WO2020230836A1 - 成形材料用樹脂組成物、成形体、及び成形材料用樹脂組成物の製造方法 - Google Patents

成形材料用樹脂組成物、成形体、及び成形材料用樹脂組成物の製造方法 Download PDF

Info

Publication number
WO2020230836A1
WO2020230836A1 PCT/JP2020/019184 JP2020019184W WO2020230836A1 WO 2020230836 A1 WO2020230836 A1 WO 2020230836A1 JP 2020019184 W JP2020019184 W JP 2020019184W WO 2020230836 A1 WO2020230836 A1 WO 2020230836A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
compound
group
resin
plant fiber
Prior art date
Application number
PCT/JP2020/019184
Other languages
English (en)
French (fr)
Inventor
横井 裕明
萌恵 堀口
藍子 納谷
Original Assignee
星光Pmc株式会社
トヨタ車体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 星光Pmc株式会社, トヨタ車体株式会社 filed Critical 星光Pmc株式会社
Priority to US17/442,370 priority Critical patent/US20220089850A1/en
Priority to CN202080018446.0A priority patent/CN113508163B/zh
Priority to JP2021519472A priority patent/JP6986655B2/ja
Priority to EP20804774.6A priority patent/EP3971244A4/en
Publication of WO2020230836A1 publication Critical patent/WO2020230836A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • C08K5/353Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene

Definitions

  • the present invention relates to a resin composition for a molding material, a molded product thereof, and a method for producing a resin composition for a molding material, which are suitable for molding material applications.
  • the present application claims priority based on Japanese Patent Application No. 2019-092856 filed in Japan on May 16, 2019, the contents of which are incorporated herein by reference.
  • carbon fiber, glass fiber, etc. are widely and generally used as reinforcing materials used for resins for molding materials.
  • carbon fiber since carbon fiber is hard to burn, it is not suitable for thermal recycling and is expensive.
  • glass fiber although glass fiber is relatively inexpensive, there is a problem in disposal in thermal recycling.
  • all of them since all of them have a higher density than resins, there is a problem that sufficient weight reduction cannot be expected when applied to applications such as automobile parts where weight reduction is desired.
  • cellulosic plant fibers such as pulp, wood powder and basts have come to be used as reinforcing materials for resins for molding materials.
  • These plant fibers have excellent thermal recyclability without leaving any residue even when burned, and because they have a lower density than inorganic fibers, it is possible to reinforce the resin without impairing its light weight. Become.
  • Patent Documents 1 and 2 propose a technique for neutralizing organic acids contained in plant fibers by adding inorganic alkalis.
  • plant fibers such as cellulose fibers are applied as a reinforcing material for a resin for molding materials
  • the plant fibers are hydrophobically modified or modified for the purpose of improving the compatibility and interfacial strength between the plant fibers and the resin. Attempts have been made to use defibrating resins.
  • Patent Document 3 in a composite material composed of a cellulosic microfibrillated plant fiber and a polyolefin such as polypropylene, maleic acid-modified polypropylene is widely used as a compatibilizer or an interface reinforcing agent.
  • a compatibilizer or an interface reinforcing agent are known.
  • thermoplastic resin or a thermosetting resin and a modified plant fiber obtained by modifying with alkyl or alkenyl anhydride succinic acid are organically liquid. It has been described that the microfibrillated plant fibers are uniformly dispersed in a highly hydrophobic resin by mixing in the presence.
  • Patent Documents 1 and 2 generally have a high density, and if the amount added for suppressing the fogging phenomenon is increased, the lightness of the applied parts may be impaired.
  • the present invention has been made to solve the above-mentioned problems, and is a resin composition for a molding material, a molded product thereof, which can suppress fogging and can obtain a lightweight and high-strength molded product. , And a method for producing a resin composition for a molding material.
  • the inventors have conducted diligent research, and as a result, by using a compound having reactivity with a carboxy group, fogging is suppressed and a molding material capable of producing a lightweight and high-strength molded body can be produced.
  • the present invention has been completed by finding that a resin composition for use can be obtained. That is, the present invention has the following aspects.
  • a resin composition for a molding material containing a plant fiber (A), a thermoplastic resin (B), and a compound (C) having reactivity with a carboxy group (2) The resin composition for a molding material according to (1) above, wherein the plant fiber (A) is a chemically modified product of an acid anhydride. (3) The resin composition for a molding material according to (1) or (2) above, wherein the thermoplastic resin (B) is a polyolefin resin. (4) Any one of (1) to (3) above, wherein the compound (C) having reactivity with a carboxy group is a compound having at least one functional group selected from the group consisting of a carbodiimide group and an oxazoline group. The resin composition for a molding material according to 1.
  • a method for producing a resin composition for a molding material which comprises a step of melt-kneading a plant fiber (A), a thermoplastic resin (B), and a compound (C) having reactivity with a carboxy group.
  • the mass ratio of the plant fiber (A) / thermoplastic resin (B) / compound (C) having reactivity with the carboxy group is 5 to 55/35 to 94 / 0.2 to 10, as described above. 6) Or (7).
  • the method for producing a resin composition for a molding material is 5 to 55/35 to 94 / 0.2 to 10, as described above. 6) Or (7).
  • a resin composition for a molding material a molded product, and a method for producing a resin composition for a molding material, which suppresses fogging and can obtain a lightweight and high-strength molded product.
  • the modified cellulose fiber (A) is defibrated and dispersed to nanofibers by melt-kneading the modified cellulose fiber (A) together with the thermoplastic resin (B) and the compound (C) having reactivity with the carboxy group (A). ) Is a scanning electron microscope image.
  • the resin composition for a molding material of the embodiment contains a plant fiber (A), a thermoplastic resin (B), and a compound (C) reactive with a carboxy group.
  • the plant fiber (A) contained in the resin composition for a molding material of the embodiment is not particularly limited, and examples thereof include cellulose fiber, wood flour, bamboo flour, hemp, kenaf fiber, bagasse fiber, and cotton. ..
  • the plant fiber (A) may be a fiber contained in a plant or a processed product thereof, or a fiber obtained from a plant or a processed product thereof.
  • the plant fiber (A) contained in the resin composition for a molding material is not particularly limited, and may be in a state of being purified from a plant raw material such as pulp, and a plant body such as wood flour. It may be in a state of forming a complex with other constituent components.
  • Examples of the raw materials that can be used to obtain the plant fiber (A), particularly cellulose fiber, include plants such as wood, bamboo, hemp, jute, kenaf, cotton, and beet, or processed products thereof.
  • Wood is a preferred raw material for cellulose fibers. Examples of wood plant species include pine, sugi, cypress, eucalyptus, and acacia. Further, pulp, paper, used paper and the like obtained from these plants or processed products thereof can also be used as raw materials that can be used to obtain cellulose fibers.
  • the plant fiber (A) may be used alone or in combination of two or more.
  • the pulp is a chemical pulp (for example, unbleached kraft pulp (UKP), bleached kraft pulp (BKP), sulfite) obtained by pulping plant raw materials chemically or mechanically or in combination of both.
  • Pulp (SP), etc.) Semi-chemical pulp (SCP), Chemigrand pulp (CGP), Chemi-mechanical pulp (CMP), Crushed wood pulp (GP), Refiner mechanical pulp (RMP), Thermomechanical pulp (TMP), Chemi Thermomechanical pulp (CTMP) and the like can be mentioned.
  • a component that causes fogging may adhere to the plant fiber (A), and examples of such a plant fiber (A) include those containing a volatile organic compound having a carboxy group.
  • the compound can cause fogging.
  • the volatile organic compound having a carboxy group may be a natural product synthesized in a plant.
  • the volatile organic compound having a carboxy group what is attached to the raw material plant fiber is attached to the plant fiber (A), and the form contained in the resin composition for molding material can be exemplified.
  • the volatile organic compound may be an organic compound that is volatile and becomes gaseous in the atmosphere, and examples thereof include organic compounds having a boiling point of 50 ° C. or higher and 260 ° C. or lower at 1 atm.
  • the resin composition for a molding material may contain at least one compound selected from the group consisting of fatty acids, resin acids, and esters thereof.
  • the compound is known to be contained in wood, for example, and can cause fogging.
  • Compounds having a carboxy group such as fatty acids and resin acids may correspond to volatile organic compounds.
  • the fatty acid may be an unsaturated fatty acid or a saturated fatty acid, but it is known that unsaturated fatty acids are the main ones.
  • the number of carbon atoms of the fatty acid may be, for example, 6 to 24 carbon atoms or 12 to 18 carbon atoms.
  • unsaturated fatty acids include linoleic acid and oleic acid.
  • saturated fatty acids include palmitic acid and stearic acid.
  • the resin acid may be a carboxylic acid, and examples thereof include a diterpene carboxylic acid such as abietic acid and an aromatic carboxylic acid such as benzoic acid and cinnamic acid.
  • Fatty acids and resin acids may be free, but may exist, for example, as esters with glycerin, sitosterol, and alcohol. Esters of fatty acids and resin acids can be decomposed into fatty acids and resin acids, respectively.
  • plant fiber (A) comprises at least one selected from the group consisting of unbleached pulp, unbleached kraft pulp, and wood flour. You can.
  • the plant fiber (A) is defibrated to the extent that desired physical properties can be obtained. That is, the plant fiber (A) is preferably nanofiber.
  • the nanofiber usually refers to a plant fiber having an average fiber diameter of less than 1000 nm, preferably an average fiber diameter of 4 to 800 nm, and the plant fiber is a cellulose fiber nanofiber (cellulose nanofiber: CNF). ) Is preferable.
  • CNF is a fiber obtained by subjecting a cellulose fiber to a treatment such as mechanical defibration. For example, a fiber having an average fiber diameter of 4 to 200 nm and a number average fiber length of 5 ⁇ m or more can be exemplified.
  • the specific surface area of the CNF preferably about 70 ⁇ 300m 2 / g, more preferably about 70 ⁇ 250m 2 / g, more preferably about 100 ⁇ 200m 2 / g.
  • the average fiber diameter of CNF may be preferably 4 to 200 nm, more preferably 4 to 150 nm, and even more preferably 4 to 100 nm.
  • the resin components in the resin composition for molding material (or the molded product) are washed away with a solvent capable of dissolving them, and then contained in the residue. This is possible by observing the fiber content with a scanning electron microscope.
  • a resin composition (or molded product) sample for a molding material containing a plant fiber (A) is wrapped in a 325 mesh stainless mesh and treated at 140 ° C. for 5 hours under reflux with xylene to dissolve the resin and extract the fiber content.
  • the dried product can be observed and measured with a scanning electron microscope (for example, JSM-5610LV manufactured by JEOL Ltd.).
  • each value can be obtained as an average value when at least 50 or more fibers in the field of view of the scanning electron microscope are measured.
  • the plant fiber (A) may be defibrated to nanofibers in the resin composition for molding materials after mixing in the method for producing a resin composition for molding materials described later, so that the nanofibers are not necessarily produced before mixing. It does not have to be defibrated.
  • the plant fiber (A) may be used as it is, but the plant fiber (A) is preferably a chemically modified product of an acid anhydride.
  • the chemically modified product may be produced by reacting an acid anhydride with a hydroxyl group of a plant fiber, and may have an ester bond formed by reacting an acid anhydride with a hydroxyl group of a plant fiber.
  • the compatibility and interfacial adhesion are improved by improving the interaction with the resin, and further, the hydrogen bond in the plant fiber and between the plant fibers is inhibited, so that the dispersion is high. You can achieve sex.
  • the strength of the obtained molded product can be increased.
  • Examples of the acid anhydride are carboxylic acid anhydrides, and examples thereof include acetic anhydride, butyric anhydride, propionic anhydride, benzoic anhydride, and stearic anhydride.
  • the chemically modified product produced by reacting the carboxylic acid anhydride with the hydroxyl group of the plant fiber can have an ester bond and a carboxy group formed by reacting the carboxylic acid anhydride with the hydroxyl group of the plant fiber.
  • acetic anhydride is preferred because of its availability and ease of introduction.
  • polyhydric basic acid anhydrides include, for example, alkyl or alkenyl succinic anhydride, maleic anhydride, phthalic anhydride, succinic anhydride, maleic anhydride-modified polyolefin, and maleic anhydride-modified polybutadiene. And so on.
  • an acid anhydride having a hydrophobic group is preferable, and an alkyl succinic anhydride or an alkenyl succinic anhydride is preferable from the viewpoint of compatibility with a resin.
  • the alkyl group or alkenyl group in the alkyl succinic anhydride or alkenyl succinic anhydride has the property as the above-mentioned hydrophobic group.
  • the alkyl group or alkenyl group may be linear or branched.
  • the number of carbon atoms of the alkyl group or the alkenyl group may be, for example, 8 to 20, and may be 12 to 18.
  • alkyl group examples include an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tetradecyl group, a hexadecyl group, an octadecyl group and an icosyl group.
  • alkenyl group examples include an octenyl group, a nonenyl group, a decenyl group, an undecenyl group, a dodecenyl group, a tetradecenyl group, a hexadecenyl group, an octadecenyl group, an icosenyl group and the like.
  • the plant fiber (A) may be a chemically modified product with a carboxylic acid anhydride, and the chemically modified product may have a carboxy group derived from the acid anhydride.
  • the plant fiber (A) may be a chemically modified product of a carboxylic acid anhydride having a hydrophobic group, and the chemically modified product may have a carboxy group derived from the carboxylic acid anhydride.
  • the plant fiber (A) may be a chemically modified product of an alkylsuccinic anhydride or an alkenylsuccinic anhydride, and the chemically modified product is a carboxy group derived from the alkylsuccinic anhydride or the alkenylsuccinic anhydride. It may have.
  • the fixation rate of acid anhydride on plant fibers is calculated from the following formula.
  • Fixation rate (%) (dry mass of modified plant fiber (A) -dry mass of plant fiber) / (dry mass of plant fiber) x 100
  • the fixing rate is preferably 5 to 50% by mass, more preferably 5 to 30% by mass, in view of the balance between the appropriate improvement in the resin dispersibility of the plant fiber and the production cost.
  • FT-IR Fourier transform infrared spectroscopy
  • thermoplastic resin is a resin having plasticity that can be softened by heating and molded into a desired shape.
  • the thermoplastic resin is a concept including a thermoplastic elastomer.
  • the thermoplastic elastomer refers to an elastomer (polymer having elasticity) having plasticity that can be softened by heating and molded into a desired shape.
  • thermoplastic resin a polyamide resin such as nylon; a polyolefin resin such as polyethylene, polypropylene, an ethylene-propylene copolymer, and an ethylene vinyl acetate copolymer; a polyester resin such as polyethylene terephthalate and polybutylene terephthalate; polymethylmethacrylate and poly Acrylic resin such as ethyl methacrylate; polystyrene, styrene resin such as (meth) acrylic acid ester-styrene resin; thermoplastic resin such as polyurethane resin, ionomer resin, cellulose resin, and olefin-based elastomer, vinyl chloride-based elastomer, styrene-based elastomer , Resins such as thermoplastic elastomers such as urethane-based elastomers, polyester-based elastomers, and polyamide-based elastomers, and mixtures of two or more thereof.
  • thermoplastic resins are polyolefin resins such as polyethylene resins, polypropylene resins and ethylene-vinyl acetate copolymers.
  • the polyolefin-based resin refers to a homopolymer or a copolymer having a structural unit derived from an olefin.
  • the thermoplastic resin may be used alone or in combination of two or more.
  • the compound (C) having reactivity with the carboxy group may be a compound that reacts with the carboxy group to form a covalent bond.
  • the compound (C) having a reactivity with the carboxy group is preferably an organic compound, and is selected from the group consisting of a carbodiimide group, an oxazoline group, an epoxy group, an isocyanate group, a silanol group, an aziridinyl group, an amino group and a hydroxyl group.
  • Examples thereof include compounds containing at least one group, and among them, a compound having at least one functional group selected from the group consisting of a carbodiimide group and an oxazoline group is preferable, and a compound having a carbodiimide group is more preferable.
  • the form of the compound having reactivity with the carboxy group is not particularly limited, but a solid state is preferable in terms of mixing with the thermoplastic resin.
  • the compound having a carbodiimide group it suffices to have one or more carbodiimide groups in the molecule, and a general synthetic product can be used.
  • a compound having a carbodiimide group may be synthesized by a known method, or a commercially available carbodiimide compound may be used.
  • commercially available polycarbodiimide compounds include Nisshinbo Chemical Co., Ltd.'s Carbodilite HMV-15CA, Carbodilite LA-1, and Rheinchemy's Co., Ltd., Stavaxol P. From the viewpoint of more effectively suppressing the volatile component having a carboxy group, it is particularly preferable to use a polycarbodiimide compound having two or more carbodiimide groups in the molecule.
  • the compound containing an oxazoline group may have one or more oxazoline groups in the molecule, and can be obtained by polymerizing with alkenyl oxazoline alone or, if necessary, with various unsaturated monomers by a known method. be able to.
  • alkenyl oxazolines include 2-vinyl-2-oxazoline, 4-methyl-2-vinyl-2-oxazoline, 5-methyl-2-vinyl-2-oxazoline, and 4,4-dimethyl-2-vinyl-2-oxazoline. , 2-Isopropenyl-2-oxazoline and the like. One or more of these alkenyloxazolines can be used.
  • the compound containing an oxazoline group a compound containing two or more oxazoline groups in the molecule is preferable from the viewpoint of more effectively suppressing the volatile component having a carboxy group.
  • the compound containing an oxazoline group include a polymer having an oxazoline group in the side chain, and there is no particular limitation on the type of resin that becomes the polymer main chain of the polymer, and the mixture with the thermoplastic resin is appropriately taken into consideration. Can be used.
  • the amount of the oxazoline group of the compound containing an oxazoline group may be, for example, 0.01 to 10 mmol / g, or 0.1 to 1 mmol / g.
  • oxazoline compound As the compound containing an oxazoline group, a commercially available oxazoline compound may be used. Examples of commercially available products include Epocross RPS-1005 manufactured by Nippon Shokubai Co., Ltd.
  • ⁇ Reaction of compound (C) reactive with carboxy group examples include, in addition to fatty acids and resin acids that can be contained in the plant fiber (A), the following components when the plant fiber (A) is a chemically modified product of an acid anhydride. i) Acid anhydrides used for denaturing plant fiber (A) that have not reacted with plant fiber, ii) The acid anhydride used for the modification of the plant fiber (A) is desorbed in a heat-applied process such as during mixing with a resin or during molding after reacting with the plant fiber.
  • the acid anhydride used for the modification of the plant fiber (A) usually has a ring-opening carboxy group in the composition and has a free carboxy group derived from these acid anhydrides or acid anhydrides. Compounds are cited as the cause of fogging.
  • the compound (C) reacts with the compound having the carboxy group which is the cause of fogging. It is thought that it can generate objects and suppress fogging. This is because the compound (C) reactive with the carboxy group reacts with the compound having the carboxy group which is the cause of fogging to produce a reactant, so that the molecular weight of the compound having the carboxy group which is the cause of the fogging is generated. It is considered that this is due to the increase in volatile acid and the decrease in volatility.
  • the compound (C) not only exerts a fogging-suppressing action in the manufacturing process of the resin composition for molding material and the manufactured resin composition for molding material, but also exerts a fogging-suppressing action even after the molded product is formed. Can be done.
  • the compound having a carboxy group may be a compound derived from the above-mentioned fatty acid, resin acid, acid anhydride or the like, and examples thereof include those exemplified in the plant fiber (A).
  • Examples of the reaction between the compound having a carboxy group and the compound having a carbodiimide group include those represented by the following formula (1).
  • R 1 , R 2 and R 3 are independently hydrogen atoms or monovalent organic groups.
  • Examples of the reaction between the compound having a carboxy group and the compound having an oxazoline group include those represented by the following formula (2).
  • R 1 and R 4 are independently hydrogen atoms or monovalent organic groups.
  • Inorganic alkalis which have a high density but have been found to have a fogging-suppressing effect, may be used in combination within the range of the purpose of obtaining a lightweight and highly rigid molded product.
  • inorganic alkalis examples include calcium oxide, calcium hydroxide, calcium carbonate, magnesium oxide, magnesium hydroxide, magnesium carbonate and the like.
  • additives such as compatibilizers, dispersants, surfactants, antioxidants, flame retardants, pigments, inorganic fillers, plasticizers, crystal nucleating agents, and foaming aids can be used at the same time as long as the effects of the present invention are not impaired. It may be blended.
  • compatibilizer examples include maleic anhydride, maleic anhydride-modified polyethylene resin, maleic anhydride-modified polypropylene resin, epoxy group-containing resin (copolymer of glycidyl methacrylate and ethylene, etc.), and various commercially available products.
  • a compatibilizer may be used.
  • fogging caused by the compound having a carboxy group can be effectively suppressed by containing the compound (C) having reactivity with the carboxy group. Further, the compound (C) having reactivity with the carboxy group effectively suppresses fogging caused by the compound having the carboxy group, and as a result, the compound having the carboxy group and the compound (C) having the reactivity with the carboxy group.
  • the compound having the carboxy group and the compound (C) having the reactivity with the carboxy group In the form of a reaction product with, it may be contained in the resin composition for a molding material of the embodiment.
  • the resin composition for a molding material of the embodiment it is possible to provide a resin composition for a molding material capable of obtaining a molded product having well-balanced characteristics of antifogging, light weight, and high strength.
  • the resin composition for a molding material of the embodiment can be produced by mixing a plant fiber (A), a thermoplastic resin (B), and a compound (C) having a reactivity with a carboxy group.
  • a plant fiber (A), the thermoplastic resin (B), and the compound (C) having reactivity with the carboxy group include those exemplified in the above resin composition for molding material, and the description thereof is omitted here. ..
  • the method for producing a resin composition for a molding material of the embodiment includes a step of melt-kneading a plant fiber (A), a thermoplastic resin (B), and a compound (C) having reactivity with a carboxy group. It may be there.
  • the melt kneading is a form of the mixing. In the melt-kneading, at least the thermoplastic resin (B) may be melted. Melt-kneading refers to mixing the molten thermoplastic resin (B), the plant fiber (A), and the compound (C) having reactivity with a carboxy group.
  • the resin composition for a molding material of the above-described embodiment can be produced.
  • the blending ratio of the plant fiber (A), the thermoplastic resin (B), and the compound (C) having a reactivity with the carboxy group in the method for producing the resin composition for a molding material of the embodiment is not particularly limited, but the molding material.
  • the mass ratio of (A) / (B) / (C) is from the viewpoint of both the plant fiber content preferable for obtaining the desired strength in the molded product using the resin composition for use and the effect of suppressing fogging. May be blended in a mass ratio of 1 to 55/35 to 99 / 0.2 to 10, may be blended in a mass ratio of 5 to 40/50 to 98/1 to 10, and may be blended in a mass ratio of 7 to 35/60 to 95. It may be blended in a mass ratio of 1 to 6.
  • the blending ratio of the plant fiber (A) with respect to 100% by mass of the total mass of the resin composition for molding material of the embodiment is not particularly limited, but the desired strength can be obtained in a molded product using the resin composition for molding material.
  • the content may be preferably 1 to 50% by mass, 5 to 40% by mass, or 10 to 30% by mass.
  • the above (A), the above (B) and the above (C) are melt-kneaded using a uniaxial or multiaxial kneader, a kneader or the like, and the plant fibers are uniformly mixed and dispersed in the resin component while being uniformly mixed and dispersed.
  • the fogging component can be captured by reacting the component that causes fogging with the above (C).
  • the mixing order of the (A), the (B) and the (C) is not particularly limited, and for example, the (A) and the (C) are mixed before the (A) and the (B) are mixed. It may be mixed in advance.
  • melt kneading can be performed using a uniaxial or multiaxial kneader, a kneader, or the like.
  • the mixing order, mixing temperature, and melting timing of the raw materials in the melt-kneading are not particularly limited.
  • the (A), the (B), and the (C) may be melt-kneaded, or the (A) and the (B) may be melt-kneaded in advance and then the (C) may be melt-kneaded. You may mix.
  • the temperature of the melt-kneading is taken into consideration.
  • the temperature of the kneaded product being kneaded is preferably 100 to 220 ° C.
  • the screw rotation speed of the uniaxial or multiaxial kneader is preferably in the range of 25 to 400 rpm for the entire stroke.
  • the plant fiber (A) is defibrated and dispersed in the thermoplastic resin (B).
  • “Inside the thermoplastic resin (B)” refers to a state in which the plant fibers (A) are dispersed using the molten thermoplastic resin (B) as a dispersion medium.
  • the plant fiber (A) is defibrated to nanofibers.
  • the plant fiber (A) defibrated in the thermoplastic resin (B) is preferably cellulose nanofiber.
  • the one defibrated to nanofiber has a better reinforcing effect. Even if the plant fibers that have been made into nanofibers in advance are mixed with the resin, or if the plant fibers are defibrated to the nanofibers in the thermoplastic resin and uniformly dispersed in the resin, the reinforcing effect does not change, but the plant In order to convert fibers into nanofibers in advance, it is generally necessary to apply a high share in a state of being dispersed in water 10 times or more that of plant fibers. When such nanofibers are blended with a resin, not only energy is required for nanofiber formation, but also a large amount of water must be removed when blending with the resin, resulting in high manufacturing cost.
  • the method of dispersing plant fibers in a thermoplastic resin while defibrating the plant fibers to nanofibers is more advantageous in terms of energy cost than the method of using pre-nanofibers.
  • By chemically modifying the plant fiber it becomes easier to disperse the plant fiber more uniformly in the resin while defibrating the plant fiber into nanofibers in the thermoplastic resin, and the flexural modulus or bending strength of the obtained molded product is obtained. Can be improved.
  • the resin composition for a molding material of the embodiment can be used as a molding material for producing a molded product.
  • the molded product of the embodiment is formed by molding the resin composition for a molding material of the above-described embodiment.
  • the molded product can be obtained, for example, by molding a resin composition for a molding material that has been softened by heating.
  • the molded product can be obtained, for example, by molding the melt-kneaded resin composition for a molding material.
  • Examples of the molding include press molding, injection molding, extrusion molding, blow molding, stretch molding, foam molding and the like.
  • Examples of the shape of the molded body include a sheet shape, a film shape, a pellet shape, a powder shape, and the like. These may be further molded into a form used in the final product by the molding method or the like described above.
  • Examples of the plant fiber (A), the thermoplastic resin (B), and the compound (C) having reactivity with the carboxy group contained in the molded product include those exemplified in the resin composition for molding material, which are here. The explanation of is omitted.
  • the resin composition for molding material can be made into a desired molded product by further adding various additives to the above resin composition for molding material and molding the resin composition for molding material, depending on the intended use.
  • the flexural modulus of the molded product of the embodiment is preferably 2.0 GPa or more, more preferably 3.0 GPa or more, and further preferably 3.3 GPa or more.
  • the upper limit of the flexural modulus of the molded product is not particularly limited, but may be 5 GPa or less as an example.
  • the numerical range of the flexural modulus of the molded product may be 2.0 GPa or more and 5 GPa or less, 3.0 GPa or more and 5 GPa or less, and 3.3 GPa or more and 5 GPa or less.
  • the value of the flexural modulus of the molded product shall be obtained under the conditions described in the examples.
  • the resin composition for molding material is injection-molded at an injection temperature of 200 ° C. and a mold temperature of 25 ° C. using an injection molding machine, and a strip-shaped test piece (JIS K7139 / B1) having a length of 80 mm, a width of 10 mm and a thickness of 2 mm is formed. ).
  • a load is applied to this test piece at a temperature: 23 ° C., humidity: 50% RH, distance between fulcrums 64 mm, and speed 2 mm / min to obtain a flexural modulus. taking measurement.
  • the bending strength of the molded product of the embodiment is preferably 65 MPa or more, more preferably 67 MPa or more, and even more preferably 68.5 MPa or more.
  • the upper limit of the bending strength of the molded product is not particularly limited, but may be 80 MPa or less as an example.
  • the numerical range of the bending strength of the molded product may be 65 MPa or more and 80 MPa or less, 67 MPa or more and 80 MPa or less, or 68.5 MPa or more and 80 MPa or less.
  • the value of the bending strength of the molded product shall be obtained under the conditions described in the examples. (Bending strength)
  • the resin composition for molding material is injection-molded at an injection temperature of 200 ° C. and a mold temperature of 25 ° C.
  • JIS K7139 / B1 a strip-shaped test piece having a length of 80 mm, a width of 10 mm and a thickness of 2 mm is formed.
  • a load is applied to this test piece at a temperature of 23 ° C., humidity of 50% RH, a distance between fulcrums of 64 mm, and a speed of 2 mm / min, and the bending strength is measured. To do.
  • Density of the molded body of the embodiment is preferably at 1.01 g / cm 3 or less, more preferably 1.005 g / cm 3 or less.
  • the lower limit of the density of the molded body is not particularly limited, it may be a 0.8 g / cm 3 or more as an example, may be at 0.9 g / cm 3 or more.
  • the value of the density of the molded product shall be obtained under the conditions described in the examples.
  • the obtained molded product can be used for automobile parts, home appliance housings, building materials, packaging materials, etc.
  • Fixation rate (%) (dry mass of modified plant fiber-dry mass of plant fiber) / (dry mass of plant fiber) x 100
  • the dry mass of the modified plant fiber was measured by the following method. A dispersion was prepared by adding 100 times the mass of tetrahydrofuran to the total amount of the modified plant fiber obtained by the method of Production Example 1, and the dispersion was stirred with a homogenizer (manufactured by Nippon Seiki) at 10000 rpm for 1 minute. It was suction filtered.
  • the filtration residue was dried in an electric dryer at 110 ° C., and the dry mass was measured.
  • FT-IR manufactured by JASCO Corporation
  • spectral absorption not found in the unmodified plant fiber was observed at 1500 to 2000 cm -1 .
  • the cloudiness (haze value (%)) of the glass plate used for the test was measured with a haze meter (manufactured by Nippon Denshoku Co., Ltd .; NDH5000).
  • the haze value indicates that the larger the value, the greater the degree of cloudiness.
  • ⁇ Manufacturing of modified cellulose fiber ⁇ 500 parts by mass of coniferous bleached kraft pulp (NBKP) and 150 parts by mass of N-methylpyrrolidone (NMP) having a solid content of 20% by mass were charged into a clean container, water was distilled off under reduced pressure, and then hexadecenylsuccinic anhydride was added. 19.9 parts by mass of the product was added and reacted at 80 ° C. for 4 hours. After the reaction, the pressure was reduced to distill off NMP to obtain modified cellulose fibers (A-1). The fixation rate of hexadecenyl succinic anhydride was 8.6%.
  • Example 2 A resin composition (D-2) was obtained according to Example 1 except that a carbodiimide group-containing compound (C-2, Stavaxol P manufactured by LANXESS Co., Ltd.) was used as a compound having reactivity with a carboxy group.
  • C-2 a carbodiimide group-containing compound manufactured by LANXESS Co., Ltd.
  • Example 3 A resin composition (D-3) was obtained according to Example 1 except that an oxazoline group-containing compound (C-3, Epocross RPS1005 manufactured by Nippon Shokubai Co., Ltd.) was used as a compound having reactivity with a carboxy group.
  • Epocross RPS1005 amorphous type reactive polymer in which oxazoline groups are pendant in the polystyrene main chain, oxazoline group amount: 0.27 mmol / g ⁇ solid, number average molecular weight (Mn): about 70,000, weight average Molecular weight (Mw) about 160,000
  • Example 4 A resin composition (D-4) was obtained according to Example 1 except that an epoxy group-containing compound (C-4, Denacol EX421 manufactured by Nagase Chemtech Co., Ltd.) was used as a compound having reactivity with a carboxy group. ..
  • Comparative Example 3 A resin composition (D-7) was obtained according to Comparative Example 2 except that the blending ratio of calcium oxide (c-5) was changed to 0.25 parts.
  • Evaluation Example 1 shows the results of measuring the physical properties of the resin compositions obtained in Examples 1 to 4 and Comparative Examples 1 to 3.
  • a haze value of less than 10% and bending are used as a molded product of an example in which fogging suppression (low haze value), high strength (high flexural modulus / bending strength), and light weight (low density) are compatible.
  • An elastic modulus of 3.0 GPa or more, a bending strength of 68.5 MPa or more, and a density of 1.01 g / cm 3 or less are shown.
  • Examples 1 to 4 which consist of a plant fiber (A-1 / modified cellulose fiber), a thermoplastic resin (B), and a compound (C) having reactivity with a carboxy group, all have low densities, and have a flexural modulus and a flexural modulus. The bending strength was high and the haze value was low, and these were compatible at a high level. Among them, Example 1 was of high quality having the highest flexural modulus and bending strength and the lowest haze value. In Examples 1 to 4, the values of flexural modulus and bending strength were particularly improved. It is considered that this is because the hydrophobizing modification of the plant fiber has improved the compatibility and interfacial strength between the plant fiber and the resin and improved the mechanical properties. Further, by containing the compound (C) having reactivity with the carboxy group, the haze value could be suppressed to be very low as compared with Comparative Example 1 and Comparative Example 3.
  • Comparative Example 1 which does not contain the compound (C) having reactivity with the carboxy group and is composed of the plant fiber (A-1 / modified cellulose fiber) and the thermoplastic resin (B), a relatively high flexural modulus was achieved. However, the haze value is very high. It is considered that this is because the denaturant was desorbed in the process of applying heat such as during mixing with the resin or during molding, causing fogging.
  • Comparative Example 2 in which the inorganic alkali calcium oxide was used instead of the compound (C) having reactivity with the carboxy group, the flexural modulus and the haze value showed excellent values, but the density was 1.049 g / cm 3 It cannot be said that the material is suitable for reducing the weight of the molded product.
  • Comparative Example 3 in which the amount of the inorganic alkali was reduced, the density was about the same as in Examples 1 to 4, but the haze value was high. It is considered that this is because the components that cause fogging could not be sufficiently neutralized as a result of reducing the amount of inorganic alkali.
  • resin composition 2 (Example 5) 10 parts of modified cellulose fiber (A-1), 90 parts of commercially available polypropylene resin (B, Novatec MA04A manufactured by Japan Polypropylene Corporation), and a carbodiimide group-containing compound (C-1, Nisshinbo) as a compound reactive with a carboxy group.
  • a resin composition (D-8) is obtained by melt-kneading two parts of Carbodilite HMV-15CA manufactured by Chemical Co., Ltd. at 170 ° C with a laboplast mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.), which is a kind of kneader. It was.
  • a haze value of less than 5% and bending are used as a molded product of an example in which fogging suppression (low haze value), high strength (high flexural modulus / bending strength), and light weight (low density) are compatible.
  • An elastic modulus of 2.4 GPa or more, a bending strength of 65 MPa or more, and a density of 0.95 g / cm 3 or less are shown.
  • the cellulose fiber ratio is further lowered and the member has a lower density, so that the target value of the mechanical properties is also different from the evaluation example 1.
  • Example 5 composed of a plant fiber (A-1, modified cellulose fiber), a thermoplastic resin (B), and a compound (C) reactive with a carboxy group has a low density and is bent.
  • the elastic modulus was high and the haze value was low, and these were compatible at a high level.
  • the compound (C) having reactivity with the carboxy group the haze value could be suppressed to be very low as compared with Comparative Example 4.
  • Example 7 A resin composition (D-11) was obtained according to Example 6 except that the plant fiber was softwood unbleached kraft pulp (A-3, NUKP dried product).
  • Example 6 A resin composition (D-13) was obtained according to Example 6 except that 2 parts of calcium oxide (c-5) was used instead of the compound having reactivity with the carboxy group.
  • a haze value of less than 10% and bending are used as a molded product of an example in which fogging suppression (low haze value), high strength (high flexural modulus / bending strength), and light weight (low density) are compatible.
  • An elastic modulus of 2.5 GPa or more, a bending strength of 67.3 MPa or more, and a density of 1.01 g / cm 3 or less are shown. Since the comparison is made between plant fiber materials that have not been hydrophobized and modified, the target physical property values of flexural modulus and bending strength are lower than those of Evaluation Example 1. From this point of view, it can be seen that it is more preferable to hydrophobize and denature plant fibers.
  • Examples 6 and 7 which consist of a plant fiber (A-2 / cedar wood powder or A-3 / UBKP), a thermoplastic resin (B), and a compound (C) reactive with a carboxy group, all have low densities. , The flexural modulus was high and the haze value was low, and these were compatible at a high level. By containing the compound (C) reactive with the carboxy group, the haze value could be suppressed to be very low as compared with Comparative Examples 5 and 7.
  • Comparative Examples 5 and 7 which do not contain the compound (C) reactive with the carboxy group and consist of the plant fiber (A-2 / cedar wood powder or A-3 / UBKP) and the thermoplastic resin (B) are relatively high.
  • the elastic modulus is achieved, but the haze value is high. It is considered that this is because volatile components such as organic acids contained in the plant fiber are desorbed in a process of applying heat such as during mixing with a resin or during molding, causing fogging.
  • the fogging phenomenon is suppressed, and a lightweight and highly rigid molded product can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

植物繊維(A)と、熱可塑性樹脂(B)と、カルボキシ基と反応性を有する化合物(C)と、を含有する、成形材料用樹脂組成物。

Description

成形材料用樹脂組成物、成形体、及び成形材料用樹脂組成物の製造方法
 本発明は、成形材料用途に好適な、成形材料用樹脂組成物及びその成形体、並びに成形材料用樹脂組成物の製造方法に関する。
 本願は、2019年5月16日に、日本に出願された特願2019-092856号に基づき優先権を主張し、その内容をここに援用する。
 従来、成形材料用樹脂に用いられる補強材料として、炭素繊維やガラス繊維等が広く一般的に使用されている。しかしながら、炭素繊維は燃え難いため、サーマルリサイクルに不向きで、かつ価格が高い。また、ガラス繊維は比較的安価であるが、サーマルリサイクルにおいては廃棄に問題がある。また、いずれも樹脂と比較して高密度のため、自動車部品など軽量化が望まれるような用途に適用した場合に十分な軽量化が期待できないといった問題もある。
 これに対して、パルプ、木粉および靭皮類といったセルロース系の植物繊維が、成形材料用樹脂の補強材料として使用されるようになってきている。これらの植物繊維類は燃焼させても残渣が残らずサーマルリサイクル性に優れること、無機系の繊維類と比較して低密度であるため、軽量性を損なうことなく樹脂を補強することが可能となる。
 このような木粉や靭皮などの植物繊維類を補強材料として含む繊維強化樹脂を自動車部品などに用いた場合、植物繊維に含まれる有機酸などの揮発性成分が周辺部品に付着する現象を引き起こすことがあり、問題となっている。なかでも、ガラス等の透明部材に対して起きる現象についてはフォギング現象とよばれ、使用目的毎に付着量の許容範囲等が設定されている。(本明細書中では、揮発成分が周辺部品に付着する現象をまとめて「フォギング」と説明することとする。)。フォギング現象の程度は、例えば、前記の揮発性成分が部材に付着可能な状況が生じる前と後とで、部材のヘーズ値を比較し、後のほうでヘーズ値が上昇したことにより確認できる。この問題に対して、特許文献1および2には、無機アルカリ類の添加により植物繊維中に含まれる有機酸類を中和する技術が提案されている。
 一方、セルロース繊維をはじめとする植物繊維を成形材料用樹脂の補強材料として適用する場合、植物繊維と樹脂との相溶性や界面強度を向上させる目的で、植物繊維を疎水化変性したり、あるいは、解繊用樹脂を用いたりする試みがなされている。
 例えば特許文献3に記載されているように、セルロース系のミクロフィブリル化植物繊維とポリプロピレン等のポリオレフィンからなる複合材料において、マレイン酸変性ポリプロピレンを相溶化剤、又は界面補強剤として使用することが広く知られている。
 また特許文献4では、得られる成形材料の機械的強度を向上する目的で、熱可塑性樹脂又は熱硬化性樹脂と、アルキル若しくはアルケニル無水コハク酸で変性されて得た変性植物繊維とを有機液体の存在下で混合して、疎水性の高い樹脂中にミクロフィブリル化植物繊維を均一に分散させることが記載されている。
特開2018-95708号公報 国際公開第2014/017274号 米国特許出願公開第2008/0146701号明細書 国際公開第2013/133093号
 しかしながら、特許文献1~2で用いられる無機アルカリ類は一般に密度が高く、フォギング現象の抑制のための添加量が増えると、適用する部品の軽量性を損なう恐れがある。
 また、上記の特許文献3~4の方法で得られた樹脂組成物によれば、軽量で高強度の成形体を得ることが可能とされるが、植物繊維中に含まれる樹脂酸類などの成分や、植物繊維の変性に用いたカルボキシ基若しくは無水カルボン酸残基を有する化合物、又はそれらに由来する成分が、樹脂との混合中や成形中などの熱がかかる工程において脱離し、フォギングを引き起こす恐れがある。
 本発明は、上記のような問題点を解消するためになされたものであり、フォギングが抑制され、軽量で高強度の成形体を得ることが可能な、成形材料用樹脂組成物、その成形体、及び成形材料用樹脂組成物の製造方法を提供する。
 発明者らは、上記課題を解決するために鋭意研究を重ねた結果、カルボキシ基と反応性を有する化合物を用いることにより、フォギングが抑制され、軽量で高強度の成形体を製造可能な成形材料用樹脂組成物が得られることを見出し、本発明を完成させた。
 すなわち本発明は、以下の態様を有する。
(1)植物繊維(A)と、熱可塑性樹脂(B)と、カルボキシ基と反応性を有する化合物(C)と、を含有する、成形材料用樹脂組成物。
(2)植物繊維(A)が、酸無水物による化学変性物である、前記(1)に記載の成形材料用樹脂組成物。
(3)熱可塑性樹脂(B)が、ポリオレフィン系樹脂である、前記(1)または(2)に記載の成形材料用樹脂組成物。
(4)カルボキシ基と反応性を有する化合物(C)が、カルボジイミド基及びオキサゾリン基からなる群から選ばれる少なくとも一種の官能基を有する化合物である、前記(1)~(3)のいずれか一つに記載の成形材料用樹脂組成物。
(5)前記(1)~(4)のいずれか一つに記載の成形材料用樹脂組成物を成形してなる、成形体。
(6)植物繊維(A)と、熱可塑性樹脂(B)と、カルボキシ基と反応性を有する化合物(C)と、を溶融混練する工程を含む、成形材料用樹脂組成物の製造方法。(7)前記溶融混練する工程において、熱可塑性樹脂(B)の中で、植物繊維(A)が解繊され分散される、前記(6)に記載の成形材料用樹脂組成物の製造方法。
(8)植物繊維(A)/熱可塑性樹脂(B)/カルボキシ基と反応性を有する化合物(C)の質量比が、5~55/35~94/0.2~10である、前記(6)又は(7)に記載の成形材料用樹脂組成物の製造方法。
 本発明によれば、フォギングが抑制され、軽量で高強度の成形体を得ることができる成形材料用樹脂組成物、成形体、及び成形材料用樹脂組成物の製造方法を提供できる。
実施例において、変性セルロース繊維(A)を熱可塑性樹脂(B)及びカルボキシ基と反応性を有する化合物(C)とともに溶融混練することで、ナノファイバーまで解繊され分散された変性セルロース繊維(A)を示す走査型電子顕微鏡画像である。
 以下、本発明の成形材料用樹脂組成物、成形体、及び成形材料用樹脂組成物の実施形態を詳述する。
≪成形材料用樹脂組成物≫
 実施形態の成形材料用樹脂組成物は、植物繊維(A)と、熱可塑性樹脂(B)と、カルボキシ基と反応性を有する化合物(C)と、を含有する。
<植物繊維(A)>
 実施形態の成形材料用樹脂組成物に含有される植物繊維(A)は、特に限定されないが、例えば、セルロース繊維、木粉、竹粉、麻類、ケナフ繊維、バガス繊維、綿などが挙げられる。植物繊維(A)は、植物体若しくはその加工品に含有される繊維、または植物体若しくはその加工品から得られた繊維であってよい。
 成形材料用樹脂組成物に含有される植物繊維(A)は、特に制限されるものではなく、パルプのように植物原料から精製された状態であってもよく、木粉のように植物体を構成するその他の成分と複合体を形成した状態であってもよい。
 前記植物繊維(A)、特にセルロース繊維を得るのに使用可能な原料としては、木材、竹、麻、ジュート、ケナフ、綿、ビートなどの植物体又はその加工品が挙げられる。好ましいセルロース繊維の原料としては木材が挙げられる。木材の植物種としては、例えば、マツ、スギ、ヒノキ、ユーカリ、アカシアなどが挙げられる。また、これらの植物体又はその加工品を原料として得られるパルプ、紙、あるいは古紙なども、セルロース繊維を得るのに使用可能な原料として用いることができる。植物繊維(A)は、1種単独で用いてもよく、2種以上を用いてもよい。
 前記パルプとしては、植物原料を化学的、若しくは機械的に、又は両者を併用してパルプ化することで得られるケミカルパルプ(例えば、未晒クラフトパルプ(UKP)、漂白クラフトパルプ(BKP)、亜硫酸パルプ(SP)等。)、セミケミカルパルプ(SCP)、ケミグランドパルプ(CGP)、ケミメカニカルパルプ(CMP)、砕木パルプ(GP)、リファイナーメカニカルパルプ(RMP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)等が挙げられる。
 植物繊維(A)には、フォギングの原因となる成分が付着する場合があり、このような植物繊維(A)としては、カルボキシ基を有する揮発性有機化合物を含むものが挙げられる。当該化合物はフォギングの原因となり得る。カルボキシ基を有する揮発性有機化合物は、植物において合成された天然物であってよい。カルボキシ基を有する揮発性有機化合物は、原料の植物繊維に付着したものが、植物繊維(A)に付着しており、成形材料用樹脂組成物に含有された形態を例示できる。揮発性有機化合物とは、揮発性を有し、大気中で気体状となる有機化合物であってよく、1気圧での沸点が50℃以上260℃以下の有機化合物を例示できる。
 また成形材料用樹脂組成物は、脂肪酸、樹脂酸、及びそれらのエステルからなる群から選ばれる少なくとも一種の化合物を含有するものであってよい。当該化合物は、例えば木材に含有されることが知られており、フォギングの原因となり得る。脂肪酸、樹脂酸等のカルボキシ基を有する化合物は、揮発性有機化合物に該当するものであってよい。
 脂肪酸としては、不飽和脂肪酸であってもよく、飽和脂肪酸であってもよいが、不飽和脂肪酸が主であることが知られている。脂肪酸の炭素数としては、例えば、炭素数6~24であってもよく、炭素数12~18であってもよい。不飽和脂肪酸としては、リノール酸、オレイン酸等が挙げられる。飽和脂肪酸としては、パルミチン酸、ステアリン酸が挙げられる。
 樹脂酸としては、カルボン酸であってよく、アビエチン酸等のジテルペンカルボン酸や、安息香酸やケイ皮酸等の芳香族カルボン酸が挙げられる。
 脂肪酸及び樹脂酸は遊離のものであってよいが、例えば、グリセリン、シトステロール、アルコールとのエステルとして存在していてもよい。脂肪酸及び樹脂酸のエステルは分解されて、それぞれ脂肪酸及び樹脂酸となり得る。
 フォギングの原因となる成分をより多く有しているという観点からは、植物繊維(A)は、未晒パルプ、未晒クラフトパルプ、及び木粉からなる群から選ばれる少なくとも一種を含むものであってよい。
 植物繊維(A)は、所望の物性が得られる程度にナノファイバーまで解繊されていることがより好ましい。すなわち、植物繊維(A)は、ナノファイバーであることが好ましい。ここでナノファイバーとは通常、平均繊維径が1000nm未満、好ましくは平均繊維径が4~800nmまで解繊された植物繊維をいい、当該植物繊維としてはセルロース繊維のナノファイバー(セルロースナノファイバー:CNF)が好ましい。
 CNFは、セルロース繊維を機械的解繊等の処理を施すことで得られる繊維であり、例えば、平均繊維径4~200nm、数平均繊維長5μm以上の繊維を例示できる。CNFの比表面積としては、70~300m/g程度が好ましく、70~250m/g程度がより好ましく、100~200m/g程度がさらに好ましい。CNFの比表面積を高くすることで、樹脂組成物としたときに、接触面積を大きくすることができ強度が向上する。また、比表面積が上記上限値以下であると、樹脂組成物の樹脂中での凝集が起こり難く、成形体の強度が向上する傾向にある。CNFの平均繊維径は、好ましくは4~200nm、より好ましくは4~150nm、さらに好ましくは4~100nmであってよい。
 成形材料用樹脂組成物または成形体における、前記繊維の形状の測定は、成形材料用樹脂組成物(または成形体)中の樹脂成分を、それらが溶解できる溶剤で洗い流したのち、残渣に含まれる繊維分を走査型電子顕微鏡によって観察することで可能である。例えば、植物繊維(A)を含む成形材料用樹脂組成物(または成形体)試料を325meshステンレスメッシュで包み、キシレン還流下、140℃で5時間処理を行うことで樹脂を溶解し繊維分を抽出乾燥したものを、走査型電子顕微鏡(例えば、日本電子株式会社製、JSM-5610LV)にて観察し、測定することができる。前記繊維の形状の測定では、走査型電子顕微鏡の視野内の繊維の少なくとも50本以上について測定した時の平均値として、各値を求めることができる。
 なお、植物繊維(A)は、後述する成形材料用樹脂組成物の製造方法における混合後の成形材料用樹脂組成物中で、ナノファイバーまで解繊されてもよいので、混合前に必ずしもナノファイバーまで解繊されたものである必要はない。
 植物繊維(A)はそのまま用いてもよいが、植物繊維(A)は、酸無水物による化学変性物であることが好ましい。化学変性物とは、酸無水物と植物繊維の水酸基とが反応して生成したものであってよく、酸無水物と植物繊維の水酸基とが反応して生じたエステル結合を有することができる。酸無水物が植物繊維の水酸基と反応することで、樹脂との相互作用の向上による相溶性や界面密着性の改善、さらには植物繊維内や植物繊維同士の水素結合を阻害することで高い分散性を達成できる。また、得られる成形体の強度を高めることができる。
 酸無水物としては、例えばカルボン酸無水物であり、無水酢酸、無水酪酸、無水プロピオン酸、無水安息香酸、無水ステアリン酸が挙げられる。カルボン酸無水物と植物繊維の水酸基とが反応して生成した化学変性物は、カルボン酸無水物と植物繊維の水酸基とが反応して生成したエステル結合及びカルボキシ基を有することができる。これらのなかでは、入手のしやすさや導入の容易さから無水酢酸が好ましい。
 酸無水物のうち、多価塩基酸無水物としては、例えばアルキル若しくはアルケニルコハク酸無水物、マレイン酸無水物、フタル酸無水物、コハク酸無水物、無水マレイン酸変性ポリオレフィン、無水マレイン酸変性ポリブタジエンなどが挙げられる。なかでも樹脂との相溶性の観点から、疎水基を有する酸無水物が好ましく、アルキルコハク酸無水物又はアルケニルコハク酸無水物が好ましい。
 アルキルコハク酸無水物又はアルケニルコハク酸無水物における、アルキル基又はアルケニル基は、上記疎水基としての性質を有する。当該アルキル基又はアルケニル基は、直鎖状であってもよく、分岐鎖状であってよい。アルキル基又はアルケニル基の炭素数は、例えば8~20であってよく、12~18であってよい。
 上記アルキル基としては、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、イコシル基等が挙げられる。 上記アルケニル基としては、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、テトラデセニル基、ヘキサデセニル基、オクタデセニル基、イコセニル基等が挙げられる。
 上記アルキルコハク酸無水物又はアルケニルコハク酸無水物としては、オクテニルコハク酸無水物、ドデセニルコハク酸無水物、ヘキサデセニルコハク酸無水物、オクタデセニルコハク酸無水物等が好ましい。
 植物繊維(A)は、カルボン酸無水物による化学変性物であってもよく、前記化学変性物は前記酸無水物に由来するカルボキシ基を有するものであってもよい。
 植物繊維(A)は、疎水基を有するカルボン酸無水物による化学変性物であってもよく、前記化学変性物は前記カルボン酸無水物に由来するカルボキシ基を有するものであってもよい。
 植物繊維(A)は、アルキルコハク酸無水物又はアルケニルコハク酸無水物による化学変性物であってもよく、前記化学変性物は前記アルキルコハク酸無水物又はアルケニルコハク酸無水物に由来するカルボキシ基を有するものであってもよい。
 酸無水物の植物繊維への定着率は、以下の式から算出する。
定着率(%)=(変性植物繊維(A)の乾燥質量-植物繊維の乾燥質量)/(植物繊維の乾燥質量)×100
 植物繊維の樹脂分散性の適度な向上と生産コストとの兼ね合いから、前記定着率は5~50質量%であることが好ましく、5~30質量%であることがより好ましい。酸無水物の化学結合による定着の確認には、例えばフーリエ変換赤外分光法(FT-IR)を用いる。
<熱可塑性樹脂(B)>
 熱可塑性樹脂とは、加熱により軟化し、所望の形に成形可能な可塑性を有する樹脂をいう。本明細書において、熱可塑性樹脂は、熱可塑性エラストマーを含む概念とする。熱可塑性エラストマーとは、加熱により軟化し、所望の形に成形可能な可塑性を有するエラストマー(弾性を有するポリマー)をいう。熱可塑性樹脂としては、ナイロンなどのポリアミド樹脂;ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン酢酸ビニル共重合体などのポリオレフィン樹脂;ポリエチレンテレフタレートやポリブチレンテレフタレートなどのポリエステル樹脂;ポリメチルメタクリレートやポリエチルメタクリレートなどのアクリル樹脂;ポリスチレン、(メタ)アクリル酸エステル-スチレン樹脂などのスチレン樹脂;ポリウレタン樹脂、アイオノマー樹脂、セルロース樹脂等の熱可塑性樹脂、ならびにオレフィン系エラストマー、塩化ビニル系エラストマー、スチレン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー等の熱可塑性エラストマー等樹脂及びこれらの二種以上の混合物が挙げられる。好ましい熱可塑性樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン-酢酸ビニル共重合体等のポリオレフィン系樹脂である。ポリオレフィン系樹脂とは、オレフィンに由来する構成単位を有する単独重合体又は共重合体をいう。熱可塑性樹脂は、1種単独で用いてもよく、2種以上を用いてもよい。
<カルボキシ基と反応性を有する化合物(C)>
 カルボキシ基と反応性を有する化合物(C)としては、カルボキシ基と反応し共有結合を形成する化合物であってよい。カルボキシ基と反応性を有する化合物(C)としては、有機化合物であることが好ましく、カルボジイミド基、オキサゾリン基、エポキシ基、イソシアネート基、シラノール基、アジリジニル基、アミノ基、及び水酸基からなる群から選ばれる少なくとも一種の基を含む化合物が挙げられ、中でもカルボジイミド基及びオキサゾリン基からなる群から選ばれる少なくとも一種の官能基を有する化合物であることが好ましく、カルボジイミド基を有する化合物であることがより好ましい。
 カルボキシ基と反応性を有する化合物の形態は特に限定されないが、固体状であることが熱可塑性樹脂との混合性のうえで好ましい。
 カルボジイミド基を有する化合物としては、分子中に一個以上のカルボジイミド基を有していればよく、一般的な合成品を使用することができる。例えば、ジシクロへキシルカルボジイミド、ジイソプロピルカルボジイミドなどが挙げられる。また、カルボジイミド基を有する化合物を公知の方法で合成してもよく、市販のカルボジイミド化合物を用いてもよい。市販のポリカルボジイミド化合物としては、例えば、日清紡ケミカル社製・カルボジライトHMV-15CA、カルボジライトLA-1、ラインケミー社製・スタバクゾールP等が挙げられる。カルボキシ基を有する揮発成分をより効果的に抑制する観点から、分子中に二個以上のカルボジイミド基を有するポリカルボジイミド化合物を用いることが特に好ましい。
 オキサゾリン基を含む化合物としては、分子中に一個以上のオキサゾリン基を有していればよく、アルケニルオキサゾリン単独、もしくは必要に応じて各種不飽和単量体とともに、公知の方法で重合することで得ることができる。アルケニルオキサゾリンとしては、2-ビニル-2-オキサゾリン、4-メチル-2-ビニル-2-オキサゾリン、5-メチル-2-ビニル-2-オキサゾリン、4,4-ジメチル-2-ビニル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリンなどが挙げられる。これらアルケニルオキサゾリンは1種あるいは2種以上を用いることができる。
 オキサゾリン基を含む化合物としては、カルボキシ基を有する揮発成分をより効果的に抑制する観点から、分子中に二個以上のオキサゾリン基を含む化合物が好ましい。オキサゾリン基を含む化合物としては、側鎖にオキサゾリン基を有するポリマーが挙げられ、当該ポリマーのポリマー主鎖となる樹脂の種類に特に制限はなく、熱可塑性樹脂との混合性等を考慮して適宜用いることがでる。
 オキサゾリン基を含む化合物のオキサゾリン基量としては、例えば、0.01~10mmol/gであってよく、0.1~1mmol/gであってよい。
 オキサゾリン基を含む化合物は、市販のオキサゾリン化合物を用いてもよい。市販品としては、日本触媒社製エポクロスRPS-1005などが挙げられる。
<カルボキシ基と反応性を有する化合物(C)の反応について>
 フォギングの原因となり得る成分として、植物繊維(A)に含まれ得る脂肪酸、樹脂酸等の他に、植物繊維(A)が酸無水物による化学変性物である場合、以下の成分が挙げられる。
 i)植物繊維(A)の変性に用いた酸無水物のうち植物繊維と未反応のもの、
 ii)植物繊維(A)の変性に用いた酸無水物が植物繊維と反応した後、樹脂との混合中や成形中などの熱がかかる工程において脱離したもの。
 植物繊維(A)の変性に用いられた酸無水物は、通常、組成物中で開環してカルボキシ基を有し、これらの酸無水物又は酸無水物に由来する遊離のカルボキシ基を有する化合物は、フォギングの原因として挙げられる。
 実施形態の成形材料用樹脂組成物によれば、カルボキシ基と反応性を有する化合物(C)を含むことで、化合物(C)とフォギングの原因であるカルボキシ基を有する化合物とが反応して反応物を生成し、フォギングを抑制することができると考えられる。これは、カルボキシ基と反応性を有する化合物(C)が、フォギングの原因であるカルボキシ基を有する化合物と反応して反応物を生成することで、フォギングの原因であるカルボキシ基を有する化合物の分子量が増大し、揮発性が低下したことによると考えられる。
 化合物(C)は、成形材料用樹脂組成物の製造工程、及び製造された成形材料用樹脂組成物において、フォギング抑制作用を発揮するのみならず、成形体となった以後もフォギング抑制作用を発揮し得る。
 カルボキシ基を有する化合物としては、上記の脂肪酸、樹脂酸、酸無水物に由来する化合物等であってよく、植物繊維(A)において例示したものが挙げられる。
 カルボキシ基を有する化合物と、カルボジイミド基を有する化合物との反応としては、例えば、下記式(1)に示すものが挙げられる。
Figure JPOXMLDOC01-appb-C000001
 (式(1)中、R、R及びRは、それぞれ独立に、水素原子又は一価の有機基である。)
 カルボキシ基を有する化合物と、オキサゾリン基を有する化合物との反応としては、例えば、下記式(2)に示すものが挙げられる。
Figure JPOXMLDOC01-appb-C000002
 (式(2)中、R及びRは、それぞれ独立に、水素原子又は一価の有機基である。)
<その他成分>
 軽量・高剛度の成形体を得るという目的の範囲で、高密度ではあるがフォギング抑制効果が見出されている無機アルカリ類を併用してもよい。
 無機アルカリ類としては、酸化カルシウム、水酸化カルシウム、炭酸カルシウム、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウムなどが挙げられる。
 本発明の効果を妨げない範囲で、相溶化剤、分散剤、界面活性剤、酸化防止剤、難燃剤、顔料、無機充填剤、可塑剤、結晶核剤、発泡助剤など各種添加剤を同時に配合してもよい。
 相溶化剤としては、例えば、無水マレイン酸、無水マレイン酸変性ポリエチレン樹脂、無水マレイン酸変性ポリプロピレン樹脂やエポキシ基含有樹脂(グリシジルメタクリレート及びエチレンの共重合体等)を挙げることができ、市販の各種相溶化剤を使用してもよい。
 実施形態の成形材料用樹脂組成物によれば、カルボキシ基と反応性を有する化合物(C)を含むことにより、カルボキシ基を有する化合物に起因するフォギングを効果的に抑制可能である。また、カルボキシ基と反応性を有する化合物(C)は、カルボキシ基を有する化合物に起因するフォギングを効果的に抑制した結果、カルボキシ基を有する化合物と、カルボキシ基と反応性を有する化合物(C)との反応物の形態で、実施形態の成形材料用樹脂組成物に含有されていてもよい。
 実施形態の成形材料用樹脂組成物によれば、フォギング抑制、軽量、高強度の特性をバランス良く達成した成形体を得ることが可能な、成形材料用樹脂組成物を提供可能である。
≪成形材料用樹脂組成物の製造方法≫
 実施形態の成形材料用樹脂組成物は、植物繊維(A)と、熱可塑性樹脂(B)と、カルボキシ基と反応性を有する化合物(C)とを混合することで製造可能である。植物繊維(A)、熱可塑性樹脂(B)及びカルボキシ基と反応性を有する化合物(C)としては、上記の成形材料用樹脂組成物で例示したものが挙げられ、ここでの説明を省略する。
 実施形態の成形材料用樹脂組成物の製造方法は、植物繊維(A)と、熱可塑性樹脂(B)と、カルボキシ基と反応性を有する化合物(C)とを溶融混練する工程を含むものであってよい。なお、溶融混練は前記混合の一形態である。溶融混練においては、少なくとも熱可塑性樹脂(B)が溶融されていればよい。溶融混練とは、溶融された熱可塑性樹脂(B)と、植物繊維(A)と、カルボキシ基と反応性を有する化合物(C)とを混合することを指す。
 実施形態の成形材料用樹脂組成物の製造方法によれば、上記の実施形態の成形材料用樹脂組成物を製造可能である。
 実施形態の成形材料用樹脂組成物の製造方法における、植物繊維(A)、熱可塑性樹脂(B)及びカルボキシ基と反応性を有する化合物(C)の配合割合は、特に限定されないが、成形材料用樹脂組成物を用いた成形体において目的の強度を得るのに好ましい植物繊維含有率と、フォギング抑制効果の両方の観点から、前記(A)/前記(B)/前記(C)の質量比が1~55/35~99/0.2~10なる質量比で配合されてよく、5~40/50~98/1~10なる質量比で配合されてよく、7~35/60~95/1~6なる質量比で配合されてよい。
 実施形態の成形材料用樹脂組成物の総質量100質量%に対する、植物繊維(A)の配合割合は、特に限定されないが、成形材料用樹脂組成物を用いた成形体において目的の強度を得るのに好ましい含有率として、1~50質量%であってよく、5~40質量%であってよく、10~30質量%であってよい。
 前記混合において、一軸又は多軸混練機、ニーダー等を用いて前記(A)、前記(B)と前記(C)とを溶融混練し、樹脂成分中に植物繊維を均一に混合分散しつつ、フォギングを引き起こす成分を前記(C)と反応させることでフォギング成分を捕捉することができる。前記(A)、前記(B)及び前記(C)の混合順序は特に制限されず、例えば、前記(A)と前記(B)を混合する前に、前記(A)と前記(C)をあらかじめ混合しておいてもよい。
 実施形態の製造方法においては、一軸又は多軸混練機、ニーダー等を用いて溶融混練を行うことができる。溶融混練における原料の配合順や混合温度、溶融のタイミングは特に限定されない。例えば、前記(A)と前記(B)と前記(C)とを溶融混練してもよいし、または、あらかじめ前記(A)と前記(B)とを溶融混練したのちに前記(C)を混合してもよい。溶融混練の温度としては、加工性や植物繊維(A)と熱可塑性樹脂(B)の溶融温度や、分散、劣化、カルボキシ基と反応性を有する化合物(C)の反応性等を考慮すると、混練されている混練物の温度が100~220℃であることが好ましい。また、一軸又は多軸混練機のスクリュー回転速度は全行程とも25~400rpmの範囲であることが好ましい。
 前記溶融混練する工程において、熱可塑性樹脂(B)の中で、植物繊維(A)が解繊され分散されることが好ましい。「熱可塑性樹脂(B)の中で」とは、溶融された熱可塑性樹脂(B)を分散媒として、植物繊維(A)が分散された状態を指す。前記解繊は、植物繊維(A)がナノファイバーまで解繊されていることがより好ましい。熱可塑性樹脂(B)の中で解繊された植物繊維(A)は、セルロースナノファイバーであることが好ましい。
 植物繊維(A)はナノファイバーまで解繊されたもののほうが補強効果に優れる。あらかじめナノファイバー化された植物繊維を樹脂に配合しても、熱可塑性樹脂中で植物繊維をナノファイバーまで解繊しながら、均一に樹脂中に分散させても、補強効果は変わらないが、植物繊維をあらかじめナノファイバー化するには、一般に、植物繊維の10倍以上の水に分散させた状態で高いシェアをかける必要がある。このようなナノファイバーを樹脂に配合する場合には、ナノファイバー化の際にエネルギーがかかるだけでなく、樹脂との配合時に大量の水を除去しなければならず、製造コストがかかる。
 熱可塑性樹脂の中で植物繊維をナノファイバーまで解繊しながら樹脂中に分散させる方法は、あらかじめナノ化した繊維を使用する方法よりも、エネルギーコストの面で有利である。
 植物繊維を上記化学変性することで、熱可塑性樹脂の中で植物繊維をナノファイバーまで解繊しながらより均一に樹脂中に分散させることが容易となり、得られる成形体の曲げ弾性率又は曲げ強度を向上可能である。
≪成形体・成形体の製造方法≫
 実施形態の成形材料用樹脂組成物は、成形体の製造のための成形材料として使用することができる。
 実施形態の成形体は、上記の実施形態の成形材料用樹脂組成物を成形してなるものである。成形体は、例えば、加熱して軟化させた成形材料用樹脂組成物を成形加工して得ることができる。成形体は、例えば、前記溶融混練された成形材料用樹脂組成物を成形加工して得ることができる。
 一実施形態として、前記溶融混練された成形材料用樹脂組成物を成形する工程を含む、成形体の製造方法を提供できる。当該成形としては、例えばプレス成形、射出成形、押出成形、ブロー成形、延伸成形、発泡成形等が挙げられる。成形体の形状としては、例えば、シート状、フィルム状、ペレット状、粉末状等が挙げられる。これらをさらに、先述した成形方法等により最終製品で用いる形態に成形してもよい。成形体に含有される植物繊維(A)、熱可塑性樹脂(B)及びカルボキシ基と反応性を有する化合物(C)としては、前記成形材料用樹脂組成物で例示したものが挙げられ、ここでの説明を省略する。
 成形材料用樹脂組成物は、用いられる用途に応じて、上記の成形材料用樹脂組成物にさらに各種添加剤を加え、成形することで所望の成形体とすることもできる。
 実施形態の成形体の曲げ弾性率は、2.0GPa以上であることが好ましく、3.0GPa以上であることがより好ましく、3.3GPa以上であることがさらに好ましい。成形体の曲げ弾性率の上限値は、特に制限されるものではないが、一例として5GPa以下であってよい。
 上記の成形体の曲げ弾性率の数値範囲としては、2.0GPa以上5GPa以下であってよく、3.0GPa以上5GPa以下であってよく、3.3GPa以上5GPa以下であってよい。
 成形体の曲げ弾性率の値は、実施例に記載の条件により取得されたものとする。
(曲げ弾性率)
 成形材料用樹脂組成物を、射出成形機を用いて、射出温度200℃、金型温度25℃で射出成形し、長さ80mm、幅10mm、厚さ2mmの短冊形試験片(JIS K7139・B1)を得る。この試験片に対し、JIS K7171に準拠して、試験機にて、温度:23℃、湿度:50%RH、支点間距離64mm、速度2mm/分にて荷重の負荷を行い、曲げ弾性率を測定する。
 実施形態の成形体の曲げ強度は、65MPa以上であることが好ましく、67MPa以上であることがより好ましく、68.5MPa以上であることがさらに好ましい。成形体の曲げ強度の上限値は、特に制限されるものではないが、一例として80MPa以下であってよい。
 上記の成形体の曲げ強度の数値範囲としては、65MPa以上80MPa以下であってもよく、67MPa以上80MPa以下であってもよく、68.5MPa以上80MPa以下であってもよい。
 成形体の曲げ強度の値は、実施例に記載の条件により取得されたものとする。
(曲げ強度)
 成形材料用樹脂組成物を、射出成形機を用いて、射出温度200℃、金型温度25℃で射出成形し、長さ80mm、幅10mm、厚さ2mmの短冊形試験片(JIS K7139・B1)を得る。この試験片に対し、JIS K7171に準拠して、試験機にて、温度:23℃、湿度:50%RH、支点間距離64mm、速度2mm/分にて荷重の負荷を行い、曲げ強度を測定する。
 実施形態の成形体の密度は、1.01g/cm以下であることが好ましく、1.005g/cm以下であることがより好ましい。成形体の密度の下限値は、特に制限されるものではないが、一例として0.8g/cm以上であってよく、0.9g/cm以上であってよい。成形体の密度の値は、実施例に記載の条件により取得されたものとする。
 得られた成形体は、自動車部品、家電筐体、建築資材、包装材料等に使用することが可能である。
 以下、本発明の実施例について説明する。なお、本発明はこれらの実施例に限定されるものではない。なお、特にことわりのないかぎり、「部」とあるのは「質量部」を示す。
≪物性値測定方法≫
 これらの実施例で用いられた物性値測定法は、以下のとおりである。
<1>酸無水物の植物繊維への定着率の算出
 植物繊維を酸無水物により化学変性する場合の、植物繊維への定着率を以下の式より算出した。
 定着率(%)=(変性植物繊維の乾燥質量-植物繊維の乾燥質量)/(植物繊維の乾燥質量)×100
 また、変性植物繊維の乾燥質量は、以下の方法で測定した。製造例1の方法で得られる変性植物繊維全量に、100倍の質量のテトラヒドロフランを加えた分散液を調製し、ホモジェナイザー(日本精機製)で10000rpm、1分間撹拌した後、この分散液を吸引濾過した。濾過残さを110℃の電気乾燥機で乾燥し、乾燥質量を測定した。
 酸無水物の植物繊維への定着の確認には、FT-IR(日本分光製)を使用した。乾燥質量を測定した変性植物繊維では、1500~2000cm-1に未変性植物繊維には無いスペクトル吸収が見られた。
<2>フォギング試験方法
 各材料を射出成形して得られた試験片(20mm×10mm×4mm)4個をガラスカップ(内径42mm、高さ50mm)に入れ、開口部(13.8cm)をガラス板(76mm×52mm×1.5mm)で塞ぎ、その上に放熱用のアルミ板(75mm×50mm×5mm)を設置し、ガラスカップの底面を130℃に設定したホットプレートで6時間加熱した。試験に供したガラス板の曇り度(ヘーズ値(%))をヘーズメーター(日本電色(株)製;NDH5000)で測定した。ヘーズ値は数値が大きいほど曇り度が大きいことを示している。
<3>機械的強度の評価方法
 得られた樹脂組成物を手動射出成形機(井元製作所(株)製;型式18D1)に投入し、射出温度200℃、金型温度25℃で射出成形し、長さ80mm、幅10mm、厚さ2mmの短冊形試験片(JIS K7139・B1)(成形体)を得た。JIS K7171に準拠して、オリエンテック株式会社製万能試験機「テンシロンRTM-50」にて、温度:23℃、湿度:50%RH、支点間距離64mm、速度2mm/分にて荷重の負荷を行い、曲げ強度及び曲げ弾性率を測定した。
<4>密度の測定方法
 前記<機械的強度の評価方法>で得られた成形体の空気中での質量と水中での質量を測定し、アルキメデス法により密度を求め、水の密度の値で除して密度を算出した。
≪変性セルロース繊維の製造≫
(製造例1)
 清浄な容器へ固形分20質量%の針葉樹晒クラフトパルプ(NBKP)500質量部とN-メチルピロリドン(NMP)150質量部を仕込み、減圧により水を留去した後、ヘキサデセニルコハク酸無水物19.9質量部を投入し、80℃で4時間反応した。反応後減圧することでNMPを留去し、変性セルロース繊維(A-1)を得た。ヘキサデセニルコハク酸無水物の定着率は8.6%であった。
≪樹脂組成物の製造1≫
(実施例1)
 変性セルロース繊維(A-1)25部、市販のポリプロピレン樹脂(PP樹脂)(B・日本ポリプロ(株)製ノバテックMA04A)75部、及びカルボキシ基と反応性を有する化合物としてカルボジイミド基含有化合物(C-1・日清紡ケミカル(株)製カルボジライトHMV-15CA)4部を、ニーダーの一種であるラボプラストミル(株式会社東洋精機製作所製)にて170℃で溶融混練することで樹脂組成物(D-1)を得た。変性セルロース繊維(A-1)は、ポリプロピレン樹脂(B)中でナノファイバーまで解繊され分散されていた(図1)。
(実施例2)
 カルボキシ基と反応性を有する化合物としてカルボジイミド基含有化合物(C-2・ランクセス(株)製スタバクゾールP)を用いた以外は実施例1に準じて樹脂組成物(D-2)を得た。
(実施例3)
 カルボキシ基と反応性を有する化合物としてオキサゾリン基含有化合物(C-3・(株)日本触媒製エポクロスRPS1005)を用いた以外は実施例1に準じて樹脂組成物(D-3)を得た。
・エポクロスRPS1005(ポリスチレン主鎖にオキサゾリン基がペンダント化された非晶性タイプの反応性ポリマー、オキサゾリン基量:0.27mmol/g・solid、数平均分子量(Mn):約70,000、重量平均分子量(Mw)約160,000)
(実施例4)
 カルボキシ基と反応性を有する化合物としてエポキシ基含有化合物(C-4・ナガセケムテック(株)製デナコールEX421)を用いた以外は実施例1に準じて樹脂組成物(D-4)を得た。
(比較例1)
 カルボキシ基と反応性を有する化合物を無添加とした以外は実施例1に準じて樹脂組成物(D-5)を得た。
(比較例2)
 カルボキシ基と反応性を有する化合物の代わりに酸化カルシウム(c-5・富士フイルム和光純薬(株)製・試薬特級)2部を使用した以外は実施例1に準じて樹脂組成物(D-6)を得た。
(比較例3)
 酸化カルシウム(c-5)の配合率を0.25部に変更した以外は比較例2に準じて樹脂組成物(D-7)を得た。
 実施例1~4及び比較例1~3で得られた樹脂組成物の物性測定結果を評価例1に示す。
Figure JPOXMLDOC01-appb-T000003
 本評価例1では、フォギング抑制(低いヘーズ値)、高強度(高い曲げ弾性率・曲げ強度)、及び軽量性(低密度)を両立した実施例の成形体として、ヘーズ値10%未満、曲げ弾性率3.0GPa以上、曲げ強度68.5MPa以上、且つ密度1.01g/cm以下であるものを示す。
 植物繊維(A-1・変性セルロース繊維)、熱可塑性樹脂(B)及びカルボキシ基と反応性を有する化合物(C)からなる実施例1~4は、いずれも低密度であり、曲げ弾性率及び曲げ強度が高くヘーズ値が低いものであり、これらを高いレベルで両立できていた。なかでも、実施例1は、最も曲げ弾性率及び曲げ強度が高くヘーズ値が低い高品質なものであった。
 実施例1~4では、特に曲げ弾性率及び曲げ強度の値が向上していた。これは、植物繊維の疎水化変性により植物繊維と樹脂との相溶性や界面強度が向上し機械物性が向上したためと考えられる。また、カルボキシ基と反応性を有する化合物(C)を含有することで、比較例1や比較例3と比べてヘーズ値を非常に低く抑えることができた。
 カルボキシ基と反応性を有する化合物(C)を含まず、植物繊維(A-1・変性セルロース繊維)及び熱可塑性樹脂(B)からなる比較例1では、比較的高い曲げ弾性率を達成しているが、ヘーズ値が非常に高い値となっている。これは、樹脂との混合中や成形中など熱がかかる工程において、変性剤が脱離し、フォギングを引き起こしたためと考えられる。
 カルボキシ基と反応性を有する化合物(C)の代わりに無機アルカリの酸化カルシウムを使用した比較例2は、曲げ弾性率及びヘーズ値は優れた値を示したものの、密度が1.049g/cmと高い値となっており、成形体の軽量化には適した材料とは言えない。
 一方で、無機アルカリの量を減らした比較例3は、密度は実施例1~4と同程度となったものの、ヘーズ値が高くなっていた。これは、無機アルカリ量を減らした結果、フォギングの要因となる成分を十分に中和できなかったためと考えられる。
≪樹脂組成物の製造2≫
(実施例5)
 変性セルロース繊維(A-1)10部、市販のポリプロピレン樹脂(B・日本ポリプロ(株)製ノバテックMA04A)90部、及びカルボキシ基と反応性を有する化合物としてカルボジイミド基含有化合物(C-1・日清紡ケミカル(株)製カルボジライトHMV-15CA)2部を、ニーダーの一種であるラボプラストミル(株式会社東洋精機製作所製)にて170℃で溶融混練することで樹脂組成物(D-8)を得た。
(比較例4)
 カルボキシ基と反応性を有する化合物を無添加とした以外は実施例5に準じて樹脂組成物(D-9)を得た。
Figure JPOXMLDOC01-appb-T000004
 本評価例2では、フォギング抑制(低いヘーズ値)、高強度(高い曲げ弾性率・曲げ強度)、及び軽量性(低密度)を両立した実施例の成形体として、ヘーズ値5%未満、曲げ弾性率2.4GPa以上、曲げ強度65MPa以上、且つ密度0.95g/cm以下であるものを示す。評価例1と比較して、よりセルロース繊維率を下げて、より低密度の部材となるため、機械物性の目標値も評価例1とは異なる。
 評価例1と同様に、植物繊維(A-1・変性セルロース繊維)、熱可塑性樹脂(B)及びカルボキシ基と反応性を有する化合物(C)からなる実施例5は、低密度であり、曲げ弾性率が高くヘーズ値が低いものであり、これらを高いレベルで両立できていた。
 カルボキシ基と反応性を有する化合物(C)を含有することで、比較例4と比べてヘーズ値を非常に低く抑えることができた。
≪樹脂組成物の製造3≫
(実施例6)
 杉木粉(A-2)20部、市販のポリプロピレン樹脂(B)80部、及びカルボキシ基と反応性を有する化合物としてカルボジイミド基含有化合物(C-1)4部を、ニーダーの一種であるラボプラストミル(株式会社東洋精機製作所製)にて170℃で溶融混練することで樹脂組成物(D-10)を得た。
(実施例7)
 植物繊維を針葉樹未晒クラフトパルプ(A-3・NUKP乾燥物)とした以外は実施例6に準じて樹脂組成物(D-11)を得た。
(比較例5)
 カルボキシ基と反応性を有する化合物を無添加とした以外は実施例6に準じて樹脂組成物(D-12)を得た。
(比較例6)
 カルボキシ基と反応性を有する化合物の代わりに酸化カルシウム(c-5)2部を使用した以外は実施例6に準じて樹脂組成物(D-13)を得た。
(比較例7)
 カルボキシ基と反応性を有する化合物を無添加とした以外は実施例7に準じて樹脂組成物(D-14)を得た。
Figure JPOXMLDOC01-appb-T000005
 本評価例3では、フォギング抑制(低いヘーズ値)、高強度(高い曲げ弾性率・曲げ強度)、及び軽量性(低密度)を両立した実施例の成形体として、ヘーズ値10%未満、曲げ弾性率2.5GPa以上、曲げ強度67.3MPa以上、且つ密度1.01g/cm以下であるものを示す。なおここでは、疎水化変性を施していない植物繊維材料間の比較となるため、評価例1と比較して、曲げ弾性率及び曲げ強度の目標物性値が低い値となっている。この観点からも、植物繊維を疎水化変性することがより好ましいことが分かる。
 植物繊維(A-2・杉木粉若しくはA-3・UBKP)、熱可塑性樹脂(B)及びカルボキシ基と反応性を有する化合物(C)からなる実施例6及び7は、いずれも低密度であり、曲げ弾性率が高くヘーズ値が低いものであり、これらを高いレベルで両立できていた。カルボキシ基と反応性を有する化合物(C)を含有することで、比較例5及び7と比べて、ヘーズ値を非常に低く抑えることができた。
 カルボキシ基と反応性を有する化合物(C)を含まず、植物繊維(A-2・杉木粉若しくはA-3・UBKP)及び熱可塑性樹脂(B)からなる比較例5及び7では、比較的高い弾性率を達成しているが、ヘーズ値が高い値となっている。これは、植物繊維中に含まれる有機酸などの揮発性成分が、樹脂との混合中や成形中など熱がかかる工程において脱離し、フォギングを引き起こしたと考えられる。
 カルボキシ基と反応性を有する化合物(C)の代わりに無機アルカリの酸化カルシウムを使用した比較例6は、曲げ弾性率及びヘーズ値は優れた値を示したものの、密度が1.038g/cmと高い値となっており成形体の軽量化には適した材料とは言えない。
 本発明の一実施形態に係る成形材料用樹脂組成物によれば、フォギング現象が抑制されており、軽量で且つ高剛度の成形体を提供できることがわかる。
 各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。

Claims (8)

  1.  植物繊維(A)と、熱可塑性樹脂(B)と、カルボキシ基と反応性を有する化合物(C)と、を含有する、成形材料用樹脂組成物。
  2.  植物繊維(A)が、酸無水物による化学変性物である、請求項1に記載の成形材料用樹脂組成物。
  3.  熱可塑性樹脂(B)が、ポリオレフィン系樹脂である、請求項1または2に記載の成形材料用樹脂組成物。
  4.  カルボキシ基と反応性を有する化合物(C)が、カルボジイミド基及びオキサゾリン基からなる群から選ばれる少なくとも一種の官能基を有する化合物である、請求項1~3のいずれか一項に記載の成形材料用樹脂組成物。
  5.  請求項1~4のいずれか一項に記載の成形材料用樹脂組成物を成形してなる、成形体。
  6.  植物繊維(A)と、熱可塑性樹脂(B)と、カルボキシ基と反応性を有する化合物(C)と、を溶融混練する工程を含む、成形材料用樹脂組成物の製造方法。
  7.  前記溶融混練する工程において、熱可塑性樹脂(B)の中で、植物繊維(A)が解繊され分散される、請求項6に記載の成形材料用樹脂組成物の製造方法。
  8.  植物繊維(A)/熱可塑性樹脂(B)/カルボキシ基と反応性を有する化合物(C)の質量比が、5~55/35~94/0.2~10である、請求項6又は7に記載の成形材料用樹脂組成物の製造方法。
PCT/JP2020/019184 2019-05-16 2020-05-14 成形材料用樹脂組成物、成形体、及び成形材料用樹脂組成物の製造方法 WO2020230836A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/442,370 US20220089850A1 (en) 2019-05-16 2020-05-14 Resin composition for molding materials, molded body, and method for producing resin composition for molding materials
CN202080018446.0A CN113508163B (zh) 2019-05-16 2020-05-14 成形材料用树脂组合物、成形体以及成形材料用树脂组合物的制造方法
JP2021519472A JP6986655B2 (ja) 2019-05-16 2020-05-14 成形材料用樹脂組成物、成形体、及び成形材料用樹脂組成物の製造方法
EP20804774.6A EP3971244A4 (en) 2019-05-16 2020-05-14 RESIN COMPOSITION FOR MOLDING, MOLDING OBJECTS AND METHOD FOR PRODUCTION OF RESIN COMPOSITION FOR MOLDING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-092856 2019-05-16
JP2019092856 2019-05-16

Publications (1)

Publication Number Publication Date
WO2020230836A1 true WO2020230836A1 (ja) 2020-11-19

Family

ID=73290014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019184 WO2020230836A1 (ja) 2019-05-16 2020-05-14 成形材料用樹脂組成物、成形体、及び成形材料用樹脂組成物の製造方法

Country Status (5)

Country Link
US (1) US20220089850A1 (ja)
EP (1) EP3971244A4 (ja)
JP (1) JP6986655B2 (ja)
CN (1) CN113508163B (ja)
WO (1) WO2020230836A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114736455A (zh) * 2022-03-24 2022-07-12 金发科技股份有限公司 一种纳米纤维素增强pp复合材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080146701A1 (en) 2003-10-22 2008-06-19 Sain Mohini M Manufacturing process of cellulose nanofibers from renewable feed stocks
JP2010215793A (ja) * 2009-03-17 2010-09-30 Idemitsu Kosan Co Ltd 芳香族ポリカーボネート樹脂組成物及びその成形品
JP2011213754A (ja) * 2010-03-31 2011-10-27 Kyoto Univ ミクロフィブリル化植物繊維及びその製造方法、並びにそれを用いた成形材料、及び樹脂成形材料の製造方法
WO2013133093A1 (ja) 2012-03-09 2013-09-12 国立大学法人京都大学 変性ミクロフィブリル化植物繊維を含む樹脂組成物の製造方法、及びその樹脂組成物
WO2014017274A1 (ja) 2012-07-24 2014-01-30 出光ライオンコンポジット株式会社 車両用灯具
JP2018095708A (ja) 2016-12-12 2018-06-21 トヨタ車体株式会社 内装品の製造方法
JP2019092856A (ja) 2017-11-22 2019-06-20 株式会社ハッピーリス 嚥下機能測定システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4270072B2 (ja) * 2004-08-26 2009-05-27 ソニー株式会社 複合組成物及び複合組成物を用いた電子機器筐体
CN101305055A (zh) * 2005-09-29 2008-11-12 东丽株式会社 纤维增强热塑性树脂组合物、其制造方法、及热塑性树脂用碳纤维
JP5103866B2 (ja) * 2006-10-27 2012-12-19 凸版印刷株式会社 発泡成形体およびその製造方法
KR101415099B1 (ko) * 2008-07-31 2014-07-08 고쿠리츠 다이가쿠 호진 교토 다이가쿠 불포화 폴리에스테르 수지와 마이크로피브릴화 식물 섬유를 함유하는 성형 재료
FR2957928B1 (fr) * 2010-03-25 2013-07-05 Roquette Freres Compositions a base de matiere vegetale et procede de preparation de telles compositions
JP5757765B2 (ja) * 2011-03-31 2015-07-29 国立大学法人京都大学 変性ミクロフィブリル化植物繊維を含む樹脂組成物
CN103642106B (zh) * 2013-10-09 2016-09-14 湖北工业大学 一种再生聚烯烃/植物纤维复合发泡材料及其制备方法
JP2019072973A (ja) * 2017-10-18 2019-05-16 トヨタ紡織株式会社 植物繊維含有ボード及びその製造方法
CN108586872A (zh) * 2018-05-07 2018-09-28 壹见传媒有限公司 一种高强度车顶灯

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080146701A1 (en) 2003-10-22 2008-06-19 Sain Mohini M Manufacturing process of cellulose nanofibers from renewable feed stocks
JP2010215793A (ja) * 2009-03-17 2010-09-30 Idemitsu Kosan Co Ltd 芳香族ポリカーボネート樹脂組成物及びその成形品
JP2011213754A (ja) * 2010-03-31 2011-10-27 Kyoto Univ ミクロフィブリル化植物繊維及びその製造方法、並びにそれを用いた成形材料、及び樹脂成形材料の製造方法
WO2013133093A1 (ja) 2012-03-09 2013-09-12 国立大学法人京都大学 変性ミクロフィブリル化植物繊維を含む樹脂組成物の製造方法、及びその樹脂組成物
WO2014017274A1 (ja) 2012-07-24 2014-01-30 出光ライオンコンポジット株式会社 車両用灯具
JP2018095708A (ja) 2016-12-12 2018-06-21 トヨタ車体株式会社 内装品の製造方法
JP2019092856A (ja) 2017-11-22 2019-06-20 株式会社ハッピーリス 嚥下機能測定システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3971244A4

Also Published As

Publication number Publication date
EP3971244A4 (en) 2023-01-11
US20220089850A1 (en) 2022-03-24
JP6986655B2 (ja) 2021-12-22
EP3971244A1 (en) 2022-03-23
CN113508163A (zh) 2021-10-15
CN113508163B (zh) 2022-11-11
JPWO2020230836A1 (ja) 2021-11-11

Similar Documents

Publication Publication Date Title
CN107429071B (zh) 含有化学修饰纤维素纳米纤维和热塑性树脂的纤维强化树脂组合物
WO2018230600A1 (ja) 微細セルロース繊維、その製造方法、スラリー及び複合体
JP6014860B2 (ja) 変性セルロースファイバー及び変性セルロースファイバーを含むゴム組成物
Islam et al. Characterization of Laccase-Treated Kenaf Fibre Reinforced Recycled Polypropylene Composites.
WO2017043454A1 (ja) 改質セルロース繊維
Mohanty et al. Effect of MAPP as coupling agent on the performance of sisal–PP composites
JP6209908B2 (ja) 成形材料用樹脂組成物の製造方法およびその成形体
JP6787533B1 (ja) 変性セルロース繊維配合樹脂組成物の製造方法
WO2020230836A1 (ja) 成形材料用樹脂組成物、成形体、及び成形材料用樹脂組成物の製造方法
CN114585666A (zh) 纤维素复合体的制造方法、纤维素复合体/树脂组合物的制造方法、纤维素复合体、以及纤维素复合体/树脂组合物
Ahmad et al. Enzyme-treated Wheat Straw-based PVOH Biocomposites: Development and Characterization.
JP6638868B1 (ja) ソリッド成形材料用樹脂組成物、及びその製造方法、並びにソリッド成形体
JP6547414B2 (ja) 変性セルロース繊維含有樹脂組成物、成形材料および成形体
JP2019034987A (ja) 脂肪族ポリエステル樹脂組成物および成形体
Subyakto et al. Injection molded of bio-micro-composites from natural fibers and polylactic acid
Chand et al. Mechanical, electrical, and thermal properties of maleic anhydride modified rice husk filled PVC composites
Li Properties of agave fiber reinforced thermoplastic composites
Eng et al. Chemical modification of oil palm mesocarp fiber by methacrylate silane: Effects on morphology, mechanical, and dynamic mechanical properties of biodegradable hybrid composites
JP7555096B2 (ja) セルロース繊維組成物及びその製造方法、並びにセルロース繊維複合組成物の製造方法
WO2021172407A1 (ja) 解繊性が改良された繊維強化樹脂組成物及びその製造方法、並びに成形体及び解繊剤
JP7086679B2 (ja) 複合体及びその製造方法
Viet et al. Silane-coupled kenaf fiber filled thermoplastic elastomer based on recycled high density polyethylene/natural rubber blends
JP7118701B2 (ja) 複合体及びその製造方法
CN115926397B (zh) 制备可降解的纳米纤维素增强的复合材料的方法
Awang et al. Hybrid composites of polypropylene/rice husk/titanium dioxide: the effects of compatibilizer on the mechanical properties and morphology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20804774

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2021519472

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020804774

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020804774

Country of ref document: EP

Effective date: 20211216