WO2017043454A1 - 改質セルロース繊維 - Google Patents

改質セルロース繊維 Download PDF

Info

Publication number
WO2017043454A1
WO2017043454A1 PCT/JP2016/076057 JP2016076057W WO2017043454A1 WO 2017043454 A1 WO2017043454 A1 WO 2017043454A1 JP 2016076057 W JP2016076057 W JP 2016076057W WO 2017043454 A1 WO2017043454 A1 WO 2017043454A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
modified cellulose
cellulose fiber
general formula
resin
Prior art date
Application number
PCT/JP2016/076057
Other languages
English (en)
French (fr)
Inventor
穣 吉田
翔太郎 柴田
吉晃 熊本
拓磨 坪井
基 小西
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN201680051555.6A priority Critical patent/CN107949577B/zh
Priority to EP16844315.8A priority patent/EP3348581A4/en
Priority to US15/757,700 priority patent/US10906993B2/en
Publication of WO2017043454A1 publication Critical patent/WO2017043454A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/193Mixed ethers, i.e. ethers with two or more different etherifying groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/284Alkyl ethers with hydroxylated hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C08L75/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/08Polymer mixtures characterised by other features containing additives to improve the compatibility between two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the present invention relates to a modified cellulose fiber. More specifically, a modified cellulose fiber that can be suitably blended as a filler in household goods, home appliance parts, automobile parts, etc., a method for producing the modified cellulose fiber, and a resin composition containing the modified cellulose fiber About.
  • plastic materials derived from petroleum which is a finite resource, have been widely used, but in recent years, technologies with less environmental impact have come to the spotlight. Materials using cellulose fibers have attracted attention.
  • Patent Document 1 discloses that cellulose nanofibers having an excellent reinforcing effect have an average degree of polymerization of 600 or more and 30000 or less, an aspect ratio of 20 to 10,000, an average diameter of 1 to 800 nm, and X-ray diffraction.
  • Cellulose nanofibers characterized by having a I ⁇ type crystal peak in the pattern are disclosed.
  • the resin composition containing the cellulose nanofiber has excellent moldability and thermal expansion coefficient.
  • a hydroxyl functional group present on the surface of a microfibril is etherified with at least one organic compound capable of reacting with the hydroxyl functional group, and the degree of surface substitution (DSS) at that time is Disclosed is a cellulose microfibril having a modified surface, characterized in that it is at least 0.05. It is described that the elastomer composition containing the microfibril exhibits excellent mechanical strength.
  • Patent Document 3 discloses a composite material containing cellulose microfibers having a surface substituted with an ether group at a surface substitution degree (DSS) of at least 0.05.
  • Patent Document 4 by mechanically defibrating pulp containing lignin, the microfibrillated plant fiber becomes a structure coated in the order of hemicellulose and lignin, which makes it easy to handle in an aqueous system, It is disclosed that the fiber reinforced resin containing the plant fiber has a decomposition temperature higher than that of conventional microfibrillated cellulose and is excellent in thermal stability.
  • Patent Document 5 discloses fibrillation obtained from wood as a cellulose composite material having excellent transparency, non-coloring property, low linear expansion coefficient, and high elastic modulus suitable for use in the preparation of cellulose fiber sheets.
  • a method is disclosed in which a modified cellulose fiber dispersion is obtained by modifying the previous cellulose with an aromatic ring-containing substituent and then defibrating to an average fiber diameter of 100 nm or less.
  • Patent Document 6 discloses a fine cellulose composite in which a surfactant is adsorbed to fine cellulose fibers having a carboxyl group content of 0.1 to 3 mmol / g as fine cellulose fibers having excellent dispersion stability in an organic solvent. Has been.
  • Patent Document 7 discloses a cellulose refining method characterized in that a polysaccharide is added to a dispersion medium containing an organic solvent and a modifier that does not react with the organic solvent to refine the dispersion.
  • the modifier include acid anhydrides, acid halides, isocyanates, and silane coupling agents.
  • Patent Document 8 a cellulose-based material such as wood pulp is swollen and / or partially dissolved using a solvent containing a specific ionic liquid and an organic solvent, and then chemically modified or hydrolyzed, and then water or an organic solvent. It is disclosed that cellulose nanofibers can be easily and efficiently produced with less damage by washing with the use of.
  • JP 2011-184816 A JP-T-2002-524618 FR2800378 JP 2009-19200 A JP 2011-16995 A JP 2011-140738 A JP 2009-261993 A JP 2010-104768 A
  • the present invention relates to the following [1] to [3].
  • [1] (A) One or more substituents selected from the substituent represented by the following general formula (1) and the substituent represented by the following general formula (2), and (B) the following general A modified cellulose fiber having a cellulose I-type crystal structure in which substituents represented by the formula (3) are independently bonded to the cellulose fiber via an ether bond.
  • the present invention exhibits stable thickening and good thickening effect when blended with various organic solvents, and when blended with various resins, the mechanical strength and heat resistance of the resulting resin composition.
  • the present invention relates to a modified cellulose fiber capable of improving the property and dimensional stability, a method for efficiently producing the modified cellulose fiber, and a resin composition containing the modified cellulose fiber.
  • a modified cellulose fiber that can improve the mechanical strength, low energy loss, and dimensional stability of the resulting rubber composition when blended with a rubber-based resin, and a method for efficiently producing the modified cellulose fiber And a rubber composition containing the modified cellulose fiber.
  • the modified cellulose fiber of the present invention exhibits good stable dispersion and thickening action when blended with an organic solvent, and further, mechanical strength of a resin composition obtained by combining the modified cellulose fiber with a resin. And the excellent effect of improving heat resistance and dimensional stability.
  • the resin when the resin is a rubber-based resin, it has excellent effects of improving the mechanical strength, low energy loss and dimensional stability of the resulting rubber composition.
  • the modified cellulose fiber of the present invention is characterized in that a specific substituent is bonded to the surface of the cellulose fiber via an ether bond.
  • bonded via an ether bond means a state in which the modifying group reacts with a hydroxyl group on the surface of the cellulose fiber to form an ether bond.
  • modified cellulose fiber of the present invention is excellent in dispersibility in an organic solvent.
  • Cellulose generally aggregates by hydrogen bonding with its surface hydroxyl group to form a bundle of microfibrils, but the modified cellulose fiber of the present invention performs a reaction to introduce at least two specific modifying groups into the surface hydroxyl group.
  • the modifying group is directly ether-bonded to the cellulose chain of the cellulose fiber skeleton, it becomes a hydrophobic cellulose fiber that maintains the crystal structure of cellulose.
  • one of the introduced modifying groups has an alkyl group terminal having a specific chain length, repulsion due to steric repulsion can be obtained, and at the same time, the other of the introduced modifying groups has an alkyl group terminal shorter than the modifying group. Since it has, the aggregation by the hydrogen bond between cellulose microfibrils is eliminated, and it is excellent in the dispersibility in an organic solvent. Therefore, since the modified cellulose fiber of the present invention is uniformly dispersed in an organic solvent and the crystal structure is easily maintained stably, a resin composition obtained by combining the modified cellulose fiber with a resin The mechanical strength of the product is improved, and heat resistance and dimensional stability are improved. However, these assumptions do not limit the present invention.
  • the modifying group in the modified cellulose fiber of the present invention is (A) one or more selected from the substituent represented by the following general formula (1) and the substituent represented by the general formula (2).
  • the substituent of (A) group even if it is the case of either the substituent represented by General formula (1) or the substituent represented by General formula (2), in each substituent, May be introduced in combination of two or more of the same substituents.
  • the substituent represented by the general formula (1) and the substituent represented by the general formula (2) may be introduced singly or in combination of two or more. . —CH 2 —CH (OH) —R 1 (1) —CH 2 —CH (OH) —CH 2 — (OA) n —O—R 1 (2) —CH 2 —CH (OH) —R 2 (3)
  • the general formula (1) and R 1 in the general formula (2) each independently represents a linear or branched alkyl group having 3 to 30 carbon atoms, n in the general formula (2) 0
  • A represents a linear or branched divalent saturated hydrocarbon group having 1 to 6 carbon atoms
  • R 2 in the general formula (3) represents an alkyl group having 1 to 2 carbon atoms.
  • R 1 in the general formula (1) is a linear or branched alkyl group having 3 to 30 carbon atoms.
  • the number of carbon atoms of the alkyl group is 3 or more and 30 or less, but preferably 4 or more, more preferably 6 or more, and still more preferably, from the viewpoint of mechanical strength, heat resistance, and dimensional stability of the obtained resin composition. From the viewpoint of improving availability and reactivity, it is preferably 25 or less, more preferably 20 or less, still more preferably 18 or more, and still more preferably 16 or less.
  • R 1 in the general formula (1) depends on the type of the organic solvent or the like which is a dispersant, but the following ranges are preferable from the viewpoint of thickening action.
  • an organic solvent having an SP value of 11 or more and 13 or less preferably 3 or more, more preferably 4 or more, preferably 12 or less, more preferably 10 or less.
  • an organic solvent having an SP value of 9.2 or more and less than 11 it is preferably 5 or more, more preferably 6 or more, preferably 14 or less, more preferably 12 or less.
  • an organic solvent having an SP value of less than 9.2 preferably 8 or more, more preferably 10 or more, preferably 20 or less, more preferably 18 or less.
  • examples of the organic solvent having an SP value of 11 or more and 13 or less include dimethylformamide, ethanol, acetonitrile, isopropyl alcohol, and the like, and examples of the organic solvent having an SP value of 9.2 or more and less than 11 include methyl ethyl ketone, acetone, and chloroform. And dioxane and the like, and examples of the organic solvent having an SP value of less than 9.2 include toluene, xylene, and ethyl acetate.
  • the SP value is a solubility parameter (unit: (cal / cm 3 ) 1/2 ) calculated by the Fedors method.
  • solubility parameter unit: (cal / cm 3 ) 1/2
  • R 1 in the general formula (2) is a linear or branched alkyl group having 3 to 30 carbon atoms.
  • the number of carbon atoms of the alkyl group is 3 or more and 30 or less, but preferably 4 or more, more preferably 6 or more, and still more preferably, from the viewpoint of mechanical strength, heat resistance, and dimensional stability of the obtained resin composition. From the viewpoint of availability and reactivity, it is preferably 27 or less, more preferably 22 or less, still more preferably 20 or less, and still more preferably 18 or less.
  • R 1 in the general formula (2) depends on the kind of the organic solvent that is a dispersion medium, but the following ranges are preferable from the viewpoint of thickening action.
  • the organic solvent here is as above-mentioned.
  • an organic solvent having an SP value of 11 or more and 13 or less preferably 4 or more, more preferably 6 or more, preferably 14 or less, more preferably 12 or less, still more preferably 10 or less.
  • an organic solvent having an SP value of 9.2 or more and less than 11 it is preferably 8 or more, more preferably 10 or more, preferably 16 or less, more preferably 14 or less.
  • an organic solvent having an SP value of less than 9.2 preferably 10 or more, more preferably 12 or more, preferably 22 or less, more preferably 20 or less.
  • a in the general formula (2) is a linear or branched divalent saturated hydrocarbon group having 1 to 6 carbon atoms and forms an oxyalkylene group with an adjacent oxygen atom.
  • the carbon number of A is 1 or more and 6 or less, but from the viewpoint of availability and cost, it is preferably 2 or more, and from the same viewpoint, it is preferably 4 or less, more preferably 3 or less.
  • Specific examples include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, and a hexylene group. Among them, an ethylene group and a propylene group are preferable, and an ethylene group is more preferable.
  • n represents the number of added moles of alkylene oxide.
  • n is a number of 0 or more and 50 or less, but from the viewpoint of availability and cost, it is preferably 3 or more, more preferably 5 or more, and further preferably 10 or more.
  • the same viewpoint and the resulting resin composition machine From the viewpoint of mechanical strength, heat resistance, and dimensional stability, it is preferably 40 or less, more preferably 30 or less, still more preferably 20 or less, and still more preferably 15 or less.
  • the combination of A and n in the general formula (2) is preferably a straight chain or branched divalent saturated carbonization having 2 or more and 3 or less carbon atoms from the viewpoint of reactivity and thickening effect due to the expression of steric repulsion.
  • R 2 in the general formula (3) is an alkyl group having 1 to 2 carbon atoms, specifically a methyl group or an ethyl group.
  • substituent represented by the general formula (1) include, for example, propylhydroxyethyl group, butylhydroxyethyl group, pentylhydroxyethyl group, hexylhydroxyethyl group, heptylhydroxyethyl group, octylhydroxyethyl group, nonyl Examples thereof include a hydroxyethyl group, a decylhydroxyethyl group, an undecylhydroxyethyl group, a dodecylhydroxyethyl group, a hexadecylhydroxyethyl group, an octadecylhydroxyethyl group, an icosylhydroxyethyl group, and a triacontylhydroxyethyl group.
  • substituent represented by the general formula (2) include, for example, 3-hexoxyethylene oxide-2-hydroxy-propyl group, 3-hexoxy-2-hydroxy-propyl group, 3-octoxyethylene oxide-2 -Hydroxy-propyl group, 3-octoxy-2-hydroxy-propyl group, 6-ethyl-3-hexoxy-2-hydroxy-propyl group, 6-ethyl-3-hexoxyethylene oxide-2-hydroxy-propyl group, 3 -Deoxyethylene oxide-2-hydroxy-propyl group, 3-deoxy-2-hydroxy-propyl group, 3-dodeoxyethylene oxide-2-hydroxy-propyl group, 3-dodeoxy-2-hydroxy-propyl group, 3- Hexadeoxyethylene oxide-2-hydroxy-propyl group, 3-he Sadetokishi 2-hydroxy - propyl, 3-octa Detoxifying ethylene-2-hydroxy - propyl, 3-Okutadetokishi-2-hydroxy - propyl group and the like.
  • addition mole number of alkylene oxide should just be 0 or more and 50 or less, for example, in the substituent which has oxyalkylene groups, such as an ethylene oxide mentioned above, the substituent whose addition mole number is 10, 12, 13, 20 mol is illustrated. Is done.
  • substituent represented by the general formula (3) include, for example, 2-hydroxy-propyl group, 2-hydroxy-butyl group and the like.
  • the introduction rate of the substituent selected from the substituent represented by the general formula (1) and the substituent represented by the general formula (2) with respect to 1 mol of anhydroglucose unit of cellulose is From the viewpoint of affinity with the solvent, it is preferably 0.001 mol or more, more preferably 0.005 mol or more, still more preferably 0.01 mol or more, still more preferably 0.05 mol or more, still more preferably 0.00. 1 mol or more, more preferably 0.2 mol or more, more preferably 0.3 mol or more.
  • the cellulose I-type crystal structure and developing strength it is preferably 1.5 mol or less, more preferably 1.3 mol or less, still more preferably 1.0 mol or less, still more preferably 0.8.
  • the amount is not more than mol, more preferably not more than 0.6 mol, and further preferably not more than 0.5 mol.
  • the substituent represented by the general formula (1) and the substituent represented by the general formula (2) it means the total introduction molar ratio.
  • the introduction rate of the substituent represented by the general formula (3) with respect to 1 mol of anhydroglucose unit of cellulose has a cellulose I-type crystal structure and exhibits strength.
  • the introduction rate can be measured according to the method described in the examples described later, and may be described as the introduction molar ratio or the modification rate.
  • the modified cellulose fiber of the present invention is not particularly limited in the average fiber diameter regardless of the type of substituent.
  • an embodiment (embodiment 1) in which the average fiber diameter is micro-order and an embodiment in which the average fiber diameter is nano-order are exemplified.
  • the modified cellulose fiber of Embodiment 1 is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, and further preferably 10 ⁇ m or more from the viewpoints of handleability, availability, and cost.
  • the upper limit is not particularly set, but is preferably 100 ⁇ m or less, more preferably 70 ⁇ m or less, still more preferably 50 ⁇ m or less, still more preferably 40 ⁇ m or less, and even more preferably 30 ⁇ m or less from the viewpoint of handleability.
  • the average fiber diameter of the modified cellulose fibers of the micro order can be measured according to the following method.
  • a method of analyzing a part of the dispersion with “Kajaani Fiber Lab” manufactured by Metso Automation Co., Ltd. can be mentioned. By this method, a fiber diameter having an average fiber diameter of micro order can be measured. The detailed measurement method is as described in the examples.
  • the modified cellulose fiber of aspect 2 is preferably 1 nm or more, more preferably 3 nm or more, still more preferably 10 nm or more, still more preferably 20 nm or more, from the viewpoint of heat resistance improvement, handleability, availability, and cost. From the viewpoints of handleability, dimensional stability, solvent dispersibility, and increase in viscosity, it is preferably 500 nm or less, more preferably 300 nm or less, still more preferably 200 nm or less, still more preferably 150 nm or less, and even more preferably 120 nm or less. .
  • the average fiber diameter of nano-order modified cellulose fibers can be measured according to the following method.
  • the dispersion obtained at the time of the miniaturization treatment was observed at a magnification of 300 to 1000 times using an optical microscope (manufactured by Keyence Corporation, “Digital Microscope VHX-1000”), and fiber 30
  • an optical microscope manufactured by Keyence Corporation, “Digital Microscope VHX-1000”
  • fiber 30 By measuring an average value of at least the number of fibers, a nano-order fiber diameter can be measured.
  • a dispersion prepared by further adding a solvent to the dispersion is dropped on mica (mica) and dried, and an observation sample is used as an atomic force microscope (AFM, Measurement can be performed using Nanoscope III Tapping mode AFM, manufactured by Digital instrument, and a probe using Nano Probes Point Probe (NCH).
  • AFM atomic force microscope
  • the smallest unit of cellulose nanofibers prepared from higher plants is a 6 ⁇ 6 molecular chain packed in a nearly square shape, so the height analyzed by AFM images is regarded as the fiber width. Can do.
  • the detailed measurement method is as described in the examples.
  • the crystallinity of the modified cellulose fiber is preferably 10% or more, more preferably 15% or more, and still more preferably 20% or more from the viewpoint of strength development. Moreover, from a viewpoint of raw material availability, Preferably it is 90% or less, More preferably, it is 85% or less, More preferably, it is 80% or less, More preferably, it is 75% or less.
  • the crystallinity of cellulose is a cellulose I-type crystallinity calculated from a diffraction intensity value obtained by an X-ray diffraction method, and can be measured according to a method described in Examples described later.
  • Cellulose type I is a crystalline form of natural cellulose, and cellulose type I crystallinity means the proportion of the total amount of crystal region in the whole cellulose.
  • the modified cellulose fiber of aspect 2 is excellent in dispersibility in an organic solvent due to the introduction of the above-described substituent while having a fine fiber diameter. For this reason, the thickening inherent in cellulose fibers can be more effectively exhibited.
  • a high-pressure homogenizer such as a high-pressure wet medialess atomizer, for example, manufactured by Yoshida Kikai Co., Ltd.
  • any organic solvent selected from dimethylformamide, methyl ethyl ketone, and toluene.
  • the viscosity is a value measured using an E-type viscometer (cone rotor: 1 ° 34 ′ ⁇ R24) at 25 ° C. and 1 rpm.
  • the viscosity of the modified cellulose fiber of the present invention measured under the above-mentioned conditions in any one of the above organic solvents is preferably 15 mPa ⁇ s or more, more preferably 20 mPa ⁇ s or more, still more preferably 30 mPa, from the viewpoint of strength development.
  • ⁇ S or more more preferably 50 mPa ⁇ s or more, still more preferably 100 mPa ⁇ s or more, still more preferably 150 mPa ⁇ s or more, and from the viewpoint of raw material availability, preferably 10,000 mPa ⁇ s or less, more preferably Is 8,000 mPa ⁇ s or less, more preferably 5,000 mPa ⁇ s or less.
  • the viscosity is measured in accordance with the above conditions and the viscosity in at least one of the organic solvents is 15 mPa ⁇ s or more, it is included in the present invention.
  • the modified cellulose fiber having a viscosity of less than 15 mPa ⁇ s in all the organic solvents cannot be evaluated as having thickening in the present invention.
  • the substituent is bonded to the surface of the cellulose fiber via an ether bond, and the introduction of the substituent can be performed according to a known method without any particular limitation. Specifically, with respect to the cellulosic raw material, in the presence of a base, (b) a nonionic alkylene oxide compound having 3 to 4 carbon atoms per molecule and (a) 5 carbon atoms per molecule.
  • the method of introducing via is mentioned.
  • the introduction of the compound (a) and the compound (b) is “simultaneously or separately”.
  • the introduction order of the compound (a) and the compound (b) is not particularly limited.
  • Compound and (b) compound may be introduced simultaneously, or (a) compound may be introduced first, then (b) compound may be introduced, (b) after compound is introduced first, a) It means that a compound may be introduced.
  • the embodiment in which the compound (b) is introduced is embodiment I
  • the embodiment in which the compound (a) is introduced is embodiment II
  • the embodiment in which the compound (a) is introduced is embodiment II
  • the compound And (b) an embodiment in which the compounds are introduced simultaneously is referred to as an embodiment III.
  • Embodiment II and Embodiment III are preferable, and Embodiment II is more preferable. The details will be described below by taking the embodiment II as an example.
  • Step II-1) Step II-2 of introducing a nonionic alkylene oxide compound having a total number of carbon atoms of 3 or more and 4 or less per molecule into the cellulose-based raw material through an ether bond in the presence of a base.
  • Step II-1 In the presence of a base with respect to the cellulose fiber obtained in Step II-1, (a) a nonionic alkylene oxide compound having a total number of carbon atoms of 5 or more and 32 or less per molecule and a total number of carbon atoms of 5 or more per molecule Introducing one or more compounds selected from 100 or less nonionic glycidyl ether compounds via an ether bond
  • the cellulose-based raw material may be ether-reacted with the compound represented by the general formula (3) as the compound (b) in the presence of a base.
  • the cellulosic raw material used in the present invention is not particularly limited, and is based on woody (coniferous and broadleaf), herbaceous (grass, mallow, legumes, non-woody raw materials of palms), pulp (Such as cotton linter pulp obtained from fibers around cotton seeds) and paper (newspaper, cardboard, magazines, fine paper, etc.). Of these, woody and herbaceous are preferred from the viewpoints of availability and cost.
  • the shape of the cellulosic material is not particularly limited, but is preferably a fiber, powder, sphere, chip, or flake from the viewpoint of handleability. Moreover, these mixtures may be sufficient.
  • the cellulosic raw material can be subjected in advance to at least one pretreatment selected from biochemical treatment, chemical treatment, and mechanical treatment from the viewpoint of handleability and the like.
  • the biochemical treatment is not particularly limited to the drug used, and examples thereof include treatment using an enzyme such as endoglucanase, exoglucanase, or betaglucosidase.
  • the chemical treatment is not particularly limited as to the chemical used, and examples thereof include acid treatment with hydrochloric acid and sulfuric acid, and oxidation treatment with hydrogen peroxide and ozone.
  • the mechanical treatment there is no particular limitation on the machine to be used and the treatment conditions, for example, a high pressure compression roll mill, a roll mill such as a roll rotating mill, a vertical roller mill such as a ring roller mill, a roller race mill or a ball race mill, Rolling ball mill, vibrating ball mill, vibrating rod mill, vibrating tube mill, planetary ball mill, centrifugal fluidizing mill and other container driven medium mills, tower type grinder, stirring tank type mill, flow tank type mill or annular type mill, etc.
  • a high pressure compression roll mill a roll mill such as a roll rotating mill, a vertical roller mill such as a ring roller mill, a roller race mill or a ball race mill, Rolling ball mill, vibrating ball mill, vibrating rod mill, vibrating tube mill, planetary ball mill, centrifugal fluidizing mill and other container driven medium mills, tower type grinder, stirring tank type mill, flow tank type mill or annular type mill, etc.
  • Condensation shear mills such as a type mill, a high-speed centrifugal roller mill and an ang mill, a mortar, a stone mortar, a mass collider, a fret mill, an edge runner mill, a knife mill, a pin mill, and a cutter mill.
  • plasticizers such as phthalic acid, adipic acid and trimellitic acid, urea and alkali (earth)
  • plasticizers such as phthalic acid, adipic acid and trimellitic acid, urea and alkali (earth)
  • auxiliary agents such as metal hydroxides and hydrogen bond inhibitors such as amine compounds.
  • the amount of the additive aid used varies depending on the additive aid used, the mechanical processing technique used, and the like, but from the viewpoint of expressing the effect of promoting shape change, usually 5 parts by mass or more with respect to 100 parts by mass of the raw material, Preferably, it is 10 parts by mass or more, more preferably 20 parts by mass or more, and from the viewpoint of developing the effect of promoting shape change and from the viewpoint of economy, it is usually 10000 parts by mass or less, preferably 5000 parts by mass or less. Preferably it is 3000 mass parts or less.
  • the average fiber diameter of the cellulosic raw material is not particularly limited, but is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, still more preferably 10 ⁇ m or more, and further preferably 15 ⁇ m or more from the viewpoints of handleability and cost.
  • the upper limit is not particularly set, but from the viewpoint of handleability, it is preferably 10,000 ⁇ m or less, more preferably 5,000 ⁇ m or less, still more preferably 1,000 ⁇ m or less, still more preferably 500 ⁇ m or less, and even more preferably 100 ⁇ m or less. It is.
  • the average fiber diameter is preferably 1 nm or more, more preferably 2 nm or more, from the viewpoint of improving heat resistance.
  • the average fiber diameter is preferably 1 nm or more, more preferably 2 nm or more, from the viewpoint of improving heat resistance.
  • it is 3 nm or more, More preferably, it is 10 nm or more.
  • an upper limit in particular is not set, from a viewpoint of handleability, Preferably it is 500 nm or less, More preferably, it is 300 nm or less, More preferably, it is 200 nm or less, More preferably, it is 100 nm or less, More preferably, it is 80 nm or less.
  • the average fiber diameter of a cellulose raw material can be measured in the same manner as the above-described modified cellulose fiber. Details are as described in the examples.
  • the composition of the cellulosic raw material is not particularly limited, but the cellulose content in the cellulosic raw material is preferably 30% by mass or more, more preferably 50% by mass or more, and still more preferably 70% by mass from the viewpoint of obtaining cellulose fibers. From the viewpoint of availability, it is preferably 99% by mass or less, more preferably 98% by mass or less, still more preferably 95% by mass or less, and still more preferably 90% by mass or less.
  • the cellulose content in the cellulosic raw material is the cellulose content in the remaining components excluding moisture in the cellulosic raw material.
  • the water content in the cellulosic material is not particularly limited, and is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and still more preferably 0.5% from the viewpoint of availability and cost.
  • % By mass or more more preferably 1.0% by mass or more, further preferably 1.5% by mass or more, more preferably 2.0% by mass or more, and from the viewpoint of handling, preferably 50% by mass or less, more Preferably it is 40 mass% or less, More preferably, it is 30 mass% or less, More preferably, it is 20 mass% or less.
  • Step II-1 a base is mixed with the cellulose raw material.
  • the base used in Step II-1 is not particularly limited, but from the viewpoint of proceeding the etherification reaction, alkali metal hydroxide, alkaline earth metal hydroxide, 1 to tertiary amine, quaternary ammonium salt One or more selected from the group consisting of imidazole and its derivatives, pyridine and its derivatives, and alkoxides are preferred.
  • alkali metal hydroxide and alkaline earth metal hydroxide examples include sodium hydroxide, potassium hydroxide, lithium hydroxide, calcium hydroxide, and barium hydroxide.
  • the primary to tertiary amines are primary amines, secondary amines, and tertiary amines. Specific examples include ethylenediamine, diethylamine, proline, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetramethyl-1,3-propanediamine, N, N, N ′, N′-tetramethyl-1,6-hexanediamine, tris (3-dimethylaminopropyl) amine, N, N-dimethylcyclohexylamine, triethylamine and the like can be mentioned.
  • Quaternary ammonium salts include tetrabutylammonium hydroxide, tetrabutylammonium chloride, tetrabutylammonium fluoride, tetrabutylammonium bromide, tetraethylammonium hydroxide, tetraethylammonium chloride, tetraethylammonium fluoride, tetraethylammonium bromide, water Examples thereof include tetramethylammonium oxide, tetramethylammonium chloride, tetramethylammonium fluoride, and tetramethylammonium bromide.
  • imidazole and its derivatives examples include 1-methylimidazole, 3-aminopropylimidazole, carbonyldiimidazole and the like.
  • pyridine and derivatives thereof include N, N-dimethyl-4-aminopyridine and picoline.
  • alkoxide examples include sodium methoxide, sodium ethoxide, potassium t-butoxide and the like.
  • the amount of the base is preferably 0.01 equivalents or more, more preferably 0.05 equivalents or more, still more preferably 0.1 from the viewpoint of allowing the etherification reaction to proceed with respect to the anhydroglucose unit of the cellulosic raw material.
  • the solvent is not particularly limited, and examples thereof include water, isopropanol, t-butanol, dimethylformamide, toluene, methyl isobutyl ketone, acetonitrile, dimethyl sulfoxide, dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, hexane, 1,4-dioxane, and mixtures thereof.
  • the mixing of the cellulosic material and the base is not particularly limited as long as it can be uniformly mixed.
  • the compound having the substituent represented by the general formula (3) is reacted with the mixture of the cellulose-based raw material and the base obtained above.
  • the compound is not particularly limited as long as it can bind the substituent when reacting with the cellulosic raw material.
  • the compound has reactivity from the viewpoint of reactivity and non-halogen-containing compound. It is preferable to use a compound having a cyclic structure group, and it is preferable to use a compound having an epoxy group.
  • a nonionic alkylene oxide compound represented by the following general formula (3A) is preferable.
  • a compound one prepared according to a known technique may be used, or a commercially available product may be used.
  • the total carbon number of the compound is 3 or more and 4 or less from the viewpoints of mechanical strength, dimensional stability, and heat resistance.
  • a nonionic alkylene oxide compound represented by the following general formula (3A) is preferable.
  • R 2 represents an alkyl group having 1 to 2 carbon atoms
  • R 2 in the general formula (3A) is an alkyl group having 1 to 2 carbon atoms, and is a methyl group or an ethyl group.
  • Specific examples of the compound represented by the general formula (3A) include 1,2-epoxypropane and 1,2-epoxybutane.
  • the amount of the compound can be determined by a desired introduction rate of the substituent represented by the general formula (3) in the cellulose fiber to be obtained. From the viewpoint of the mechanical strength and the increase in viscosity of the obtained resin composition. From the anhydroglucose unit of the cellulosic raw material, it is preferably 5.0 equivalents or less, and the lower limit is about 0.02 equivalents.
  • the ether reaction between the compound and the cellulose-based raw material can be carried out by mixing both in the presence of a solvent.
  • a solvent There is no restriction
  • the amount of the solvent used is not generally determined depending on the type of the cellulose-based raw material and the compound having the substituent, but is preferably 30 parts by weight or more from the viewpoint of reactivity with respect to 100 parts by weight of the cellulose-based raw material. More preferably 50 parts by mass or more, still more preferably 75 parts by mass or more, still more preferably 100 parts by mass or more, still more preferably 200 parts by mass or more, and from the viewpoint of productivity, preferably 10,000 parts by mass or less, more The amount is preferably 5,000 parts by mass or less, more preferably 2,500 parts by mass or less, further preferably 1,000 parts by mass or less, and further preferably 500 parts by mass or less.
  • the mixing conditions are not particularly limited as long as the cellulose-based raw material and the compound having the substituent are uniformly mixed and the reaction can proceed sufficiently.
  • the continuous mixing treatment may or may not be performed.
  • stirring may be appropriately performed from the viewpoint of controlling the reaction temperature.
  • the reaction temperature is not generally determined depending on the type of the cellulose-based raw material and the compound having the substituent and the target introduction rate, but is preferably 30 ° C. or higher, more preferably 35 ° C. from the viewpoint of improving the reactivity. From the viewpoint of suppressing thermal decomposition, it is preferably 120 ° C. or lower, more preferably 110 ° C. or lower, still more preferably 100 ° C. or lower, still more preferably 90 ° C. or lower, and still more preferably 80 ° C. ° C or lower, more preferably 70 ° C or lower.
  • the reaction time is not generally determined depending on the type of the cellulose-based raw material and the compound having the substituent and the target introduction rate, but from the viewpoint of reactivity, it is preferably 3 hours or more, more preferably 6 hours or more, More preferably, it is 10 hours or more, and from the viewpoint of productivity, it is preferably 60 hours or less, more preferably 48 hours or less, still more preferably 36 hours or less.
  • an appropriate post-treatment can be performed to remove unreacted compounds, bases and the like.
  • an unreacted base can be neutralized with an acid (organic acid, inorganic acid, etc.), and then washed with a solvent in which the unreacted compound or base dissolves. If desired, further drying (such as vacuum drying) may be performed.
  • Step II-2 the compound having the substituent represented by the general formula (1) as the compound (a) in the presence of a base in the cellulose fiber obtained in Step II-1 and What is necessary is just to carry out the ether reaction of the 1 type (s) or 2 or more types chosen from the compound which has a substituent represented by the said General formula (2).
  • Step II-2 first, a base is mixed with the cellulose fiber obtained in Step II-1.
  • the type and amount of the base used in Step II-2 can be set in the same manner as in Step II-1.
  • a nonionic alkylene oxide compound represented by the following general formula (1A) is preferable.
  • a compound one prepared according to a known technique may be used, or a commercially available product may be used.
  • the total number of carbon atoms of the compound is 5 or more, preferably 6 or more, more preferably 8 or more, from the viewpoint of the mechanical strength, heat resistance, and dimensional stability of the resin composition obtained. From the viewpoint of mechanical strength, heat resistance and dimensional stability of the resin composition, it is 32 or less, preferably 22 or less, more preferably 18 or less, still more preferably 14 or less, and still more preferably 12 or less.
  • R 1 represents a linear or branched alkyl group having 3 to 30 carbon atoms
  • R 1 in the general formula (1A) is a linear or branched alkyl group having 3 to 30 carbon atoms.
  • the carbon number of the alkyl group is 3 or more and 30 or less, but preferably 4 or more, more preferably 6 or more, from the viewpoint of mechanical strength, heat resistance, and dimensional stability of the obtained resin composition. From the viewpoint of mechanical strength, heat resistance and dimensional stability of the resin composition to be obtained, it is preferably 20 or less, more preferably 16 or less, still more preferably 12 or less, and still more preferably 10 or less. Specific examples include those described in the section of R 1 in the substituent represented by the general formula (1).
  • Specific examples of the compound represented by the general formula (1A) include 1,2-epoxyhexane, 1,2-epoxydecane, and 1,2-epoxyoctadecane.
  • a nonionic glycidyl ether compound represented by the following general formula (2A) is preferable.
  • a nonionic glycidyl ether compound represented by the following general formula (2A) is preferable.
  • a compound one prepared according to a known technique may be used, or a commercially available product may be used.
  • the total number of carbon atoms of the compound is 5 or more, preferably 6 or more, more preferably 10 or more, and still more preferably 20 from the viewpoints of mechanical strength, heat resistance, and dimensional stability of the resin composition obtained. From the viewpoints of mechanical strength, heat resistance, and dimensional stability of the obtained resin composition, it is 100 or less, preferably 75 or less, more preferably 50 or less, and still more preferably 25 or less.
  • R 1 is a linear or branched alkyl group having 3 to 30 carbon atoms
  • A is a linear or branched divalent saturated hydrocarbon group having 1 to 6 carbon atoms
  • n is 0 or more. Indicates a number of 50 or less.
  • R 1 in the general formula (2A) is a linear or branched alkyl group having 3 to 30 carbon atoms.
  • the carbon number of the alkyl group is 3 or more and 30 or less, but preferably 4 or more, more preferably 6 or more, from the viewpoint of mechanical strength, heat resistance, and dimensional stability of the obtained resin composition. From the viewpoint of the mechanical strength, heat resistance, and dimensional stability of the resin composition obtained, it is preferably 20 or less, more preferably 16 or less, and still more preferably 12 or less.
  • a in the general formula (2A) is a linear or branched divalent saturated hydrocarbon group having 1 to 6 carbon atoms and forms an oxyalkylene group with an adjacent oxygen atom.
  • the carbon number of A is 1 or more and 6 or less, but from the viewpoint of availability and cost, it is preferably 2 or more, and from the same viewpoint, it is preferably 4 or less, more preferably 3 or less.
  • Specific examples include those described in the section A in the substituent represented by the general formula (2), and among them, an ethylene group and a propylene group are preferable, and an ethylene group is more preferable.
  • n represents the number of added moles of alkylene oxide.
  • n is a number of 0 or more and 50 or less, but from the viewpoint of availability and cost, it is preferably 3 or more, more preferably 5 or more, still more preferably 10 or more, and the same viewpoint and affinity with a low-polarity solvent. In view of the above, it is preferably 40 or less, more preferably 30 or less, still more preferably 20 or less, and still more preferably 15 or less.
  • Specific examples of the compound represented by the general formula (2A) include butyl glycidyl ether, 2-ethylhexyl glycidyl ether, dodecyl glycidyl ether, stearyl glycidyl ether, and polyoxyalkylene alkyl ether.
  • the amount of the compound can be determined by a desired introduction rate of the substituent represented by the general formula (1) and / or the substituent represented by the general formula (2) in the obtained modified cellulose fiber. From the viewpoint of reactivity, it is preferably 0.01 equivalents or more, more preferably 0.1 equivalents or more, still more preferably 0.3 equivalents or more, and still more preferably, relative to the anhydroglucose unit of the cellulosic material. 0.5 equivalents or more, more preferably 1.0 equivalents or more, and from the viewpoint of production cost, preferably 10 equivalents or less, more preferably 8 equivalents or less, and even more preferably 6.5 equivalents or less. More preferably, it is 5 equivalents or less.
  • Step II-1 The ether reaction between the compound and the cellulose fiber obtained in Step II-1 can be carried out by mixing both in the presence of a solvent in the same manner as in Step II-1.
  • Step 1 can be referred to for the type of solvent used, the amount used, and the mixing conditions.
  • the reaction temperature is not generally determined depending on the type of the cellulose fiber obtained in Step II-1 or the compound having the substituent and the target introduction rate, but is preferably 40 ° C. from the viewpoint of improving the reactivity. From the viewpoint of suppressing thermal decomposition, it is preferably 120 ° C. or less, more preferably 110 ° C. or less, and still more preferably 100 ° C. or less.
  • the reaction time is not generally determined depending on the type of the cellulose fiber obtained in Step II-1 or the compound having the substituent and the target introduction rate, but from the viewpoint of reactivity, preferably 3 hours or more, More preferably, it is 6 hours or more, More preferably, it is 10 hours or more, From a viewpoint of productivity, Preferably it is 60 hours or less, More preferably, it is 48 hours or less, More preferably, it is 36 hours or less.
  • the compound (a) can be introduced.
  • the compound (a) is first introduced and then the compound (b) is introduced.
  • the compound (a) is first introduced and then the compound (b) is introduced.
  • the order of the steps II-1 and II-2 in the embodiment II is reversed, Good. That is, in Step I-1, the compound having the substituent represented by the general formula (1) and / or the compound having the substituent represented by the general formula (2) (compound (a)) is converted into the step II-
  • the compound ((b) having the substituent represented by the general formula (3) is then reacted with the cellulose-based raw material with reference to 2 and then the cellulose fiber obtained in Step I-2. ) Compound) is reacted with reference to step II-1.
  • the compound (a) and the compound (b) are introduced, and the compound having the substituent represented by the general formula (1) and / or the substituent represented by the general formula (2) What is necessary is just to make the compound which has and the compound which has a substituent represented by the said General formula (3) react with a cellulose raw material within the same reaction system.
  • the modified cellulose fiber of the present invention is subjected to the same treatment as the pretreatment performed on the cellulosic raw material, for example, in the form of chips, flakes, or powders. Good.
  • the modified cellulose fiber of the present invention to be obtained is added to the resin composition by changing the shape by such treatment, physical properties such as the elastic modulus of the resin composition can be improved.
  • the modified cellulose fiber of the present invention may be refined by performing a known refinement treatment after the reaction.
  • it can be miniaturized by performing a treatment using a high-pressure homogenizer or the like in an organic solvent.
  • After the reaction for introducing the substituent it is preferable to carry out a known refinement treatment for refinement.
  • a modified cellulose fiber having an average fiber diameter of 5 ⁇ m or more when a modified cellulose fiber having an average fiber diameter of 5 ⁇ m or more is obtained, mechanical processing such as a container-driven medium mill or a medium stirring mill can be performed. Moreover, when obtaining the modified cellulose fiber whose average fiber diameter is 1 nm or more and 500 nm or less, the process using a high pressure homogenizer etc. can be performed in an organic solvent.
  • an appropriate post-treatment can be performed to remove unreacted compounds, bases and the like.
  • an unreacted base can be neutralized with an acid (organic acid, inorganic acid, etc.), and then washed with a solvent in which the unreacted compound or base dissolves. If desired, further drying (such as vacuum drying) may be performed.
  • modified cellulose fiber is represented on the surface of the cellulose fiber by the substituent represented by the general formula (1) and / or the substituent represented by the general formula (2) and the general formula (3).
  • the substituent is in an ether bond state.
  • modified cellulose fibers represented by the following general formula (4) are exemplified.
  • R is the same or different and is selected from hydrogen, (A) a substituent represented by the general formula (1) and a substituent represented by the general formula (2), or (b ) Represents a substituent represented by the general formula (3), m represents an integer of 20 or more and 3000 or less, provided that when all Rs are hydrogen at the same time, and when they are simultaneously the substituent (A), And at the same time except for the substituent (B)]
  • the modified cellulose fibers represented by the general formula (4) have the same or different R, and are represented by hydrogen, (A) the substituent represented by the general formula (1), and the general formula (2).
  • the substituent selected from substituents or (B) represents a substituent represented by the general formula (3), and has a repeating structure of a cellulose unit into which the substituent is introduced.
  • m in the general formula (4) may be an integer of 20 or more and 3000 or less, and is preferably 100 or more and 2000 or less from the viewpoint of mechanical strength, heat resistance, and dimensional stability.
  • the modified cellulose fiber of the present invention Since the modified cellulose fiber of the present invention is excellent in dispersibility in an organic solvent, it can be mixed with a known resin to obtain a resin composition. Accordingly, the present invention also provides a resin composition comprising a thermoplastic resin or a curable resin and the modified cellulose fiber of the present invention. The resulting resin composition can be processed according to the properties of the resin to be mixed, but when the modified cellulose fiber of the present invention is blended, one of the introduced modifying groups is an alkyl group having a specific chain length.
  • the other of the introduced modified groups Since it has a terminal, repulsion due to steric repulsion can be obtained, and at the same time, the other of the introduced modified groups has a shorter alkyl group terminal than the modified group, so that aggregation due to hydrogen bonding between cellulose microfibrils can be achieved. Eliminating this improves dispersibility in the resin, and the modified cellulose fiber maintains the crystal structure, so it has excellent mechanical strength and can further improve heat resistance and dimensional stability. It is considered to be. In the following, description will be made by dividing the type of resin to be mixed.
  • thermoplastic resins saturated polyester resins such as polylactic acid resins; olefin resins such as polyethylene resins, polypropylene resins, and ABS resins; cellulose resins such as triacetylated cellulose and diacetylated cellulose; nylon resins; Vinyl resin; styrene resin; vinyl ether resin; polyvinyl alcohol resin; polyamide resin; polycarbonate resin; As the curable resin, a photocurable resin and / or a thermosetting resin is preferable. Specifically, epoxy resin; (meth) acrylic resin; phenol resin; unsaturated polyester resin; polyurethane resin; These resins may be used alone or as a mixed resin of two or more. In addition, in this specification, (meth) acrylic resin means what contains methacrylic resin and acrylic resin.
  • thermosetting Depending on the type of resin, photocuring and / or thermosetting can be performed.
  • a polymerization reaction proceeds by using a photopolymerization initiator that generates radicals and cations by irradiation with active energy rays such as ultraviolet rays and electron beams.
  • photopolymerization initiator examples include acetophenones, benzophenones, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkylcion compounds, disulfide compounds, thiuram compounds, fluoroamines. Compounds and the like.
  • a photopolymerization initiator for example, a monomer (monofunctional monomer or polyfunctional monomer), an oligomer having a reactive unsaturated group, a resin, or the like can be polymerized.
  • a curing agent When using an epoxy resin for the resin component, it is preferable to use a curing agent. By blending the curing agent, the molding material obtained from the resin composition can be firmly molded, and the mechanical strength can be improved. In addition, what is necessary is just to set content of a hardening
  • the resin in the embodiment A is one selected from the group consisting of a thermoplastic resin and a curable resin selected from an epoxy resin, a (meth) acrylic resin, a phenol resin, an unsaturated polyester resin, a polyurethane resin, or a polyimide resin. Alternatively, it is preferable to use two or more kinds of resins.
  • each component in the resin composition of aspect A is as follows, although it depends on the type of resin.
  • the content of the resin in the resin composition of aspect A is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, and further preferably 80% by mass, from the viewpoint of producing a molded body.
  • the content of the modified cellulose fiber in the resin composition of Aspect A is preferably 0.5% by mass or more, more preferably from the viewpoints of mechanical strength, dimensional stability, and heat resistance of the obtained resin composition. 1% by mass or more, more preferably 2% by mass or more, and further preferably 5% by mass or more. From the viewpoint of moldability and cost of the resulting resin composition, preferably 50% by mass or less, more preferably 40% by mass. Hereinafter, it is more preferably 30% by mass or less, further preferably 20% by mass or less, and further preferably 15% by mass or less.
  • the amount of the modified cellulose fiber in the resin composition of aspect A is preferably 0.5 parts by mass with respect to 100 parts by mass of the resin from the viewpoint of mechanical strength, dimensional stability, and heat resistance of the obtained resin composition.
  • the resin composition of the embodiment A includes a compatibilizer; a plasticizer; a crystal nucleating agent; a filler (inorganic filler, organic filler); a hydrolysis inhibitor; a flame retardant; Lubricants such as hydrocarbon waxes and anionic surfactants; UV absorbers; antistatic agents; antifogging agents; light stabilizers; pigments; antifungal agents; Polysaccharides such as alginic acid; natural proteins such as gelatin, glue, casein; inorganic compounds such as tannin, zeolite, ceramics, metal powder; fragrances; flow regulators; leveling agents; conductive agents; An agent etc. can be contained in the range which does not impair the effect of this invention.
  • the compatibilizer examples include a compound composed of a polar group having a high affinity for cellulose and a hydrophobic group having a high affinity for the resin. More specifically, examples of the polar group include maleic anhydride, maleic acid, and glycidyl methacrylate, and examples of the hydrophobic group include polypropylene and polyethylene.
  • other polymer materials and other resin compositions can be added within a range that does not impair the effects of the present invention. As a content ratio of an arbitrary additive, it may be appropriately contained within a range in which the effects of the present invention are not impaired.
  • the resin composition is preferably 20% by mass or less, more preferably about 10% by mass or less, More preferably about 5% by mass or less.
  • the resin composition of aspect A can be prepared without any particular limitation as long as it contains the resin and modified cellulose fibers, and includes, for example, the resin and modified cellulose fibers described above and, if necessary, various additives.
  • the raw material to be prepared can be prepared by stirring with a Henschel mixer or the like, or by melt kneading or a solvent casting method using a known kneader such as a closed kneader, a single or twin screw extruder, or an open roll kneader. .
  • the method for producing the resin composition of aspect A is not particularly limited as long as it includes a step of mixing the resin and the modified cellulose fiber of the present invention.
  • a suitable manufacturing method for example, what contains the following processes is illustrated as a suitable manufacturing method.
  • Step A-1) Step A-2 in which a nonionic alkylene oxide compound having a total number of carbon atoms of 3 or more and 4 or less per molecule is introduced via an ether bond to a cellulose-based raw material in the presence of a base ) With respect to the cellulose fiber obtained in step 1, in the presence of a base, (b) a nonionic alkylene oxide compound having a total carbon number of 5 or more and 32 or less per molecule and a total carbon number of 5 or more and 100 or less per molecule.
  • a curable resin selected from thermoplastic resins and epoxy resins, (meth) acrylic resins, phenolic resins, unsaturated polyester resins, polyurethane resins, or polyimide resins.
  • step (A-1) and step (A-2) the modified cellulose fiber of the present invention is prepared.
  • the section of the method for producing the modified cellulose fiber of the present invention can be made to the section of the method for producing the modified cellulose fiber of the present invention.
  • the obtained modified cellulose fiber can be subjected to a known refinement treatment and then subjected to the next step.
  • step (A-3) the modified cellulose fiber obtained in step (A-2) and the resin are mixed.
  • a raw material containing the resin, modified cellulose fibers, and various additives as required can be prepared by a melt kneading or solvent casting method using a known kneader.
  • the conditions (temperature, time) for melt kneading and solution mixing can be appropriately set according to known techniques depending on the type of resin used.
  • the resin composition of aspect A thus obtained has good processability and excellent heat resistance, it should be used suitably for various applications such as household goods, household appliance parts, packaging materials for household appliance parts, and automobile parts. Can do.
  • a rubber-based resin can be used as the resin composition of aspect B.
  • a carbon black compounded product is widely used as a reinforcing material, but it is considered that the reinforcing effect is limited.
  • the dispersibility in the resin is excellent, so that the mechanical strength, low energy loss, and dimensional stability are excellent. It is considered that it can be provided as a resin composition.
  • the rubber used in the present invention is not particularly limited, but a diene rubber is preferable from the viewpoint of reinforcement.
  • diene rubbers non-diene rubbers such as urethane rubber, silicone rubber, and polysulfide rubber can be used.
  • Diene rubbers include natural rubber (NR), polyisoprene rubber (IR), polybutadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), butyl rubber (IIR), butadiene-acrylonitrile copolymer rubber (NBR). ), Chloroprene rubber (CR) and modified rubber.
  • modified rubber examples include epoxidized natural rubber, hydrogenated natural rubber, hydrogenated butadiene-acrylonitrile copolymer rubber (HNBR), and the like.
  • natural rubber NR
  • polyisoprene rubber IR
  • polybutadiene rubber BR
  • styrene-butadiene copolymer rubber from the viewpoint of achieving both good processability and high impact resilience of the rubber composition
  • SBR polyisoprene rubber
  • CR chloroprene rubber
  • modified rubber One type or two or more types are more preferable.
  • the diene rubbers can be used alone or in combination of two or more.
  • the content of each component is as follows.
  • the rubber content in the rubber composition of aspect B is preferably 30% by mass or more, more preferably 45% by mass or more, and still more preferably 55% by mass or more, from the viewpoint of moldability of the composition. From the viewpoint of containing a modified cellulose fiber or the like, it is preferably 95% by mass or less, more preferably 90% by mass or less, further preferably 80% by mass or less, and still more preferably 70% by mass or less.
  • the content of the modified cellulose fiber in the rubber composition of the embodiment B is preferably 1% by mass or more, more preferably 2 from the viewpoints of mechanical strength, low energy loss, and dimensional stability of the resulting composition. From the viewpoint of operability during production, preferably 30% by mass or less, more preferably 20% by mass or less, and further 15% by mass. % Or less.
  • the amount of the modified cellulose fiber in the rubber composition of aspect B is preferably 1 part by mass or more from the viewpoint of mechanical strength, low energy loss, and dimensional stability obtained with respect to 100 parts by mass of rubber.
  • it is 5 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 15 parts by mass or more, and from the viewpoint of operability during production, preferably 30 parts by mass or less, more preferably 25 parts by mass.
  • it is more preferably 20 parts by mass or less.
  • a reinforcing filler a vulcanizing agent, a vulcanization accelerator, a vulcanization retarder, an aging agent which are usually used in the rubber industry, if desired, as long as the object of the present invention is not impaired.
  • Various conventional additives for tires such as inhibitor, process oil, vegetable oil and fat, scorch inhibitor, zinc white, stearic acid, magnesium oxide, wax, phenolic resin, etc. Can be blended.
  • carbon black As the reinforcing filler, carbon black, silica or the like is preferably used.
  • carbon black for example, channel black; SAF, ISAF, N-339, HAF, N-351, MAF, FEF, SRF, GPF, ECF Furnace black such as N-234; thermal black such as FT and MT; acetylene black and the like.
  • Carbon black may be composed of a single species or a plurality of species.
  • vulcanizing agent examples include sulfur, sulfur compounds, oximes, nitroso compounds, polyamines and organic peroxides. Only one kind of vulcanizing agent may be used, or a plurality of kinds may be used in combination.
  • vulcanization accelerator examples include guanidine, aldehyde-amine, aldehyde-ammonia, thiazole, sulfenamide, thiourea, thiuram, dithiocarbamate, xanthate, and the like. Only one kind of vulcanization accelerator may be used, or a plurality of kinds may be used in combination.
  • vulcanization retarder examples include aromatic organic acids such as salicylic acid, phthalic anhydride, benzoic acid, N-nitrosodiphenylamine, N-nitroso-2,2,4-trimethyl-1,2-dihydroquinone, N- And nitroso compounds such as nitrosophenyl- ⁇ -naphthylamine. Only one kind of vulcanization retarder may be used, or a plurality of kinds may be used in combination.
  • aromatic organic acids such as salicylic acid, phthalic anhydride, benzoic acid, N-nitrosodiphenylamine, N-nitroso-2,2,4-trimethyl-1,2-dihydroquinone, N- And nitroso compounds such as nitrosophenyl- ⁇ -naphthylamine. Only one kind of vulcanization retarder may be used, or a plurality of kinds may be used in combination.
  • anti-aging agent examples include amine-based, quinoline-based, hydroquinone derivatives, monophenol-based, polyphenol-based, thiobisphenol-based, hindered phenol-based, phosphite-based compounds, and the like. Only one kind of anti-aging agent may be used, or a plurality of kinds may be used in combination.
  • Process oils include paraffinic process oil, naphthenic process oil, and aromatic process oil. Only one kind of process oil may be used, or a plurality of kinds may be used in combination.
  • Plant oils include castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, palm oil, falling raw oil, wax, rosin, pine oil and the like. Only one kind of vegetable oil may be used, or a plurality of kinds may be used in combination.
  • the rubber composition of embodiment B can be prepared without particular limitation as long as it contains rubber and the modified cellulose fiber.
  • it can be prepared by mixing raw materials containing rubber and modified cellulose fibers and, if necessary, various additives, using an open kneader such as a roll, a closed kneader such as a Banbury mixer, etc. it can.
  • the temperature at the time of melt mixing is usually 10 to 200 ° C., preferably 20 to 180 ° C.
  • the method for producing the rubber composition of aspect B is not particularly limited as long as it includes a step of mixing the rubber and the modified cellulose fiber of the present invention.
  • a suitable manufacturing method for example, what contains the following processes is illustrated as a suitable manufacturing method.
  • Step B-1) Step B-2 in which a nonionic alkylene oxide compound having a total number of carbon atoms of 3 to 4 per molecule is introduced through an ether bond in the presence of a base to a cellulose-based raw material ) With respect to the cellulose fiber obtained in step 1, in the presence of a base, (b) a nonionic alkylene oxide compound having a total carbon number of 5 or more and 32 or less per molecule and a total carbon number of 5 or more and 100 or less per molecule.
  • step (B-1) and step (B-2) the modified cellulose fiber of the present invention is prepared.
  • the section of the method for producing the modified cellulose fiber of the present invention can be made to the section of the method for producing the modified cellulose fiber of the present invention.
  • the obtained modified cellulose fiber can be subjected to a known refinement treatment and then subjected to the next step.
  • step (B-3) the modified cellulose fiber obtained in step (B-2) and rubber are mixed.
  • the object to be mixed may be only rubber and modified cellulose fiber, but various additives may be used as necessary.
  • the number of times of mixing may be one at a time, but it can also be mixed in several times, and raw materials can be added at each mixing step. For example, a step of mixing raw materials other than the vulcanizing agent (kneading step A) and a step of mixing the vulcanizing agent into the obtained mixture (kneading step B) may be performed.
  • kneading is carried out without mixing the vulcanizing agent.
  • the kneading step C may be performed in the same manner as in the step A.
  • Mixing can be performed by a known method using, for example, an open kneader such as a roll or a closed kneader such as a Banbury mixer.
  • the rubber composition can be obtained by dissolving the rubber using an organic solvent such as toluene, mixing the obtained rubber solution and the modified cellulose fiber, and then removing the organic solvent component by a drying process. .
  • the rubber composition of Aspect B can be applied to various rubber product uses after performing an appropriate molding process as necessary using the rubber composition prepared by the above method and then vulcanizing or crosslinking. .
  • the rubber composition of aspect B has good processability and excellent mechanical strength, and is excellent in low energy loss, so it can be used in various applications such as household goods, home appliance parts, automobile parts, among others. It can be suitably used for automobile applications.
  • an industrial rubber part As a rubber product using the rubber composition of aspect B, for example, an industrial rubber part will be described.
  • industrial rubber parts include belts and hoses, which are extruded from the rubber composition of the present invention, which contains various additives as necessary, in accordance with the shape of each member in the unvulcanized stage. Then, after forming an unvulcanized rubber part, various industrial rubber parts can be produced by heating and pressing in a vulcanizer. Improved mechanical strength improves basic performance, makes parts smaller and thinner, reduces internal heat generation due to low energy loss, and improves durability, and dimensional stability improves machining and mating accuracy. it can.
  • the rubber composition of the present invention in which various additives are blended as necessary may be used as a tread at an unvulcanized stage.
  • Extrusion processing according to the shape of each member of the tire molding by a normal method on a tire molding machine, bonding together with other tire members, forming an unvulcanized tire, then heating in a vulcanizer A tire can be manufactured by applying pressure. From the improvement of mechanical strength, it is possible to reduce the size and thickness of each member, from the low energy loss property, to improve rolling resistance and fuel efficiency, and to improve the assembly accuracy of the dimensional stability.
  • the present invention further discloses the following modified cellulose fiber, a method for producing the modified cellulose fiber, and a resin composition containing the modified cellulose fiber in the embodiment described above.
  • ⁇ 1> (A) One or more substituents selected from the substituent represented by the following general formula (1) and the substituent represented by the following general formula (2), and (B) the following general A modified cellulose fiber having a cellulose I-type crystal structure in which substituents represented by the formula (3) are independently bonded to the cellulose fiber via an ether bond.
  • the carbon number of R 1 in the general formula (1) is preferably 4 or more, more preferably 6 or more, still more preferably 8 or more, preferably 25 or less, more preferably 20 or less, and still more preferably 18.
  • the modified cellulose fiber according to ⁇ 1> which is more preferably 16 or less.
  • the carbon number of R 1 in the general formula (2) is preferably 4 or more, more preferably 6 or more, still more preferably 8 or more, preferably 27 or less, more preferably 22 or less, and still more preferably 20
  • the modified cellulose fiber according to ⁇ 1> or ⁇ 2> more preferably 18 or less.
  • ⁇ 4> The modified cellulose according to any one of ⁇ 1> to ⁇ 3>, wherein the carbon number of A in the general formula (2) is preferably 2 or more, preferably 4 or less, more preferably 3 or less. fiber. ⁇ 5> n in the general formula (2) is preferably 3 or more, more preferably 5 or more, still more preferably 10 or more, preferably 40 or less, more preferably 30 or less, still more preferably 20 or less, still more preferably.
  • A is preferably a linear or branched divalent saturated hydrocarbon group having 2 to 3 carbon atoms, and n is 0 to 20 ⁇ 1>, wherein A is a linear or branched divalent saturated hydrocarbon group having 2 or more and 3 or less carbon atoms, and n is a combination of numbers of 5 or more and 15 or less.
  • ⁇ 7> The modified cellulose fiber according to any one of ⁇ 1> to ⁇ 6>, wherein R 2 in the general formula (3) is selected from a methyl group and an ethyl group.
  • the substituent represented by the general formula (2) includes 3-hexoxyethylene oxide-2-hydroxy-propyl group, 3-hexoxy-2-hydroxy-propyl group, 3-octoxyethylene oxide-2-hydroxy -Propyl group, 3-octoxy-2-hydroxy-propyl group, 6-ethyl-3-hexoxy-2-hydroxy-propyl group, 6-ethyl-3-hexoxyethylene oxide-2-hydroxy-propyl group, 3-deoxy group, Toxiethylene oxide-2-hydroxy-propyl group, 3-deoxy-2-hydroxy-propyl group, 3-dodeoxyethylene oxide-2-hydroxy-propyl group, 3-dodeoxy-2-hydroxy-propyl group, 3-hexade Toxiethylene oxide-2-hydroxy-propyl group, 3-hexadetoxy Any one of the above ⁇ 1> to ⁇ 8>, which is preferably a group selected from a -2-hydroxy-propyl group, a 3-octadeoxyethylene oxide-2-hydroxy-propyl group,
  • the substituent represented by the general formula (3) is preferably a group selected from a 2-hydroxy-propyl group and a 2-hydroxy-butyl group, and the modification described in any one of ⁇ 1> to ⁇ 9> above Cellulose fiber.
  • the introduction rate of the substituent selected from the substituent represented by the general formula (1) and the substituent represented by the general formula (2) with respect to 1 mol of anhydroglucose unit of cellulose is preferably 0.001. Mol or more, more preferably 0.005 mol or more, still more preferably 0.01 mol or more, still more preferably 0.05 mol or more, still more preferably 0.1 mol or more, still more preferably 0.2 mol or more, still more preferably.
  • the introduction ratio of the substituent represented by the general formula (3) with respect to 1 mol of anhydroglucose unit of cellulose is preferably 1.5 mol or less, more preferably 1.0 mol or less, and still more preferably 0.8.
  • the modified cellulose fiber according to any one of ⁇ 1> to ⁇ 11> which is 8 mol or less, preferably 0.01 mol or more, more preferably 0.02 mol or more, and further preferably 0.04 mol or more. . ⁇ 13>
  • the average fiber diameter is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, further preferably 10 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 70 ⁇ m or less, still more preferably 50 ⁇ m or less, still more preferably 40 ⁇ m or less
  • the modified cellulose fiber according to any one of ⁇ 1> to ⁇ 12> more preferably 30 ⁇ m or less.
  • the average fiber diameter is preferably 1 nm or more, more preferably 3 nm or more, further preferably 10 nm or more, further preferably 20 nm or more, preferably 500 nm or less, more preferably 300 nm or less, still more preferably 200 nm or less,
  • the degree of crystallinity is preferably 10% or more, more preferably 15% or more, further preferably 20% or more, preferably 90% or less, more preferably 85% or less, still more preferably 80% or less,
  • a dispersion having a concentration of 0.2% by mass was Preferably 15 mPa ⁇ s or more, more preferably 20 mPa ⁇ s or more, still more preferably 30 mPa ⁇ s or more, still more preferably 50 mPa ⁇ s or more, still more preferably 100 mPa ⁇ s or more, and even more preferably 150 mPa ⁇ s or more.
  • One or two or more compounds selected from the following nonionic alkylene oxide compounds and nonionic glycidyl ether compounds having a total carbon number of 5 or more and 100 or less per molecule, either simultaneously or separately, via an ether bond A method for producing a modified cellulose fiber to be introduced.
  • (b) The production method according to ⁇ 17>, wherein the compound (a) is introduced after introducing the compound first.
  • Step II-1 The production method according to the above ⁇ 17>, comprising the following step I-1 and step II-2.
  • Step II-1) Step II-2 of introducing a nonionic alkylene oxide compound having a total number of carbon atoms of 3 or more and 4 or less per molecule into the cellulose-based raw material through an ether bond in the presence of a base.
  • Step II-1 In the presence of a base with respect to the cellulose fiber obtained in Step II-1, (a) a nonionic alkylene oxide compound having a total number of carbon atoms of 5 or more and 32 or less per molecule and a total number of carbon atoms of 5 or more per molecule Step of introducing one or more compounds selected from 100 or less nonionic glycidyl ether compounds via an ether bond ⁇ 22>
  • the average fiber diameter of the cellulosic material is preferably 5 ⁇ m or more, more preferably 7 ⁇ m.
  • the average fiber diameter of the cellulose-based raw material is preferably 1 nm or more, more preferably 2 nm or more, still more preferably 3 nm or more, still more preferably 10 nm or more, preferably 500 nm or less, more preferably 300 nm or less, still more preferably.
  • the cellulose content in the cellulose-based raw material is preferably 30% by mass or more, more preferably 50% by mass or more, still more preferably 70% by mass or more, preferably 99% by mass or less, more preferably 98% by mass. % Or less, more preferably 95% by mass or less, and still more preferably 90% by mass or less, in any one of ⁇ 17> to ⁇ 23>.
  • the water content in the cellulosic material is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, still more preferably 0.5% by mass or more, and further preferably 1.0% by mass. More preferably, it is 1.5% by mass or more, more preferably 2.0% by mass or more, preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less, still more preferably.
  • the production method according to any one of ⁇ 17> to ⁇ 24>, wherein the production method is 20% by mass or less.
  • the base is selected from the group consisting of alkali metal hydroxides, alkaline earth metal hydroxides, primary to tertiary amines, quaternary ammonium salts, imidazole and derivatives thereof, pyridine and derivatives thereof, and alkoxides.
  • the alkali metal hydroxide and alkaline earth metal hydroxide are selected from the group consisting of sodium hydroxide, potassium hydroxide, lithium hydroxide, calcium hydroxide, and barium hydroxide, ⁇ 26> The manufacturing method as described.
  • Examples of primary to tertiary amines include ethylenediamine, diethylamine, proline, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetramethyl-1,3-propanediamine Selected from the group consisting of N, N, N ′, N′-tetramethyl-1,6-hexanediamine, tris (3-dimethylaminopropyl) amine, N, N-dimethylcyclohexylamine, and triethylamine, 26>.
  • quaternary ammonium salts tetrabutylammonium hydroxide, tetrabutylammonium chloride, tetrabutylammonium fluoride, tetrabutylammonium bromide, tetraethylammonium hydroxide, tetraethylammonium chloride, tetraethylammonium fluoride, tetraethyl bromide
  • the production method according to ⁇ 26> wherein the method is selected from the group consisting of ammonium, tetramethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium fluoride, and tetramethylammonium bromide.
  • ⁇ 30> The method according to ⁇ 26>, wherein the imidazole and derivatives thereof are selected from the group consisting of 1-methylimidazole, 3-aminopropylimidazole, and carbonyldiimidazole.
  • the pyridine and derivatives thereof are selected from the group consisting of N, N-dimethyl-4-aminopyridine and picoline.
  • the alkoxide is selected from the group consisting of sodium methoxide, sodium ethoxide, and potassium-t-butoxide.
  • the amount of the base is preferably 0.01 equivalents or more, more preferably 0.05 equivalents or more, still more preferably 0.1 equivalents or more, even more preferably, relative to the anhydroglucose unit of the cellulosic material. Is 0.2 equivalents or more, preferably 10 equivalents or less, more preferably 8 equivalents or less, still more preferably 5 equivalents or less, and even more preferably 3 equivalents or less, ⁇ 17> to ⁇ 32 > The production method according to any one of the above.
  • ⁇ 34> (b)
  • the compound having a substituent represented by the general formula (3) is preferably a nonionic alkylene oxide compound represented by the following general formula (3A), ⁇ 33> The production method according to any one of the above.
  • R 2 represents an alkyl group having 1 to 2 carbon atoms
  • the amount of the compound is preferably 5.0 equivalents or less with respect to the anhydroglucose unit of the cellulosic raw material, and the lower limit is about 0.02 equivalent, ⁇ 17> ⁇ 35>
  • the reaction temperature of the compound is preferably 30 ° C. or higher, more preferably 35 ° C. or higher, still more preferably 40 ° C. or higher, preferably 120 ° C.
  • the compound having a substituent represented by the general formula (1), which is a compound, is preferably a nonionic alkylene oxide compound represented by the following general formula (1A).
  • the number is preferably 6 or more, more preferably 8 or more, preferably 22 or less, more preferably 18 or less, still more preferably 14 or less, still more preferably 12 or less, ⁇ 17> to ⁇ 37> Any manufacturing method.
  • R 1 represents a linear or branched alkyl group having 3 to 30 carbon atoms
  • the compound having a substituent represented by the general formula (2), which is a compound, is preferably a nonionic glycidyl ether compound represented by the following general formula (2A).
  • the number is preferably 6 or more, more preferably 10 or more, still more preferably 20 or more, preferably 75 or less, more preferably 50 or less, still more preferably 25 or less, ⁇ 17> to ⁇ 39> Any manufacturing method.
  • R 1 is a linear or branched alkyl group having 3 to 30 carbon atoms
  • A is a linear or branched divalent saturated hydrocarbon group having 1 to 6 carbon atoms
  • n is 0 or more. Indicates a number of 50 or less.
  • the amount of the compound (a) is preferably 0.01 equivalents or more, more preferably 0.1 equivalents or more, still more preferably 0.3 equivalents or more with respect to the anhydroglucose unit of the cellulosic material. More preferably 0.5 equivalents or more, still more preferably 1.0 equivalents or more, preferably 10 equivalents or less, more preferably 8 equivalents or less, still more preferably 6.5 equivalents or less, The production method according to any one of ⁇ 17> to ⁇ 41>, preferably 5 equivalents or less.
  • the reaction temperature of the compound is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, still more preferably 60 ° C. or higher, preferably 120 ° C.
  • R is the same or different and is selected from hydrogen, (A) a substituent represented by the general formula (1) and a substituent represented by the general formula (2), or (b ) Represents a substituent represented by the general formula (3), m represents an integer of 20 or more and 3000 or less, provided that when all Rs are hydrogen at the same time, and when they are simultaneously the substituent (A), And at the same time except for the substituent (B)] ⁇ 45> A resin composition comprising the modified cellulose fiber according to any one of ⁇ 1> to ⁇ 16> and ⁇ 44> and a thermoplastic resin or a curable resin.
  • Thermoplastic resins include saturated polyester resins such as polylactic acid resins; olefin resins such as polyethylene resins, polypropylene resins, and ABS resins; cellulose resins such as triacetylated cellulose and diacetylated cellulose; nylon Resin; Vinyl chloride resin; Styrene resin; Vinyl ether resin; Polyvinyl alcohol resin; Polyamide-based resin; Polycarbonate-based resin; Polysulfone-based resin and the like.
  • the curable resin include a photo-curable resin and / or a thermosetting resin.
  • epoxy resin epoxy resin
  • (meth) acrylic resin phenol resin
  • unsaturated polyester resin polyurethane resin
  • polyurethane resin or polyimide resin.
  • a resin composition which is a rubber composition, comprising the modified cellulose fiber according to any one of ⁇ 1> to ⁇ 16> and ⁇ 44> and a rubber-based resin.
  • diene rubber is preferable, natural rubber (NR), polyisoprene rubber (IR), polybutadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), butyl rubber (IIR), butadiene- Examples include acrylonitrile copolymer rubber (NBR), chloroprene rubber (CR), and modified rubber.
  • NR natural rubber
  • IR polyisoprene rubber
  • BR polybutadiene rubber
  • SBR styrene-butadiene copolymer rubber
  • IIR butadiene-
  • butadiene- Examples include acrylonitrile copolymer rubber (NBR), chloroprene rubber (CR), and modified rubber.
  • modified rubber include epoxidized natural rubber, hydrogenated natural rubber, hydrogenated butadiene-acrylonitrile copolymer rubber (HNBR), and the like.
  • natural rubber polyisoprene rubber (IR), polybutadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), chloroprene rubber (CR), and modified rubber Or two or more are preferable, natural rubber (NR), styrene-butadiene copolymer rubber (S The resin composition according to ⁇ 48>, wherein one or more selected from BR), chloroprene rubber (CR), and modified rubber is more preferable.
  • the resin composition according to the above ⁇ 48> or ⁇ 49> which can be suitably used for various uses such as household goods, household electrical appliance parts, automobile parts, especially automobiles.
  • Example 1 Preparation Example 1 of Modified Cellulose Fiber> Softwood bleached kraft pulp (NBKP) was used as the cellulosic material.
  • NNKP Softwood bleached kraft pulp
  • 1.5 g of dried NBKP was added to 3.0 g of a 6.4 mass% aqueous sodium hydroxide solution (prepared with sodium hydroxide granules and ion-exchanged water manufactured by Wako Pure Chemical Industries, Ltd., 0.26 equivalent of NaOH / anhydroglucose unit 1
  • Equivalent amounts (AGU: calculated assuming that all cellulose raw materials are composed of anhydroglucose units, the same applies hereinafter)
  • 4.0 g of methyl isobutyl ketone (Wako Pure Chemical Industries, Ltd.) were added and mixed uniformly.
  • 0.1 g of the obtained modified cellulose fiber having two kinds of substituents was put into 49.9 g of the solvent shown in Table 1, and 3000 rpm for 30 minutes with a homogenizer (Primics Co., Ltd., TK Robotics). After stirring, a finely modified cellulose dispersion (solid content concentration 0) in which finely modified cellulose fibers are dispersed by a 10-pass treatment at 100 MPa with a high-pressure homogenizer (manufactured by Yoshida Kikai Co., Ltd., “Nanovaita L-ES”). .2 mass%) was obtained. A dispersion solvent manufactured by Wako Pure Chemical Industries, Ltd. was used.
  • Examples 2 to 8 and Comparative Examples 1 to 2 ⁇ Preparation Examples 2 to 7 and 21 to 22 of Modified Cellulose Fibers>
  • a modified cellulose fiber was obtained by introducing in the same manner as in Example 1 except that the amount of the compound having a substituent was the reaction amount shown in Table 1, respectively. Further, using the resulting modified cellulose fiber, a finely modified cellulose dispersion was obtained in the same manner as in Example 1.
  • Example 9 Compound: 1,2-epoxyhexane (Wako Pure Chemical Industries, Ltd.) Solvent: Water 2.0g Catalyst: 0.27 g of sodium hydroxide (1.0 equivalent / AGU) Reaction conditions: 70 ° C., 24 h standing reaction Washing solvent: water / isopropanol mixed solvent (Example 13) (A) Compound: 1,2-epoxydecane Solvent: 4.0 g DMF Catalyst: 1.2 g DMAP (1.6 eq / AGU) Reaction conditions: 90 ° C., 24 h stationary reaction Washing solvent: DMF and water / isopropanol mixed solvent (Example 14) (A) Compound: 1,2-epoxy octadecane (manufactured by Tokyo Chemical Industry Co., Ltd.) Solvent: 4.0 g DMF Catalyst: 1.2 g DMAP (1.6 eq / AGU) Reaction conditions: 90 ° C., 24 h standing
  • Examples 10 to 12 ⁇ Preparation Examples 9 and 10 of Modified Cellulose Fiber> After adding 6.0 g of DMF and 1.8 g of DMAP (1.6 equivalents / AGU) to 1.5 g of the cellulosic raw material shown in Table 2, 7.2 g of 1,2-epoxydecane (sum) 5 equivalents / AGU) (compound (a)) (manufactured by Kojun Pharmaceutical Co., Ltd.) was added and sealed, and then subjected to a stationary reaction at 90 ° C. for 24 hours. After the reaction, the mixture was neutralized with acetic acid, thoroughly washed with a mixed solvent of DMF and water / isopropanol to remove impurities, and further dried under vacuum at 50 ° C. overnight to obtain modified cellulose fibers.
  • Example 2 Using the obtained modified cellulose fibers having two types of substituents, the same dispersion treatment as in Example 1 was performed in the solvents shown in Table 2 to obtain a finely modified cellulose dispersion.
  • Example 17 ⁇ Modified Cellulose Fiber Preparation Example 15>
  • (B) A modified cellulose fiber having two types of substituents was obtained by using the same method as in Example 2 except that the conditions for introducing the compound were changed as follows. Moreover, using the obtained modified cellulose fiber, the same dispersion treatment as in Example 1 was performed in the solvents shown in Table 2 to obtain a finely modified cellulose dispersion.
  • (B) Compound: 1,2-epoxybutane (Wako Pure Chemical Industries, Ltd.) Solvent: Water 2.0g Catalyst: 0.27 g of sodium hydroxide (1.0 equivalent / AGU) Reaction conditions: 70 ° C., 24 h standing reaction Washing solvent: water / isopropanol mixed solvent
  • Examples 18 to 22 ⁇ Modified Cellulose Fiber Preparation Examples 16 to 20> A modified cellulose fiber having two types of substituents was obtained by using the same method as in Example 2 except that the cellulose-based raw material was changed to that shown in Table 3. Moreover, using the obtained modified cellulose fiber, the same dispersion treatment as in Example 1 was performed in the solvents shown in Table 3 to obtain a finely modified cellulose dispersion. The details of the cellulosic material are as shown below.
  • LBKP hardwood bleached kraft pulp derived from eucalyptus, manufactured by CENIBRA, fibrous, average fiber diameter of 24 ⁇ m, cellulose content of 90% by mass, moisture content of 5% by mass
  • HYP High YieldPulp derived from spruce, manufactured by Rottneros, fibrous, average fiber diameter 28 ⁇ m, cellulose content 55% by mass, moisture content 15% by mass
  • ARBOCEL ARBOCEL BC200, manufactured by Rettenmeier, powder, average fiber diameter 65 ⁇ m, cellulose content 90% by mass, moisture content 5% by mass
  • Powdered cellulose Powdered cellulose obtained in Production Example 2 of cellulose raw material
  • MFC Microfibrillated cellulose previously substituted with DMF, Daicel Finechem, “Cerish FD100-G”, solid content concentration 10% by mass, average fiber Diameter 100 nm or less, cellulose content 90% by mass, water content 3% by mass
  • the obtained modified cellulose fiber is as follows. Evaluation was performed according to the methods of Test Examples 1 to 4. Further, the properties of the dispersion were evaluated according to the methods of Test Examples 5 to 7 below. The results are shown in Tables 1 to 3.
  • Test Example 1 (Substituent introduction rate (substitution degree)) In the modified cellulose fiber obtained)
  • the content% (mass%) of the hydrophobic ether group contained in the obtained modified cellulose fiber was measured by Analytical Chemistry, Vol. 51, no. 13, 2172 (1979), “Fifteenth revised Japanese pharmacopoeia (hydroxypropylcellulose analysis method)” and the like, the Zeisel method known as a method for analyzing the average number of moles of an alkoxy group added to a cellulose ether It calculated according to. The procedure is shown below.
  • Test Example 2 Average fiber diameter of modified cellulose fiber and cellulose-based raw material
  • the fiber diameters of the modified cellulose fiber and the cellulose-based raw material were determined by the following method. About 0.3 g of the absolutely dried sample was precisely weighed and stirred for 1 minute in 1.0 L of ion-exchanged water using a home-use mixer to break the fibers into water. Thereafter, 4.0 L of ion-exchanged water was further added and stirred to be uniform. From the obtained aqueous dispersion, about 50 g was collected as a measurement liquid and precisely weighed. The obtained measurement liquid was analyzed by “Kajaani Fiber Lab” manufactured by Metso Automation Co., to obtain an average fiber diameter.
  • Test Example 3 Average fiber diameter of finely modified cellulose fiber
  • the obtained dispersion was measured using an optical microscope (manufactured by Keyence Corporation, “Digital Microscope VHX-1000”), and the average value of 30 or more fibers observed at a magnification of 300 to 1000 times was measured (rounded off to the effective number 1). Calculated with digits).
  • a solvent is further added to the cellulose fiber dispersion to prepare a 0.0001 mass% dispersion, and the dispersion is dropped onto mica (mica) and dried.
  • an atomic force microscope (AFM, Nanoscope III Tapping mode AFM, manufactured by Digital instrument, and probe using Nano Probes' Point Probe (NCH)) is used, and the fibers of cellulose fibers in the observation sample are used. Height was measured. At that time, in the microscopic image in which the cellulose fibers can be confirmed, five or more fine cellulose fibers were extracted, and the average fiber diameter (fiber diameter in the dispersion) was calculated from the fiber height. The case where fibers were aggregated in the dispersion and analysis was impossible was described as “> 10000”.
  • Crystallinity (%) [Ac / (Ac + Aa)] ⁇ 100 (B)
  • each peak area is obtained by fitting the obtained X-ray diffraction chart with a Gaussian function.
  • Test Example 5 (dispersion stability test) The obtained cellulose fiber dispersion having a solid content concentration of 0.2% by mass was allowed to stand at room temperature for 1 week, and the presence or absence of a precipitate was visually confirmed, and evaluated based on the following evaluation criteria. Evaluation A: No precipitate Evaluation B: Some precipitates are confirmed Evaluation C: The entire amount is precipitated (complete separation) The dispersion stability is evaluated in the order of A>B> C, and the dispersion stability A indicates that the dispersion stability is excellent.
  • Test Example 6 The viscosity of the obtained cellulose fiber dispersion having a solid content concentration of 0.2% by mass was measured using an E-type viscosity measuring machine (manufactured by Toki Sangyo Co., Ltd., “VISCOMMETER TVE-35H”, cone rotor: 1 ° 34 ′ ⁇ R24). ) And a temperature controller (manufactured by Toki Sangyo Co., Ltd., “VISCOMATE VM-150III”) at 25 ° C., 1 rpm, and 1 minute. When the measured viscosity is 15 mPa ⁇ s or more, the thickening effect is excellent, and the higher the value, the better the thickening property. The case where the viscosity was below the lower limit of measurement and analysis was impossible was described as “ND”.
  • Test Example 7 (Transmittance) The light transmittance at a wavelength of 660 nm of the obtained cellulose fiber dispersion having a solid content concentration of 0.5% by mass was measured using a double beam spectrophotometer (manufactured by Hitachi High-Tech Science Co., Ltd., “U-2910”) and an optical path length of 10 mm. The measurement was performed at 25 ° C. for 1 minute using a quartz cell. The higher the measured transmittance, the better the cellulose fibers are dispersed.
  • Example 23 Preparation example of acrylic resin composite> 0.25 g of the modified cellulose fiber having two types of substituents obtained in Example 1 was charged into 49.75 g of toluene, and the same dispersion treatment as in Example 1 was performed, whereby two types of refined cellulose fibers were obtained. A finely modified cellulose dispersion (solid content concentration of 0.5% by mass) in which modified cellulose fibers having the above substituents were dispersed in toluene was prepared.
  • the solvent was removed by drying at 80 ° C. for 120 minutes.
  • a shaped composite material compact was produced.
  • Examples 24-43 and Comparative Examples 4-5 ⁇ Preparation example of acrylic resin composite> Except that the modified cellulose fiber used was changed to the modified cellulose fiber described in Tables 4 to 6, 5% by mass of the finely modified cellulose fiber (with respect to acrylic resin) was obtained by performing the same treatment as in Example 23. A sheet-shaped composite material molded body having a thickness of about 0.1 mm was manufactured.
  • Reference Example 1 ⁇ Acrylic resin blank> A sheet-like acrylic resin having a thickness of about 0.1 mm is obtained by performing the same treatment as in Example 23 except that 10 mL of toluene is used instead of the modified cellulose fiber dispersion and the coating thickness is changed to 0.5 mm. A molded body was produced.
  • Example 44 Preparation Example of Epoxy Resin Composite> 0.25 g of modified cellulose fiber having two types of substituents obtained in Example 2 was put into 49.75 g of MEK and subjected to the same dispersion treatment as in Example 1 to refine the modified cellulose. A finely modified cellulose dispersion (solid content concentration 0.5% by mass) in which fibers were dispersed in MEK was prepared. 25 g of this dispersion and 2.5 g of epoxy resin jER828 (Mitsubishi Chemical) were mixed, and using a high-pressure homogenizer, one pass at 60 MPa and one pass at 100 MPa were performed for refinement treatment.
  • epoxy resin jER828 Mitsubishi Chemical
  • Reference Example 2 ⁇ Epoxy resin blank> A sheet-like epoxy resin molding having a thickness of about 0.2 mm is obtained by performing the same treatment as in Example 44 except that 10 mL of MEK is used instead of the modified cellulose fiber dispersion and the coating thickness is changed to 0.5 mm. The body was manufactured.
  • Example 45 Preparation Example of Polystyrene Resin Composite> 0.50 g of the modified cellulose fiber having two types of substituents obtained in Example 2 was put into 49.50 g of MEK, stirred at 3000 rpm for 30 minutes with a homogenizer, and then subjected to 10 passes at 100 MPa with a high-pressure homogenizer. Thus, a finely modified cellulose dispersion (solid content concentration 1.0% by mass) in which the refined modified cellulose fibers were dispersed in MEK was obtained.
  • Example 46 Preparation Example of Polyethylene Resin Composite> 80 g of polyethylene (manufactured by Nippon Polyethylene Co., Ltd .: Novatec LL UF641) and 8.0 g of modified cellulose fiber having two types of substituents obtained in Example 2 were added in order, and a kneader (manufactured by Toyo Seiki Co., Ltd .: Lab Using a plast mill) and kneading at a rotation speed of 50 rpm and 240 ° C. for 8 minutes to obtain a uniform mixture. Using a press machine (“Lab Press” manufactured by Toyo Seiki Co., Ltd.), the homogeneous mixture was mixed at 240 ° C.
  • the sheet was sequentially pressed under the above conditions to produce a sheet-like composite material molded body having a thickness of about 0.4 mm containing 10% by mass of modified cellulose fibers (relative to polyethylene resin).
  • Example 47 Preparation Example of Rubber Resin Composite (Cast Method)> 0.50 g of the modified cellulose fiber having two types of substituents obtained in Example 2 was put into 49.50 g of toluene, and 3000 rpm, 30 minutes with a homogenizer (manufactured by Primics Co., Ltd., TK Robotics). After stirring, a finely modified cellulose dispersion (solid content) in which modified cellulose fibers refined by 10 passes at 100 MPa with a high-pressure homogenizer (manufactured by Yoshida Kikai Co., Ltd., “Nanovaita L-ES”) is dispersed in toluene. A concentration of 1.0% by mass) was obtained.
  • a homogenizer manufactured by Primics Co., Ltd., TK Robotics
  • the obtained solution was finely processed for 1 pass at 60 MPa and 1 pass at 100 MPa using a high pressure homogenizer, and the obtained dispersion was poured into a glass petri dish having a diameter of 9 cm, Toluene was removed at room temperature and pressure for 2 days, then dried in a vacuum dryer (room temperature) for 12 hours and vulcanized at 150 ° C for 1 hour. A thickness of about 0.2mm vulcanized rubber sheet was prepared.
  • Examples 48 to 51 ⁇ Preparation Examples of Rubber Resin Composite (Casting Method)> Except that the modified cellulose fiber used and the blending composition were changed as shown in Table 10, the same treatment as in Example 47 was carried out, whereby 1 to 10% by mass of the finely modified cellulose fiber (relative to rubber resin) Resin) and a vulcanized rubber sheet having a thickness of about 0.2 mm was prepared.
  • Reference Example 5 ⁇ SBR blank (cast method)> A vulcanized rubber sheet having a thickness of about 0.2 mm was manufactured by performing the same treatment as in Example 47 except that the modified cellulose fiber was not used.
  • Example 52 Preparation Example of Rubber Resin Composite (Kneading Method)> A rubber composition was produced using the modified cellulose fibers having two types of substituents obtained in Example 1. As the rubber, styrene-butadiene copolymer SBR was used. In the compounding composition shown in Table 11, the components excluding the vulcanization accelerator and sulfur were kneaded with a 50 ml closed mixer for 6 minutes, and the container was released when the temperature reached 150 ° C. to obtain a rubber composition. (Kneading process A).
  • Vulcanization accelerators (TBBS, MBTS, DPG, zinc oxide) and sulfur are added to the rubber composition and kneaded for 3 minutes in a 50 ml closed mixer, and when the temperature reaches 100 ° C., the container is released.
  • an unvulcanized rubber composition was obtained (kneading step B).
  • the obtained rubber composition was vulcanized in a 15 ⁇ 15 ⁇ 0.2 cm mold at 145 ° C. for 20 minutes to prepare a vulcanized rubber sheet having a thickness of about 0.2 mm.
  • Examples 53 to 73 and Comparative Example 6 ⁇ Preparation example of rubber-based resin composite (kneading method)> Except that the modified cellulose fibers used and various blending compositions were changed as shown in Tables 11 to 14, the same treatment as in Example 52 was performed to obtain 1 to 10% by mass of finely modified cellulose fibers (vs. A vulcanized rubber sheet having a thickness of about 0.2 mm containing a rubber-based resin resin was prepared.
  • Example 74 Preparation Example of Rubber Resin Composite (Kneading Method)>
  • the modified cellulose fiber used was pulverized by batch-type vibration mill of the modified cellulose fiber prepared in Example 3 (vibration mill apparatus: “MB-1” manufactured by Chuo Kako Co., Ltd., total volume 3.5 L, as a rod. , 30 mm in length, 218 mm in length, using 13 SUS304 rods with a circular cross-sectional shape, rod filling rate 57%, processing time 20 minutes, sample preparation 100 g)
  • a vulcanized rubber sheet having a thickness of about 0.2 mm was prepared.
  • Example 75 Preparation Example of Rubber Resin Composite (Kneading Method)>
  • the modified cellulose fiber used was changed to a batch type vibration mill pulverized product of the modified cellulose fiber prepared in Example 3 (prepared in the same manner as in Example 74), and kneaded between the kneading step A and the kneading step B.
  • the rubber composition obtained in step A was further kneaded for 6 minutes with a closed mixer, and the step (kneading step C) for obtaining a rubber composition by releasing the container when the temperature reached 150 ° C. was added.
  • Example 76 Preparation example of rubber-based resin composite (kneading method)> Example 74, except that the modified cellulose fiber used was processed by batch-type vibration mill pulverized product of the modified cellulose fiber prepared in Example 3 (sample preparation 50 g, further adding 25 g of ion-exchanged water as a grinding aid). A vulcanized rubber sheet having a thickness of about 0.2 mm was prepared by carrying out the same treatment as in Example 73 except that the same was applied.
  • Example 77 Preparation Example of Rubber Resin Composite (Kneading Method)>
  • the used modified cellulose fiber is changed to a batch type vibration mill pulverized product of the modified cellulose fiber prepared in Example 3 (treatment equivalent to that in Example 76), and the kneading step is performed between the kneading step A and the kneading step B.
  • the rubber composition obtained in A was further kneaded for 6 minutes with a closed mixer, and the step of releasing the container and obtaining the rubber composition when the temperature reached 150 ° C. (kneading step C) was added.
  • a vulcanized rubber sheet having a thickness of about 0.2 mm was prepared.
  • Example 78 Preparation example of rubber-based resin composite (kneading method)>
  • OREVAC OE808 manufactured by Arkema
  • SBR compatibilizing agent
  • Example 79 Preparation Example of Rubber Resin Composite (Kneading Method)> A thickness of about 0 was obtained by performing the same treatment as in Example 73 except that 2 parts by mass of Si69 (Evonik Industry Co., Ltd.) 2 parts by mass (vs. SBR 100 parts by mass) was further added as a silane coupling agent during the kneading step A. A 2 mm vulcanized rubber sheet was prepared.
  • Example 80 Preparation example of rubber-based resin composite (kneading method)> A vulcanized rubber sheet having a thickness of about 0.2 mm was prepared by carrying out the same treatment as in Example 73 except that the rubber to be used was changed to natural rubber (NR, count: RSS3).
  • Example 81 Preparation Example of Rubber Resin Composite (Kneading Method)> A vulcanized rubber sheet having a thickness of about 0.2 mm was prepared by performing the same treatment as in Example 80 except that the blending amount of carbon black was changed to the composition shown in Table 15.
  • Example 82 Preparation Example of Rubber Resin Composite (Kneading Method)> The same treatment as in Example 81 is performed except that the modified cellulose fiber used is changed to a batch vibration mill pulverized product of the modified cellulose fiber prepared in Example 3 (a treatment equivalent to that in Example 74). Thus, a vulcanized rubber sheet having a thickness of about 0.2 mm was prepared.
  • Example 83 Preparation Example of Rubber Resin Composite (Kneading Method)> The same treatment as in Example 81 is performed except that the modified cellulose fiber used is changed to a batch vibration mill pulverized product of the modified cellulose fiber prepared in Example 3 (a treatment equivalent to that in Example 76). Thus, a vulcanized rubber sheet having a thickness of about 0.2 mm was prepared.
  • Example 84 Preparation Example of Rubber Resin Composite (Kneading Method)>
  • the modified cellulose fiber used was changed to a batch-type vibration mill pulverized product of the modified cellulose fiber prepared in Example 3 (treatment equivalent to that in Example 76), and the closed mixer was mixed between the kneading step A and the kneading step B.
  • a step (kneading step C) to release the container when the temperature reaches 150 ° C.
  • adding a step (kneading step C) A vulcanized rubber sheet having a thickness of about 0.2 mm was prepared.
  • Reference Example 6 ⁇ SBR blank (kneading method)> A vulcanized rubber sheet having a thickness of about 0.2 mm was produced by performing the same treatment as in Example 52 except that the modified cellulose fiber was not used.
  • Reference Example 7 Carbon black added SBR blank (kneading method)> A vulcanized rubber sheet having a thickness of about 0.2 mm was produced by performing the same treatment as in Example 72 except that the modified cellulose fiber was not used.
  • Reference Example 8 ⁇ NR blank (kneading method)> A vulcanized rubber sheet having a thickness of about 0.2 mm was produced by performing the same treatment as in Example 80 except that the modified cellulose fiber was not used.
  • Reference Example 9 Carbon Black-added NR Blank (Kneading Method)> A vulcanized rubber sheet having a thickness of about 0.2 mm was produced by performing the same treatment as in Example 81 except that the modified cellulose fiber was not used.
  • Test Example 8 (Storage modulus) Using a dynamic viscoelastic device (manufactured by SII, “DMS6100”), the storage elastic modulus of the strip-shaped sample cut out from the obtained molded body with a width of 5 mm and a length of 20 mm was measured at a frequency of 1 Hz in a nitrogen atmosphere. The temperature was increased from ⁇ 50 ° C. to 200 ° C. at a rate of 2 ° C. per minute and measured in the tensile mode.
  • the storage elastic modulus described in the table is a value at the temperature in parentheses, and the higher the storage elastic modulus (MPa), the better the strength. Therefore, the higher the strength at high temperature, the better the heat resistance.
  • Test Example 9 Linear thermal expansion coefficient (CTE)
  • a thermal stress strain measuring device (“EXSTAR TMA / SS6100” manufactured by Seiko Denshi Co., Ltd.)
  • EXSTAR TMA / SS6100 manufactured by Seiko Denshi Co., Ltd.
  • the linear thermal expansion coefficient (CTE) was obtained by calculating an average linear thermal expansion coefficient in a predetermined temperature range.
  • the numerical value in the parenthesis described in the table indicates the temperature range used for the calculation, and the lower the CTE, the better the dimensional stability.
  • Test example 10 (tensile modulus)
  • the tensile modulus of the molded product was measured by a tensile test according to JIS K7113 using a tensile / compression tester (manufactured by SHIMADZU, “Autograph AGS-X”).
  • a sample punched with a No. 2 dumbbell was set at a fulcrum distance of 80 mm and measured at a crosshead speed of 10 mm / min.
  • a higher tensile modulus indicates better mechanical strength.
  • Test Example 11 (relative storage modulus) Using a dynamic viscoelastic device (“DMS6100” manufactured by SII), the storage elastic modulus and tan ⁇ of a strip-shaped sample cut out from the obtained sheet at a width of 5 mm and a length of 20 mm were measured at a frequency of 1 Hz in a nitrogen atmosphere. The temperature was increased from ⁇ 50 ° C. to 200 ° C. at a rate of 2 ° C. per minute and measured in the tensile mode. From the obtained storage elastic modulus and the value of tan ⁇ , the relative elastic modulus and the value of relative tan ⁇ were calculated when the value of the corresponding reference example was taken as 100.
  • DMS6100 dynamic viscoelastic device
  • Test Example 12 (Relative linear thermal expansion coefficient (relative CTE)) Using a thermal stress strain measuring device (“EXSTAR TMA / SS6100” manufactured by Seiko Denshi Co., Ltd.), a strip type sample having a width of 3 mm and a length of 20 mm was pulled at a rate of 5 ° C. per minute in a nitrogen atmosphere. The load was measured at 50 g in the mode. As the linear thermal expansion coefficient (CTE), a value at 80 ° C. was used. The obtained CTE value was calculated as the relative CTE value when the value of the corresponding reference example was 100. A smaller relative CTE with a corresponding reference example indicates better dimensional stability.
  • CTE linear thermal expansion coefficient
  • the modified cellulose fiber of the present invention is excellent in dispersion stability and thickening action in a low polar organic solvent. From Tables 4 to 15, by combining the modified cellulose fiber with a resin, high strength and dimensional stability can be expressed in a wide range of applications regardless of the type of resin and the method of combining. Recognize. Especially, since the resin composition obtained through the melt-kneading at high temperature shows high strength (Example 46), it is suggested that the modified cellulose fiber of the present invention has high thermal stability.
  • the modified cellulose fiber of the present invention has high dispersibility with respect to organic solvents and resins, and can exhibit a thickening effect and a strength enhancing effect, and is suitable as various thickeners and fillers. It is. Moreover, the resin composition which mix

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Artificial Filaments (AREA)

Abstract

(A)下記一般式(1)及び(2)から選ばれる1種又は2種以上の置換基、ならびに(B)下記一般式(3)で表される置換基がそれぞれ独立して、エーテル結合を介してセルロース繊維に結合しており、セルロースI型結晶構造を有する、改質セルロース繊維。 -CH-CH(OH)-R (1) -CH-CH(OH)-CH-(OA)-O-R (2) -CH-CH(OH)-R (3) 〔式中、(1)及び(2)におけるRはそれぞれ独立してC3~30のアルキル基、(2)におけるnは0以上50以下の数、Aは炭素数1以上6以下の直鎖又は分岐鎖の2価の飽和炭化水素基を示し、(3)におけるRはC1~2のアルキル基を示す〕 本発明の改質セルロース繊維を配合した樹脂組成物は、日用雑貨品、家電部品、家電部品用梱包資材、自動車部品等の様々な工業用途に好適に使用することができる。

Description

改質セルロース繊維
 本発明は、改質セルロース繊維に関する。更に詳しくは、日用雑貨品、家電部品、自動車部品等にフィラーとして好適に配合し得る改質セルロース繊維、該改質セルロース繊維の製造方法、及び、該改質セルロース繊維を含有する樹脂組成物に関する。
 従来、有限な資源である石油由来のプラスチック材料が多用されていたが、近年、環境に対する負荷の少ない技術が脚光を浴びるようになり、かかる技術背景の下、天然に多量に存在するバイオマスであるセルロース繊維を用いた材料が注目されている。
 例えば、特許文献1には、補強効果に優れたセルロースナノファイバーとして、平均重合度が600以上30000以下であり、アスペクト比が20~10000であり、平均直径が1~800nmであり、X線回折パターンにおいて、Iβ型の結晶ピークを有することを特徴とするセルロースナノファイバーが開示されている。該セルロースナノファイバーを含有する樹脂組成物は、優れた成形性及び熱線膨張率を示している。
 特許文献2には、ミクロフィブリルの表面に存在するヒドロキシル官能基が、当該ヒドロキシル官能基と反応することが可能な、少なくとも一つの有機化合物によりエーテル化され、その際の表面置換度(DSS)が少なくとも0.05であることを特徴とする、変性表面を有するセルロースミクロフィブリルが開示されている。当該ミクロフィブリルを含有するエラストマー組成物は、優れた機械的強度を示すことが記載されている。
 特許文献3には、表面に少なくとも0.05の表面置換度(DSS)でエーテル基で置換されたセルロースマイクロファイバーを含有する複合材料が開示されている。
 特許文献4には、リグニンを含有するパルプを機械的に解繊処理することによって、ミクロフィブリル化した植物繊維がヘミセルロース、リグニンの順で被覆された構造となることによって、水系で扱いやすくなり、該植物繊維を配合した繊維強化樹脂は、分解温度が従来のミクロフィブリル化セルロースより高く熱安定性に優れると開示されている。
 また、セルロースの複合材料としては、次のような技術も報告されている。例えば、特許文献5には、セルロース繊維シートの調製に用いるのに好適な、優れた透明性、非着色性、低線膨張係数、高弾性率を有するセルロース複合材料として、木質から得られる解繊前のセルロースを芳香環含有置換基で修飾した後に、平均繊維径100nm以下に解繊して、修飾セルロース繊維分散液を得る方法が開示されている。
 特許文献6には、有機溶媒中での分散安定性に優れる微細セルロース繊維として、カルボキシル基含有量0.1~3mmol/gの微細セルロース繊維に界面活性剤を吸着させた微細セルロース複合体が開示されている。
 特許文献7には、有機溶媒と、該有機溶媒と反応しない修飾剤とを含む分散媒中に多糖類を添加して微細化することを特徴とする、セルロースの微細化方法が開示されている。ここで、修飾剤としては、酸無水物、酸ハライド、イソシアネート、及びシランカップリング剤が例示されている。
 特許文献8には、特定のイオン液体と有機溶媒を含有する溶媒を用いて木質パルプなどのセルロース系物質を膨潤及び/又は部分溶解させた後、化学変性又は加水分解し、その後水又は有機溶媒を用いて洗浄することで、セルロースのナノファイバーを簡単且つ効率よく、さらには少ないダメージで製造することができることが開示されている。
特開2011-184816号公報 特表2002-524618号公報 FR2800378号公報 特開2009-19200号公報 特開2011-16995号公報 特開2011-140738号公報 特開2009-261993号公報 特開2010-104768号公報
 本発明は、下記〔1〕~〔3〕に関する。
〔1〕 (A)下記一般式(1)で表される置換基及び下記一般式(2)で表される置換基から選ばれる1種又は2種以上の置換基、ならびに
(B)下記一般式(3)で表される置換基が
それぞれ独立して、エーテル結合を介してセルロース繊維に結合しており、セルロースI型結晶構造を有する、改質セルロース繊維。
   -CH-CH(OH)-R      (1)
   -CH-CH(OH)-CH-(OA)-O-R      (2)
   -CH-CH(OH)-R      (3)
〔式中、一般式(1)及び一般式(2)におけるRはそれぞれ独立して炭素数3以上30以下の直鎖又は分岐鎖のアルキル基を示し、一般式(2)におけるnは0以上50以下の数、Aは炭素数1以上6以下の直鎖又は分岐鎖の2価の飽和炭化水素基を示し、一般式(3)におけるRは炭素数1以上2以下のアルキル基を示す〕
〔2〕 セルロース系原料に対し、塩基存在下、(b)1分子あたりの総炭素数が3以上4以下のノニオン性酸化アルキレン化合物と、(a)1分子あたりの総炭素数が5以上32以下のノニオン性酸化アルキレン化合物及び1分子あたりの総炭素数が5以上100以下のノニオン性グリシジルエーテル化合物から選ばれる1種又は2種以上の化合物とを、同時に又は別々に、エーテル結合を介して導入する、改質セルロース繊維の製造方法。
〔3〕 熱可塑性樹脂又は硬化性樹脂と前記〔1〕記載の改質セルロース繊維とを含有してなる、樹脂組成物。
発明の詳細な説明
 従来のセルロース複合材料を用いた組成物では、各種用途への適用において、更なる耐熱性や強度の向上が求められるものであった。
 本発明は、各種有機溶媒に配合した際には、安定分散可能でかつ良好な増粘効果を発揮し、また、各種樹脂に配合した際には、得られる樹脂組成物の機械的強度や耐熱性、寸法安定性を向上し得る改質セルロース繊維、該改質セルロース繊維を効率良く製造する方法、及び該改質セルロース繊維を含有する樹脂組成物に関する。
 また、ゴム系樹脂に配合した際には、得られるゴム組成物の機械的強度や低エネルギーロス性、寸法安定性を向上し得る改質セルロース繊維、該改質セルロース繊維を効率良く製造する方法、及び該改質セルロース繊維を含有するゴム組成物に関する。
 本発明の改質セルロース繊維は、有機溶媒に配合した際に良好な安定分散及び増粘作用を示し、さらに該改質セルロース繊維を樹脂と複合化することで得られる樹脂組成物の機械的強度や耐熱性、寸法安定性を向上させるという優れた効果を奏するものである。
 また、樹脂がゴム系樹脂の場合には、得られるゴム組成物の機械的強度や低エネルギーロス性、寸法安定性を向上させるという優れた効果を奏するものである。
[改質セルロース繊維]
 本発明の改質セルロース繊維は、セルロース繊維表面に特定の置換基がエーテル結合を介して結合していることを特徴とする。なお、本明細書において、「エーテル結合を介して結合」とは、セルロース繊維表面の水酸基に修飾基が反応して、エーテル結合した状態を意味する。
 本発明の改質セルロース繊維が、有機溶媒中での分散性に優れる理由は、次のように考えられる。セルロースは、一般に、その表面水酸基による水素結合で凝集してミクロフィブリルの束を形成するが、本発明の改質セルロース繊維は、表面水酸基に少なくとも2種の特定の修飾基を導入する反応を行うことで、該修飾基がセルロース繊維骨格のセルロース鎖に直接エーテル結合するため、セルロースの結晶構造を維持した、疎水化セルロース繊維となる。また、導入された修飾基の一方が特定鎖長のアルキル基末端を有することから、立体斥力による反発が得られると同時に、導入された修飾基の他方が前記修飾基よりも短いアルキル基末端を有することから、セルロースミクロフィブリル間の水素結合による凝集を解消するため、有機溶媒中での分散性に優れる。従って、本発明の改質セルロース繊維は有機溶媒中で均一に分散し、かつ、結晶構造が安定して維持されやすいことから、該改質セルロース繊維を樹脂と複合化することで得られる樹脂組成物の機械的強度が向上し、また、耐熱性や寸法安定性が良好なものとなる。ただし、これらの推測は、本発明を限定するものではない。
(修飾基)
 本発明の改質セルロース繊維における修飾基は、(A)以下の一般式(1)で表される置換基及び一般式(2)で表される置換基から選ばれる1種又は2種以上の置換基、ならびに、(B)下記一般式(3)で表される置換基であり、即ち、(A)群の置換基と(B)群の置換基が共に結合され、各群において単独で又は任意の組み合わせで導入される。なお、(A)群の置換基においては、一般式(1)で表される置換基又は一般式(2)で表される置換基のいずれか一方の場合であっても、各置換基においては同一の置換基であっても2種以上が組み合わさって導入されてもよい。(A)群の置換基において、一般式(1)で表される置換基と一般式(2)で表される置換基が、それぞれ、単独で又は2種以上が組み合わせて導入されてもよい。
   -CH-CH(OH)-R      (1)
   -CH-CH(OH)-CH-(OA)-O-R      (2)
   -CH-CH(OH)-R      (3)
〔式中、一般式(1)及び一般式(2)におけるRはそれぞれ独立して炭素数3以上30以下の直鎖又は分岐鎖のアルキル基を示し、一般式(2)におけるnは0以上50以下の数、Aは炭素数1以上6以下の直鎖又は分岐鎖の2価の飽和炭化水素基を示し、一般式(3)におけるRは炭素数1以上2以下のアルキル基を示す〕
 一般式(1)におけるRは、炭素数3以上30以下の直鎖又は分岐鎖のアルキル基である。アルキル基の炭素数は、3以上30以下であるが、得られる樹脂組成物の機械的強度、耐熱性、及び寸法安定性の観点から、好ましくは4以上、より好ましくは6以上、更に好ましくは8以上であり、入手性及び反応性向上の観点から、好ましくは25以下、より好ましくは20以下、更に好ましくは18以上、より更に好ましくは16以下である。具体的には、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、ヘキサデシル基、オクタデシル基、イコシル基、トリアコンチル基等が例示される。
 また、一般式(1)におけるRは、分散剤である有機溶媒等の種類にもよるが、増粘作用の観点から、以下の範囲が好ましい。
・SP値11以上13以下の有機溶媒の場合:好ましくは3以上、より好ましくは4以上であり、好ましくは12以下、より好ましくは10以下である。
・SP値9.2以上11未満の有機溶媒の場合:好ましくは5以上、より好ましくは6以上であり、好ましくは14以下、より好ましくは12以下である。
・SP値9.2未満の有機溶媒の場合:好ましくは8以上、より好ましくは10以上であり、好ましくは20以下、より好ましくは18以下である。
 なお、ここで、SP値11以上13以下の有機溶媒としては、ジメチルホルムアミド、エタノール、アセトニトリル、イソプロピルアルコール等が例示され、SP値9.2以上11未満の有機溶媒としては、メチルエチルケトン、アセトン、クロロホルム、ジオキサン等が例示され、SP値9.2未満の有機溶媒としては、トルエン、キシレン、酢酸エチル等が例示される。また、SP値とは、Fedors法で計算される溶解度パラメーター(単位:(cal/cm3)1/2)を示し、例えば、参考文献「SP値基礎・応用と計算方法」(情報機構社,2005年)、Polymer handbook Third edition(A Wiley-Interscience publication,1989)等に記載されている。
 一般式(2)におけるRは、炭素数3以上30以下の直鎖又は分岐鎖のアルキル基である。アルキル基の炭素数は、3以上30以下であるが、得られる樹脂組成物の機械的強度、耐熱性、及び寸法安定性の観点から、好ましくは4以上、より好ましくは6以上、更に好ましくは8以上であり、入手性及び反応性向上の観点から、好ましくは27以下、より好ましくは22以下、更に好ましくは20以下、更に好ましくは18以下である。具体的には、前記した一般式(1)におけるRと同じものが挙げられる。
 また、一般式(2)におけるRは、分散媒である有機溶媒等の種類にもよるが、増粘作用の観点から、以下の範囲が好ましい。なお、ここでの有機溶媒は前述の通りである。
・SP値11以上13以下の有機溶媒の場合:好ましくは4以上、より好ましくは6以上であり、好ましくは14以下、より好ましくは12以下、更に好ましくは10以下である。
・SP値9.2以上11未満の有機溶媒の場合:好ましくは8以上、より好ましくは10以上であり、好ましくは16以下、より好ましくは14以下である。
・SP値9.2未満の有機溶媒の場合:好ましくは10以上、より好ましくは12以上であり、好ましくは22以下、より好ましくは20以下である。
 一般式(2)におけるAは、炭素数1以上6以下の直鎖又は分岐鎖の2価の飽和炭化水素基であり、隣接する酸素原子とオキシアルキレン基を形成する。Aの炭素数は1以上6以下であるが、入手性及びコストの観点から、好ましくは2以上であり、同様の観点から、好ましくは4以下、より好ましくは3以下である。具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基等が例示され、なかでも、エチレン基、プロピレン基が好ましく、エチレン基がより好ましい。
 一般式(2)におけるnは、アルキレンオキサイドの付加モル数を示す。nは0以上50以下の数であるが、入手性及びコストの観点から、好ましくは3以上、より好ましくは5以上、更に好ましくは10以上であり、同様の観点及び得られる樹脂組成物の機械的強度、耐熱性、及び寸法安定性の観点から、好ましくは40以下、より好ましくは30以下、更に好ましくは20以下、更に好ましくは15以下である。
 一般式(2)におけるAとnの組み合わせとしては、反応性及び立体斥力発現による増粘効果の観点から、好ましくはAが炭素数2以上3以下の直鎖又は分岐鎖の2価の飽和炭化水素基で、nが0以上20以下の数の組み合わせであり、より好ましくはAが炭素数2以上3以下の直鎖又は分岐鎖の2価の飽和炭化水素基で、nが5以上15以下の数の組み合わせである。
 一般式(3)におけるRは炭素数1以上2以下のアルキル基であり、具体的には、メチル基、エチル基である。
 一般式(1)で表される置換基の具体例としては、例えば、プロピルヒドロキシエチル基、ブチルヒドロキシエチル基、ペンチルヒドロキシエチル基、ヘキシルヒドロキシエチル基、ヘプチルヒドロキシエチル基、オクチルヒドロキシエチル基、ノニルヒドロキシエチル基、デシルヒドロキシエチル基、ウンデシルヒドロキシエチル基、ドデシルヒドロキシエチル基、ヘキサデシルヒドロキシエチル基、オクタデシルヒドロキシエチル基、イコシルヒドロキシエチル基、トリアコンチルヒドロキシエチル基等が挙げられる。
 一般式(2)で表される置換基の具体例としては、例えば、3-ヘキトキシエチレンオキシド-2-ヒドロキシ-プロピル基、3-ヘキトキシ-2-ヒドロキシ-プロピル基、3-オクトキシエチレンオキシド-2-ヒドロキシ-プロピル基、3-オクトキシ-2-ヒドロキシ-プロピル基、6-エチル―3-ヘキトキシ-2-ヒドロキシ-プロピル基、6-エチル―3-ヘキトキシエチレンオキシド-2-ヒドロキシ-プロピル基、3-デトキシエチレンオキシド-2-ヒドロキシ-プロピル基、3-デトキシ-2-ヒドロキシ-プロピル基、3-ドデトキシエチレンオキシド-2-ヒドロキシ-プロピル基、3-ドデトキシ-2-ヒドロキシ-プロピル基、3-ヘキサデトキシエチレンオキシド-2-ヒドロキシ-プロピル基、3-ヘキサデトキシ-2-ヒドロキシ-プロピル基、3-オクタデトキシエチレンオキシド-2-ヒドロキシ-プロピル基、3-オクタデトキシ-2-ヒドロキシ-プロピル基等が挙げられる。なお、アルキレンオキサイドの付加モル数は0以上50以下であればよく、例えば、前記したエチレンオキシド等のオキシアルキレン基を有する置換基において付加モル数が10、12、13、20モルの置換基が例示される。
 一般式(3)で表される置換基の具体例としては、例えば、2-ヒドロキシ-プロピル基、2-ヒドロキシ-ブチル基等が挙げられる。
(導入率)
 本発明の改質セルロース繊維において、セルロースの無水グルコースユニット1モルに対する前記一般式(1)で表される置換基及び一般式(2)で表される置換基から選ばれる置換基の導入率は、溶媒との親和性の観点から、好ましくは0.001モル以上、より好ましくは0.005モル以上、更に好ましくは0.01モル以上、更に好ましくは0.05モル以上、更に好ましくは0.1モル以上、更に好ましくは0.2モル以上、更に好ましくは0.3モル以上である。また、セルロースI型結晶構造を有し、強度を発現する観点から、好ましくは1.5モル以下、より好ましくは1.3モル以下、更に好ましくは1.0モル以下、更に好ましくは0.8モル以下、更に好ましくは0.6モル以下、更に好ましくは0.5モル以下である。ここで、一般式(1)で表される置換基と一般式(2)で表される置換基のいずれもが導入されている場合は合計した導入モル率のことである。また、本発明の改質セルロース繊維において、セルロースの無水グルコースユニット1モルに対する前記一般式(3)で表される置換基の導入率は、セルロースI型結晶構造を有し、強度を発現する観点から、好ましくは1.5モル以下、より好ましくは1.0モル以下、更に好ましくは0.8モル以下であり、好ましくは0.01モル以上、より好ましくは0.02モル以上、更に好ましくは0.04モル以上である。なお、本明細書において、導入率は、後述の実施例に記載の方法に従って測定することができ、また、導入モル比又は修飾率と記載することもある。
(平均繊維径)
 本発明の改質セルロース繊維としては、置換基の種類に関係なく、平均繊維径に特に限定はない。例えば、平均繊維径がマイクロオーダーの態様(態様1)、平均繊維径がナノオーダーの態様(態様2)が例示される。
 態様1の改質セルロース繊維は、取扱い性、入手性、及びコストの観点から、好ましくは5μm以上、より好ましくは7μm以上、更に好ましくは10μm以上である。また、上限は特に設定されないが、取扱い性の観点から、好ましくは100μm以下、より好ましくは70μm以下、更に好ましくは50μm以下、更に好ましくは40μm以下、更に好ましくは30μm以下である。なお、本明細書において、マイクロオーダーの改質セルロース繊維の平均繊維径は、以下の方法に従って測定することができる。
 具体的には、例えば、絶乾したセルロース繊維をイオン交換水中で家庭用ミキサー等を用いて攪拌して繊維を解した後、さらにイオン交換水を加え均一になるよう攪拌して得られた水分散液の一部を、メッツォオートメーション社製の「Kajaani Fiber Lab」にて分析する方法が挙げられる。かかる方法により、平均繊維径がマイクロオーダーの繊維径を測定することができる。なお、詳細な測定方法は実施例に記載の通りである。
 態様2の改質セルロース繊維は、耐熱性向上、取扱い性、入手性、及びコストの観点から、好ましくは1nm以上、より好ましくは3nm以上、更に好ましくは10nm以上、更に好ましくは20nm以上であり、取扱い性、寸法安定性、溶媒分散性、及び増粘性発現の観点から、好ましくは500nm以下、より好ましくは300nm以下、更に好ましくは200nm以下、更に好ましくは150nm以下、より更に好ましくは120nm以下である。なお、本明細書において、ナノオーダーの改質セルロース繊維の平均繊維径は、以下の方法に従って測定することができる。
 具体的には、微細化処理を行なった際に得られた分散液を、光学顕微鏡(キーエンス社製、「デジタルマイクロスコープVHX-1000」)を用いて倍率300~1000倍で観察し、繊維30本以上の平均値を計測することで、ナノオーダーの繊維径を測定することができる。光学顕微鏡での観察が困難な場合は、前記分散液に溶媒を更に加えて調製した分散液を、マイカ(雲母)上に滴下して乾燥したものを観察試料として、原子間力顕微鏡(AFM、Nanoscope III Tapping mode AFM、Digital instrument社製、プローブはナノセンサーズ社製Point Probe (NCH)を使用)を用いて測定することができる。一般に、高等植物から調製されるセルロースナノファイバーの最小単位は6×6の分子鎖がほぼ正方形の形でパッキングされていることから、AFMによる画像で分析される高さを繊維の幅と見なすことができる。なお、詳細な測定方法は実施例に記載の通りである。
(結晶化度)
 改質セルロース繊維の結晶化度は、強度発現の観点から、好ましくは10%以上、より好ましくは15%以上、更に好ましくは20%以上である。また、原料入手性の観点から、好ましくは90%以下、より好ましくは85%以下、更に好ましくは80%以下、更に好ましくは75%以下である。なお、本明細書において、セルロースの結晶化度は、X線回折法による回折強度値から算出したセルロースI型結晶化度であり、後述の実施例に記載の方法に従って測定することができる。なお、セルロースI型とは天然セルロースの結晶形のことであり、セルロースI型結晶化度とは、セルロース全体のうち結晶領域量の占める割合のことを意味する。
(粘度)
 本発明の改質セルロース繊維のうち、態様2の改質セルロース繊維においては、微細な繊維径を有しながらも、前記した置換基が導入されていることで有機溶媒中にて分散性に優れることから、セルロース繊維が元来有する増粘性をより効果的に発揮することができる。本発明においては、増粘性を評価する指標として、セルロース繊維をジメチルホルムアミド、メチルエチルケトン、トルエンから選ばれるいずれかの有機溶媒中で高圧ホモジナイザー(高圧湿式メディアレス微粒化装置など、例えば吉田機械社製、ナノヴェイタL-ES)により100MPaの圧力による微細分散処理を10回行って0.2質量%濃度の分散体とした際の粘度を用いる。なお、粘度はE型粘度計(コーンローター:1°34′×R24)を用いて、25℃、1rpmの条件下で測定した値を採用する。前記したいずれかの有機溶媒における前記条件下で測定した本発明の改質セルロース繊維の粘度は、強度発現の観点から、好ましくは15mPa・s以上、より好ましくは20mPa・s以上、更に好ましくは30mPa・s以上、更に好ましくは50mPa・s以上、より更に好ましくは100mPa・s以上、より更に好ましくは150mPa・s以上であり、原料入手性の観点から、好ましくは10,000mPa・s以下、より好ましくは8,000mPa・s以下、更に好ましくは5,000mPa・s以下である。なお、前記条件に従って粘度を測定した際に、前記有機溶媒のうち少なくとも1つにおいての粘度が15mPa・s以上であれば、本発明に含まれる。即ち、一の有機溶媒での粘度が15mPa・s未満であっても、他の有機溶媒での粘度が15mPa・s以上を示すのであれば、本発明において増粘性があると評価することができる。よって、前記した全ての有機溶媒中での粘度が15mPa・s未満である改質セルロース繊維は本発明において増粘性があると評価することができない。
[改質セルロース繊維の製造方法]
 本発明の改質セルロース繊維は、上記したようにセルロース繊維表面に前記置換基がエーテル結合を介して結合しているが、置換基の導入は、特に限定なく公知の方法に従って行うことができる。具体的には、セルロース系原料に対し、塩基存在下、(b)1分子あたりの総炭素数が3以上4以下のノニオン性酸化アルキレン化合物と、(a)1分子あたりの総炭素数が5以上32以下のノニオン性酸化アルキレン化合物及び1分子あたりの総炭素数が5以上100以下のノニオン性グリシジルエーテル化合物から選ばれる1種又は2種以上の化合物とを、同時に又は別々に、エーテル結合を介して導入する方法が挙げられる。ここで、前記(a)化合物と(b)化合物の導入が「同時に又は別々」であるとは、本発明においては(a)化合物と(b)化合物の導入順序は特に限定されず、(a)化合物と(b)化合物の導入を同時に行ってもよく、あるいは、(a)化合物を先に導入後、(b)化合物を導入してもよく、(b)化合物を先に導入後、(a)化合物を導入してもよいことを意味する。以降、(a)化合物を先に導入後、(b)化合物を導入する態様を態様I、(b)化合物を先に導入後、(a)化合物を導入する態様を態様II、(a)化合物と(b)化合物の導入を同時に行う態様を態様IIIとする。なかでも、分散性及び存念作用の観点、及び、耐熱性及び寸法安定性の観点から、態様II、態様IIIが好ましく、態様IIがより好ましい。以下に、態様IIを例に挙げて詳細を説明する。
 態様IIの製造方法としては、具体的には、下記工程I-1及び工程II-2を含む製造方法が挙げられる。
工程II-1)セルロース系原料に対し、塩基存在下、(b)1分子あたりの総炭素数が3以上4以下のノニオン性酸化アルキレン化合物を、エーテル結合を介して導入する工程
工程II-2)工程II-1で得られたセルロース繊維に対し、塩基存在下、(a)1分子あたりの総炭素数が5以上32以下のノニオン性酸化アルキレン化合物及び1分子あたりの総炭素数が5以上100以下のノニオン性グリシジルエーテル化合物から選ばれる1種又は2種以上の化合物を、エーテル結合を介して導入する工程
 工程II-1においては、セルロース系原料に、塩基の存在下で、(b)化合物として、前記一般式(3)で表される置換基を有する化合物をエーテル反応させればよい。
(セルロース系原料)
 本発明で用いられるセルロース系原料は、特に制限はなく、木本系(針葉樹・広葉樹)、草本系(イネ科、アオイ科、マメ科の植物原料、ヤシ科の植物の非木質原料)、パルプ類(綿の種子の周囲の繊維から得られるコットンリンターパルプ等)、紙類(新聞紙、段ボール、雑誌、上質紙等)が挙げられる。なかでも、入手性及びコストの観点から、木本系、草本系が好ましい。
 セルロース系原料の形状は、特に制限はないが、取扱い性の観点から、繊維状、粉末状、球状、チップ状、フレーク状が好ましい。また、これらの混合物であってもよい。
 また、セルロース系原料は、取扱い性等の観点から、生化学的処理、化学処理、及び機械処理から選ばれる少なくとも1つの前処理を予め行なうことができる。生化学的処理としては、使用する薬剤には特に制限がなく、例えばエンドグルカナーゼやエキソグルカナーゼ、ベータグルコシダーゼといった酵素を使用する処理が挙げられる。化学処理としては、使用する薬剤には特に制限がなく、例えば塩酸や硫酸などによる酸処理、過酸化水素やオゾンなどによる酸化処理が挙げられる。機械処理としては、使用する機械や処理条件には特に制限がなく、例えば、高圧圧縮ロールミルや、ロール回転ミル等のロールミル、リングローラーミル、ローラーレースミル又はボールレースミル等の竪型ローラーミル、転動ボールミル、振動ボールミル、振動ロッドミル、振動チューブミル、遊星ボールミル又は遠心流動化ミル等の容器駆動媒体ミル、塔式粉砕機、攪拌槽式ミル、流通槽式ミル又はアニュラー式ミル等の媒体攪拌式ミル、高速遠心ローラーミルやオングミル等の圧密せん断ミル、乳鉢、石臼、マスコロイダー、フレットミル、エッジランナーミル、ナイフミル、ピンミル、カッターミル等が挙げられる。
 また、上記機械処理の際に水やエタノール、イソプロピルアルコール、t-ブチルアルコール、トルエン、キシレン等の溶媒、フタル酸系やアジピン酸系、トリメリット酸系などの可塑剤、尿素やアルカリ(土類)金属水酸化物、アミン系化合物などの水素結合阻害剤、等の助剤を添加することで機械処理による形状変化の促進を行うこともできる。このように形状変化を加えることで、セルロース系原料の取扱い性が向上し、置換基の導入が良好となって、ひいては得られる改質セルロース繊維の物性も向上させることが可能となる。添加助剤の使用量は、用いる添加助剤や使用する機械処理の手法等によって変わるが、形状変化を促進する効果を発現する観点から、原料100質量部に対して、通常5質量部以上、好ましくは10質量部以上、より好ましくは20質量部以上であり、また、形状変化を促進する効果を発現する観点及び経済性の観点から、通常10000質量部以下、好ましくは5000質量部以下、より好ましくは3000質量部以下である。
 セルロース系原料の平均繊維径は、特に制限はないが、取扱い性及びコストの観点から、好ましくは5μm以上、より好ましくは7μm以上、更に好ましくは10μm以上、更に好ましくは15μm以上である。また、上限は特に設定されないが、取扱い性の観点から、好ましくは10,000μm以下、より好ましくは5,000μm以下、更に好ましくは1,000μm以下、更に好ましくは500μm以下、より更に好ましくは100μm以下である。
 また、製造工程数低減の観点から、あらかじめ微細化されたセルロース系原料を用いてよく、その場合の平均繊維径は、耐熱性向上の観点から、好ましくは1nm以上、より好ましくは2nm以上、更に好ましくは3nm以上、更に好ましくは10nm以上である。また、上限は特に設定されないが、取扱い性の観点から、好ましくは500nm以下、より好ましくは300nm以下、更に好ましくは200nm以下、更に好ましくは100nm以下、より更に好ましくは80nm以下である。
 なお、セルロース系原料の平均繊維径は、前記した改質セルロース繊維と同様にして測定することができる。詳細は、実施例に記載の通りである。
 セルロース系原料の組成は、特に限定されないが、セルロース系原料中のセルロース含有量が、セルロースファイバーを得る観点から、好ましくは30質量%以上、より好ましくは50質量%以上、更に好ましくは70質量%以上であり、入手性の観点から、好ましくは99質量%以下、より好ましくは98質量%以下、更に好ましくは95質量%以下、更に好ましくは90質量%以下であるものが好ましい。ここで、セルロース系原料中のセルロース含有量とは、セルロース系原料中の水分を除いた残余の成分中のセルロース含有量のことである。
 また、セルロース系原料中の水分含有量は、特に制限はなく、入手性及びコストの観点から、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.5質量%以上、更に好ましくは1.0質量%以上、更に好ましくは1.5質量%以上、更に好ましくは2.0質量%以上であり、取扱い性の観点から、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下、更に好ましくは20質量%以下である。
(塩基)
 工程II-1においては、前記セルロース系原料に、塩基を混合する。
 工程II-1で用いられる塩基としては、特に制限はないが、エーテル化反応を進行させる観点から、アルカリ金属水酸化物、アルカリ土類金属水酸化物、1~3級アミン、4級アンモニウム塩、イミダゾール及びその誘導体、ピリジン及びその誘導体、並びにアルコキシドからなる群より選ばれる1種又は2種以上が好ましい。
 アルカリ金属水酸化物及びアルカリ土類金属水酸化物としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化カルシウム、水酸化バリウム等が挙げられる。
 1~3級アミンとは、1級アミン、2級アミン、及び3級アミンのことであり、具体例としては、エチレンジアミン、ジエチルアミン、プロリン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラメチル-1,3-プロパンジアミン、N,N,N’,N’-テトラメチル-1,6-ヘキサンジアミン、トリス(3-ジメチルアミノプロピル)アミン、N,N-ジメチルシクロヘキシルアミン、トリエチルアミン等が挙げられる。
 4級アンモニウム塩としては、水酸化テトラブチルアンモニウム、塩化テトラブチルアンモニウム、フッ化テトラブチルアンモニウム、臭化テトラブチルアンモニウム、水酸化テトラエチルアンモニウム、塩化テトラエチルアンモニウム、フッ化テトラエチルアンモニウム、臭化テトラエチルアンモニウム、水酸化テトラメチルアンモニウム、塩化テトラメチルアンモニウム、フッ化テトラメチルアンモニウム、臭化テトラメチルアンモニウム等が挙げられる。
 イミダゾール及びその誘導体としては、1-メチルイミダゾール、3-アミノプロピルイミダゾール、カルボニルジイミダゾール等が挙げられる。
 ピリジン及びその誘導体としては、N,N-ジメチル-4-アミノピリジン、ピコリン等が挙げられる。
 アルコキシドとしては、ナトリウムメトキシド、ナトリウムエトキシド、カリウム-t-ブトキシド等が挙げられる。
 塩基の量は、セルロース系原料の無水グルコースユニットに対して、エーテル化反応を進行させる観点から、好ましくは0.01等量以上、より好ましくは0.05等量以上、更に好ましくは0.1等量以上、更に好ましくは0.2等量以上であり、製造コストの観点から、好ましくは10等量以下、より好ましくは8等量以下、更に好ましくは5等量以下、更に好ましくは3等量以下である。
 なお、前記セルロース系原料と塩基の混合は、溶媒の存在下で行ってもよい。溶媒としては、特に制限はなく、例えば、水、イソプロパノール、t-ブタノール、ジメチルホルムアミド、トルエン、メチルイソブチルケトン、アセトニトリル、ジメチルスルホキシド、ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、ヘキサン、1,4-ジオキサン、及びこれらの混合物が挙げられる。
 セルロース系原料と塩基の混合は、均一に混合できるのであれば、温度や時間は特に制限はない。
(置換基を有する化合物 (b)化合物)
 次に、前記で得られたセルロース系原料と塩基の混合物に、前記一般式(3)で表される置換基を有する化合物を反応させる。かかる化合物はセルロース系原料と反応する際に、前記置換基を結合させることができるものであれば特に制限はなく、本発明においては、反応性及び非ハロゲン含有化合物の観点から、反応性を有する環状構造基を有する化合物を用いることが好ましく、エポキシ基を有する化合物を用いることが好ましい。
 一般式(3)で表される置換基を有する化合物としては、例えば、下記一般式(3A)で示されるノニオン性の酸化アルキレン化合物が好ましい。かかる化合物は公知技術に従って調製したものを用いてもよく、市販品を用いてもよい。該化合物の総炭素数としては、機械的強度、寸法安定性、及び耐熱性の観点から、3以上4以下である。
 一般式(3)で表される置換基を有する化合物としては、例えば、下記一般式(3A)で示されるノニオン性の酸化アルキレン化合物が好ましい。
Figure JPOXMLDOC01-appb-C000002
〔式中、Rは炭素数1以上2以下のアルキル基を示す〕
 一般式(3A)におけるRは、炭素数1以上2以下のアルキル基であり、メチル基又はエチル基である。
 一般式(3A)で示される化合物の具体例としては、1,2-エポキシプロパン、1,2-エポキシブタンが挙げられる。
 前記化合物の量は、得られるセルロース繊維における前記一般式(3)で表される置換基の所望の導入率により決めることができるが、得られる樹脂組成物の機械的強度及び増粘性発現の観点から、セルロース系原料の無水グルコースユニットに対して、好ましくは5.0等量以下であればよく、下限は0.02等量程度である。
(エーテル反応)
 前記化合物とセルロース系原料とのエーテル反応は、溶媒の存在下で、両者を混合することにより行うことができる。溶媒としては、特に制限はなく、前記塩基を存在させる際に使用することができると例示した溶媒を用いることができる。
 溶媒の使用量としては、セルロース系原料や前記置換基を有する化合物の種類によって一概には決定されないが、セルロース系原料100質量部に対して、反応性の観点から、好ましくは30質量部以上、より好ましくは50質量部以上、更に好ましくは75質量部以上、更に好ましくは100質量部以上、更に好ましくは200質量部以上であり、生産性の観点から、好ましくは10,000質量部以下、より好ましくは5,000質量部以下、更に好ましくは2,500質量部以下、更に好ましくは1,000質量部以下、更に好ましくは500質量部以下である。
 混合条件としては、セルロース系原料や前記置換基を有する化合物が均一に混合され、十分に反応が進行できるのであれば特に制限はなく、連続的な混合処理は行っても行わなくてもよい。1Lを超えるような比較的大きな反応容器を用いる場合には、反応温度を制御する観点から、適宜攪拌を行ってもよい。
 反応温度としては、セルロース系原料や前記置換基を有する化合物の種類及び目標とする導入率によって一概には決定されないが、反応性を向上させる観点から、好ましくは30℃以上、より好ましくは35℃以上、更に好ましくは40℃以上であり、熱分解を抑制する観点から、好ましくは120℃以下、より好ましくは110℃以下、更に好ましくは100℃以下、更に好ましくは90℃以下、更に好ましくは80℃以下、更に好ましくは70℃以下である。
 反応時間としては、セルロース系原料や前記置換基を有する化合物の種類及び目標とする導入率によって一概には決定されないが、反応性の観点から、好ましくは3時間以上、より好ましくは6時間以上、更に好ましくは10時間以上であり、生産性の観点から、好ましくは60時間以下、より好ましくは48時間以下、更に好ましくは36時間以下である。
 反応後は、未反応の化合物や塩基等を除去するために、適宜後処理を行うことができる。該後処理の方法としては、例えば、未反応の塩基を酸(有機酸、無機酸など)で中和し、その後、未反応の化合物や塩基が溶解する溶媒を用いて洗浄することができる。所望により、更に乾燥(真空乾燥など)を行ってもよい。
 かくして、一般式(3)で表される置換基が導入されたセルロース繊維が得られる。
 次に、工程II-2においては、工程II-1で得られたセルロース繊維に、塩基の存在下で、(a)化合物として、前記一般式(1)で表される置換基を有する化合物及び前記一般式(2)で表される置換基を有する化合物から選ばれる1種又は2種以上をエーテル反応させればよい。
 工程II-2では先ず、工程II-1で得られたセルロース繊維に塩基を混合する。工程II-2で用いられる塩基については、その種類及び量は工程II-1と同様に設定することができる。また、それらの混合は、均一に混合できるのであれば、温度や時間は特に制限はない。
(置換基を有する化合物 (a)化合物)
 次に、前記で得られたセルロース繊維と塩基の混合物に、置換基を有する化合物として、前記一般式(1)で表される置換基を有する化合物及び一般式(2)で表される置換基を有する化合物から選ばれる1種又は2種以上の化合物を反応させる。かかる化合物は工程1で得られたセルロース繊維と反応する際に、前記置換基を結合させることができるものであれば特に制限はなく、本発明においては、反応性及び非ハロゲン含有化合物の観点から、反応性を有する環状構造基を有する化合物を用いることが好ましく、エポキシ基を有する化合物を用いることが好ましい。以下に、それぞれの化合物を例示する。
 一般式(1)で表される置換基を有する化合物としては、例えば、下記一般式(1A)で示されるノニオン性の酸化アルキレン化合物が好ましい。かかる化合物は公知技術に従って調製したものを用いてもよく、市販品を用いてもよい。該化合物の総炭素数としては、得られる樹脂組成物の機械的強度、耐熱性、及び寸法安定性の観点から、5以上であり、好ましくは6以上、より好ましくは8以上であり、得られる樹脂組成物の機械的強度、耐熱性、及び寸法安定性の観点から、32以下であり、好ましくは22以下、より好ましくは18以下、更に好ましくは14以下、更に好ましくは12以下である。
Figure JPOXMLDOC01-appb-C000003
〔式中、Rは炭素数3以上30以下の直鎖又は分岐鎖のアルキル基を示す〕
 一般式(1A)におけるRは、炭素数3以上30以下の直鎖又は分岐鎖のアルキル基である。アルキル基の炭素数は、3以上30以下であるが、得られる樹脂組成物の機械的強度、耐熱性、及び寸法安定性の観点から、好ましくは4以上、より好ましくは6以上であり、得られる樹脂組成物の機械的強度、耐熱性、及び寸法安定性の観点から、好ましくは20以下、より好ましくは16以下、更に好ましくは12以下、更に好ましくは10以下である。具体的には、一般式(1)で表される置換基におけるRの項に記載のものを挙げることができる。
 一般式(1A)で示される化合物の具体例としては、1,2-エポキシヘキサン、1,2-エポキシデカン、1,2-エポキシオクタデカンが挙げられる。
 一般式(2)で表される置換基を有する化合物としては、例えば、下記一般式(2A)で示されるノニオン性のグリシジルエーテル化合物が好ましい。かかる化合物は公知技術に従って調製したものを用いてもよく、市販品を用いてもよい。該化合物の総炭素数としては、得られる樹脂組成物の機械的強度、耐熱性、及び寸法安定性の観点から、5以上であり、好ましくは6以上、より好ましくは10以上、更に好ましくは20以上であり、得られる樹脂組成物の機械的強度、耐熱性、及び寸法安定性の観点から、100以下であり、好ましくは75以下、より好ましくは50以下、更に好ましくは25以下である。
Figure JPOXMLDOC01-appb-C000004
〔式中、Rは炭素数3以上30以下の直鎖又は分岐鎖のアルキル基、Aは炭素数1以上6以下の直鎖又は分岐鎖の2価の飽和炭化水素基、nは0以上50以下の数を示す〕
 一般式(2A)におけるRは、炭素数3以上30以下の直鎖又は分岐鎖のアルキル基である。アルキル基の炭素数は、3以上30以下であるが、得られる樹脂組成物の機械的強度、耐熱性、及び寸法安定性の観点から、好ましくは4以上、より好ましくは6以上であり、得られる樹脂組成物の機械的強度、耐熱性、及び寸法安定性の観点から、好ましくは20以下、より好ましくは16以下、更に好ましくは12以下である。具体的には、一般式(2)で表される置換基におけるRの項に記載のものを挙げることができる。
 一般式(2A)におけるAは、炭素数1以上6以下の直鎖又は分岐鎖の2価の飽和炭化水素基であり、隣接する酸素原子とオキシアルキレン基を形成する。Aの炭素数は1以上6以下であるが、入手性及びコストの観点から、好ましくは2以上であり、同様の観点から、好ましくは4以下、より好ましくは3以下である。具体的には、一般式(2)で表される置換基におけるAの項に記載のものが例示され、なかでも、エチレン基、プロピレン基が好ましく、エチレン基がより好ましい。
 一般式(2A)におけるnは、アルキレンオキサイドの付加モル数を示す。nは0以上50以下の数であるが、入手性及びコストの観点から、好ましくは3以上、より好ましくは5以上、更に好ましくは10以上であり、同様の観点及び低極性溶媒との親和性の観点から、好ましくは40以下、より好ましくは30以下、更に好ましくは20以下、更に好ましくは15以下である。
 一般式(2A)で示される化合物の具体例としては、ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、ドデシルグリシジルエーテル、ステアリルグリシジルエーテル、ポリオキシアルキレンアルキルエーテルが挙げられる。
 前記化合物の量は、得られる改質セルロース繊維における前記一般式(1)で表される置換基及び/又は一般式(2)で表される置換基の所望の導入率により決めることができるが、反応性の観点から、セルロース系原料の無水グルコースユニットに対して、好ましくは0.01等量以上、より好ましくは0.1等量以上、更に好ましくは0.3等量以上、更に好ましくは0.5等量以上、より更に好ましくは1.0等量以上であり、製造コストの観点から、好ましくは10等量以下、より好ましくは8等量以下、更に好ましくは6.5等量以下、更に好ましくは5等量以下である。
(エーテル反応)
 前記化合物と工程II-1で得られたセルロース繊維とのエーテル反応は、工程II-1と同様にして、溶媒の存在下で両者を混合することにより行うことができる。用いる溶媒の種類、使用量や混合条件は工程1を参照することができる。
 反応温度としては、工程II-1で得られたセルロース繊維や前記置換基を有する化合物の種類及び目標とする導入率によって一概には決定されないが、反応性を向上させる観点から、好ましくは40℃以上、より好ましくは50℃以上、更に好ましくは60℃以上であり、熱分解を抑制する観点から、好ましくは120℃以下、より好ましくは110℃以下、更に好ましくは100℃以下である。
 反応時間としては、工程II-1で得られたセルロース繊維や前記置換基を有する化合物の種類及び目標とする導入率によって一概には決定されないが、反応性の観点から、好ましくは3時間以上、より好ましくは6時間以上、更に好ましくは10時間以上であり、生産性の観点から、好ましくは60時間以下、より好ましくは48時間以下、更に好ましくは36時間以下である。
 かくして、態様IIにおいて、(b)化合物を先に導入後、(a)化合物を導入することができる。一方、態様Iは、(a)化合物を先に導入後、(b)化合物を導入するが、具体的には、態様IIにおける工程II-1と工程II-2の順を逆にして行えばよい。即ち、工程I-1において、前記一般式(1)で表される置換基を有する化合物及び/又は一般式(2)で表される置換基を有する化合物((a)化合物)を工程II-2を参照にして先にセルロース系原料に反応させて、次いで、工程I-2において、得られたセルロース繊維に対して、前記一般式(3)で表される置換基を有する化合物((b)化合物)を工程II-1を参照にして反応させる。また、態様IIIは、(a)化合物と(b)化合物を導入するが、前記一般式(1)で表される置換基を有する化合物及び/又は一般式(2)で表される置換基を有する化合物と、前記一般式(3)で表される置換基を有する化合物とを同じ反応系内で、セルロース系原料に対して反応させればよい。
 また、本発明の改質セルロース繊維は、前記反応後に、例えば、セルロース系原料に対して行う前処理と同様の処理を反応物に対して行なって、チップ状やフレーク状、粉末状にしてもよい。かかる処理によって形状変化がもたらされることで、得られる本発明の改質セルロース繊維を樹脂組成物に添加した場合は、樹脂組成物の弾性率等の物性を向上させることができる。
 また更に、、本発明の改質セルロース繊維は、前記反応後に、公知の微細化処理を行って微細化してもよい。例えば、有機溶媒中で高圧ホモジナイザー等を用いた処理を行なうことで微細化することができる。また、あらかじめ微細化処理されたセルロース系原料を用いて前記した置換基の導入反応を行って微細改質セルロース繊維を得ることもできるが、機械的強度、耐熱性、及び寸法安定性の観点から、前記置換基導入の反応後に、公知の微細化処理を行って微細化することが好ましい。
 具体的には、例えば、平均繊維径が5μm以上の改質セルロース繊維を得る場合は、容器駆動式媒体ミルや媒体攪拌式ミルなどの機械処理を行なうことができる。また、平均繊維径が1nm以上500nm以下の改質セルロース繊維を得る場合は、有機溶媒中で高圧ホモジナイザー等を用いた処理を行なうことができる。
 反応後は、未反応の化合物や塩基等を除去するために、適宜後処理を行うことができる。該後処理の方法としては、例えば、未反応の塩基を酸(有機酸、無機酸など)で中和し、その後、未反応の化合物や塩基が溶解する溶媒を用いて洗浄することができる。所望により、更に乾燥(真空乾燥など)を行ってもよい。
 かくして、本発明の改質セルロース繊維が得られる。
 得られた改質セルロース繊維は、セルロース繊維表面に、一般式(1)で表される置換基及び/又は一般式(2)で表される置換基と、一般式(3)で表される置換基とがエーテル結合した状態である。具体的には、例えば、下記一般式(4)で表される改質セルロース繊維が例示される。
Figure JPOXMLDOC01-appb-C000005
〔式中、Rは同一又は異なって、水素、(A)前記一般式(1)で表される置換基及び前記一般式(2)で表される置換基から選ばれる置換基、もしくは(b)前記一般式(3)で表される置換基を示し、mは20以上3000以下の整数を示し、但し、全てのRが、同時に水素である場合、同時に置換基(A)である場合、及び同時に置換基(B)である場合を除く〕
 一般式(4)で表される改質セルロース繊維は、Rが同一又は異なって、水素、(A)前記一般式(1)で表される置換基及び前記一般式(2)で表される置換基から選ばれる置換基、もしくは、(B)前記一般式(3)で表される置換基を示すものであり、前記置換基が導入されたセルロースユニットの繰り返し構造を有するものである。繰り返し構造の繰り返し数として、一般式(4)におけるmは20以上3000以下の整数であればよく、機械的強度、耐熱性、及び寸法安定性の観点から100以上2000以下が好ましい。
[樹脂組成物]
 本発明の改質セルロース繊維は、有機溶媒への分散性に優れることから、公知の樹脂と混合して樹脂組成物とすることができる。従って、本発明はまた、熱可塑性樹脂又は硬化性樹脂と本発明の改質セルロース繊維とを含有してなる、樹脂組成物を提供する。得られる樹脂組成物は、混合する樹脂の特性に応じて加工することができるが、本発明の改質セルロース繊維が配合されることで、導入された修飾基の一方が特定鎖長のアルキル基末端を有することから、立体斥力による反発が得られると同時に、導入された修飾基の他方が前記修飾基よりも短鎖のアルキル基末端を有することから、セルロースミクロフィブリル間の水素結合による凝集を解消することにより樹脂中への分散性が高められると共に、改質セルロース繊維が結晶構造を維持したままであるため、機械的強度に優れ、更に耐熱性や寸法安定性を向上させることが可能になると考えられる。以降、混合する樹脂の種類に分けて説明する。
(態様A)
 態様Aの樹脂組成物における樹脂としては、熱可塑性樹脂又は硬化性樹脂を用いることができる。
 熱可塑性樹脂としては、ポリ乳酸樹脂等の飽和ポリエステル系樹脂;ポリエチレン系樹脂、ポリプロピレン系樹脂、ABS樹脂等のオレフィン系樹脂;トリアセチル化セルロース、ジアセチル化セルロース等のセルロース系樹脂;ナイロン樹脂;塩化ビニル樹脂;スチレン樹脂;ビニルエーテル樹脂;ポリビニルアルコール樹脂;ポリアミド系樹脂;ポリカーボネート系樹脂;ポリスルホン系樹脂等が挙げられる。硬化性樹脂としては、光硬化性樹脂及び/又は熱硬化性樹脂が好ましい。具体的には、エポキシ樹脂;(メタ)アクリル樹脂;フェノール樹脂;不飽和ポリエステル樹脂;ポリウレタン樹脂;若しくはポリイミド樹脂が挙げられる。これらの樹脂は、単独で使用してもよく、2種以上の混合樹脂として用いても良い。なお、本明細書において、(メタ)アクリル系樹脂とは、メタクリル系樹脂及びアクリル系樹脂を含むものを意味する。
 樹脂の種類によっては、光硬化及び/又は熱硬化処理を行なうことができる。
 光硬化処理は、紫外線や電子線等の活性エネルギー線照射により、ラジカルやカチオンを発生する光重合開始剤を用いることで重合反応が進行する。
 前記光重合開始剤としては、例えばアセトフェノン類、ベンゾフェノン類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物、2,3-ジアルキルシオン類化合物類、ジスルフィド化合物、チウラム化合物類、フルオロアミン化合物等が挙げられる。より具体的には、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-メチル-1[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、ベンジルメチルケトン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-ヒドロキシ-2-メチルプロパン-1-オン、ベンゾフェノン等が挙げられる。
 光重合開始剤で、例えば、単量体(単官能単量体、多官能単量体)、反応性不飽和基を有するオリゴマー又は樹脂等を重合することができる。
 前記樹脂成分にエポキシ樹脂を用いる場合は、硬化剤を使用することが好ましい。硬化剤を配合することによって、樹脂組成物から得られる成形材料を強固に成形することができ、機械的強度を向上させることができる。尚、硬化剤の含有量は、使用する硬化剤の種類により適宜設定すればよい。
 態様Aにおける樹脂としては、熱可塑性樹脂、及びエポキシ樹脂、(メタ)アクリル樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、若しくはポリイミド樹脂から選ばれる硬化性樹脂、からなる群より選ばれる1種又は2種以上の樹脂を用いることが好ましい。
 態様Aの樹脂組成物における各成分の含有量は、樹脂の種類にもよるが、下記のとおりである。
 態様Aの樹脂組成物中の樹脂の含有量は、成形体を製造する観点から、好ましくは50質量%以上、より好ましくは60質量%以上、更に好ましくは70質量%以上、更に好ましくは80質量%以上、更に好ましくは85質量%以上であり、改質セルロース繊維を含有させる観点から、好ましくは99.5質量%以下、より好ましくは99質量%以下、更に好ましくは98質量%以下、更に好ましくは95質量%以下である。
 態様Aの樹脂組成物中の改質セルロース繊維の含有量は、得られる樹脂組成物の機械的強度、寸法安定性、及び耐熱性の観点から、好ましくは0.5質量%以上、より好ましくは1質量%以上、更に好ましくは2質量%以上、更に好ましくは5質量%以上であり、得られる樹脂組成物の成形性及びコストの観点から、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下、更に好ましくは20質量%以下、更に好ましくは15質量%以下である。
 態様Aの樹脂組成物中の改質セルロース繊維量は、樹脂100質量部に対して、得られる樹脂組成物の機械的強度、寸法安定性、耐熱性の観点から、好ましくは0.5質量部以上、より好ましくは1質量部以上、更に好ましくは2質量部以上、より更に好ましくは5質量部以上であり、また、得られる樹脂組成物の成形性及びコストの観点から、好ましくは100質量部以下、より好ましくは70質量部以下、更に好ましくは45質量部以下、更に好ましくは25質量部以下、更に好ましくは20質量部以下である。
 態様Aの樹脂組成物は、前記以外の他の成分として、相溶化剤;可塑剤;結晶核剤;充填剤(無機充填剤、有機充填剤);加水分解抑制剤;難燃剤;酸化防止剤;炭化水素系ワックス類やアニオン型界面活性剤である滑剤;紫外線吸収剤;帯電防止剤;防曇剤;光安定剤;顔料;防カビ剤;抗菌剤;発泡剤;界面活性剤;でんぷん類、アルギン酸等の多糖類;ゼラチン、ニカワ、カゼイン等の天然たんぱく質;タンニン、ゼオライト、セラミックス、金属粉末等の無機化合物;香料;流動調整剤;レべリング剤;導電剤;紫外線分散剤;消臭剤等を、本発明の効果を損なわない範囲で含有することができる。相溶化剤としては、セルロースと親和性の高い極性基と樹脂と親和性の高い疎水性基からなる化合物が挙げられる。より具体的には極性基としては、例えば無水マレイン酸、マレイン酸、グリシジルメタクリレートが例示され、疎水性基としては、例えばポリプロピレン、ポリエチレン等が例示される。また同様に、本発明の効果を阻害しない範囲内で他の高分子材料や他の樹脂組成物を添加することも可能である。任意の添加剤の含有割合としては、本発明の効果が損なわれない範囲で適宜含有されても良いが、例えば、樹脂組成物中20質量%以下が好ましく、10質量%程度以下がより好ましく、5質量%程度以下がより更に好ましい。
 態様Aの樹脂組成物は、前記樹脂と改質セルロース繊維を含有するものであれば特に限定なく調製することができ、例えば、前記した樹脂と改質セルロース繊維、さらに必要により各種添加剤を含有する原料を、ヘンシェルミキサー等で攪拌、あるいは密閉式ニーダー、1軸もしくは2軸の押出機、オープンロール型混練機等の公知の混練機を用いて溶融混練又は溶媒キャスト法により調製することができる。
 態様Aの樹脂組成物の製造方法としては、前記樹脂と本発明の改質セルロース繊維を混合する工程を含むものであれば特に限定はない。例えば、以下の工程を含むものが好適な製造方法として例示される。
工程A-1)セルロース系原料に対し、塩基存在下、(a)1分子あたりの総炭素数が3以上4以下のノニオン性酸化アルキレン化合物を、エーテル結合を介して導入する工程
工程A-2)工程1で得られたセルロース繊維に対し、塩基存在下、(b)1分子あたりの総炭素数が5以上32以下のノニオン性酸化アルキレン化合物及び1分子あたりの総炭素数が5以上100以下のノニオン性グリシジルエーテル化合物から選ばれる1種又は2種以上の化合物を、エーテル結合を介して導入する工程
工程(A-3):工程(A-2)で得られた改質セルロース繊維と、熱可塑性樹脂、及びエポキシ樹脂、(メタ)アクリル樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、若しくはポリイミド樹脂から選ばれる硬化性樹脂、からなる群より選ばれる1種又は2種以上の樹脂とを混合する工程
 工程(A-1)及び工程(A-2)では、本発明の改質セルロース繊維を調製する。詳細は、本発明の改質セルロース繊維の製造方法の項を参照することができる。なお、得られた改質セルロース繊維は公知の微細化処理を行なってから、次工程に供することもできる。
 工程(A-3)では、工程(A-2)で得られた改質セルロース繊維と前記樹脂とを混合する。例えば、前記樹脂と改質セルロース繊維、さらに必要により各種添加剤を含有する原料を公知の混練機を用いて溶融混練又は溶媒キャスト法により調製することができる。溶融混練及び溶液混合の条件(温度、時間)は、用いる樹脂の種類に応じて、公知技術に従って適宜設定することができる。
 かくして得られた態様Aの樹脂組成物は、加工性が良好で、かつ、耐熱性に優れるため、日用雑貨品、家電部品、家電部品用梱包資材、自動車部品等各種用途に好適に用いることができる。
(態様B)
 また、本発明では、態様Bの樹脂組成物として、ゴム系樹脂を用いることができる。ゴム系樹脂は、強度を高めるために、補強材としてカーボンブラック配合品が汎用されているが、その補強効果にも限界があると考えられる。しかしながら、本発明では、ゴム系樹脂に本発明の改質セルロース繊維を配合することで、該樹脂中での分散性に優れることから、機械的強度、低エネルギーロス性、及び寸法安定性に優れる樹脂組成物として提供することが可能になると考えられる。
 本発明において使用するゴムは特に限定されないが、補強性の観点からジエン系ゴムが好ましい。ジエン系ゴム以外にも、ウレタンゴムやシリコーンゴム、多硫化ゴムといった非ジエン系ゴムにも用いることができる。ジエン系ゴムとしては、天然ゴム(NR)、ポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)、スチレン-ブタジエン共重合体ゴム(SBR)、ブチルゴム(IIR)、ブタジエン-アクリロニトリル共重合体ゴム(NBR)、クロロプレンゴム(CR)及び変性ゴム等が挙げられる。変性ゴムとしては、エポキシ化天然ゴム、水素化天然ゴム、水素化ブタジエン-アクリロニトリル共重合体ゴム(HNBR)等が挙げられる。これらの中では、ゴム組成物の良好な加工性と高反発弾性を両立させる観点から、天然ゴム(NR)、ポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)、スチレン-ブタジエン共重合体ゴム(SBR)、クロロプレンゴム(CR)及び変性ゴムから選ばれる1種又は2種以上が好ましく、天然ゴム(NR)、スチレン-ブタジエン共重合体ゴム(SBR)、クロロプレンゴム(CR)及び変性ゴムから選ばれる1種又は2種以上がより好ましい。ジエン系ゴムは単独で又は2種以上を組み合わせて用いることができる。
 態様Bの樹脂組成物がゴム組成物である場合、各成分の含有量は下記のとおりである。
 態様Bのゴム組成物中のゴムの含有量は、組成物の成形加工性の観点から、好ましくは30質量%以上、より好ましくは45質量%以上、更に好ましくは55質量%以上であり、改質セルロース繊維等を含有させる観点から、好ましくは95質量%以下、より好ましくは90質量%以下、さらに好ましくは80質量%以下、よりさらに好ましくは70質量%以下である。
 態様Bのゴム組成物中の改質セルロース繊維の含有量は、得られる組成物の機械的強度、低エネルギーロス性、及び寸法安定性の観点から、好ましくは1質量%以上、より好ましくは2質量%以上、更に好ましくは5質量%以上、より更に好ましくは10質量%以上であり、製造時の操作性の観点から、好ましくは30質量%以下、より好ましくは20質量%以下、更に15質量%以下である。
 態様Bのゴム組成物中の改質セルロース繊維量は、ゴム100質量部に対して、得られる機械的強度、低エネルギーロス性、及び寸法安定性の観点から、好ましくは1質量部以上、より好ましくは5質量部以上、更に好ましくは10質量部以上、より更に好ましくは15質量部以上であり、また、製造時の操作性の観点から、好ましくは30質量部以下、より好ましくは25質量部以下、更に好ましくは20質量部以下である。
 態様Bのゴム組成物には、本発明の目的が損なわれない範囲で、所望により、ゴム工業界で通常用いられる補強用充填材、加硫剤、加硫促進剤、加硫遅延剤、老化防止剤、プロセスオイル、植物油脂、スコーチ防止剤、亜鉛華、ステアリン酸、酸化マグネシウム、ワックス、フェノール樹脂等のタイヤ用、その他一般ゴム用に配合されている各種添加剤を従来の一般的な量で配合させることができる。
 補強用充填材としてはカーボンブラックやシリカ等が好適に用いられ、カーボンブラックとしては、例えば、チャネルブラック;SAF、ISAF、N-339、HAF、N-351、MAF、FEF、SRF、GPF、ECF、N-234などのファーネスブラック;FT、MTなどのサーマルブラック;アセチレンブラック等が挙げられる。カーボンブラックは、単一種で構成されていてもよく、また、複数種で構成されていてもよい。
 加硫剤としては、例えば、硫黄、硫黄化合物、オキシム類、ニトロソ化合物、ポリアミン、有機過酸化物等が挙げられる。加硫剤は、単一種だけを用いてもよく、また、複数種を組み合わせて用いてもよい。
 加硫促進剤としては、例えば、グァニジン系、アルデヒド-アミン系、アルデヒド-アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系、チウラム系、ジチオカルバメート系、ザンテート系のもの等が挙げられる。加硫促進剤は、単一種だけを用いてもよく、また、複数種を組み合わせて用いてもよい。
 加硫遅延剤としては、例えば、サリチル酸、無水フタル酸、安息香酸等の芳香族有機酸、N-ニトロソジフェニルアミン、N-ニトロソ-2,2,4-トリメチル-1,2-ジハイドロキノン、N-ニトロソフェニル-β-ナフチルアミン等のニトロソ化合物等が挙げられる。加硫遅延剤は、単一種だけを用いてもよく、また、複数種を組み合わせて用いてもよい。
 老化防止剤としては、例えば、アミン系、キノリン系、ヒドロキノン誘導体、モノフェノール系、ポリフェノール系、チオビスフェノール系、ヒンダート・フェノール系、亜リン酸エステル系のもの等が挙げられる。老化防止剤は、単一種だけを用いてもよく、また、複数種を組み合わせて用いてもよい。
 プロセスオイルとしては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルなどが挙げられる。プロセスオイルは、単一種だけを用いてもよく、また、複数種を組み合わせて用いてもよい。
 植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落下生油、木ろう、ロジン、パインオイルなどが挙げられる。植物油脂は、単一種だけを用いてもよく、また、複数種を組み合わせて用いてもよい。
 態様Bのゴム組成物は、ゴム及び前記改質セルロース繊維を含有するものであれば特に限定なく調製することができる。例えば、ゴムと改質セルロース繊維、さらに必要により各種添加剤を含有する原料を、例えばロール等の開放式混練機、バンバリーミキサー等の密閉式混練機等を用いて混合することにより調製することができる。溶融混合時の温度は通常10~200℃であり、好ましくは20~180℃である。また、有機溶媒を用いてゴムと改質セルロース繊維が溶解した溶液を調製後、有機溶媒成分を除去することで調製してもよい。
 態様Bのゴム組成物の製造方法としては、ゴムと本発明の改質セルロース繊維を混合する工程を含むものであれば特に限定はない。例えば、以下の工程を含むものが好適な製造方法として例示される。
工程B-1)セルロース系原料に対し、塩基存在下、(a)1分子あたりの総炭素数が3以上4以下のノニオン性酸化アルキレン化合物を、エーテル結合を介して導入する工程
工程B-2)工程1で得られたセルロース繊維に対し、塩基存在下、(b)1分子あたりの総炭素数が5以上32以下のノニオン性酸化アルキレン化合物及び1分子あたりの総炭素数が5以上100以下のノニオン性グリシジルエーテル化合物から選ばれる1種又は2種以上の化合物を、エーテル結合を介して導入する工程
工程(B-3):工程(B-2)で得られた改質セルロース繊維とゴムとを混合する工程
 工程(B-1)及び工程(B-2)では、本発明の改質セルロース繊維を調製する。詳細は、本発明の改質セルロース繊維の製造方法の項を参照することができる。なお、得られた改質セルロース繊維は公知の微細化処理を行なってから、次工程に供することもできる。
 工程(B-3)では、工程(B-2)で得られた改質セルロース繊維とゴムとを混合する。混合する対象は、ゴムと改質セルロース繊維のみでもよいが、さらに必要により各種添加剤を用いることが出来る。混合回数は一括でもよいが、数回に分けて混合することもでき、混合ステップごとに原料を追加していくこともできる。例えば、加硫剤以外の原料を混合する工程(練り工程A)と得られた混合物に加硫剤を混合する工程(練り工程B)を行なってもよい。また、練り工程Aと練り工程Bの間に、練り工程Aで得られた混合物の粘度を下げる目的や、各種添加剤の分散性を向上する目的で、加硫剤を混合しない状態で、練り工程Aの条件と同様にして練り工程Cを行なってもよい。混合は、例えばロール等の開放式混練機、バンバリーミキサー等の密閉式混練機等を用いた、公知の方法で行うことが出来る。また、トルエン等の有機溶媒を用いてゴムを溶解し、得られたゴム溶液と改質セルロース繊維を混ぜた後、乾燥工程により有機溶媒成分を除去することで、ゴム組成物を得ることもできる。
 態様Bのゴム組成物は、上記の方法で調製したゴム組成物を用い、必要に応じて適切な成形加工を行った後、加硫又は架橋して、各種ゴム製品用途に適用することができる。
 態様Bのゴム組成物は、加工性が良好で、かつ、良好な機械的強度を示しながらも、低エネルギーロス性に優れるため、日用雑貨品、家電部品、自動車部品等各種用途、なかでも、自動車用途に好適に用いることができる。
 また、態様Bのゴム組成物を用いたゴム製品として、例えば、工業用ゴム部品について説明する。工業用ゴム部品としてはベルトやホース等が挙げられ、これらは、必要に応じて各種添加剤を配合した本発明のゴム組成物を、未加硫の段階で各部材の形状に合わせて押し出し加工して成形することで、未加硫のゴム部品を形成した後、加硫機中で加熱加圧して各種工業用ゴム部品を製造することができる。機械的強度の向上からは基本性能向上や部品の小型化・薄肉化、低エネルギーロス性による内部発熱の減少からは耐久性などの向上、寸法安定性は加工や噛合せ精度などの向上が実現できる。
 また、態様Bのゴム組成物を用いたゴム製品として、例えば、タイヤを製造する場合、必要に応じて各種添加剤を配合した本発明のゴム組成物を、未加硫の段階でトレッドなどのタイヤの各部材の形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形し、他のタイヤ部材とともに貼り合わせ、未加硫タイヤを形成した後、加硫機中で加熱加圧してタイヤを製造することができる。機械的強度の向上からは各部材の小型化や薄肉化、低エネルギーロス性からは転がり抵抗ひいては省燃費性の向上、寸法安定性は部材組立て精度などの向上が実現できる。
 上述した実施形態に関し、本発明は、さらに、以下の改質セルロース繊維及び該改質セルロース繊維の製造方法、該改質セルロース繊維を含む樹脂組成物を開示する。
<1> (A)下記一般式(1)で表される置換基及び下記一般式(2)で表される置換基から選ばれる1種又は2種以上の置換基、ならびに
(B)下記一般式(3)で表される置換基が
それぞれ独立して、エーテル結合を介してセルロース繊維に結合しており、セルロースI型結晶構造を有する、改質セルロース繊維。
   -CH-CH(OH)-R      (1)
   -CH-CH(OH)-CH-(OA)-O-R      (2)
   -CH-CH(OH)-R      (3)
〔式中、一般式(1)及び一般式(2)におけるRはそれぞれ独立して炭素数3以上30以下の直鎖又は分岐鎖のアルキル基を示し、一般式(2)におけるnは0以上50以下の数、Aは炭素数1以上6以下の直鎖又は分岐鎖の2価の飽和炭化水素基を示し、一般式(3)におけるRは炭素数1以上2以下のアルキル基を示す〕
<2> 一般式(1)におけるRの炭素数は、好ましくは4以上、より好ましくは6以上、更に好ましくは8以上であり、好ましくは25以下、より好ましくは20以下、更に好ましくは18以上、より更に好ましくは16以下である、前記<1>記載の改質セルロース繊維。
<3> 一般式(2)におけるRの炭素数は、好ましくは4以上、より好ましくは6以上、更に好ましくは8以上であり、好ましくは27以下、より好ましくは22以下、更に好ましくは20以下、更に好ましくは18以下である、前記<1>又は<2>記載の改質セルロース繊維。
<4> 一般式(2)におけるAの炭素数は、好ましくは2以上であり、好ましくは4以下、より好ましくは3以下である、前記<1>~<3>いずれか記載の改質セルロース繊維。
<5> 一般式(2)におけるnは、好ましくは3以上、より好ましくは5以上、更に好ましくは10以上であり、好ましくは40以下、より好ましくは30以下、更に好ましくは20以下、更に好ましくは15以下である、前記<1>~<4>いずれか記載の改質セルロース繊維。
<6> 一般式(2)におけるAとnの組み合わせとしては、好ましくはAが炭素数2以上3以下の直鎖又は分岐鎖の2価の飽和炭化水素基で、nが0以上20以下の数の組み合わせであり、より好ましくはAが炭素数2以上3以下の直鎖又は分岐鎖の2価の飽和炭化水素基で、nが5以上15以下の数の組み合わせである、前記<1>~<5>いずれか記載の改質セルロース繊維。
<7> 一般式(3)におけるRはメチル基、エチル基から選ばれる、前記<1>~<6>いずれか記載の改質セルロース繊維。
<8> 一般式(1)で表される置換基としては、プロピルヒドロキシエチル基、ブチルヒドロキシエチル基、ペンチルヒドロキシエチル基、ヘキシルヒドロキシエチル基、ヘプチルヒドロキシエチル基、オクチルヒドロキシエチル基、ノニルヒドロキシエチル基、デシルヒドロキシエチル基、ウンデシルヒドロキシエチル基、ドデシルヒドロキシエチル基、ヘキサデシルヒドロキシエチル基、オクタデシルヒドロキシエチル基、イコシルヒドロキシエチル基、及びトリアコンチルヒドロキシエチル基から選ばれる基が好ましい、前記<1>~<7>いずれか記載の改質セルロース繊維。
<9> 一般式(2)で表される置換基としては、3-ヘキトキシエチレンオキシド-2-ヒドロキシ-プロピル基、3-ヘキトキシ-2-ヒドロキシ-プロピル基、3-オクトキシエチレンオキシド-2-ヒドロキシ-プロピル基、3-オクトキシ-2-ヒドロキシ-プロピル基、6-エチル―3-ヘキトキシ-2-ヒドロキシ-プロピル基、6-エチル―3-ヘキトキシエチレンオキシド-2-ヒドロキシ-プロピル基、3-デトキシエチレンオキシド-2-ヒドロキシ-プロピル基、3-デトキシ-2-ヒドロキシ-プロピル基、3-ドデトキシエチレンオキシド-2-ヒドロキシ-プロピル基、3-ドデトキシ-2-ヒドロキシ-プロピル基、3-ヘキサデトキシエチレンオキシド-2-ヒドロキシ-プロピル基、3-ヘキサデトキシ-2-ヒドロキシ-プロピル基、3-オクタデトキシエチレンオキシド-2-ヒドロキシ-プロピル基、及び3-オクタデトキシ-2-ヒドロキシ-プロピル基から選ばれる基が好ましい、前記<1>~<8>いずれか記載の改質セルロース繊維。
<10> 一般式(3)で表される置換基としては、2-ヒドロキシ-プロピル基、2-ヒドロキシ-ブチル基から選ばれる基が好ましい、前記<1>~<9>いずれか記載の改質セルロース繊維。
<11> セルロースの無水グルコースユニット1モルに対する前記一般式(1)で表される置換基及び一般式(2)で表される置換基から選ばれる置換基の導入率は、好ましくは0.001モル以上、より好ましくは0.005モル以上、更に好ましくは0.01モル以上、更に好ましくは0.05モル以上、更に好ましくは0.1モル以上、更に好ましくは0.2モル以上、更に好ましくは0.3モル以上であり、好ましくは1.5モル以下、より好ましくは1.3モル以下、更に好ましくは1.0モル以下、更に好ましくは0.8モル以下、更に好ましくは0.6モル以下、更に好ましくは0.5モル以下である、前記<1>~<10>いずれか記載の改質セルロース繊維。
<12> セルロースの無水グルコースユニット1モルに対する前記一般式(3)で表される置換基の導入率は、好ましくは1.5モル以下、より好ましくは1.0モル以下、更に好ましくは0.8モル以下であり、好ましくは0.01モル以上、より好ましくは0.02モル以上、更に好ましくは0.04モル以上である、前記<1>~<11>いずれか記載の改質セルロース繊維。
<13> 平均繊維径は、好ましくは5μm以上、より好ましくは7μm以上、更に好ましくは10μm以上であり、好ましくは100μm以下、より好ましくは70μm以下、更に好ましくは50μm以下、更に好ましくは40μm以下、更に好ましくは30μm以下である、前記<1>~<12>いずれか記載の改質セルロース繊維。
<14> 平均繊維径は、好ましくは1nm以上、より好ましくは3nm以上、更に好ましくは10nm以上、更に好ましくは20nm以上であり、好ましくは500nm以下、より好ましくは300nm以下、更に好ましくは200nm以下、更に好ましくは150nm以下、より更に好ましくは120nm以下である、前記<1>~<12>いずれか記載の改質セルロース繊維。
<15> 結晶化度は、好ましくは10%以上、より好ましくは15%以上、更に好ましくは20%以上であり、好ましくは90%以下、より好ましくは85%以下、更に好ましくは80%以下、更に好ましくは75%以下である、前記<1>~<14>いずれか記載の改質セルロース繊維。
<16> メチルホルムアミド、メチルエチルケトン、トルエンから選ばれるいずれかの有機溶媒中で、高圧ホモジナイザー(高圧湿式メディアレス微粒化装置など、例えば吉田機械社製、ナノヴェイタL-ES)により100MPaの圧力による微細分散処理を10回行って0.2質量%濃度の分散体とした際のE型粘度計(コーンローター:1°34′×R24)を用いて、25℃、1rpmの条件下で測定した粘度は、好ましくは15mPa・s以上、より好ましくは20mPa・s以上、更に好ましくは30mPa・s以上、更に好ましくは50mPa・s以上、より更に好ましくは100mPa・s以上、より更に好ましくは150mPa・s以上であり、好ましくは10,000mPa・s以下、より好ましくは8,000mPa・s以下、更に好ましくは5,000mPa・s以下である、前記<1>~<15>いずれか記載の改質セルロース繊維。
<17> セルロース系原料に対し、塩基存在下、(b)1分子あたりの総炭素数が3以上4以下のノニオン性酸化アルキレン化合物と、(a)1分子あたりの総炭素数が5以上32以下のノニオン性酸化アルキレン化合物及び1分子あたりの総炭素数が5以上100以下のノニオン性グリシジルエーテル化合物から選ばれる1種又は2種以上の化合物とを、同時に又は別々に、エーテル結合を介して導入する、改質セルロース繊維の製造方法。
<18> (a)化合物と(b)化合物の導入を同時に行う、前記<17>記載の製造方法。
<19> (a)化合物を先に導入後、(b)化合物を導入する、前記<17>記載の製造方法。
<20> (b)化合物を先に導入後、(a)化合物を導入入する、前記<17>記載の製造方法。
<21> 下記工程I-1及び工程II-2を含む、前記<17>記載の製造方法。
工程II-1)セルロース系原料に対し、塩基存在下、(b)1分子あたりの総炭素数が3以上4以下のノニオン性酸化アルキレン化合物を、エーテル結合を介して導入する工程
工程II-2)工程II-1で得られたセルロース繊維に対し、塩基存在下、(a)1分子あたりの総炭素数が5以上32以下のノニオン性酸化アルキレン化合物及び1分子あたりの総炭素数が5以上100以下のノニオン性グリシジルエーテル化合物から選ばれる1種又は2種以上の化合物を、エーテル結合を介して導入する工程
<22> セルロース系原料の平均繊維径は、好ましくは5μm以上、より好ましくは7μm以上、更に好ましくは10μm以上、更に好ましくは15μm以上であり、好ましくは10,000μm以下、より好ましくは5,000μm以下、更に好ましくは1,000μm以下、更に好ましくは500μm以下、より更に好ましくは100μm以下である、前記<17>~<21>いずれか記載の製造方法。
<23> セルロース系原料の平均繊維径は、好ましくは1nm以上、より好ましくは2nm以上、更に好ましくは3nm以上、更に好ましくは10nm以上であり、好ましくは500nm以下、より好ましくは300nm以下、更に好ましくは200nm以下、更に好ましくは100nm以下、より更に好ましくは80nm以下である、前記<17>~<21>いずれか記載の製造方法。
<24> セルロース系原料中のセルロース含有量が、好ましくは30質量%以上、より好ましくは50質量%以上、更に好ましくは70質量%以上であり、好ましくは99質量%以下、より好ましくは98質量%以下、更に好ましくは95質量%以下、更に好ましくは90質量%以下である、前記<17>~<23>いずれか記載の製造方法。
<25> セルロース系原料中の水分含有量は、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.5質量%以上、更に好ましくは1.0質量%以上、更に好ましくは1.5質量%以上、更に好ましくは2.0質量%以上であり、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下、更に好ましくは20質量%以下である、前記<17>~<24>いずれか記載の製造方法。
<26> 塩基としては、アルカリ金属水酸化物、アルカリ土類金属水酸化物、1~3級アミン、4級アンモニウム塩、イミダゾール及びその誘導体、ピリジン及びその誘導体、並びにアルコキシドからなる群より選ばれる1種又は2種以上が好ましい、前記<17>~<25>いずれか記載の製造方法。
<27> アルカリ金属水酸化物及びアルカリ土類金属水酸化物としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化カルシウム、及び水酸化バリウムからなる群より選ばれる、前記<26>記載の製造方法。
<28> 1~3級アミンとしては、エチレンジアミン、ジエチルアミン、プロリン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラメチル-1,3-プロパンジアミン、N,N,N’,N’-テトラメチル-1,6-ヘキサンジアミン、トリス(3-ジメチルアミノプロピル)アミン、N,N-ジメチルシクロヘキシルアミン、及びトリエチルアミンからなる群より選ばれる、前記<26>記載の製造方法。
<29> 4級アンモニウム塩としては、水酸化テトラブチルアンモニウム、塩化テトラブチルアンモニウム、フッ化テトラブチルアンモニウム、臭化テトラブチルアンモニウム、水酸化テトラエチルアンモニウム、塩化テトラエチルアンモニウム、フッ化テトラエチルアンモニウム、臭化テトラエチルアンモニウム、水酸化テトラメチルアンモニウム、塩化テトラメチルアンモニウム、フッ化テトラメチルアンモニウム、及び臭化テトラメチルアンモニウムからなる群より選ばれる、前記<26>記載の製造方法。
<30> イミダゾール及びその誘導体としては、1-メチルイミダゾール、3-アミノプロピルイミダゾール、及びカルボニルジイミダゾールからなる群より選ばれる、前記<26>記載の製造方法。
<31> ピリジン及びその誘導体としては、N,N-ジメチル-4-アミノピリジン、ピコリンからなる群より選ばれる、前記<26>記載の製造方法。
<32> アルコキシドとしては、ナトリウムメトキシド、ナトリウムエトキシド、カリウム-t-ブトキシドからなる群より選ばれる、前記<26>記載の製造方法。
<33> 塩基の量は、セルロース系原料の無水グルコースユニットに対して、好ましくは0.01等量以上、より好ましくは0.05等量以上、更に好ましくは0.1等量以上、更に好ましくは0.2等量以上であり、好ましくは10等量以下、より好ましくは8等量以下、更に好ましくは5等量以下、更に好ましくは3等量以下である、前記<17>~<32>いずれか記載の製造方法。
<34> (b)化合物である、一般式(3)で表される置換基を有する化合物としては、下記一般式(3A)で示されるノニオン性の酸化アルキレン化合物が好ましい、前記<17>~<33>いずれか記載の製造方法。
Figure JPOXMLDOC01-appb-C000006
〔式中、Rは炭素数1以上2以下のアルキル基を示す〕
<35> 一般式(3A)で示される化合物としては、1,2-エポキシプロパン、1,2-エポキシブタンから選ばれる、前記<34>記載の製造方法。
<36> (b)化合物の量は、セルロース系原料の無水グルコースユニットに対して、好ましくは5.0等量以下であればよく、下限は0.02等量程度である、前記<17>~<35>記載の製造方法。
<37> (b)化合物の反応温度としては、好ましくは30℃以上、より好ましくは35℃以上、更に好ましくは40℃以上であり、好ましくは120℃以下、より好ましくは110℃以下、更に好ましくは100℃以下、更に好ましくは90℃以下、更に好ましくは80℃以下、更に好ましくは70℃以下である、前記<17>~<36>いずれか記載の製造方法。
<38> (a)化合物である、一般式(1)で表される置換基を有する化合物としては、下記一般式(1A)で示されるノニオン性の酸化アルキレン化合物が好ましく、該化合物の総炭素数としては、好ましくは6以上、より好ましくは8以上であり、好ましくは22以下、より好ましくは18以下、更に好ましくは14以下、更に好ましくは12以下である、前記<17>~<37>いずれか記載の製造方法。
Figure JPOXMLDOC01-appb-C000007
〔式中、Rは炭素数3以上30以下の直鎖又は分岐鎖のアルキル基を示す〕
<39> 一般式(1A)で示される化合物としては、1,2-エポキシヘキサン、1,2-エポキシデカン、1,2-エポキシオクタデカンから選ばれる、前記<38>記載の製造方法。
<40> (a)化合物である、一般式(2)で表される置換基を有する化合物としては、下記一般式(2A)で示されるノニオン性のグリシジルエーテル化合物が好ましく、該化合物の総炭素数としては、好ましくは6以上、より好ましくは10以上、更に好ましくは20以上であり、好ましくは75以下、より好ましくは50以下、更に好ましくは25以下である、前記<17>~<39>いずれか記載の製造方法。
Figure JPOXMLDOC01-appb-C000008
〔式中、Rは炭素数3以上30以下の直鎖又は分岐鎖のアルキル基、Aは炭素数1以上6以下の直鎖又は分岐鎖の2価の飽和炭化水素基、nは0以上50以下の数を示す〕
<41> 一般式(2A)で示される化合物としては、ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、ドデシルグリシジルエーテル、ステアリルグリシジルエーテル、ポリオキシアルキレンアルキルエーテルから選ばれる、前記<40>記載の製造方法。
<42> (a)化合物の量は、セルロース系原料の無水グルコースユニットに対して、好ましくは0.01等量以上、より好ましくは0.1等量以上、更に好ましくは0.3等量以上、更に好ましくは0.5等量以上、より更に好ましくは1.0等量以上であり、好ましくは10等量以下、より好ましくは8等量以下、更に好ましくは6.5等量以下、更に好ましくは5等量以下である、前記<17>~<41>いずれか記載の製造方法。
<43> (a)化合物の反応温度としては、好ましくは40℃以上、より好ましくは50℃以上、更に好ましくは60℃以上であり、好ましくは120℃以下、より好ましくは110℃以下、更に好ましくは100℃以下である、前記<17>~<42>いずれか記載の製造方法。
<44> 下記一般式(4)で表される、前記<1>~<16>いずれか記載の改質セルロース繊維。
Figure JPOXMLDOC01-appb-C000009
〔式中、Rは同一又は異なって、水素、(A)前記一般式(1)で表される置換基及び前記一般式(2)で表される置換基から選ばれる置換基、もしくは(b)前記一般式(3)で表される置換基を示し、mは20以上3000以下の整数を示し、但し、全てのRが、同時に水素である場合、同時に置換基(A)である場合、及び同時に置換基(B)である場合を除く〕
<45> 前記<1>~<16>、<44>いずれか記載の改質セルロース繊維と熱可塑性樹脂又は硬化性樹脂を含有してなる、樹脂組成物。
<46> 熱可塑性樹脂としては、ポリ乳酸樹脂等の飽和ポリエステル系樹脂;ポリエチレン系樹脂、ポリプロピレン系樹脂、ABS樹脂等のオレフィン系樹脂;トリアセチル化セルロース、ジアセチル化セルロース等のセルロース系樹脂;ナイロン樹脂;塩化ビニル樹脂;スチレン樹脂;ビニルエーテル樹脂;ポリビニルアルコール樹脂;ポリアミド系樹脂;ポリカーボネート系樹脂;ポリスルホン系樹脂等が挙げられ、硬化性樹脂としては、光硬化性樹脂及び/又は熱硬化性樹脂が好ましく、エポキシ樹脂;(メタ)アクリル樹脂;フェノール樹脂;不飽和ポリエステル樹脂;ポリウレタン樹脂;若しくはポリイミド樹脂が挙げられる、前記<45>記載の樹脂組成物。
<47> 日用雑貨品、家電部品、家電部品用梱包資材、自動車部品等各種用途に好適に用いることができる、前記<45>又は<46>記載の樹脂組成物。
<48> 前記<1>~<16>、<44>いずれか記載の改質セルロース繊維とゴム系樹脂を含有してなる、ゴム組成物である樹脂組成物。
<49> ゴムとしては、ジエン系ゴムが好ましく、天然ゴム(NR)、ポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)、スチレン-ブタジエン共重合体ゴム(SBR)、ブチルゴム(IIR)、ブタジエン-アクリロニトリル共重合体ゴム(NBR)、クロロプレンゴム(CR)及び変性ゴム等が挙げられ、変性ゴムとしては、エポキシ化天然ゴム、水素化天然ゴム、水素化ブタジエン-アクリロニトリル共重合体ゴム(HNBR)等が挙げられる、なかでも、天然ゴム(NR)、ポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)、スチレン-ブタジエン共重合体ゴム(SBR)、クロロプレンゴム(CR)及び変性ゴムから選ばれる1種又は2種以上が好ましく、天然ゴム(NR)、スチレン-ブタジエン共重合体ゴム(SBR)、クロロプレンゴム(CR)及び変性ゴムから選ばれる1種又は2種以上がより好ましい、前記<48>記載の樹脂組成物。
<50> 日用雑貨品、家電部品、自動車部品等各種用途、なかでも、自動車用途に好適に用いることができる、前記<48>又は<49>記載の樹脂組成物。
<50> 工業用ゴム部品である、前記<48>~<50>いずれか記載の樹脂組成物。<50> タイヤである、前記<48>~<50>いずれか記載の樹脂組成物。
 以下、実施例を示して本発明を具体的に説明する。なお、この実施例は、単なる本発明の例示であり、何ら限定を意味するものではない。例中の部は、特記しない限り質量部である。なお、「常圧」とは101.3kPaを、「室温」とは25℃を示す。
置換基を有する化合物の製造例1 ステアリルグリシジルエーテルの製造
 100L反応槽に、ステアリルアルコール(花王社製、カルコール8098)10kg、テトラブチルアンモニウムブロマイド(広栄化学工業社製)0.36kg、エピクロルヒドリン(ダウケミカル社製)7.5kg、ヘキサン10kgを投入し、窒素雰囲気下で混合した。混合液を50℃に保持しながら48質量%水酸化ナトリウム水溶液(南海化学社製)12kgを30分かけて滴下した。滴下終了後、さらに50℃で4時間熟成した後、水13kgで8回水洗を繰り返し、塩及びアルカリの除去を行った。その後、槽内温度を90℃に昇温して上層からヘキサンを留去し、減圧下(6.6kPa)、さらに水蒸気を吹き込んで低沸点化合物を除去した。脱水後、槽内温度250℃、槽内圧力1.3kPaで減圧蒸留することによって、白色のステアリルグリシジルエーテル8.6kgを得た。
置換基を有する化合物の製造例2 ポリオキシアルキレンアルキルエーテル化剤の製造
 1000Lの反応槽に、ポリオキシエチレン(13)-n-アルキル(C12)エーテル(花王社製、エマルゲン120、アルキル鎖長;n-C12、オキシエチレン基のモル平均重合度;13)250kgを融解して仕込み、さらにテトラブチルアンモニウムブロミド3.8kg、エピクロルヒドリン81kg、トルエン83kgを投入して、攪拌・混合した。槽内温度を50℃に維持しつつ、攪拌しながら、48質量%水酸化ナトリウム水溶液(南海化学社製)130kgを1時間で滴下した。滴下終了後、槽内温度を50℃に維持したまま6時間、攪拌・熟成した。熟成終了後、反応混合物を水250kgで6回水洗して塩及びアルカリを除去し、その後、有機相を減圧(6.6kPa)下、90℃まで昇温し、残留するエピクロルヒドリン、溶媒及び水を留去した。減圧下、さらに水蒸気250kgを吹き込んで低沸点化合物を除去し、下式(5)の構造を有するn-アルキル(C12)ポリオキシエチレン(13)グリシジルエーテル240kgを得た。
Figure JPOXMLDOC01-appb-C000010
セルロース系原料の製造例1 アルカリ処理バガスの製造
 バガス(サトウキビの搾りかす)100質量部(乾燥重量)に対し、処理液全体として水937質量部、水酸化ナトリウム15.2質量部となるよう顆粒状の水酸化ナトリウム及びイオン交換水を加え、オートクレーブ(トミー精工社製、LSX-700)にて、温度120℃で2時間加熱処理を行った。処理後、ろ過・イオン交換水洗浄し、一昼夜70℃で真空乾燥することによりアルカリ処理バガス(繊維状、平均繊維径24μm、セルロース含有量70質量%、水分含有量3質量%)を得た。
セルロース系原料の製造例2 粉末セルロースの製造
 針葉樹の漂白クラフトパルプ(以後NBKPと略称、フレッチャー チャレンジ カナダ社製、「Machenzie」、CSF650ml、繊維状、平均繊維径24μm、セルロース含有量90質量%、水分含有量5質量%)を乾燥質量として100g計り取り、バッチ式振動ミル(中央化工機社製「MB-1」:容器全容積3.5L、ロッドとして、φ30mm、長さ218mm、断面形状が円形のSUS304製ロッドを13本使用、ロッド充填率57%)に投入し、20分間粉砕処理することで粉末セルロース(平均繊維径25μm、結晶化度35%)を得た。
実施例1<改質セルロース繊維の調製例1>
 針葉樹の漂白クラフトパルプ(NBKP)をセルロース系原料として用いた。まず、絶乾したNBKP1.5gに、6.4質量%の水酸化ナトリウム水溶液3.0g(和光純薬社製 水酸化ナトリウム顆粒及びイオン交換水により調製、NaOH0.26等量/無水グルコースユニット1等量(AGU:セルロース原料がすべて無水グルコースユニットで構成されていると仮定し算出、以下同様))及びメチルイソブチルケトン4.0g(和光純薬社製)を添加し、均一に混合した後、酸化プロピレン0.32g(和光純薬社製、0.6等量/AGU)((b)化合物)を添加し、密閉した後に50℃、24h静置反応を行った。反応後、酢酸(和工光純薬社製)で中和し、水/イソプロパノール(和光純薬社製)混合溶媒で十分に洗浄することで不純物を取り除き、さらに50℃で一晩真空乾燥を行うことで、1種類の置換基を有する改質セルロース繊維を得た。
 次に、上記で得られた改質セルロース繊維1.0gにアセトニトリル6.0g(和光純薬社製)及びN,N-ジメチル-4-アミノピリジン1.2g(和光純薬社製、DMAP、1.6等量/AGU)を添加し、均一に混合した後、置換基を有する化合物の製造例1で調製したステアリルグリシジルエーテル20.7g(6等量/AGU)((a)化合物)を添加し、密閉した後に70℃、24h静置反応を行った。反応後、酢酸で中和し、ジメチルホルミアミド(DMF)及び水/イソプロパノール混合溶媒で十分に洗浄することで不純物を取り除き、さらに50℃で一晩真空乾燥を行うことで、2種類の置換基を有する改質セルロース繊維を得た。
 得られた2種類の置換基を有する改質セルロース繊維0.1gを表1に示す溶媒49.9g中に投入し、ホモジナイザー(プライミクス社製、T.K.ロボミックス)にて3000rpm、30分間攪拌後、高圧ホモジナイザー(吉田機械社製、「ナノヴェイタL-ES」)にて100MPaで10パス処理することで微細化された改質セルロース繊維が分散した微細改質セルロース分散体(固形分濃度0.2質量%)を得た。なお、分散溶媒には和光純薬社製を用いた。
 得られた2種類の置換基を有する改質セルロース繊維0.25gを表1に示す溶媒49.75g中に投入し、同様の処理を行うことで、微細化された改質セルロース繊維が分散した微細改質セルロース分散体(固形分濃度0.5質量%)を得た。
実施例2~8及び比較例1~2<改質セルロース繊維の調製例2~7、21~22>
 置換基を有する化合物の使用量がそれぞれ表1に記載の反応量となる以外は、実施例1と同様の手法に従って導入して、改質セルロース繊維を得た。また、得られた改質セルロース繊維を用いて、実施例1と同様にして微細改質セルロース分散体を得た。
実施例9、13~16及び比較例3<改質セルロース繊維の調製例8、11~14、23>
 (a)化合物の導入条件を以下に変更した以外は、実施例2と同様の手法を用いることで、2種類の置換基を有する改質セルロース繊維を得た。また、得られた改質セルロース繊維を用いて、表2記載の溶媒中に実施例1と同様の分散処理を行なって微細改質セルロース分散体を得た。
(実施例9)
 (a)化合物:1,2-エポキシヘキサン(和光純薬社製)
 溶媒:水2.0g
 触媒:水酸化ナトリウム0.27g(1.0等量/AGU)
 反応条件:70℃、24h静置反応
 洗浄溶媒:水/イソプロパノール混合溶媒
(実施例13)
 (a)化合物:1,2-エポキシデカン
 溶媒:DMF4.0g
 触媒:DMAP1.2g(1.6等量/AGU)
 反応条件:90℃、24h静置反応
 洗浄溶媒:DMF及び水/イソプロパノール混合溶媒
(実施例14)
 (a)化合物:1,2-エポキシオクタデカン(東京化成工業社製)
 溶媒:DMF4.0g
 触媒:DMAP1.2g(1.6等量/AGU)
 反応条件:90℃、24h静置反応
 洗浄溶媒:DMF及び水/イソプロパノール混合溶媒
(実施例15)
 (a)化合物:2-エチルヘキシルグリシジルエーテル(東京化成工業社製)
 溶媒:DMF4.0g
 触媒:DMAP1.2g(1.6等量/AGU)
 反応条件:90℃、24h静置反応
 洗浄溶媒:DMF及び水/イソプロパノール混合溶媒
(実施例16)
 (a)化合物:置換基を有する化合物の製造例2で調製したポリオキシアルキレンアルキルエーテル化剤
 溶媒:アセトニトリル4.0g
 触媒:水酸化テトラブチルアンモニウム1.8g(和光純薬社製、TBAH、0.8等量/AGU)
 反応条件:70℃、24h静置反応
 洗浄溶媒:DMF及び水/イソプロパノール混合溶媒
(比較例3)
 (a)化合物:グリシジルメチルエーテル(東京化成工業社製)
 溶媒:水2.0g
 触媒:水酸化ナトリウム0.27g(1.0等量/AGU)
 反応条件:70℃、24h静置反応
 洗浄溶媒:水/イソプロパノール混合溶媒
実施例10~12<改質セルロース繊維の調製例9、10>
 表2に記載のセルロース系原料1.5gに、DMF6.0g及びDMAP1.8g(1.6等量/AGU)を添加し、均一に混合した後、1,2-エポキシデカン7.2g(和光純薬社製、5等量/AGU)((a)化合物)を添加し、密閉した後に90℃、24h静置反応を行った。反応後、酢酸で中和し、DMF及び水/イソプロパノール混合溶媒で十分に洗浄することで不純物を取り除き、さらに50℃で一晩真空乾燥を行うことで、改質セルロース繊維を得た。
 次に、上記で得られた改質セルロース繊維1.0gに6.4質量%の水酸化ナトリウム水溶液1.0g(0.26等量/AGU)及びメチルイソブチルケトン4.0gを添加し、均一に混合した後、酸化プロピレン1.0g(2.8等量/AGU)((b)化合物)を添加し、密閉した後に50℃、24h静置反応を行った。反応後、酢酸で中和し、水/イソプロパノール混合溶媒で十分に洗浄することで不純物を取り除き、さらに50℃で一晩真空乾燥を行うことで、2種類の置換基を有する改質セルロース繊維を得た。
 得られた2種類の置換基を有する改質セルロース繊維を用いて、表2記載の溶媒中に実施例1と同様の分散処理を行なって微細改質セルロース分散体を得た。
実施例17<改質セルロース繊維の調製例15>
 (b)化合物の導入条件を以下に変更した以外は、実施例2と同様の手法を用いることで、2種類の置換基を有する改質セルロース繊維を得た。また、得られた改質セルロース繊維を用いて、表2記載の溶媒中に実施例1と同様の分散処理を行なって微細改質セルロース分散体を得た。
 (b)化合物:1,2-エポキシブタン(和光純薬社製)
 溶媒:水2.0g
 触媒:水酸化ナトリウム0.27g(1.0等量/AGU)
 反応条件:70℃、24h静置反応
 洗浄溶媒:水/イソプロパノール混合溶媒
実施例18~22<改質セルロース繊維の調製例16~20>
 セルロース系原料を表3に記載のものに変更した以外は、実施例2と同様の手法を用いることで、2種類の置換基を有する改質セルロース繊維を得た。また、得られた改質セルロース繊維を用いて、表3記載の溶媒中に実施例1と同様の分散処理を行なって微細改質セルロース分散体を得た。なお、セルロース系原料の詳細については、下記に示した通りである。
 LBKP:ユーカリ由来の広葉樹漂白クラフトパルプ、CENIBRA社製、繊維状、平均繊維径24μm、セルロース含有量90質量%、水分含有量5質量%
 HYP:スプルース由来のHighYieldPulp、Rottneros社製、繊維状、平均繊維径28μm、セルロース含有量55質量%、水分含有量15質量%
 ARBOCEL:ARBOCEL BC200、レッテンマイヤー社製、粉末状、平均繊維径65μm、セルロース含有量90質量%、水分含有量5質量%
 粉末セルロース:セルロース系原料の製造例2で得られた粉末セルロース
 MFC:予めDMFに溶媒置換したミクロフィブリル化セルロース、ダイセルファインケム社製、「セリッシュ FD100-G」、固形分濃度10質量%、平均繊維径100nm以下、セルロース含有量90質量%、水分含有量3質量%
 得られた改質セルロース繊維について、置換基導入率、平均繊維径(セルロース系原料の平均繊維径も含む)、微細化後の平均繊維径、及び結晶構造の確認(結晶化度)を、下記試験例1~4の方法に従って評価した。また、分散体の特性については下記試験例5~7の方法に従って、それぞれ評価した。結果を表1~3に示す。
試験例1(置換基導入率(置換度))
 得られた改質セルロース繊維中に)
 得られた改質セルロース繊維中に含有される、疎水エーテル基の含有量%(質量%)は、Analytical Chemistry,Vol.51,No.13,2172(1979)、「第十五改正日本薬局方(ヒドロキシプロピルセルロースの分析方法の項)」等に記載の、セルロースエーテルのアルコキシ基の平均付加モル数を分析する手法として知られるZeisel法に準じて算出した。以下に手順を示す。
(i)200mLメスフラスコにn-オクタデカン0.1gを加え、ヘキサンにて標線までメスアップを行い、内標溶液を調製した。
(ii)精製、乾燥を行った改質セルロース繊維100mg、アジピン酸100mgを10mLバイアル瓶に精秤し、ヨウ化水素酸2mLを加えて密栓した。
(iii)上記バイアル瓶中の混合物を、スターラーチップにより攪拌しながら、160℃のブロックヒーターにて1時間加熱した。
(iv)加熱後、バイアルに内標溶液3mL、ジエチルエーテル3mLを順次注入し、室温で1分間攪拌した。
(v)バイアル瓶中の2相に分離した混合物の上層(ジエチルエーテル層)をガスクロマトグラフィー(SHIMADZU社製、「GC2010Plus」)にて分析した。分析条件は以下のとおりであった。
 カラム:アジレント・テクノロジー社製DB-5(12m、0.2mm×0.33μm)
 カラム温度:100℃→10℃/min→280℃(10min Hold)
 インジェクター温度:300℃、検出器温度:300℃、打ち込み量:1μL
 使用したエーテル化試薬の検出量から改質セルロース繊維中のエーテル基の含有量(質量%)を算出した。
得られたエーテル基含有量から、下記数式(1)を用いてモル置換度(MS)(無水グルコースユニット1モルに対する置換基モル量)を算出した。
(数式1)
MS=(W1/Mw)/((100-W1)/162.14)
     W1:改質セルロース繊維中のエーテル基の含有量(質量%)
     Mw:導入したエーテル化試薬の分子量(g/mol)
試験例2(改質セルロース繊維及びセルロース系原料の平均繊維径)
 改質セルロース繊維及びセルロース系原料の繊維径は、以下の手法により求めた。絶乾したサンプル約0.3gを精秤し、1.0Lのイオン交換水中で家庭用ミキサーを用いて1分間攪拌し、繊維を水中に解した。その後、さらにイオン交換水4.0Lを加え、均一になるよう攪拌した。得られた水分散液から、約50gを測定液として回収し、精秤した。得られた測定液を、メッツォオートメーション社製の「Kajaani Fiber Lab」にて分析することで、平均繊維径を得た。
試験例3(微細改質セルロース繊維の平均繊維径)
 得られた分散体を光学顕微鏡(キーエンス社製、「デジタルマイクロスコープVHX-1000」)を用い、倍率300~1000倍で観察した繊維30本以上の平均値を計測した(四捨五入して有効数字1ケタで計算)。光学顕微鏡での観察が困難な場合は、セルロース繊維分散体に溶媒をさらに加えて0.0001質量%の分散液を調製し、該分散液をマイカ(雲母)上に滴下して乾燥したものを観察試料として、原子間力顕微鏡(AFM、Nanoscope III Tapping mode AFM、Digital instrument社製、プローブはナノセンサーズ社製Point Probe (NCH)を使用)を用いて、該観察試料中のセルロース繊維の繊維高さを測定した。その際、該セルロース繊維が確認できる顕微鏡画像において、微細セルロース繊維を5本以上抽出し、それらの繊維高さから平均繊維径(分散体中の繊維径)を算出した。なお、分散体中に繊維が凝集して分析が不可能な場合を「>10000」と記載した。
試験例4(結晶構造の確認)
 改質セルロース繊維の結晶構造は、リガク社製の「RigakuRINT 2500VC X-RAY diffractometer」を用いて以下の条件で測定することにより確認した。測定条件は、X線源:Cu/Kα-radiation、管電圧:40kv、管電流:120mA、測定範囲:回折角2θ=5~45°、X線のスキャンスピード:10°/minとした。測定用サンプルは面積320mm×厚さ1mmのペレットを圧縮し作製した。また、セルロースI型結晶構造の結晶化度は得られたX線回折強度を、以下の式(A)に基づいて算出した。
  セルロースI型結晶化度(%)=[(I22.6-I18.5)/I22.6]×100  (A)
〔式中、I22.6は、X線回折における格子面(002面)(回折角2θ=22.6°)の回折強度、I18.5は,アモルファス部(回折角2θ=18.5°)の回折強度を示す〕
 一方、上記式(A)で得られる結晶化度が35%以下の場合には、算出精度の向上の観点から、「木質科学実験マニュアル」(日本木材学会編)のP199-200の記載に則り、以下の式(B)に基づいて算出することが好ましい。
 したがって、上記式(A)で得られる結晶化度が35%以下の場合には、以下の式(B)に基づいて算出した値を結晶化度として用いることができる。
  セルロースI型結晶化度(%)=[Ac/(Ac+Aa)]×100  (B)
〔式中、Acは、X線回折における格子面(002面)(回折角2θ=22.6°)、(011面)(回折角2θ=15.1°)および(0-11面)(回折角2θ=16.2°)のピーク面積の総和、Aaは,アモルファス部(回折角2θ=18.5°)のピーク面積を示し、各ピーク面積は得られたX線回折チャートをガウス関数でフィッティングすることで求める〕
試験例5(分散安定性試験)
 得られた固形分濃度0.2質量%のセルロース繊維分散液を室温で1週間静置し、沈殿物の有無を目視で確認し、以下の評価基準に基づいて評価した。
評価A:沈殿物なし
評価B:一部沈殿物を確認
評価C:全量が沈殿(完全分離)
分散安定性はA>B>Cの序列で評価され、分散安定性Aで優れた分散安定性を有していることを示す。
試験例6(粘度測定)
 得られた固形分濃度0.2質量%のセルロース繊維分散液の粘度を、E型粘度測定機(東機産業社製、「VISCOMETER TVE-35H」、コーンローター:1°34′×R24を使用)及び温度調節器(東機産業社製、「VISCOMATE VM-150III」)を用いて、25℃、1rpm、1分の条件で測定した。計測粘度が15mPa・s以上の場合に増粘効果に優れていることを示し、その値がより高い方が増粘特性に優れていることを示す。なお、粘度が測定下限以下で分析が不可能な場合を「N.D.」と記載した。
試験例7(透過率)
 得られた固形分濃度0.5質量%のセルロース繊維分散液の波長660nmにおける光線透過率を、ダブルビーム分光光度計(日立ハイテクサイエンス社製、「U―2910」を使用)及び光路長10mmの石英セルを用いて、25℃、1分の条件で測定した。計測透過率が高いほどセルロース繊維が良好に分散にしていることを示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
実施例23<アクリル樹脂コンポジットの調製例>
 実施例1で得られた2種類の置換基を有する改質セルロース繊維0.25gをトルエン49.75g中に投入し、実施例1と同様の分散処理を行うことで、微細化された2種類の置換基を有する改質セルロース繊維がトルエンに分散した微細改質セルロース分散体(固形分濃度0.5質量%)を調製した。該分散体20gと、ウレタンアクリレート樹脂であるUV-3310B(日本合成化学社製)2.0gを混合し、高圧ホモジナイザーを用いて、60MPaで1パス、100MPaで1パスを行って微細化処理を行なった。光重合開始剤として、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(和光純薬社製)を0.08g加え、自転公転式攪拌機 あわとり練太郎(シンキー社製)を用いて7分間攪拌した。得られたワニスをバーコーターを用いて塗布厚2mmで塗工した。80℃で120分乾燥し、溶媒を除去した。UV照射装置(フュージョンシステムズジャパン製、Light Hammer10)を用い200mJ/cm照射して光硬化させて、微細改質セルロース繊維を5質量%(対アクリル樹脂)含む、厚さ約0.1mmのシート状の複合材料成形体を製造した。
実施例24~43及び比較例4~5<アクリル樹脂コンポジットの調製例>
 使用した改質セルロース繊維を表4~6に記載の改質セルロース繊維に変更した以外は、実施例23と同等の処理を行うことで、微細改質セルロース繊維を5質量%(対アクリル樹脂)含む、厚さ約0.1mmのシート状の複合材料成形体を製造した。
参考例1<アクリル樹脂ブランク>
 改質セルロース繊維分散体の代わりにトルエン10mLを使用し、塗布厚を0.5mmに変更した以外は、実施例23と同等の処理を行うことで厚さ約0.1mmのシート状のアクリル樹脂成形体を製造した。
実施例44<エポキシ樹脂コンポジットの調製例>
 実施例2で得られた2種類の置換基を有する改質セルロース繊維0.25gをMEK49.75g中に投入し、実施例1と同様の分散処理を行うことで、微細化された改質セルロース繊維がMEKに分散した微細改質セルロース分散体(固形分濃度0.5質量%)を調製した。該分散体25gと、エポキシ樹脂であるjER828(三菱化学社製)2.5gを混合し、高圧ホモジナイザーを用いて、60MPaで1パス、100MPaで1パスを行って微細化処理を行なった。得られた溶液に対して、硬化剤として2-エチル-4-メチルイミダゾール(和光純薬社製)を0.4g加え、自転公転式攪拌機 あわとり練太郎を用いて7分間攪拌した。得られたワニスをバーコーターを用いて塗布厚2mmで塗工した。100℃で1時間乾燥し、溶媒を除去した後、150℃2時間で熱硬化させて、微細改質セルロース繊維を5質量%(対エポキシ樹脂)含む、厚さ約0.2mmのシート状の複合材料成形体を製造した。
参考例2<エポキシ樹脂ブランク>
 改質セルロース繊維分散体の代わりにMEK10mLを使用し、塗布厚を0.5mmに変更した以外は、実施例44と同等の処理を行うことで厚さ約0.2mmのシート状のエポキシ樹脂成形体を製造した。
実施例45<ポリスチレン樹脂コンポジットの調製例>
 実施例2で得られた2種類の置換基を有する改質セルロース繊維0.50gをMEK49.50g中に投入し、ホモジナイザーにて3000rpm、30分間攪拌後、高圧ホモジナイザーにて100MPaで10パス処理することで微細化された改質セルロース繊維がMEKに分散した微細改質セルロース分散体(固形分濃度1.0質量%)を得た。該分散体7.5g、ポリスチレン樹脂(シグマアルドリッチ社製、数平均分子量170,000、製造番号441147-1KG)1.5g、MEK30gを混合し、マグネチックスターラーを用い、室温、1500rpmで12時間攪拌した後、高圧ホモジナイザーを用いて、60MPaで1パス、100MPaで1パスを行って、微細化処理を行なった。その後、自転公転式攪拌機 あわとり練太郎を用いて7分間攪拌した。得られたワニスを直径9cmのガラス製シャーレに投入し、100℃で12時間乾燥し、溶媒を除去することで、微細改質セルロース繊維を5質量%(対ポリスチレン樹脂)含む、厚さ約0.2mmのシート状の複合材料成形体を製造した。
参考例3<ポリスチレン樹脂ブランク>
 改質セルロース繊維分散体の代わりにMEK15gを使用した以外は、実施例45と同等の処理を行うことで厚さ約0.2mmのシート状のポリスチレン樹樹脂成形体を製造した。
実施例46<ポリエチレン樹脂コンポジットの調製例>
 ポリエチレン(日本ポリエチレン社製、:ノバッテックLL UF641)80gと実施例2で得られた2種類の置換基を有する改質セルロース繊維8.0gを順次添加し、混練機(東洋精機社製、:ラボプラストミル)を用いて、回転数50rpm、240℃で8分混練して均一混合物を得た。該均一混合物を、プレス機(東洋精機社製、「ラボプレス」)を用いて、240℃、0.4MPaにて1分、20MPaにて1分、次に80℃、0.4MPaにて1分の条件で順次プレスし、改質セルロース繊維を10質量%(対ポリエチレン樹脂)含む、厚さ約0.4mmのシート状の複合材料成形体を製造した。
参考例4<ポリエチレンブランク>
 改質セルロース繊維を用いなかった以外は、実施例46と同等の処理を行うことで厚さ約0.4mmのシート状のポリエチレン樹脂成形体を製造した。
実施例47<ゴム系樹脂コンポジット(キャスト法)の調製例>
 実施例2で得られた2種類の置換基を有する改質セルロース繊維0.50gをトルエン49.50g中に投入し、ホモジナイザー(プライミクス社製、T.K.ロボミックス)にて3000rpm、30分間攪拌後、高圧ホモジナイザー(吉田機械社製、「ナノヴェイタL-ES」)にて100MPaで10パス処理することで微細化された改質セルロース繊維がトルエンに分散した微細改質セルロース分散体(固形分濃度1.0質量%)を得た。該分散体10gと、スチレン-ブタジエン共重合体SBR2.0g、ステアリン酸0.04g、酸化亜鉛0.06g、硫黄0.03g、(N-(tert-ブチル)-2-ベンゾチアゾリルスルフェンアミン(TBBS)0.01g、ジ-2-ベンゾチアゾリルジスルフィド(MBTS)0.01g、1,3-ジフェニルグアニジン(DPG)0.01g、トルエン30gを入れ、室温(25℃)で2時間攪拌した。溶解したことを確認した後、得られた溶液を高圧ホモジナイザーを用いて、60MPaで1パス、100MPaで1パス微細処理させた。得られた分散液を直径9cmのガラス製シャーレに注ぎ、2日間室温・常圧でトルエンを除去した。その後、真空乾燥機(室温)で12時間乾燥させ、150℃で1時間加硫を行うことで、厚さ約0.2mmの加硫ゴムシートを調製した。
実施例48~51<ゴム系樹脂コンポジット(キャスト法)の調製例>
 使用した改質セルロース繊維及び配合組成を表10に記載のように変更した以外は、実施例47と同等の処理を行うことで、微細改質セルロース繊維を1~10質量%(対ゴム系樹脂樹脂)含む、厚さ約0.2mmの加硫ゴムシートを調製した。
参考例5<SBRブランク(キャスト法)>
 改質セルロース繊維を用いなかった以外は、実施例47と同等の処理を行うことで厚さ約0.2mmの加硫ゴムシートを製造した。
実施例52<ゴム系樹脂コンポジット(混練法)の調製例>
 実施例1で得られた2種類の置換基を有する改質セルロース繊維を用いてゴム組成物を製造した。ゴムとしては、スチレン-ブタジエン共重合体SBRを使用した。表11に示す配合組成において、加硫促進剤と硫黄を除く成分を50ミリリットルの密閉型ミキサーで6分間混練し、温度が150℃に達したときに容器を解放してゴム組成物を得た(練り工程A)。該ゴム組成物に加硫促進剤(TBBS、MBTS、DPG、酸化亜鉛)と硫黄とを加えて50ミリリットルの密閉型ミキサーで3分間混練し、温度が100℃に達したときに容器を解放して未加硫のゴム組成物を得た(練り工程B)。得られたゴム組成物を15×15×0.2cmの金型中で145℃で20分間加硫処理をして、厚さ約0.2mmの加硫ゴムシートを調製した。
実施例53~73及び比較例6<ゴム系樹脂コンポジット(混練法)の調製例>
 使用した改質セルロース繊維及び各種配合組成を表11~14に記載のように変更した以外は、実施例52と同等の処理を行うことで、微細改質セルロース繊維を1~10質量%(対ゴム系樹脂樹脂)含む、厚さ約0.2mmの加硫ゴムシートを調製した。
実施例74<ゴム系樹脂コンポジット(混練法)の調製例>
 使用した改質セルロース繊維を、実施例3で調製した改質セルロース繊維のバッチ式振動ミル粉砕物(振動ミル装置:中央化工機社製「MB-1」、容器全容積3.5L、ロッドとして、φ30mm、長さ218mm、断面形状が円形のSUS304製ロッドを13本使用、ロッド充填率57%、処理時間20分、サンプル仕込み100g)に変えた以外は、実施例73と同等の処理を行うことで、厚さ約0.2mmの加硫ゴムシートを調製した。
実施例75<ゴム系樹脂コンポジット(混練法)の調製例>
 使用した改質セルロース繊維を、実施例3で調製した改質セルロース繊維のバッチ式振動ミル粉砕物(実施例74と同様にして調製)に変え、練り工程Aと練り工程Bの間に、練り工程Aで得られた該ゴム組成物をさらに密閉型ミキサーで6分間混練し、温度が150℃に達したときに容器を解放してゴム組成物を得る工程(練り工程C)を加えた以外は、実施例73と同等の処理を行うことで、厚さ約0.2mmの加硫ゴムシートを調製した。
実施例76<ゴム系樹脂コンポジット(混練法)の調製例>
 使用した改質セルロース繊維を、実施例3で調製した改質セルロース繊維のバッチ式振動ミル粉砕物(サンプル仕込み50g、粉砕助剤としてイオン交換水25gを更に添加して処理する以外は実施例74と同じ)に変えた以外は、実施例73と同等の処理を行うことで、厚さ約0.2mmの加硫ゴムシートを調製した。
実施例77<ゴム系樹脂コンポジット(混練法)の調製例>
 使用した改質セルロース繊維を、実施例3で調製した改質セルロース繊維のバッチ式振動ミル粉砕物(実施例76と同等の処理)に変え、練り工程Aと練り工程Bの間に、練り工程Aで得られた該ゴム組成物をさらに密閉型ミキサーで6分間混練し、温度が150℃に達したときに容器を解放してゴム組成物を得る工程(練り工程C)を加えた以外は、実施例73と同等の処理を行うことで、厚さ約0.2mmの加硫ゴムシートを調製した。
実施例78<ゴム系樹脂コンポジット(混練法)の調製例>
 練り工程Aの際に相溶化剤としてOREVAC OE808(アルケマ社製)2質量部(対SBR100質量部)を更に加えた以外は、実施例73と同等の処理を行うことで、厚さ約0.2mmの加硫ゴムシートを調製した。
実施例79<ゴム系樹脂コンポジット(混練法)の調製例>
 練り工程Aの際にシランカップリング剤としてSi69(エボニックインダストリー社製)2質量部(対SBR100質量部)を更に加えた以外は、実施例73と同等の処理を行うことで、厚さ約0.2mmの加硫ゴムシートを調製した。
実施例80<ゴム系樹脂コンポジット(混練法)の調製例>
 使用するゴムを天然ゴム(NR、番手:RSS3号)に変えた以外は、実施例73と同等の処理を行うことで、厚さ約0.2mmの加硫ゴムシートを調製した。
実施例81<ゴム系樹脂コンポジット(混練法)の調製例>
 カーボンブラックの配合量を表15に記載の組成に変えた以外は、実施例80と同等の処理を行うことで、厚さ約0.2mmの加硫ゴムシートを調製した。
実施例82<ゴム系樹脂コンポジット(混練法)の調製例>
 使用した改質セルロース繊維を、実施例3で調製した改質セルロース繊維のバッチ式振動ミル粉砕物(実施例74と同等の処理)に変えた以外は、実施例81と同等の処理を行うことで、厚さ約0.2mmの加硫ゴムシートを調製した。
実施例83<ゴム系樹脂コンポジット(混練法)の調製例>
 使用した改質セルロース繊維を、実施例3で調製した改質セルロース繊維のバッチ式振動ミル粉砕物(実施例76と同等の処理)に変えた以外は、実施例81と同等の処理を行うことで、厚さ約0.2mmの加硫ゴムシートを調製した。
実施例84<ゴム系樹脂コンポジット(混練法)の調製例>
 使用した改質セルロース繊維を、実施例3で調製した改質セルロース繊維のバッチ式振動ミル粉砕物(実施例76と同等の処理)に変え、練り工程Aと練り工程Bの間に密閉型ミキサーで6分間混練し、温度が150℃に達したときに容器を解放してゴム組成物を得る工程(練り工程C)を加えた以外は、実施例81と同等の処理を行うことで、厚さ約0.2mmの加硫ゴムシートを調製した。
参考例6<SBRブランク(混練法)>
 改質セルロース繊維を用いなかった以外は、実施例52と同等の処理を行うことで厚さ約0.2mmの加硫ゴムシートを製造した。
参考例7<カーボンブラック添加SBRブランク(混練法)>
 改質セルロース繊維を用いなかった以外は、実施例72と同等の処理を行うことで厚さ約0.2mmの加硫ゴムシートを製造した。
参考例8<NRブランク(混練法)>
 改質セルロース繊維を用いなかった以外は、実施例80と同等の処理を行うことで厚さ約0.2mmの加硫ゴムシートを製造した。
参考例9<カーボンブラック添加NRブランク(混練法)>
 改質セルロース繊維を用いなかった以外は、実施例81と同等の処理を行うことで厚さ約0.2mmの加硫ゴムシートを製造した。
 得られた成形体の特性を、下記試験例8~12の方法に従って、それぞれ評価した。結果を表4~15に示す。
試験例8(貯蔵弾性率)
 動的粘弾性装置(SII社製、「DMS6100」)を用いて、得られた成形体から幅5mm、長さ20mmで切り出した短冊型サンプルの貯蔵弾性率を、窒素雰囲気下、周波数1Hzで、-50℃から200℃まで、1分間に2℃の割合で温度を上昇させて、引張モードで計測した。表中に記載の貯蔵弾性率は括弧内の温度における値であり、貯蔵弾性率(MPa)が高いほど強度に優れることから、高温時の強度が高い程耐熱性に優れることを示す。
試験例9(線熱膨張係数(CTE))
 熱応力歪測定装置(セイコー電子社製、「EXSTAR TMA/SS6100」)を用いて、幅3mm、長さ20mmの短冊型サンプルを窒素雰囲気下1分間に5℃の割合で温度を上昇させて引張モードで荷重を25gで計測した。線熱膨張係数(CTE)は所定の温度範囲での平均線熱膨張係数を算出して得た。表中に記載の括弧内の数値は算出に用いた温度範囲を示し、CTEが低い方が寸法安定性に優れていることを示す。
試験例10(引張弾性率)
 25℃の恒温室において、引張圧縮試験機(SHIMADZU社製、「Autograph AGS-X」)を用いて、JIS K7113に準拠して、成形体の引張弾性率を引張試験によって測定した。2号ダンベルで打ち抜いたサンプルを支点間距離80mmでセットし、クロスヘッド速度10mm/minで測定した。引張弾性率がより高い方が機械的強度に優れていることを示す。
試験例11(相対貯蔵弾性率)
 動的粘弾性装置(SII社製、「DMS6100」)を用いて、得られたシートから幅5mm、長さ20mmで切り出した短冊型サンプルの貯蔵弾性率及びtanδを、窒素雰囲気下、周波数1Hzで、-50℃から200℃まで、1分間に2℃の割合で温度を上昇させて、引張モードで計測した。得られた貯蔵弾性率及びtanδの値から、対応する参考例の値を100とした時の相対弾性率、相対tanδの値として算出した。対応する参考例との相対貯蔵弾性率が高いほど強度に優れていることを示す。また、対応する参考例との相対tanδの値が小さいほど、変形時のエネルギーの熱変換が少なく低エネルギーロス性に優れていることを示す。
試験例12(相対線熱膨張係数(相対CTE))
 熱応力歪測定装置(セイコー電子社製、「EXSTAR TMA/SS6100」)を用いて、幅3mm、長さ20mmの短冊型サンプルを窒素雰囲気下1分間に5℃の割合で温度を上昇させて引張モードで荷重を50gで計測した。線熱膨張係数(CTE)は80℃での値を用いた。得られたCTEの値を対応する参考例の値を100とした時の相対CTEの値として算出した。対応する参考例との相対CTEが小さい方が寸法安定性に優れていることを示す。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
 表1~3より、本発明の改質セルロース繊維は、低極性有機溶媒中への分散安定性及び増粘作用に優れていることがわかる。また、表4~15より、該改質セルロース繊維を樹脂と複合化することにより、樹脂の種類や複合化の方法を問わず、幅広い適用範囲において高い強度や寸法安定性を発現可能なことがわかる。なかでも、高温下での溶融混練を経て得られた樹脂組成物が高い強度を示すことから(実施例46)、本発明の改質セルロース繊維は熱的安定性が高いことが示唆される。
 本発明の改質セルロース繊維は、有機溶媒や樹脂に対して高い分散性を有し、増粘効果や強度増強効果を発現させることができるものであり、各種増粘剤や充填剤等として好適である。また、該改質セルロース繊維を配合した樹脂組成物は、日用雑貨品、家電部品、家電部品用梱包資材、自動車部品等の様々な工業用途に好適に使用することができる。

Claims (12)

  1.  (A)下記一般式(1)で表される置換基及び下記一般式(2)で表される置換基から選ばれる1種又は2種以上の置換基、ならびに
    (B)下記一般式(3)で表される置換基が
    それぞれ独立して、エーテル結合を介してセルロース繊維に結合しており、セルロースI型結晶構造を有する、改質セルロース繊維。
       -CH-CH(OH)-R      (1)
       -CH-CH(OH)-CH-(OA)-O-R      (2)
       -CH-CH(OH)-R      (3)
    〔式中、一般式(1)及び一般式(2)におけるRはそれぞれ独立して炭素数3以上30以下の直鎖又は分岐鎖のアルキル基を示し、一般式(2)におけるnは0以上50以下の数、Aは炭素数1以上6以下の直鎖又は分岐鎖の2価の飽和炭化水素基を示し、一般式(3)におけるRは炭素数1以上2以下のアルキル基を示す〕
  2.  下記一般式(4)で表される改質セルロース繊維である、請求項1に記載の改質セルロース繊維。
    Figure JPOXMLDOC01-appb-C000001
    〔式中、Rは同一又は異なって、水素、(A)前記一般式(1)で表される置換基及び前記一般式(2)で表される置換基から選ばれる置換基、もしくは(B)前記一般式(3)で表される置換基を示し、mは20以上3000以下の整数を示し、但し、全てのRが、同時に水素である場合、同時に置換基(A)である場合、及び同時に置換基(B)である場合を除く〕
  3.  一般式(1)で表される置換基及び一般式(2)で表される置換基から選ばれる置換基の導入率が無水グルコースユニット1モルに対し0.001モル以上1.5モル以下である、請求項1又は2に記載の改質セルロース繊維。
  4.  一般式(2)で表される置換基における、nが0以上20以下の数、Aが炭素数2以上3以下の直鎖又は分岐鎖の2価の飽和炭化水素基である、請求項1~3いずれかに記載の改質セルロース繊維。
  5.  平均繊維径が5μm以上である、請求項1~4いずれかに記載の改質セルロース繊維。
  6.  平均繊維径が1nm以上500nm以下である、請求項1~4いずれかに記載の改質セルロース繊維。
  7.  セルロース系原料に対し、塩基存在下、(b)1分子あたりの総炭素数が3以上4以下のノニオン性酸化アルキレン化合物と、(a)1分子あたりの総炭素数が5以上32以下のノニオン性酸化アルキレン化合物及び1分子あたりの総炭素数が5以上100以下のノニオン性グリシジルエーテル化合物から選ばれる1種又は2種以上の化合物とを、同時に又は別々に、エーテル結合を介して導入する、改質セルロース繊維の製造方法。
  8.  下記工程II-1及び工程II-2を含む、請求項7に記載の製造方法。
    工程II-1)セルロース系原料に対し、塩基存在下、(b)1分子あたりの総炭素数が3以上4以下のノニオン性酸化アルキレン化合物を、エーテル結合を介して導入する工程
    工程II-2)工程II-1で得られたセルロース繊維に対し、塩基存在下、(a)1分子あたりの総炭素数が5以上32以下のノニオン性酸化アルキレン化合物及び1分子あたりの総炭素数が5以上100以下のノニオン性グリシジルエーテル化合物から選ばれる1種又は2種以上の化合物を、エーテル結合を介して導入する工程
  9.  塩基が、アルカリ金属水酸化物、アルカリ土類金属水酸化物、1~3級アミン、4級アンモニウム塩、イミダゾール及びその誘導体、ピリジン及びその誘導体、並びにアルコキシドから選ばれる1種又は2種以上である、請求項7又は8に記載の製造方法。
  10.  塩基の量が、セルロース系原料中の無水グルコースユニットに対し0.01等量以上10等量以下である、請求項7~9いずれかに記載の製造方法。
  11.  熱可塑性樹脂又は硬化性樹脂と請求項1~6いずれかに記載の改質セルロース繊維とを含有してなる、樹脂組成物。
  12.  熱可塑性樹脂又は硬化性樹脂が、熱可塑性樹脂、及びエポキシ樹脂、(メタ)アクリル樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、若しくはポリイミド樹脂から選ばれる硬化性樹脂、からなる群より選ばれる1種又は2種以上の樹脂である、請求項11記載の樹脂組成物。
PCT/JP2016/076057 2015-09-07 2016-09-05 改質セルロース繊維 WO2017043454A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680051555.6A CN107949577B (zh) 2015-09-07 2016-09-05 改性纤维素纤维
EP16844315.8A EP3348581A4 (en) 2015-09-07 2016-09-05 MODIFIED CELLULOSE FIBERS
US15/757,700 US10906993B2 (en) 2015-09-07 2016-09-05 Modified cellulose fibers

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2015-176047 2015-09-07
JP2015-176045 2015-09-07
JP2015-176046 2015-09-07
JP2015176045 2015-09-07
JP2015176048 2015-09-07
JP2015176046 2015-09-07
JP2015-176048 2015-09-07
JP2015176047 2015-09-07

Publications (1)

Publication Number Publication Date
WO2017043454A1 true WO2017043454A1 (ja) 2017-03-16

Family

ID=58240648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076057 WO2017043454A1 (ja) 2015-09-07 2016-09-05 改質セルロース繊維

Country Status (5)

Country Link
US (1) US10906993B2 (ja)
EP (1) EP3348581A4 (ja)
JP (1) JP6894681B2 (ja)
CN (1) CN107949577B (ja)
WO (1) WO2017043454A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210384A (ja) * 2018-06-05 2019-12-12 花王株式会社 アスファルト組成物
JP7209889B1 (ja) 2022-09-12 2023-01-20 第一工業製薬株式会社 二液硬化型ポリウレタン樹脂組成物

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3348619A4 (en) 2015-09-07 2019-05-01 Kao Corporation RESIN COMPOSITION
CN108026337B (zh) 2015-09-07 2021-06-01 花王株式会社 橡胶组合物
JP6856992B2 (ja) * 2015-09-07 2021-04-14 花王株式会社 改質セルロース繊維
JP6404382B2 (ja) * 2017-02-28 2018-10-10 大王製紙株式会社 セルロース微細繊維及びその製造方法
JP6857562B2 (ja) * 2017-06-28 2021-04-14 第一工業製薬株式会社 化学修飾セルロース繊維
JP7025852B2 (ja) * 2017-07-04 2022-02-25 第一工業製薬株式会社 電極塗工液用分散剤、該電極塗工液用分散剤を含む電極塗工液組成物、該電極塗工液組成物を用いて作製された蓄電デバイス用電極、および該電極を備える蓄電デバイス
JP6971085B2 (ja) * 2017-08-17 2021-11-24 日本曹達株式会社 グリシジルエーテル変性ポリブタジエンまたはグリシジルエーテル変性水素添加ポリブタジエンの製造方法
US20210230795A1 (en) * 2018-06-12 2021-07-29 Kao Corporation Method for producing modified cellulose fiber, and modified cellulose fiber
CA3106777A1 (en) * 2018-07-19 2020-02-27 Kemira Oyj Granular cellulose product
KR102120710B1 (ko) * 2019-03-22 2020-06-10 재단법인대구경북과학기술원 혼성 셀룰로스 에테르의 제조방법
JP7250602B2 (ja) * 2019-04-18 2023-04-03 花王株式会社 樹脂組成物の製造方法
US20220213229A1 (en) 2019-05-29 2022-07-07 Kao Corporation Method for producing modified cellulose

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312401A (ja) * 1989-06-09 1991-01-21 Shin Etsu Chem Co Ltd 変性水溶性セルロースエーテルの製造方法
JPH069702A (ja) * 1992-06-25 1994-01-18 Shin Etsu Chem Co Ltd 変性セルロースエーテルの製造方法
JPH08169901A (ja) * 1994-12-21 1996-07-02 Shiseido Co Ltd 新規セルロース誘導体
JP2012148962A (ja) * 2010-12-27 2012-08-09 Shin-Etsu Chemical Co Ltd セラミック押出成形用バインダー及び組成物

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4228277A (en) 1979-02-12 1980-10-14 Hercules Incorporated Modified nonionic cellulose ethers
JPH02142814A (ja) 1988-11-24 1990-05-31 Hitachi Chem Co Ltd 強化樹脂組成物
CA2008935C (en) 1989-01-31 1999-02-16 George L. Ii Brode Polysaccharides with alkyl-aryl aromatic hydrophobes and latex compositions containing same
US5488104A (en) * 1994-06-30 1996-01-30 The Dow Chemical Company Process for comminuting cellulose ethers
US5504123A (en) 1994-12-20 1996-04-02 Union Carbide Chemicals & Plastics Technology Corporation Dual functional cellulosic additives for latex compositions
EP0765911A3 (de) * 1995-09-26 1998-05-20 Bayer Ag Mit Verstärkungsstoffen gefüllte biologisch abbaubare Kunststoffe
JPH09169901A (ja) * 1995-12-19 1997-06-30 Teijin Ltd ポリカーボネート系樹脂溶液組成物およびフィルムの製造方法
DE19548323A1 (de) 1995-12-22 1997-06-26 Bayer Ag Thermoplastische verarbeitbare, biologisch abbaubare Formmassen
DE19730090A1 (de) * 1997-07-14 1999-01-21 Wolff Walsrode Ag Neuartige Celluloseether und Verfahren zu deren Herstellung
US6248880B1 (en) 1998-08-06 2001-06-19 Akzo Nobel Nv Nonionic cellulose ether with improve thickening properties
SE514347C2 (sv) 1998-08-06 2001-02-12 Akzo Nobel Nv Nonjonisk cellulosaeter och dess användning som förtjockningsmedel i färgkompositioner
FR2784107B1 (fr) 1998-09-15 2005-12-09 Rhodia Chimie Sa Microfibrilles de cellulose a surface modifiee, leur procede de preparation, et leur utilisation
US6669863B1 (en) * 1998-12-11 2003-12-30 Akzo Nobel N.V. Anionic cellulose ethers having temperature-dependent associative properties
ATE382079T1 (de) 1999-01-13 2008-01-15 Procter & Gamble Cellulosepolymer enthaltendes waschmittel
FR2800378A1 (fr) 1999-11-03 2001-05-04 Saint Louis Sucre Sa Microfibrilles de cellulose i comportant des groupements ethers substitues en surface a des groupements hydroxyles, leur procede de preparation et leur utilisation
AU2003226136A1 (en) * 2002-06-12 2003-12-31 Dow Global Technologies Inc. Cementitious composition
SE526356C2 (sv) 2003-12-15 2005-08-30 Akzo Nobel Nv Associativa vattenlösliga cellulosaetrar
KR101153674B1 (ko) * 2004-06-30 2012-06-18 신에쓰 가가꾸 고교 가부시끼가이샤 섬유의 개질 방법
WO2007056070A2 (en) * 2005-11-04 2007-05-18 Hercules Incorporated Ether derivatives of raw cotton linters for water-borne coatings
US20070249825A1 (en) * 2006-04-21 2007-10-25 Sau Arjun C Decolorized raw cotton linters and preparation of ether derivatives therefrom
JP5398180B2 (ja) 2007-06-11 2014-01-29 国立大学法人京都大学 リグニン含有ミクロフィブリル化植物繊維及びその製造方法
EP2098539B1 (en) * 2008-03-03 2017-05-10 SE Tylose GmbH & Co.KG Homogeneous synthesis of cellulose ethers in ionic liquids
JP2009261993A (ja) 2008-04-22 2009-11-12 Fujifilm Corp 多糖類の微細化方法、多糖類の修飾方法、多糖類、樹脂強化剤および樹脂組成物
JP5350953B2 (ja) 2008-09-30 2013-11-27 株式会社ダイセル 疎水化されたセルロース系繊維を含む樹脂組成物及びその製造方法
JP5676860B2 (ja) 2008-10-02 2015-02-25 株式会社Kri 多糖類ナノファイバーとその製造方法、多糖類ナノファイバー含むイオン液体溶液と複合材料
JP5510092B2 (ja) 2009-06-12 2014-06-04 国立大学法人京都大学 修飾セルロース繊維分散液の製造方法及びセルロース複合材料の製造方法
JP5470032B2 (ja) * 2009-08-12 2014-04-16 富士フイルム株式会社 セルロース誘導体、熱成形材料、成形体及びその製造方法並びに電気電子機器用筐体
US8916699B2 (en) * 2009-10-05 2014-12-23 Nec Corporation Cellulose resin and method for producing the same
WO2011071156A1 (ja) 2009-12-11 2011-06-16 花王株式会社 複合材料
JP5944098B2 (ja) 2009-12-11 2016-07-05 花王株式会社 微細セルロース繊維複合体、微細セルロース繊維分散液及び複合材料
US20110177018A1 (en) * 2010-01-15 2011-07-21 Paul Martin Lipic Personal Care Compositions Comprising A Hydrophobically Modified Cationic Polysaccharide
JP5677754B2 (ja) 2010-03-05 2015-02-25 オリンパス株式会社 セルロースナノファイバーとその製造方法、複合樹脂組成物、成形体
JP5031054B2 (ja) 2010-03-18 2012-09-19 信越化学工業株式会社 低置換度ヒドロキシプロピルセルロース及びこれを含む固形製剤
JP5712422B2 (ja) * 2010-04-01 2015-05-07 三菱化学株式会社 微細セルロース繊維分散液の製造方法
US9416199B2 (en) * 2011-05-02 2016-08-16 Kao Corporation Method for producing alkali cellulose
CN104010695B (zh) * 2011-09-29 2017-09-15 罗门哈斯公司 含有疏水改性羟乙基纤维素的个人护理组合物和方法
BR112014007230A2 (pt) * 2011-09-29 2017-04-04 Dow Global Technologies Llc composição aquosa de cimentação e método para cimentar um tubo de revestimento de perfuração de um poço
WO2014087968A1 (ja) * 2012-12-03 2014-06-12 花王株式会社 カチオン性基含有セルロースエーテル
JP6146115B2 (ja) 2013-05-09 2017-06-14 株式会社ブリヂストン セルロース繊維、ゴム組成物、加硫ゴム組成物およびタイヤ
JP2015052104A (ja) 2013-08-08 2015-03-19 花王株式会社 カチオン化セルロース誘導体の製造方法
WO2015023296A1 (en) * 2013-08-16 2015-02-19 Halliburton Energy Services, Inc. Hydrophobically and hydrophilically modified polysaccharides and methods of using the same for treatment of a subterranean formation
CN106414505B (zh) 2013-09-06 2020-08-11 芬兰国家技术研究中心股份公司 表面改性的纤维素纳米纤维、生物复合树脂组合物及其制造方法
EP3055318A4 (en) * 2013-10-07 2017-05-03 Hercules Incorporated Dihydroxyalkyl substituted polygalactomannan, and methods for producing and using the same
WO2017043450A1 (ja) 2015-09-07 2017-03-16 花王株式会社 改質セルロース繊維
JP6856992B2 (ja) * 2015-09-07 2021-04-14 花王株式会社 改質セルロース繊維
CN108026337B (zh) 2015-09-07 2021-06-01 花王株式会社 橡胶组合物
EP3348619A4 (en) 2015-09-07 2019-05-01 Kao Corporation RESIN COMPOSITION

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312401A (ja) * 1989-06-09 1991-01-21 Shin Etsu Chem Co Ltd 変性水溶性セルロースエーテルの製造方法
JPH069702A (ja) * 1992-06-25 1994-01-18 Shin Etsu Chem Co Ltd 変性セルロースエーテルの製造方法
JPH08169901A (ja) * 1994-12-21 1996-07-02 Shiseido Co Ltd 新規セルロース誘導体
JP2012148962A (ja) * 2010-12-27 2012-08-09 Shin-Etsu Chemical Co Ltd セラミック押出成形用バインダー及び組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3348581A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210384A (ja) * 2018-06-05 2019-12-12 花王株式会社 アスファルト組成物
JP7075823B2 (ja) 2018-06-05 2022-05-26 花王株式会社 アスファルト組成物
JP7209889B1 (ja) 2022-09-12 2023-01-20 第一工業製薬株式会社 二液硬化型ポリウレタン樹脂組成物
WO2024057899A1 (ja) * 2022-09-12 2024-03-21 第一工業製薬株式会社 二液硬化型ポリウレタン樹脂組成物
JP2024040008A (ja) * 2022-09-12 2024-03-25 第一工業製薬株式会社 二液硬化型ポリウレタン樹脂組成物

Also Published As

Publication number Publication date
CN107949577A (zh) 2018-04-20
EP3348581A4 (en) 2019-05-01
JP2017053077A (ja) 2017-03-16
CN107949577B (zh) 2021-04-06
US10906993B2 (en) 2021-02-02
JP6894681B2 (ja) 2021-06-30
US20190169314A1 (en) 2019-06-06
EP3348581A1 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
WO2017043454A1 (ja) 改質セルロース繊維
JP7102172B2 (ja) 改質セルロース繊維の製造方法
WO2017043453A1 (ja) ゴム組成物
JP6845641B2 (ja) 樹脂組成物
JP6779158B2 (ja) 改質セルロース繊維の製造方法
Ojogbo et al. Batch mixing for the in situ grafting of epoxidized rubber onto cellulose nanocrystals
US20190322865A1 (en) Resin composition
Nguyen et al. Preparation of green material based on sugarcane bagasse and epoxidized natural rubber
WO2017043450A1 (ja) 改質セルロース繊維
Nayak et al. Mechanical properties of eco-friendly recycled polymer composites: a comparative study of theoretical and experimental results
An et al. Extraction of microcrystalline cellulose from cotton fiber, and application to block natural rubber as reinforcing agent
JP6986655B2 (ja) 成形材料用樹脂組成物、成形体、及び成形材料用樹脂組成物の製造方法
WO2020138291A1 (ja) 改質セルロース繊維粉末
WO2019240128A1 (ja) 改質セルロース繊維の製造方法及び改質セルロース繊維
JP2020084111A (ja) タイヤ用ゴム組成物、加硫ゴム、ビードフィラー及びタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016844315

Country of ref document: EP