WO2020230836A1 - 成形材料用樹脂組成物、成形体、及び成形材料用樹脂組成物の製造方法 - Google Patents
成形材料用樹脂組成物、成形体、及び成形材料用樹脂組成物の製造方法 Download PDFInfo
- Publication number
- WO2020230836A1 WO2020230836A1 PCT/JP2020/019184 JP2020019184W WO2020230836A1 WO 2020230836 A1 WO2020230836 A1 WO 2020230836A1 JP 2020019184 W JP2020019184 W JP 2020019184W WO 2020230836 A1 WO2020230836 A1 WO 2020230836A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin composition
- compound
- group
- resin
- plant fiber
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/045—Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/15—Heterocyclic compounds having oxygen in the ring
- C08K5/151—Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
- C08K5/1515—Three-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/29—Compounds containing one or more carbon-to-nitrogen double bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/35—Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
- C08K5/353—Five-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
- C08J2323/12—Polypropene
Definitions
- the present invention relates to a resin composition for a molding material, a molded product thereof, and a method for producing a resin composition for a molding material, which are suitable for molding material applications.
- the present application claims priority based on Japanese Patent Application No. 2019-092856 filed in Japan on May 16, 2019, the contents of which are incorporated herein by reference.
- carbon fiber, glass fiber, etc. are widely and generally used as reinforcing materials used for resins for molding materials.
- carbon fiber since carbon fiber is hard to burn, it is not suitable for thermal recycling and is expensive.
- glass fiber although glass fiber is relatively inexpensive, there is a problem in disposal in thermal recycling.
- all of them since all of them have a higher density than resins, there is a problem that sufficient weight reduction cannot be expected when applied to applications such as automobile parts where weight reduction is desired.
- cellulosic plant fibers such as pulp, wood powder and basts have come to be used as reinforcing materials for resins for molding materials.
- These plant fibers have excellent thermal recyclability without leaving any residue even when burned, and because they have a lower density than inorganic fibers, it is possible to reinforce the resin without impairing its light weight. Become.
- Patent Documents 1 and 2 propose a technique for neutralizing organic acids contained in plant fibers by adding inorganic alkalis.
- plant fibers such as cellulose fibers are applied as a reinforcing material for a resin for molding materials
- the plant fibers are hydrophobically modified or modified for the purpose of improving the compatibility and interfacial strength between the plant fibers and the resin. Attempts have been made to use defibrating resins.
- Patent Document 3 in a composite material composed of a cellulosic microfibrillated plant fiber and a polyolefin such as polypropylene, maleic acid-modified polypropylene is widely used as a compatibilizer or an interface reinforcing agent.
- a compatibilizer or an interface reinforcing agent are known.
- thermoplastic resin or a thermosetting resin and a modified plant fiber obtained by modifying with alkyl or alkenyl anhydride succinic acid are organically liquid. It has been described that the microfibrillated plant fibers are uniformly dispersed in a highly hydrophobic resin by mixing in the presence.
- Patent Documents 1 and 2 generally have a high density, and if the amount added for suppressing the fogging phenomenon is increased, the lightness of the applied parts may be impaired.
- the present invention has been made to solve the above-mentioned problems, and is a resin composition for a molding material, a molded product thereof, which can suppress fogging and can obtain a lightweight and high-strength molded product. , And a method for producing a resin composition for a molding material.
- the inventors have conducted diligent research, and as a result, by using a compound having reactivity with a carboxy group, fogging is suppressed and a molding material capable of producing a lightweight and high-strength molded body can be produced.
- the present invention has been completed by finding that a resin composition for use can be obtained. That is, the present invention has the following aspects.
- a resin composition for a molding material containing a plant fiber (A), a thermoplastic resin (B), and a compound (C) having reactivity with a carboxy group (2) The resin composition for a molding material according to (1) above, wherein the plant fiber (A) is a chemically modified product of an acid anhydride. (3) The resin composition for a molding material according to (1) or (2) above, wherein the thermoplastic resin (B) is a polyolefin resin. (4) Any one of (1) to (3) above, wherein the compound (C) having reactivity with a carboxy group is a compound having at least one functional group selected from the group consisting of a carbodiimide group and an oxazoline group. The resin composition for a molding material according to 1.
- a method for producing a resin composition for a molding material which comprises a step of melt-kneading a plant fiber (A), a thermoplastic resin (B), and a compound (C) having reactivity with a carboxy group.
- the mass ratio of the plant fiber (A) / thermoplastic resin (B) / compound (C) having reactivity with the carboxy group is 5 to 55/35 to 94 / 0.2 to 10, as described above. 6) Or (7).
- the method for producing a resin composition for a molding material is 5 to 55/35 to 94 / 0.2 to 10, as described above. 6) Or (7).
- a resin composition for a molding material a molded product, and a method for producing a resin composition for a molding material, which suppresses fogging and can obtain a lightweight and high-strength molded product.
- the modified cellulose fiber (A) is defibrated and dispersed to nanofibers by melt-kneading the modified cellulose fiber (A) together with the thermoplastic resin (B) and the compound (C) having reactivity with the carboxy group (A). ) Is a scanning electron microscope image.
- the resin composition for a molding material of the embodiment contains a plant fiber (A), a thermoplastic resin (B), and a compound (C) reactive with a carboxy group.
- the plant fiber (A) contained in the resin composition for a molding material of the embodiment is not particularly limited, and examples thereof include cellulose fiber, wood flour, bamboo flour, hemp, kenaf fiber, bagasse fiber, and cotton. ..
- the plant fiber (A) may be a fiber contained in a plant or a processed product thereof, or a fiber obtained from a plant or a processed product thereof.
- the plant fiber (A) contained in the resin composition for a molding material is not particularly limited, and may be in a state of being purified from a plant raw material such as pulp, and a plant body such as wood flour. It may be in a state of forming a complex with other constituent components.
- Examples of the raw materials that can be used to obtain the plant fiber (A), particularly cellulose fiber, include plants such as wood, bamboo, hemp, jute, kenaf, cotton, and beet, or processed products thereof.
- Wood is a preferred raw material for cellulose fibers. Examples of wood plant species include pine, sugi, cypress, eucalyptus, and acacia. Further, pulp, paper, used paper and the like obtained from these plants or processed products thereof can also be used as raw materials that can be used to obtain cellulose fibers.
- the plant fiber (A) may be used alone or in combination of two or more.
- the pulp is a chemical pulp (for example, unbleached kraft pulp (UKP), bleached kraft pulp (BKP), sulfite) obtained by pulping plant raw materials chemically or mechanically or in combination of both.
- Pulp (SP), etc.) Semi-chemical pulp (SCP), Chemigrand pulp (CGP), Chemi-mechanical pulp (CMP), Crushed wood pulp (GP), Refiner mechanical pulp (RMP), Thermomechanical pulp (TMP), Chemi Thermomechanical pulp (CTMP) and the like can be mentioned.
- a component that causes fogging may adhere to the plant fiber (A), and examples of such a plant fiber (A) include those containing a volatile organic compound having a carboxy group.
- the compound can cause fogging.
- the volatile organic compound having a carboxy group may be a natural product synthesized in a plant.
- the volatile organic compound having a carboxy group what is attached to the raw material plant fiber is attached to the plant fiber (A), and the form contained in the resin composition for molding material can be exemplified.
- the volatile organic compound may be an organic compound that is volatile and becomes gaseous in the atmosphere, and examples thereof include organic compounds having a boiling point of 50 ° C. or higher and 260 ° C. or lower at 1 atm.
- the resin composition for a molding material may contain at least one compound selected from the group consisting of fatty acids, resin acids, and esters thereof.
- the compound is known to be contained in wood, for example, and can cause fogging.
- Compounds having a carboxy group such as fatty acids and resin acids may correspond to volatile organic compounds.
- the fatty acid may be an unsaturated fatty acid or a saturated fatty acid, but it is known that unsaturated fatty acids are the main ones.
- the number of carbon atoms of the fatty acid may be, for example, 6 to 24 carbon atoms or 12 to 18 carbon atoms.
- unsaturated fatty acids include linoleic acid and oleic acid.
- saturated fatty acids include palmitic acid and stearic acid.
- the resin acid may be a carboxylic acid, and examples thereof include a diterpene carboxylic acid such as abietic acid and an aromatic carboxylic acid such as benzoic acid and cinnamic acid.
- Fatty acids and resin acids may be free, but may exist, for example, as esters with glycerin, sitosterol, and alcohol. Esters of fatty acids and resin acids can be decomposed into fatty acids and resin acids, respectively.
- plant fiber (A) comprises at least one selected from the group consisting of unbleached pulp, unbleached kraft pulp, and wood flour. You can.
- the plant fiber (A) is defibrated to the extent that desired physical properties can be obtained. That is, the plant fiber (A) is preferably nanofiber.
- the nanofiber usually refers to a plant fiber having an average fiber diameter of less than 1000 nm, preferably an average fiber diameter of 4 to 800 nm, and the plant fiber is a cellulose fiber nanofiber (cellulose nanofiber: CNF). ) Is preferable.
- CNF is a fiber obtained by subjecting a cellulose fiber to a treatment such as mechanical defibration. For example, a fiber having an average fiber diameter of 4 to 200 nm and a number average fiber length of 5 ⁇ m or more can be exemplified.
- the specific surface area of the CNF preferably about 70 ⁇ 300m 2 / g, more preferably about 70 ⁇ 250m 2 / g, more preferably about 100 ⁇ 200m 2 / g.
- the average fiber diameter of CNF may be preferably 4 to 200 nm, more preferably 4 to 150 nm, and even more preferably 4 to 100 nm.
- the resin components in the resin composition for molding material (or the molded product) are washed away with a solvent capable of dissolving them, and then contained in the residue. This is possible by observing the fiber content with a scanning electron microscope.
- a resin composition (or molded product) sample for a molding material containing a plant fiber (A) is wrapped in a 325 mesh stainless mesh and treated at 140 ° C. for 5 hours under reflux with xylene to dissolve the resin and extract the fiber content.
- the dried product can be observed and measured with a scanning electron microscope (for example, JSM-5610LV manufactured by JEOL Ltd.).
- each value can be obtained as an average value when at least 50 or more fibers in the field of view of the scanning electron microscope are measured.
- the plant fiber (A) may be defibrated to nanofibers in the resin composition for molding materials after mixing in the method for producing a resin composition for molding materials described later, so that the nanofibers are not necessarily produced before mixing. It does not have to be defibrated.
- the plant fiber (A) may be used as it is, but the plant fiber (A) is preferably a chemically modified product of an acid anhydride.
- the chemically modified product may be produced by reacting an acid anhydride with a hydroxyl group of a plant fiber, and may have an ester bond formed by reacting an acid anhydride with a hydroxyl group of a plant fiber.
- the compatibility and interfacial adhesion are improved by improving the interaction with the resin, and further, the hydrogen bond in the plant fiber and between the plant fibers is inhibited, so that the dispersion is high. You can achieve sex.
- the strength of the obtained molded product can be increased.
- Examples of the acid anhydride are carboxylic acid anhydrides, and examples thereof include acetic anhydride, butyric anhydride, propionic anhydride, benzoic anhydride, and stearic anhydride.
- the chemically modified product produced by reacting the carboxylic acid anhydride with the hydroxyl group of the plant fiber can have an ester bond and a carboxy group formed by reacting the carboxylic acid anhydride with the hydroxyl group of the plant fiber.
- acetic anhydride is preferred because of its availability and ease of introduction.
- polyhydric basic acid anhydrides include, for example, alkyl or alkenyl succinic anhydride, maleic anhydride, phthalic anhydride, succinic anhydride, maleic anhydride-modified polyolefin, and maleic anhydride-modified polybutadiene. And so on.
- an acid anhydride having a hydrophobic group is preferable, and an alkyl succinic anhydride or an alkenyl succinic anhydride is preferable from the viewpoint of compatibility with a resin.
- the alkyl group or alkenyl group in the alkyl succinic anhydride or alkenyl succinic anhydride has the property as the above-mentioned hydrophobic group.
- the alkyl group or alkenyl group may be linear or branched.
- the number of carbon atoms of the alkyl group or the alkenyl group may be, for example, 8 to 20, and may be 12 to 18.
- alkyl group examples include an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tetradecyl group, a hexadecyl group, an octadecyl group and an icosyl group.
- alkenyl group examples include an octenyl group, a nonenyl group, a decenyl group, an undecenyl group, a dodecenyl group, a tetradecenyl group, a hexadecenyl group, an octadecenyl group, an icosenyl group and the like.
- the plant fiber (A) may be a chemically modified product with a carboxylic acid anhydride, and the chemically modified product may have a carboxy group derived from the acid anhydride.
- the plant fiber (A) may be a chemically modified product of a carboxylic acid anhydride having a hydrophobic group, and the chemically modified product may have a carboxy group derived from the carboxylic acid anhydride.
- the plant fiber (A) may be a chemically modified product of an alkylsuccinic anhydride or an alkenylsuccinic anhydride, and the chemically modified product is a carboxy group derived from the alkylsuccinic anhydride or the alkenylsuccinic anhydride. It may have.
- the fixation rate of acid anhydride on plant fibers is calculated from the following formula.
- Fixation rate (%) (dry mass of modified plant fiber (A) -dry mass of plant fiber) / (dry mass of plant fiber) x 100
- the fixing rate is preferably 5 to 50% by mass, more preferably 5 to 30% by mass, in view of the balance between the appropriate improvement in the resin dispersibility of the plant fiber and the production cost.
- FT-IR Fourier transform infrared spectroscopy
- thermoplastic resin is a resin having plasticity that can be softened by heating and molded into a desired shape.
- the thermoplastic resin is a concept including a thermoplastic elastomer.
- the thermoplastic elastomer refers to an elastomer (polymer having elasticity) having plasticity that can be softened by heating and molded into a desired shape.
- thermoplastic resin a polyamide resin such as nylon; a polyolefin resin such as polyethylene, polypropylene, an ethylene-propylene copolymer, and an ethylene vinyl acetate copolymer; a polyester resin such as polyethylene terephthalate and polybutylene terephthalate; polymethylmethacrylate and poly Acrylic resin such as ethyl methacrylate; polystyrene, styrene resin such as (meth) acrylic acid ester-styrene resin; thermoplastic resin such as polyurethane resin, ionomer resin, cellulose resin, and olefin-based elastomer, vinyl chloride-based elastomer, styrene-based elastomer , Resins such as thermoplastic elastomers such as urethane-based elastomers, polyester-based elastomers, and polyamide-based elastomers, and mixtures of two or more thereof.
- thermoplastic resins are polyolefin resins such as polyethylene resins, polypropylene resins and ethylene-vinyl acetate copolymers.
- the polyolefin-based resin refers to a homopolymer or a copolymer having a structural unit derived from an olefin.
- the thermoplastic resin may be used alone or in combination of two or more.
- the compound (C) having reactivity with the carboxy group may be a compound that reacts with the carboxy group to form a covalent bond.
- the compound (C) having a reactivity with the carboxy group is preferably an organic compound, and is selected from the group consisting of a carbodiimide group, an oxazoline group, an epoxy group, an isocyanate group, a silanol group, an aziridinyl group, an amino group and a hydroxyl group.
- Examples thereof include compounds containing at least one group, and among them, a compound having at least one functional group selected from the group consisting of a carbodiimide group and an oxazoline group is preferable, and a compound having a carbodiimide group is more preferable.
- the form of the compound having reactivity with the carboxy group is not particularly limited, but a solid state is preferable in terms of mixing with the thermoplastic resin.
- the compound having a carbodiimide group it suffices to have one or more carbodiimide groups in the molecule, and a general synthetic product can be used.
- a compound having a carbodiimide group may be synthesized by a known method, or a commercially available carbodiimide compound may be used.
- commercially available polycarbodiimide compounds include Nisshinbo Chemical Co., Ltd.'s Carbodilite HMV-15CA, Carbodilite LA-1, and Rheinchemy's Co., Ltd., Stavaxol P. From the viewpoint of more effectively suppressing the volatile component having a carboxy group, it is particularly preferable to use a polycarbodiimide compound having two or more carbodiimide groups in the molecule.
- the compound containing an oxazoline group may have one or more oxazoline groups in the molecule, and can be obtained by polymerizing with alkenyl oxazoline alone or, if necessary, with various unsaturated monomers by a known method. be able to.
- alkenyl oxazolines include 2-vinyl-2-oxazoline, 4-methyl-2-vinyl-2-oxazoline, 5-methyl-2-vinyl-2-oxazoline, and 4,4-dimethyl-2-vinyl-2-oxazoline. , 2-Isopropenyl-2-oxazoline and the like. One or more of these alkenyloxazolines can be used.
- the compound containing an oxazoline group a compound containing two or more oxazoline groups in the molecule is preferable from the viewpoint of more effectively suppressing the volatile component having a carboxy group.
- the compound containing an oxazoline group include a polymer having an oxazoline group in the side chain, and there is no particular limitation on the type of resin that becomes the polymer main chain of the polymer, and the mixture with the thermoplastic resin is appropriately taken into consideration. Can be used.
- the amount of the oxazoline group of the compound containing an oxazoline group may be, for example, 0.01 to 10 mmol / g, or 0.1 to 1 mmol / g.
- oxazoline compound As the compound containing an oxazoline group, a commercially available oxazoline compound may be used. Examples of commercially available products include Epocross RPS-1005 manufactured by Nippon Shokubai Co., Ltd.
- ⁇ Reaction of compound (C) reactive with carboxy group examples include, in addition to fatty acids and resin acids that can be contained in the plant fiber (A), the following components when the plant fiber (A) is a chemically modified product of an acid anhydride. i) Acid anhydrides used for denaturing plant fiber (A) that have not reacted with plant fiber, ii) The acid anhydride used for the modification of the plant fiber (A) is desorbed in a heat-applied process such as during mixing with a resin or during molding after reacting with the plant fiber.
- the acid anhydride used for the modification of the plant fiber (A) usually has a ring-opening carboxy group in the composition and has a free carboxy group derived from these acid anhydrides or acid anhydrides. Compounds are cited as the cause of fogging.
- the compound (C) reacts with the compound having the carboxy group which is the cause of fogging. It is thought that it can generate objects and suppress fogging. This is because the compound (C) reactive with the carboxy group reacts with the compound having the carboxy group which is the cause of fogging to produce a reactant, so that the molecular weight of the compound having the carboxy group which is the cause of the fogging is generated. It is considered that this is due to the increase in volatile acid and the decrease in volatility.
- the compound (C) not only exerts a fogging-suppressing action in the manufacturing process of the resin composition for molding material and the manufactured resin composition for molding material, but also exerts a fogging-suppressing action even after the molded product is formed. Can be done.
- the compound having a carboxy group may be a compound derived from the above-mentioned fatty acid, resin acid, acid anhydride or the like, and examples thereof include those exemplified in the plant fiber (A).
- Examples of the reaction between the compound having a carboxy group and the compound having a carbodiimide group include those represented by the following formula (1).
- R 1 , R 2 and R 3 are independently hydrogen atoms or monovalent organic groups.
- Examples of the reaction between the compound having a carboxy group and the compound having an oxazoline group include those represented by the following formula (2).
- R 1 and R 4 are independently hydrogen atoms or monovalent organic groups.
- Inorganic alkalis which have a high density but have been found to have a fogging-suppressing effect, may be used in combination within the range of the purpose of obtaining a lightweight and highly rigid molded product.
- inorganic alkalis examples include calcium oxide, calcium hydroxide, calcium carbonate, magnesium oxide, magnesium hydroxide, magnesium carbonate and the like.
- additives such as compatibilizers, dispersants, surfactants, antioxidants, flame retardants, pigments, inorganic fillers, plasticizers, crystal nucleating agents, and foaming aids can be used at the same time as long as the effects of the present invention are not impaired. It may be blended.
- compatibilizer examples include maleic anhydride, maleic anhydride-modified polyethylene resin, maleic anhydride-modified polypropylene resin, epoxy group-containing resin (copolymer of glycidyl methacrylate and ethylene, etc.), and various commercially available products.
- a compatibilizer may be used.
- fogging caused by the compound having a carboxy group can be effectively suppressed by containing the compound (C) having reactivity with the carboxy group. Further, the compound (C) having reactivity with the carboxy group effectively suppresses fogging caused by the compound having the carboxy group, and as a result, the compound having the carboxy group and the compound (C) having the reactivity with the carboxy group.
- the compound having the carboxy group and the compound (C) having the reactivity with the carboxy group In the form of a reaction product with, it may be contained in the resin composition for a molding material of the embodiment.
- the resin composition for a molding material of the embodiment it is possible to provide a resin composition for a molding material capable of obtaining a molded product having well-balanced characteristics of antifogging, light weight, and high strength.
- the resin composition for a molding material of the embodiment can be produced by mixing a plant fiber (A), a thermoplastic resin (B), and a compound (C) having a reactivity with a carboxy group.
- a plant fiber (A), the thermoplastic resin (B), and the compound (C) having reactivity with the carboxy group include those exemplified in the above resin composition for molding material, and the description thereof is omitted here. ..
- the method for producing a resin composition for a molding material of the embodiment includes a step of melt-kneading a plant fiber (A), a thermoplastic resin (B), and a compound (C) having reactivity with a carboxy group. It may be there.
- the melt kneading is a form of the mixing. In the melt-kneading, at least the thermoplastic resin (B) may be melted. Melt-kneading refers to mixing the molten thermoplastic resin (B), the plant fiber (A), and the compound (C) having reactivity with a carboxy group.
- the resin composition for a molding material of the above-described embodiment can be produced.
- the blending ratio of the plant fiber (A), the thermoplastic resin (B), and the compound (C) having a reactivity with the carboxy group in the method for producing the resin composition for a molding material of the embodiment is not particularly limited, but the molding material.
- the mass ratio of (A) / (B) / (C) is from the viewpoint of both the plant fiber content preferable for obtaining the desired strength in the molded product using the resin composition for use and the effect of suppressing fogging. May be blended in a mass ratio of 1 to 55/35 to 99 / 0.2 to 10, may be blended in a mass ratio of 5 to 40/50 to 98/1 to 10, and may be blended in a mass ratio of 7 to 35/60 to 95. It may be blended in a mass ratio of 1 to 6.
- the blending ratio of the plant fiber (A) with respect to 100% by mass of the total mass of the resin composition for molding material of the embodiment is not particularly limited, but the desired strength can be obtained in a molded product using the resin composition for molding material.
- the content may be preferably 1 to 50% by mass, 5 to 40% by mass, or 10 to 30% by mass.
- the above (A), the above (B) and the above (C) are melt-kneaded using a uniaxial or multiaxial kneader, a kneader or the like, and the plant fibers are uniformly mixed and dispersed in the resin component while being uniformly mixed and dispersed.
- the fogging component can be captured by reacting the component that causes fogging with the above (C).
- the mixing order of the (A), the (B) and the (C) is not particularly limited, and for example, the (A) and the (C) are mixed before the (A) and the (B) are mixed. It may be mixed in advance.
- melt kneading can be performed using a uniaxial or multiaxial kneader, a kneader, or the like.
- the mixing order, mixing temperature, and melting timing of the raw materials in the melt-kneading are not particularly limited.
- the (A), the (B), and the (C) may be melt-kneaded, or the (A) and the (B) may be melt-kneaded in advance and then the (C) may be melt-kneaded. You may mix.
- the temperature of the melt-kneading is taken into consideration.
- the temperature of the kneaded product being kneaded is preferably 100 to 220 ° C.
- the screw rotation speed of the uniaxial or multiaxial kneader is preferably in the range of 25 to 400 rpm for the entire stroke.
- the plant fiber (A) is defibrated and dispersed in the thermoplastic resin (B).
- “Inside the thermoplastic resin (B)” refers to a state in which the plant fibers (A) are dispersed using the molten thermoplastic resin (B) as a dispersion medium.
- the plant fiber (A) is defibrated to nanofibers.
- the plant fiber (A) defibrated in the thermoplastic resin (B) is preferably cellulose nanofiber.
- the one defibrated to nanofiber has a better reinforcing effect. Even if the plant fibers that have been made into nanofibers in advance are mixed with the resin, or if the plant fibers are defibrated to the nanofibers in the thermoplastic resin and uniformly dispersed in the resin, the reinforcing effect does not change, but the plant In order to convert fibers into nanofibers in advance, it is generally necessary to apply a high share in a state of being dispersed in water 10 times or more that of plant fibers. When such nanofibers are blended with a resin, not only energy is required for nanofiber formation, but also a large amount of water must be removed when blending with the resin, resulting in high manufacturing cost.
- the method of dispersing plant fibers in a thermoplastic resin while defibrating the plant fibers to nanofibers is more advantageous in terms of energy cost than the method of using pre-nanofibers.
- By chemically modifying the plant fiber it becomes easier to disperse the plant fiber more uniformly in the resin while defibrating the plant fiber into nanofibers in the thermoplastic resin, and the flexural modulus or bending strength of the obtained molded product is obtained. Can be improved.
- the resin composition for a molding material of the embodiment can be used as a molding material for producing a molded product.
- the molded product of the embodiment is formed by molding the resin composition for a molding material of the above-described embodiment.
- the molded product can be obtained, for example, by molding a resin composition for a molding material that has been softened by heating.
- the molded product can be obtained, for example, by molding the melt-kneaded resin composition for a molding material.
- Examples of the molding include press molding, injection molding, extrusion molding, blow molding, stretch molding, foam molding and the like.
- Examples of the shape of the molded body include a sheet shape, a film shape, a pellet shape, a powder shape, and the like. These may be further molded into a form used in the final product by the molding method or the like described above.
- Examples of the plant fiber (A), the thermoplastic resin (B), and the compound (C) having reactivity with the carboxy group contained in the molded product include those exemplified in the resin composition for molding material, which are here. The explanation of is omitted.
- the resin composition for molding material can be made into a desired molded product by further adding various additives to the above resin composition for molding material and molding the resin composition for molding material, depending on the intended use.
- the flexural modulus of the molded product of the embodiment is preferably 2.0 GPa or more, more preferably 3.0 GPa or more, and further preferably 3.3 GPa or more.
- the upper limit of the flexural modulus of the molded product is not particularly limited, but may be 5 GPa or less as an example.
- the numerical range of the flexural modulus of the molded product may be 2.0 GPa or more and 5 GPa or less, 3.0 GPa or more and 5 GPa or less, and 3.3 GPa or more and 5 GPa or less.
- the value of the flexural modulus of the molded product shall be obtained under the conditions described in the examples.
- the resin composition for molding material is injection-molded at an injection temperature of 200 ° C. and a mold temperature of 25 ° C. using an injection molding machine, and a strip-shaped test piece (JIS K7139 / B1) having a length of 80 mm, a width of 10 mm and a thickness of 2 mm is formed. ).
- a load is applied to this test piece at a temperature: 23 ° C., humidity: 50% RH, distance between fulcrums 64 mm, and speed 2 mm / min to obtain a flexural modulus. taking measurement.
- the bending strength of the molded product of the embodiment is preferably 65 MPa or more, more preferably 67 MPa or more, and even more preferably 68.5 MPa or more.
- the upper limit of the bending strength of the molded product is not particularly limited, but may be 80 MPa or less as an example.
- the numerical range of the bending strength of the molded product may be 65 MPa or more and 80 MPa or less, 67 MPa or more and 80 MPa or less, or 68.5 MPa or more and 80 MPa or less.
- the value of the bending strength of the molded product shall be obtained under the conditions described in the examples. (Bending strength)
- the resin composition for molding material is injection-molded at an injection temperature of 200 ° C. and a mold temperature of 25 ° C.
- JIS K7139 / B1 a strip-shaped test piece having a length of 80 mm, a width of 10 mm and a thickness of 2 mm is formed.
- a load is applied to this test piece at a temperature of 23 ° C., humidity of 50% RH, a distance between fulcrums of 64 mm, and a speed of 2 mm / min, and the bending strength is measured. To do.
- Density of the molded body of the embodiment is preferably at 1.01 g / cm 3 or less, more preferably 1.005 g / cm 3 or less.
- the lower limit of the density of the molded body is not particularly limited, it may be a 0.8 g / cm 3 or more as an example, may be at 0.9 g / cm 3 or more.
- the value of the density of the molded product shall be obtained under the conditions described in the examples.
- the obtained molded product can be used for automobile parts, home appliance housings, building materials, packaging materials, etc.
- Fixation rate (%) (dry mass of modified plant fiber-dry mass of plant fiber) / (dry mass of plant fiber) x 100
- the dry mass of the modified plant fiber was measured by the following method. A dispersion was prepared by adding 100 times the mass of tetrahydrofuran to the total amount of the modified plant fiber obtained by the method of Production Example 1, and the dispersion was stirred with a homogenizer (manufactured by Nippon Seiki) at 10000 rpm for 1 minute. It was suction filtered.
- the filtration residue was dried in an electric dryer at 110 ° C., and the dry mass was measured.
- FT-IR manufactured by JASCO Corporation
- spectral absorption not found in the unmodified plant fiber was observed at 1500 to 2000 cm -1 .
- the cloudiness (haze value (%)) of the glass plate used for the test was measured with a haze meter (manufactured by Nippon Denshoku Co., Ltd .; NDH5000).
- the haze value indicates that the larger the value, the greater the degree of cloudiness.
- ⁇ Manufacturing of modified cellulose fiber ⁇ 500 parts by mass of coniferous bleached kraft pulp (NBKP) and 150 parts by mass of N-methylpyrrolidone (NMP) having a solid content of 20% by mass were charged into a clean container, water was distilled off under reduced pressure, and then hexadecenylsuccinic anhydride was added. 19.9 parts by mass of the product was added and reacted at 80 ° C. for 4 hours. After the reaction, the pressure was reduced to distill off NMP to obtain modified cellulose fibers (A-1). The fixation rate of hexadecenyl succinic anhydride was 8.6%.
- Example 2 A resin composition (D-2) was obtained according to Example 1 except that a carbodiimide group-containing compound (C-2, Stavaxol P manufactured by LANXESS Co., Ltd.) was used as a compound having reactivity with a carboxy group.
- C-2 a carbodiimide group-containing compound manufactured by LANXESS Co., Ltd.
- Example 3 A resin composition (D-3) was obtained according to Example 1 except that an oxazoline group-containing compound (C-3, Epocross RPS1005 manufactured by Nippon Shokubai Co., Ltd.) was used as a compound having reactivity with a carboxy group.
- Epocross RPS1005 amorphous type reactive polymer in which oxazoline groups are pendant in the polystyrene main chain, oxazoline group amount: 0.27 mmol / g ⁇ solid, number average molecular weight (Mn): about 70,000, weight average Molecular weight (Mw) about 160,000
- Example 4 A resin composition (D-4) was obtained according to Example 1 except that an epoxy group-containing compound (C-4, Denacol EX421 manufactured by Nagase Chemtech Co., Ltd.) was used as a compound having reactivity with a carboxy group. ..
- Comparative Example 3 A resin composition (D-7) was obtained according to Comparative Example 2 except that the blending ratio of calcium oxide (c-5) was changed to 0.25 parts.
- Evaluation Example 1 shows the results of measuring the physical properties of the resin compositions obtained in Examples 1 to 4 and Comparative Examples 1 to 3.
- a haze value of less than 10% and bending are used as a molded product of an example in which fogging suppression (low haze value), high strength (high flexural modulus / bending strength), and light weight (low density) are compatible.
- An elastic modulus of 3.0 GPa or more, a bending strength of 68.5 MPa or more, and a density of 1.01 g / cm 3 or less are shown.
- Examples 1 to 4 which consist of a plant fiber (A-1 / modified cellulose fiber), a thermoplastic resin (B), and a compound (C) having reactivity with a carboxy group, all have low densities, and have a flexural modulus and a flexural modulus. The bending strength was high and the haze value was low, and these were compatible at a high level. Among them, Example 1 was of high quality having the highest flexural modulus and bending strength and the lowest haze value. In Examples 1 to 4, the values of flexural modulus and bending strength were particularly improved. It is considered that this is because the hydrophobizing modification of the plant fiber has improved the compatibility and interfacial strength between the plant fiber and the resin and improved the mechanical properties. Further, by containing the compound (C) having reactivity with the carboxy group, the haze value could be suppressed to be very low as compared with Comparative Example 1 and Comparative Example 3.
- Comparative Example 1 which does not contain the compound (C) having reactivity with the carboxy group and is composed of the plant fiber (A-1 / modified cellulose fiber) and the thermoplastic resin (B), a relatively high flexural modulus was achieved. However, the haze value is very high. It is considered that this is because the denaturant was desorbed in the process of applying heat such as during mixing with the resin or during molding, causing fogging.
- Comparative Example 2 in which the inorganic alkali calcium oxide was used instead of the compound (C) having reactivity with the carboxy group, the flexural modulus and the haze value showed excellent values, but the density was 1.049 g / cm 3 It cannot be said that the material is suitable for reducing the weight of the molded product.
- Comparative Example 3 in which the amount of the inorganic alkali was reduced, the density was about the same as in Examples 1 to 4, but the haze value was high. It is considered that this is because the components that cause fogging could not be sufficiently neutralized as a result of reducing the amount of inorganic alkali.
- resin composition 2 (Example 5) 10 parts of modified cellulose fiber (A-1), 90 parts of commercially available polypropylene resin (B, Novatec MA04A manufactured by Japan Polypropylene Corporation), and a carbodiimide group-containing compound (C-1, Nisshinbo) as a compound reactive with a carboxy group.
- a resin composition (D-8) is obtained by melt-kneading two parts of Carbodilite HMV-15CA manufactured by Chemical Co., Ltd. at 170 ° C with a laboplast mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.), which is a kind of kneader. It was.
- a haze value of less than 5% and bending are used as a molded product of an example in which fogging suppression (low haze value), high strength (high flexural modulus / bending strength), and light weight (low density) are compatible.
- An elastic modulus of 2.4 GPa or more, a bending strength of 65 MPa or more, and a density of 0.95 g / cm 3 or less are shown.
- the cellulose fiber ratio is further lowered and the member has a lower density, so that the target value of the mechanical properties is also different from the evaluation example 1.
- Example 5 composed of a plant fiber (A-1, modified cellulose fiber), a thermoplastic resin (B), and a compound (C) reactive with a carboxy group has a low density and is bent.
- the elastic modulus was high and the haze value was low, and these were compatible at a high level.
- the compound (C) having reactivity with the carboxy group the haze value could be suppressed to be very low as compared with Comparative Example 4.
- Example 7 A resin composition (D-11) was obtained according to Example 6 except that the plant fiber was softwood unbleached kraft pulp (A-3, NUKP dried product).
- Example 6 A resin composition (D-13) was obtained according to Example 6 except that 2 parts of calcium oxide (c-5) was used instead of the compound having reactivity with the carboxy group.
- a haze value of less than 10% and bending are used as a molded product of an example in which fogging suppression (low haze value), high strength (high flexural modulus / bending strength), and light weight (low density) are compatible.
- An elastic modulus of 2.5 GPa or more, a bending strength of 67.3 MPa or more, and a density of 1.01 g / cm 3 or less are shown. Since the comparison is made between plant fiber materials that have not been hydrophobized and modified, the target physical property values of flexural modulus and bending strength are lower than those of Evaluation Example 1. From this point of view, it can be seen that it is more preferable to hydrophobize and denature plant fibers.
- Examples 6 and 7 which consist of a plant fiber (A-2 / cedar wood powder or A-3 / UBKP), a thermoplastic resin (B), and a compound (C) reactive with a carboxy group, all have low densities. , The flexural modulus was high and the haze value was low, and these were compatible at a high level. By containing the compound (C) reactive with the carboxy group, the haze value could be suppressed to be very low as compared with Comparative Examples 5 and 7.
- Comparative Examples 5 and 7 which do not contain the compound (C) reactive with the carboxy group and consist of the plant fiber (A-2 / cedar wood powder or A-3 / UBKP) and the thermoplastic resin (B) are relatively high.
- the elastic modulus is achieved, but the haze value is high. It is considered that this is because volatile components such as organic acids contained in the plant fiber are desorbed in a process of applying heat such as during mixing with a resin or during molding, causing fogging.
- the fogging phenomenon is suppressed, and a lightweight and highly rigid molded product can be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本願は、2019年5月16日に、日本に出願された特願2019-092856号に基づき優先権を主張し、その内容をここに援用する。
すなわち本発明は、以下の態様を有する。
(2)植物繊維(A)が、酸無水物による化学変性物である、前記(1)に記載の成形材料用樹脂組成物。
(3)熱可塑性樹脂(B)が、ポリオレフィン系樹脂である、前記(1)または(2)に記載の成形材料用樹脂組成物。
(4)カルボキシ基と反応性を有する化合物(C)が、カルボジイミド基及びオキサゾリン基からなる群から選ばれる少なくとも一種の官能基を有する化合物である、前記(1)~(3)のいずれか一つに記載の成形材料用樹脂組成物。
(5)前記(1)~(4)のいずれか一つに記載の成形材料用樹脂組成物を成形してなる、成形体。
(6)植物繊維(A)と、熱可塑性樹脂(B)と、カルボキシ基と反応性を有する化合物(C)と、を溶融混練する工程を含む、成形材料用樹脂組成物の製造方法。(7)前記溶融混練する工程において、熱可塑性樹脂(B)の中で、植物繊維(A)が解繊され分散される、前記(6)に記載の成形材料用樹脂組成物の製造方法。
(8)植物繊維(A)/熱可塑性樹脂(B)/カルボキシ基と反応性を有する化合物(C)の質量比が、5~55/35~94/0.2~10である、前記(6)又は(7)に記載の成形材料用樹脂組成物の製造方法。
実施形態の成形材料用樹脂組成物は、植物繊維(A)と、熱可塑性樹脂(B)と、カルボキシ基と反応性を有する化合物(C)と、を含有する。
実施形態の成形材料用樹脂組成物に含有される植物繊維(A)は、特に限定されないが、例えば、セルロース繊維、木粉、竹粉、麻類、ケナフ繊維、バガス繊維、綿などが挙げられる。植物繊維(A)は、植物体若しくはその加工品に含有される繊維、または植物体若しくはその加工品から得られた繊維であってよい。
成形材料用樹脂組成物に含有される植物繊維(A)は、特に制限されるものではなく、パルプのように植物原料から精製された状態であってもよく、木粉のように植物体を構成するその他の成分と複合体を形成した状態であってもよい。
CNFは、セルロース繊維を機械的解繊等の処理を施すことで得られる繊維であり、例えば、平均繊維径4~200nm、数平均繊維長5μm以上の繊維を例示できる。CNFの比表面積としては、70~300m2/g程度が好ましく、70~250m2/g程度がより好ましく、100~200m2/g程度がさらに好ましい。CNFの比表面積を高くすることで、樹脂組成物としたときに、接触面積を大きくすることができ強度が向上する。また、比表面積が上記上限値以下であると、樹脂組成物の樹脂中での凝集が起こり難く、成形体の強度が向上する傾向にある。CNFの平均繊維径は、好ましくは4~200nm、より好ましくは4~150nm、さらに好ましくは4~100nmであってよい。
成形材料用樹脂組成物または成形体における、前記繊維の形状の測定は、成形材料用樹脂組成物(または成形体)中の樹脂成分を、それらが溶解できる溶剤で洗い流したのち、残渣に含まれる繊維分を走査型電子顕微鏡によって観察することで可能である。例えば、植物繊維(A)を含む成形材料用樹脂組成物(または成形体)試料を325meshステンレスメッシュで包み、キシレン還流下、140℃で5時間処理を行うことで樹脂を溶解し繊維分を抽出乾燥したものを、走査型電子顕微鏡(例えば、日本電子株式会社製、JSM-5610LV)にて観察し、測定することができる。前記繊維の形状の測定では、走査型電子顕微鏡の視野内の繊維の少なくとも50本以上について測定した時の平均値として、各値を求めることができる。
上記アルキル基としては、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、イコシル基等が挙げられる。 上記アルケニル基としては、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、テトラデセニル基、ヘキサデセニル基、オクタデセニル基、イコセニル基等が挙げられる。
植物繊維(A)は、カルボン酸無水物による化学変性物であってもよく、前記化学変性物は前記酸無水物に由来するカルボキシ基を有するものであってもよい。
植物繊維(A)は、疎水基を有するカルボン酸無水物による化学変性物であってもよく、前記化学変性物は前記カルボン酸無水物に由来するカルボキシ基を有するものであってもよい。
植物繊維(A)は、アルキルコハク酸無水物又はアルケニルコハク酸無水物による化学変性物であってもよく、前記化学変性物は前記アルキルコハク酸無水物又はアルケニルコハク酸無水物に由来するカルボキシ基を有するものであってもよい。
定着率(%)=(変性植物繊維(A)の乾燥質量-植物繊維の乾燥質量)/(植物繊維の乾燥質量)×100
植物繊維の樹脂分散性の適度な向上と生産コストとの兼ね合いから、前記定着率は5~50質量%であることが好ましく、5~30質量%であることがより好ましい。酸無水物の化学結合による定着の確認には、例えばフーリエ変換赤外分光法(FT-IR)を用いる。
熱可塑性樹脂とは、加熱により軟化し、所望の形に成形可能な可塑性を有する樹脂をいう。本明細書において、熱可塑性樹脂は、熱可塑性エラストマーを含む概念とする。熱可塑性エラストマーとは、加熱により軟化し、所望の形に成形可能な可塑性を有するエラストマー(弾性を有するポリマー)をいう。熱可塑性樹脂としては、ナイロンなどのポリアミド樹脂;ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン酢酸ビニル共重合体などのポリオレフィン樹脂;ポリエチレンテレフタレートやポリブチレンテレフタレートなどのポリエステル樹脂;ポリメチルメタクリレートやポリエチルメタクリレートなどのアクリル樹脂;ポリスチレン、(メタ)アクリル酸エステル-スチレン樹脂などのスチレン樹脂;ポリウレタン樹脂、アイオノマー樹脂、セルロース樹脂等の熱可塑性樹脂、ならびにオレフィン系エラストマー、塩化ビニル系エラストマー、スチレン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー等の熱可塑性エラストマー等樹脂及びこれらの二種以上の混合物が挙げられる。好ましい熱可塑性樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン-酢酸ビニル共重合体等のポリオレフィン系樹脂である。ポリオレフィン系樹脂とは、オレフィンに由来する構成単位を有する単独重合体又は共重合体をいう。熱可塑性樹脂は、1種単独で用いてもよく、2種以上を用いてもよい。
カルボキシ基と反応性を有する化合物(C)としては、カルボキシ基と反応し共有結合を形成する化合物であってよい。カルボキシ基と反応性を有する化合物(C)としては、有機化合物であることが好ましく、カルボジイミド基、オキサゾリン基、エポキシ基、イソシアネート基、シラノール基、アジリジニル基、アミノ基、及び水酸基からなる群から選ばれる少なくとも一種の基を含む化合物が挙げられ、中でもカルボジイミド基及びオキサゾリン基からなる群から選ばれる少なくとも一種の官能基を有する化合物であることが好ましく、カルボジイミド基を有する化合物であることがより好ましい。
フォギングの原因となり得る成分として、植物繊維(A)に含まれ得る脂肪酸、樹脂酸等の他に、植物繊維(A)が酸無水物による化学変性物である場合、以下の成分が挙げられる。
i)植物繊維(A)の変性に用いた酸無水物のうち植物繊維と未反応のもの、
ii)植物繊維(A)の変性に用いた酸無水物が植物繊維と反応した後、樹脂との混合中や成形中などの熱がかかる工程において脱離したもの。
植物繊維(A)の変性に用いられた酸無水物は、通常、組成物中で開環してカルボキシ基を有し、これらの酸無水物又は酸無水物に由来する遊離のカルボキシ基を有する化合物は、フォギングの原因として挙げられる。
化合物(C)は、成形材料用樹脂組成物の製造工程、及び製造された成形材料用樹脂組成物において、フォギング抑制作用を発揮するのみならず、成形体となった以後もフォギング抑制作用を発揮し得る。
軽量・高剛度の成形体を得るという目的の範囲で、高密度ではあるがフォギング抑制効果が見出されている無機アルカリ類を併用してもよい。
実施形態の成形材料用樹脂組成物は、植物繊維(A)と、熱可塑性樹脂(B)と、カルボキシ基と反応性を有する化合物(C)とを混合することで製造可能である。植物繊維(A)、熱可塑性樹脂(B)及びカルボキシ基と反応性を有する化合物(C)としては、上記の成形材料用樹脂組成物で例示したものが挙げられ、ここでの説明を省略する。
実施形態の成形材料用樹脂組成物の製造方法によれば、上記の実施形態の成形材料用樹脂組成物を製造可能である。
熱可塑性樹脂の中で植物繊維をナノファイバーまで解繊しながら樹脂中に分散させる方法は、あらかじめナノ化した繊維を使用する方法よりも、エネルギーコストの面で有利である。
植物繊維を上記化学変性することで、熱可塑性樹脂の中で植物繊維をナノファイバーまで解繊しながらより均一に樹脂中に分散させることが容易となり、得られる成形体の曲げ弾性率又は曲げ強度を向上可能である。
実施形態の成形材料用樹脂組成物は、成形体の製造のための成形材料として使用することができる。
実施形態の成形体は、上記の実施形態の成形材料用樹脂組成物を成形してなるものである。成形体は、例えば、加熱して軟化させた成形材料用樹脂組成物を成形加工して得ることができる。成形体は、例えば、前記溶融混練された成形材料用樹脂組成物を成形加工して得ることができる。
一実施形態として、前記溶融混練された成形材料用樹脂組成物を成形する工程を含む、成形体の製造方法を提供できる。当該成形としては、例えばプレス成形、射出成形、押出成形、ブロー成形、延伸成形、発泡成形等が挙げられる。成形体の形状としては、例えば、シート状、フィルム状、ペレット状、粉末状等が挙げられる。これらをさらに、先述した成形方法等により最終製品で用いる形態に成形してもよい。成形体に含有される植物繊維(A)、熱可塑性樹脂(B)及びカルボキシ基と反応性を有する化合物(C)としては、前記成形材料用樹脂組成物で例示したものが挙げられ、ここでの説明を省略する。
上記の成形体の曲げ弾性率の数値範囲としては、2.0GPa以上5GPa以下であってよく、3.0GPa以上5GPa以下であってよく、3.3GPa以上5GPa以下であってよい。
成形体の曲げ弾性率の値は、実施例に記載の条件により取得されたものとする。
(曲げ弾性率)
成形材料用樹脂組成物を、射出成形機を用いて、射出温度200℃、金型温度25℃で射出成形し、長さ80mm、幅10mm、厚さ2mmの短冊形試験片(JIS K7139・B1)を得る。この試験片に対し、JIS K7171に準拠して、試験機にて、温度:23℃、湿度:50%RH、支点間距離64mm、速度2mm/分にて荷重の負荷を行い、曲げ弾性率を測定する。
上記の成形体の曲げ強度の数値範囲としては、65MPa以上80MPa以下であってもよく、67MPa以上80MPa以下であってもよく、68.5MPa以上80MPa以下であってもよい。
成形体の曲げ強度の値は、実施例に記載の条件により取得されたものとする。
(曲げ強度)
成形材料用樹脂組成物を、射出成形機を用いて、射出温度200℃、金型温度25℃で射出成形し、長さ80mm、幅10mm、厚さ2mmの短冊形試験片(JIS K7139・B1)を得る。この試験片に対し、JIS K7171に準拠して、試験機にて、温度:23℃、湿度:50%RH、支点間距離64mm、速度2mm/分にて荷重の負荷を行い、曲げ強度を測定する。
これらの実施例で用いられた物性値測定法は、以下のとおりである。
植物繊維を酸無水物により化学変性する場合の、植物繊維への定着率を以下の式より算出した。
定着率(%)=(変性植物繊維の乾燥質量-植物繊維の乾燥質量)/(植物繊維の乾燥質量)×100
また、変性植物繊維の乾燥質量は、以下の方法で測定した。製造例1の方法で得られる変性植物繊維全量に、100倍の質量のテトラヒドロフランを加えた分散液を調製し、ホモジェナイザー(日本精機製)で10000rpm、1分間撹拌した後、この分散液を吸引濾過した。濾過残さを110℃の電気乾燥機で乾燥し、乾燥質量を測定した。
酸無水物の植物繊維への定着の確認には、FT-IR(日本分光製)を使用した。乾燥質量を測定した変性植物繊維では、1500~2000cm-1に未変性植物繊維には無いスペクトル吸収が見られた。
各材料を射出成形して得られた試験片(20mm×10mm×4mm)4個をガラスカップ(内径42mm、高さ50mm)に入れ、開口部(13.8cm2)をガラス板(76mm×52mm×1.5mm)で塞ぎ、その上に放熱用のアルミ板(75mm×50mm×5mm)を設置し、ガラスカップの底面を130℃に設定したホットプレートで6時間加熱した。試験に供したガラス板の曇り度(ヘーズ値(%))をヘーズメーター(日本電色(株)製;NDH5000)で測定した。ヘーズ値は数値が大きいほど曇り度が大きいことを示している。
得られた樹脂組成物を手動射出成形機(井元製作所(株)製;型式18D1)に投入し、射出温度200℃、金型温度25℃で射出成形し、長さ80mm、幅10mm、厚さ2mmの短冊形試験片(JIS K7139・B1)(成形体)を得た。JIS K7171に準拠して、オリエンテック株式会社製万能試験機「テンシロンRTM-50」にて、温度:23℃、湿度:50%RH、支点間距離64mm、速度2mm/分にて荷重の負荷を行い、曲げ強度及び曲げ弾性率を測定した。
前記<機械的強度の評価方法>で得られた成形体の空気中での質量と水中での質量を測定し、アルキメデス法により密度を求め、水の密度の値で除して密度を算出した。
(製造例1)
清浄な容器へ固形分20質量%の針葉樹晒クラフトパルプ(NBKP)500質量部とN-メチルピロリドン(NMP)150質量部を仕込み、減圧により水を留去した後、ヘキサデセニルコハク酸無水物19.9質量部を投入し、80℃で4時間反応した。反応後減圧することでNMPを留去し、変性セルロース繊維(A-1)を得た。ヘキサデセニルコハク酸無水物の定着率は8.6%であった。
(実施例1)
変性セルロース繊維(A-1)25部、市販のポリプロピレン樹脂(PP樹脂)(B・日本ポリプロ(株)製ノバテックMA04A)75部、及びカルボキシ基と反応性を有する化合物としてカルボジイミド基含有化合物(C-1・日清紡ケミカル(株)製カルボジライトHMV-15CA)4部を、ニーダーの一種であるラボプラストミル(株式会社東洋精機製作所製)にて170℃で溶融混練することで樹脂組成物(D-1)を得た。変性セルロース繊維(A-1)は、ポリプロピレン樹脂(B)中でナノファイバーまで解繊され分散されていた(図1)。
カルボキシ基と反応性を有する化合物としてカルボジイミド基含有化合物(C-2・ランクセス(株)製スタバクゾールP)を用いた以外は実施例1に準じて樹脂組成物(D-2)を得た。
カルボキシ基と反応性を有する化合物としてオキサゾリン基含有化合物(C-3・(株)日本触媒製エポクロスRPS1005)を用いた以外は実施例1に準じて樹脂組成物(D-3)を得た。
・エポクロスRPS1005(ポリスチレン主鎖にオキサゾリン基がペンダント化された非晶性タイプの反応性ポリマー、オキサゾリン基量:0.27mmol/g・solid、数平均分子量(Mn):約70,000、重量平均分子量(Mw)約160,000)
カルボキシ基と反応性を有する化合物としてエポキシ基含有化合物(C-4・ナガセケムテック(株)製デナコールEX421)を用いた以外は実施例1に準じて樹脂組成物(D-4)を得た。
カルボキシ基と反応性を有する化合物を無添加とした以外は実施例1に準じて樹脂組成物(D-5)を得た。
カルボキシ基と反応性を有する化合物の代わりに酸化カルシウム(c-5・富士フイルム和光純薬(株)製・試薬特級)2部を使用した以外は実施例1に準じて樹脂組成物(D-6)を得た。
酸化カルシウム(c-5)の配合率を0.25部に変更した以外は比較例2に準じて樹脂組成物(D-7)を得た。
実施例1~4では、特に曲げ弾性率及び曲げ強度の値が向上していた。これは、植物繊維の疎水化変性により植物繊維と樹脂との相溶性や界面強度が向上し機械物性が向上したためと考えられる。また、カルボキシ基と反応性を有する化合物(C)を含有することで、比較例1や比較例3と比べてヘーズ値を非常に低く抑えることができた。
一方で、無機アルカリの量を減らした比較例3は、密度は実施例1~4と同程度となったものの、ヘーズ値が高くなっていた。これは、無機アルカリ量を減らした結果、フォギングの要因となる成分を十分に中和できなかったためと考えられる。
(実施例5)
変性セルロース繊維(A-1)10部、市販のポリプロピレン樹脂(B・日本ポリプロ(株)製ノバテックMA04A)90部、及びカルボキシ基と反応性を有する化合物としてカルボジイミド基含有化合物(C-1・日清紡ケミカル(株)製カルボジライトHMV-15CA)2部を、ニーダーの一種であるラボプラストミル(株式会社東洋精機製作所製)にて170℃で溶融混練することで樹脂組成物(D-8)を得た。
カルボキシ基と反応性を有する化合物を無添加とした以外は実施例5に準じて樹脂組成物(D-9)を得た。
カルボキシ基と反応性を有する化合物(C)を含有することで、比較例4と比べてヘーズ値を非常に低く抑えることができた。
(実施例6)
杉木粉(A-2)20部、市販のポリプロピレン樹脂(B)80部、及びカルボキシ基と反応性を有する化合物としてカルボジイミド基含有化合物(C-1)4部を、ニーダーの一種であるラボプラストミル(株式会社東洋精機製作所製)にて170℃で溶融混練することで樹脂組成物(D-10)を得た。
植物繊維を針葉樹未晒クラフトパルプ(A-3・NUKP乾燥物)とした以外は実施例6に準じて樹脂組成物(D-11)を得た。
カルボキシ基と反応性を有する化合物を無添加とした以外は実施例6に準じて樹脂組成物(D-12)を得た。
カルボキシ基と反応性を有する化合物の代わりに酸化カルシウム(c-5)2部を使用した以外は実施例6に準じて樹脂組成物(D-13)を得た。
カルボキシ基と反応性を有する化合物を無添加とした以外は実施例7に準じて樹脂組成物(D-14)を得た。
Claims (8)
- 植物繊維(A)と、熱可塑性樹脂(B)と、カルボキシ基と反応性を有する化合物(C)と、を含有する、成形材料用樹脂組成物。
- 植物繊維(A)が、酸無水物による化学変性物である、請求項1に記載の成形材料用樹脂組成物。
- 熱可塑性樹脂(B)が、ポリオレフィン系樹脂である、請求項1または2に記載の成形材料用樹脂組成物。
- カルボキシ基と反応性を有する化合物(C)が、カルボジイミド基及びオキサゾリン基からなる群から選ばれる少なくとも一種の官能基を有する化合物である、請求項1~3のいずれか一項に記載の成形材料用樹脂組成物。
- 請求項1~4のいずれか一項に記載の成形材料用樹脂組成物を成形してなる、成形体。
- 植物繊維(A)と、熱可塑性樹脂(B)と、カルボキシ基と反応性を有する化合物(C)と、を溶融混練する工程を含む、成形材料用樹脂組成物の製造方法。
- 前記溶融混練する工程において、熱可塑性樹脂(B)の中で、植物繊維(A)が解繊され分散される、請求項6に記載の成形材料用樹脂組成物の製造方法。
- 植物繊維(A)/熱可塑性樹脂(B)/カルボキシ基と反応性を有する化合物(C)の質量比が、5~55/35~94/0.2~10である、請求項6又は7に記載の成形材料用樹脂組成物の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/442,370 US20220089850A1 (en) | 2019-05-16 | 2020-05-14 | Resin composition for molding materials, molded body, and method for producing resin composition for molding materials |
CN202080018446.0A CN113508163B (zh) | 2019-05-16 | 2020-05-14 | 成形材料用树脂组合物、成形体以及成形材料用树脂组合物的制造方法 |
JP2021519472A JP6986655B2 (ja) | 2019-05-16 | 2020-05-14 | 成形材料用樹脂組成物、成形体、及び成形材料用樹脂組成物の製造方法 |
EP20804774.6A EP3971244A4 (en) | 2019-05-16 | 2020-05-14 | RESIN COMPOSITION FOR MOLDING, MOLDING OBJECTS AND METHOD FOR PRODUCTION OF RESIN COMPOSITION FOR MOLDING |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-092856 | 2019-05-16 | ||
JP2019092856 | 2019-05-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020230836A1 true WO2020230836A1 (ja) | 2020-11-19 |
Family
ID=73290014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/019184 WO2020230836A1 (ja) | 2019-05-16 | 2020-05-14 | 成形材料用樹脂組成物、成形体、及び成形材料用樹脂組成物の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220089850A1 (ja) |
EP (1) | EP3971244A4 (ja) |
JP (1) | JP6986655B2 (ja) |
CN (1) | CN113508163B (ja) |
WO (1) | WO2020230836A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114736455A (zh) * | 2022-03-24 | 2022-07-12 | 金发科技股份有限公司 | 一种纳米纤维素增强pp复合材料及其制备方法和应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080146701A1 (en) | 2003-10-22 | 2008-06-19 | Sain Mohini M | Manufacturing process of cellulose nanofibers from renewable feed stocks |
JP2010215793A (ja) * | 2009-03-17 | 2010-09-30 | Idemitsu Kosan Co Ltd | 芳香族ポリカーボネート樹脂組成物及びその成形品 |
JP2011213754A (ja) * | 2010-03-31 | 2011-10-27 | Kyoto Univ | ミクロフィブリル化植物繊維及びその製造方法、並びにそれを用いた成形材料、及び樹脂成形材料の製造方法 |
WO2013133093A1 (ja) | 2012-03-09 | 2013-09-12 | 国立大学法人京都大学 | 変性ミクロフィブリル化植物繊維を含む樹脂組成物の製造方法、及びその樹脂組成物 |
WO2014017274A1 (ja) | 2012-07-24 | 2014-01-30 | 出光ライオンコンポジット株式会社 | 車両用灯具 |
JP2018095708A (ja) | 2016-12-12 | 2018-06-21 | トヨタ車体株式会社 | 内装品の製造方法 |
JP2019092856A (ja) | 2017-11-22 | 2019-06-20 | 株式会社ハッピーリス | 嚥下機能測定システム |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4270072B2 (ja) * | 2004-08-26 | 2009-05-27 | ソニー株式会社 | 複合組成物及び複合組成物を用いた電子機器筐体 |
CN101305055A (zh) * | 2005-09-29 | 2008-11-12 | 东丽株式会社 | 纤维增强热塑性树脂组合物、其制造方法、及热塑性树脂用碳纤维 |
JP5103866B2 (ja) * | 2006-10-27 | 2012-12-19 | 凸版印刷株式会社 | 発泡成形体およびその製造方法 |
KR101415099B1 (ko) * | 2008-07-31 | 2014-07-08 | 고쿠리츠 다이가쿠 호진 교토 다이가쿠 | 불포화 폴리에스테르 수지와 마이크로피브릴화 식물 섬유를 함유하는 성형 재료 |
FR2957928B1 (fr) * | 2010-03-25 | 2013-07-05 | Roquette Freres | Compositions a base de matiere vegetale et procede de preparation de telles compositions |
JP5757765B2 (ja) * | 2011-03-31 | 2015-07-29 | 国立大学法人京都大学 | 変性ミクロフィブリル化植物繊維を含む樹脂組成物 |
CN103642106B (zh) * | 2013-10-09 | 2016-09-14 | 湖北工业大学 | 一种再生聚烯烃/植物纤维复合发泡材料及其制备方法 |
JP2019072973A (ja) * | 2017-10-18 | 2019-05-16 | トヨタ紡織株式会社 | 植物繊維含有ボード及びその製造方法 |
CN108586872A (zh) * | 2018-05-07 | 2018-09-28 | 壹见传媒有限公司 | 一种高强度车顶灯 |
-
2020
- 2020-05-14 US US17/442,370 patent/US20220089850A1/en not_active Abandoned
- 2020-05-14 JP JP2021519472A patent/JP6986655B2/ja active Active
- 2020-05-14 EP EP20804774.6A patent/EP3971244A4/en not_active Withdrawn
- 2020-05-14 WO PCT/JP2020/019184 patent/WO2020230836A1/ja active Application Filing
- 2020-05-14 CN CN202080018446.0A patent/CN113508163B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080146701A1 (en) | 2003-10-22 | 2008-06-19 | Sain Mohini M | Manufacturing process of cellulose nanofibers from renewable feed stocks |
JP2010215793A (ja) * | 2009-03-17 | 2010-09-30 | Idemitsu Kosan Co Ltd | 芳香族ポリカーボネート樹脂組成物及びその成形品 |
JP2011213754A (ja) * | 2010-03-31 | 2011-10-27 | Kyoto Univ | ミクロフィブリル化植物繊維及びその製造方法、並びにそれを用いた成形材料、及び樹脂成形材料の製造方法 |
WO2013133093A1 (ja) | 2012-03-09 | 2013-09-12 | 国立大学法人京都大学 | 変性ミクロフィブリル化植物繊維を含む樹脂組成物の製造方法、及びその樹脂組成物 |
WO2014017274A1 (ja) | 2012-07-24 | 2014-01-30 | 出光ライオンコンポジット株式会社 | 車両用灯具 |
JP2018095708A (ja) | 2016-12-12 | 2018-06-21 | トヨタ車体株式会社 | 内装品の製造方法 |
JP2019092856A (ja) | 2017-11-22 | 2019-06-20 | 株式会社ハッピーリス | 嚥下機能測定システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3971244A4 |
Also Published As
Publication number | Publication date |
---|---|
EP3971244A4 (en) | 2023-01-11 |
US20220089850A1 (en) | 2022-03-24 |
JP6986655B2 (ja) | 2021-12-22 |
EP3971244A1 (en) | 2022-03-23 |
CN113508163A (zh) | 2021-10-15 |
CN113508163B (zh) | 2022-11-11 |
JPWO2020230836A1 (ja) | 2021-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107429071B (zh) | 含有化学修饰纤维素纳米纤维和热塑性树脂的纤维强化树脂组合物 | |
WO2018230600A1 (ja) | 微細セルロース繊維、その製造方法、スラリー及び複合体 | |
JP6014860B2 (ja) | 変性セルロースファイバー及び変性セルロースファイバーを含むゴム組成物 | |
Islam et al. | Characterization of Laccase-Treated Kenaf Fibre Reinforced Recycled Polypropylene Composites. | |
WO2017043454A1 (ja) | 改質セルロース繊維 | |
Mohanty et al. | Effect of MAPP as coupling agent on the performance of sisal–PP composites | |
JP6209908B2 (ja) | 成形材料用樹脂組成物の製造方法およびその成形体 | |
JP6787533B1 (ja) | 変性セルロース繊維配合樹脂組成物の製造方法 | |
WO2020230836A1 (ja) | 成形材料用樹脂組成物、成形体、及び成形材料用樹脂組成物の製造方法 | |
CN114585666A (zh) | 纤维素复合体的制造方法、纤维素复合体/树脂组合物的制造方法、纤维素复合体、以及纤维素复合体/树脂组合物 | |
Ahmad et al. | Enzyme-treated Wheat Straw-based PVOH Biocomposites: Development and Characterization. | |
JP6638868B1 (ja) | ソリッド成形材料用樹脂組成物、及びその製造方法、並びにソリッド成形体 | |
JP6547414B2 (ja) | 変性セルロース繊維含有樹脂組成物、成形材料および成形体 | |
JP2019034987A (ja) | 脂肪族ポリエステル樹脂組成物および成形体 | |
Subyakto et al. | Injection molded of bio-micro-composites from natural fibers and polylactic acid | |
Chand et al. | Mechanical, electrical, and thermal properties of maleic anhydride modified rice husk filled PVC composites | |
Li | Properties of agave fiber reinforced thermoplastic composites | |
Eng et al. | Chemical modification of oil palm mesocarp fiber by methacrylate silane: Effects on morphology, mechanical, and dynamic mechanical properties of biodegradable hybrid composites | |
JP7555096B2 (ja) | セルロース繊維組成物及びその製造方法、並びにセルロース繊維複合組成物の製造方法 | |
WO2021172407A1 (ja) | 解繊性が改良された繊維強化樹脂組成物及びその製造方法、並びに成形体及び解繊剤 | |
JP7086679B2 (ja) | 複合体及びその製造方法 | |
Viet et al. | Silane-coupled kenaf fiber filled thermoplastic elastomer based on recycled high density polyethylene/natural rubber blends | |
JP7118701B2 (ja) | 複合体及びその製造方法 | |
CN115926397B (zh) | 制备可降解的纳米纤维素增强的复合材料的方法 | |
Awang et al. | Hybrid composites of polypropylene/rice husk/titanium dioxide: the effects of compatibilizer on the mechanical properties and morphology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20804774 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2021519472 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2020804774 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2020804774 Country of ref document: EP Effective date: 20211216 |