example 17 ⁇ Composite with polypropylene> 100 g of a mixture (masterbatch) of ASA-modified microfibrillated plant fiber and resin produced in Example 3 and 200 g of polypropylene (PP) (manufactured by Nippon Polypro Co., Ltd .: trade name “Wintech WF-X6”, melting point 125 ° C.) With a twin screw kneader (KZW, screw diameter: 15 mm, L / D: 45, screw rotation speed: 200 rpm, damming structure: 0, treatment speed 200 g / hour) manufactured by Technobel Co., Ltd.
  • KZW twin screw kneader
  • the resulting melt-kneaded product was pelletized using a pelletizer (manufactured by Technobel Co., Ltd.) and then put into an injection molding machine (manufactured by Nissei Resin Co., Ltd .: “NPX7-1F”).
  • a dumbbell-shaped test piece (thickness 1 mm) was obtained. Molding was performed under the conditions of a heating cylinder (cylinder) temperature of 160 ° C. and a mold temperature of 40 ° C.
  • the content ratio of the solid content of the finally obtained resin composition is as follows.
  • ASA-modified microfibrillated plant fiber 18.0% by mass (from microfibrillated plant fiber (10% by mass) + ASA-derived part (8.0% by mass)) Resin: 80.7 mass% (MAPP (4.3 mass%) + HDPE (9.7 mass%) + PP (66.7 mass%)) Calcium carbonate: 1.3% by weight.
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured by the same method as in Example 1. Table 11 shows the measurement results.
  • Example 17 In Example 17, only a pellet of PP (manufactured by Nippon Polypro Co., Ltd .: trade name “Wintech WF-X6”) was used without using a mixture (masterbatch) of ASA-modified microfibrillated plant fiber and resin. Molding was performed in the same manner as in Example 17 to obtain a dumbbell-shaped test piece.
  • PP manufactured by Nippon Polypro Co., Ltd .: trade name “Wintech WF-X6”
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured by the same method as in Example 1. Table 11 shows the measurement results.
  • Example 18 ⁇ Compounding example with low density polyethylene (LDPE)>
  • HDPE high-density polyethylene
  • LDPE Alignment-density polyethylene
  • HDPE high-density polyethylene
  • the content ratio of the solid content of the finally obtained resin composition is as follows.
  • ASA-modified microfibrillated plant fiber 18.0% by mass (from microfibrillated plant fiber (10% by mass) + ASA-derived part (8.0% by mass)) Resin: 80.7 mass% (MAPP (4.3 mass%) + LDPE (76.4 mass%)) Calcium carbonate: 1.3% by weight.
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured by the same method as in Example 1. Table 12 shows the measurement results.
  • Example 18 was performed using only LDPE (manufactured by Asahi Kasei Chemicals Co., Ltd .: trade name “Suntech-LD L6810”) without using a mixture (masterbatch) of ASA-modified microfibrillated plant fiber and resin. Molding was performed in the same manner to obtain a dumbbell-shaped test piece.
  • LDPE manufactured by Asahi Kasei Chemicals Co., Ltd .: trade name “Suntech-LD L6810”
  • Molding was performed in the same manner to obtain a dumbbell-shaped test piece.
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured by the same method as in Example 1. Table 12 shows the measurement results.
  • Example 18 in which ASA modified microfibrillated plant fiber and LDPE were mixed was found to have improved both elastic modulus and tensile strength as compared with Comparative Example 13 containing only PP resin.
  • Example 19 ⁇ Preparation of Alkenyl Succinic Anhydride (ASA) Modified Plant Fiber> 100 g (solid content 20 g) of hydrous NBKP (refiner treatment) prepared in Example 1 was subjected to solvent substitution with dimethyl sulfoxide (DMSO). After the solid content concentration of this sample was adjusted to 20% by mass and charged into Trimix TX-1 (manufactured by Inoue Seisakusho Co., Ltd.), an ASA denaturation reaction was performed in the same manner as in Example 1.
  • DMSO dimethyl sulfoxide
  • ASA-modified NBKP IPA-containing ASA-modified plant fiber
  • the substitution degree (DS) of the obtained ASA-modified NBKP was 0.30.
  • IPA was added to the obtained IPA-containing ASA-modified NBKP to adjust the solid content concentration to 3.0% by mass.
  • ASA-modified NBKP solid content 31.9 g
  • 34.8 g of high-density polyethylene (HDPE, manufactured by Asahi Kasei Chemicals Corporation: trade name “Suntech-HD J320” finely pulverized product) and IPA are added to this ASA-modified NBKP (solid content 31.9 g) dispersed in IPA.
  • HDPE high-density polyethylene
  • Asahi Kasei Chemicals Corporation trade name “Suntech-HD J320” finely pulverized product
  • a dispersion having a solid content concentration of 10.0% by mass was prepared.
  • the dispersion was mixed with stirring in a beaker.
  • the obtained resin mixture dispersion was subjected to suction filtration, followed by drying under reduced pressure while stirring with a trimix to prepare a mixture (master batch) of ASA-mod
  • the solid content after blending is as follows.
  • ASA-modified NBKP 47.8% by mass (NBKP-derived component (30% by mass) + ASA-derived part (17.8% by mass)) Resin: HDPE (52.2% by mass)
  • a mixture of 30 g of the obtained master batch and 60 g of HDPE manufactured by Asahi Kasei Chemicals Co., Ltd .: trade name “Suntech-HD J320” was mixed with a twin-screw kneader (KZW, screw system: 15 mm) manufactured by Technobel Co., Ltd. ), L / D: 45, screw rotation speed: 200 rpm, zero damming structure, processing speed 200 g / hour) at 140 ° C.
  • the resulting melt-kneaded product is used with a pelletizer (manufactured by Technovel Corporation). After being pelletized, it was put into an injection molding machine (NPX7-1F, manufactured by Nissei Resin Co., Ltd.) to obtain a dumbbell-shaped test piece (thickness 1 mm). The molding was performed under the conditions of a heating tower (cylinder) temperature of 160 ° C. and a mold temperature of 40 ° C.
  • the content ratio of the solid content of the finally obtained resin composition is as follows.
  • ASA modified plant fiber 16.0% by mass (NBKP-derived component (10% by mass) + ASA-derived component (6.0% by mass)) Resin: HDPE (84.0% by mass)
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured in the same manner as in Example 1. Table 13 shows the measurement results.
  • Example 20 ⁇ Preparation of thermal decomposition product of polypropylene> Polypropylene (PP, manufactured by Nippon Polypro Co., Ltd .: trade name “Novatech MA3Q”) was placed in a 700 g flask and heated to 380 to 420 ° C. with a gas burner. The generated gas was cooled to obtain 550 g of a liquid at room temperature. When the obtained liquid was subjected to gas chromatography mass spectrometry using a gas chromatography mass spectrometer (“GCMS-QP2010 Ultra” manufactured by Shimadzu Corporation), the main component had an unsaturated bond at the terminal. It was a propylene oligomer having about 9 to 21 carbon atoms.
  • GCMS-QP2010 Ultra gas chromatography mass spectrometer
  • the low-boiling component of the obtained propylene oligomer was distilled off under reduced pressure at 70 ° C. and 80 hPa to obtain 380 g of a thermal decomposition product (thermal decomposition PP) of polypropylene having an average carbon number of 18 (analyzed by 1H NMR).
  • ⁇ Preparation of modified microfibrillated plant fiber> In ⁇ Preparation of ASA-modified microfibrillated plant fiber> in Example 3, the modification reaction was performed in the same manner except that pyrolyzed PP-ASA was used as the modifying agent. After the reaction, it was washed successively with hexane, acetone, and ethanol to obtain an ethanol-containing modified microfibrillated plant fiber in which the carboxyl group was modified to a potassium salt. The degree of substitution (DS) of the resulting modified microfibrillated plant fiber was 0.41. This was put into Trimix TX-5 (Inoue Seisakusho Co., Ltd.), NMP was added, and ethanol was removed by distillation under reduced pressure while stirring.
  • Trimix TX-5 Inoue Seisakusho Co., Ltd.
  • Iodomethane was added thereto and reacted at 50 ° C. After the reaction, washing with acetone, ethanol, acetic acid water, and water was carried out sequentially, and solvent substitution with IPA was performed to obtain an IPA-containing modified microfibrillated plant fiber in which the carboxyl group was esterified with a methyl group.
  • IPA-containing modified microfibrillated plant fiber For the obtained IPA-containing modified microfibrillated plant fiber, the same method as in Example 19 was used except that PP (manufactured by Nippon Polypro Co., Ltd .: trade name “Novatec MA04A”) was used as the resin. A mixture (masterbatch) of modified microfibrillated plant fiber and resin was prepared.
  • PP manufactured by Nippon Polypro Co., Ltd .: trade name “Novatec MA04A”
  • a mixture (masterbatch) of modified microfibrillated plant fiber and resin was prepared.
  • the solid content after blending is as follows.
  • Modified microfibrillated plant fiber 58.5% by mass (component derived from microfibrillated plant fiber (30% by mass) + part derived from PP-ASA (28.5% by mass)) Resin: PP (41.5% by mass)
  • a mixture of 30 g of the obtained master batch and 60 g of PP (manufactured by Nippon Polypro Co., Ltd .: trade name “NOVATEC MA04A”) was mixed with a twin screw kneader (KZW, screw system: 15 mm, L / D: 45, screw rotation speed: 200 rpm, zero damming structure, processing speed 200 g / hour), and one pass at 180 ° C., and the resulting melt-kneaded product is pelletized using a pelletizer (manufactured by Technovel Corporation).
  • the content ratio of the solid content of the finally obtained resin composition is as follows.
  • Modified microfibrillated plant fiber 19.5% by mass (part derived from microfibrillated plant fiber (10% by mass) + part derived from PP-ASA (9.5% by mass)) Resin: 80.5% by mass.
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured by the same method as in Example 1. Table 14 shows the measurement results.
  • Example 21 Using the modified microfibrillated plant fiber obtained in Example 20 ⁇ Preparation of Modified Microfibrillated Plant Fiber>, 0.3 g of an antioxidant (manufactured by BASF Corporation: trade name “Irganox 1010”) was kneaded. Except for the addition, a modified microfibrillated plant fiber and a resin were combined and molded in the same manner as in Example 20 to obtain a dumbbell-shaped test piece.
  • an antioxidant manufactured by BASF Corporation: trade name “Irganox 1010”
  • the content ratio of the solid content of the finally obtained resin composition is as follows.
  • Modified microfibrillated plant fiber 19.5% by mass (part derived from microfibrillated plant fiber (10% by mass) + part derived from PP-ASA (9.5% by mass))
  • Antioxidant 0.3g Resin: 80.2% by mass.
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured by the same method as in Example 1. Table 14 shows the measurement results.
  • Example 14 a modified microfibrillated plant fiber was not used, but only a PP pellet (manufactured by Nippon Polypro Co., Ltd .: trade name “Novatech MA04A”) was used and molded by the same method as in Example 20, and a dumbbell test was performed. I got a piece.
  • a PP pellet manufactured by Nippon Polypro Co., Ltd .: trade name “Novatech MA04A”
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured by the same method as in Example 1. Table 14 shows the measurement results.
  • Example 20 in which microfibrillated plant fiber was modified with pyrolyzed PP-ASA and combined with PP, and microfibrillated plant fiber was modified with pyrolyzed PP-ASA, and an antioxidant was added during kneading It can be seen that Example 21 is improved in both elastic modulus and tensile strength as compared with Comparative Example 14 which is a single PP.
  • Example 22 In ⁇ Preparation of ASA-modified microfibrillated plant fiber> in Example 3, after the reaction of the microfibrillated plant fiber and ASA, it was washed successively with acetone, ethanol, acetic acid water, and water, and the solvent was replaced with IPA to contain IPA. ASA modified microfibrillated plant fibers were obtained. The degree of substitution (DS) of the modified microfibrillated plant fiber was 0.18. After 91 g (solid content 13.6 g) was added to Trimix TX-1 (manufactured by Inoue Seisakusho Co., Ltd.), 40 g of NMP was added, heated to 50 ° C., and the pressure was reduced while stirring to distill off IPA. .
  • Trimix TX-1 manufactured by Inoue Seisakusho Co., Ltd.
  • the content ratio of the solid content of the finally obtained resin composition is as follows.
  • ASA-modified-benzoylated modified microfibrillated plant fiber 14.5% by mass (component derived from microfibrillated plant fiber (10% by mass) + component derived from ASA (3.6% by mass) + component derived from benzoyl group (0.9% by mass) %) Resin: HDPE (85.5% by mass)
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured in the same manner as in Example 1. Table 15 shows the measurement results.
  • Example 23 In ⁇ Preparation of ASA-modified microfibrillated plant fiber> in Example 3, after the reaction of the microfibrillated plant fiber and ASA, it was washed successively with acetone, ethanol, acetic acid water, and water, and the solvent was replaced with IPA to contain IPA. ASA modified microfibrillated plant fibers were obtained. The degree of substitution (DS) of the modified microfibrillated plant fiber was 0.35. After adding 113 g (solid content: 17 g) to Trimix TX-1 (manufactured by Inoue Seisakusho Co., Ltd.), 40 g of NMP was added, heated to 50 ° C., and the pressure was reduced while stirring to distill off IPA.
  • Trimix TX-1 manufactured by Inoue Seisakusho Co., Ltd.
  • IPA-containing ASA-modified-acetylated modified microfibrillated plant fiber The degree of substitution (DS) derived from the acetyl group of the obtained modified microfibrillated plant fiber was 0.20.
  • the modified microfibrillated plant fiber and the resin were combined and molded by the same method as in Example 19 except that the obtained modified microfibrillated plant fiber was used to obtain a dumbbell-shaped test piece.
  • the content ratio of the solid content of the finally obtained resin composition is as follows.
  • ASA-modified-acetylated modified microfibrillated plant fiber 17.5% by mass (microfibrillated plant fiber-derived component (10% by mass) + ASA-derived component (7.0% by mass) + acetyl group-derived component (0.5% by mass) %) Resin: HDPE (82.5% by mass)
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured in the same manner as in Example 1. Table 15 shows the measurement results.
  • Example 24 The IPA-containing ASA-modified microfibrillated plant fiber 113 g (solid content 17 g) prepared in Example 23 was additionally modified with 13.5 g of myristic anhydride.
  • An IPA-containing ASA-modified-myristoylated modified microfibrillated plant fiber was obtained in the same manner as in Example 23 except that myristic anhydride was used in place of acetic anhydride as a modifying agent for additional modification.
  • the substitution degree (DS) derived from ASA of the obtained modified microfibrillated plant fiber was 0.35, and the substitution degree (DS) derived from the myristoyl group was 0.22.
  • the modified microfibrillated plant fiber and the resin were combined and molded by the same method as in Example 19 except that the obtained modified microfibrillated fiber was used, to obtain a dumbbell-shaped test piece.
  • the content ratio of the solid content of the finally obtained resin composition is as follows.
  • ASA modified-myristoylated modified microfibrillated plant fiber 19.9% by weight (microfibrillated plant fiber-derived component (10% by weight) + ASA-derived component (7.0% by weight) + myristoyl group-derived component (2.9% by weight) %) Resin: HDPE (80.1% by mass)
  • the elastic modulus and tensile strength of the obtained dumbbell-shaped test piece were measured in the same manner as in Example 1. Table 15 shows the measurement results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

簡便な工程によって、疎水性の高い樹脂中にミクロフィブリル化植物繊維を均一に分散させることが出来、得られる樹脂組成物を成形してなる成形材料の機械的強度を向上させることが出来る、樹脂組成物の製造方法を提供する。また、耐熱性に優れ、低線熱膨張の樹脂組成物を提供する。 熱可塑性樹脂又は熱硬化性樹脂(A)、及びミクロフィブリル化植物繊維(B')又は植物繊維(b')を膨潤させることが可能な液体中でアルキル若しくはアルケニル無水コハク酸で変性されて得た変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)を有機液体(C)の存在下で混合する工程を含む樹脂組成物の製造方法に関する。

Description

変性ミクロフィブリル化植物繊維を含む樹脂組成物の製造方法、及びその樹脂組成物
 本発明は、アルキル又はアルケニル無水コハク酸によって変性された変性ミクロフィブリル化植物繊維を含む樹脂組成物の製造方法、及び樹脂組成物に関する。
 ミクロフィブリル化植物繊維は、軽量、高強度、高弾性率、低線熱膨張といった優れた特性を有する為、樹脂等の補強材料として広く知られている。しかしながら、ミクロフィブリル化植物繊維は、非常に親水性が高い為、ポリプロピレンやポリエチレン等の疎水性の高い樹脂とは親和性が乏しく、二軸押出機械等で機械的に混練しただけでは、均一に混合することが出来ず、結果として得られる複合材料の機械的物性も良好とはいえない。
 その為、ミクロフィブリル化植物繊維を疎水変性することで樹脂中での分散性を向上させようとする試みが特許文献1~3のように多くなされてきた。
 特許文献1では、パルプを酸ハロゲン化物でエステル化して得た疎水変性パルプを水系媒体中でビーズミル処理することにより疎水変性ミクロフィブリル化植物繊維を調製している。また、得られた含水の疎水変性ミクロフィブリル化植物繊維と樹脂を混練することにより疎水変性ミクロフィブリル化植物繊維と樹脂からなる複合材料を得ている。
 このような含水の疎水変性ミクロフィブリル化植物繊維を樹脂と混合した場合、含まれている水によって、疎水変性ミクロフィブリル化植物繊維が樹脂中で十分に分散されず、複合材料の引張強度、弾性率等の機械的物性が十分に発揮されないという問題がある。
 特許文献2では、水系でセルロース系繊維の変性を行っている。ミクロフィブリル化植物繊維は凝集性が著しく高い為、比較的親和性が高い、水中においてもミクロフィブリル化植物繊維を完全に均一分散することが難しい。この為、水系で疎水化するとセルロース繊維、又はミクロフィブリル化植物繊維のいずれを用いた場合でも、そのごく表面しか疎水変性されない。従って、混練時にせん断力がかかると疎水変性されていないセルロース面が出来てしまう為、完全にセルロース繊維を樹脂中に分散させることが難しいだけではなく、結果として、この未変性のミクロフィブリル化植物繊維部分が接着不良部となり破壊が起こる為、優れた機械的物件の複合材料が得られない。
 特許文献3では、ミクロフィブリル化植物繊維の変性はセルロース膨潤性が乏しいトルエン中で実施されており、本発明の様なセルロース膨潤性の溶媒中で行われていないことからミクロフィブリル化植物繊維の表面変性を均一に行うことは困難である。この為、特許文献2と同様にミクロフィブリル化植物繊維の樹脂中での分散状態が十分とはいえず、結果として優れた機械的物性の複合材料が得られない。
 このように、ミクロフィブリル化植物繊維を含む成形材料を製造の際に、ポリエチレン、ポリプロピレン等の疎水性の高い熱可塑性樹脂を用いた場合、ミクロフィブリル化植物繊維の分散性が悪く、更なる機械的強度を得ることが非常に困難であった。
特開2011-213754号 特開2010-106251号 特開2011-105799号
 本発明は、簡便な工程によって、疎水性の高い樹脂中にミクロフィブリル化植物繊維を均一に分散させることが出来、得られる樹脂組成物を成形してなる成形材料の機械的強度を向上させることが出来る、樹脂組成物の製造方法を提供することを主な目的とする。
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、植物繊維又はミクロフィブリル化植物繊維を膨潤可能な液体中でアルキル又はアルケニル無水コハク酸でエステル化することによって得られる変性植物繊維、又は変性ミクロフィブリル化植物繊維を、有機液体存在下で熱可塑性樹脂又は熱硬化性樹脂に混合し、次いで混練することにより、変性ミクロフィブリル化植物繊維の分散性を向上させ、更には、得られる成形材料の機械的強度を向上することが出来ることを見出した。
 本発明はこのような知見に基づき、更に鋭意検討を重ねて完成した発明である。すなわち、本発明は下記項に示す樹脂組成物の製造方法、及び樹脂組成物を提供する。
 項1.(1)熱可塑性樹脂又は熱硬化性樹脂(A)、及び
ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)を膨潤させることが可能な液体中でアルキル若しくはアルケニル無水コハク酸で変性されて得た変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)を
有機液体(C)の存在下で混合する工程
を含む
樹脂組成物の製造方法。
 前記工程(1)は、ミクロフィブリル化植物繊維(B’)を膨潤させることが可能な液体中で、ミクロフィブリル化植物繊維(B’)をアルキル若しくはアルケニル無水コハク酸で変性されて得た変性ミクロフィブリル化植物繊維(B)と熱可塑性樹脂又は熱硬化性樹脂(A)とを、有機液体(C)の存在下で混合することと、植物繊維(b’)を膨潤させることが可能な液体中で、植物繊維(b’)をアルキル若しくはアルケニル無水コハク酸で変性されて得た変性植物繊維(b)と熱可塑性樹脂又は熱硬化性樹脂(A)とを、有機液体(C)の存在下で混合することを含む。
 項2.(2)工程(1)で得られた混合物を、さらに混練する工程
を含む
項1に記載の樹脂組成物の製造方法。
 項3.工程(1)における変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)が、変性植物繊維(b)であって、
工程(2)における混練中に熱可塑性樹脂又は熱硬化性樹脂(A)中で変性植物繊維(b)が解繊され、
熱可塑性樹脂又は熱硬化性樹脂(A)中で、変性ミクロフィブリル化植物繊維(B)が分散されることを特徴とする
項2に記載の樹脂組成物の製造方法。
 項4.(1)熱可塑性樹脂又は熱硬化性樹脂(A)、及び
植物繊維(b’)を膨潤させることが可能な液体中でアルキル若しくはアルケニル無水コハク酸で変性されて得た変性植物繊維(b)を
水(C’)の存在下で混合する工程、並びに
(2)工程(1)で得られた混合物を、さらに混練する工程
を含む
樹脂組成物の製造方法であって、
工程(2)における混練中に熱可塑性樹脂又は熱硬化性樹脂(A)中で変性植物繊維(b)が解繊され、
熱可塑性樹脂又は熱硬化性樹脂(A)中で、変性ミクロフィブリル化植物繊維(B)が分散されることを特徴とする
樹脂組成物の製造方法。
 項5.ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)を膨潤させることが可能な液体が、アミド系溶媒、及びスルホキシド系溶媒よりなる群から選ばれる少なくとも1種を含有することを特徴とする項1~項4の何れか1項に記載の樹脂組成物の製造方法。
 項6.有機液体(C)が、低級アルコール、エステル、炭化水素、ケトン及びエーテルよりなる群から選ばれる少なくとも1種である項1~項3、及び項5の何れか1項に記載の樹脂組成物の製造方法。
 項7.変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)中のカルボキシル基が未変性である、又は、カルボン酸塩、カルボキシアミド、若しくはアルコキシカルボニル基に変性された変性ミクロフィブリル化植物繊維又は変性植物繊維である項1~項6の何れか1項に記載の樹脂組成物の製造方法。
 項8.カルボン酸塩が、アルカリ土類金属塩である項7に記載の樹脂組成物の製造方法。
 項9.変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)の配合量が、熱可塑性樹脂又は熱硬化性樹脂(A)100質量部に対して、0.1~1,000質量部である項1~項8の何れか1項に記載の樹脂組成物の製造方法。
 項10.前記工程(2)が、前記工程(1)で得られた混合物を、酸化防止剤の存在下で、さらに混練する工程である請求項2~請求項9の何れか1項に記載の樹脂組成物の製造方法。
 項11.前記工程(1)の変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)が、ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)を、アルキル若しくはアルケニル無水コハク酸による変性処理、並びにアシル化処理により得られるものである請求項1~請求項10の何れか1項に記載の樹脂組成物の製造方法。
 項12.請求項1~請求項11の何れか1項に記載の樹脂組成物の製造方法によって製造される樹脂組成物。
 項13.請求項12に記載の樹脂組成物からなる樹脂成形材料。
 項14.請求項13に記載の樹脂成形材料を成形してなる樹脂成形体。
 項15.ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)をアルキル若しくはアルケニル無水コハク酸による変性処理、並びにアシル化処理することで得られる変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)。
 項16.熱可塑性樹脂及び変性ミクロフィブリル化植物繊維(B)を含む樹脂組成物であって、
変性ミクロフィブリル化植物繊維(B)がミクロフィブリル化植物繊維(B’)をアルキル若しくはアルケニル無水コハク酸で変性されて得られるものであり、
樹脂組成物中で熱可塑性樹脂がラメラ層を形成し、該ラメラ層が変性ミクロフィブリル化植物繊維(B)の繊維長の方向と異なる方向に積層してなる樹脂組成物。
 項17.熱可塑性樹脂及び変性ミクロフィブリル化植物繊維(B)を含む樹脂組成物であって、
変性ミクロフィブリル化植物繊維(B)がミクロフィブリル化植物繊維(B’)をアルキル若しくはアルケニル無水コハク酸で変性されて得られるものであり、
樹脂組成物中で熱可塑性樹脂がラメラ層を形成し、該ラメラ層が変性ミクロフィブリル化植物繊維(B)の繊維長の方向と異なる方向に積層してなり、
変性ミクロフィブリル化植物繊維(B)の繊維長の方向と同じ方向に、一軸配向した樹脂の繊維状芯を有し、
変性ミクロフィブリル化植物繊維(B)と該繊維状芯との間で、樹脂のラメラ層が、変性ミクロフィブリル化植物繊維(B)の繊維長の方向と異なる方向に積層してなる樹脂組成物。
 項18.前記変性ミクロフィブリル化植物繊維(B)が、ミクロフィブリル化植物繊維(B’)を、アルキル若しくはアルケニル無水コハク酸による変性処理、並びにアシル化処理により得られるものである、請求項16又は請求項17に記載の樹脂組成物。
 項19.熱可塑性樹脂、並びに変性ミクロフィブリル化植物繊維(B)及び/又は変性植物繊維(b)を含む樹脂組成物であって、
該変性ミクロフィブリル化植物繊維(B)及び変性植物繊維(b)が、ミクロフィブリル化植物繊維(B’)及び/又は植物繊維(b’)を、アルキル若しくはアルケニル無水コハク酸による変性処理、並びにアシル化処理により得られるものである樹脂組成物。
 項20.前記熱可塑性樹脂が、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、及びポリアセタール系樹脂よりなる群から選ばれる少なくとも1種の樹脂である請求項16~請求項19の何れか1項に記載の樹脂組成物。
 項21.前記ポリオレフィン系樹脂が、ポリエチレンである請求項20に記載の樹脂組成物。
 項22.更に酸化防止剤を含む、請求項16~請求項21の何れか1項に記載の樹脂組成物。
 項23.請求項16~請求項22の何れか1項に記載の樹脂組成物からなる樹脂成形材料。
 項24.請求項23に記載の樹脂成形材料を成形してなる樹脂成形体。
 以下、本願発明について、詳述する。
 本発明の樹脂組成物の製造方法は、熱可塑性樹脂又は熱硬化性樹脂(A)、及びミクロフィブリル化植物繊維(B’)又は植物繊維(b’)を膨潤させることが可能な液体中でアルキル若しくはアルケニル無水コハク酸で変性されて得た変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)を有機液体(C)の存在下(又は特定の条件下においては、水(C’)の存在下)で混合する工程を含む。
 熱可塑性樹脂としては、オレフィン系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、ポリアミド樹脂、ポリカーボネート系樹脂、ポリエステル樹脂、ポリスルホン樹脂、トリアセチル化セルロース、ジアセチル化セルロース等のセルロース系樹脂等が挙げられる。
 オレフィン系樹脂としては、各種ポリエチレン系樹脂(例えば、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、バイオポリエチレン)、ポリプロピレン系樹脂、塩化ビニル樹脂、スチレン樹脂、(メタ)アクリル樹脂、ビニルエーテル樹脂等が挙げられる。
 ポリアミド系樹脂としてはポリアミド6(PA6、ε-カプロラクタムの開環重合体)、ポリアミド66(PA66、ポリヘキサメチレンアジポアミド)、ポリアミド11(PA11、ウンデカンラクタムを開環重縮合したポリアミド)、ポリアミド12(PA12、ラウリルラクタムを開環重縮合したポリアミド)等が例示される。
 ポリエステル系樹脂としては、ポリ乳酸、ポリカプロラクトン、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等が例示される。
 熱硬化性樹脂としては、例えば、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ジアリルフタレート樹脂、ポリウレタン樹脂、ケイ素樹脂、ポリイミド樹脂等の熱硬化性樹脂等が使用出来る。これらの樹脂は、1種を単独で用いてもよく、また、2種以上を組み合わせて使用してもよい。
 また、相溶化剤として上記の熱可塑性樹脂又は熱硬化性樹脂に無水マレイン酸やエポキシ等を付加し極性基を導入した樹脂、例えば無水マレイン酸変性ポリエチレン樹脂、無水マレイン酸変性ポリプロピレン樹脂、市販の各種相溶化剤を併用しても良い。これらの樹脂は、単独で使用してもよく、2種以上の混合樹脂として用いてもよい。また、2種以上の混合樹脂として用いる場合には、無水マレイン酸変性樹脂とその他のポリオレフィン系樹脂を組み合わせて用いても良い。
 無水マレイン酸変性樹脂とその他のポリオレフィン系樹脂を組み合わせた混合樹脂を用いる場合、無水マレイン酸変性樹脂の含有割合としては、熱可塑性樹脂又は熱硬化性樹脂(A)中、1~40質量%程度が好ましく、1~20質量%程度がより好ましい。混合樹脂として用いる場合の具体例としては、より具体的には、無水マレイン酸変性ポリプロピレン系樹脂とポリエチレン樹脂、又はポリプロピレン樹脂、無水マレイン酸変性ポリエチレン樹脂とポリエチレン樹脂、又はポリプロピレン樹脂等が挙げられる。
 変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)は、ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)を膨潤させることが可能な液体中でアルキル若しくはアルケニル無水コハク酸で変性させることによって得られる。
 変性ミクロフィブリル化植物繊維(B)は、ミクロフィブリル化植物繊維(B’)を膨潤させることが可能な液体中で、ミクロフィブリル化植物繊維(B’)をアルキル若しくはアルケニル無水コハク酸で変性させることによって得られる。変性植物繊維(b)は、植物繊維(b’)を膨潤させることが可能な液体中で、植物繊維(b’)をアルキル若しくはアルケニル無水コハク酸で変性させることによって得られる。
 ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)の原料として用いられる植物繊維を含有する材料(植物繊維含有材料)としては、木材、竹、麻、ジュート、ケナフ、綿、ビート、農産物残廃物、布等の天然植物繊維原料から得られるパルプ、レーヨンやセロファン等の再生セルロース繊維等が挙げられる。特に、パルプが好ましい原材料として挙げられる。
 前記パルプとしては、植物原料を化学的、若しくは機械的に、又は両者を併用してパルプ化することで得られるケミカルパルプ(クラフトパルプ(KP)、亜硫酸パルプ(SP))、セミケミカルパルプ(SCP)、ケミグランドパルプ(CGP)、ケミメカニカルパルプ(CMP)、砕木パルプ(GP)、リファイナーメカニカルパルプ(RMP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)、及びこれらの植物繊維を主成分とする脱墨古紙パルプ、段ボール古紙パルプ、雑誌古紙パルプが好ましいものとして挙げられる。これらの原材料は、必要に応じ、脱リグニン、又は漂白を行い、当該植物繊維中のリグニン量を調整することが出来る。
 これらのパルプの中でも、繊維の強度が強い針葉樹由来の各種クラフトパルプ(針葉樹未漂白クラフトパルプ(以下、NUKPということがある)、針葉樹酸素晒し未漂白クラフトパルプ(以下、NOKPということがある)、針葉樹漂白クラフトパルプ(以下、NBKPということがある)が特に好ましい。
 原料となる植物繊維は主にセルロース、ヘミセルロース、リグニンから構成される。植物繊維含有材料中のリグニン含有量は、通常0~40質量%程度、好ましくは0~10質量%程度である。リグニン含有量の測定は、Klason法により測定することが出来る。
 変性ミクロフィブリル化植物繊維(B)を調製する方法としては、前記で挙げられた植物繊維(b’)をアルキル又はアルケニル無水コハク酸でエステル化し、変性植物繊維(b)を調製した後、変性植物繊維(b)を解繊する方法、又は前記で挙げられた植物繊維(b’)を解繊し、ミクロフィブリル化植物繊維(B’)を調製し、その後、ミクロフィブリル化植物繊維(B’)をアルキル又はアルケニル無水コハク酸でエステル化する方法等が挙げられる。
 変性植物繊維(b)又は未変性の植物繊維(b’)を解繊する方法としては、公知の方法が採用出来、例えば、前記植物繊維含有材料の水懸濁液、スラリーをリファイナー、高圧ホモジナイザー、グラインダー、一軸又は多軸混練機、ビーズミル等により機械的に摩砕、ないし叩解することにより解繊する方法が使用出来る。必要に応じて、上記の解繊方法を組み合わせて処理してもよい。
 多軸混練機を用いた場合、入手のしやすさ等の観点から、二軸混練機が好ましい。
 一軸又は多軸混練機を用いる場合、スクリューの周速の下限値は、通常45m/分程度である。スクリューの周速の下限値は60m/分程度が好ましく、90m/分程度が特に好ましい。また、スクリューの周速の上限値は通常200m/分程度である。スクリューの周速の上限値は150m/分程度が好ましく、100m/分程度が特に好ましい。
 本発明において使用される混練機のL/D(スクリュー径Dと混練部の長さLの比)は、通常15~60程度、好ましくは30~60程度である。
 一軸又は多軸混練機による解繊時間は、植物繊維含有材料の種類、前記混練機のL/D等によっても異なるが、前記のL/Dの範囲内であれば、通常30~60分程度、好ましくは30~45分程度である。
 混練機による解繊に供する回数(パス回数)は、目的とするミクロフィブリル化植物繊維の繊維径、繊維長、また、前記混練機のL/D等によっても変化するが、通常1~8回程度、好ましくは1~4回程度である。パス回数があまりに多くなりすぎると、植物繊維の解繊はより進行するものの、同時に発熱も生じる為、セルロースが着色したり、熱ダメージ(シート強度の低下)につながる。
 混練機のスクリュー中の混練部で、混練を行う箇所(セグメント)は1カ所であってもよいし、2カ所以上存在してもよい。
 また、混練部が2カ所以上存在する場合、各混練部の間に1個又は2個以上のせき止め構造(返し)を有していてもよい。なお、本発明においては、スクリューの周速が45m/分以上と従来のスクリューの周速よりもかなり大きいので、混練機への負荷を軽減する為には、せき止め構造を有しない方がより好ましい。
 二軸混練機を構成する二本のスクリューの回転方向は、変性植物繊維(b)又は未変性の植物繊維(b’)を解繊させることができれば、異方向、同方向のどちらでもよい。また、二軸混練機を構成する二本のスクリューの噛み合いは、完全噛み合い型、不完全噛み合い型、非噛み合い型があるが、本発明の解繊に用いるものとしては、完全噛み合い型が好ましい。
 スクリュー長さとスクリュー直径の比(スクリュー長さ/スクリュー直径)は20~150程度であればよい。具体的な二軸混練機としては、(株)テクノベル製「KZW」、「WDR」、「MFU」、日本製鋼所製「TEX」、東芝機械社製「TEM」、コペリオン社製「ZSK」(株)神戸製鋼所「LCM」等を用いることが出来る。
 一軸又は多軸混練機による解繊処理は、植物繊維(b’)又は変性植物繊維(b)と分散媒を用いて懸濁液とし、該懸濁液を混練することによって行われる。
 一軸又は多軸混練機による解繊処理における植物繊維と分散媒の混合によって得られる懸濁液中の植物繊維(b’)又は変性植物繊維(b)の固形分濃度としては、通常10~70質量%程度、好ましくは20~50質量%程度である。植物繊維(b’)又は変性植物繊維(b)の固形分濃度を10質量%以上とすることにより、植物繊維(b’)又は変性植物繊維(b)を均一に解繊することが出来るが、植物繊維(b’)又は変性植物繊維(b)の固形分濃度を70質量%以上とすると二軸解繊時に植物繊維(b’)又は変性植物繊維(b)が混練機内で詰まったり、過度なトルクが二軸にかかり二軸混練機の動作が不安定となる為、生産性、及び得られたミクロフィブリル化植物繊維(B’)又は変性ミクロフィブリル化植物繊維(B)の性状の両面から好ましくない。
 また、一軸又は多軸混練機による解繊時の温度には特別の制約はないが、通常0~100℃で行うことが可能であり、特に好ましい温度は0~50℃である。
 また、植物繊維(b’)又は変性植物繊維(b)をグラインダーにより解繊する場合には、グラインダーは通常上下2枚の砥石の間に植物繊維(b’)又は変性植物繊維(b)を含むスラリーが通過するときに発生するせん断力や衝撃力、遠心力により解繊が進行するが、植物繊維(b’)又は変性植物繊維(b)の濃度が高すぎると詰まってしまうことや薄すぎるとせん断をうけずにそのまま繊維が通ってしまう為、通常、植物繊維(b’)又は変性植物繊維(b)を分散媒で0.1~5.0質量%、好ましくは0.1~2%、更に好ましくは0.5~1.5%程度へ希釈しスラリーとしてグラインダーへ投入し解繊処理を行う。解繊時の負荷によりスラリーの温度が上昇する。1パスで目的の解繊度のミクロフィブリル化植物繊維が得られない場合は繰り返してグラインダー処理を行うことにより目的の解繊度のミクロフィブリル化植物繊維(B’)又は変性ミクロフィブリル化植物繊維(B)を得ることが出来る。具体的には増幸産業(株)製「スーパーマスコロイダー」や(株)栗田機械製作所の「ピュアファインミル」等の市販の装置を利用することが出来る。
 植物繊維(b’)又は変性植物繊維(b)をビーズミルによって解繊する方法としては、植物繊維(b’)又は変性植物繊維(b)と分散媒を用いて懸濁液とし、該懸濁液を解繊する方法が挙げられる。使用される分散媒としては、前記一軸又は多軸混練機による解繊処理に用いられる分散媒と同様のものが用いられる。
 ビーズミルによる解繊処理において用いられる懸濁液中に含まれる植物繊維(b’)又は変性植物繊維(b)の固形分濃度としては、0.3~2質量%程度が好ましく、0.5~1.8質量%程度がより好ましく、0.7~1.5質量%程度が更に好ましい。懸濁液中に含まれる植物繊維(b’)又は変性植物繊維(b)の含有割合を、0.3質量%以上に設定することで、ビーズ同士の衝突によるビーズの摩耗が抑制出来、生産性が向上させることが出来る。また、植物繊維(b’)又は変性植物繊維(b)の固形分濃度を2質量%以下に設定することで、粘度上昇が抑制出来、作業効率を向上させることが出来る。また、ビーズミルベッセル内での詰まり等を防止することが出来る。
 一軸又は多軸混練機、グラインダー、ビーズミル等による機械的処理により解繊する植物繊維(b’)又は変性植物繊維(b)の懸濁液を調製する際に用いられる分散媒としては、これらの植物繊維を分散できる液体であれば特に制限は無いが、例えば、水、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブタノール等の炭素数1~4のアルコール、エチレングリコール、プロピレングリコール、ポリエチレングリコール、エチレングリコールメチルエーテル、テトラヒドロフラン等のエーテル系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒が挙げられ、これらは単独、或いは2種類以上の溶媒を併用して用いることが出来る。
 ところで、植物の細胞壁の中では、幅4nm程のセルロースミクロフィブリル(シングルセルロースナノファイバー)が複数束となった幅数十ナノメートルのセルロースミクロフィブリル束が最小単位として存在する。これが、植物の基本骨格物質(基本エレメント)である。そして、このセルロースミクロフィブリル束が集まって、植物の骨格を形成している。本発明において、「ミクロフィブリル化植物繊維」とは、植物繊維を含む材料(例えば、木材パルプ等)の繊維をナノサイズレベルまで解きほぐしたものである。
 ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)をアルキル若しくはアルケニル無水コハク酸で変性させる際に、ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)を膨潤させることが可能な液体中で変性させる。
 膨潤させることが可能な液体としては、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン(NMP)、ヘキサメチルリン酸トリアミド等のアミド系溶媒や、ジメチルスルホキシド(DMSO)等が挙げられる。これらの液体は、1種単独で用いてもよく、2種以上を混合して用いてもよい。これらの中で、NMP、ジメチルホルムアミド、ジメチルアセトアミド及びDMSOがより好ましい。
 また、上記の溶媒の効果を妨げない範囲でアルキル又はアルケニル無水コハク酸と反応しない有機溶媒を併用しても構わない。具体例としては、塩化メチレン、クロロホルム、四塩化炭素等のハロゲン系溶媒、アセトン、メチルエチルケトン(MEK)等のケトン系溶媒;テトラヒドロフラン(THF)、ジオキサン等の環状エーテル系溶媒、エチレングリコール、プロピレングリコール、ポリエチレングリコール等のアルコール類のジメチル、ジエチル化物等のエーテル系溶媒、ヘキサン、ヘプタン、ベンゼン、トルエン等の非極性溶媒、又はこれらの混合溶媒である。また、これらから選ばれた2種以上の混合溶媒を使用してもよい。
 アルキル又はアルケニル無水コハク酸としては、炭素数4~30のオレフィン由来の骨格と無水マレイン酸骨格を持つ化合物から調製される化合物が例示される。
 具体的には、アルキル無水コハク酸としてはオクチル無水コハク酸、ドデシル無水コハク酸、ヘキサデシル無水コハク酸、オクタデシル無水コハク酸等が例示され、アルケニル無水コハク酸としては、ペンテニル無水コハク酸、ヘキセニル無水コハク酸、オクテニル無水コハク酸、デセニル無水コハク酸、ウンデセニル無水コハク酸、ドデセニル無水コハク酸、トリデセニル無水コハク酸、ヘキサデセニル無水コハク酸、オクタデセニル無水コハク酸等が例示される。これらは1種類単独で用いても良く、また、疎水性や耐水性等の性状を制御することが出来るという観点から2種類以上を併用して用いても良い。
 また、炭素数4~30のオレフィン由来の骨格として、末端に不飽和結合を持つポリオレフィンの熱分解物、又はオレフィンの重合物を例示することが出来る。例えば、特開2006-316202に開示されている方法と同様の方法を用いて、比較的分子量の低いポリオレフィンを加熱することで末端に不飽和結合を持つ炭素数4~30のポリオレフィンの熱分解物を得ることが出来る。
 末端に不飽和結合を持つポリオレフィンの熱分解物としては、ポリプロピレンの熱分解物であることが好ましい。ポリプロピレンの熱分解物は好ましくは炭素数9~21であり、より好ましくは炭素数12~18である。この場合、アルケニル無水コハク酸としては、ポリオレフィンの熱分解物-無水コハク酸となる。
 末端に不飽和結合を持つオレフィンの重合物としては、プロピレンのオリゴマーであることが好ましい。プロピレンのオリゴマーは好ましくは炭素数9~21であり、より好ましくは炭素数12~18である。この場合、アルケニル無水コハク酸としてはプロピレンのオリゴマー-無水コハク酸となる。
 また、アルキル無水コハク酸としては、前記のアルケニル無水コハク酸の不飽和結合に水素を付加して得た水添物が例示される。
 更に、アルキル若しくはアルケニル無水コハク酸変性の効果を妨げない範囲で、アルキル若しくはアルケニル無水コハク酸変性ミクロフィブリル化植物繊維(B)又はアルキル若しくはアルケニル無水コハク酸変性植物繊維(b)を、更にメチル化、エチル化等のエーテル化、及び/又はアシル化変性しても良い。
 また、ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)をメチル化、エチル化等のエーテル化、及び/又はアシル化変性した後に、アルキル若しくはアルケニル無水コハク酸変性しても良い。
 アルキル若しくはアルケニル無水コハク酸変性ミクロフィブリル化植物繊維(B)又はアルキル若しくはアルケニル無水コハク酸変性植物繊維(b)の調製とは別に、ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)をメチル化、エチル化等のエーテル化、及び/又はアシル化変性を行って、変性ミクロフィブリル化植物繊維又は変性植物繊維を調製した後、アルキル若しくはアルケニル無水コハク酸変性ミクロフィブリル化植物繊維(B)又はアルキル若しくはアルケニル無水コハク酸変性植物繊維(b)と混合しても良い。
 アシル化変性としては、アセチル基、ベンゾイル基、メタクリロイル基、プロパノイル基、ブタノイル基、ペンタノイル基、ヘキサノイル基、ヘプタノイル基、オクタノイル基、ノナノイル基、デカノイル基、ウンデカノイル基、ドデカノイル基、ミリストイル基、パルミトイル基、ステアロイル基、ピバロイル基、2-メタクリロイルオキシエチルイソシアノイル基等が例示される。導入される官能基は1種でも良いし、2種以上でも良い。
 前記、ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)をアルキル又はアルケニル無水コハク酸でエステル化する際の、アルキル又はアルケニル無水コハク酸の添加量は、ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)を構成するセルロースのグルコース単位1モルに対して、0.1~200モル程度が好ましい。なお、ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)に対してアルキル又はアルケニル無水コハク酸を過剰に加えた後、所定の置換度(DS)まで反応させた後、反応を停止させることも出来るし、必要最小限のアルキル又はアルケニル無水コハク酸を加え、反応時間、温度、触媒量等を調整することで所定のDSまで反応させることも出来る。
 また、アルキル又はアルケニル無水コハク酸は、ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)と全てエステル化させずに、一部未反応のまま残存していてもよい。
 ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)をアルキル又はアルケニル無水コハク酸によりエステル化する際の反応温度としては、20~160℃程度が好ましく、40~120℃程度がより好ましく、60~100℃程度が更に好ましい。温度が高い方がミクロフィブリル化植物繊維(B’)又は植物繊維(b’)とアルキル又はアルケニル無水コハク酸との反応効率が高くなり好ましいが温度が高すぎると一部植物繊維の劣化が起こる為、上記の様な温度範囲とすることが好ましい。
 ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)とアルキル又はアルケニル無水コハク酸との反応は、触媒を用いなくても脱水を十分に行えば加熱することによりある程度は進行させることが出来るが、触媒を用いた方がより温和な条件で、かつ高効率でエステル化反応を進行させることが出来るという点でより好ましい。
 エステル化反応において用いる触媒としては、塩酸、硫酸、酢酸等の酸触媒、アルカリ触媒、アミン系触媒が挙げられる。アミン系触媒の具体例としては、ピリジン、ジメチルアミノピリジン(DMAP)等のピリジン系化合物、トリエチルアミン、トリメチルアミン、ジアザビシクロオクタン等の三級アミン化合物等が挙げられ、これらの中で、ピリジン、トリエチルアミン、ジメチルアミノピリジン(DMAP)、ジアザビシクロオクタンが、触媒活性が優れるという観点から好ましい。アルカリ触媒の具体例としては炭酸カリウム、炭酸ナトリウム、酢酸カリウム、酢酸ナトリウム等のアルカリ、又はアルカリ土類金属の塩が例示される。アルカリ触媒とアミン系化合物を併用して使用しても良い。
 上記の触媒の配合量は、基本的には触媒量であればよいが、例えばピリジンの様に液状のアミン化合物の場合は触媒兼溶媒として多めに使用しても構わない。使用量としては例えば、ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)を構成するセルロースのグルコース単位1モルに対して通常、0.001~10モルである。ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)に対して触媒を過剰に加えた後、所定のDSまで反応させた後、反応を停止させることも出来るし、必要最小限の触媒を加え、反応時間、温度等を調整することで所定のDSまで反応させることも出来る。
 上記の方法により得られる変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)は、セルロース中の水酸基とアルキル又はアルケニル無水コハク酸中の無水コハク酸とが反応し、エステル結合を形成すると共に、カルボキシル基が形成される。即ち、アルキル又はアルケニル無水コハク酸は水酸基との反応によりアルキル又はアルケニルコハク酸のハーフエステルとなる為、変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)にはカルボキシル基も導入される。
 変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)中に存在するカルボキシル基は、未変性即ちカルボン酸であってもよく、カルボン酸塩、若しくはアルコキシカルボニル基、カルボキシアミド基に変性されていてもよい。カルボン酸塩としては、カリウム塩、ナトリウム塩等のアルカリ金属塩、マグネシウム塩、カルシウム塩等のアルカリ土類金属塩、アミン塩等が挙げられるが、樹脂組成物から形成される成形体の引張強度、及び弾性率を維持したまま耐熱性を向上させることが出来るという観点から、アルカリ土類金属塩が好ましく、カルシウム塩がより好ましい。
 変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)中に存在するカルボキシル基をカルボン酸塩に変性させる方法としては、変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)を水等の液体に分散させ、攪拌している所に金属塩分散液を添加する方法等が挙げられる。
 また、アルコキシカルボニル基としては、炭素数1~20程度、好ましくは、炭素数1~15程度のアルコキシカルボニル基であることが好ましい。
 変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)中に存在するカルボキシル基をアルコキシカルボニル基に変性する方法としては、変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)を水等の液体に分散させ、攪拌している所にハロゲン化アルキルを添加する方法等が挙げられる。
 ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)を、エーテル化及び/又はアシル化変性する際の、変性剤(塩化ベンゾイル、無水酢酸、無水ミリスチン酸等)の添加量は、ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)を構成するセルロースのグルコース単位1モルに対して、0.1~200モル程度が好ましい。なお、ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)に対して変性剤を過剰に加えた後、所定の置換度(DS)まで反応させた後、反応を停止させることも出来るし、必要最小限の変性剤を加え、反応時間、温度、触媒量等を調整することで所定のDSまで反応させることも出来る。
 また、エーテル化及び/又はアシル化する変性剤は、ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)と全て変性させずに、一部未反応のまま残存していてもよい。
 ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)を変性剤によりエーテル化及び/又はアシル化変性する際の反応温度としては、20~160℃程度が好ましく、40~120℃程度がより好ましく、60~100℃程度が更に好ましい。温度が高い方がミクロフィブリル化植物繊維(B’)又は植物繊維(b’)と変性剤との反応効率が高くなり好ましいが、温度が高すぎると一部植物繊維の劣化が起こる為、上記の様な温度範囲とすることが好ましい。
 ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)とエーテル化及び/又はアシル化する変性剤との反応は、触媒を用いなくても脱水を十分に行えば加熱することによりある程度は進行させることが出来るが、触媒を用いた方がより温和な条件で、かつ高効率でエーテル化及び/又はアシル化反応を進行させることが出来るという点でより好ましい。触媒の種類、使用量は、上記エステル化反応で例示した条件と同じ条件で良い。
 樹脂組成物中の変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)の配合量は、目的に応じて異なるが、例えば樹脂組成物をそのまま成形し成形材料を作る場合、樹脂100質量部に対して、0.5~80質量部程度が好ましく、1~70質量部程度がより好ましく、2~50質量部程度が更に好ましい。変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)の配合量が増えると得られた成形物の強度、弾性率が向上するので好ましいが、一方で樹脂の成形時の流動性が落ちる為、複雑な形状に成形するのが困難になる。
 前記、ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)とアルキル又はアルケニル無水コハク酸とのエステル化後、得られる変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)は、残存するアルキル又はアルケニル無水コハク酸、触媒等を除去する為に、洗浄を行う。変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)を洗浄する際の洗浄液は、有機液体(C)と同一であっても良いし、異なっても良いが工程を簡素化させるとの観点から同一であることが好ましい。具体的には水、エタノール、イソプロパノール等の低級アルコール、酢酸エチル等のエステル系溶媒、アセトン、メチルエチルケトン等のケトン、ジオキサン、テトラヒドロフラン、エチレングリコールジメチルエーテル等のエーテル系溶媒、ヘキサン等の炭化水素が例示される。
 また、前記ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)と、エーテル化及び/又はアシル化変性する際の変性剤(塩化ベンゾイル、無水酢酸、無水ミリスチン酸等)との反応後も、残存する変性剤、触媒などを除去する為に洗浄を行う。洗浄に用いる洗浄液は、前記の残存するアルキル又はアルケニル無水コハク酸、触媒等を除去する場合に用いる洗浄液と同じ液体で良い。
 またアミン系触媒や、炭酸カリウム、炭酸ナトリウム等のアルカリ化合物の粉末を触媒として使用した場合には、中和剤によって中和を行ってもよい。中和剤としては、塩酸、硫酸、硝酸等の無機酸、若しくは酢酸等の有機酸及びこれらの水溶液等が挙げられ、酢酸水溶液が好ましい。
 アルキル又はアルケニル無水コハク酸によって変性された変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)のエステル置換度(DS)(ASA変性によるDS)は、親水性の高い植物繊維を熱可塑性樹脂又は熱硬化性樹脂(A)中に均一に分散させたり、植物繊維の耐水性を向上させるという点から、0.05~2.0程度が好ましく、0.1~2.0程度がより好ましく、0.1~0.8程度が更に好ましい。
 メチル化、エチル化等のエーテル化、アシル化変性された変性ミクロフィブリル化植物繊維又は変性植物繊維のエステル置換度(DS)(他の変性によるDS)は、親水性の高い植物繊維を熱可塑性樹脂又は熱硬化性樹脂(A)中に均一に分散させたり、植物繊維の耐水性を向上させるという点から、0.01~2.0程度が好ましく、0.05~1.0程度がより好ましく、0.1~0.8程度が更に好ましい。他の変性処理の種類は特に限定されず、上記の官能基を導入する変性処理である。
 ASA変性によるDSと他の変性によるDSとを組み合せた総エステル置換度(総DS)は、親水性の高い植物繊維を熱可塑性樹脂又は熱硬化性樹脂(A)中に均一に分散させたり、植物繊維の耐水性を向上させるという点から、0.05~2.0程度が好ましく、0.1~2.0程度がより好ましく、0.1~1.0程度が更に好ましい。他の変性処理の種類は特に限定されず、上記の官能基を導入する変性処理である。
 なお、DSは、洗浄により原料として用いたアルキル又はアルケニル無水コハク酸や、それらの加水分解物等の副生成物を除去した後、重量増加率、元素分析、中和滴定法、FT-IR、1H-NMR等の各種分析方法により決定することが出来る。
 変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)を洗浄後、変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)中に水が残存していると、熱可塑性樹脂又は熱硬化性樹脂との分散性が悪くなり、弾性率、及び引張強度の低下が生じる。また、変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)を完全に乾燥させると、変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)間で凝集が生じてしまい、熱可塑性樹脂又は熱硬化性樹脂(A)との混合の工程において均一に分散されず、弾性率、及び引張強度の低下が生じる。
 その為、前記の洗浄後、有機液体(C)で溶媒置換を行い、変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)を有機液体(C)中に存在させておくことが好ましい。
 有機液体(C)としては、低級アルコール、エステル、炭化水素、ケトン、エーテル等が挙げられる。低級アルコールの具体例としては、メタノール、エタノール、n-プロパノール、イソプロピルアルコール、ブタノール等の炭素数1~4の低級アルコールが挙げられる。エステルの具体例としては、酢酸エチル、酢酸メチル、プロピオン酸エチル、プロピオン酸メチル、酪酸エチル、酪酸メチル等が挙げられる。炭化水素の具体例としては、炭素数5~10程度の炭化水素が挙げられ、具体的には、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン等が挙げられる。ケトンの具体例としては、アセトン、メチルエチルケトン等が挙げられ、エーテルの具体例としては、ジエチルエーテル、ジメチルエーテル、テトラヒドロフラン(THF)、ジオキサン等があげられる。これらの中で、エタノール、イソプロパノール、アセトン、ヘキサン、ジオキサン、酢酸エチル等を用いることが好ましい。これらの溶媒は目的に応じて1種類のみ、又は2種類以上併用して用いても良い。
 なお、ミクロフィブリル化植物繊維(B’)は、未解繊の植物繊維と比較して、比表面積が非常に大きく、凝集性が著しく高いので変性ミクロフィブリル化植物繊維(B)と熱可塑性樹脂又は熱硬化性樹脂(A)を混合させ、分散させるためには、有機液体(C)の存在下で行うことが必須であるが、未解繊の植物繊維は、ミクロフィブリル化植物繊維よりも凝集性が強くない為、水(C’)の存在下で、変性植物繊維(b)と熱可塑性樹脂又は熱硬化性樹脂(A)を混合、分散させることが可能である。
 熱可塑性樹脂又は熱硬化性樹脂(A)、及び変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)を有機液体(C)の存在下で混合する工程において、有機液体(C)の配合量としては、変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)100質量部に対して、0.1~1,000,000質量部程度が好ましく、1~100,000質量部程度がより好ましく、10~10,000質量部程度がさらに好ましい。有機液体(C)の配合量を10質量以上に設定することで、変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)を均一に膨潤させられる。また、有機液体(C)の配合量を10,000質量以下に設定することで、製造時のコストを低減出来るという効果が得られる。
 また、この熱可塑性樹脂又は熱硬化性樹脂(A)、及び変性ミクロフィブリル化植物繊維(B)を有機液体(C)の存在下で混合する工程において変性ミクロフィブリル化植物繊維(B)の凝集を起さない範囲で有機液体(C)に水が混入、或いは意図的に混合していても構わない。通常、許容される水の量としては有機液体(C)の20重量%未満、より好ましくは10重量%未満である。
 なお、熱可塑性樹脂又は熱硬化性樹脂(A)と混合する繊維が、変性植物繊維(b)である場合には、水(C’)を含んでいてもよく、水(C’)の存在下で混合、分散させることが可能である。
 また、前記熱可塑性樹脂又は熱硬化性樹脂(A)、変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)を有機液体(C)(又は水(C’))の存在下で混合する工程において、更に無機塩(D)を配合していても良い。無機塩(D)を含有することにより、エステル化された変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)が無機粒子と相互作用し、樹脂組成物の強度、弾性率等が向上するという効果が得られる。
 無機塩(D)としては、第1族、又は第2族の金属からなる塩が挙げられ、具体的には、第1族、又は2族の金属からなる酢酸塩、炭酸塩、硫酸塩、硝酸塩等が挙げられる。第1族の金属としてはナトリウム、カリウムが挙げられ、第2族の金属としては、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられ、より具体的には、硫酸マグネシウム、硫酸バリウム、炭酸バリウム、炭酸カリウム、炭酸カルシウム等が挙げられる。無機塩の粒子径は目的に応じて任意に選択することが出来るが、一般的には小さい方が好ましい。これらの中で、炭酸塩が弾性率向上効果が優れる点で好ましく、比較的表面積の大きな粒子径/結晶径の粉体が容易に得られることや変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)との相互作用しやすいこと、また、得られた成形体の着色が少ないという観点から炭酸カルシウムや炭酸バリウムが更に好ましい。
 無機塩(D)の含有量は、樹脂組成物100質量部に対して、0.1~20質量部であり、0.5~20質量部程度が好ましく、1~10質量部程度がより好ましく、1~10質量部程度が更に好ましい。無機塩(D)の含有量を0.1質量部以上に設定することにより、変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)との相互作用により、成形体の力学物性を向上させることが出来る。また、無機塩(D)の含有量を20質量部以下に設定することにより、樹脂、及び変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)の相対量が少なくならず、強度、弾性率等の力学物性が低下や、成形性の悪化を防ぐことが出来る。
 また前記熱可塑性樹脂又は熱硬化性樹脂(A)、変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)、及び有機液体(C)(又は水(C’))以外にも、任意の添加剤をさらに配合してもよい。
 例えば、相溶化剤;界面活性剤;でんぷん類、アルギン酸等の多糖類;ゼラチン、ニカワ、カゼイン等の天然たんぱく質;タンニン、ゼオライト、セラミックス、金属粉末等の無機化合物;酸化防止剤;着色剤;可塑剤;香料;顔料;流動調整剤;レベリング剤;導電剤;帯電防止剤;紫外線吸収剤;紫外線分散剤;消臭剤;結晶核剤等の添加剤を配合してもよい。
 本発明の樹脂組成物は、更に酸化防止剤を含むことが好ましい。
 酸化防止剤としては特に制限なく用いることができる。酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、ジフェニルアミン誘導体等のアミン系酸化防止剤、硫黄系酸化防止剤、炭酸カルシウム系酸化防止剤等を用いることが好ましい。酸化防止剤を単独、又は2種類以上併用して用いることができる。酸化防止剤を用いることで、成形材料を用いて成形体を製造する時に、成形材料の酸化劣化をより防止でき、成形体の着色や強度低下をより防止できる。
 フェノール系酸化防止剤としては、2,6-ジ-t-ブチル-4-メチルフェノール、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート、テトラキス{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル}メタン等が挙げられる。この中でもヒンダードフェノール系化合物が好ましく、例えばBASA社製「イルガノックス1010」、「イルガノックス1045ML」、住友化学製「スミライザーGA-80」、「スミライザーWX-R」として入手可能である。
 リン系酸化防止剤としては、アルキルホスファイト、アルキルアリールホスファイト、アルキルホスフォナイト、アリールホスフォナイト等を挙げることができ、具体的にはジステアリルペンタエリスリトールジホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ビフェニレンホスファナイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトール-ジホスファイト、ビス(2,4-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトール-ジホスファイト、1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-t-ブチルフェニル)ブタン等を例示することができる。チバ・スペシャリティ・ケミカルズ社製「イルガフォス168」アデカ製「アデカスタブPEP-36」、「アデカスタブPEP-24G」として市販品を入手することが出来る。
 硫黄系酸化防止剤としては、ジラウリル3,3’-チオジプロピオネート、ジミリストイル3,3’-チオジプロピオネート、ジステアリル3,3’-チオジプロピオネート等が例示され、例えばスミライザーTPL-R(住友化学製)として市販品を使用することが出来る。
 任意の添加剤の含有割合としては、本発明の効果が損なわれない範囲で適宜含有されてもよいが、例えば、樹脂組成物中0.01~10質量%程度が好ましく、0.01~5質量%程度がより好ましい。
 酸化防止剤の含有割合としては、成形材料を用いて成形体を製造する時に、成形材料の酸化劣化をより防止でき、成形体の着色や強度低下をより防止できるという点から、適宜調整することができる。例えば、樹脂組成物中0.001~10質量%程度が好ましく、0.01~5質量%程度がより好ましい。
 尚、成形材料を用いて成形体を製造する時に、成形材料の酸化劣化を防止でき、成形体の着色や強度低下を防止できる成形条件であれば、酸化防止剤を用いなくても良い。
 本発明では、成形材料を用いて成形体を製造する時に、成形材料の酸化劣化をより防止でき、成形体の着色や強度低下をより防止できるという点から、工程(2)の混練時に酸化防止剤を添加することが好ましい。
 工程(1)における熱可塑性樹脂又は熱硬化性樹脂(A)、変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)、及びその他の任意の添加剤を有機液体(C)(又は水(C’))の存在下で混合する方法としては、特に限定されないが、例えば、ミキサー、ブレンダー、二軸混練機、ニーダー、ラボプラストミル、ホモジナイザー、高速ホモジナイザー、高圧ホモジナイザー、遊星攪拌装置、3本ロール等の混合、又は攪拌出来る装置を用いる方法が挙げられる。なお、混合中に、加熱、及び/又は減圧を行い、有機液体(C)(又は水(C’))をある程度除去してもよい。有機液体(C)(又は水(C’))の存在下で、上記成分を混合することにより、熱可塑性樹脂又は熱硬化性樹脂(A)中での変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)の乾燥時の凝集を抑制することが出来、均一な分散体を得ることが出来る。
 混合後、得られる混合物は、有機液体(C)(又は水(C’))を含んでいてもよく、また実質的に含まない粉末やペレットであってもよい。
 上記の工程(1)における混合後、得られる混合物は、工程(2)により、混練される。上記の混合物を混練する方法としては、二軸混練機、ニーダー、固相せん断押出し機等の加熱と攪拌が出来る装置で混練(溶融混練)する方法等が挙げられる。また、上記の混合物を公知の粉砕機で粉砕した後に混合しても良い。
 工程(2)は、上記の工程(1)で得られた混合物を、酸化防止剤の存在下で、さらに混練する工程であることが好ましい。酸化防止剤の配合割合は上記の通りである。
 なお、工程(2)の混練中に有機液体(C)(又は水(C’))を除去してもよいが、好ましくは、工程(1)の段階で、工程(2)の処理を行う樹脂と繊維の混合物の全量に対して有機液体(C)(又は水(C’))の含有量が10質量%以下となるまで除去しておくことが好ましい。
 上記混練における混練温度としては、用いられる熱可塑性樹脂又は熱硬化性樹脂(A)の種類に応じて適宜設定されるが、例えば、0~300℃が好ましく、50~250℃がより好ましい。また、高密度ポリエチレンの場合は160~200℃が好ましく、ポリプロピレンの場合は160~220℃程度が好ましく、170~210℃程度がより好ましい。また、ポリ乳酸である場合には、160~220℃が好ましく、170~210℃がより好ましい。
 工程(1)において、変性植物繊維(b)を用いた場合、工程(1)において、有機液体(C)(又は水(C’))の存在下で前記熱可塑性樹脂又は熱硬化性樹脂(A)と共に混合することにより、熱可塑性樹脂又は熱硬化性樹脂(A)中で、変性植物繊維(b)の凝集を抑制することが出来、均一に分散した混合物を得ることが出来る。上記の混合物を工程(2)において、混練すると、混練中に熱可塑性樹脂又は熱硬化性樹脂(A)中で変性植物繊維(b)が解繊され、熱可塑性樹脂又は熱硬化性樹脂(A)中で、変性ミクロフィブリル化植物繊維(B)が分散された樹脂組成物を製造することが出来る。
 前記、熱可塑性樹脂又は熱硬化性樹脂(A)、変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)、及び有機液体(C)(又は水(C’))を混合し混合物を得、混練する具体的な方法としては、例えば、図1~図3に示す製造方法(I)~(III)等が挙げられる。
 製造方法(I)
 図1は、熱可塑性樹脂又は熱硬化性樹脂(A)、及び植物繊維(b’)を膨潤させることが可能な液体中で、植物繊維(b’)をアルキル若しくはアルケニル無水コハク酸で変性されて得た変性植物繊維(b)を、有機液体(C)の存在下で混合することを含む工程(1)を含む本発明の製造方法を詳細に説明した図である。
 図1に示す製造方法(I)は、植物繊維(b’)を膨潤させることが可能な液体中で膨潤させ、膨潤した植物繊維(b’)をアルキル又はアルケニル無水コハク酸(以下、ASAともいう)でエステル化し、ASA変性植物繊維(b)を調製する工程、得られたASA変性植物繊維(b)に有機液体(C)又は水(C’)を配合し、有機液体含有ASA変性植物繊維を調製する工程、得られる有機液体含有ASA変性植物繊維と熱可塑性樹脂又は熱硬化性樹脂(A)とを混合する工程、及び混合物を混練し、熱可塑性樹脂又は熱硬化性樹脂(A)中で変性植物繊維(b)を解繊させる工程を含む。
 植物繊維(b’)をASAでエステル化する方法としては、前記の方法が挙げられる。また、ASA変性植物繊維(b)中に存在するカルボン酸基をさらに変性してもよい。カルボン酸基の変性方法としては、前記で挙げられた方法を用いることが出来る。
 製造方法(II)
 図2は、本発明の熱可塑性樹脂又は熱硬化性樹脂(A)、及び植物繊維(b’)を膨潤させることが可能な液体中で、植物繊維(b’)をアルキル若しくはアルケニル無水コハク酸で変性されて得た変性植物繊維(b)を解繊し、得られる変性ミクロフィブリル化植物繊維(B)を有機液体(C)の存在下で混合することを含む工程(1)を含む本発明の製造方法を詳細に説明した図である。
 図2に示す製造方法(II)は、植物繊維(b’)を膨潤させることが可能な液体中で膨潤させ、膨潤した植物繊維(b’)をASAでエステル化し、得られるASA変性植物繊維(b)を解繊させる工程、得られたASA変性ミクロフィブリル化植物繊維(B)に有機液体(C)を配合し、有機液体含有ASA変性ミクロフィブリル化植物繊維を調製する工程、得られる有機液体含有ASA変性ミクロフィブリル化植物繊維と熱可塑性樹脂又は熱硬化性樹脂(A)とを混合する工程、さらに、必要に応じて、得られる混合物を混練する工程を含む。
 植物繊維(b’)をASAでエステル化する方法としては、前記の方法が挙げられる。また、ASA変性ミクロフィブリル化植物繊維(B)中に存在するカルボン酸基をさらに変性してもよい。カルボン酸基の変性方法としては、前記で挙げられた方法を用いることが出来る。
 製造方法(III)
 図3は、熱可塑性樹脂又は熱硬化性樹脂(A)、及びミクロフィブリル化植物繊維(B’)を膨潤させることが可能な液体中で、ミクロフィブリル化植物繊維(B’)をアルキル若しくはアルケニル無水コハク酸で変性されて得た変性ミクロフィブリル化植物繊維(B)を、有機液体(C)の存在下で混合する工程(1)を含む本発明の製造方法を詳細に説明した図である。
 図3に示す製造方法(III)は、ミクロフィブリル化植物繊維(B’)を膨潤させることが可能な液体中で膨潤させ、膨潤したミクロフィブリル化植物繊維(B’)をASAでエステル化し、得られるASA変性ミクロフィブリル化植物繊維(B)に有機液体(C)を配合し、有機液体含有ASA変性ミクロフィブリル化植物繊維を調製する工程、得られる有機液体含有ASA変性ミクロフィブリル化植物繊維と熱可塑性樹脂又は熱硬化性樹脂(A)とを混合する工程、さらに、必要に応じて、得られる混合物を混練する工程を含む。
 ミクロフィブリル化植物繊維を調製する方法、及びミクロフィブリル化植物繊維(B’)をASAでエステル化する方法としては、前記の方法が挙げられる。また、ASA変性ミクロフィブリル化植物繊維(B)中に存在するカルボン酸基をさらに変性してもよい。カルボン酸基の変性方法としては、前記で挙げられた方法を用いることが出来る。
 これらの製造方法において、図1に示す製造方法(I)は、混練中に樹脂(A)中で変性植物繊維(b)が解繊され、熱可塑性樹脂又は熱硬化性樹脂(A)中で、ASA変性ミクロフィブリル化植物繊維(B)が分散される。その為、変性植物繊維(b’)を解繊させる工程を設ける必要がなく、生産性を向上出来るという観点から好ましい。
 本発明の樹脂組成物は、熱可塑性樹脂が、及び変性ミクロフィブリル化植物繊維(B)を含む樹脂組成物であって、樹脂組成物中で熱可塑性樹脂がラメラ層を形成し、該ラメラ層が変性ミクロフィブリル化植物繊維(B)の繊維長の方向と異なる方向に積層してなる構造を有することが好ましい。
 また、変性ミクロフィブリル化植物繊維(B)の繊維長の方向と同じ方向に、一軸配向した熱可塑性樹脂の繊維状芯を有し、変性ミクロフィブリル化植物繊維(B)と該繊維状芯との間で、熱可塑性樹脂のラメラ層が、変性ミクロフィブリル化植物繊維(B)の繊維長の方向と異なる方向に積層してなる構造を有することが好ましい。
 前記樹脂組成物では、変性ミクロフィブリル化植物繊維(B)はミクロフィブリル化植物繊維(B’)をアルキル若しくはアルケニル無水コハク酸で変性されて得られるものであることが好ましい。
 前記変性ミクロフィブリル化植物繊維(B)は、ミクロフィブリル化植物繊維(B’)を、アルキル若しくはアルケニル無水コハク酸による変性処理、並びに少なくとも1種のアシル化変性処理により得られるものであることが好ましい。
 本発明の樹脂組成物は、熱可塑性樹脂、並びに変性ミクロフィブリル化植物繊維(B)及び/又は変性植物繊維(b)を含む樹脂組成物であって、該変性ミクロフィブリル化植物繊維(B)及び変性植物繊維(b)が、ミクロフィブリル化植物繊維(B’)及び/又は植物繊維(b’)を、アルキル若しくはアルケニル無水コハク酸による変性処理、並びに少なくとも1種のアシル化変性処理により得られるものであることが好ましい。
 変性ミクロフィブリル化植物繊維(B)、変性植物繊維(b)、ミクロフィブリル化植物繊維(B’)及び植物繊維(b’)は、前述の通りである。アルキル若しくはアルケニル無水コハク酸による変性処理、並びに少なくとも1種のアシル化変性処理は、前述の通りである。
 前記、熱可塑性樹脂としては、前記で挙げられたものを用いることができ、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、及びポリアセタール系樹脂が好ましい。また、ポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレンが好ましい。
 樹脂組成物中の変性ミクロフィブリル化植物繊維(B)の繊維径の平均値としては、通常4~800nm程度、好ましくは20~500nm程度、特に好ましくは10~400nm程度である。
 なお、変性ミクロフィブリル化植物繊維(B)の繊維径の平均値は、電子顕微鏡の視野内の変性ミクロフィブリル化植物繊維(B)の少なくとも50本以上について測定した時の平均値である。
 本発明の樹脂組成物、また、前記の製造方法によって得られる樹脂組成物は、所望の形状に成形され樹脂成形材料として用いることが出来る。樹脂成形材料の形状としては、例えば、シート、ペレット、粉末等が挙げられる。これらの形状を有する成形材料は、例えば金型成形、射出成形、押出成形、中空成形、発泡成形等を用いて得られる。
 更に前記の成形材料は、所望の成形条件によって樹脂成形体を製造することが出来る。樹脂成形体としては、ミクロフィブリル化植物繊維を含有する樹脂成形物が使用されていた分野に加え、より高い機械強度(引っ張り強度等)が要求される分野にも使用出来る。例えば、自動車、電車、船舶、飛行機等の輸送機器の内装材、外装材、構造材等;パソコン、テレビ、電話、時計等の電化製品等の筺体、構造材、内部部品等;携帯電話等の移動通信機器等の筺体、構造材、内部部品等;携帯音楽再生機器、映像再生機器、印刷機器、複写機器、スポーツ用品等の筺体、構造材、内部部品等;建築材;文具等の事務機器等、容器、コンテナー等として有効に使用することが出来る。
 本発明の樹脂組成物の製造方法によると、簡便な工程により、疎水性の高い樹脂中においてもミクロフィブリル化植物繊維を均一に分散させることが出来る。その為、得られる樹脂組成物を成形してなる成形材料は、高強度なものが得られ、機械的強度に優れるという効果を奏する。
 また、本発明の樹脂組成物は、樹脂組成物中で熱可塑性樹脂がラメラ層を形成し、該ラメラ層が変性ミクロフィブリル化植物繊維(B)の繊維長の方向と異なる方向に積層してなるという規則的な構造を有する。その為、当該樹脂組成物から成形される成形体は、機械的強度に優れるという効果を奏する。
本発明の製造方法の一実施態様のスキームを示す。 本発明の製造方法の一実施態様のスキームを示す。 本発明の製造方法の一実施態様のスキームを示す。 実施例1で製造された成形体のX線CTスキャナによる解析画像である。 比較例3で製造された成形体のX線CTスキャナによる解析画像である。 実施例3で製造された成形体のX線CTスキャナによる解析画像である。 実施例3で製造された成形体のTEM写真である。 実施例9で製造された成形体のTEM写真である。 比較例4で製造された成形体のX線CTスキャナによる解析画像である。 比較例2で製造された成形体のTEM写真である。 実施例15で製造された成形体のX線CTスキャナによる解析画像である。 比較例9で製造された成形体のX線CTスキャナによる解析画像である。
[実施例]
 以下、実施例及び比較例を挙げて本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
 [実施例1]
 <リファイナー処理植物繊維の調製>
 針葉樹漂白クラフトパルプ(NBKP)のスラリー(スラリー濃度:2質量%)をシングルディスクリファイナー(熊谷理機工業(株)製)に通液させ、カナディアンスタンダードフリーネス(CSF)が100ml以下となるまで繰り返しリファイナー処理を行った。次いで得られたスラリーを遠心分離機((株)コクサン製)を用いて20質量%まで濃縮し、NBKP(リファイナー処理)を調製した。
 <アルケニル無水コハク酸(ASA)変性植物繊維の調製>
 上記の含水のNBKP(リファイナー処理)10,000g(固形分2,000g)にN-メチルピロリドン(NMP)を8,000g加え、3本ブレード型撹拌・混合機((株)井上製作所製:「トリミックスTX-50」)に投入した後、攪拌を開始し、40~50℃で減圧脱水した。次いで、T-NS135(無水コハク酸以外の炭素数が16のASA、星光PMC(株)製)を1,988g、炭酸カリウムを170g加え、65℃で1.5時間反応させた。反応後、アセトン、エタノール、酢酸水、水で順次洗浄し、さらにエタノールによって溶媒置換を行い、エタノール(EtOH)含有のASA変性植物繊維(ASA変性NBKP)を得た。得られたASA変性植物繊維の置換度を以下の方法により算出した結果、0.37であった。また、エタノール含有ASA変性NBKP中の水分含有率とエタノール含有率を以下の方法により算出した結果、水分含有率は1.4%、エタノール含有率は73.6%であった。
 <ASA変性植物繊維の置換度(DS)の算出>
 ASA変性植物繊維中のASAとセルロースのエステル結合を、水酸化ナトリウム溶液中70℃で加熱攪拌することで加水分解した。その後、0.1N塩酸水溶液で逆滴定し、加水分解により生成したASA量を求めることによってASA変性の置換度(DS)を算出した。なお、逆滴定の際の指示薬としては、フェノールフタレインを用いた。
 具体的には、ASA変性植物繊維の乾燥物を約0.5g、100mlビーカーに精秤し、エタノール15ml、蒸留水5mlを加え室温で30分攪拌した。その後、0.5N水酸化ナトリウム溶液10mlを加え、70℃で15分攪拌した後、室温まで冷却し更に1晩攪拌した。得られた混合液に85%フェノールフタレインのエタノール溶液を数滴加えた後、0.1N塩酸水溶液で逆滴定し、加水分解により生成したASA量を測定した。用いたASA変性植物繊維量と滴定にて測定したASA量から置換度を算出した。
 <水分含有率、及び有機液体含有率の算出>
 有機液体含有ASA変性植物繊維(ASA変性NBKP)の水分含有率の測定にはカールフィッシャー水分計(京都電子(株)製:「MKC-610」)を用いた。
 また、赤外線水分計((株)ケツト科学研究所製:「FD-720」)を用いて有機液体含有ASA変性植物繊維中の揮発分を測定した。
 上記で得られた、揮発分、水分量より有機液体の含有率は以下の式から算出した。
 有機液体含有率[%]=(赤外線水分計で測定した揮発分[%])―(カールフィッシャー水分計で測定した水分含有率[%])
 <ASA変性植物繊維と樹脂との複合化>
 上記のエタノール含有ASA変性植物繊維(ASA変性NBKP、エタノール含有率:73.6質量%、水分含有率:1.4質量%)に、エタノールを加えて固形分濃度を3.0質量%に調製した。このエタノールに分散されたASA変性NBKP(固形分52.1g)に、無水マレイン酸変性ポリプロピレン(MAPP、東洋紡績(株)製:「トーヨータックPMA H1000P」、酸含有量5.7質量%、メルトフローレート:110g/10分(190℃、2.16kg))12.9g、及び炭酸カルシウム(CaCO、(白石工業(株)製、「brilliant15」)4g、及び高密度ポリエチレン(HDPE、住友精化(株)製:商品名:「フロービーズHE3040」、融点:130℃)31.0gそれぞれにエタノールを加え固形分濃度を10.0質量%に調製した分散液を、ビーカー内でプロペラ撹拌しながら混合した。得られた樹脂混合物分散液を吸引ろ過した後、トリミックスにより撹拌しながら減圧乾燥を行い、ASA変性NBKPと樹脂の混合物(マスターバッチ)を調製した。
 配合後の固形分の含有割合は下記の通りである。
 ASA変性NBKP:52.1質量%(NBKP由来部分(30質量%)+ASA由来部分(22.1質量%))
 樹脂:43.9質量%(MAPP:(12.9質量%)+HDPE(31質量%))
 炭酸カルシウム:4重量%。
 また、得られたマスターバッチ中の水分含有率、及びエタノール含有率を上記測定方法によって測定したところ、水分含有率は0.5%、エタノール含有率は2.0%であった。
 次いで、得られたマスターバッチ100gと、HDPE(旭化成ケミカルズ(株)製、「サンテック-HD J320」)200gとの混合物を、二軸混練機((株)テクノベル製:「KZW」、スクリュー径:15mm、L/D:45、スクリュー回転数:200rpm、せき止め構造:0個、処理速度200g/時)にて140℃で1パスさせ、得られた溶融混練物をペレタイザー((株)テクノベル製)を用いてペレット化した後、射出成型機(日精樹脂(株)製:「NPX7-1F」)に投入し、ダンベル型の試験片(厚さ1mm)を得た。なお、加熱筒(シリンダー)温度は160℃、金型温度は40℃の条件下で成形を行った。
最終的に得られた樹脂組成物の固形分の含有割合は下記の通りである。
 ASA変性NBKP:17.4質量%(NBKP由来部分(10質量%)+ASA由来部分(7.4質量%))
 樹脂:81.3質量%(MAPP:(4.3質量%)+HDPE(77.0質量%))
 炭酸カルシウム:1.3重量%。
 得られたダンベル型試験片について、万能試験機(インストロンジャパンカンパニイリミテッド(社)製:「インストロン3365型試験機」)を用いて引っ張り強度と弾性率を測定した。測定結果を表1に示す。
 さらに、得られた成形体をX線CTスキャナ(SKYSCAN製、「SKYSCAN1172」)を用いて観察した。図4にX線CTスキャナによる解析画像を示す。
 [実施例2]
 実施例1の<ASA変性植物繊維の調製>において、NBKPとASAの反応後、アセトン、エタノール、酢酸水、水で順次洗浄し、含水ASA変性NBKPを得た。得られたASA変性NBKPの置換度は、0.34であった。
 この含水ASA変性NBKP(固形分濃度:20質量%)とMAPP(東洋紡績(株)製:商品名「トーヨータックPMA H1000P」)、及び高密度ポリエチレン樹脂(HDPE、住友精化(株)製:商品名「フロービーズHE3040」)をミキサーにて1分間攪拌した。
 配合後の固形分の含有割合は下記の通りである。
  ASA変性ミクロフィブリル化植物繊維:50.3質量%(ミクロフィブリル化植物繊維由来(30質量%)+ASA由来部分(20.3質量%))
  樹脂:45.7質量%(MAPP:(12.9質量%)+HDPE(32.8質量%))
  炭酸カルシウム:4重量%。
 得られた樹脂組成物をトリミックスTX-5(井上製作所(株)製)を用いて減圧乾燥した。次いで、上記の混合物を140℃で1パスさせ、得られた溶融混練物をペレタイザー((株)テクノベル製)を用いてペレット化した後、射出成型機(NPX7-1F、日精樹脂(株)製)に投入し、ダンベル型の試験片(厚さ1mm)を得た。なお、加熱筒(シリンダー)温度は160℃、金型温度は40℃の条件下で成形を行った。
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表1に示す。
 [比較例1]
 実施例1において、ASA変性NBKPを用いず、HDPEの粉末(住友精化(株)製:商品名「フロービーズHE3040」)のみを用いて実施例1と同様の方法により成形し、ダンベル型の試験片を得た。
 得られたダンベル型の試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表1に示す。また後述の方法で荷重たわみ温度(HDT)、及び平均線膨張率を測定した。結果を表3及び5に示す。
 [比較例2]
 実施例1において、ASA変性NBKPを用いず、HDPEのペレット(旭化成ケミカルズ(株)製:商品名「サンテック-HD J320」)のみを用いて、実施例1と同様の方法により成形し、ダンベル型の試験片を得た。
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表1に示す。また後述の方法で荷重たわみ温度(HDT)、平均線膨張率及び熱伝導率を測定した。結果を表3~5に示す。
 更に、得られた成形体を透過型顕微鏡(TEM)によって観察した。TEM写真を図10に示す。
 [比較例3]
 実施例1において、未変性のエタノール含有NBKPを用いた以外は、実施例1と同様の方法により、複合化、成形を行い、ダンベル型試験片を得た。
 得られた成形体を実施例1と同様、X線CTスキャナを用いて観察した。図5にX線CTスキャナによる解析画像を示す。
 さらに、得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 <結果と考察>
 図4のX線CTスキャナの結果より、実施例1の方法で樹脂とASA変性植物繊維(ASA変性NBKP)を混合した場合は、樹脂と混練する前の幅数10μmのNBKP繊維は観察されず、幅数μmの繊維が僅かに観察されるものの、殆ど繊維は検出されず、多くの繊維が700nmの検出限界以下まで解繊されていることがわかる。
 一方、図5のX線CT画像には、幅2~10μmの繊維が多数観察された。比較例3のように未変性のNBKPと樹脂とを混練した場合は、NBKPが十分に解繊されず、幅数μm以上の未解繊繊維が多く存在していることが分かる。
 ASA変性NBKPを用いた場合は、ASA変性NBKPと樹脂の界面密着性が優れるため、混練中のせん断応力によりASA変性NBKPが樹脂中でナノ解繊し、結果としてASA変性ミクロフィブリル化植物繊維と樹脂からなる複合材料を得ることが出来るのに対し、未変性NBKPを用いた場合は、樹脂とNBKPの親和性が悪いため、十分にミクロフィブリル化された複合材料が得られないと推測される。
 また、表1からASA変性植物繊維(ASA変性NBKP)とHDPEを混合する際に、有機液体を含む実施例1、及び含水のASA変性植物繊維を用いた実施例2は、樹脂単独、又は未変性の植物繊維を用いた比較例3と比較して、弾性率及び引張強度が共に向上していることがわかる。実施例1のように有機液体(C)中でASA変性NBKPと樹脂を混合した後に混練することで、未変性のパルプを用いた比較例3、並びに含水のASA変性パルプを用いた実施例2と比較してナノ解繊化がより促進しているため結果として力学特性に優れた複合材料が得られてものと思われる。
 また、植物繊維(NBKP)はミクロフィブリル化植物繊維ほど、凝集性が強くない為、実施例2のように、含水のASA変性植物繊維でも溶融混練時のせん断力にて良く分散し、結果として良好な物性が得られたものと考えられる。
 [実施例3]
 <ミクロフィブリル化植物繊維の調製>
 針葉樹漂白クラフトパルプ(NBKP)のスラリー(スラリー濃度:2質量%)をシングルディスクリファイナー(熊谷理機工業(株)製)に通液させ、カナディアンスタンダードフリーネス(CSF)が100ml以下となるまで繰り返しリファイナー処理を行った。次いで得られたスラリーを遠心分離機((株)コクサン製)を用いて20質量%まで濃縮し、NBKP(リファイナー処理)を調製した。
 次いでNBKP(リファイナー処理、濃度:20質量%)375gに水を加え、全量を10kgとした(スラリー濃度:0.75質量%)。得られたリファイナー処理NBKPスラリーをビーズミル(NVM-2、アイメックス(株)製)で以下の条件で機械的解繊処理を行った。
 [解繊条件]
  ビーズ:ジルコニアビーズ(直径:1mm)
  ベッセル容量:2リットル
  ビーズ充填量:1216ml(4612g)
  回転数:2,000rpm
  ベッセル温度:20℃
  吐出量:600ml/分。
 得られたミクロフィブリル化植物繊維スラリーを吸引ろ過し、固形分濃度が12.5質量%の含水のミクロフィブリル化植物繊維を得た。
 <ASA変性ミクロフィブリル化植物繊維の調製>
 上記の含水のミクロフィブリル化植物繊維494g(固形分62g)にNMPを247g加え、トリミックスTX-5((株)井上製作所製)に投入した後、攪拌を開始し、40~50℃で減圧脱水した。次いで、T-NS135(無水コハク酸以外の炭素数が16のASA、星光PMC(株)製)を61.6g、炭酸カリウムを21.1g、NMPを50g加え、62℃で1.5時間反応させた。
 反応後、アセトン、エタノール、酢酸水、水で順次洗浄し、さらにエタノールによって溶媒置換を行い、エタノールのASA変性ミクロフィブリル化植物繊維を得た。置換度を実施例1と同様の方法により測定した結果、0.39であった。
 得られたエタノール含有ASA変性ミクロフィブリル化植物繊維に、エタノールを加えて固形分濃度を3.0質量%に調製した。このエタノールに分散されたASA変性ミクロフィブリル化植物繊維(固形分53.3g)に、MAPP(東洋紡績(株)製:商品名「トーヨータックPMA H1000P」)12.9g、及びCaCO(白石工業(株)製:商品名「brilliant15」)4g、及び高密度ポリエチレン(HDPE)(住友精化(株)製:商品名「フロービーズHE3040」)29.8gそれぞれにエタノールを加え、固形分濃度を10.0質量%に調製した分散液を、ビーカー内でプロペラ撹拌しながら混合した。得られた樹脂混合物分散液を吸引ろ過した後、トリミックスにより撹拌しながら減圧乾燥を行いASA変性ミクロフィブリル化植物繊維と樹脂の混合物(マスターバッチ)を調製した。
 配合後の固形分の含有割合は下記の通りである。
 ASA変性ミクロフィブリル化植物繊維:53.3質量%(ミクロフィブリル化植物繊
維由来(30質量%)+ASA由来部分(23.3質量%))
 樹脂:42.7質量%(MAPP:(12.9質量%)+HDPE(29.8質量%))
 炭酸カルシウム:4重量%
 次いで、得られたマスターバッチ100gと、HDPE(旭化成ケミカルズ(株)製:商品名「サンテック-HD J320」)200gとの混合物を、(株)テクノベル製の二軸混練機(KZW、スクリュー径:15mm、L/D:45、スクリュー回転数:200rpm、せき止め構造:0個、処理速度200g/時)にて140℃で1パスさせ、得られた溶融混練物をペレタイザー((株)テクノベル製)を用いてペレット化した後、射出成型機(NPX7-1F、日精樹脂(株)製)に投入し、ダンベル型の試験片(厚さ1mm)を得た。なお、加熱筒(シリンダー)温度は160℃、金型温度は40℃の条件下で成形を行った。
 最終的に得られた樹脂組成物の固形分の含有割合は下記の通りである。
  ASA変性ミクロフィブリル化植物繊維:17.8質量%(ミクロフィブリル化植物
繊維由来(10質量%)+ASA由来部分(7.8質量%))
  樹脂:80.9質量%(MAPP:(4.3質量%)+HDPE(76.3質量%))
  炭酸カルシウム:1.3重量%。
 得られた厚さ1mmのダンベル型試験片を用いて実施例1と同様の方法によって引張り強度、弾性率を測定した。測定結果を表2に示す。更に、後述の方法により、平均線膨張率、熱伝導率、及び荷重たわみ温度(HDT)を測定した。結果を表3~5に示す。
 得られた成形体を実施例1と同様、X線CTスキャナを用いて観察した。図6にX線CTスキャナによる解析画像を示す。
 更に、得られた成形体を透過型顕微鏡(TEM)によって観察した。TEM写真を図7に示す。
 [実施例4]
 実施例3の<ASA変性ミクロフィブリル化植物繊維の調製>において、ミクロフィブリル化植物繊維とASAの反応後、アセトン、エタノール、酢酸水、水で順次洗浄し、さらにイソプロパノール(IPA)によって溶媒置換を行い、IPA含有ASA変性ミクロフィブリル化植物繊維を得た。
 得られたIPA含有ASA変性ミクロフィブリル化植物繊維を用いた以外は、実施例3と同様の方法により、樹脂と複合化、成形し、ダンベル型試験片を得た。
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表2に示す。
 [実施例5]
 実施例3の<ASA変性ミクロフィブリル化植物繊維の調製>において、ミクロフィブリル化植物繊維とASAの反応後、アセトン、エタノール、酢酸水、水で順次洗浄し、さらにアセトンによって溶媒置換を行い、アセトン含有ASA変性ミクロフィブリル化植物繊維を得た。
 得られたアセトン含有ASA変性ミクロフィブリル化植物繊維を用いた以外は、実施例3と同様の方法により、樹脂と複合化、成形し、ダンベル型試験片を得た。
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表2に示す。
 [実施例6]
 実施例3の<ASA変性ミクロフィブリル化植物繊維の調製>において、ミクロフィブリル化植物繊維とASAの反応後、アセトン、エタノール、酢酸水、水で順次洗浄し、さらにアセトン、ジオキサンによって順次溶媒置換を行い、ジオキサン含有ASA変性ミクロフィブリル化植物繊維を得た。
 得られたジオキサン含有ASA変性ミクロフィブリル化植物繊維を用いた以外は、実施例3と同様の方法により、樹脂と複合化、成形し、ダンベル型試験片を得た。
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表2に示す。
 [実施例7]
 実施例3の<ASA変性ミクロフィブリル化植物繊維の調製>において、ミクロフィブリル化植物繊維とASAの反応後、アセトン、エタノール、酢酸水、水で順次洗浄し、さらにアセトン、酢酸エチルによって順次溶媒置換を行い、酢酸エチル含有ASA変性ミクロフィブリル化植物繊維を得た。
 得られた酢酸エチル含有ASA変性ミクロフィブリル化植物繊維を用いた以外は、実施例3と同様の方法により、樹脂と複合化、成形し、ダンベル型試験片を得た。
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表2に示す。
 [実施例8]
 実施例3の<ASA変性ミクロフィブリル化植物繊維の調製>において、ミクロフィブリル化植物繊維とASAの反応後、アセトン、エタノール、酢酸水、水で順次洗浄し、さらにアセトン、ヘキサンによって順次溶媒置換を行い、ヘキサン含有ASA変性ミクロフィブリル化植物繊維を得た。
 得られたヘキサン含有ASA変性ミクロフィブリル化植物繊維を用いた以外は、実施例3と同様の方法により、樹脂と複合化、成形し、ダンベル型試験片を得た。
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表2に示す。
 [実施例9]
 実施例3の<ASA変性ミクロフィブリル化植物繊維の調製>において、ミクロフィブリル化植物繊維とASAの反応後、アセトン、エタノールで順次洗浄し、カルボキシル基がカリウム塩に変性されたエタノール含有ASA変性ミクロフィブリル化植物繊維を得た。得られたASA変性ミクロフィブリル化植物繊維の置換度は、0.42であった。また、得られたエタノール含有ASA変性ミクロフィブリル化植物繊維を用いた以外は、実施例3と同様の方法により、ASA変性ミクロフィブリル化植物繊維とHDPEとの複合化、成形を行い、ダンベル型試験片を得た。
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表2に示す。
 また、得られた成形体を透過型顕微鏡(TEM)によって観察した。TEM写真を図8に示す。
 [実施例10]
 実施例3の<ASA変性ミクロフィブリル化植物繊維の調製>において、ミクロフィブリル化植物繊維とASAの反応後、アセトン、エタノール、水で順次洗浄し、カルボキシル基がカリウム塩で変性された水含有ASA変性ミクロフィブリル化植物繊維を得た。これを水に分散させて、3質量%の分散液とし、攪拌している所に16質量%の塩化カルシウム水溶液を添加して1時間攪拌することにより、カルボキシル基がカルシウム塩で変性された水含有ASA変性ミクロフィブリル化植物繊維を得た。これを吸引ろ過した後、イソプロパノールで溶媒置換することにより、カルボキシル基がカルシウム塩で変性されたイソプロパノール含有ASA変性ミクロフィブリル化植物繊維を得た。得られたASA変性ミクロフィブリル化植物繊維の置換度は、0.34であった。また、得られたASA変性ミクロフィブリル化植物繊維を用いた以外は、実施例3と同様の方法により、ASA変性ミクロフィブリル化植物繊維と樹脂との複合化、成形し、ダンベル型試験片を得た。
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表2に示す。
 更に、後述の方法で荷重たわみ温度(HDT)を測定した。結果を表5に示す。
 [実施例11]
 実施例3の<ASA変性ミクロフィブリル化植物繊維の調製>において、ミクロフィブリル化植物繊維とASAの反応後、アセトン、エタノールで順次洗浄し、カルボキシル基がカリウム塩に変性されたエタノール含有ASA変性ミクロフィブリル化植物繊維664g(固形分104g)を得た。得られたASA変性ミクロフィブリル化植物繊維の置換度は、0.37であった。これをトリミックスTX-5((株)井上製作所製)に投入し、NMP400gを加え、攪拌しながら減圧蒸留することでエタノールを除去した。ここにヨードメタン38.8gを加え、50℃で2時間反応させた。反応後、アセトン、エタノール、酢酸水、水で順次洗浄し、さらにエタノールによって溶媒置換を行うことにより、カルボキシル基がメチル基でエステル化されたエタノール含有ASA変性ミクロフィブリル化植物繊維を得た。また、得られたASA変性ミクロフィブリル化植物繊維を用いた以外は、実施例3と同様の方法により、ASA変性ミクロフィブリル化植物繊維と樹脂との複合化、成形し、ダンベル型試験片を得た。
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表2に示す。
 [実施例12]
 実施例3の<ASA変性ミクロフィブリル化植物繊維の調製>において、ミクロフィブリル化植物繊維とASAの反応後、アセトン、エタノールで順次洗浄し、カルボキシル基がカリウム塩に変性されたエタノール含有ASA変性ミクロフィブリル化植物繊維664g(固形分104g)を得た。得られたASA変性ミクロフィブリル化植物繊維の置換度は、0.37であった。これを3本ブレード型撹拌・混合機((株)井上製作所製「トリミックスTX-5」)に投入し、NMP400gを加え、攪拌しながら減圧蒸留することでエタノールを除去した。ここにヨードオクタン130gを加え、70℃で18時間反応させた。反応後、アセトン、エタノール、酢酸水、水で順次洗浄し、さらにイソプロパノールによって溶媒置換を行うことにより、カルボキシル基がオクチル基でエステル化されたイソプロパノール含有ASA変性ミクロフィブリル化植物繊維を得た。得られたASA変性ミクロフィブリル化植物繊維の置換度は、0.37であった。また、得られたASA変性ミクロフィブリル化植物繊維を用いた以外は、実施例3と同様の方法により、ASA変性ミクロフィブリル化植物繊維と樹脂との複合化、成形し、ダンベル型試験片を得た。
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表2に示す。
 [比較例4]
 実施例3の<ASA変性ミクロフィブリル化植物繊維の調製>において、ASAとミクロフィブリル化植物繊維との反応後、アセトン、エタノール、酢酸水、水で順次洗浄し、含水ASA変性ミクロフィブリル化植物繊維を得た。
 この含水ASA変性ミクロフィブリル化植物繊維(固形分濃度:20質量%)とMAPP(東洋紡績(株)製:商品名「トーヨータックPMA H1000P」)、及び高密度ポリエチレン樹脂(HDPE、住友精化(株)製:商品名「フロービーズHE3040」)をミキサーにて1分間攪拌した。
 配合後の固形分の含有割合は下記の通りである。
  ASA変性ミクロフィブリル化植物繊維:54質量%(ミクロフィブリル化植物繊維由来(30質量%)+ASA由来部分(24質量%))
  樹脂:42質量%(MAPP:(12.9質量%)+HDPE(29.1質量%))
  炭酸カルシウム:4重量%。
 得られた樹脂組成物を(株)テクノベル製の二軸混練機(KZW、スクリュー径:15mm、L/D:45、スクリュー回転数:200rpm、せき止め構造:0個、処理速度200g/時)にて98℃で2パスし脱水と混合を行った。次いで、上記の混合物を140℃で1パスさせ、得られた溶融混練物をペレタイザー((株)テクノベル製)を用いてペレット化した後、射出成型機(NPX7-1F、日精樹脂(株)製)に投入し、ダンベル型の試験片(厚さ1mm)を得た。なお、加熱筒(シリンダー)温度は160℃、金型温度は40℃の条件下で成形を行った。
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表2に示す。また、後述する方法により、平均線膨張率を測定した。結果を表3に示す。
 得られた成形体を実施例1と同様、X線CTスキャナを用いて観察した。図9にX線CTスキャナによる解析画像を示す。
Figure JPOXMLDOC01-appb-T000002
 [平均線膨張率測定]
実施例3、比較例1、比較例2、及び比較例4で各々得られた厚さ1mmのダンベル型試験片の中央部(縦4mm、横1mm、高さ20mm)を切り出し、熱機械的分析装置(エスアイアイ・ナノテクノロジー(株)製、EXSTAR TMA/SS6100)を用いて平均線膨張率測定を行った。結果を表3に示す。
 条件:荷重3gf、スパン20mmの引張モード、窒素雰囲気下、1分間に5℃の割合で温度を 20℃から100℃まで上昇させた後、一旦、-20℃まで冷却し、再び1分間に5℃の割合で温度を上昇させて0℃~60℃の時の平均線膨張率を求めた。
Figure JPOXMLDOC01-appb-T000003
 [熱伝導率測定]
 実施例3、及び比較例2で各々得られた厚さ1mmのダンベル型試験片より直径5mm、厚さ1mmの円柱を厚さ方向が射出方向と垂直になる様に切りだした。
 得られた測定試料をアルキメデス法により密度を測定すると共に、レーザーフラッシュ法熱物性測定装置(京都電子工業(株)製、「LFA-502」)を用いて比熱、及び、熱拡散率を測定し、密度、比熱、熱拡散率の積として熱伝導率を算出した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 [荷重たわみ温度(HDT測定)]
 実施例3、実施例10、比較例1、及び比較例2で作製した厚さ4mmの短冊型の試験片を用いて、HDT試験装置((株)東洋精機製作所製:「6M-2」)を用いてフラットワイズ法により荷重たわみ温度(HDT)を測定した。結果を表5に示す。
  条件:支点間距離:64mm、負荷曲げ応力:0.45MPa、試験開始温度:30℃、昇温速度:120℃/h。
Figure JPOXMLDOC01-appb-T000005
 <結果と考察>
 実施例3で示すように、あらかじめNBKPを解繊した後マスターバッチを調製する方法を用いた場合、水を含む比較例4と比較して、弾性率及び引張強度が共に向上していることがわかる。
 また、実施例4~8で示すように、ASA変性ミクロフィブリル化植物繊維とHDPEを混合する際に、有機液体であるイソプロパノール、アセトン、ジオキサン、酢酸エチル、ヘキサンを用いた場合においても、水を含む比較例4と比較して弾性率及び引張強度が共に向上していることがわかる。
 また、図6、及び図9に示すように実施例3で得られる成形体は、有機液体(C)中でASA変性CNFと樹脂を混合・混練することにより、水を含む比較例4よりも樹脂中にミクロフィブリル化植物繊維が均一に分散させることが可能となった。
 さらに図7、及び図8に示すように、実施例3及び実施例9で得られる成形体は、HDPEのラメラ層を形成され、当該ラメラ層がミクロフィブリル化植物繊維の繊維長の方向に対して異なる方向に規則的に積層していることが確認出来た。さらに図7、及び図8に示すように、実施例3で得られる成形体は、ミクロフィブリル化植物繊維の繊維長の方向と同じ方向に、一軸配向したHDPEの繊維状芯が形成され、ミクロフィブリル化植物繊維と繊維状芯との間で、HDPEのラメラ層が、ミクロフィブリル化植物繊維の繊維長の方向に対して異なる方向に積層していることも確認出来た。また図10に示すように、比較例2では図7、及び図8と異なり、HDPE特有のラメラ層が不規則に存在していることが確認された。
 また、実施例3、比較例2で各々得られた試験片の熱伝導率を測定したところ、各々、1.33W/m・K、0.55W/m・Kであり、ASA変性CNFとHDPEを複合化することによりHDPEの熱伝導率が向上していることが示された。
 また、表5に示した荷重たわみ温度(HDT)の結果よりASA変性CNFを含有する複合材料はHDPE樹脂単独よりも高いHDT、すなわち耐熱性が得られた。また、ASAのカルボキシル基をカルボン酸からカルボン酸カルシウムにすることで、さらに耐熱性が向上することが分かった。
 更に、実施例1の複合材料は、比較例1、比較例2の樹脂単独よりも荷重たわみ温度が約30℃向上しておりASA変性ミクロフィブリル化植物繊維と樹脂からなる複合材料は耐熱性が向上しているがわかる。
 加えて実施例3、比較例4、及び比較例1の比較より、有機液体(C)中でASA変性CNFと樹脂を混合・混練することにより、樹脂単独、または含水条件で実施例1のように有機液体(C)中でASA変性NBKPが樹脂を混合した後に混練する方が、ASA変性CNFを樹脂中により均一に分散させることが可能であり、結果として平均線膨張率の非常に小さな複合材料を得ることが可能となった。
 [実施例13]
 <ASA変性植物繊維の調製>
 実施例1で調製した含水のNBKP(リファイナー処理)10,000g(固形分2,000g)にNMPを8,000g加え、トリミックスTX-50((株)井上製作所製)に投入した後、攪拌を開始し、40~50℃で減圧脱水した。次いで、T-NS135(無水コハク酸以外の炭素数が16のASA、星光PMC(株)製)を1,988g、炭酸カリウムを170g加え、62℃で1.5時間反応させた。反応後、エタノールで洗浄し、カルボキシル基の一部がカリウム塩である、エタノール含有のASA変性NBKPを得た。得られたASA変性NBKPの置換度は、0.37であった。
 得られたエタノール含有ASA変性NBKPに、エタノールを加えて固形分濃度を3.0質量%に調製した。このエタノールに分散されたASA変性NBKP(固形分52.1g)に、ポリ乳酸(PLA)(トヨタ製:「Uz S-12」)35.9g、結晶核剤(日産化学工業(株)製:商品名「エコプロモート」)6g、酸化防止剤(日清紡(株)製:商品名「カルボジライト)6gそれぞれにエタノールを加え固形分濃度を10.0質量%に調製した分散液を、ビーカー内でプロペラ撹拌しながら混合した。得られた樹脂混合物分散液を吸引ろ過した後、トリミックスにより撹拌しながら減圧乾燥を行いASA変性NBKPと樹脂の混合物(マスターバッチ)を調製した。
 配合後の固形分の含有割合は下記の通りである。
 ASA変性NBKP:52.1質量%(NBKP由来(30質量%)+ASA由来部分(22.1質量%))
  PLA:35.9質量%
  結晶核剤:6重量%
  酸化防止剤:6重量%。
 次いで、得られたマスターバッチ100gと、PLA((株)トヨタ製、「Uz S-12」)200gとの混合物を、(株)テクノベル製の二軸混練機(KZW、スクリュー径:15mm、L/D:45、スクリュー回転数:200rpm、せき止め構造:0個、処理速度200g/時)にて180℃で1パスさせ、得られた溶融混練物をペレタイザー((株)テクノベル製)を用いてペレット化した後、射出成型機(NPX7-1F、日精樹脂(株)製)に投入し、ダンベル型の試験片(厚さ1mm)を得た。なお、加熱筒(シリンダー)温度は190℃、金型温度は40℃の条件下で成形を行った。最終的に得られた樹脂組成物の固形分の含有割合は下記の通りである。
 ASA変性NBKP:17.4質量%(NBKP由来(10質量%)+ASA由来部分(7.4質量%))
  PLA:78.6質量%
  結晶核剤:2質量%
  酸化防止剤:2質量%。
 得られたダンベル型試験片を実施例1と同様の方法により、引張強度及び弾性率を測定した。測定結果を表6に示す。
 [比較例5]
 実施例13において、ASA変性NBKPを用いず、PLAの粉末((株)トヨタ製、「Uz S-12」)のみを用いて実施例13と同様の方法により成形し、ダンベル型の試験片を得た。
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表6に示す。
 [比較例6]
 実施例13において、未変性のエタノール含有NBKPを用いた以外は、実施例13と同様の方法により、複合化、成形を行い、ダンベル型試験片を得た。
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 <結果と考察>
 ASA変性NBKPとPLAを混合する際に、有機液体を含む実施例13は、HDPEとASA変性NBKPとを複合化した場合と同様、未変性のパルプを用いた比較例6と比較して、NBKPのナノ解繊化と均一分散化がより進んでいるため、弾性率及び引張強度が共に向上していることが明らかとなった。
 [実施例14]<バイオポリエチレンのとの複合化>
 実施例3において得られたマスターバッチを溶融混練する際、HDPE(旭化成ケミカルズ(株)製:商品名「サンテック-HD J320」)の代わりにバイオマスHDPE(Braskem社製:商品名「SHA7260」)を用いた以外は、実施例3と同様にして樹脂組成物を得た。
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表7に示す。
 [比較例7]
 比較例2において、HDPEの粉末(住友精化(株)製:商品名「フロービーズHE3040」)の代わりにバイオマスHDPE(Braskem社製:商品名「SHA7260」)を用いた以外は比較例2と同様に成型し、ダンベル型の試験片を得た。
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 <結果と考察>
 ASA変性ミクロフィブリル化植物繊維とバイオPEを混合する実施例14は、バイオPE樹脂のみの比較例7と比較して、弾性率及び引張強度が共に向上していることが明らかとなった。
 [実施例15]<ポリアミドとの複合化>
 実施例13と同様の方法で得られたASA変性NBKPに、エタノールを加えて固形分濃度を3.0質量%に調製した。このエタノールに分散されたASA変性ミクロフィブリル化植物繊維(固形分52.1g)に、ポリアミド12(PA12)(ダイセルエボニック(株)製、商品名「ベストジント2159」 平均粒子径10μm、粘度数120mg/l)47.9gをエタノールに分散させ固形分濃度を10.0質量%に調製した分散液を、ビーカー内でプロペラ撹拌しながら混合した。得られた樹脂混合物分散液を吸引ろ過した後、トリミックスにより撹拌しながら減圧乾燥を行いASA変性ミクロフィブリル化植物繊維と樹脂の混合物(マスターバッチ)を調製した。
 配合後の固形分の含有割合は下記の通りである。
  ASA変性ミクロフィブリル化植物繊維:52.1質量%(ミクロフィブリル化植物繊維由来(30質量%)+ASA由来部分(22.1質量%))
  PA12:47.9質量%。
 次いで、得られたマスターバッチ100gと、PA12(ダイセルエボニック(株)製、商品名「ベストジント2159」 平均粒子径10μm、粘度数120mg/l)200gとの混合物を、(株)テクノベル製の二軸混練機(KZW、スクリュー径:15mm、L/D:45、スクリュー回転数:200rpm、せき止め構造:0個、処理速度200g/時)にて180℃で1パスさせ、得られた溶融混練物をペレタイザー((株)テクノベル製)を用いてペレット化した後、射出成型機(日精樹脂(株)製:「NPX7-1F」)に投入し、ダンベル型の試験片(厚さ1mm)を得た。なお、加熱筒(シリンダー)温度は180℃、金型温度は40℃の条件下で成形を行った。
 最終的に得られた樹脂組成物の固形分の含有割合は下記の通りである。
  ASA変性ミクロフィブリル化植物繊維:17.4質量%(ミクロフィブリル化植物繊維由来(10質量%)+ASA由来部分(7.4質量%))
  PA12:82.6質量%。
 得られた成形体をX線CTスキャナ(SKYSCAN社製:「SKYSCAN1172」)を用いて観察した。図11にX線CTスキャナによる解析画像を示す。
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表8に示す。
 さらに、実施例3と同様の方法で0℃から60℃における平均線膨張率を測定した。測定結果を表9に示す。
 [比較例8]
 実施例15において、ASA変性NBKPを用いず、PA12の粉末のみを用いて実施例15と同様の方法により成形し、ダンベル型の試験片を得た。
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表8に示す。
 [比較例9]
 実施例15において、未変性のエタノール含有NBKPを用いた以外は、実施例15と同様の方法により、複合化、成形を行い、ダンベル型試験片を得た。
 得られた成形体を実施例15と同様、X線CTスキャナを用いて観察した。図12にX線CTスキャナによる解析画像を示す。
 さらに、得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表8に示す。また、実施例3と同様の方法で0℃から100℃における平均線膨張率を測定した。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 <結果と考察>
 ASA変性NBKPとPA12を混合する際に、有機液体(C)を含む実施例15は、HDPEとASA変性NBKPとを複合化した場合と同様、未変性のパルプを用いた比較例9と比較して、NBKPのナノ解繊化と均一分散化がより進んでいるため、弾性率及び引張強度が共に向上していることが明らかとなった。
 また、図11、及び図12に示すように、実施例15で得られる成形体は、有機液体(C)中でASA変性CNFと樹脂を混合・混練することにより、水を含む比較例9よりも樹脂中にミクロフィブリル化植物繊維が均一に分散させることが可能となった。
 加えて実施例15、及び比較例9の比較より、ASA変性NBKPを樹脂中に均一に分散させることで、平均線膨張率の非常に小さな複合材料を得ることが可能となった。
 [実施例16]<ポリアセタール系樹脂との複合化>
 実施例3の<ASA変性ミクロフィブリル化植物繊維の調製>において、ミクロフィブリル化植物繊維とASAの反応後、アセトン、エタノール、水で順次洗浄し、カルボキシル基がカリウム塩で変性された水含有ASA変性ミクロフィブリル化植物繊維を得た。これを水に分散させて、3質量%の分散液とし、攪拌している所に16質量%の塩化カルシウム水溶液を添加して1時間攪拌することにより、カルボキシル基がカルシウム塩で変性された水含有ASA変性ミクロフィブリル化植物繊維を得た。これを吸引ろ過した後、イソプロパノールで溶媒置換することにより、カルボキシル基がカルシウム塩で変性されたエタノール含有ASA変性ミクロフィブリル化植物繊維を得た。得られたASA変性ミクロフィブリル化植物繊維の置換度は、0.34であった。また、得られたASA変性ミクロフィブリル化植物繊維に、イソプロパノールを加えて固形分濃度を3.0質量%に調製した。このイソプロパノールに分散されたASA変性ミクロフィブリル化植物繊維(固形分54g)に、ポリオキシメチレン(POM)(三菱エンジニアリングプラスチックス(株)製、商品名「F30-01」、平均粒子径12μm)46gをエタノールに分散させ固形分濃度を10.0質量%に調製した分散液を、ビーカー内でプロペラ撹拌しながら混合した。得られた樹脂混合物分散液を吸引ろ過した後、トリミックスにより撹拌しながら減圧乾燥を行いASA変性ミクロフィブリル化植物繊維と樹脂の混合物(マスターバッチ)を調製した。
 配合後の固形分の含有割合は下記の通りである。
 ASA変性ミクロフィブリル化植物繊維:50.3質量%(ミクロフィブリル化植物繊維由来(30質量%)+ASA由来部分(20.3質量%))
 POM:49.7質量%
 次いで、得られたマスターバッチ100gと、POM200g(三菱エンジニアリングプラスチックス(株)製、商品名「F30-01」 平均粒子径12μm)との混合物を、(株)テクノベル製の二軸混練機(KZW、スクリュー径:15mm、L/D:45、スクリュー回転数:200rpm、せき止め構造:0個、処理速度200g/時)にて170℃で1パスさせ、得られた溶融混練物をペレタイザー((株)テクノベル製)を用いてペレット化した後、射出成型機(日精樹脂工業(株)製)に投入し、短冊型の試験片(幅10mm、厚さ4mm、長さ80mm)を得た。なお、加熱筒(シリンダー)温度は180℃、金型温度は35℃の条件下で成形を行った。
 最終的に得られた樹脂組成物の固形分の含有割合は下記の通りである。
  ASA変性ミクロフィブリル化植物繊維:16.8質量%(ミクロフィブリル化植物繊維由来(10質量%)+ASA由来部分(6.8質量%))
  POM:83.2質量%。
 得られたダンベル型試験片を以下の方法により、曲げ強度及び曲げ弾性率を測定した。測定結果を表10に示す。
 <曲げ弾性率、及び曲げ強度>
 成形体を変形速度10mm/分で曲げ弾性率及び曲げ強度を測定した(ロードセル100N)。測定器として万能試験機オートグラフAG-5000E[AG-Xリフレッシュ済]((株)島津製作所製)を用いた。
 [比較例10]
 実施例16において、ASA変性ミクロフィブリル化植物繊維を用いず、POMの粉末(三菱エンジニアリングプラスチックス(株)製:商品名「F30-01」、平均粒子径12μm)のみを用いて実施例16と同様の方法により成形し、ダンベル型の試験片を得た。
 得られたダンベル型試験片を実施例16と同様の方法によって、曲げ弾性率、及び曲げ強度を測定した。測定結果を表10に示す。
 [比較例11]
 実施例16において、未変性のエタノール含有ミクロフィブリル化植物繊維を用いた以外は、実施例16と同様の方法により、複合化、成形を行い、ダンベル型試験片を得た。
 得られたダンベル型試験片を実施例16と同様の方法によって、曲げ弾性率、及び曲げ強度を測定した。測定結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 <結果と考察>
 ASA変性NBKPとPOMを混合する際に、有機液体(C)を含む実施例16は、HDPEとASA変性NBKPとを複合化した場合と同様、未変性のパルプを用いた比較例10と比較して、NBKPのナノ解繊化と均一分散化がより進んでいるため、曲げ弾性率及び曲げ強度が共に向上していることが明らかとなった。
 [実施例17] <ポリプロピレンとの複合化>
 実施例3で製造したASA変性ミクロフィブリル化植物繊維と樹脂の混合物(マスターバッチ)100gとポリプロピレン(PP)(日本ポリプロ(株)製:商品名「ウィンテックWF-X6」、融点125℃)200gとの混合物を、(株)テクノベル製の二軸混練機(KZW、スクリュー径:15mm、L/D:45、スクリュー回転数:200rpm、せき止め構造:0個、処理速度200g/時)にて140℃で1パスさせ、得られた溶融混練物をペレタイザー((株)テクノベル製)を用いてペレット化した後、射出成型機(日精樹脂(株)製:「NPX7-1F」)に投入し、ダンベル型の試験片(厚さ1mm)を得た。なお、加熱筒(シリンダー)温度は160℃、金型温度は40℃の条件下で成形を行った。
 最終的に得られた樹脂組成物の固形分の含有割合は下記の通りである。
  ASA変性ミクロフィブリル化植物繊維:18.0質量%(ミクロフィブリル化植物繊維由来(10質量%)+ASA由来部分(8.0質量%))
  樹脂:80.7質量%(MAPP(4.3質量%)+HDPE(9.7質量%)+PP(66.7質量%))
  炭酸カルシウム:1.3重量%。
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表11に示す。
 [比較例12]
 実施例17において、ASA変性ミクロフィブリル化植物繊維と樹脂の混合物(マスターバッチ)を用いず、PPのペレット(日本ポリプロ(株)製:商品名「ウィンテックWF-X6」))のみを用いて実施例17と同様の方法により成形し、ダンベル型の試験片を得た。
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 <結果と考察>
 ASA変性ミクロフィブリル化植物繊維とPPを混合する実施例17は、PP樹脂のみの比較例12と比較して、弾性率及び引張強度が共に向上していることが明らかとなった。
 [実施例18] <低密度ポリエチレン(LDPE)との複合化例>
 実施例3においてASA変性ミクロフィブリル化植物繊維と樹脂の混合物(マスターバッチ)を製造するにあたり、高密度ポリエチレン(HDPE)(住友精化(株)製:商品名「フロービーズHE3040」)の代わりにLDPE(旭化成ケミカルズ(株)製:商品名「サンテック-LD L6810」)を使用し、更に、マスターバッチとHDPE(旭化成ケミカルズ(株)製、商品名「サンテック-HD J320」)を混合するLDPE(旭化成ケミカルズ(株)製:商品名「サンテック-LD L6810」)を使用したこと以外は、実施例3と同様にしてASA変性ミクロフィブリル化植物繊維を含有する樹脂組成物を得た。
 最終的に得られた樹脂組成物の固形分の含有割合は下記の通りである。
  ASA変性ミクロフィブリル化植物繊維:18.0質量%(ミクロフィブリル化植物繊維由来(10質量%)+ASA由来部分(8.0質量%))
  樹脂:80.7質量%(MAPP(4.3質量%)+LDPE(76.4質量%))
  炭酸カルシウム:1.3重量%。
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表12に示す。
 [比較例13]
 実施例15において、ASA変性ミクロフィブリル化植物繊維と樹脂の混合物(マスターバッチ)を用いず、LDPE(旭化成ケミカルズ(株)製:商品名「サンテック-LD L6810」)のみを用いて実施例18と同様の方法により成形し、ダンベル型の試験片を得た。
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表12に示す。
Figure JPOXMLDOC01-appb-T000012
 <結果と考察>
 ASA変性ミクロフィブリル化植物繊維とLDPEを混合する実施例18は、PP樹脂のみの比較例13と比較して、弾性率及び引張強度が共に向上していることが明らかとなった。
 [実施例19]
 <アルケニル無水コハク酸(ASA)変性植物繊維の調製>
 実施例1で調製した含水のNBKP(リファイナー処理)100g(固形分20g)をジメチルスルホキシド(DMSO)によって溶媒置換を行った。この試料の固形分濃度を20質量%に調製してトリミックスTX-1((株)井上製作所製)に投入した後、実施例1と同様の方法でASA変性反応を行った。反応後、アセトン、エタノール、酢酸水、水で順次洗浄を行い、さらにIPAで溶媒置換することでIPA含有のASA変性植物繊維(ASA変性NBKP)を得た。得られたASA変性NBKPの置換度(DS)は0.30であった。
 得られたIPA含有ASA変性NBKPにIPAを加えて固形分濃度を3.0質量%に調製した。このIPAに分散されたASA変性NBKP(固形分31.9g)に、高密度ポリエチレン(HDPE、旭化成ケミカルズ(株)製:商品名「サンテック-HD J320」微粉砕物)34.8g及びIPAを加え固形分濃度を10.0質量%の分散液を調製した。分散液をビーカー内で撹拌しながら混合した。得られた樹脂混合物分散液を吸引ろ過した後、トリミックスにより撹拌しながら減圧乾燥を行い、ASA変性NBKPと樹脂の混合物(マスターバッチ)を調製した。
 配合後の固形分の含有割合は下記の通りである。
 ASA変性NBKP:47.8質量%(NBKP由来成分(30質量%)+ASA由来部分(17.8質量%))
 樹脂:HDPE(52.2質量%)
 次いで、得られたマスターバッチ30gとHDPE(旭化成ケミカルズ(株)製:商品名「サンテック-HD J320」)60gとの混合物を、(株)テクノベル製の二軸混練機(KZW、スクリュー系:15mm、L/D:45、スクリュー回転数:200rpm、せき止め構造0個、処理速度200g/時)にて140℃で1パスさせ、得られた溶融混練物をペレタイザー((株)テクノベル製)を用いてペレット化した後、射出成型機(NPX7-1F、日精樹脂(株)製)に投入し、ダンベル型の試験片(厚さ1mm)を得た。なお、加熱塔(シリンダー)温度は160℃、金型温度は40℃の条件化で成型を行った。
 最終的に得られた樹脂組成物の固形分の含有割合は下記の通りである。
 ASA変性植物繊維:16.0質量%(NBKP由来成分(10質量%)+ASA由来成分(6.0質量%))
 樹脂:HDPE(84.0質量%)
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表13に示す。
Figure JPOXMLDOC01-appb-T000013
 <結果と考察>
 ASA変性時の植物繊維の膨潤溶媒としてDMSOを用いた実施例19は、HDPE単体である比較例2、およびHDPEと未変性NBKPを複合化させた比較例3と比較して、弾性率及び引張強度が共に向上していることがわかる。
 [実施例20]
 <ポリプロピレンの熱分解物の調製>
 ポリプロピレン(PP、日本ポリプロ(株)製:商品名「ノバテックMA3Q」)を700gフラスコに入れ、ガスバーナーで380~420℃に加熱した。発生した気体を冷却し、常温で液状物550gを得た。得られた液状物に対してガスクロマトグラフィー質量分析装置((株)島津製作所製 「GCMS-QP2010 Ultra」)を用いてガスクロマトグラフィー質量分析を行ったところ、主成分は末端に不飽和結合を持つ炭素数9~21程度のプロピレンオリゴマーであった。得られたプロピレンオリゴマーの低沸点成分を70℃、80hPaで減圧留去し、平均炭素数18程度(1H NMRにより解析)のポリプロピレンの熱分解物(熱分解PP)を380g得た。
 <PP骨格を有するアルケニル無水コハク酸の合成>
 熱分解PP 380gに無水マレイン酸133gを加え、窒素雰囲気下200℃で16時間反応させた。反応後、ヘキサンに滴下し、生じた不溶部をメンブレンフィルター((株)アドバンテック社製「H010A090C」)で除去し、得られたろ液を濃縮して、PP骨格を有するアルケニル無水コハク酸(熱分解PP-ASA)350gを得た。
 <変性ミクロフィブリル化植物繊維の調製>
 実施例3の<ASA変性ミクロフィブリル化植物繊維の調製>において、変性剤として熱分解PP-ASAを用いた以外は同様の方法で、変性反応を行った。反応後、ヘキサン、アセトン、エタノールで順次洗浄し、カルボキシル基がカリウム塩に変性されたエタノール含有変性ミクロフィブリル化植物繊維を得た。得られた変性ミクロフィブリル化植物繊維の置換度(DS)は、0.41であった。これをトリミックスTX-5((株)井上製作所製)に投入し、NMPを加え、攪拌しながら減圧蒸留することでエタノールを除去した。ここにヨードメタンを加え、50℃で反応させた。反応後、アセトン、エタノール、酢酸水、水で順次洗浄し、さらにIPAによって溶媒置換を行うことにより、カルボキシル基がメチル基でエステル化されたIPA含有変性ミクロフィブリル化植物繊維を得た。
 得られたIPA含有変性ミクロフィブリル化植物繊維に対して、樹脂としてPP(日本ポリプロ(株)製:商品名「ノバテックMA04A」微粉砕物)を用いた以外は実施例19と同様の方法を用い、変性ミクロフィブリル化植物繊維と樹脂の混合物(マスターバッチ)を調製した。
 配合後の固形分の含有割合は下記の通りである。
 変性ミクロフィブリル化植物繊維:58.5質量%(ミクロフィブリル化植物繊維由来成分(30質量%)+PP-ASA由来部分(28.5質量%))
 樹脂:PP(41.5質量%)
 次いで、得られたマスターバッチ30gとPP(日本ポリプロ(株)製:商品名「ノバテックMA04A」)60gの混合物を、(株)テクノベル製の二軸混練機(KZW、スクリュー系:15mm、L/D:45、スクリュー回転数:200rpm、せき止め構造0個、処理速度200g/時)にて180℃で1パスさせ、得られた溶融混練物をペレタイザー((株)テクノベル製)を用いてペレット化した後、射出成型機(NPX7-1F、日精樹脂(株)製)に投入し、ダンベル型の試験片(厚さ1mm)を得た。なお、加熱筒(シリンダー)温度は170℃、金型温度は40℃の条件化で成型を行った。
 最終的に得られた樹脂組成物の固形分の含有割合は下記の通りである。
  変性ミクロフィブリル化植物繊維:19.5質量%(ミクロフィブリル化植物繊維由来部分(10質量%)+PP-ASA由来部分(9.5質量%))
  樹脂:80.5質量%。
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表14に示す。
 [実施例21]
 実施例20<変性ミクロフィブリル化植物繊維の調製>において得られた変性ミクロフィブリル化植物繊維を用い、混練時に酸化防止剤(BASF(株)製:商品名「イルガノックス1010」)を0.3g添加した以外は、実施例20と同様の方法により、変性ミクロフィブリル化植物繊維と樹脂との複合化、成形を行い、ダンベル型試験片を得た。
 最終的に得られた樹脂組成物の固形分の含有割合は下記の通りである。
  変性ミクロフィブリル化植物繊維:19.5質量%(ミクロフィブリル化植物繊維由来部分(10質量%)+PP-ASA由来部分(9.5質量%))
  酸化防止剤:0.3g
  樹脂:80.2質量%。
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表14に示す。
 [比較例14]
 実施例20において、変性ミクロフィブリル化植物繊維を用いず、PPのペレット(日本ポリプロ(株)製:商品名「ノバテックMA04A」)のみを用いて実施例20と同様の方法により成形し、ダンベル試験片を得た。
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表14に示す。
Figure JPOXMLDOC01-appb-T000014
 <結果と考察>
 熱分解PP-ASAを用いてミクロフィブリル化植物繊維を変性させPPと複合化した実施例20、及び熱分解PP-ASAを用いてミクロフィブリル化植物繊維を変性させ、混練時に酸化防止剤を添加した実施例21は、PP単体である比較例14と比較して、弾性率及び引張強度が共に向上していることがわかる。
 [実施例22]
 実施例3の<ASA変性ミクロフィブリル化植物繊維の調製>において、ミクロフィブリル化植物繊維とASAの反応後、アセトン、エタノール、酢酸水、水で順次洗浄し、さらにIPAによって溶媒置換し、IPA含有ASA変性ミクロフィブリル化植物繊維を得た。変性ミクロフィブリル化植物繊維の置換度(DS)は0.18であった。これをトリミックスTX-1((株)井上製作所製)に91g(固形分13.6g)投入した後、NMP40gを加え、50℃に加熱し、攪拌しながら減圧することでIPAを留去した。
 次にその試料に塩化ベンゾイルを8.7g、ジメチルアミノピリジンを22.6g加えて70℃で3時間反応させた。反応後、アセトン、エタノール、酢酸水、水で順次洗浄し、さらにIPAによって溶媒置換し、IPA含有ASA変性-ベンゾイル化変性ミクロフィブリル化植物繊維を得た。得られた変性ミクロフィブリル化植物繊維のベンゾイル基由来の置換度(DS)は0.15であった。また得られた変性ミクロフィブリル化繊維を用いた以外は実施例19と同様の方法により、変性ミクロフィブリル化植物繊維と樹脂との複合化、成形を行い、ダンベル型試験片を得た。
 最終的に得られた樹脂組成物の固形分の含有割合は下記の通りである。
 ASA変性-ベンゾイル化変性ミクロフィブリル化植物繊維:14.5質量%(ミクロフィブリル化植物繊維由来成分(10質量%)+ASA由来成分(3.6質量%)+ベンゾイル基由来成分(0.9質量%)
 樹脂:HDPE(85.5質量%)
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表15に示す。
 [実施例23]
 実施例3の<ASA変性ミクロフィブリル化植物繊維の調製>において、ミクロフィブリル化植物繊維とASAの反応後、アセトン、エタノール、酢酸水、水で順次洗浄し、さらにIPAによって溶媒置換し、IPA含有ASA変性ミクロフィブリル化植物繊維を得た。変性ミクロフィブリル化植物繊維の置換度(DS)は0.35であった。これをトリミックスTX-1((株)井上製作所製)に113g(固形分17g)投入した後、NMP40gを加え、50℃に加熱し、攪拌しながら減圧することでIPAを留去した。
 次にその試料に無水酢酸を2.5g、炭酸カリウムを2.6g加えて65℃で4時間反応させた。反応後、アセトン、エタノール、酢酸水、水で順次洗浄し、さらにIPAによって溶媒置換し、IPA含有ASA変性-アセチル化変性ミクロフィブリル化植物繊維を得た。得られた変性ミクロフィブリル化植物繊維のアセチル基由来の置換度(DS)は0.20であった。また得られた変性ミクロフィブリル化植物繊維を用いた以外は実施例19と同様の方法により、変性ミクロフィブリル化植物繊維と樹脂との複合化、成形を行い、ダンベル型試験片を得た。
 最終的に得られた樹脂組成物の固形分の含有割合は下記の通りである。
 ASA変性-アセチル化変性ミクロフィブリル化植物繊維:17.5質量%(ミクロフィブリル化植物繊維由来成分(10質量%)+ASA由来成分(7.0質量%)+アセチル基由来成分(0.5質量%)
 樹脂:HDPE(82.5質量%)
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表15に示す。
 [実施例24]
 実施例23で調製したIPA含有ASA変性ミクロフィブリル化植物繊維113g(固形分17g)を、無水ミリスチン酸13.5gを用いて追加変性した。追加変性する際の変性剤として、無水酢酸に換えて無水ミリスチン酸を用いる以外は、実施例23と同様の方法により、IPA含有ASA変性-ミリストイル化変性ミクロフィブリル化植物繊維を得た。得られた変性ミクロフィブリル化植物繊維のASA由来の置換度(DS)は0.35、ミリストイル基由来の置換度(DS)は0.22であった。また得られた変性ミクロフィブリル化繊維を用いた以外は実施例19と同様の方法により、変性ミクロフィブリル化植物繊維と樹脂との複合化、成形を行い、ダンベル型試験片を得た。
 最終的に得られた樹脂組成物の固形分の含有割合は下記の通りである。
 ASA変性-ミリストイル化変性ミクロフィブリル化植物繊維:19.9質量%(ミクロフィブリル化植物繊維由来成分(10質量%)+ASA由来成分(7.0質量%)+ミリストイル基由来成分(2.9質量%)
 樹脂:HDPE(80.1質量%)
 得られたダンベル型試験片を実施例1と同様の方法によって、弾性率、及び引張強度を測定した。測定結果を表15に示す。
Figure JPOXMLDOC01-appb-T000015
 <結果と考察>
 実施例22、23及び24で示すように、ASAと他の変性剤を併用して変性した変性ミクロフィブリル化植物繊維をHDPEと複合化させた場合も、HDPE単体である比較例2、及びHDPEと未変性NBKPを複合化させた比較例3と比較して、弾性率及び引張強度が共に向上していることがわかる。

Claims (24)

  1. (1)熱可塑性樹脂又は熱硬化性樹脂(A)、及び
    ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)を膨潤させることが可能な液体中でアルキル若しくはアルケニル無水コハク酸で変性されて得た変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)を
    有機液体(C)の存在下で混合する工程
    を含む
    樹脂組成物の製造方法。
  2. (2)工程(1)で得られた混合物を、さらに混練する工程
    を含む
    請求項1に記載の樹脂組成物の製造方法。
  3. 工程(1)における変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)が、変性植物繊維(b)であって、
    工程(2)における混練中に熱可塑性樹脂又は熱硬化性樹脂(A)中で変性植物繊維(b)が解繊され、
    熱可塑性樹脂又は熱硬化性樹脂(A)中で、変性ミクロフィブリル化植物繊維(B)が分散されることを特徴とする
    請求項2に記載の樹脂組成物の製造方法。
  4. (1)熱可塑性樹脂又は熱硬化性樹脂(A)、及び
    植物繊維(b’)を膨潤させることが可能な液体中でアルキル若しくはアルケニル無水コハク酸で変性されて得た変性植物繊維(b)を
    水(C’)の存在下で混合する工程、並びに
    (2)工程(1)で得られた混合物を、さらに混練する工程
    を含む
    樹脂組成物の製造方法であって、
    工程(2)における混練中に熱可塑性樹脂又は熱硬化性樹脂(A)中で変性植物繊維(b)が解繊され、
    熱可塑性樹脂又は熱硬化性樹脂(A)中で、変性ミクロフィブリル化植物繊維(B)が分散されることを特徴とする
    樹脂組成物の製造方法。
  5. ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)を膨潤させることが可能な液体が、アミド系溶媒、及びスルホキシド系溶媒よりなる群から選ばれる少なくとも1種を含有することを特徴とする請求項1~請求項4の何れか1項に記載の樹脂組成物の製造方法。
  6. 有機液体(C)が、低級アルコール、エステル、炭化水素、ケトン及びエーテルよりなる群から選ばれる少なくとも1種である請求項1~請求項3、及び請求項5の何れか1項に記載の樹脂組成物の製造方法。
  7. 変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)中のカルボキシル基が未変性である、又は、カルボン酸塩、カルボキシアミド、若しくはアルコキシカルボニル基に変性された変性ミクロフィブリル化植物繊維又は変性植物繊維である請求項1~請求項6の何れか1項に記載の樹脂組成物の製造方法。
  8. カルボン酸塩が、アルカリ土類金属塩である請求項7に記載の樹脂組成物の製造方法。
  9. 変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)の配合量が、熱可塑性樹脂又は熱硬化性樹脂(A)100質量部に対して、0.1~1,000質量部である請求項1~請求項8の何れか1項に記載の樹脂組成物の製造方法。
  10. 前記工程(2)が、前記工程(1)で得られた混合物を、酸化防止剤の存在下で、さらに混練する工程である請求項2~請求項9の何れか1項に記載の樹脂組成物の製造方法。
  11. 前記工程(1)の変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)が、ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)を、アルキル若しくはアルケニル無水コハク酸による変性処理、並びにアシル化処理により得られるものである請求項1~請求項10の何れか1項に記載の樹脂組成物の製造方法。
  12. 請求項1~請求項11の何れか1項に記載の樹脂組成物の製造方法によって製造される樹脂組成物。
  13. 請求項12に記載の樹脂組成物からなる樹脂成形材料。
  14. 請求項13に記載の樹脂成形材料を成形してなる樹脂成形体。
  15. ミクロフィブリル化植物繊維(B’)又は植物繊維(b’)をアルキル若しくはアルケニル無水コハク酸による変性処理、並びにアシル化処理することで得られる変性ミクロフィブリル化植物繊維(B)又は変性植物繊維(b)。
  16. 熱可塑性樹脂及び変性ミクロフィブリル化植物繊維(B)を含む樹脂組成物であって、
    変性ミクロフィブリル化植物繊維(B)がミクロフィブリル化植物繊維(B’)をアルキル若しくはアルケニル無水コハク酸で変性されて得られるものであり、
    樹脂組成物中で熱可塑性樹脂がラメラ層を形成し、該ラメラ層が変性ミクロフィブリル化植物繊維(B)の繊維長の方向と異なる方向に積層してなる樹脂組成物。
  17. 熱可塑性樹脂及び変性ミクロフィブリル化植物繊維(B)を含む樹脂組成物であって、
    変性ミクロフィブリル化植物繊維(B)がミクロフィブリル化植物繊維(B’)をアルキル若しくはアルケニル無水コハク酸で変性されて得られるものであり、
    樹脂組成物中で熱可塑性樹脂がラメラ層を形成し、該ラメラ層が変性ミクロフィブリル化植物繊維(B)の繊維長の方向と異なる方向に積層してなり、
    変性ミクロフィブリル化植物繊維(B)の繊維長の方向と同じ方向に、一軸配向した樹脂の繊維状芯を有し、
    変性ミクロフィブリル化植物繊維(B)と該繊維状芯との間で、樹脂のラメラ層が、変性ミクロフィブリル化植物繊維(B)の繊維長の方向と異なる方向に積層してなる樹脂組成物。
  18. 前記変性ミクロフィブリル化植物繊維(B)が、ミクロフィブリル化植物繊維(B’)を、アルキル若しくはアルケニル無水コハク酸による変性処理、並びにアシル化処理により得られるものである、請求項16又は請求項17に記載の樹脂組成物。
  19. 熱可塑性樹脂、並びに変性ミクロフィブリル化植物繊維(B)及び/又は変性植物繊維(b)を含む樹脂組成物であって、
    該変性ミクロフィブリル化植物繊維(B)及び変性植物繊維(b)が、ミクロフィブリル化植物繊維(B’)及び/又は植物繊維(b’)を、アルキル若しくはアルケニル無水コハク酸による変性処理、並びにアシル化処理により得られるものである樹脂組成物。
  20. 前記熱可塑性樹脂が、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、及びポリアセタール系樹脂よりなる群から選ばれる少なくとも1種の樹脂である請求項16~請求項19の何れか1項に記載の樹脂組成物。
  21. 前記ポリオレフィン系樹脂が、ポリエチレンである請求項20に記載の樹脂組成物。
  22. 更に酸化防止剤を含む、請求項16~請求項21の何れか1項に記載の樹脂組成物。
  23. 請求項16~請求項22の何れか1項に記載の樹脂組成物からなる樹脂成形材料。
  24. 請求項23に記載の樹脂成形材料を成形してなる樹脂成形体。
     
PCT/JP2013/055022 2012-03-09 2013-02-26 変性ミクロフィブリル化植物繊維を含む樹脂組成物の製造方法、及びその樹脂組成物 WO2013133093A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/383,230 US9512304B2 (en) 2012-03-09 2013-02-26 Method for producing resin composition comprising modified microfibrillated plant fibers, and same resin composition
JP2013554140A JP5496435B2 (ja) 2012-03-09 2013-02-26 変性ミクロフィブリル化植物繊維を含む樹脂組成物の製造方法、及びその樹脂組成物
CN201380024251.7A CN104334615B (zh) 2012-03-09 2013-02-26 包含改性微纤化植物纤维的树脂组合物的制造方法、以及该树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-053828 2012-03-09
JP2012053828 2012-03-09

Publications (1)

Publication Number Publication Date
WO2013133093A1 true WO2013133093A1 (ja) 2013-09-12

Family

ID=49116575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055022 WO2013133093A1 (ja) 2012-03-09 2013-02-26 変性ミクロフィブリル化植物繊維を含む樹脂組成物の製造方法、及びその樹脂組成物

Country Status (4)

Country Link
US (1) US9512304B2 (ja)
JP (1) JP5496435B2 (ja)
CN (1) CN104334615B (ja)
WO (1) WO2013133093A1 (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063914A1 (ja) * 2014-10-21 2016-04-28 古河電気工業株式会社 ポリオレフィン樹脂組成物、成形品および車両用外板
JP2017095628A (ja) * 2015-11-26 2017-06-01 大阪瓦斯株式会社 ポリ乳酸組成物及びその製造方法並びに複合体
JPWO2015178483A1 (ja) * 2014-05-22 2017-06-08 国立大学法人九州工業大学 バイオマスナノ繊維を含む高分子樹脂複合体及びバイオマスナノ繊維の製造方法並びに同高分子樹脂複合体の製造方法
JP2019006997A (ja) * 2017-06-22 2019-01-17 国立大学法人京都大学 繊維強化樹脂組成物、繊維強化成形体及びその製造方法
US20190092909A1 (en) * 2016-03-18 2019-03-28 Kyoto University Master batch containing acylation-modified microfibrillated plant fibers
WO2019066069A1 (ja) 2017-09-29 2019-04-04 古河電気工業株式会社 成形品
WO2019066070A1 (ja) 2017-09-29 2019-04-04 古河電気工業株式会社 成形品
JP2019520493A (ja) * 2016-06-22 2019-07-18 パフォーマンス バイオフィラメンツ インクPerformance Biofilaments Inc. 表面改質セルロース系材料及びその製造方法
JP2019214702A (ja) * 2018-06-07 2019-12-19 日本製紙株式会社 樹脂複合体の製造方法
JP2019214703A (ja) * 2018-06-07 2019-12-19 日本製紙株式会社 樹脂複合体
JP2020083913A (ja) * 2018-11-15 2020-06-04 旭化成株式会社 セルロースナノファイバー組成物
EP3272812B1 (en) 2015-03-19 2020-07-29 Kyoto University Fiber-reinforced resin composition comprising chemically modified cellulose nanofibers and thermoplastic resin
WO2020230836A1 (ja) 2019-05-16 2020-11-19 星光Pmc株式会社 成形材料用樹脂組成物、成形体、及び成形材料用樹脂組成物の製造方法
JP2021031653A (ja) * 2019-08-29 2021-03-01 大阪瓦斯株式会社 修飾セルロースナノファイバーおよびその製造方法
WO2021075224A1 (ja) * 2019-10-17 2021-04-22 国立大学法人静岡大学 セルロース複合体の製造方法、セルロース複合体/樹脂組成物の製造方法、セルロース複合体、及びセルロース複合体/樹脂組成物
CN112760967A (zh) * 2021-01-06 2021-05-07 程钢 一种具有半溶解性的植物纤维及其制备方法
JP2021120636A (ja) * 2020-01-30 2021-08-19 ポリプラスチックス株式会社 繊維状フィラー含有ペレット中の未解繊フィラーの検査方法及び検査システム
US11466140B2 (en) 2016-03-31 2022-10-11 Furukawa Electric Co., Ltd. Thermoplastic resin composition, method of producing thermoplastic resin composition, molded article of cellulose-reinforced resin, and method of producing molded article of cellulose-reinforced resin
JP7151024B1 (ja) * 2021-04-21 2022-10-11 日本製紙株式会社 繊維強化樹脂マスターバッチ、樹脂組成物、繊維強化樹脂マスターバッチの製造方法、及び樹脂組成物の製造方法
WO2022224716A1 (ja) * 2021-04-21 2022-10-27 日本製紙株式会社 繊維強化樹脂マスターバッチ、樹脂組成物、繊維強化樹脂マスターバッチの製造方法、及び樹脂組成物の製造方法
US11597817B2 (en) 2016-03-31 2023-03-07 Furukawa Electric Co., Ltd Thermoplastic resin composition, method of producing thermoplastic resin composition, molded article of cellulose-reinforced resin, and method of producing molded article of cellulose-reinforced resin
US11629244B2 (en) 2016-03-31 2023-04-18 Furukawa Electric Co., Ltd. Thermoplastic resin composition, cellulose-reinforced thermoplastic resin composition, method of producing cellulose-reinforced thermoplastic resin composition, molded article of cellulose-reinforced resin, and method of producing molded article of cellulose-reinforced resin
US11746215B2 (en) 2017-09-29 2023-09-05 Furukawa Electric Co., Ltd. Molded article
US11891498B2 (en) 2017-10-31 2024-02-06 Furukawa Electric Co., Ltd. Molded article provided with a resin part

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068790A1 (ja) * 2012-11-05 2014-05-08 京都市 ファスニング部品及びファスニング部品の製造方法
TWI525103B (zh) 2014-12-29 2016-03-11 財團法人工業技術研究院 改質纖維素與及應用其之複合材料
WO2016208634A1 (ja) * 2015-06-22 2016-12-29 星光Pmc株式会社 変性植物繊維、ゴム用添加剤、その製造方法及びゴム組成物
CA3003100A1 (en) * 2015-10-27 2017-05-04 Kri, Inc. Modified cellulose fine fibers and method for producing same
JP7125697B2 (ja) * 2015-12-03 2022-08-25 国立大学法人京都大学 樹脂組成物及びその製造方法
DE112017006276T5 (de) * 2016-12-14 2019-09-12 Seiko Pmc Corporation Zusammensetzung für einen formschaumstoff und verfahren für deren herstellung, formschaumstoff und verfahren für dessen herstellung und modifizierte cellulose enthaltende harzzusammensetzung für formschaumstoff
JP6937160B2 (ja) * 2017-05-01 2021-09-22 パナソニック株式会社 繊維複合樹脂成形部品
JP2019072973A (ja) * 2017-10-18 2019-05-16 トヨタ紡織株式会社 植物繊維含有ボード及びその製造方法
WO2019079910A1 (en) * 2017-10-27 2019-05-02 Bogyo Grant Raymond REINFORCED CONCRETE WITH NATURAL VEGETABLE FIBERS
JP2019162202A (ja) * 2018-03-19 2019-09-26 セイコーエプソン株式会社 樹脂部材及びウェアラブルバンド
CN109054183A (zh) * 2018-08-10 2018-12-21 武汉理工大学 一种高孔隙率聚丙烯微发泡复合材料及其制备方法
JP2020094098A (ja) * 2018-12-11 2020-06-18 コニカミノルタ株式会社 繊維強化樹脂組成物、これを含む樹脂成形品、電子写真形成装置および電子写真形成装置用外装部品
CN112409688A (zh) * 2020-11-17 2021-02-26 上海日之升科技有限公司 一种耐长期热氧老化耐热pp复合材料及其制备方法
TWI751026B (zh) * 2021-02-15 2021-12-21 王正雄 植物纖維原料粒的組成及其應用之纖維瓶罐成型方法
CN113980391B (zh) * 2021-12-09 2022-11-15 北京理工大学 一种纳米纤维素塑料添加剂、增强型聚丙烯材料及制备方法
US20230365782A1 (en) * 2022-05-11 2023-11-16 Braskem S.A. Bio-based hdpe for non-woven application

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181513A (ja) * 1999-12-24 2001-07-03 Konica Corp 複合材料の製造方法、複合材料及び成形品
JP2003527493A (ja) * 1999-12-16 2003-09-16 アクゾ ノーベル エヌ.ブイ. サイジング組成物
JP2005526148A (ja) * 2001-08-03 2005-09-02 レイヨニアー プロダクツ アンド フィナンシァル サービシズ カンパニー 高度にカルボキシル化されたセルロース繊維及びその製造方法
JP2008248441A (ja) * 2007-03-30 2008-10-16 Daicel Chem Ind Ltd 疎水化された微小繊維状セルロースを含む繊維シート
JP2008308524A (ja) * 2007-06-12 2008-12-25 Seiko Pmc Corp 疎水性を有するセルロース系成形体
JP2010106251A (ja) * 2008-09-30 2010-05-13 Daicel Chem Ind Ltd 疎水化されたセルロース系繊維を含む樹脂組成物及びその製造方法
JP2012025949A (ja) * 2010-06-25 2012-02-09 Mitsubishi Chemicals Corp 微細セルロース繊維分散液およびセルロース繊維複合体並びにその製造方法
JP2012214563A (ja) * 2011-03-31 2012-11-08 Kyoto Univ 変性ミクロフィブリル化植物繊維を含む樹脂組成物
JP2012229350A (ja) * 2011-04-27 2012-11-22 Kyoto Univ 樹脂組成物

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5104486A (en) * 1982-08-20 1992-04-14 Chevron Research Company Alkenyl succinic anhydride composition
US4737582A (en) * 1985-06-28 1988-04-12 The Procter & Gamble Company Absorbent vegetable materials
GB8616164D0 (en) * 1986-07-02 1986-08-06 Shell Int Research Hydrocarbyl-grafted cellulose fibres
DE3723897A1 (de) * 1987-07-18 1989-01-26 Akzo Gmbh Cellulosederivate und daraus hergestellte fasern und membranen
DE19529409A1 (de) * 1995-08-10 1997-02-13 Wolff Walsrode Ag Maleinsäureadditionsproduktgruppen enthaltende, thermoplastische und biologisch abbaubare Polysaccharidester/-etherester
FI103735B (fi) * 1998-01-27 1999-08-31 Kemira Chemicals Oy Paperin tai vastaavan kuitutuotteen hydrofobointijärjestelmä
US6090486A (en) * 1999-04-22 2000-07-18 Virginia Polytechnic Institute & State University Fiber materials for manufacturing fiber reinforced phenolic composites and adhesives with nucleophilic initiators positioned on the fiber surfaces
BR0114443A (pt) * 2000-10-04 2003-07-01 James Hardie Res Pty Ltd Materiais compostos de fibrocimento usando fibras celulósicas encoladas
CN1764755B (zh) * 2002-10-24 2010-10-06 斯派克特拉-科特公司 用于造纸的包括烷基乙烯酮二聚物和烯基琥珀酸酐的涂料组合物
US20060060814A1 (en) * 2002-12-17 2006-03-23 Lucyna Pawlowska Alkenylsuccinic anhydride surface-applied system and method for using the same
JP4400102B2 (ja) * 2003-06-16 2010-01-20 富士ゼロックス株式会社 画像記録方法
JP4013870B2 (ja) * 2003-07-08 2007-11-28 関西ティー・エル・オー株式会社 脂肪族ポリエステル組成物の製造方法
US20050215672A1 (en) * 2004-02-11 2005-09-29 Board Of Trustees Of Michigan State University Anhydride functionalized polyhydroxyalkanoates, preparation and use thereof
JP2005301203A (ja) * 2004-03-16 2005-10-27 Fuji Photo Film Co Ltd 電子写真用受像シート及び画像形成方法
US20060014640A1 (en) * 2004-07-15 2006-01-19 Fuji Photo Film Co., Ltd. Paper, method for manufacturing the same, image-recording material support, and image-recording material
US20060094798A1 (en) * 2004-11-04 2006-05-04 Cotter Terrence E Method of emulsifying substituted cyclic dicarboxylic acid anhydride sizing agents and emulsion for papermaking
TWI391427B (zh) * 2005-02-01 2013-04-01 Pioneer Corp 纖維強化複合材料及其製造方法與用途,以及纖維素纖維集合體
US20070032576A1 (en) * 2005-08-03 2007-02-08 Lundquist Eric G Composite materials and methods of making the same
US20090298976A1 (en) * 2005-10-26 2009-12-03 Hiroyuki Yano Fiber-Reinforced Composition Resin Composition, Adhesive and Sealant
EP2038478B1 (de) * 2006-06-27 2012-04-11 Basf Se Verfahren zur ausrüstung von papier und papierprodukten
US8664350B2 (en) * 2006-10-24 2014-03-04 Lubrizol Limited Polymeric coupling agents
FI123482B (fi) * 2007-06-01 2013-05-31 Teknologian Tutkimuskeskus Vtt Kuitutuote sekä menetelmä paperista tai kartongista koostuvan kuitutuotteen painettavuus-ominaisuuksien modifioimiseksi
CL2008002019A1 (es) * 2007-07-16 2009-01-16 Akzo Nobel Chemicals Int Bv Composicion de carga que comprende una carga, un compuesto inorganico cationico, un compuesto organico cationico y un polisacarido anionico; metodo para preparar dicha composicion; uso como aditivo para una suspension celulosica acuosa; procedimiento para producir papel; y papel.
WO2009054415A1 (ja) * 2007-10-23 2009-04-30 Tokushu Paper Mfg. Co., Ltd. シート状物及びその製造方法
WO2009081881A1 (ja) * 2007-12-21 2009-07-02 Mitsubishi Chemical Corporation 繊維複合体
US20110054192A1 (en) * 2008-04-29 2011-03-03 Akzo Nobel N.V. Paper sizing additives, their preparation process, and their use
FI125776B2 (fi) * 2008-06-27 2023-07-28 Metsaeliitto Osuuskunta Menetelmä puulevyn käsittelemiseksi
JP5386866B2 (ja) * 2008-06-30 2014-01-15 国立大学法人京都大学 ナノファイバーシート
WO2010013502A1 (ja) * 2008-07-31 2010-02-04 国立大学法人京都大学 不飽和ポリエステル樹脂とミクロフィブリル化植物繊維を含有する成形材料
EP2157103A1 (en) * 2008-08-18 2010-02-24 BIOeCON International Holding N.V. Process for regenerating or derivatizing cellulose
CA2778560C (en) * 2009-10-23 2015-02-03 Kyoto University Composition containing microfibrillated plant fibers
JP2011105799A (ja) 2009-11-13 2011-06-02 Konica Minolta Holdings Inc 繊維複合材料、光学フィルム、光学フィルムの製造方法及びそれを用いた偏光板、液晶表示装置
JP5622412B2 (ja) * 2010-03-19 2014-11-12 国立大学法人京都大学 成形材料及びその製造方法
JP5540176B2 (ja) 2010-03-31 2014-07-02 国立大学法人京都大学 ミクロフィブリル化植物繊維及びその製造方法、並びにそれを用いた成形材料、及び樹脂成形材料の製造方法
BR112013007704B1 (pt) * 2010-10-01 2020-09-29 Fpinnovations Massa e processo para fabricação de papel, e, papel
CN103132169B (zh) * 2011-11-30 2015-09-16 中国科学院理化技术研究所 一种能稳定分散的纤维素纳米纤维的制备方法
CN104220463B (zh) * 2012-03-29 2017-05-24 Dic株式会社 改性纤维素纳米纤维的制造方法、改性纤维素纳米纤维、树脂组合物及其成形体
WO2014068790A1 (ja) * 2012-11-05 2014-05-08 京都市 ファスニング部品及びファスニング部品の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003527493A (ja) * 1999-12-16 2003-09-16 アクゾ ノーベル エヌ.ブイ. サイジング組成物
JP2001181513A (ja) * 1999-12-24 2001-07-03 Konica Corp 複合材料の製造方法、複合材料及び成形品
JP2005526148A (ja) * 2001-08-03 2005-09-02 レイヨニアー プロダクツ アンド フィナンシァル サービシズ カンパニー 高度にカルボキシル化されたセルロース繊維及びその製造方法
JP2008248441A (ja) * 2007-03-30 2008-10-16 Daicel Chem Ind Ltd 疎水化された微小繊維状セルロースを含む繊維シート
JP2008308524A (ja) * 2007-06-12 2008-12-25 Seiko Pmc Corp 疎水性を有するセルロース系成形体
JP2010106251A (ja) * 2008-09-30 2010-05-13 Daicel Chem Ind Ltd 疎水化されたセルロース系繊維を含む樹脂組成物及びその製造方法
JP2012025949A (ja) * 2010-06-25 2012-02-09 Mitsubishi Chemicals Corp 微細セルロース繊維分散液およびセルロース繊維複合体並びにその製造方法
JP2012214563A (ja) * 2011-03-31 2012-11-08 Kyoto Univ 変性ミクロフィブリル化植物繊維を含む樹脂組成物
JP2012229350A (ja) * 2011-04-27 2012-11-22 Kyoto Univ 樹脂組成物

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015178483A1 (ja) * 2014-05-22 2017-06-08 国立大学法人九州工業大学 バイオマスナノ繊維を含む高分子樹脂複合体及びバイオマスナノ繊維の製造方法並びに同高分子樹脂複合体の製造方法
US11485841B2 (en) 2014-10-21 2022-11-01 Furukawa Electric Co., Ltd. Polyolefin resin composition, molded article, and outer panel for a vehicle
WO2016063914A1 (ja) * 2014-10-21 2016-04-28 古河電気工業株式会社 ポリオレフィン樹脂組成物、成形品および車両用外板
EP3272812B1 (en) 2015-03-19 2020-07-29 Kyoto University Fiber-reinforced resin composition comprising chemically modified cellulose nanofibers and thermoplastic resin
JP2017095628A (ja) * 2015-11-26 2017-06-01 大阪瓦斯株式会社 ポリ乳酸組成物及びその製造方法並びに複合体
US20190092909A1 (en) * 2016-03-18 2019-03-28 Kyoto University Master batch containing acylation-modified microfibrillated plant fibers
US10858485B2 (en) * 2016-03-18 2020-12-08 Kyoto University Master batch containing acylation-modified microfibrillated plant fibers
US11629244B2 (en) 2016-03-31 2023-04-18 Furukawa Electric Co., Ltd. Thermoplastic resin composition, cellulose-reinforced thermoplastic resin composition, method of producing cellulose-reinforced thermoplastic resin composition, molded article of cellulose-reinforced resin, and method of producing molded article of cellulose-reinforced resin
US11466140B2 (en) 2016-03-31 2022-10-11 Furukawa Electric Co., Ltd. Thermoplastic resin composition, method of producing thermoplastic resin composition, molded article of cellulose-reinforced resin, and method of producing molded article of cellulose-reinforced resin
US11597817B2 (en) 2016-03-31 2023-03-07 Furukawa Electric Co., Ltd Thermoplastic resin composition, method of producing thermoplastic resin composition, molded article of cellulose-reinforced resin, and method of producing molded article of cellulose-reinforced resin
JP2019520493A (ja) * 2016-06-22 2019-07-18 パフォーマンス バイオフィラメンツ インクPerformance Biofilaments Inc. 表面改質セルロース系材料及びその製造方法
US11035076B2 (en) 2016-06-22 2021-06-15 Performance Biofilaments Inc. Surface-modified cellulosic materials and methods of producing the same
JP6992059B2 (ja) 2016-06-22 2022-01-13 パフォーマンス バイオフィラメンツ インク 表面改質セルロース系材料及びその製造方法
JP7185215B2 (ja) 2017-06-22 2022-12-07 国立大学法人京都大学 繊維強化樹脂組成物、繊維強化成形体及びその製造方法
JP2019006997A (ja) * 2017-06-22 2019-01-17 国立大学法人京都大学 繊維強化樹脂組成物、繊維強化成形体及びその製造方法
US11597818B2 (en) 2017-09-29 2023-03-07 Furukawa Electric Co., Ltd. Molded article
WO2019066070A1 (ja) 2017-09-29 2019-04-04 古河電気工業株式会社 成形品
US11746215B2 (en) 2017-09-29 2023-09-05 Furukawa Electric Co., Ltd. Molded article
WO2019066069A1 (ja) 2017-09-29 2019-04-04 古河電気工業株式会社 成形品
US11578192B2 (en) 2017-09-29 2023-02-14 Furukawa Electric Co., Ltd. Molded article
US11891498B2 (en) 2017-10-31 2024-02-06 Furukawa Electric Co., Ltd. Molded article provided with a resin part
JP7227068B2 (ja) 2018-06-07 2023-02-21 日本製紙株式会社 樹脂複合体の製造方法
JP2019214702A (ja) * 2018-06-07 2019-12-19 日本製紙株式会社 樹脂複合体の製造方法
JP2019214703A (ja) * 2018-06-07 2019-12-19 日本製紙株式会社 樹脂複合体
JP7303015B2 (ja) 2018-06-07 2023-07-04 日本製紙株式会社 樹脂複合体の製造方法、及び変性セルロース繊維
JP7266995B2 (ja) 2018-11-15 2023-05-01 旭化成株式会社 セルロースナノファイバー組成物
JP2020083913A (ja) * 2018-11-15 2020-06-04 旭化成株式会社 セルロースナノファイバー組成物
WO2020230836A1 (ja) 2019-05-16 2020-11-19 星光Pmc株式会社 成形材料用樹脂組成物、成形体、及び成形材料用樹脂組成物の製造方法
JPWO2020230836A1 (ja) * 2019-05-16 2021-11-11 星光Pmc株式会社 成形材料用樹脂組成物、成形体、及び成形材料用樹脂組成物の製造方法
JP7350570B2 (ja) 2019-08-29 2023-09-26 大阪瓦斯株式会社 修飾セルロースナノファイバーおよびその製造方法
JP2021031653A (ja) * 2019-08-29 2021-03-01 大阪瓦斯株式会社 修飾セルロースナノファイバーおよびその製造方法
WO2021075224A1 (ja) * 2019-10-17 2021-04-22 国立大学法人静岡大学 セルロース複合体の製造方法、セルロース複合体/樹脂組成物の製造方法、セルロース複合体、及びセルロース複合体/樹脂組成物
JP7460989B2 (ja) 2019-10-17 2024-04-03 国立大学法人静岡大学 セルロース複合体の製造方法、セルロース複合体/樹脂組成物の製造方法、セルロース複合体、及びセルロース複合体/樹脂組成物
JP2021120636A (ja) * 2020-01-30 2021-08-19 ポリプラスチックス株式会社 繊維状フィラー含有ペレット中の未解繊フィラーの検査方法及び検査システム
JP7356365B2 (ja) 2020-01-30 2023-10-04 ポリプラスチックス株式会社 繊維状フィラー含有ペレット中の未解繊フィラーの検査方法及び検査システム
CN112760967A (zh) * 2021-01-06 2021-05-07 程钢 一种具有半溶解性的植物纤维及其制备方法
JP7151024B1 (ja) * 2021-04-21 2022-10-11 日本製紙株式会社 繊維強化樹脂マスターバッチ、樹脂組成物、繊維強化樹脂マスターバッチの製造方法、及び樹脂組成物の製造方法
WO2022224716A1 (ja) * 2021-04-21 2022-10-27 日本製紙株式会社 繊維強化樹脂マスターバッチ、樹脂組成物、繊維強化樹脂マスターバッチの製造方法、及び樹脂組成物の製造方法

Also Published As

Publication number Publication date
CN104334615B (zh) 2016-10-26
US20150105499A1 (en) 2015-04-16
JPWO2013133093A1 (ja) 2015-07-30
CN104334615A (zh) 2015-02-04
JP5496435B2 (ja) 2014-05-21
US9512304B2 (en) 2016-12-06

Similar Documents

Publication Publication Date Title
JP5496435B2 (ja) 変性ミクロフィブリル化植物繊維を含む樹脂組成物の製造方法、及びその樹脂組成物
KR102405761B1 (ko) 화학적으로 개질된 셀룰로오스 나노섬유 및 열가소성 수지를 포함하는 섬유 강화 수지 조성물
JP5757765B2 (ja) 変性ミクロフィブリル化植物繊維を含む樹脂組成物
JP7185215B2 (ja) 繊維強化樹脂組成物、繊維強化成形体及びその製造方法
JP5540176B2 (ja) ミクロフィブリル化植物繊維及びその製造方法、並びにそれを用いた成形材料、及び樹脂成形材料の製造方法
JP6640623B2 (ja) アシル化修飾ミクロフィブリル化植物繊維を含有するマスターバッチ
JP6012206B2 (ja) 変性セルロースナノファイバー及び変性セルロースナノファイバーを含む樹脂組成物
JP2009293167A (ja) ナノ繊維の製造方法、ナノ繊維、混合ナノ繊維、複合化方法、複合材料および成形品
JP6286975B2 (ja) 変性セルロースならびに該変性セルロースを含むマスターバッチ用樹脂組成物、樹脂成形材料、および成形体
WO2016148233A1 (ja) 化学修飾セルロースナノファイバー及び熱可塑性樹脂を含有する繊維強化樹脂組成物
Zheng et al. Melt processing of cellulose nanocrystal-filled composites: toward reinforcement and foam nucleation
JP6775160B2 (ja) 疎水化セルロース系繊維用の解繊助剤、それを使用する樹脂組成物の製造方法並びに成形体
JP2005042283A (ja) 脂肪族ポリエステル組成物の製造方法とそれに用いるパルプ及びセルロース系繊維並びにそのミクロフィブリル化方法
JP5865128B2 (ja) 変性ミクロフィブリル化植物繊維を含む発泡体
WO2020050286A1 (ja) 複合粒子及び樹脂組成物
WO2021172407A1 (ja) 解繊性が改良された繊維強化樹脂組成物及びその製造方法、並びに成形体及び解繊剤
JP6792265B2 (ja) エチレングリコール誘導体を含有するアセチル化パルプ組成物、ミクロフィブリル化されたアセチル化パルプを含有する樹脂組成物、及びそれらの製造方法
JP7333510B2 (ja) 繊維強化樹脂組成物及びその製造方法、並びに成形体
Venkatesh Melt-processing and properties of thermoplastic composites based on ethylene-acrylic acid copolymer reinforced with wood nanocellulose
WO2023013514A1 (ja) セルロース含有樹脂組成物、3dプリンタ用フィラメント、及びセルロース含有樹脂組成物の製造方法
Banvillet et al. Advances in the Production of Cellulose Nanomaterials and Their Use in Engineering (Bio) Plastics
Virtanen From wood to industrial polymeric biomaterials
JP2023125110A (ja) マスターバッチ、樹脂組成物、マスターバッチの製造方法、及び樹脂組成物の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013554140

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14383230

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13758229

Country of ref document: EP

Kind code of ref document: A1